MEETING

STATE OF CALIFORNIA

AIR RESOURCES BOARD

SCIENTIFIC REVIEW PANEL

JOE SERNA, JR., CAL/EPA HEADQUARTERS BUILDING

1001 I STREET

SIERRA HEARING ROOM

SACRAMENTO, CALIFORNIA

THURSDAY, FEBRUARY 28, 2008

9:34 A.M.

JAMES F. PETERS, CSR, RPR CERTIFIED SHORTHAND REPORTER LICENSE NUMBER 10063

APPEARANCES

PANEL MEMBERS

- Dr. John Froines, Chairperson
- Dr. Paul Blanc
- Dr. Craig Byus
- Dr. Gary Friedman
- Dr. Katharine Hammond
- Dr. Joseph Landolph
- Dr. Charles Plopper

REPRESENTING THE AIR RESOURCES BOARD:

- Mr. Jim Behrmann, Liaison, SRP
- Mr. Peter Mathews

REPRESENTING THE DEPARTMENT OF PESTICIDE REGULATION:

Dr. Tobi L. Jones, Assistant Director

REPRESENTING THE OFFICE OF ENVIRONMENTAL HEALTH HAZARD ASSESSMENT

Dr. George Alexeeff, Deputy Director

 $\ensuremath{\mathsf{Dr.}}$ Melanie Marty, Chief, Air Toxicology and Epidemiology Section

 $\ensuremath{\mathsf{Dr}}$. And rew Salmon, Chief, Air Toxicology and Risk Assessment Section

	1.	Continuation of the Panel's review of the draft report,"Endosulfan Risk Characterization Document,"(revised, February 2008)	1
	2.	Review of the draft report, "Air Toxics Hot Spots Program Technical Support Document for the Derivation of Noncancer Reference Exposure Levels"	36
	3.	Continuation of the Pane workshop on setting priorities in the toxic air contaminant identification program	1
	4.	Consideration of administrative matters	120
Adjournment		urnment	126
Reporter's Certificate 127			127
PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345			

iii

PAGE

PROCEEDINGS

CHAIRPERSON FROINES: This officially opens the
meeting of February 28th, 2008. And we're going to have a
slight change in the process.

1

5 The third item on the agenda that deals with priority setting, we're not going to hold that today. 6 Roger Atkinson, who was going to be one of the speakers, 7 has resigned from the Panel. And we will hold that at the 8 next -- we will hold the priority-setting workshop at the 9 next meeting and finish it off. But we need to obviously 10 replace Roger in some capacity. So the third item on the 11 12 agenda won't occur today.

13 And so we're going to start with Endosulfan. And I just wanted to -- I feel that the Endosulfan issue is --14 it's like living again in 1962 with Rachel Carson. And I 15 16 just wanted to read something from ATSDR, which says, "Currently the GABA antagonism mechanism of toxicity is 17 the most widely accepted hypothesis." This is the same 18 19 mode of action that ATSDR has identified for lindane, aldrin, dieldrin, and chlordane. These pesticides are no 20 21 longer used for agriculture in the United States.

22 So Endosulfan is a compound which in a sense is 23 at the bottom end of a series of compounds which have been 24 eliminated. And so hopefully over time this compound will 25 become even less used. So I wanted to just say that at

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

1 the outset to put it in context.

2 What I'd like to do then is to invite Tobi Jones 3 from DPR to make a short presentation. And then I'd like 4 to have a discussion among the Panel about voting on the 5 document in terms of its being a toxic air contaminant and then to get on with the findings. 6 7 So, Tobi, please. 8 DPR ASSISTANT DIRECTOR JONES: This is Tobi Jones, DPR. I want to make a few introductory comments to 9 review where we are on the Endosulfan risk assessment. 10 11 The Panel discussed earlier drafts of the 12 Endosulfan report at its meetings in September and 13 December. And the draft before you today incorporates 14 changes suggested in those meetings. 15 We've provided you with a revised document -- and 16 I hope that our annotations are clear in this copy that we provided you -- that address the areas discussed. 17 The current version includes: 1) Changes in the 18 exposure estimates for bystanders; 2) more detail on the 19 reported illnesses; and 3) certain changes in the 20 21 occupational scenarios. 22 The fourth area is an expanded discussion of studies on genotoxicity and oncogenicity and includes an 23 24 additional NTP, a mouse study. In this area we have 25 attempted to maintain consistency with OEHHA's findings.

We are making some minor refinements in the executive
 summary and the risk assessment text beyond what you all
 have received regarding genotoxicity and tumor promotion
 based on some very recent discussions with Dr. Landolph.
 It would be acceptable to DPR if the Panel identifies
 further research needed in its findings.

7 The fifth area is an expanded discussion of 8 studies that pertain to an additional uncertainty factor 9 for age-related effects. We have not reached agreement 10 with OEHHA on the rationale for this additional 11 uncertainty factor. But we'll continue to discussion with 12 them the approach that they've taken.

Should the Panel determine that it recommends the use of an additional uncertainty factor, DPR would welcome the Panel's guidance.

16 In conclusion, we believe we have presented a 17 defensible case that Endosulfan should be listed as a 18 toxic air contaminant. DPR and OEHHA are in agreement 19 with the endpoints that form the basis of our proposal. 20 We hope that the Panel agrees with our proposal and we 21 look forward to receiving your findings.

Let me conclude by also expressing our appreciation for the Panel's review of the document and especially the helpful comments of Drs. Landolph, Hammond, and Atkinson in refining the risk assessment.

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

CHAIRPERSON FROINES: Thank you very much. 1 2 My own point of view is I think there's very 3 ample evidence of Endosulfan being a toxic air 4 contaminant. But let me turn it to Joe and Kathy, who 5 were the leads on the compound, and get their perspective for the rest of us. 6 7 PANEL MEMBER HAMMOND: Thank you. 8 I would like to thank you, Tobi, and your staff for the work you've done, and OEHHA for the work that they 9 10 have done. I think there's been a lot of work that's been 11 done on this compound, and I think the staffs have been 12 responsive to the comments from the Science Review Panel. 13 And Joe and I have been working on some of the findings 14 for that. 15 And do we want to go directly to the findings 16 then at this point? 17 CHAIRPERSON FROINES: We're still at whether it's 18 a TAC stage. 19 Paul last night asked me, "Don't we do TAC and findings at the same time?" But the answer is we 20 21 generally vote on the document as a TAC and then go to the 22 findings. 23 And I had one question for the two of you. Joe 24 and Kathy, has everybody on the Panel seen the findings? 25 Oh, that's a serious problem.

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

1

PANEL MEMBER HAMMOND: Yeah, right.

2 CHAIRPERSON FROINES: Peter, do you have the 3 findings. 4 PANEL MEMBER HAMMOND: So in terms of the toxic 5 air contaminant, I think that it's our feeling, and I 6 think I would like to move on behalf of the Science Review 7 Panel, that there is ample evidence that Endosulfan is a 8 toxic air contaminant. 9 Do I make that as a motion? Is that the 10 procedure? 11 CHAIRPERSON FROINES: You can. But --12 PANEL MEMBER HAMMOND: But that's the 13 procedure --14 CHAIRPERSON FROINES: No, but you -- I mean we 15 want to hear what you think, and then you can make a 16 motion as a result of that. I would make the motion after 17 we've gone around the room --18 PANEL MEMBER HAMMOND: Oh, okay. 19 CHAIRPERSON FROINES: -- so that everybody has a 20 chance to talk. 21 PANEL MEMBER HAMMOND: All right. So there are 22 several different endpoints where Endosulfan has been 23 shown -- demonstrated to be a toxic air contaminant. And 24 there have been some measurements in the air that indicate 25 that the levels to which people can be exposed fulfill the

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

1 requirements of something being a toxic air contaminant.

2 So there's both toxicity and exposure data that support 3 that.

4 So I personally find the evidence compelling that 5 Endosulfan's a toxic air contaminant.

6 CHAIRPERSON FROINES: Joe.

7 PANEL MEMBER LANDOLPH: Yes, I pretty much concur 8 with Dr. Hammond's discussion. It's a neurotoxicant. 9 It's a genotoxicant. There's some suggestion that it does 10 things in vitro which might lead it to be a tumor 11 promoter. More work needs be done on carcinogenicity.

But I was particularly impressed that some of the applicators were occasionally getting neurotoxicological symptoms. And that worried me from the beginning.

So adding all these things together -- it also seems to be endocrine disrupter, it causes problems in development. So for all these reasons, I would second Dr. Hammond's opinion. My opinion is the same and I'm confident that, in an assessment from me, that it is a toxic air contaminant, yes.

21 CHAIRPERSON FROINES: So, Charles.

22 PANEL MEMBER PLOPPER: I don't have anything to 23 add. I'd concur with that. I think there's pretty good 24 strong evidence that it is.

25 CHAIRPERSON FROINES: Gary.

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

б

PANEL MEMBER FRIEDMAN: I agree with Charles. I
 have nothing to add. And I think their conclusions are
 very reasonable.

4

CHAIRPERSON FROINES: Craig.

5 PANEL MEMBER BYUS: Yeah, I agree. I think the 6 leads have done a fine job on this with DPR and as well as 7 OEHHA's input. And I also agree.

8

CHAIRPERSON FROINES: Paul.

9 PANEL MEMBER BLANC: I think there are two parts 10 to the formulation here. And I want to make sure that the 11 record also indicates that not only is the chemical under 12 discussion inherently toxic, but also that there is 13 convincing evidence of airborne exposure to the toxin at 14 levels which would pose a potential health risk even 15 within the somewhat more restrictive guidelines of the DPR 16 calculation approach. So that it's a two-pronged issue.

17 CHAIRPERSON FROINES: And the second prong is? 18 PANEL MEMBER BLANC: Well, the first prong, 19 everyone said it's clearly a toxic material. The second 20 prong is not only is it a toxic material, but there's 21 airborne exposure at levels which make it a toxic air 22 contaminant. After all, it wouldn't be a toxic air 23 contaminant if it wasn't in the air.

24 CHAIRPERSON FROINES: There's actually some new25 data emerging on that issue. But it's not in the record

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

so I won't bring it up. But the point is actually getting
 stronger rather than weaker.

3 We went around the room so fast. I don't want 4 to -- Melanie, are you comfortable with the conclusions 5 the Panel has made as the OEHHA person?

6 OEHHA AIR TOXICOLOGY & EPIDEMIOLOGY BRANCH CHIEF7 MARTY: Sure.

8 CHAIRPERSON FROINES: I don't know if we've ever
9 had something quite so --

PANEL MEMBER BLANC: Well, again, I think that 10 it's partly because some of the issues that -- some of the 11 12 nuance that may come up in the wording of what the content 13 of the findings -- our findings and interpretation themselves are probably still worthy of discussion. And 14 15 I'd have to go back and look at the record. I'm actually not sure that we -- you know, that we typically have very 16 much difficulty with the phase of the dichotomous yes/no. 17 Some of the more protracted discussions occur related to 18 content of the -- more emphasize in the findings 19 20 statement.

21 So I certainly would be comfortable moving that 22 the Scientific Review Panel concurs that the scientific 23 evidence presented supports designating this compound as a 24 toxic air contaminant.

25

CHAIRPERSON FROINES: Is there a second?

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

1

PANEL MEMBER HAMMOND: I second that.

2 CHAIRPERSON FROINES: Is there a discussion? PANEL MEMBER BYUS: John, don't we -- at some 3 4 point I mean I agree. But don't we also have to say 5 whether the document is seriously deficient or not? Or is that part of the findings? Where is that? 6 7 CHAIRPERSON FROINES: We absolutely have to make that determination. And that will -- that is a 8 requirement of our findings. 9 10 PANEL MEMBER BYUS: Okay. 11 PANEL MEMBER BLANC: And actually that's why I worded my motion the way I did, which is that whatever the 12 13 deficiencies may be, I believe that the science is acceptable to the standard of the dichotomous designation 14 15 of yea or nay to it being a toxic air contaminant. CHAIRPERSON FROINES: Paul was actually making --16 you see, we don't determine -- we may recommend that it be 17 18 a TAC, but we absolutely have to determine the adequacy. 19 And so that's what I heard him doing. And so if everybody understands that, then we can --20 21 PANEL MEMBER BLANC: Could you read back the wording is that possible. 22 23 (Thereupon the record was read as requested.) PANEL LIAISON BEHRMANN: Dr. Froines? 24 CHAIRPERSON FROINES: Yes. 25 PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

PANEL LIAISON BEHRMANN: If I could just add very 1 2 briefly -- I'm Jim Behrmann, Staff Liaison for the Panel. 3 The Panel most often meets in northern and 4 southern California. And I want to thank the Panel for 5 meeting here in Sacramento today. And for the benefit of the people that are here today that are not normally at a б panel meeting, I wanted to just add -- and I'm sure you 7 may even have alluded to it in your earlier remarks -- but 8 lest anyone here in the audience think that the staff has 9 not had to present much in the way of evidence or that the 10 Panel hasn't really discussed this. This report has 11 12 actually been the subject of two previous meetings, at 13 which -- during which time there were hours of discussion by the Panel members, both in September and in December. 14 15 So I wanted to make sure that the people attending today that do not normally have the benefit of 16 seeing this Panel, that they get the correct impression 17 18 that this isn't an easy task to come before you. 19 Thank you. CHAIRPERSON FROINES: What he's really saying is 20 21 that "too bad, folks, but you've missed all the fun." 22 (Laughter.) 23 CHAIRPERSON FROINES: So all in favor? 24 (Ayes.)

25 CHAIRPERSON FROINES: Opposed?

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

1

It's unanimous.

So thank you, Tobi. You're done. We're in
 business.

Now the question comes, do we want to take a
10-minute break, 15-minute break and give people a chance
to read the findings as they're currently written?

7 PANEL MEMBER FRIEDMAN: You know, I don't -- I'm sorry that I keep harping on this. But my experience in 8 the past is the findings are not -- I just opened a page 9 at random that says, "Since this was an older study a 10 number of developmental markers were not as assayed 11 12 including sperm counts, crown rump links, skeletal stains, 13 vaginal opening, and preputial separation." That should not be part of our findings, I don't -- I think we should 14 15 have a brief, maybe two-page document. And that was my 16 experience in the past.

This is regurgitating a lot of the larger report.And I'm not sure that that's what's expected from us andwhat's helpful.

20 CHAIRPERSON FROINES: Well, my view is that we 21 have -- I think -- by the way, Kathy and Joe would agree 22 that this is too long. So that it's a friendly audience.

23 My view is that the findings should be exactly 24 that. They should be findings. In other words, they 25 should be the written justification for our decision of

1 the compound as a toxic air contaminant. In other words, 2 we don't need extraneous material that doesn't pertain to 3 the actual decision that we made. We made a decision to 4 identify this as a toxic air contaminant, and there were 5 reasons for that. And I think our findings should be 6 those reasons.

7 PANEL MEMBER FRIEDMAN: I agree. But do we need 8 all this detail?

9 CHAIRPERSON FROINES: No, no. No, we don't.
10 PANEL MEMBER FRIEDMAN: And I don't think we can
11 read this in 10 or 15 minutes, frankly.

12 CHAIRPERSON FROINES: Well, what would you
13 suggest?

PANEL MEMBER FRIEDMAN: Well, you know, in view of saving resources, I'm not suggesting that this be rewritten. But, you know, in the future I would like to see us go back to what we used to do and have like a two-page summary that justifies the conclusion that it's a toxic air contaminant and here are the reasons why.

20 CHAIRPERSON FROINES: I'll tell you this. I saw 21 an Email from Joe in which he went through the process of 22 how this has emerged. It went to Kathy, it went to Joe, 23 it went to Kathy, it went to Joe. And so he went through 24 that process. And then at the end he said, "And finally 25 it will go to John." That's the -- "we're going to get

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

1 rid of it and send it off to Froines and let him deal with
2 it."

3 So I'm happy to be the person -- well, I'm not 4 happy to be the person. But I'm willing to be the person 5 who will take what they have written and write an edited 6 version, if that would be acceptable, based on what we're going to talk about today. And I don't know whether you 7 want to take a break and talk about it or whether you want 8 to leave it up to me or how you would like to approach it. 9 But I'm going to -- I will do exactly what you want, 10 because I think -- I think what we want is findings that 11 give the context for the decision. And we are in complete 12 13 agreement I think.

PANEL MEMBER FRIEDMAN: Okay. Well, you know, I hate to assign you work out, because I'm not in the position. But I think that would be great, if you take this and make it into the kind of findings we used have that were about two pages and had the main points of why it's a toxic air contaminant, why people are exposed to it.

21 CHAIRPERSON FROINES: See, I get \$110 a meeting.
22 (Laughter.)

23 PANEL MEMBER FRIEDMAN: In that case, absolutely24 you should do it.

25 CHAIRPERSON FROINES: Yeah. See, I get the extra PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345 1 10.

2 That's not true, by the way. 3 PANEL MEMBER BLANC: Can I just point out one 4 nuance here to what's being discussed, which is that, 5 Gary, although I would agree with you 110 percent in terms of the kinds of findings that we deal with with the б proposals that come from OEHHA or, you know, the work that 7 comes from them, I think that the Department of Pesticide 8 Regulation, as we have been struggling to evolve to a 9 10 common ground, it may be necessary for our findings to be somewhat less telegraphic than they might need to be for 11 12 the other. So that there may be some bifurcation here. 13 Not that it has to be perhaps as elaborate as this. But I think that there are certain -- there are 14 15 certain areas, for example, in which there was certainly considerable debate and in the end no final closure 16 between OEHHA and DPR on key issues. And I think that 17 18 although that's not going to prevent us from finding 19 that -- it has not prevented us since we've just moved 20 that this does meet scientific muster to establish it as a 21 toxic air contaminant. In fact, it maybe quite important for us as a panel not to have our lack of explicit comment 22 23 on certain issues be misinterpreted as leaning towards 24 some particular interpretation of the approach.

25

I mean I hope I'm not being too long winded in

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

1 what I'm trying to say.

2 PANEL MEMBER FRIEDMAN: Well, I have no problem 3 with that. We definitely should include our comments, but 4 not regurgitate little reviews of studies and what --5 PANEL MEMBER BLANC: No, no, no. But I'm just making the point that I think whatever this -- whatever 6 John working with Kathy and Joe comes to terms with an 7 edited-down version of this, it will still likely, I 8 anticipate, be longer than the two-page ideal findings 9 10 that you're referring to. Perhaps that would be reasonable in terms of certain of the other items that 11 12 we've dealt with historically. 13 CHAIRPERSON FROINES: I should also add something

14 that Tobi alluded to in her remarks and, that is, that our 15 findings are going to have some differences between what 16 we write and what DPR has written. We're going to 17 deal -- we are going to comment on the children's safety 18 factor, for example. Tobi alluded to the genotoxicity and 19 carcinogenicity issue that Joe's raised in the past.

20 So there are going to be -- our findings are 21 going to have our stamp of approval. They're not a 22 watered-down version of DPR or OEHHA's findings; and 23 that's what I really want to avoid for ourselves. I think 24 our findings should have our stamp of approval on what we 25 think about this chemical. And so that's what it will

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

reflect. And if that -- but I do think there are
 substantial cutting that can actually occur. And it may
 not be two pages, according to what Paul said, but it
 could be.

5 PANEL MEMBER FRIEDMAN: And I think -- well, I 6 totally agree with you. And I think this will be a more 7 useful document to the people -- to the Air Resources 8 Board if it is cut and it's readable and our conclusions 9 and our comments are clearly stated, rather than going 10 through all this massive regurgitating literature.

11

CHAIRPERSON FROINES: Joe.

PANEL MEMBER LANDOLPH: Yeah, I do have to 12 13 apologize a little bit. It was a little bit difficult for Kathy and I and John to converge for various time 14 constraints. So it's been a work in progress. And I was 15 working on it yesterday for the second time at 11:30, and 16 I think I finally Faxed -- Emailed it to John. So we view 17 18 it as a work in progress shrinking it. And we just didn't 19 get enough time to shrink it down further.

I don't think it's going to hit two pages. I agree with Paul. But it certainly can go down more from the nine. Maybe four or five or something like that. There's a lot of elegant details that we don't want to sacrifice. Some of it backs up the conclusions of neurotoxicity and genotoxicity, et cetera. But we

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

1 certainly can shrink it down more, no question about it.

2 CHAIRPERSON FROINES: And I actually think that 3 the developmental and reproductive and neurotoxicity are 4 the three central areas that -- in a sense the oncology 5 and the genotoxicity has gotten the bigger play. But it's 6 less -- in some level less important -- not less important 7 but just has less evidentiary basis.

8 I guess what I'm saying is that we're going to take -- the three of us are going to take this document, 9 do a new version, submit -- circulate it to the Panel. 10 And when we come into the next meeting, we spend 30 11 12 seconds on approving it and that's it. So we basically do 13 it by communication among the Panel as we go. And Gary -- so we'll have it down to a size that Gary won't 14 come in to the meeting and say, "Whoops, you guys didn't 15 16 listen to a word I said."

17 Is that -- so we won't try and take a 10-minute 18 break or a 15-minute break, because I think you don't get 19 good work that way. Is that reasonable?

20 PANEL MEMBER FRIEDMAN: And I'd like to add 21 that -- you know, I don't mean this at all as criticism of 22 the lead people who -- you know, you guys have done a 23 tremendous job. You've found a lot of flaws and problems 24 that have been, you know, dealt with by DPR, and I want to 25 thank you for all the good work you've done. I sort of --

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

that's what one of my pet peeves in life is brevity. And
 I guess I'm bringing that here.

3 CHAIRPERSON FROINES: Tobi, are you okay with -4 this isn't going to throw you off, is it?

5 DPR ASSISTANT DIRECTOR JONES: That's okay.

6 CHAIRPERSON FROINES: The good news -- the bad 7 news, it will be moved -- it won't be finished till next 8 time. But the good news is that it will be finished next 9 time. And that's what we want.

PANEL MEMBER BLANC: I think what would be useful 10 though since we're obviously going to be saving time here 11 12 not taking a break and not having a lengthy discussion of 13 this with the wording of the findings -- I think that it would be useful for me, and I assume for the other Panel 14 15 members, to hear briefly from Melanie in a sort of highlight form -- they've provided us also with their 16 findings. And I think it would be useful for me to hear 17 in five minutes what OEHHA sees as the outstanding gaps 18 between the two positions at this point, just so that I 19 20 can put that in context.

21 CHAIRPERSON FROINES: Melanie, can you do a
22 five-minute gap?

I should say, Paul, one of the things that's
important to note is that when Melanie's finished this,
George and Melanie and whoever else is going to present is

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

going to present the non-cancer risk assessment. And that
 won't be voted on today. But it has an extensive amount
 of discussion on the risk assessment vis-a-vis children.
 So that OEHHA's position is actually coming in about 20
 minutes and it's in considerable detail.

6 Melanie.

OEHHA AIR TOXICOLOGY & EPIDEMIOLOGY BRANCH CHIEF8 MARTY: Melanie Marty from OEHHA.

9 We did develop a revised findings recently to 10 reflect the changes that DPR made in their document. I 11 think it's safe to say that most of the things have been 12 resolved. The outstanding area of disagreement is whether 13 there's an additional factor is called for to protect 14 early life exposure. So that's really all that is left.

We felt that the data say there's a lot of arrows pointing to inhalation being an important route of exposure, being different pharmacokinetically than orally. So that should play into your -- into how you're looking at the data in terms of exposure.

20 And then also there are many arrows pointing to 21 potential developmental toxicity including potential 22 endocrine disruption and male reproductive toxicity that 23 came from a lot of different studies. And while none of 24 those studies is perfect in and of themselves, if you take 25 the 10,000-foot view and look at all the data, it really

1 is saying to us that Endosulfan causes male reproductive
2 toxicity in gestational and perinatal exposures. So
3 that's --

4 CHAIRPERSON FROINES: That's very useful, because 5 Joe and Kathy and I can focus on those bullets and it will 6 be in the transcript. So we'll have -- having bullets 7 like that are actually quite useful, because it helps 8 focus your...

9 OEHHA AIR TOXICOLOGY & EPIDEMIOLOGY BRANCH CHIEF 10 MARTY: And some of the other data indicates also that 11 effects were seen on a variety of parameters related to 12 testicular function at lower doses in younger animals than 13 in adult animals. So, you know -- and, again, none of the 14 data are perfect, so there's, you know, judgment that has 15 to come into play. But we would say that the younger 16 animals were more susceptible.

17 CHAIRPERSON FROINES: Would you send us some 18 references if you think that -- or point out where in the 19 document that those references are so we know -- to help 20 us know where to look.

21 OEHHA AIR TOXICOLOGY & EPIDEMIOLOGY BRANCH CHIEF 22 MARTY: Sure. Yeah, we can just send you the references 23 that we think point these issues out.

24 PANEL MEMBER BLANC: Do you think that an25 important piece of that argument is the very recent

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

caballero study, or was that just sort of an aside?
 Because clearly that was too leg breaking to be in the
 document, but we could easily make sure that that enters
 into our record.

5 OEHHA AIR TOXICOLOGY & EPIDEMIOLOGY BRANCH CHIEF 6 MARTY: Yes, the caballero study, which just was published 7 I think last month --

8 CHAIRPERSON FROINES: That's not Roberts', right?
9 OEHHA DEPUTY DIRECTOR ALEXEEFF: No. That's an
10 additional study.

11 OEHHA AIR TOXICOLOGY & EPIDEMIOLOGY BRANCH CHIEF 12 MARTY: No, it's an additional study. Which, you know, 13 obviously DPR couldn't put that in their document. It 14 wasn't published yet. But, you know, it does show 15 developmental neurotoxicity.

16 It's sort of, you know, interesting endpoints and 17 it's hard to know what it means. But it was clearly 18 there. It impacted the neurotransmitter concentrations in 19 various parts of the brain when Endosulfan was given 20 during gestation.

21 OEHHA DEPUTY DIRECTOR ALEXEEFF: Can I comment?22 George Alexeeff with OEHHA.

I just wanted to say I think both OEHHA and DPR Staff have spent a lot of time trying to break through new ground here, where in many cases factors are thrown in by

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

1 various organizations without a lot of justification. And 2 a lot of effort was spent by both OEHHA staff, DPR staff, 3 jointly and separately, trying to look at the data to 4 really understand everything from the overt results, the 5 results studied in guidelines studies, the results studied 6 in much smaller university-based studies, and trying to 7 put all the pieces together.

8 So I think what you see is probably both 9 excellent approaches by both staffs in trying to -- I mean 10 all the pieces are not there. So we're looking at a 11 puzzle where many pieces are there and we're trying to 12 explain the puzzle.

13 And so I think that's -- I think both staffs made 14 excellent efforts in that line. And that's all I wanted 15 to say.

16 CHAIRPERSON FROINES: That's great.

17 Thank you very much.

And I should say that I think Joe and Kathy really worked their tails off on this. And so as much as I agree with Gary about shortening it, they really read everything and they really did work very hard to get the findings for this meeting. And so it's no reflection on them that we're going to shorten it to some extent.

24 PANEL MEMBER BLANC: Can I just follow up. And I25 don't want to badger the issue, but I want to make sure

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

1 that I understand OEHHA's position in terms of this
2 recently emerged data. I mean your findings suggest that
3 were one to rely on the recent caballero study, it would
4 generate an RCD that would be .06 as opposed to the .194,
5 which is three times lower. That would seem to be a very
6 cogent argument for a threefold safety factor.

7 OEHHA AIR TOXICOLOGY & EPIDEMIOLOGY BRANCH CHIEF8 MARTY: Yes.

9 PANEL MEMBER BLANC: And then you make a further argument that in fact that's an oral study, adding further 10 uncertainty, which would seem to support an argument for a 11 12 tenfold safety factor, simply based on alternative or 13 emerging data that are there, leaving aside whether or not -- and if those data were confirmed in other studies, 14 15 then you wouldn't need the safety factor because you'd have the sensitive age establishing. You'd just used 16 17 that.

18 Is that -- am I understanding the thought process 19 correctly?

20 OEHHA AIR TOXICOLOGY & EPIDEMIOLOGY BRANCH CHIEF 21 MARTY: Yes, I think that's a good summation. You know, 22 part of the issue of the caballero study is the first 23 study that's actually done such a type of measurement. So 24 we know it's neurotoxic to us. Anything that's neurotoxic 25 raises a big red flag for developmental. I can't think of

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

any neurotoxin that's not worse during development than in
 adults. So that raised a red flag immediately to us.

3 This new study, which looked at neurotransmitters 4 in the prefrontal cortex of the brain found a significant 5 difference in the Endosulfan-treated -- the pups of the 6 Endosulfan-treated dams relative to the controls.

So, you know, translating into that now what that means, you know, I can't say what that actually means.
But, you know, neurotransmitters participate in
neuro-development and they're very important signaling
molecules. So that raises -- makes the red flag a little
bigger, I guess I should say.

So I'm not sure we -- you know, it's hard for me to say we would base our number on that study.

PANEL MEMBER BLANC: No, I'm not saying that either. I'm saying that it's -- in support of the argument for the safety factor. If you were basing your numbers on this, you wouldn't have a safety factor because you would say this is what you've shown in the sensitive age range.

21 OEHHA AIR TOXICOLOGY & EPIDEMIOLOGY BRANCH CHIEF22 MARTY: Right.

23 PANEL MEMBER BLANC: Isn't that correct?
24 OEHHA AIR TOXICOLOGY & EPIDEMIOLOGY BRANCH CHIEF
25 MARTY: That's right. If we had a good strong

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

1 developmental database, we would use that instead of an 2 uncertainty factor.

3

PANEL MEMBER BLANC: Right.

And the other reason why I think it's kind of critically important that perhaps that be pretty explicit in the document is because apparently federal EPA has opted not to use a safety factor in their Endosulfan risk assessment, if I understand correctly.

9 CHAIRPERSON FROINES: That is currently being considered at this point. And they had proposed -- and 10 their rationale for going to a one safety factor -- no 11 12 safety factor was, in my view, slightly bizarre, and I won't go further, but it was very contradictory. So I 13 don't know how it's going to turn out. But they're going 14 to be under a lot of pressure to not stay with that 15 position I think. 16

17 PANEL MEMBER HAMMOND: I'd like to state one of 18 my view points on the question of childhood safety factor. 19 We --

20 CHAIRPERSON FROINES: Thanks, Melanie and George. 21 PANEL MEMBER HAMMOND: I think that that's an 22 issue that we will probably need to be pursuing in the 23 future and will simply be part of what we'll be looking at 24 in the non-cancer risk assessment methods. And so these 25 are new issues that we're looking at. They have the new

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

legislative mandates that the SRP is facing. I think
 they're very important issues. They perhaps increase
 sensitivity of children.

I think there -- even without having resolved those issues though, we can actually take other pieces of information. And I would say that there have been some testimonies that would indicate that you have to have experimental data proving greater sensitivity of young animals than adult animals in order to think that there's an age effect.

11 However, I think we do know enough toxicology 12 that for certain systems such as neurotoxicology, we know 13 that in general since the systems aren't fully developed that they tend to be more sensitive. And so we can 14 15 without knowing what the safety factor is be aware that we would expect even without animal data that there would be 16 more sensitivity of young humans than for adults. And so 17 18 I think we can actually look at that. That's part of the 19 science basis that we already have.

20 So I think the question of what level of evidence 21 is needed, do we need it in this -- I would think at that 22 point you would almost have to show that there's actually 23 no difference between children and animals. But in the 24 absence of data, I think one would assume that there's a 25 difference.

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

1 CHAIRPERSON FROINES: Joe.

2	PANEL MEMBER LANDOLPH: Yeah, I was just
3	rereading a document on the way up again. And I realized
4	that there actually is data in here on page 39 that
5	Endosulfan does cause tumor promotion in the hepatocyte
б	foci bioassay. So that statement could be strengthened.
7	The other thing, that I puzzled by the gentox
8	data, because some's positive and some assays don't work.
9	And it turns out earlier in the document they indicated
10	that Endosulfan can generate reactive oxygen species and
11	they have an unusual and unique gentox profile. So that
12	would rationalize some of this data. We'll probably put
13	that in the findings too. Then we'll shortened it.
14	CHAIRPERSON FROINES: Do you have a reference on
15	reactive oxygen species?
16	PANEL MEMBER LANDOLPH: They do.
17	CHAIRPERSON FROINES: They do?
18	PANEL MEMBER LANDOLPH: It's called Soan, et al.,
19	2004. And they're looking in Saccharomyces Cerevisiae.
20	CHAIRPERSON FROINES: And do you know what they
21	used as their endpoint?
22	PANEL MEMBER LANDOLPH: TBARS, thiobarbituric
23	acid reactive substances, looking at lipid proxidation.
24	And I'd have to pull a paper to get more detail on it.
25	CHAIRPERSON FROINES: Well, you know, there's

1 that big fat double bond that nobody's talked about yet
2 that's going to potentially epoxidize and then form diols
3 and -- and so that there are pathways that one could think
4 would lead to reactive oxygen species. So that I've
5 thought about that and just decided not to bring it up,
6 because we've had enough complexity anyway.

7 But, I think that -- my feeling is the metabolism 8 as we know it thus far is probably incomplete and that 9 there are probably other metabolic pathways that could 10 lead to other forms of toxicity.

PANEL MEMBER LANDOLPH: And the reason I brought that up was I was looking at the gentox profile again and it was a little -- it was interesting. And you get more chromosome breakage and less mutation. And that's true with oxygen radical species, because the assays don't detect their activity very well. So it's a consistent pattern.

18 CHAIRPERSON FROINES: Those are rigid molecules 19 though, those more bornal structures. So it's not quite 20 as simple as I just made it. But it's something that it 21 would be nice to see some experimental data, you're 22 not -- because I don't think they missed it. I think it 23 isn't there. Don't you think?

24 PANEL MEMBER PLOPPER: Um-hmm. That's what I
25 think.

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

CHAIRPERSON FROINES: Yeah, I think Charles and I
 would be on the same page on this one.

3 PANEL MEMBER HAMMOND: I have a comment about the 4 findings, and just in their -- I actually tried fairly 5 unsuccessfully to get some guidance on the findings and just what should be in them. I understood Gary wanted 6 short findings. But I've also been unclear -- and I don't 7 know whether this is a conversation to have here or 8 elsewhere -- how much the findings need to contain within 9 10 themselves the data or how much we just say that the data are in the report and we just make up, you know, like --11 12 how would it be to say that there is evidence that 13 endotoxin is a tumor promoter, period? Would that be a finding? Would that be sufficient? 14

15 PANEL MEMBER FRIEDMAN: I would be in favor of 16 that. In fact, I would suggest that you read -- that 17 Kathy be provided with some of our previous findings, that 18 you're relatively new -- you know, if you could see what 19 we've done before with some of the other chemicals.

20 PANEL MEMBER HAMMOND: But you would consider 21 that a sufficient finding?

22 PANEL MEMBER FRIEDMAN: I would think that would23 be sufficient.

24 PANEL MEMBER HAMMOND: And would other members of 25 the Panel feel that way?

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

PANEL MEMBER BLANC: I think it depends on - obviously it depends on the spin that's in the document.
 If in fact what you're saying --

4 PANEL MEMBER HAMMOND: I think that's part of the5 problem.

6

PANEL MEMBER BLANC: Right.

7 PANEL MEMBER HAMMOND: That's the problem that
8 we've been --

PANEL MEMBER BLANC: Right. So I think what you 9 want to do is choose the things. So on the things in 10 which there doesn't seem to be any heterogeneity of views 11 12 and the data are straightforward, I don't think you need 13 to -- we provide the detail. So, for example -- just a quick example, point number one, which is, you know, a 14 15 full paragraph, I mean basically I think that can be two sentences because I don't think you need to recapitulate 16 that. But if you're going to have a finding that more 17 strongly emphasizes the potential tumor promoter potential 18 19 of the compound which was only alluded to in passing in 20 the document, then I think it's worthy to say although it 21 was not strongly emphasized in the document, you know, we believe there was convincing evidence to suggest it was a 22 23 blah, blah, blah.

24 CHAIRPERSON FROINES: Well, I have a question for 25 people. Let's assume that we want to say Endosulfan is a

1 tumor promoter and so Joe wants to know if that's

2 sufficient. One could say that the evidentiary basis is 3 sufficient to conclude that Endosulfan is a tumor promoter 4 and then put page numbers in parentheses where the actual 5 evidentiary basis is found in the document. 6 What do you think of that? 7 PANEL MEMBER FRIEDMAN: That would be great. 8 CHAIRPERSON FROINES: That way you have your evidentiary basis but you don't have -- but you haven't 9 said it in a million -- at length. 10 11 Paul PANEL MEMBER BLANC: Again, I think it depends on 12 13 the point you're trying to make. So, for example, this 14 discussion we just had with Melanie about an article which 15 doesn't appear in the report because it has only just now been published. I think that would require obviously more 16 detail describing that publication should we -- should you 17 choose to invoke --18 19 CHAIRPERSON FROINES: Well, I don't know what the rules are. Can we in our findings put something in that's 20 21 not in the record? 22 PANEL MEMBER BLANC: We can --23 PANEL MEMBER HAMMOND: You mean not in the 24 report? 25 PANEL MEMBER BLANC: I think we just put it in

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

1 context.

2 CHAIRPERSON FROINES: No, I mean the record. The 3 record -- we could --

4 PANEL MEMBER HAMMOND: It could be in the record5 if we talked about it in here.

6 CHAIRPERSON FROINES: The record of the whole --7 PANEL MEMBER BLANC: It's in the record because 8 OEHHA's put it in their findings. So we were supposed to 9 review OEHHA's findings too. So I don't see any problem 10 with that. It's not something I found on med line.

11 PANEL MEMBER BYUS: I have now read the draft 12 findings. I think they're an excellent first draft. I 13 think they're -- it's got all the information in there. Now, all you have to do is edit it down. Take another 14 15 view of it and make your points. I mean I think you 16 made -- it's an excellent first draft for findings. So just edit them down. And whether it's two pages or four 17 18 or six pages or however many it is -- I mean I think you're just speaking about tumor promoter. I think you've 19 20 summarized the data quite nicely and made the right sorts of value judgments and conclusions. 21

22 So, again, you want to have it longer, a little 23 shorter, I think is what you should do. So I think it's 24 an excellent first draft for --

25 CHAIRPERSON FROINES: I still maintain that the

context or the purpose of findings is to describe the
 basis for your decision. And everything else is in the
 document.

PANEL MEMBER BYUS: And what they've done is pulled out of the document all of those key findings -- the key aspects and summarized them here in their first draft. So that's the decision. Do you want to leave them here or refer to them back in the document? But in your thinking, your thinking is all done. It's just a matter of where you put it as far as I could -- as I I read.

12 CHAIRPERSON FROINES: Well, but you agree with13 Gary as well.

14 PANEL MEMBER BYUS: Um-hmm. I think it should be tightened up. I mean it's a first draft. So, yes. And 15 so you've got all your -- the way I read this, you've 16 pulled all of the document, all of the key aspects, 17 reiterated them. So that your conclusions at the end of 18 19 every paragraph were supported by the document and your 20 thinking. So I mean it's just a matter of deciding to 21 reference back into the document or leave them here in the 22 findings.

23 CHAIRPERSON FROINES: You know what's clear about 24 this discussion? Is that we are academics.

25 (Laughter.)

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

1 CHAIRPERSON FROINES: Only academics can take a 2 topic and after a hundred meetings haven't resolved it 3 yet.

4 (Laughter.)

5 PANEL MEMBER BYUS: If you read what they've 6 said, I mean they've made some very -- they've made all 7 the right value judgments as far as I can see. And it's 8 here.

9 CHAIRPERSON FROINES: Now, the point is that as 10 they and then me are working on them, what we would 11 prefer -- what we would want of course is Emails to, say, 12 Joe or -- say Joe just for the sake argument -- that if 13 you have input, don't just wash your hands of it after --14 in the next five minutes.

15 What?

16 PANEL

PANEL MEMBER BLANC: Nothing.

17 PANEL MEMBER LANDOLPH: Mechanistically I think 18 what might work is let Kathy and I take another crack at 19 it from the electronic copy we gave to Jim, and let us 20 work to shorten it. And then we'll send it to you and you 21 send it to the whole committee. You want to do that? And 22 then just send us back any comments you have and we'll be 23 happy to put them in.

24 CHAIRPERSON FROINES: I really want to come into25 the next meeting with being able to start and take a vote.

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

1 Hopefully we can eliminate lengthy discussions.

2 PANEL MEMBER FRIEDMAN: But we'll get a chance to 3 see it before the meeting, right? 4 CHAIRPERSON FROINES: You'll have multiple 5 opportunities. It's embarrassing, frankly, that you б didn't have it until this morning. 7 PANEL MEMBER BLANC: You know, Joe, I want to suggest a slight modification of that, because it's -- you 8 guys have worked so hard on it and it's really, you know, 9 10 hard to take a step back. I really would suggest that John do a big, big trimming and send it back to you guys 11 12 for your vetting as the next step. 13 PANEL MEMBER LANDOLPH: That's fine. But I'd 14 like to do just a few more things before he does that. 15 (Laughter.) 16 CHAIRPERSON FROINES: This is my friend Paul 17 Blanc. 18 (Laughter.) 19 PANEL MEMBER LANDOLPH: I know that. 20 CHAIRPERSON FROINES: Yeah, I think -- I agree. 21 I actually think that having a fresh face to work on it --22 I think Paul's right, that I think I can bring a fresher 23 face than you two can. 24 PANEL MEMBER BLANC: And, believe me, it's been a 25 number of years since John was referring to as a fresh PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

1 face.

2 (Laughter.) CHAIRPERSON FROINES: So are we done for this --3 4 at this point we're beginning to drag it out. 5 PANEL MEMBER BLANC: Yeah. No, fine. I think we 6 know what we're doing. 7 CHAIRPERSON FROINES: So let's take a ten-minute 8 break and then start with OEHHA. 9 (Thereupon a recess was taken.) CHAIRPERSON FROINES: We are starting with OEHHA. 10 11 And it is my understanding, Andy, that today 12 you're making a presentation and then we're going to 13 discuss it at the next meeting and that you're not anticipating a lot of feedback today. But is there any 14 15 reason why we couldn't give you feedback if we wanted to? OEHHA AIR TOXICOLOGY & EPIDEMIOLOGY BRANCH CHIEF 16 17 MARTY: No. OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION 18 19 CHIEF SALMON: I'll hand over to Melanie here. She was 20 going to introduce the topic, so she can explain best. 21 OEHHA AIR TOXICOLOGY & EPIDEMIOLOGY BRANCH CHIEF 22 MARTY: That's correct. 23 No, we'd be happy to take feedback at any point, 24 today included. 25 I did want to just reiterate for the record that PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

1 we extended the public comment period upon request from a 2 number of people. And so that threw us off a little bit 3 timing-wise. So the Panel has only received the public 4 review draft of the document. And we are going to give an 5 introductory presentation today and answer whatever 6 questions we can answer.

7 But we aren't going to go through the individual 8 chemical RELs today and we're not going to -- obviously 9 can't go through the public comment. The public comment 10 period ended three weeks ago. So we have the comments now 11 and we're going to be in the process of responding to 12 them.

13 The normal process is you guys get the document, 14 the comments, and our responses all at the same time. So 15 it just got a little bit split this time.

16 So, yes.

17 CHAIRPERSON FROINES: When will the -- the18 document I notice was missing was Appendix D.

OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION
 CHIEF SALMON: No.

21 OEHHA AIR TOXICOLOGY & EPIDEMIOLOGY BRANCH CHIEF
22 MARTY: Appendix D was the individual reference exposure
23 levels for the six -- I think we had six chemicals.

24 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION25 CHIEF SALMON: Yes.

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

1 OEHHA AIR TOXICOLOGY & EPIDEMIOLOGY BRANCH CHIEF 2 MARTY: So --

3 CHAIRPERSON FROINES: They weren't in my package. 4 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION 5 CHIEF SALMON: I think we sent -- I think I -- I Emailed you them separately, I think, didn't I? But, in fact, 6 what -- I think what happened is you were expecting all of 7 the RELs in Appendix D. That's not what you're getting. 8 What you're getting doesn't -- by design, doesn't include 9 the existing RELs. It only includes the six new ones. So 10 the Appendix D, as you have it, and as you will have it 11 12 for the purposes of review, consists of the six new REL 13 summaries. It doesn't include -- you know, when it's final, we would add in the existing RELs which have not 14 15 been changed from the old document. Does that make sense? CHAIRPERSON FROINES: Yep. 16 OEHHA AIR TOXICOLOGY & EPIDEMIOLOGY BRANCH CHIEF 17 18 MARTY: Okay. 19 CHAIRPERSON FROINES: At the risk of getting 20 people to laugh, you noticed why I noticed that I was 21 missing appendix D right away. Because that's the appendix that has naphthalene in it and --22 23 (Laughter.) 24 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION 25 CHIEF SALMON: Yes. Well, naphthalene is not one of the

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

1 first six. But it will be coming along obviously as an 2 existing REL until such time as it's updated, which I 3 think is likely to happen in the --4 CHAIRPERSON FROINES: You realize that you have 5 both Dr. Plopper and me on the naphthalene thing, so that that's the one you have to be really be careful about it. б 7 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION CHIEF SALMON: Well, that's why we didn't include it in 8 the first six. 9 10 (Laughter.) 11 OEHHA AIR TOXICOLOGY & EPIDEMIOLOGY BRANCH CHIEF 12 MARTY: That was a joke, by the way. 13 Okay. I'm going to turn it over to Andy, and he will make the presentation. 14 15 (Thereupon an overhead presentation was Presented as follows.) 16 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION 17 CHIEF SALMON: Okay. Now what I say actually I mean. 18 19 (Laughter.) OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION 20 21 CHIEF SALMON: Okay. So I'm Andy Salmon. I'm with the Office of Environmental Health Hazard Assessment. And I'm 2.2 going to move the microphone closer so you can hear me. 23 24 So this presentation is a summary of what we've 25 been doing with this revised non-cancer risk assessment

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

1 methodology document. And I'll just start -- what I'm 2 going to do is I'm going to basically concentrate on what has changed from the previous go-around. So some of 3 4 the -- some of you will in fact recall the process by 5 which we generated the original air toxics hot spots. 6 CHAIRPERSON FROINES: Can I ask a question? 7 Is there anybody here from DPR? 8 OEHHA AIR TOXICOLOGY & EPIDEMIOLOGY BRANCH CHIEF 9 MARTY: Lori. CHAIRPERSON FROINES: Oh, so there are people 10 from DPR? I just couldn't see around people's heads. I 11 12 just wanted to make sure, because obviously some of the 13 issues that came up in Endosulfan are going to come up right now. And so I wanted to make sure that there was 14 15 communication going back and forth. Go ahead, Andy. 16 17 --000--OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION 18 CHIEF SALMON: Okay. So essentially what has happened is 19 20 that we have a mandate particularly from the Children's 21 Environmental Health Protection Act, SB 25, to ensure that quantitative risk assessments are child protective. And 22 part of that mandate is to reevaluate the methods for 23 24 deriving reference exposure levels for non-cancer 25 endpoints. And we are also taking the opportunity to

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

incorporate new scientific developments in risk assessment
 methodology since it's ten years since we last looked at
 the methodology documents.

4

5 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION CHIEF SALMON: The requirements of SB 25, basically that б we take into account any source of difference in response 7 of infants and children, does in fact also mention other 8 sensitive subpopulations. But the emphasis is on infants 9 10 and children. We need to consider differences in exposure patterns, differences in susceptibility of infants and 11 12 children to the toxic effects.

13 We're also instructed to take into account the effects of co-exposure to other substances with common 14 15 mechanisms of toxicity and interactions of multiple air pollutants. There is going to be some general guidance in 16 that area. But unfortunately at this point the science 17 18 doesn't give us a great deal of opportunity to address 19 those last two issues in detail. But obviously where we 20 do have that opportunity, we'll take it.

21 CHAIRPERSON FROINES: Does the special22 susceptibility include metabolic differences?

OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION
CHIEF SALMON: Absolutely. It includes any source -- as
we read the statute, it includes any source of

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

1 differential impacts, including metabolic differences,

2 physiological differences, and so on, as I will elaborate
3 in due course.

4

--000--

5 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION CHIEF SALMON: Just by way of background, these guidelines 6 are designed specifically to support the risk assessments 7 undertaken under the Air Toxics Hot Spots Program. It's 8 been mentioned by Dr. Froines, among others, that these 9 10 guidelines certainly are reflective of how we do things generally and are looked at with interest by other OEHHA 11 12 programs and other California programs and, indeed, 13 outside of California. But the specific regulatory application of this document is the Air Toxics Hot Spots 14 15 Program.

16 The previous guidelines to which I referred, 17 basically the Parts 1 to 4 of the technical support 18 document, which was an exercise required by statute that 19 we produce formal guidelines and have them reviewed by the 20 Scientific Review Panel, and these four existing parts are 21 the ones which are currently in force.

The acute toxicity dates from 1999 and the chronic toxicity dates from 2000. The exposure -- the cancer potency was 2000 also. And the exposure assessment is somewhat more recent. I think that's about 2003 or

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

1 something, is it not?

2 CHAIRPERSON FROINES: Is there a document that 3 addresses uncertainty on a quantitative basis and talks 4 about Monte Carlo? 5 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION CHIEF SALMON: Some of that appears in Part 4 as regards 6 the exposure assessment and stochastic analysis area. 7 That's where -- some elements of that. 8 Other uncertainty-based considerations also 9 appear in the non-cancer and cancer toxicity technical 10 11 support documents. --000--12 13 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION 14 CHIEF SALMON: This presentation in this document refer to 15 risk assessment for non-cancer toxicity. And in attempting to update the methodology for the reference 16 exposure levels, we decided that the old guidelines -- we 17 18 had two separate documents, one for acute and one for 19 chronic. And we felt that the reasons and justifications for that were in fact largely historical, and that it 20 21 would make more sense for this revision to tackle both 22 acute and chronic toxicity in the same non-cancer toxicity

23 document. So this proposed document, which you have in 24 front of you, is designed to replace Part 1 and Part 3 of 25 the existing TSD series.

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

1

--000--

2 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION 3 CHIEF SALMON: I'm just going to go through the changes, 4 and I'm going to start with the changes in what I'm 5 calling the general guidance principles. 6 The first and most important change is that children are explicitly identified as a critical target 7 population in the guidelines. There was implicit 8 consideration of children as members of the general 9 10 population in the previous guidelines. But in response to SB 25, we are making -- it is identification explicit in 11 12 doing actual calculations and other steps to take their 13 characteristics into account.

14 A second change, which reflects -- basically updates in the methodology relative to last time is 15 16 that the -- from the previous documents, you'll be familiar with the idea of using uncertainty factors in 17 18 extrapolation. There's been quite a lot of work on 19 developing explicit quantitative models, particularly in the area of pharmacokinetics, but for some other aspects 20 21 as well. And so in order to take advantage of that, we are advocating that wherever possible uncertainty factors 22 will be replaced with explicit models. Now, this is a 23 24 general principle which will underlie the way we tackle the extrapolation parts of the risk assessment. 25

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

1

25

--000--

2 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION 3 CHIEF SALMON: Another general change which we are doing 4 is we are adding a determination of an eight-hour 5 reference exposure level. The existing acute REL has an integration period of one hour. And the chronic exposure 6 is designed to deal with long-term exposures, which will 7 be eight years or longer, but typically used with a 8 one-year time-weighted average exposure measure. 9 10 So the eight-hour is an addition which we -- it's been suggested that we provide this for a variety of 11 12 applications in hot spots risk assessments, such as 13 off-site work as children in schools and situations like 14 that. 15 It's designed to deal with exposures which may be 16 repeated on an ongoing basis, but would not be expected to be occurring on a lifetime basis. And obviously the 17 18 exposure metric is the eight-hour time-weighted average. 19 There's an additional consideration in relation 20 to this which is something actually which has come up 21 during the public comment period, is that it's been suggested that we may in fact need to develop separate 22 23 values for adults and for infants and children for this 24 time-weighted -- for this eight-hour time-weighted average

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

REL, because some of the situations where this would be

1 applied are situations where access by children is

actually statutorily limited. It's like some work places.
 Whereas, other cases we do want to have children included
 in the population and consideration.

5 PANEL MEMBER BLANC: Andy, what is an off-site 6 worker?

7 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION CHIEF SALMON: If you have a -- well, a typical hot spots 8 emission site is, you know, a factory of some kind. And 9 if that is in, say, you know, an industrial park and 10 there's another factory next door to it and it happens 11 12 that your maximally exposed individual which you're using 13 the base of your risk assessment is actually a worker in that second factory, that's an example of an off-site 14 15 worker type of situation.

OEHHA AIR TOXICOLOGY & EPIDEMIOLOGY BRANCH CHIEF 16 MARTY: Just remember that these numbers are used in risk 17 assessments of specific stationary sources. And so the 18 requirements are to look at the dispersion of the air 19 pollutant into the surrounding area. Sometimes a 20 21 surrounding area is not residential. It's office buildings or another facility. And so the impacts are 22 really to people who happen to be there eight hours a day 23 24 off-site.

25 We don't deal with on-site workers, because then PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345 we're stepping on Cal OSHA's toes. And that's why we call them the off-site workers. They're the ones that have the impact from the plume of whatever facility that is being evaluated.

5 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION CHIEF SALMON: I'll also interpose a comment here about 6 this area, that obviously you're going to be hearing a 7 great deal more about this sort of application of not only 8 the eight-hour REL but the others as well, because you are 9 in due course going to be seeing an update of the Part 4 10 technical support document, the exposure assessment part. 11 12 And so a lot of the -- you know, the detailed 13 considerations of how the exposure assessment is done, how the target individual or population is defined, and how 14 15 the RELs are going to be used is actually going to be 16 appearing in that document rather than in this one. This document is going to be just about how we -- how we derive 17 18 the RELs, and we've set up some definitions of what they 19 are in the document. But we don't in this document cover 20 how they're going to be applied in any detail. 21 --000--

22 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION
23 CHIEF SALMON: Excuse me. That was supposed to
24 go -- okay.

25 Why am I going backwards? Sorry. It's all a

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

1 question of clicking the right button.

2 Another change in general guidance principles is 3 in relation to the use of uncertainty factors. I've 4 already mentioned this concept that we would be replacing 5 the uncertainty factors by models. And part of the way that the people have been thinking about these uncertainty 6 factors in the published literature, particularly over the 7 last 10 or 15 years, is that the inter- and intraspecies 8 uncertainty factors, which previously were more or less 9 10 just seen as individual black boxes with a value of 10, people have been thinking about those as composed of two 11 12 separate components: A pharmacokinetic component, in 13 other words an area of uncertainty which addresses 14 differences in absorption, metabolism, distribution, 15 excretion and that part of the process; and then a 16 pharmacodynamic or toxicodynamic component, which is actually differences or uncertainties in the response of a 17 18 target individual.

And the way people have addressed these areas of uncertainty in extrapolating both between species and between individuals within a species has been to use models where they're available. We may well have a pharmacokinetic model but not a pharmacodynamic model. So it's convenient to separate out these uncertainty factors into these two subcomponents. And there's been a

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

1 considerable difference -- well, there's been a
2 considerable discussion of this in the scientific
3 literature. I'm not -- you know, I don't want you to
4 think we invented this. But we've read it and we think
5 it's useful.
6 --o0o--

7

8 CHIEF SALMON: Another change in general guidance
9 principles is the use of benchmark concentration
10 methodology where data permit. You have in fact seen this
11 in several recent REL determinations which you considered.
12 It was mentioned as a possibility in the previous
13 guidelines, but has been much more thoroughly developed in
14 recent years.

OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION

And the benchmark concentration method is now, in fact, in our view, preferred wherever possible rather than the more traditional NOAEL/LOAEL method.

18 PANEL MEMBER FRIEDMAN: Would you mind explaining 19 why that is preferred? Or would you rather wait till 20 after your presentation?

21 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION
22 CHIEF SALMON: I can explain now briefly. I mean
23 essentially it's a statistical argument in that the
24 benchmark methodology looks at all the --

25 OEHHA AIR TOXICOLOGY & EPIDEMIOLOGY BRANCH CHIEF

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

1 MARTY: The next slide is a good thing to look at.

2 There you go. 3 --000--4 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION 5 CHIEF SALMON: The method actually looks at all the data which you have. It looks at all the exposure levels. And 6 taking that into account obviously produces a more robust 7 result in statistical terms than just looking at the 8 single point of the low end of the curve, which is what 9 10 you're looking at when you're trying to find out what the NOAEL is. That's the essence of it. 11

12 It uses -- also it uses statistical curve fitting 13 methodology to estimate the overall dose response curve, 14 rather than just taking a single value. So it actually 15 allows you to calculate confidence bounds. And so -- I 16 mean you know the uncertainties there. But this gives you 17 some measure of at least part -- the size of what that 18 uncertainty is.

So I think that's in a nutshell why it's
preferable. It certainly has properties of providing
better independence of the actual study design and exactly
where the dose levels were selected and things like that
as well.

24 PANEL MEMBER FRIEDMAN: But if I understand it25 correctly, you select the dose that causes an effect in 5

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

1 percent of the subjects?

2 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION3 CHIEF SALMON: Yes, we do.

4 PANEL MEMBER FRIEDMAN: So that's really not a
5 "no effect"?

б OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION CHIEF SALMON: Well, in fact, it is, in the sense that 7 what you call a "no effect" -- remember, in the 8 traditional method it's called a "no observable adverse 9 effect level." And what you're actually saying is that --10 you know, what you select as the NOAEL is the level at 11 12 which you can no longer observe any effect. And if you 13 look at the actual size of the studies and their statistical power, what you actually find is that if you 14 15 had a response rate which was less than something around 5 percent, then you wouldn't see it unless you were very 16 lucky. So in fact -- yeah, for a typical animal study. 17

We've actually done quite a number of these benchmark dose estimations now and we've compared what we would get using the benchmark dose methodology and selecting a -- it's the lower confidence bound on the ED05 is the proposed benchmark. And if we look at what we get by that method and then compare it to what we get by the more traditional NOAEL method, where we can determine a NOAEL, the NOAEL and the LED05 look very similar in the

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

majority of cases where we're looking at standard animal
 studies which have a quantal endpoint.

3 Now, this recommendation for LED05 does not apply 4 to continuous data, because there are other different 5 statistical considerations for statistical -- for continuous data. It also doesn't apply to analysis of 6 epidemiological studies, because what constitutes an 7 observable effect is a function in that case of the size 8 of the study and the methodology. So those two situations 9 we don't have a generic recommendation. We're saying you 10 just to have look at the study and decide what would be an 11 12 appropriate benchmark.

But for the -- for the quantal study in animals, the standard sort of tox data that you see most of the time, our experience is that the LED05 has similar properties to what is commonly referred to as a NOAEL.

OEHHA AIR TOXICOLOGY & EPIDEMIOLOGY BRANCH CHIEF 17 MARTY: Krewski did an analysis at one point and published 18 it of the NOAEL and where that was on the response 19 fraction. And it's anywhere between 1 and 20 percent for 20 21 typical animal studies. One percent would be a pretty large animal study. So epidemiologists are used to 22 looking at large numbers of people, and most of the tox 23 24 data is not large numbers of animals

25

PANEL MEMBER BYUS: For what it's worth, I agree

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

1 with you.

2 (Laughter.) PANEL MEMBER BYUS: It's the thing to do. 3 4 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION 5 CHIEF SALMON: Well, as I say, we do have some experience 6 with it now, which you have seen several examples of. And 7 on the whole we agree with Krewski and others that this is 8 a more robust method in situations where it can be applied. 9 10 PANEL MEMBER BYUS: You don't always have the data though. That's the problem. 11 12 CHAIRPERSON FROINES: Can you make available that 13 reference. 14 I also think that the original Kenny Crump paper 15 is still one of the best papers on this topic. You know, 16 it really lays it out. 17 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION 18 CHIEF SALMON: Yes. CHAIRPERSON FROINES: And it deals with quantal 19 20 and continuous issues. 21 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION 22 CHIEF SALMON: Yes. We would be -- yeah, we have I think 23 most of those references. I think all of them. 24 CHAIRPERSON FROINES: Well, that paper is -- it's 25 probably like '83, but it still reads very, very well. PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION 1 2 CHIEF SALMON: Yes. Those are cited in the document. But 3 I think we can get copies of those to you if you would 4 like. 5 PANEL MEMBER FRIEDMAN: I would very much appreciate that. 6 7 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION CHIEF SALMON: Yes, certainly, we'll do that. 8 9 OEHHA DEPUTY DIRECTOR ALEXEEFF: George Alexeeff. 10 There was one other paper by Leisenring and Ryan 11 that also looks at another kind of -- same analysis but 12 sort of different perspective. So I think there's --13 there's two or three papers that kind of looked at it from 14 a probabilistic approach. 15 CHAIRPERSON FROINES: Well, then there's all the 16 work that Dale Hattis did looking at -- and others looking at this factor of 10 and whether it's adequate or 17 18 inadequate. 19 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION CHIEF SALMON: Yes. I'm going to be talking about that 20 21 next, or very soon, if you want me to do that. 22 CHAIRPERSON FROINES: No, go ahead. 23 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION 24 CHIEF SALMON: Yes. The next area I'm going to talk about 25 is in fact, you know, how the extrapolation is going to

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

work, how we use the uncertainty factors, and what values
 they should have.

First extrapolation to consider is the interspecies extrapolation. And this is traditionally being handled by means of an uncertainty factor of 10 in taking the applied concentration in the test species to an equivalent applied concentration for a human.

8 And this somewhat complicated diagram is basically designed to indicate the stages of the 9 extrapolation, at least conceptually, and the fact that 10 these can in fact be, if necessary, individually replaced 11 12 by quantitative models. And to the extent that we are 13 able to use quantitative models, we would be replacing the uncertainty factor or some part of it with that model. 14 15 But we might have to retain some of the uncertainty factor if there were other areas which were not being dealt with. 16

17 CHAIRPERSON FROINES: Andy, I have a question 18 about that. Because it's one thing -- here's your 19 uncertainty factor over here. And then over here you talk 20 about the pharmacokinetic and pharmacodynamic aspects of 21 models. But the problem is the pharmacodynamic part of 22 that is very difficult and very, very uncertain, it seems 23 to me.

24 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION25 CHIEF SALMON: Yes.

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

CHAIRPERSON FROINES: So you've kind of 1 2 qot -- the danger is that you begin to mix all sorts of 3 things that shouldn't be mixed. You know what I'm saying? 4 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION 5 CHIEF SALMON: Well, that's one of the reasons why we tried to separate the two areas conceptually and to think 6 in terms of two separate subfactors rather than an overall 7 interspecies or intraspecies uncertainty factor. And it's 8 also why we amused ourselves generating these complicated 9 10 pictures, to try and emphasize that these were separate components and that, you know, dealing with one does not 11 12 deal with the other. 13 And while I would certainly agree -- and I think it may even be in my next slide -- I say --14

15

--000--

OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION 16 CHIEF SALMON: -- that we're well aware that there are few 17 18 cases where we have good toxicodynamic models, but we do 19 in fact now have some reasonable toxicokinetic models for certain cases. So this is one of the reasons for our 20 21 laying out the idea that there are these two separate components of the uncertainty in extrapolation and that 22 23 dealing with one explicitly does not deal with the other. OEHHA AIR TOXICOLOGY & EPIDEMIOLOGY BRANCH CHIEF 24 25 MARTY: I think it's also fair to say that there are cases

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

1 where the two are petty well intertwined.

2 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION 3 CHIEF SALMON: Yes. I mean obviously once you start 4 getting into the area of talking about specific models, 5 then it becomes very case specific and you're responding 6 to what data you actually have and how much you understand 7 of the problem. 8 PANEL MEMBER BYUS: What does the threefold mean there? 9 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION 10 11 CHIEF SALMON: Well, basically that what we're saying here 12 is that the traditional overall value of UFA has been 10. 13 And as a default, for want of better information, we're 14 assuming that the uncertainty represented by the 15 toxicokinetic extrapolation and the uncertainty 16 represented by the toxicodynamic extrapolation are equal in size. Which in the way that the --17 18 PANEL MEMBER BYUS: How do you make that assumption? 19 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION 20 21 CHIEF SALMON: Well, because we don't know what else to 22 assume. PANEL MEMBER BYUS: Well, I don't see how you can 23 24 make that assumption. That's a false assumption. OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION 25 PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

1 CHIEF SALMON: Well, there are -- I'll come in a

2 minute -- there are --

3 OEHHA AIR TOXICOLOGY & EPIDEMIOLOGY BRANCH CHIEF
4 MARTY: This is what happens when a bench scientist looks
5 at risk assessment.

6 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION7 CHIEF SALMON: Yeah.

8 (Laughter.)

9 PANEL MEMBER BYUS: Well, I mean I don't -- just 10 to pick the 3 out of air -- I mean I agree with you up to 11 this point, that there are these two components. But 12 depending on what you're talking about, you have no idea 13 whether it's threefold or --

14 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION 15 CHIEF SALMON: Well, there have in fact been some 16 objective studies of how big the uncertainty factors need 17 to be. And there is some literature suggesting that the 18 overall traditional value of 10 isn't horribly wrong.

19 PANEL MEMBER BYUS: I'm okay with 10.

20 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION 21 CHIEF SALMON: And also there is in fact some literature 22 suggesting that the value of -- actually it's root 10, or 23 3.16 if you want to be picky about it -- there is some --24 you know, there are some reports in the literature 25 suggesting that that isn't too horrible. But --

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

OEHHA AIR TOXICOLOGY & EPIDEMIOLOGY BRANCH CHIEF 1 2 MARTY: For the kinetics. OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION 3 4 CHIEF SALMON: Yeah, mostly on the kinetics side. 5 But I would agree that these are, you 6 know -- this is an arbitrary default to be used in the 7 absence of data. 8 PANEL MEMBER BLANC: The reason you came up with 9 these numbers is so that if you didn't have either, you'd 10 be back to 10? 11 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION 12 CHIEF SALMON: Yes. 13 PANEL MEMBER BLANC: And that's why you're 14 doing --15 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION 16 CHIEF SALMON: That's part of logic, yes. 17 PANEL MEMBER BLANC: It's approximately 3 --OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION 18 19 CHIEF SALMON: Yes. PANEL MEMBER BLANC: -- or something greater than 20 21 3? You're not saying that you're now going to have a 22 maximum default of 9? 23 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION 24 CHIEF SALMON: No, we're not. We're actually saying 25 explicitly -- people, both ourselves an the EPA in

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

1 previous guidance, have rather loosely referred to it as 2 about 3. But in fact if you're doing the -- you know, 3 because there's a multiplicative sum, the way it's used is 4 if you have two of these, quote-unquote, three factors, 5 then it multiplies up to 10. In other words the actual 6 value is the square root of 10, or 3.16, that's the 7 assumption, so that it multiplies up to 10.

8 PANEL MEMBER BLANC: And you said you thought 9 that there was some support for the toxico -- I'm sorry --10 the toxicokinetic variability between species being 11 something like a threefold --

OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION 12 13 CHIEF SALMON: Yes, there is some support for that. 14 PANEL MEMBER BLANC: Because if I had to weigh 15 the two of them, I would have thought that the bigger piece of the uncertainty was in the dynamic piece, where 16 it's not that it's metabolized more slowly or cleared more 17 18 rapidly, but that there was a mechanism of toxicity that 19 differed between species and that's where the uncertainty 20 was, and it didn't have to do with how much of the -- it 21 wasn't that it was going down a different pathway in humans or something? 22 23 OEHHA AIR TOXICOLOGY & EPIDEMIOLOGY BRANCH CHIEF 24 MARTY: There are most definitely those examples.

24 MARTY: There are most definitely those examples.
 25 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

1 CHIEF SALMON: Yeah, I think the point is that it's
2 definitely -- it's case dependent. You know, there are
3 some cases where the kinetic uncertainty is large, and
4 there are certainly also some cases where the
5 toxicodynamic uncertainty is large. But, you know, these
6 are sort of median values for use when you don't know any
7 better essentially.

8 CHAIRPERSON FROINES: But as much as I understand 9 what Paul just said, I actually would take the opposite 10 view, which is that the heterogeneity within the 11 toxicokinetics can be a very large number.

12 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION 13 CHIEF SALMON: Well, I mean I think we're agreeing that you're both right. It depends which sort of -- you know, 14 15 which compound you're looking at. In some cases that uncertainty, you know, will be biased in one direction, in 16 other cases it will be biased in the other. But what 17 18 we're saying here is if you had the information where you 19 could say that, then you would be using that information. Even if you didn't have a good model, you'd be -- if you 20 21 had information which even if it didn't give you a quantitative model, allowed you to say that "in this case 22 I think the toxicodynamic uncertainty should be 10," then 23 24 you would do that.

25

PANEL MEMBER BYUS: I guess I'm -- I think

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

1 everything you're saying is reasonable.

2 But let's assume you had the data -- I mean I'm 3 just confused. Let's assume you had the data on the 4 toxicokinetic differences in the individual model of the 5 animal and it was fourfold. Now, are you saying --6 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION 7 CHIEF SALMON: You'd use 4. 8 PANEL MEMBER BYUS: Okay. But then you would not use the 10X? 9 10 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION CHIEF SALMON: No, if --11 PANEL MEMBER BYUS: You'd only use the 4? 12 13 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION 14 CHIEF SALMON: Well, if --15 PANEL MEMBER BYUS: And then you would pick this other one as the default 3 for the pharmacodynamic, is 16 that what you're saying? 17 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION 18 CHIEF SALMON: Yeah, if we had -- in any case if we have 19 real data, we would be using the real data rather than the 20 21 default. 22 PANEL MEMBER BYUS: If you only -- what I'm 23 asking you is if you only have half of the real data -- in 24 lieu of the tenfold uncertainty factor, say, you only have 25 the toxicodynamic -- or toxicokinetic data or you have the

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

1 toxicodynamic -- I don't care which one --

2 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION 3 CHIEF SALMON: Yeah. We would be using the -- but we are 4 viewing those separately. So if we had the one but not 5 the other -б PANEL MEMBER BYUS: So my question is: What do you do with the missing one? How do you apply it? 7 8 OEHHA AIR TOXICOLOGY & EPIDEMIOLOGY BRANCH CHIEF 9 MARTY: We're getting to that. 10 PANEL MEMBER BYUS: What is the value applied to the missing one? 11 OEHHA AIR TOXICOLOGY & EPIDEMIOLOGY BRANCH CHIEF 12 13 MARTY: We would have -- we're getting to that. In the next few slides you'll see that. 14 15 But we would not just replace the toxicodynamic uncertainty factor, because we knew something about the 16 17 toxicokinetics. PANEL MEMBER BYUS: That's what I'm saying. If 18 you know something about the toxicokinetic and don't know 19 20 anything at all about the toxicodynamic, what do you do? 21 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION 22 CHIEF SALMON: Well, we'd use what we know to determine an 23 appropriate value for a toxicokinetic factor and we'd use 24 the default for the toxicodynamic, because we don't 25 have --

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

PANEL MEMBER BYUS: And that number is? 1 2 OEHHA AIR TOXICOLOGY & EPIDEMIOLOGY BRANCH CHIEF 3 MARTY: Root 10, 4 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION 5 CHIEF SALMON: Root 10. б OEHHA AIR TOXICOLOGY & EPIDEMIOLOGY BRANCH CHIEF 7 MARTY: About 3. PANEL MEMBER BYUS: It's 3? 8 OEHHA AIR TOXICOLOGY & EPIDEMIOLOGY BRANCH CHIEF 9 10 MARTY: Yeah. PANEL MEMBER BLANC: 3.1 something. 11 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION 12 13 CHIEF SALMON: 3.16. 14 PANEL MEMBER BYUS: And so say the toxicokinetic 15 factor was 1.5X. So you would be using -- and so you 16 would use 3 for the toxicodynamic --17 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION 18 CHIEF SALMON: Yes. 19 PANEL MEMBER BYUS: -- and that would be less 20 than the 10? 21 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION 22 CHIEF SALMON: Yes. 23 PANEL MEMBER BLANC: But it could be more than 24 10? OEHHA AIR TOXICOLOGY & EPIDEMIOLOGY BRANCH CHIEF 25

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

1 MARTY: It could be more than 10.

2	OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION
3	CHIEF SALMON: It could equally well be more than 10.
4	PANEL MEMBER BLANC: Right, because if they had a
5	value of 6 that they were pretty firm on for one
6	OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION
7	CHIEF SALMON: They are in fact although we're not
8	going to be able to get to the discussion of the
9	individual RELs today, you will see examples within that
10	where based on at least partial compound-specific data or
11	mechanism-specific data, we have chosen non-default values
12	for these subfactors. But we do so independently. If we
13	know one, we use the known version. If we don't know the
14	other, then we use the default.
15	PANEL MEMBER BYUS: Well, let me and I'll just
16	ask this one last question.
17	So if you say the toxicokinetic factor was
18	measured and it was .5, and then you would use 3 for the
19	toxicodynamic, and that would be considerably less than
20	the 10.
21	OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION
22	CHIEF SALMON: Yes.
23	PANEL MEMBER BYUS: And I'm asking you: Is that
24	in fact the way to do it?
25	OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION
	PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

1 CHIEF SALMON: Well, there's a very slight 2 caveat -- there's a very slight point here, in that at 3 least somewhere in the sort of the depths of our 4 methodology -- I don't think we even necessarily lay it 5 out in the guidelines explicitly. But there's a 6 reluctance to use uncertainty factors of less than 1. But with that caveat, basically -- as I say, if we've got 7 data, we use it; if we haven't got data, we use the 8 default. That's the principle across the board. 9 10 PANEL MEMBER BYUS: I know, but the -- all right. OEHHA AIR TOXICOLOGY & EPIDEMIOLOGY BRANCH CHIEF 11 12 MARTY: We'll have a little more discussion time because we're going to get into this same issue for the 13 intraspecies extrapolation. So --14 15 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION 16 CHIEF SALMON: So if you knew that toxicokinetics was 1 and you didn't know anything about toxicodynamics, then 17 18 you would use a toxicokinetic factor of 1 and a toxicodynamic factor of root 10. And this is in fact, as 19 I'll show -- it may even be the next -- yes it is the next 20 21 slide. 22 --000--23 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION 24 CHIEF SALMON: This is actually what we've been doing all 25 along in one particular case. But I'm going to actually

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

propose a modification of that case. But the point is,
 that is exactly what we've been doing all along in this
 particular case.

4 And the particular case is this so-called human 5 equivalent concentration calculation, which we had in the old chronic guidelines. It's a methodology which was б developed by U.S. EPA which considers basically deposition 7 in the respiratory tract and uses the areas of various 8 parts of the respiratory tract as a way of estimating what 9 10 they thought would be the deposition of gases and vapors on the one hand or particles on the other in the various 11 12 parts of the respiratory tract, and adjusts the equivalent 13 concentration depending on where -- either in the respiratory tract or systemically the toxic effect is 14 15 appearing.

16 So this is an established method developed by 17 U.S. EPA. We used it previously for the chronic RELs. 18 And it covers deposition. But I'd emphasize, it appears 19 not to have any specific allowance for metabolism or 20 elimination.

21 What we did in the chronic -- old chronic 22 guidelines is where we had one of these calculations, we 23 eliminated the interspecies toxicokinetic factor. We 24 use -- and we'll change it down to 1. So we just used an 25 interspecies factor of 3, which was representing the

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

1 remaining toxicodynamic uncertainty.

2 However, we have looked at this --PANEL MEMBER BYUS: That's less than the tenfold? 3 4 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION 5 CHIEF SALMON: Yes, it is. It's 3 rather than -- or 3.16 6 rather --7 PANEL MEMBER BYUS: The total was less than 8 tenfold? 9 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION 10 CHIEF SALMON: Yes, the total is less than tenfold. 11 But we looked at this again, and we decided that 12 because this doesn't cover metabolism and all those sorts 13 of processes, that we would not in factor reduce the 14 kinetic uncertainty factor to 1; we'd only reduce it to 2, 15 because we felt that there was still some residual 16 uncertainty due to the metabolism and elimination 17 processes. PANEL MEMBER BYUS: Which are the major 18 considerates by far of the effective dose. I mean 19 20 disposition is relatively minor, in general. In terms of 21 drugs, it's relatively minor in an effective dose. 22 OEHHA AIR TOXICOLOGY & EPIDEMIOLOGY BRANCH CHIEF 23 MARTY: It is. But I think what you need to think 24 about --25 PANEL MEMBER BYUS: Yeah, elimination and

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

1 metabolism are by far the major contribution.

2 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION 3 CHIEF SALMON: Well, remember, we're talking about 4 inhalation here. So, in fact, deposition processes can be 5 rather significant, especially when you start talking 6 about particles.

7 OEHHA AIR TOXICOLOGY & EPIDEMIOLOGY BRANCH CHIEF 8 MARTY: So you're going from a rat's snout to a human. So 9 that -- remember, this is going from an animal inhalation 10 exposure to a human equivalent inhalation exposure. So 11 the morphomatric differences in the respiratory tract make 12 a fair amount of difference in the dose you actually get. 13 So that was the --

14 PANEL MEMBER BYUS: Right, inhalation, I'm
15 thinking --

16 OEHHA AIR TOXICOLOGY & EPIDEMIOLOGY BRANCH CHIEF 17 MARTY: Yeah, that was the point of this. And we used to 18 just do what EPA did and just say, okay, that takes care 19 of the toxicokinetic differences. But that clearly isn't 20 the case.

21 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION 22 CHIEF SALMON: So it's the change in response to the 23 availability of an HEC calculation, which is -- you know, 24 which what is new.

So, anyway, but that also -- that also

25

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

illustrates your point, that, yes, the overall factor in
 this case would be reduced from 10 to 6 if we still knew
 nothing about the toxicodynamics.

PANEL MEMBER FRIEDMAN: That last part you said
you didn't -- you prefer the PBK -- I'm sorry --

б OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION CHIEF SALMON: Yes, PBPK model. If we have -- there are 7 now some actually much more complicated kinetic models 8 which consider not only deposition but also metabolism and 9 10 distribution or at least delivery -- yeah, and excretion -- or at least delivery to a specific site 11 12 within the respiratory tract, where the effect is 13 occurring. And then you know how that is -- that local 14 concentration response. And there are a couple of examples. Again, you will in fact see an example of the 15 16 use of such a model in one of the example RELs when you get to looking at that. That's one of the reasons why the 17 18 example RELs are there hopefully to, you know, illustrate 19 what we're talking about.

20 PANEL MEMBER FRIEDMAN: Does that replace the 21 3.16?

OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION
CHIEF SALMON: Well, that would replace -- that model
replaces the 3.16, yes.

25 OEHHA AIR TOXICOLOGY & EPIDEMIOLOGY BRANCH CHIEF

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

MARTY: I think it's safe to say though that we're still
 using uncertainty factors for the majority of chemicals
 because we lack the models.

4 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION 5 CHIEF SALMON: Yes. There are not going to be a lot of 6 situations where we can do that. But where we can, we 7 will.

8 PANEL MEMBER FRIEDMAN: So if 10 milligrams per 9 kilogram causes some effect in a mouse, and you didn't 10 have any of these models to transfer -- you say that you'd 11 assume that the same thing happens for 1 milligram per 12 kilogram in a human?

13 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION14 CHIEF SALMON: That's the underlying assumption, yes.

15 PANEL MEMBER FRIEDMAN: And if it's a dog, it's 16 still 10 to 1, and if it's a rat --

OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION
CHIEF SALMON: The guidance as we had it previously and as
it continues is that it would be 10 for non-primate
species and 3 for primate species.

21 PANEL MEMBER FRIEDMAN: But no matter what the 22 species is?

23 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION24 CHIEF SALMON: Yes.

25 CHAIRPERSON FROINES: Now, we're doing a lot of

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

1 work on interactions. And it's so strange to sit here and 2 listen to this discussion, because when you start dealing 3 with more than one chemical at a time, this is just 4 bizarre. I mean it's like another -- it's like another 5 world. I mean it's so complex that -б OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION CHIEF SALMON: Well, where we have an interaction 7 situation to deal with, we will be looking forward to your 8 guidance in that regard. 9 10 CHAIRPERSON FROINES: Well, it's clearly necessary, because, you know, since we have globalization, 11 12 we don't have any factories anymore, and so we need 13 multiple exposure methods. 14 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION 15 CHIEF SALMON: I would certainly agree with that. CHAIRPERSON FROINES: That was a joke. 16 (Laughter.) 17 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION 18 CHIEF SALMON: But I'd still agree with it. 19 20 (Laughter.) 21 --000--22 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION 23 CHIEF SALMON: The next one I want to talk about is the 24 question of how do we handle the extrapolation within the 25 human species. And here we're talking about the

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

1 extrapolating from the average human to either a specific 2 sub-population or a specific individual or a type of individual. And the way this has been done in the past 3 4 has again been to use an uncertainty factor of 10. But in 5 the similar way to what you've just seen, we're proposing basically to subdivide the extrapolation conceptually into 6 various subparts and that we would again be able to use 7 models to replace either and/or the toxicokinetic and 8 toxicodynamic parts with models. And, again, we're 9 hopeful of having dynamic -- toxicodynamic models but 10 seldom do. But we actually do in some cases have workable 11 12 pharmacokinetic models.

The interesting point here of course, that there are a number of specific individuals or individual types that we would need to consider. But overwhelmingly what we find in practice is that we need to think specifically about children and especially infants, who of course both in overall size and also in physiology and biochemistry are probably most different from adults.

20

21 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION 22 CHIEF SALMON: Now, the other question is, when we don't 23 have a model, what do we do? And obviously we're going to 24 have to use the uncertainty factor approach. And as I 25 mentioned, the traditional default has been a UFH of 10

--000--

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

1 composed of two equal factors, one dealing with

2 toxicokinetics and one with toxicodynamics.

3 --000--4 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION 5 CHIEF SALMON: Now, we have to consider infants and children. And this slide is an illustration of the truism 6 that children are not -- they're not just small adults. 7 They have considerable differences in anatomy, physiology. 8 There are differences in particularly exposures like 9 respiratory rate, dermal uptake due to both higher surface 10 area and greater permeability. There are differences in 11 12 excretion. There are physiological differences in body 13 composition like body water and body fat content, which affect how things distribute. And there are different 14 15 organ system sizes and blood flow, other flux terms likely gastric emptying. And of course, importantly, there are 16 17 substantial differences in metabolism. PANEL MEMBER BYUS: Let's back up. 18 19 You might add on that chart incomplete blood brain barrier for infants. 20 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION 21 22 CHIEF SALMON: Absolutely, yes. 23 PANEL MEMBER BYUS: Children often times have 24 higher rates of metabolism for some --25 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

1 CHIEF SALMON:

2 PANEL MEMBER BYUS: -- particular drugs, not 3 always lower. In fact, it's rather significant in 4 children when they get to be five to ten years old can 5 have actually on a per body weight higher rates of 6 metabolism.

7 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION CHIEF SALMON: Yes. And I apologize that this is a 8 summary slide. But, yes, we -- and of course, you know, 9 we've had the opportunity to discuss this with you at some 10 length when we were considering the SB 25 prioritization 11 12 process. So in terms of what we're going to be doing 13 here, you may consider that everything that we said in 14 that somewhat substantial document is included. And, yeah, you're absolutely right. And of course there are 15 16 many other specific factors.

17 CHAIRPERSON FROINES: We have found that -- this is a little bit off topic, but let me just ask you about 18 it. We have found that if you have an acute exposure to a 19 reasonable amount of a compound, that very often it 20 21 disappears very rapidly because of metabolism. But if you have lower dose over a period of time, you actually have 22 more of that compound around to exert toxicity. So that 23 24 the rate of when we're doing these kinds of experiments 25 for these sorts of purposes, the actual administration of

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

1 the chemical affects the outcome because the

2 metabolisms -- the metabolisms actually vary. And so 3 that's something that nobody seems to take into account. 4 I can send you some data that I think you'll find 5 interesting. 6 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION CHIEF SALMON: Yes. I can envisage situations 7 particularly where, you know, if you had a full PBPK model 8 you would see slower compartments like the less rapid 9 profused organs or the fat and so on. And if you have 10 those slow compartments in the model, then you can have 11 12 really quite considerable differences between the 13 concentrations achieved at a target organ depending on

14 whether you have a short sharp exposure, which does a sort 15 of quick in, quick out, but mostly via the blood 16 concentration, versus a perhaps lower but longer exposure, 17 which has time to equilibrate the slow compartments.

18 And I'm sure there are other factors as well, but 19 that's certainly possible.

20 CHAIRPERSON FROINES: It's important in air 21 pollution where you have basically constant exposure at 22 low levels. And so you have to ask what's the 23 significance of --

24 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION25 CHIEF SALMON: Well, and that's one; also one of the

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

1 reasons why we have tended to think somewhat separately 2 about the chronic exposures which reflect ongoing exposure 3 versus the acute one-hour exposures and why -- actually 4 one reason why I think we're asked to look at the 5 eight-hour, because you could argue that, well, you know, in the interests of public health protection just use the б chronic all the time and, you know, assume that the 7 eight-hour is going to be like a chronic. But in fact 8 it's not -- you know, it's not as simple as that because 9 of these kinds of considerations. 10

11 PANEL MEMBER BLANC: Andy, can I just ask, or the 12 Chair, a logistical question. I mean you still have quite 13 a bit of material to go through in terms of the number of 14 slides and how complicated they are.

15 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION 16 CHIEF SALMON: Yes.

PANEL MEMBER BLANC: It seems to me that if we 17 don't take a brief break now, we're going to really be 18 straining ourselves. I understand that you probably want 19 to break -- you don't want to come back after a lunch 20 21 break. But I still think we should take some time now. 22 CHAIRPERSON FROINES: My question is: How long do you think you're going to take, given this pace, to 23 24 finish? And it has to do with whether we think we want 25 lunch or not.

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

1 My sense is that we're not going to want lunch if 2 there's a -- if we could go a reasonable time, then people 3 could take off. But I don't know what people are 4 thinking. 5 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION 6 CHIEF SALMON: I'm about halfway through at this point. 7 OEHHA AIR TOXICOLOGY & EPIDEMIOLOGY BRANCH CHIEF MARTY: Yeah. We can pick up the pace and then --8 CHAIRPERSON FROINES: So you would say an hour? 9 OEHHA AIR TOXICOLOGY & EPIDEMIOLOGY BRANCH CHIEF 10 11 MARTY: Oh, yeah. I would say hopefully less than that. OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION 12 13 CHIEF SALMON: Yeah, and hope -- well, depending on how many questions you have, of course. 14 15 PANEL MEMBER BLANC: But he certainly has 45 16 minutes left. 17 CHAIRPERSON FROINES: Well, then we should take a 18 break now. 19 But am I correct that people would prefer to finish rather than take a lunch break if he's got 45 20 21 minutes? 22 PANEL MEMBER BLANC: I think so. It's the last 23 thing on the agenda. 24 PANEL MEMBER BYUS: Yeah. 25 CHAIRPERSON FROINES: Gary?

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

PANEL MEMBER FRIEDMAN: Sure. I'm hungry, but 1 2 that's okay. 3 CHAIRPERSON FROINES: Well, you can run 4 downstairs and get a snack. 5 PANEL MEMBER HAMMOND: When is the cake being 6 served? 7 PANEL MEMBER FRIEDMAN: Oh, the cake, right. 8 CHAIRPERSON FROINES: So are we agreed that we're not going to take lunch but we're going to have a break 9 10 now and then finish off and go our separate ways? 11 PANEL MEMBER BLANC: Yes. CHAIRPERSON FROINES: Okay. Let's take a break. 12 13 (Thereupon a recess was taken.) 14 CHAIRPERSON FROINES: Do we have a quorum? PANEL MEMBER BLANC: Yes, we do. 15 16 CHAIRPERSON FROINES: And so, Andy, why don't you 17 proceed. OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION 18 19 CHIEF SALMON: Okay. I'll start. 20 So, anyway, we were talking before the break 21 about the intraspecies toxicokinetic extrapolation. The key question is, in view of all these differences between 22 23 infants, children, and adults, is the traditional 24 toxicokinetic subfactor of 3.16, is that sufficient to 25 protected children as a default? And as we've seen, there

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

are a variety of differences between infants and children
 and adults.

3 So what we did, we did two things. Firstly, we 4 looked at reports in the literature where there are well 5 described differences in kinetics. And this is mostly in 6 the area of drugs. And we also looked at PBPK modeling, both examples in the literature and also quite an 7 extensive group of studies which we did in-house. Dr. 8 Brown on my staff was a major player on that one. 9 10 --000--11 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION 12 CHIEF SALMON: So the analysis actually suggests that, firstly, there's notably lower clearance or higher --13 longer half-life of certain drugs in infants. And the 14 15 PBPK analyses indicate that many chemicals show a larger than threefold variability in either the area under curve 16 17 or amount metabolized, which are the sort of standard tissue dose kind of measures that you get out of a PBPK 18 model. And so those age differences tend to suggest that 19 20 threefold may not be enough. 21 --000--22 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION 23 CHIEF SALMON: The PBPK modeling we undertook used PBPK 24 models with physiological parameter sets for various ages

25 between newborn and adults. Most of these were -- we

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

didn't necessarily have real infant-specific values for
all the physiological parameters. So in many cases, like
metabolism, we were forced to use the scaling relative to
body weight. But when we did have specific parameters, we
tried to use those. And the number of published models
were used and looking at metabolites in various target
organs.

8 This is obviously to some extent a work in 9 progress, in particular in regard to the need to identify 10 more extensive chemical-specific metabolism data as that 11 becomes available.

12

--000--

13 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION CHIEF SALMON: But, anyway, the upshot of this is that 14 15 with a variety of chemicals as the sort of things which 16 are interesting to the Hot Spots Program, certainly in some cases the predicted range of the uncertainty 17 factor -- and this is determined by taking the indicator 18 parameter and looking at the ratio predicted for the adult 19 model versus the infant or child model -- for many 20 21 compounds admittedly the existing value of 3.16 would be sufficient. But there's a considerable number where it's 2.2 not. And not quite half of the examples we looked at had 23 something in the range of 3 to 10. And there were several 24 25 in fact where the number exceeded 10.

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

So I think the first conclusion from this is that
 the threefold or the 3.16-fold is not sufficient.

3 PANEL MEMBER HAMMOND: Andy, what's the asterisk
4 in that table?

5 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION 6 CHIEF SALMON: Yeah, I'm not quite sure. That table was 7 copied from the reports. So there's a footnote, and 8 Melanie will look it up for you.

But the -- anyway, the upshot of this is that we 9 think probably that we should be using an uncertainty 10 factor for the kinetic intraspecies components of 10 11 12 rather than 3.16. And this covers most, although not all, 13 of the examples we looked at. And we just see those ones where it's greater than 10 as not unusual but at least the 14 15 more severe cases of the situation, and that we would hope 16 to identify those by specific analysis when we --

PANEL MEMBER BLANC: And on a theoretical basis,how are you handling fetal exposures in theseconceptually?

20 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION 21 CHIEF SALMON: We don't have a good handle on fetal 22 exposures. And the kinetics -- there are some kinetics 23 looking at uptake of xenobiotics by the fetus. But the 24 data are pretty limited and they typically don't deal very 25 well with the sorts of questions that you'd be concerned

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

1 about with, you know, the site of toxicity. You know, for
2 instance, it's not just how much gets into the fetus as a
3 whole, but how much gets into a specific area of the fetus
4 and what metabolic capabilities in that area are. So the
5 short answer is we -- at this point we don't really have a
6 very good handle on that.

7 PANEL MEMBER BLANC: But for this kind of exercise, wouldn't it have made sense to see if the 8 same -- whether the range is yet even greater? 9 10 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION CHIEF SALMON: If we had the means to do that, yes. But I 11 12 don't think at this point we have the means to do it. 13 PANEL MEMBER BLANC: Meaning there are no examples of chemicals for which you have fetal data? 14 15 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION 16 CHIEF SALMON: There are no good models that I'm aware of where we could use that. But I don't know -- you know, I 17 mean -- you know, let's say that certainly if we came 18 19 across an example where we had such a model, obviously that would be very interesting. But I'm not aware of a 20 21 case where we have one that we could use in this way. 22 The objective here was primarily to determine the range of the uncertainty factor for the intraspecies 23

25 actually looking at, you know, how would we extrapolate

extrapolation. So for that uncertainty factor, we're

24

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

1 the concentration to exposure of that individual? The 2 question of, you know, what's the exposure to the fetus 3 via the mother is a much -- certainly a much more 4 complicated issue. And I think the only good answer that 5 we have at this point that is to say that we would hope to 6 look at developmental studies.

7 PANEL MEMBER BLANC: No, but maybe I didn't 8 understand what you did. I thought for this table you 9 took examples of chemicals for which you had a series of 10 data on the effects -- or the pharmacodynamics --

OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION
 CHIEF SALMON: On the kinetics, yes.

13 PANEL MEMBER BLANC: On the kinetics on these
14 various age ranges.

15 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION 16 CHIEF SALMON: Yes.

17 PANEL MEMBER BLANC: And you showed what the 18 difference in the area under the curve was or some 19 integrated measure and then saw how different it was and 20 you divided the range -- and you present the range here, 21 isn't that right, by category?

22 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION 23 CHIEF SALMON: Yes, that is correct. But we don't at this 24 point have the technical means to produce a very 25 satisfactory answer for the fetus.

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

CHAIRPERSON FROINES: Well, how did you come up
 with the ultra factor -- the UF factor being greater than
 10 for methylene chloride?
 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION
 CHIEF SALMON: By fitting a combination of measures and
 extrapolated infant-specific parameters into the PBPK

7 model.

8 PANEL MEMBER BLANC: Well, I should think that 9 something that would be of use in this would be looking 10 and seeing what happens with carbon monoxide, since you do 11 have fetal data on that.

12 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION
13 CHIEF SALMON: Yes. Although I think there are -14 PANEL MEMBER BLANC: I mean there must be some

15 other examples then.

16 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION 17 CHIEF SALMON: There's not very much that we could use in 18 the sense of having enough coverage to be able to produce 19 a prediction of a usable default at this point. I think 20 that's the object -- that was the overall objective of 21 this exercise.

PANEL MEMBER BLANC: Well, wasn't the -- I thought the object was to show that there's enough things that fall beyond a default of 3 that that wouldn't be public health protective on an automatic basis.

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION 1 2 CHIEF SALMON: Yes. And I think we have covered 3 sufficient number of examples to demonstrate that. But there are clearly going to be many other specific cases of 4 5 interest. But, as I say, as a general rule, I think it's fair to say we don't have as satisfactory and complete a б kinetic model available of fetal exposures to be able to 7 include consideration of that for this purpose. 8 9 --000--OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION 10 CHIEF SALMON: Now, one of the key things that we were 11 12 concerned about was this question of target organ 13 sensitivity and the fact that the dividing and differentiating cells in children may be more sensitive to 14 15 damage. So I think this is another -- I mean we've been 16 talking about the kinetics. But now we're talking about things that might affect the toxicodynamics. 17 --000--18 19 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION 20 CHIEF SALMON: So going on to consideration of 21 toxicodynamics, there are certainly reasons for thinking that children may be more -- actually more sensitive at 22 the tissue level target organ sensitivity. And this 23 should -- by the way, I'm sorry, there's a typo in the 24 25 title. That should read "toxicodynamic variability."

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

1 That's what I'm talking about here.

2 PANEL MEMBER HAMMOND: Shouldn't that be UFH-d? 3 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION 4 CHIEF SALMON: That should be UFH-d, yes. I'm sorry, the 5 title got copied across and then it didn't get edited. It 6 should have been.

7 So we have a position that children may be more sensitive to toxicity than adults. But in general -- I 8 mean and certainly there are specific cases where we know 9 about this. But in general we lack quantitative 10 information on how large that difference would be. And we 11 12 have in the past assumed that the existing defaults is adequate. And in this particular context we are going 13 to -- we're proposing to assume that the existing default 14 is adequate, because we don't have evidence in general 15 16 that it's insufficient. But we do recognize that there are some specific organ systems and toxic endpoints which 17 have been identified as being of particular concern. And 18 19 these -- this is a list of some of the, so to speak, red 20 flag effects, which we particularly identified these in 21 our SB 25 prioritization, for instance.

22 So these are things that we would tend to look at 23 and say we think there's a potential for infants to be 24 more sensitive -- quite apart from any kinetic 25 differences, they would be more sensitive at the tissue

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

1 levels of these kinds of effects.

2 --000--3 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION 4 CHIEF SALMON: And what we hope of course is --5 CHAIRPERSON FROINES: Andy, go back a second. б You don't think that respiratory disorders shouldn't be in there? 7 8 OEHHA AIR TOXICOLOGY & EPIDEMIOLOGY BRANCH CHIEF MARTY: They are. We put those in there in our 9 prioritization document. I mean we -- this is not a 10 complete list, for sure. The one example that we gave 11 12 during the prioritization process was asthma as 13 differentially impacting young children. 14 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION CHIEF SALMON: I think that one got kind -- because this 15 slide has only so much space, that probably got subsumed 16 under the immunotoxicity heading. But it's certainly a 17 18 substantial consideration and one which we hope -- you 19 know, we intend to give full attention to. 20 So, anyway, what we're saying is, firstly, 21 therefore, what we propose is that we would use a toxicokinetic component uncertainty factor for 22 intraspecies extrapolation of 10 as a default, and that we 23 24 would use -- the uncertainty factor for extrapolation of 25 toxicodynamics, the default we would use is 3 or 3.16.

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

1 This would in fact increase the overall intraspecies

2 uncertainty factor to a total of 30 by default.

PANEL MEMBER BLANC: Thirty-one actually.
OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION
CHIEF SALMON: Well, no -- oh, yes, 31.6 if you -- but the
trouble is, yeah, we keep getting beaten up if we quote
more than one significant figure. So this is why there's
this constant flip-flop between is it 3 or is it 3.16 and
powers of 10 beyond that.

10 PANEL MEMBER BLANC: Well, except here you're 11 multiplying it then again by 10. So it's not so trivial a 12 question.

OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION CHIEF SALMON: Yes. The answer is in every case when we do the multiplication, we will use the true value of the square root of 10 and we'll then round to one significant figure.

18 PANEL MEMBER BLANC: Okay.

OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION
 CHIEF SALMON: That's the procedure as defined.

21 PANEL MEMBER BLANC: Okay.

22 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION 23 CHIEF SALMON: And so what we're saying, these would be 24 the defaults, which we would use unless we have evidence 25 to show otherwise or the ability to conduct an actual

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

1 model that would include appropriate infants and

2 children's parameters.

PANEL MEMBER BLANC: So if I understand you 3 4 correctly, this is actually a major policy change. 5 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION CHIEF SALMON: Yes. This is the bigger -- one of the 6 bigger changes that we're proposing, definitely. 7 8 PANEL MEMBER BLANC: And this will put you quite a bit at a divergence from current EPA policy. 9 10 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION CHIEF SALMON: Well, of course it depends which piece of 11 12 EPA you're talking about, in that by doing this we're 13 actually halfway between what the air program is doing,

14 which I think is essentially not much at this point, and 15 what they're doing under the FQPA factor, which is putting 16 in a whole factor of 10 in addition, which I'm not saying 17 covers only this or with this sort of compound. But, you 18 know, for the pesticide area they're potentially talking 19 about needing an additional factor of 10 rather than 3. 20 But that --

21 OEHHA AIR TOXICOLOGY & EPIDEMIOLOGY BRANCH CHIEF 22 MARTY: Also, I think it's fair to say that EPA has added 23 additional uncertainty factors where they felt there was a 24 need -- there was a data deficiency, and primarily where 25 there was a data deficiency in developmental toxicity. So

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

1 they have done that on many occasions.

2	OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION
3	CHIEF SALMON: Yeah, that's well, I'm going to say a
4	little bit more about that in a moment.
5	But it certainly it's not the case that EPA
6	has ignored this problem. But they have in fact you
7	know, they've taken assessment-specific choices to address
8	it rather than at this point having a policy default.
9	But you're right. This is the probably the
10	largest single change we're proposing and also the one
11	which has attracted a lot of comment.
12	000
13	OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION
14	CHIEF SALMON: Melanie mentioned the data deficiency
15	uncertainty factor. This is something which
16	CHAIRPERSON FROINES: You say it's generating a
17	lot of comment. Are we seeing those comments coming in,
18	or what's the situation?
19	OEHHA AIR TOXICOLOGY & EPIDEMIOLOGY BRANCH CHIEF
20	MARTY: We're in the process of responding to those
21	comments and, if appropriate, revising the document. So
22	the next thing the Panel will see is a revised document
23	plus the comments and our responses to those comments.
24	CHAIRPERSON FROINES: And that you think is?
25	OEHHA AIR TOXICOLOGY & EPIDEMIOLOGY BRANCH CHIEF

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

MARTY: It would be certainly before the next meeting,
 which we're hoping is two months.

3 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION 4 CHIEF SALMON: So U.S. EPA has used this concept of the 5 data deficiency uncertainty factor in a variety of cases. 6 And they've certainly used it in cases where they were 7 concerned about impacts on infants and children. But one 8 of the most important areas is not only postnatal but 9 prenatal developmental toxicity.

10 We have not used this factor in previous OEHHA quidelines. But we now see it as a useful addition, 11 12 especially to address concerns for children's health. And 13 we feel that it would be useful to include this as a policy option where we have concerns about developmental 14 15 impacts, including the kind of concerns about prenatal exposures and the difficulties that we have in dealing 16 with, for instance, the kinetic uncertainties of fetal 17 18 exposure, which Dr. Blanc pointed out to us just now. 19 So this is one way that we would perhaps want to build in additional uncertainty to address things that we 20

21 can't necessarily model well.

And of course what we hope is that we would have actual toxicological data which would address this concern. But where we lack that data, we propose to use this data deficiency uncertainty factor similarly to the

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

1 way it's been used recently by U.S. EPA.

2	PANEL MEMBER BLANC: But I think what's getting
3	confusing here is what you're what you've said
4	previously is that the intraspecies factor could be as
5	large as 30 if you have no data at all upon which to make
6	any estimate of the toxicokinetic or toxicodynamic
7	OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION
8	CHIEF SALMON: Yes.
9	PANEL MEMBER BLANC: And now you're saying that
10	in addition it might be three times greater, it might be
11	90 in the case in which you don't have data, but you've
12	already said that the reason you'd have the value of 30 is
13	because you don't have any data. So how much more data
14	can't you have?
14 15	can't you have? OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION
15	OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION
15 16	OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION CHIEF SALMON: Well, the 30 reflects the situation where
15 16 17	OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION CHIEF SALMON: Well, the 30 reflects the situation where we're using 10 to address the uncertainty in kinetics.
15 16 17 18	OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION CHIEF SALMON: Well, the 30 reflects the situation where we're using 10 to address the uncertainty in kinetics. But we're still only using 3.16 to address the uncertainty
15 16 17 18 19	OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION CHIEF SALMON: Well, the 30 reflects the situation where we're using 10 to address the uncertainty in kinetics. But we're still only using 3.16 to address the uncertainty in toxicodynamics. So this would come in, for instance,
15 16 17 18 19 20	OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION CHIEF SALMON: Well, the 30 reflects the situation where we're using 10 to address the uncertainty in kinetics. But we're still only using 3.16 to address the uncertainty in toxicodynamics. So this would come in, for instance, in a case where we've got toxicity studies in adult rats
15 16 17 18 19 20 21	OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION CHIEF SALMON: Well, the 30 reflects the situation where we're using 10 to address the uncertainty in kinetics. But we're still only using 3.16 to address the uncertainty in toxicodynamics. So this would come in, for instance, in a case where we've got toxicity studies in adult rats which identify a particular kind of endpoint, you know,
15 16 17 18 19 20 21 22	OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION CHIEF SALMON: Well, the 30 reflects the situation where we're using 10 to address the uncertainty in kinetics. But we're still only using 3.16 to address the uncertainty in toxicodynamics. So this would come in, for instance, in a case where we've got toxicity studies in adult rats which identify a particular kind of endpoint, you know, say, respiratory irritation or something like that, but we

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

1 one case where --

2 PANEL MEMBER BLANC: But isn't that where the 3.1
3 comes from?

4 OEHHA AIR TOXICOLOGY & EPIDEMIOLOGY BRANCH CHIEF 5 MARTY: Yeah, I think what this is trying to do to have a data deficiency uncertainty factor is make it for the fact 6 where you really have huge data gaps and that you have a 7 suspicion that this thing might be worse from a dynamic 8 aspect in early life stages. Then you can have a higher 9 uncertainty factor than just the -- higher cumulative 10 uncertainty factor than just the 30X for intraspecies. 11 12 You could add an additional database deficiency.

13 PANEL MEMBER BLANC: I understand what you're saying. I think I'm having difficulty understanding some 14 15 examples that would help me pinpoint a scenario in which -- because you're basically having two classes of 16 uncertainty. There's an uncertainty that I don't really 17 care about and then there's an uncertainty that I'm 18 really -- you know, I'm sort of uncertain and now I'm 19 really, really, really uncertain or something like that. 20 21 Because in the EPA versions since they don't have the tenfold, basically they could get up to 30, which is where 22 you are as a sort of baseline, right? They could get up 23 24 to the same value as you if they put in the threefold 25 uncertainty factor.

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION 1 2 CHIEF SALMON: They could put in -- and actually they 3 could if they chose to, put in an uncertainty factor of 10 4 as well, you know. These are all default values depending 5 on the case. But, yes --

PANEL MEMBER BLANC: Well, I understand that. 7 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION CHIEF SALMON: If I -- can I --8

б

CHAIRPERSON FROINES: What we don't understand is 9 this factor of 3 -- UFD 3. 10

11 PANEL MEMBER HAMMOND: Is that for developmental 12 specifically or is it for --

13 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION CHIEF SALMON: No, it's not exclusively for developmental. 14 15 But we -- what we're saying here is that that is probably the most likely -- what we're saying is in general we 16 would want the ability to apply an uncertainty factor to 17 18 reflect concerns where we feel that there's something which is not covered by the available data. And if I can 19 20 give you just an example of how this might play out.

21 Supposing for the sake of argument we have a solvent which causes respiratory irritation. We're trying 22 23 to set a REL which is going to be applicable to not only 24 adults but infants and children. We only have a study in 25 animals, say, or in humans, for that matter, if -- say

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

it's a worker study, we have a study which tells us what
 is the critical exposure in an adult mortal exposure.

3 So we look at that. We apply a tenfold UFH-k 4 because our study is in healthy adults. And we feel that 5 we need that thirtyfold uncertainty to extrapolate the 6 kinetic uncertainty to infants and children.

7 But then we also realize that this particular solvent has some central nervous system effects. Perhaps, 8 you know, in adults those are happening at about the same 9 level as all the other things we're looking at. So they 10 won't necessarily, the critical effect even in the adult. 11 12 But in any case, if we're looking at this neurotoxicity in 13 the adult, it's going to be expressed by, you know, anesthesia, possibly nausea, and effects on color vision 14 15 or something. But, anyway, some temporary reversible 16 neurotoxicity, which we certainly wouldn't ignore.

But if we look at the neurotoxicity of quite a 17 number of these things in infants and children, or at 18 least in infant rats, and if we look at what happens in in 19 20 utero exposure, we see that -- we're seeing things like 21 irreversible changes in neurotransmitters, we're seeing persistent behavioral alterations in the exposed offspring 22 and things like that. So that's actually a different and 23 24 significantly more sensitive endpoint than the things that 25 we're seeing in the adults.

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

1 So then what we're saying is in this particular 2 compound, we've got the adult numbers, we've done all the 3 usual things and we've got what we think is going to be a 4 reasonable protective level based on those adult effects, 5 but we suspect based on the nature of the toxicity and so on that there may be in this case, say, a 6 neurodevelopmental effect to which the fetus or the infant 7 in particular is going to be much more sensitive. And 8 because we don't have any data about that at all, we're 9 concerned about it. 10 11 And so we're proposing to use this UFD to add in 12 an extra safety factor to provide an extra degree of 13 protection against that possibility. That would be the kind of example that we'd be thinking of. 14 15 Does that make sense? CHAIRPERSON FROINES: No. 16 PANEL MEMBER BLANC: Well, what I have to say is 17 that I think it's -- in principle I think you should have 18 a safety valve that would allow you to be more 19 20 conservative in situations where you think the stakes are 21 higher and by --22 OEHHA AIR TOXICOLOGY & EPIDEMIOLOGY BRANCH CHIEF MARTY: That's really what this is. 23 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION 24 25 CHIEF SALMON: That's what it is.

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

PANEL MEMBER BLANC: -- and by analogy. But I 1 2 think that for the sake of consistency and transparency and understandability down the road, so that when it comes 3 4 to the point where there's a critical toxicant for which 5 in fact it's because you chose a ninetyfold safety factor that it has sort of public policy -- potential public б policy implication in terms of how many hot spots are 7 exceeding -- likely to exceed your REL, you are going to 8 have to have a better explication of your rationale. 9

10 OEHHA AIR TOXICOLOGY & EPIDEMIOLOGY BRANCH CHIEF 11 MARTY: Well, we would on -- yeah, in any specific 12 chemical toxicity summary we go through why we've applied 13 that.

14 PANEL MEMBER BLANC: I understand that. But I 15 think in your master document you perhaps should think through how to tighten your description of the safety 16 valve. And I do think that you're on firmer ground when 17 you're talking about, you know, developmental issues. And 18 19 I think that -- you know, Kathy mentioned earlier the sort of generic issue of CNS toxins and the presumed risk that 20 21 develop in nervous system in that situation. And there could be some other examples. But I think I would go 22 back, look at it carefully, and make sure that your 23 24 generic argument is as clear-cut as it can be.

25

You know, in a way what you're actually saying is

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

that, not that it's a threefold uncertainty factor, but in
 fact you're substituting a factor of 10 for the
 toxicodynamics with a factor of 30.

4 OEHHA AIR TOXICOLOGY & EPIDEMIOLOGY BRANCH CHIEF 5 MARTY: Yes.

6 PANEL MEMBER BLANC: That's really what you're 7 saying. And that to me would make more sense as the 8 argument.

9 OEHHA AIR TOXICOLOGY & EPIDEMIOLOGY BRANCH CHIEF 10 MARTY: And, in fact, that's what we explain in a few of 11 the sample RELS. There are a few where asthma was a 12 concern. They're respiratory irritants. They're known to 13 trigger asthma. Asthma's the worst disease in kids. So 14 we added an additional uncertainty factor for that.

15 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION CHIEF SALMON: But I think the difference between 16 increasing the value of the UFH-d as opposed to putting in 17 this data deficiency factor -- no, the distinction as I 18 19 see it is on the one case we're looking at a measured endpoint which is -- you know, for which we have some 20 21 data, say, in adults but we suspect that the children will be more sensitive to that endpoint. Whereas, the purpose 22 23 of the data deficiency uncertainty factor is to also 24 address a consideration where we think we know something 25 about the endpoint we see in adults. And we don't

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

necessarily have to be able to say that the children are
 going to be dramatically more sensitive to that endpoint.
 What the UFD here is addressing is the case where we
 suspect there may be another and different endpoint.
 That's the difference between increasing UFH-d and
 then the case where we would optionally where we had that
 concern.

8 PANEL MEMBER BLANC: Well, is that true for the 9 four chemicals which in your previous table had the 10 uncertainty factors greater than 10. Were those in fact 11 uncertainty factors that came out to be greater than 10 12 because there was a different end organ?

13 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION14 CHIEF SALMON: No.

15 PANEL MEMBER BLANC: Or was the very same -16 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION
17 CHIEF SALMON: Those greater than 10 are purely the
18 kinetic component. They're not about what we're
19 discussing here at all.

20 CHAIRPERSON FROINES: Yeah, they would have to be 21 greater than 30.

22 PANEL MEMBER BLANC: Oh, I'm sorry. You're23 right, greater than 3 to --

24 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION25 CHIEF SALMON: Yeah, but that table is about kinetics

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

1 only.

2

PANEL MEMBER BLANC: Right, right. I'm sorry. 3 I see. So --4 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION 5 CHIEF SALMON: It's conceivable that we would have, you know, a value of -- an overall value of UFH. The б intraspecies factor could go as high as a hundred due to 7 selection of larger factors than default or based on 8 evidence or concerns. 9

CHAIRPERSON FROINES: I understand. But I'm very 10 curious to see an example at some point, because I think 11 12 that it's very vague at some level. But it's sort of 13 rhetorical --

14 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION 15 CHIEF SALMON: Yes, I think the problem with this is this is not something that we're doing all the time. It's 16 something which we are proposing as an option to be 17 18 available in specific cases. And the specific -- you know, the justification for using it would necessarily 19 20 have to be presented in the specific case where it would 21 be applied.

PANEL MEMBER HAMMOND: But, you know, I think many of us 22 23 understand what you're struggling -- you're struggling 24 with something that we're also struggling with. But there 25 is that sense of, first, the term "data deficiency," you

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

1 know, when Paul started out talking about, "Well, isn't 2 that data deficiency you're talking about in the other 3 factors?" And they are data deficiencies, right? I mean 4 that's why you have the uncertainty factors for the K and 5 the D.

6 And then it turns out sometimes it's the 7 endpoint, we're looking at a particular endpoint where we 8 know that the child is more sensitive. So that's a 9 different kind of reasoning. And at some level you're 10 saying there are many reasons that we might need to do 11 that. And I think we agree, but I think that that 12 probably needs be more carefully articulated.

13 CHAIRPERSON FROINES: Well, I think it needs to 14 be carefully articulated because somebody who is in your 15 opposition is going to focus on it. And it's going to 16 have a -- it's going to have a potentially negative impact 17 in terms of how OEHHA is seen in terms of uncertainty 18 factors.

19 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION 20 CHIEF SALMON: Well, I think there's a clear intention to 21 only use this additional factor, you know, when we can 22 provide a rational case-specific narrative to defend it, 23 which would go someway to -- you know, to address --24 PANEL MEMBER HAMMOND: You know, maybe -- in that

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

case I would suggest maybe you in fact say that

25

explicitly, that there could be uncertainty factors for other cases that are carefully explicitly laid out. In which case you may not want to say that the default value is 3. You may actually want to pick up of the value that seems appropriate for the type of outcome you're talking about or whatever the reason is for that uncertainty factor.

8 So you might want to rather say there are many reasons -- there are other uncertainties that enter. Talk 9 about some of those, talk about what you know about those, 10 and say that if one were to introduce another uncertainty 11 12 factor, you would have to have a strong case made in any 13 particular case. So you might leave the door open that way. But I think leaving it open in this kind of there's 14 going to be a defined default of 3 for multiple reasons 15 that could be there, and it begins to seem like, "well, I 16 just want to have this extra thing in my back pocket." 17

18 CHAIRPERSON FROINES: Andy, you know what I think 19 would be useful -- and I'll take you at your word here. 20 You say on the slide used by U.S. EPA for some time, more 21 recently with clearer criteria. So that means to me that 22 there are some examples.

23 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION24 CHIEF SALMON: Yes, there are.

25 CHAIRPERSON FROINES: And it would be useful if

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

we saw one or two of those examples, because that gives
 the impression that it's not yet to come.

3 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION4 CHIEF SALMON: Yeah.

5 PANEL MEMBER BYUS: And I do think in the written 6 document, which is clear, you can sense this, your 7 language has to be a lot more precise than you're saying 8 right now. I mean incredibly more precise. And I mean if 9 you want feedback, that's the feedback I'm going to give 10 you.

11 So I mean I think all of this is well and good. I mean I think it's well intentioned. I agree with all 12 13 the premises that you've laid out. I just think the language that you've presented today is soft. And if you 14 15 write it that way, it's not going to carry water. So 16 let's hope that the written document is much more carefully constructed and the language is very precise. 17 18 And I agree with John, some examples -- and you tried to 19 give us one off the top of your head, and I don't think 20 that maybe you -- but an example or two or three as you're 21 going along is also a good way to clarify the precision of what you're saying. 22

23 OEHHA AIR TOXICOLOGY & EPIDEMIOLOGY BRANCH CHIEF 24 MARTY: Yeah. The only thing I would say to that is, you 25 know, we have to -- if you get overly precise, you paint

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

1 yourself in a corner. And it really --

2 PANEL MEMBER BYUS: But the language has to be 3 clearer than what you're saying. Much clearer. You know, 4 we're all university faculty. We live by these words, 5 papers, manuscripts, whatever, teaching, lectures. Words are very, very precise. And I think -- as I said, I 6 understand the premises here. I think they're all well 7 and good. I think you're really -- this should definitely 8 be done. And I tend to agree with you. But the language 9 is what's bothering me. 10

11 OEHHA AIR TOXICOLOGY & EPIDEMIOLOGY BRANCH CHIEF 12 MARTY: Okay.

13 CHAIRPERSON FROINES: Well, in the long run it's going -- it seems to me to have -- you know, we're 14 15 supposed to separate risk assessment from risk management. But if I had something -- if you came in to something and 16 you said to me, "This chemical X has to have an 17 uncertainty factor of 100," I would say maybe we should 18 19 consider not using that chemical in California, because it's probably very, very toxic. And so it's -- the risk 20 21 management issue is not trivial when you've got something that obviously has -- you felt compelled to come up with 22 23 numbers like you're talking about.

Although we're talking about data deficiency, so ti's not necessarily -- that's the contradiction, isn't

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

1 it.

2 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION 3 CHIEF SALMON: Well, maybe one of the things we can do is 4 actually dig out what U.S. EPA currently says about this 5 one, because they -- I say they have in fact been doing this for some time. And some of the things which I've 6 attempted to lay out, obviously unsuccessfully here, are 7 based on what they've actually been doing. So --8 9 OEHHA AIR TOXICOLOGY & EPIDEMIOLOGY BRANCH CHIEF MARTY: Well, we'll go back and look at the language. 10 11 PANEL MEMBER BLANC: But again if I understand 12 the context of the EPA doing it, EPA is doing it in a 13 situation where otherwise their default value would be 10. 14 CHAIRPERSON FROINES: Right. 15 PANEL MEMBER BLANC: And this uncertainty factor brings them only up to where you are at your default 16 level. And this is part of what triggered my line of 17 18 questioning. So when you do this new uncertainty factor 19 of 3, it's going to take you from a default level, which 20 is actually the maximum except in some extraordinary 21 circumstance for the EPA, and you're going to be then three times higher than that. Right? 22 23 OEHHA AIR TOXICOLOGY & EPIDEMIOLOGY BRANCH CHIEF 24 MARTY: Possibly. It really -- it very much depends on 25 how they've interpreted the data.

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

PANEL MEMBER BLANC: Right. So therefore your
 trigger for invoking the uncertainty factor of 3 would
 seem to me to require a kind or sort or degree of
 uncertainty which isn't exactly the EPA's degree of
 uncertainty, because the EPA is really just arguing that,
 well, 10's not good enough. But you're arguing that 30's
 not good enough for certain chemicals.

8 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION 9 CHIEF SALMON: I don't think that EPA is using it as a 10 response to the perception that 10 is not good enough. 11 That's not what they're doing.

12 They're doing it in response to their perception 13 of a specific area of data uncertainty where some 14 desirable information is lacking, such as the suspicion 15 that there may be a developmental endpoint which hasn't 16 been examined or something like that. They're not using 17 it as a "let's bounce up the number by a factor of 3 18 because we don't think it's stringent enough." And that's 19 not how we would be using it either.

CHAIRPERSON FROINES: Let's go ahead.

21

20

--000--

22 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION
23 CHIEF SALMON: Okay. Well, this one's the same as before,
24 so I'm going on.

25

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

--000--

1 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION 2 CHIEF SALMON: The other thing we're proposing as a change 3 is that the Haber's Law adjustment -- this is again 4 something which we have been doing in the past. It's a 5 way -- essentially when considering acute exposures, the 6 general finding is that in fact concentration is more 7 important than duration as a factor in determining the 8 extent of result.

9 The concern is how do you extrapolate from the 10 duration of an experimental acute tox study to the 11 one-hour period of interest for an acute reference 12 exposure level.

13 We've done this before. This so-called modified Haber's Law uses an exponent of N, which is a weighting of 14 the concentration term. The default we used previously 15 was 2. But we're now proposing to change this default to 16 3, which increases the weight of the concentration term 17 relative to the time term. This is consistent with what 18 U.S. EPA now does and also consistent with the more 19 extensive data which are now available. 20

The value of N has in fact been determined for quite a number of these chemicals. So there's a known range of values of various specific chemicals. And where we had a measured value, obviously we'd use it. But we're talking about what's a good default here.

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

So that change of N from 2 to 3 is one difference 1 2 from previous guidance. The other difference from 3 previous guidance is that we're proposing not to use this 4 adjustment at all for developing acute or eight-hour RELs 5 based on sensory irritation. And the reason we're proposing this is that sensory irritation is basically a б concentration-dependent response. We have looked at the 7 time scale of the response for a few irritants for which 8 there were data. And the general finding is that it 9 10 plateaus after some exposure time, which varies from seconds to a few minutes. And it then in fact stays level 11 12 for a period of up to several hours. There may be 13 some -- actually some sensory adaptation at the end of the exposure -- longer exposures. But at least we don't see a 14 15 continuing increase in response with time at all. 16 So what we're proposing for specifically the sensory irritation endpoint is not to use the Haber's Law 17 18 approach at all but to base it purely on concentration. 19 I'd emphasize that this is for the sensory irritation endpoint only. It's not looking at endpoints 20 21 which involve tissue damage, development of cellular 22 changes, inflammation or anything like that. 23 --000--OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION 24 25 CHIEF SALMON: So that's the extent of the differences PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

1 from the previous document.

The timetable for what's been going on and what's proposed here: This draft has been reviewed by the Air Resources Board and CAPCOA. The public comment period, as you've heard earlier, has taken place and has been extended until quite recently.

7 We're starting your review with this meeting. 8 And we are obviously looking at a subsequent meeting when 9 you will see not only responses to the public comments but 10 also, as far as we can, initial responses to your comments 11 today. And with a view to potentially winding this up 12 some time in the middle of this year.

And we've also developed some new RELs which we're not going to be able to deal with today. But you'll hear about those in due course as examples of this process.

17 CHAIRPERSON FROINES: Is this list those new RELS 18 that we're not hearing about today and that you want lead 19 Panel members on?

20 OEHHA AIR TOXICOLOGY & EPIDEMIOLOGY BRANCH CHIEF 21 MARTY: Yes.

22 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION23 CHIEF SALMON: That is right, yes.

24 CHAIRPERSON FROINES: And so that's -- would 25 those RELs come up in mid-2008?

1 OEHHA AIR TOXICOLOGY & EPIDEMIOLOGY BRANCH CHIEF 2 MARTY: Yeah, they're -- you should have copies of them 3 already in the materials that you received. So hopefully 4 then at the next meeting we'll be able to get more into 5 the meat of what we just presented as well as the actual 6 chemicals.

7 CHAIRPERSON FROINES: So, Melanie, when do you
8 intend to bring the cancer methodology to us?
9 OEHHA AIR TOXICOLOGY & EPIDEMIOLOGY BRANCH CHIEF
10 MARTY: It's about to undergo internal ARB review. Then
11 next month in April we'll start a public comment period.
12 We'll have to do at least 60 days. Then we respond to
13 comments and then we send it to the Panel. So it sounds
14 like to me fall for you guys to be looking at that
15 CHAIRPERSON FROINES: So when we talk about lead

16 persons, we don't need to actually -- do we need to assign 17 somebody, person or persons, for that now or should we 18 just deal with this?

19 OEHHA AIR TOXICOLOGY & EPIDEMIOLOGY BRANCH CHIEF 20 MARTY: That would be great if you can assign people for 21 the cancer document now.

22

CHAIRPERSON FROINES: Now.

23 OEHHA AIR TOXICOLOGY & EPIDEMIOLOGY BRANCH CHIEF24 MARTY: Yeah, that would be good.

25 PANEL MEMBER BYUS: The non-cancer document? Or

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

1 is it cancer --

2 CHAIRPERSON FROINES: No, the cancer document. PANEL MEMBER BYUS: I'm confused. 3 4 OEHHA AIR TOXICOLOGY & EPIDEMIOLOGY BRANCH CHIEF 5 MARTY: John's talking about the next document. б PANEL MEMBER BYUS: Oh, I'm sorry. 7 CHAIRPERSON FROINES: The next document that's 8 coming down the road. 9 PANEL MEMBER HAMMOND: But we haven't assigned 10 these -- for these yet. 11 CHAIRPERSON FROINES: I know. 12 PANEL MEMBER HAMMOND: But the non-cancer 13 document. 14 CHAIRPERSON FROINES: I'm trying to look at the 15 whole panoply of work. PANEL MEMBER BYUS: John's way ahead of us, as 16 17 usual. OEHHA AIR TOXICOLOGY & EPIDEMIOLOGY BRANCH CHIEF 18 19 MARTY: So I should say, because the other Panel members 20 may not know, but Stan Glantz was the lead on this current 21 non-cancer REL document. 22 PANEL MEMBER HAMMOND: Oh, we did have a lead. 23 OEHHA AIR TOXICOLOGY & EPIDEMIOLOGY BRANCH CHIEF 24 MARTY: Yes. And so we worked a little bit with him 25 already. But he -- typically for the individual chemicals

1 we've had additional leads.

2 CHAIRPERSON FROINES: Well, doesn't it make sense 3 to assign Stan, since he's not here --4 (Laughter.) 5 PANEL MEMBER BYUS: Yeah, I like that. б CHAIRPERSON FROINES: -- for the cancer document and assign Joe, since he's theoretically an oncologist, 7 8 for the cancer document? And then 1, 2, 3, 4, 5, 6 -there are six here, so everybody should take one. 9 10 PANEL MEMBER BLANC: Which one -- I would like to 11 do manganese myself. PANEL MEMBER HAMMOND: I'd like to do manganese. 12 13 CHAIRPERSON FROINES: I knew you'd like -- wait. 14 PANEL MEMBER PLOPPER: You know, and I'll take 15 the formaldehyde. CHAIRPERSON FROINES: Charles is formaldehyde. 16 17 Paul is manganese. PANEL MEMBER FRIEDMAN: Which one has the most 18 epidemiologic data? That's the one I would like to take. 19 20 CHAIRPERSON FROINES: Well, certainly arsenic. 21 OEHHA AIR TOXICOLOGY & EPIDEMIOLOGY BRANCH CHIEF 22 MARTY: Arsenic. 23 PANEL MEMBER FRIEDMAN: How about if I take that 24 then? CHAIRPERSON FROINES: Arsenic is more -- has 25

1 enormous amount of -- and so that leaves acetaldehyde, 2 acrolein, and mercury. And we're missing --PANEL MEMBER FRIEDMAN: I'll do one, whichever 3 4 one you want. 5 CHAIRPERSON FROINES: Pick one. 6 PANEL MEMBER BYUS: And I'll do acrolein, unless 7 you want it. CHAIRPERSON FROINES: I'd rather do acrolein than 8 9 mercury. How about taking mercury? PANEL MEMBER BYUS: You want me to take mercury? 10 CHAIRPERSON FROINES: Uh-huh. 11 PANEL MEMBER BYUS: All right. I'll take 12 13 mercury. 14 CHAIRPERSON FROINES: And I'll take acetaldehyde 15 since I'm the air pollution guy here. PANEL MEMBER BLANC: You're taking two. 16 CHAIRPERSON FROINES: Oh, wait. Kathy. What did 17 18 I almost do? 19 So you're acrolein or acetaldehyde. PANEL MEMBER HAMMOND: You take which one you 20 21 want. I'll take the other one. 22 CHAIRPERSON FROINES: No, no. You take what you 23 want. 24 (Laughter.) PANEL MEMBER HAMMOND: I said manganese. 25

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

1 CHAIRPERSON FROINES: Yeah, but he's got a thing 2 about manganese. PANEL MEMBER HAMMOND: I do -- research on that. 3 4 CHAIRPERSON FROINES: Oh. Well, what do you want 5 to do? Do you want -б PANEL MEMBER HAMMOND: I'll do -- which one did 7 you want to take? 8 CHAIRPERSON FROINES: Well, I don't care what I 9 do. PANEL MEMBER BLANC: Who's doing formaldehyde? 10 11 Did I miss that? CHAIRPERSON FROINES: Charles. 12 13 PANEL MEMBER BYUS: Which ones have the biggest 14 changes in the RELs? 15 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION 16 CHIEF SALMON: Acrolein is one of the bigger ones 17 actually. PANEL MEMBER FRIEDMAN: Are the documents the 18 19 ones that are in this book that you'd like us to review? 20 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION 21 CHIEF SALMON: Yes, they are. 22 CHAIRPERSON FROINES: And I'm acetaldehyde. 23 So you realize that the acrolein one you have to 24 do EGFR activation, you know, for the endpoint. You don't 25 get to use these old fashioned endpoints. You have to do

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

1 PTP1B inactivation.

2 PANEL MEMBER HAMMOND: Maybe you should pick the 3 lead on that.

4 PANEL MEMBER BLANC: Let me just -- coming back 5 to the topic that we beat to death about uncertainty. 6 Let's just take for a moment arsine, which is a subset of arsenic, which causes hemolysis. And neonates deal very 7 poorly with hyperbilirubinemia. So that's something you 8 took into account in some kind of uncertainty factor? 9 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION 10 11 CHIEF SALMON: Actually the way the arsine data worked, we 12 looked at the hemolysis data and we also looked at a 13 number of endpoints including data from the epidemiology. 14 And that covered -- the other endpoints were all very 15 considerably more sensitive than the hemolysis data that 16 we had. So hemolysis -- so what we basically said was 17 that we needed to use the all-arsenic endpoints for arsine 18 rather than looking at hemolysis as the critical endpoint 19 for arsine.

20 PANEL MEMBER BLANC: For acute effects?
21 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION
22 CHIEF SALMON: Yeah.

23 PANEL MEMBER BLANC: That seems biologically24 implausible to --

25 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION

1 CHIEF SALMON: Well, that was -- I'll have a look and 2 see -- you know, I don't think we --

3 PANEL MEMBER BLANC: I don't want to dwell on it 4 now. I just pick as --

5 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION
6 CHIEF SALMON: Yeah. But the answer is we considered a
7 range of endpoints definitely.

8 PANEL MEMBER HAMMOND: May I ask, are you
9 expecting the REL documents to change as you do the
10 changes for the overall approach document?

11 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION 12 CHIEF SALMON: We have not got -- well, we've not got 13 anything in line at this point. There might be some 14 corrections or -- the other thing is we might, I suppose, 15 need to consult with the leads if we identify a problem 16 through the public comments.

17 PANEL MEMBER HAMMOND: So you've received -- and 18 that's what this is. You've received public comments on 19 all of these?

20 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION21 CHIEF SALMON: Yes.

22 OEHHA AIR TOXICOLOGY & EPIDEMIOLOGY BRANCH CHIEF23 MARTY: Yes.

24 PANEL MEMBER HAMMOND: So there may be changes in 25 these documents?

1

OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION 2 CHIEF SALMON: It' conceivable, yes.

3 OEHHA AIR TOXICOLOGY & EPIDEMIOLOGY BRANCH CHIEF 4 MARTY: Yes.

5 CHAIRPERSON FROINES: Well, these are interesting 6 compounds.

7 PANEL MEMBER BLANC: These are the ones that made 8 it on to that top list, right? Isn't that where we're going back to? 9

OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION 10 11 CHIEF SALMON: Well, all except acetaldehyde are somewhere 12 in the first or second tier of the SB 25 prioritization. 13 So that's certainly, you know, one key reason why these 14 were selected. The other was -- there was a degree of, we 15 selected ones which we felt exemplified principles or 16 problems that we wanted to exercise the new guidelines 17 with.

18 PANEL MEMBER BLANC: Okay.

19 PANEL MEMBER HAMMOND: Are the guidelines likely 20 to change in any way that would lead to changes in the 21 RELs?

22 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION 23 CHIEF SALMON: Well, that may be up to you.

24 (Laughter.)

OEHHA AIR TOXICOLOGY & EPIDEMIOLOGY BRANCH CHIEF 25

1 MARTY: Yeah, that -- yeah, we would have to be iterative, 2 because if the -- if you guys want changes to the 3 guidelines or somebody brings up some important points in 4 the public comment period that result in a change, then we 5 would have to see how that reflects on the individual 6 reference exposure levels. It may or may not, depending 7 on what the change is. OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION 8 9 CHIEF SALMON: Yeah, but clearly --PANEL MEMBER HAMMOND: Now, the public comment 10 11 period closed four weeks ago though? OEHHA AIR TOXICOLOGY & EPIDEMIOLOGY BRANCH CHIEF 12 13 MARTY: Yes. 14 PANEL MEMBER HAMMOND: So you had a chance to at 15 least look at them? OEHHA AIR TOXICOLOGY & EPIDEMIOLOGY BRANCH CHIEF 16 17 MARTY: We've had a chance to look at them. PANEL MEMBER HAMMOND: You don't have a sense yet 18 then how much they might change? 19 20 OEHHA AIR TOXICOLOGY & EPIDEMIOLOGY BRANCH CHIEF 21 MARTY: I'd have to say, no, we don't have a sense. 22 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION 23 CHIEF SALMON: No. CHAIRPERSON FROINES: You don't have the what? 24 25 OEHHA AIR TOXICOLOGY & EPIDEMIOLOGY BRANCH CHIEF

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

MARTY: We don't have a sense of how it's going to impact
 the RELs at this point.

3 CHAIRPERSON FROINES: When would you like --4 Peter just gave me a note essentially asking when the next 5 meeting should be. And it should be I think based on when 6 you're going to be comfortable having completed 7 everything.

8 OEHHA AIR TOXICOLOGY & EPIDEMIOLOGY BRANCH CHIEF
9 MARTY: End of April would be great, or early May,
10 avoiding certain weeks that are bad.

11 CHAIRPERSON FROINES: And according to Peter, for 12 reasons I don't know, he said Bay Area.

PANEL MEMBER BLANC: Well, we were in OrangeCounty.

15 PANEL MEMBER HAMMOND: Southern California.

16 PANEL MEMBER BLANC: I guess it would be fair to 17 have it in the Bay Area.

18 CHAIRPERSON FROINES: And do we have a place in 19 San Francisco?

20 MR. MATHEWS: Not yet. I'm working on it.

21 CHAIRPERSON FROINES: So we'll plan the first two 22 weeks in May. And Peter can poll people. And we'll plan 23 to have it in San Francisco or Oakland.

You know, Stan's not here, so -- stan alwayscomplains about Oakland meetings.

PANEL MEMBER BLANC: What about Stanford? Do you 1 2 have any facilities? 3 PANEL MEMBER FRIEDMAN: I'm, you know, a 4 consulting professor. I don't have a lot of clout there 5 in terms of -б PANEL MEMBER BLANC: But you have that nice 7 conference room. 8 MR. MATHEWS: I'll try it again. PANEL MEMBER FRIEDMAN: Yeah. And you have to 9 10 deal with the administration, not with me. 11 MR. MATHEWS: Well, I've dealt with them on --PANEL MEMBER BLANC: I mean it's just as close 12 13 for you from the airport. 14 CHAIRPERSON FROINES: Doesn't matter to me. 15 MR. MATHEWS: I'll give it a try. CHAIRPERSON FROINES: So thank you, Andy. That 16 17 was -- this is going to be an interesting process. OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION 18 19 CHIEF SALMON: A long, strange trip perhaps. 20 CHAIRPERSON FROINES: That's one of those 21 statements that says that everything's not quite perfect 22 but we're heading towards that. 23 PANEL MEMBER BLANC: Well, I'd like to make a 24 motion that we adjourn. CHAIRPERSON FROINES: Yes. 25 PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

1

PANEL MEMBER BYUS: Second.

PANEL MEMBER FRIEDMAN: May I ask a question?
Are we expected then to have reviewed and given
our feedback to the OEHHA with regard to these six
chemicals by then? Is that the plan or what?
OEHHA AIR TOXICOLOGY & EPIDEMIOLOGY BRANCH CHIEF
MARTY: Yes.
CHAIRPERSON FROINES: Yes. But also the next
meeting we will be discussing the amongst the Panel are
our views of the document. So it's not one of those where

11 we walk in and vote, because we've had no -- we've had
12 limited discussion. And if there's no discussion, then
13 we'll just vote. But otherwise we'll have a --

14 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION
15 CHIEF SALMON: We'll have to present public comments as
16 well.

17 PANEL MEMBER HAMMOND: My impression here though 18 is that these chemicals were chosen because they helped to 19 illustrate some of the issues and the challenges that lead 20 to the developing of the new document.

21 OEHHA AIR TOXICOLOGY & EPIDEMIOLOGY BRANCH CHIEF22 MARTY: Partially and --

23 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION24 CHIEF SALMON: That's one of the factors, yes.

25 OEHHA AIR TOXICOLOGY & EPIDEMIOLOGY BRANCH CHIEF

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

MARTY: Partially because they were prioritized high when
 we looked at children's health issues.

3 PANEL MEMBER HAMMOND: But they particularly
4 bring us -- we get to confront some of the children issues
5 by looking at these materials. So I do think this
6 question of its being an iterative process might -- that
7 sounds pretty likely. And I think that --

8 OEHHA AIR TOXICOLOGY AND RISK ASSESSMENT SECTION9 CHIEF SALMON: Yes, absolutely.

10 PANEL MEMBER HAMMOND: -- how much we come to 11 conclusion by the next meeting with either the RELs or the 12 document is less clear to me, and that may take some time.

13 CHAIRPERSON FROINES: Melanie, I had a question14 for you that is not meant as a criticism.

15 But when you talked about OEHHA's priorities for 16 chemicals that will come up in the future, maybe TACs or whatever, you spent most of your time talking about what's 17 18 going on in Canada, if I remember correctly. But you 19 didn't -- you did not give very much in the way of 20 specific chemicals that you think would be appropriate. 21 When we have that meeting, can you give us some ideas of where you are on that question? 22

Am I asking a difficult question?
OEHHA AIR TOXICOLOGY & EPIDEMIOLOGY BRANCH CHIEF
MARTY: Yes, that's a difficult question. I mean I think,

you know, that we have our ideas of some chemicals that we
 think are petty important and that should be looked at.
 But, you know, it has to be integrated with ARB's process
 of prioritization. So, you know, they have their
 candidate list of TACs and the information that goes into
 their prioritization process.

7 CHAIRPERSON FROINES: I don't know if I agree with that. I would argue something different. I would 8 argue that you as scientists have views of what's 9 10 important. That has nothing to do with ARB's prioritization process. If I talk about quinones, that's 11 12 because I'm a scientist who deals with guinones. And it 13 doesn't have anything to do with ARB. In fact, having some fresh ideas outside their prioritization process may 14 be useful. They're not going to come up with ultrafines, 15 16 I guaranty it. I might.

And so the point is, why do we need to -- my notion of putting this workshop together was to get ideas -- to get scientific ideas, not necessarily government. And then we have to figure out how the science relates to the prioritization process. It seems to me that that's a process that we have to talk about.

23 OEHHA AIR TOXICOLOGY & EPIDEMIOLOGY BRANCH CHIEF24 MARTY: Well, you know, we have --

25 CHAIRPERSON FROINES: Tobi's going to have

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

1 compounds and so am I and so is Roger or Roger's

2 replacement.

OEHHA AIR TOXICOLOGY & EPIDEMIOLOGY BRANCH CHIEF 3 4 MARTY: We have a lot of ideas that we want to move 5 forward on. We don't have a lot of time or bodies. But, you know, one is to look at what Canada did and how they б prioritized, and whether any of those chemicals would be 7 expected to be in the air. And the other is to look at 8 some of the work we've already done with atmospheric 9 10 transformation of emissions from tailpipes, run those through SAR -- existing SAR models and see what little 11 12 flags pop up on some of those. We have not had the time 13 to do that yet.

14 So I don't know that we could do that between now 15 and May. But we can come up with additional ideas.

16 CHAIRPERSON FROINES: Well, we see you as, you 17 know, in general, as the lead agency on risk assessment. 18 And so getting some substantive ideas would be valuable. 19 And the timing doesn't have to be May, but it would be 20 useful. But also your thought process about approach. 21 PANEL MEMBER BLANC: Can we call the question? 22 There's a motion on the floor.

23 CHAIRPERSON FROINES: Well, are we
24 finished -- are there any other issues that we should
25 talk -- we should raise with OEHHA while we're here?

PETERS SHORTHAND REPORTING CORPORATION (916) 362-2345

Anybody? Okay. All in favor? (Ayes.) CHAIRPERSON FROINES: We're adjourned. (Thereupon the California Air Resources Board, б Scientific Review Panel adjourned at 1:06 p.m.)

1

CERTIFICATE OF REPORTER

2 I, JAMES F. PETERS, a Certified Shorthand 3 Reporter of the State of California, and Registered 4 Professional Reporter, do hereby certify: 5 That I am a disinterested person herein; that the 6 foregoing California Air Resources Board, Scientific 7 Review Panel meeting was reported in shorthand by me, 8 James F. Peters, a Certified Shorthand Reporter of the State of California, and thereafter transcribed into 9 10 typewriting. I further certify that I am not of counsel or 11 attorney for any of the parties to said meeting nor in any 12 13 way interested in the outcome of said meeting. 14 IN WITNESS WHEREOF, I have hereunto set my hand 15 this 10th day of March, 2008. 16 17 18 19 20 21 22 23 JAMES F. PETERS, CSR, RPR 24 Certified Shorthand Reporter 25 License No. 10063