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A. Introduction

The atmospheric fates of chemical compounds emitted into the tropos-
phere are governed by a number of chemical and physical removal processes.
As the result of laboratory studies carried out over the past 20 years,
the potentially important gas-phase chemical reaction pathways which must

be considered includes:

e Photolysis during daylight hours
Reaction with the hydroxyl (OH) radical during daylight hours

Reaction with the hydroperoxyl (HO5) radical, mainly during
afternoon/evening hours

Reaction with the nitrate (N03) radical during nighttime hours
Reaction with nitrogen dioxide (NO,)

Reaction with ozone (03)

Reaction with gaseocus nitric acid (HNO3)

For the great majority of organic compounds, the most important of these
remain photolysis and reaction with hydroxyl (OH) and nitrate (N03)
radicals and with ozone (03).

However, for a limited number of organic compounds, one or more of
the other reactive chemical species in the troposphere may react with
organi¢ compounds at significant rates. For example, HO, radicals react
with formaldehyde and, more slowly, with acetaldehyde and glyoxal; NG,
reacts with dialkenes; and gaseous HNO3 reacts with basic compounds such
as the amines.

Additionally, for chemical compounds present in the adsorbed phase,
photolysis and reaction with 03, N205, NO,, HN03, HONO, Hy30) and hydrogen
peroxide (H,0,) may contribute to their degradation. For certain of these
reactions involving adsorbed organics, synergistic interactions may be of
importance.

The physical removal processes can be defined in a simplistic manner
as accretion (or coagulation) of particles, and dry and wet deposition of
gases and particles. Removal of gases and particles at ground surfaces
(including snow and other moist surfaces) is referred to as dry deposi-
tion, while removal of these species by precipitation is referred to as

wet deposition. Our current understanding of these processes, which are
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dynamic in nature, must be considered to be semi-quantitative at the
present time, and in general there is a lack of experimental data con-
cerning these processes for most organic compounds (Atkinson, 1988;
Bidleman, 1988).

The atmospheric lifetime t of a chemical is defined as the time to
decay to a concentration of 1/e (=0.368) of that initially present, Also,

% = 1 + 1 (1)

* chemical T physical

where Tchemical 2and Tphysical 2are the lifetimes of the chemical with
respect to only chemical reaction and only physical loss processes,
respectively. These chemical and physical lifetimes are composites of

those for the individual loss processes, for example

! = L + ;l- + 11 + ;l— . .. (2)
OH N03 03

Tchemical Tphotolysis
where Tphotolysis® TOH' TNO and 15 are the lifetimes with respect to
photolysis, reaction with tho OH radical, reaction with the NO3 radical,
and reaction with 03, respectively, In turn, these reactive loss

processes are determined by the rate constants, k for reaction and the

b &
ambient atmospheric concentrations, [X], of the reactive intermediates.

For example

1
ToH

= kOH[OH]

For photolysis, the photolysis rate depends on the absorption cross
section (o), the photolysis quantum yield (¢), and the radiation intensity
(J), all of which are wavelength dependent:
~800 nm
1

?;;;;;I;;;; ® Xphotolysis * 0,4,J, di

~290 nm
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In this report, we describe the available literature data Boncernlng
the chemical and physical removal processes for epoxyethane (Cﬁ/——CH ) and
estimate its resulting atmospheric lifetime. We will also summarize the
atmospheric chemistry of this compound. Since epoxyethane is gaseous

under atmospheric conditions, we consider only the gas-phase processes.

B. Chemical Loss Processes

1. Ozone Reaction

No experimental data have been reported concerning the gas-phase
reaction of 03 with epoxyethane (Atkinson and Carter, 1984). However,
based upon the magnitude of the rate constant for the gas-phase reaction
of the OH radical with epoxyethane and the literature data for the reac-
tions of 03 Wwith saturated organic compounds such as the alkanes and
carbonyls not containing >C=C< bonds (Atkinson and Carter, 1984), it is
expected that the room temperature rate constant for the reaction of 03

with epoxyethane will be

-20 m3 -1

k(03 + epoxyethane) <10 molecule™ ! s
at 298 K.
2. OH Radical Reaction

The available kinetic data are given in Table 1. At room

temperature, the absolute rate constants of Zetzsch (1980), Lorenz and
Zellner (1984) and Wallington et al. (1988) exhibit a spread of a factor
of 1.8, but are consistent with the upper limit to the rate constant
derived by Klopffer et al. (1986). The only temperature-dependent study
is that of Lorenz and Zellner (1984), who observed a rapid inecrease in the
rate constant above U435 K, leading to marked non-Arrhenius behavior.
Atkinson (1989) used a unit-weighted average of the room temperature rate
constants of Zetzsch (1980), Lorenz and Zellner (1984) and Wallington et
. (1988) to recommend

k(OH + epoxyethane) = 7.6 x 10~ 1% cm3 motecule™! s~ at 298 X,

with an estimated overall uncertainty of :50%.
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Because of the high magnitude of the temperature dependence measured
by Lorenz and Zellner (1984), leading to an Arrhenius pre-exponential

L s'1 for rate data obtained over the

factor of 1.2 x 10°11 cm3 molecule”™
range 297-435 K and a markedly higher value for data obtained over the
temperature range 435-515 K, no temperature dependence was recommended by
Atkinson (1989).

This OH radical reaction almost certainly proceeds by H atom abstrac-

tion from the C-H bonds

AN °\
—CH

OH + CH2——CH2 + H,0 + CH

2 2

The initially formed radical is expected to rapidly undergo ring cleavage

0 — CH.CHO
7\ 2

S CHBéO

Using laser induced fluorescence detection to monitor the vinoxy (CHQCHO)
radical, Lorenz and Zellner (1984) measured CH,CHO yields at 298 K of 0.08
+ 0.03 and 0.23 + 0.08 at 10 and 60 Torr total pressure of helium diluent,
respectively. The reaction products of the OH radical reaction with
epoxyethane under atmospheric conditions are not presently known, [The
vinoxy radical reacts rapidly with 02, with a room temperature rate
constant of 2.6 x 10713 cm3 molecule™! 5'1, with the reaction products
possibly being (Gutman and Nelson, 1983; Lorenz et al., 1985)

— HCHO + CO + OH
CH2CHO + O2 > [OOCHECHO] —

L, (cno)‘,2 + OH

3. NO, Radical Reaction

No data are currently available concerning the gas-phase reaction
of the NO3 radical wWith epoxyethane. Based on the kinetic data for the
corresponding OH radical reaction {see above) and for the gas-phase reac-
tions of the N03 radical with alkanes, ethers and alcohols (Wallington et
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al., 1986a,b, 1987; Atkinson et al., 1988), it is expected that the room
temperature rate constant for the gas-phase reaction of the NO3 radiecal

with epoxyethane will be
k3(NO3 + epoxyethane) <5 x 10" '7 em3 molecule~! 5=

at 298 X.
4. Photolysis

Epoxyethane will not undergo photolysis in the actinic region,
since epoxyethane does not absorb radiation above 290 nm. The long wave-
length limit to the absorption is reported to be at 212 nm (Calvert and
Pitts, 1966).

C. Physical Loss Processes

There are no published literature data available concerning dry
deposition of epoxyethane. Under California Air Resources Board funding,
the Statewide Air Pollution Research Center at the University of
California, Riverside, carried out a series of experiments to determine
the loss rates of epoxyethane as a function of the water vapor concentra-
tion in a 5800 1liter Teflon-coated chamber (Winer et al., 1987).
Epoxyethane and water vapor concentrations were monitored by in situ long
pathlength Fourier transform infrared (FT-IR) absorption spectroscopy.
The initial epoxyethane concentrations were ~1.4 x 101‘4 molecule em™3 (~6
parts-per-million mixing ratio), and all experiments were carried out at
298 : 2 K.

The experimental conditions and observed loss rates of epoxyethane
are given in Table 2. Since the experiment carried out at the lowest
relative humidity exhibited the highest epoxyethane loss rate, these data
presented in Table 2 show that under these experimental conditions there
was no observable hydrolysis of epoxyethane (the small losses of epoxy-
ethane were attributed to a slow removal at the chamber walls). These
data yield an upper limit to the loss rate for epoxyethane at ~50% rela-
tive humidity and room temperature of <4 x 10~7 5'1, corresponding to a
minimum lifetime of epoxyethane due to hydrolysis of 29 days, with the

likelihood of a much longer lifetime due to this removal process.
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Table 2. Experimental Conditions and Results for the Behavior of
Epoxyethane in the Presence of Water Vapor

Observed

Diluent Relative Epoxyethane Loss ?ate
Gas Humidity (%) Loss (s7™")
N, <1 1.5% over § hrs <t x 10'6
N, 49 <0.5% over 2 hrs <7 x 1077
Air 49 iif over 29 hrs <t x 1077
Washout ratios, W, where

W= Concentrationrain/Concentrationair

have been determined for epoxyethane at 278 K and 288 K (Dana et al.,
1985), with values of W = 3.8 at 278 K and 6.2 at 288 K being measured.
When these values of W for epoxyethane are compared to the washout ratios
of W = 104 - 106 for species which are very efficiently scavenged by
rainwater, such as phencl and particles (Eisenreich et al., 1981;
Atkinson, 1988), it is clear that epoxyethane is inefficiently removed
from the troposphere by wet deposition. Indeed, the values of W for
epoxyethane are very similar to those for methylchloroform (CH3CC13) (W ~5
at 298 K (Dana et al., 1985)], for which wet deposition plays no role in
its tropospheric removal [the methylchloroform lifetime in the troposphere
is 6-7 years, and is due to reaction with the OH radical (Prinn et al.,
1987)1. Thus, it is expected that wet deposition will not lead to a

significant tropospheric loss rate of epoxyethane.

D. Atmospheric Formation Processes

No chemical formation processes for epoxyethane in the troposphere
are expected with the current knowledge of atmospheric chemistry of
organic compounds (see, for example, Atkinson and Lloyd, 1984). Two
possible reactions leading to formation of epoxyethane in the troposphere

are the gas-phase reactions of ethene with the O(3P) atom and 03, and at
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atmospheric pressure and room temperature and below neither of these
reactions leads to the formation of epoxyethane (Atkinson and Lloyd,
1984).

E. Atmospheric Lifetimes

The rate constants, or upper limits thereof, cited above for the gas-
phase reactions of OH and N03 radicals and 03 with epoxyethane can be
combined with measured or estimated ambient atmospheric concentrations of
OH and N03 radicals and 03 to calculate the atmospheric lifetimes of
epoxyethane with respect to these potential gas-phase reactions. For this
purpose, we use ambient atmospheric concentrations of 1.5 x 106 molecule
em™3 for OH radicals during a 12-hr daytime period (Prinn et al., 1987)
(an average tropospheric concentration for the northern and southern
hemispheres derived from a knowledge of the total worldwide emissions of
CH3CC13 and the present atmospheric burden of CH3CCl3), 2.4 x 108 molecule
em™3 for NO3 radicals during a 12-hr nighttime period (Platt et al., 1984;
Atkinson et al., 1986) and 7 x 10! molecule em™3 for 03 during a complete
24-hr day (Logan, 1985). The calculated lifetimes due to these gas-phase
reactions are given in Table 3.

Table 3. Calculated Atmospheric Lifetimes of Epoxyethane with Respect
to Gas-Phase Room Temperature Reaction with OH and N03
Radicals and 03

Lifetime
Reaction with T
on2 200 days
N03b >5 years
O3c 4.5 years

3For a 12-hr gverage daytime OH radical concentration of 1.5 x 106
molecule cm™ (Prinn et al., 1987). 8
For a 12-hr gverage nighttime NO, radical concentration of 2.4 x 10
molecule em™> (Platt et al., 1983; Atkinson et §l., 1986).

CFor a 2U-hr average 03 concentration of 7 x 10'! molecule em™3 [30 ppb]
(Logan, 1985).



Clearly, the dominant gas-phase chemical removal process is the reac-
tion with the OH radical, leading to a calculated lifetime of ~200 days.
This calculation uses a room temperature rate constant for the OH radical
reaction; use of a rate constant for the OH radical reaction at the
temperatures applicable to the mid-troposphere (-270 K) would lead to a
longer calculated lifetime of ~300 days. With a lifetime of epoxyethane
of this magnitude, wet deposition is expected to be of no significance as
a tropospheric removal process, and the overall lifetime of epoxyethane is
calculated to be in the range 200-300 days. With a lifetime of this

magnitude, epoxyethane will be distributed over a global secale.

F. Ambient Concentraticn

To our knowledge, no ambient air data have been reported in the

literature for epoxyethane,
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A. Introduction

The atmospheric fates of chemical compounds emitted into the tropos-
phere are governed by a number of chemical and physical removal processes.
As the result of laboratory studies carried out over the past 20 years,
the potentially important gas-phase chemical reaction pathways which must

be considered includes:

e Photolysis during daylight hours.
Reaction with the hydroxyl (OH) radical during daylight hours.

e Reaction with the hydroperoxyl (H02) radical, mainly during
afternoon/evening hours.

® Reaction with the nitrate (NO3) radical during nighttime hours.

e Reaction with nitrogen dioxide (NO,).

e Reaction with ozone (03).

°

Reaction with gaseous nitric acid (HN03).

For the great majority of organic compounds, the most important of these
remain photolysis and reaction with hydroxyl (OH) and nitrate (NO3)
radicals and with ozone (03).

However, for a limited number of organic compounds, one or more of
the other reactive chemical species in the troposphere may react with
organic compounds at significant rates. For example, HO, radicals react
with formaldehyde (see Section B.4, below) and, more slowly, with
acetaldehyde and glyoxal; NO, reacts with dialkenes; and gaseous HN03
reacts with basic compounds such as the amines.

Additionally, for chemical compounds present in the adsorbed phase,
photolysis and reaction with 03, N205, NO5, HN03, HONO, H,S0, and hydrogen
peroxide (H202) may contribute to their degradation. For certain of these
reactions involving adsorbed organics, synergistic interactions may be of
importance.

The physical removal processes can be defined in a simplistic manner
as accretion (or coagulation) of particles, and dry and wet deposition of
gases and particles. Removal of gases and particles at ground surfaces
(including snow and other moist surfaces) is referred to as dry deposi-
tion, while removal of these species by precipitation is referred to as

wet deposition. Our current understanding of these processes, wWhich are
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dynamic in nature, must be considered to be semi-guantitative at the
present time, and in general there is a lack of experimental data con-
cerning these processes for most organiec compounds (Atkinson, 1988;
Bidleman, 1988).

The atmospheric lifetime t of a chemical is defined as the time to
decay to a concentration of 1/e (=0.368) of that initially present. Also,

1 1 1
I = - N

T chemical | physical

where T,pemical and Tphysical are the lifetimes of the chemical with
respect to only chemical reaction and only physical loss processes,
respectively. These chemical and physical lifetimes are composites of

those for the individual loss processes, for example

1 1 1 1 1
= + — 4+ + — . . . (2)
Tchemical 'photolysis TOH TNO3 T03

where Tphotolysis’ ToHr TNO and 1 are the lifetimes with respect to
photolysis, reacticn with tho OH radical, reaction with the N03 radical,
and reaction with 03, respectively. In turn, these reactive loss
processes are determined by the rate constants, K., for reaction and the
ambient atmospheric concentrations, [X], of the reactive intermediates.

For example

k.. [OH]
TOH OH

For photolysis, the photolysis rate depends on the absorption cross

section (o), the photolysis quantum yield (¢), and the radiation intensity
(J), all of which are wavelength dependent:

~800 nm

:J- o,.¢.J. dx
~290 nm ATATA

3
Tphotolysis

: l'cpho‘tol],'sis



In this report, the available literature data concerning the chemical
and physical removal processes for formaldehyde {HCHO) are presented and
its resulting atmospheric lifetime is estimated. The atmospheric
chemistry of this compound is also discussed. Although formaldehyde is
gaseous at room temperature, its dissolution into the aqueous phase and
subsequent aqueous-phase reactions must also be considered in addition to

the gas-phase processes.

B. Chemical Loss Processes

1. Reaction with Ozone

The only kinetic data for the gas-phase reaction of 03 with HCHO
is the upper limit to the rate constant of ky =2.1 x 10724 em3 molecule™"
s~ obtained by Braslavsky and Heicklen (1976) at 298 K. This upper limit
to the rate constant is consistent with the small amount of rate constant
data for the other saturated aldehydes CH3CH0, (CHO), and CH3C0CH0
(Atkinson and Carter, 1984).

2. Reaction with the Hydroxyl Radical

The available 1literature data concerning the kineties and
mechanism of the reaction of the OH radical with HCHO have been reviewed
and evaluated by Atkinson (1989). The available rate constant data are
given in Table 1. The rate constants obtained by Hoare (1962, 1966),
Baldwin and Cowe (1962), Blundell et al. (1965), Westenberg and Fristrom
(1966), Hoare and Peacock (1966), Morris and Niki (1971a,b), Peeters and
Mahnen (1973), Vandooren and Van Tiggelen (1977), Niki et al. (1978),
Atkinson and Pitts (1978), Stief et al. (1980), Temps and Wagner {(1984)
and Zabarnick et al. (1988) for 12CH20 and of Niki et al. (1984) for
13CH20 are plotted in Arrhenius form in Figure 1. A significant amount of
scatter in these data is evident. Since the rate constant for the self
reaction of OH radicals is subject to significant uncertainties (DeMore et
al., 1987), the rate constants derived from the study of Smith (1978) are
not plotted in Figure 1 and were not used by Atkinson (1989) in the
evaluation of the rate constant for this reaction.

1t can be seen from Figure 1 that the rate constant for this reaction
appears to be approximately independent of temperature over the range
~230-500 K, but that at temperatures »500 K the rate constant increases

with increasing temperature. At around room temperature, absolute rate
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Arrhenius plot of rate constants for the reaction of the OH
radical with formaldehyde. ({) Hoare (1962, 1966), Blundell
et al. (1965), Hoare and Peacock (1966); (4 ) Baldwin and Cowe
(1962}; (= — ==) Westenberg and Fristrom (1965); (x) Morris
and Niki (1971a}; (&) Morris and Niki (1971b); (+—{) Peeters
and Mahnen (1973); (==«——.—-) Vandooren and Van Tiggelen
(1977}; (M) Niki et al. (1978); (@) Atkinson and Pitts
(1978}; (A) Stief et al, (1980); (&) Temps and Wagner (1984);
(O) Zabarnick et al. (1988*' (Q) Niki et al. (1984) [for
reaction with formaldehyde- 3C]; ( ) recommendation (see
text).
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constants have been determined by Morris and Niki {1971a), Atkinson and
Pitts (1978), Stief et al. (1980), Temps and Wagner (1984) and Zabarnick
et al. (1988). Again, a significant amount of scatter is observed, with
Morris and Niki (1971a) and Zabarnick et al. (1988) obtaining rate
constants of (1.2-1.4} x 1011 cm3 mc:lecule'1 5'1, Atkinson and Pitts
(1978) and Stief et al. (1980) rate constants of (9.4-9.9) x 10712
molecule™’ s'1, and Temps and Wagner (1984) a rate constant of 8.1 x1

cm3 mc»lecule'1 s'1.

cm3
0-12

Based upon the data shown in Figure 1, the Arrhenius plot exhibits
significant curvature. A unit-weighted least-squares analysis of the
absolute rate constants determined by Atkinson and Pitts (1978) and Stief
et al. (1980) (which are in excellent agreement) was carried out by
Atkinson (1989), using the expression k, = ct?eD/T to obtain the

recommendation of

+0.20

- -17 2 _(648 = U5)/T
k,(HCHO) = (1.2577g) x 107" T° e

cm3 moleo::ule'1 s-1

over the temperature range 228-426 K, where the indicated errors are two

least-squares standard deviations, and

k2(HCH0) = 9.77 x 10'12 cm3 molecule'1 s~

at 298 X, with an estimated overall uncertainty at 298 K of *30%. This
recommendation is ~10% higher than that recommended by Atkinson (1986) of
kZ(HCHO) = 9.0 x 10‘12 cm3 molecule'1 5'1, independent of temperature over
the same range of 228-426 K. At elevated temperatures, the recommended
expression yields calculated rate constants in good agreement with those
obtained from the flame studies of Westenberg and Fristrom (1965) and
Peeters and Mahnen (1973) [Figure 1].

As expected, the rate constant for the reaction of CH radicals with
formaldehyde—13C is, within the likely experimental errors, essentially
identical to that for formaldehyde-'2C (Niki et al., 1984).

This OH radical reaction with formaldehyde can proceed by the path-
ways



OH + HCHO + HCO + H20 (2a)
+ HCOOH + H {2b)
+ H+ CO + H20 (2c)

Morrison and Heicklen (1980), Temps and Wagner (1984) and Niki et al.
(1984) have shown from product studies that reaction pathway (2b) is
negligible, accounting for <2% of the overall reaction (Niki et al.,
1984). Morrison and Heicklen (1980) did not observe any formation (<10%)
of HCOOH, and concluded that reaction pathways (2a) and (2e¢) occur with
approximately equal probability. More recently, Temps and Wagner (1984),
using a discharge flow technique with LMR detection to monitor both OH and
HCO radicals, have shown that reaction pathway (2a) accounts for 100£5% of
the overall reaction. Thus, at room temperature the OH radical reaction
with formaldehyde proceeds essentially entirely by the H-atom abstraction

process.
OH + HCHO -~ H20 + HCO

The resulting HCO radical reacts rapidly with O, to yield the HO, radical
(DeMore et al., 1987; Atkinson et al., 1989):

HCO + Oy + HO, + CO

3. Reaction with the NO, Radical
Kinetic data for the gas-phase reaction of the N03 radical with
HCHO have been obtained by Atkinson et al. (1984}, Cantrell et al. (1985)
and Hjorth et al. (1988). 811 of these studies, except for five
experiments in the study of Cantrell et al. (1985), were relative rate

measurements carried out at room temperature, with the rate constants for
the N03 radical reaction with HCHO being relative to the equilibrium
constant K for the reactions

N03 + N02 : N205



While the reported rate constants k3 range from (3.2-6.3) x 10'16 cm3
molecule™ ! s'1, at least part of these differences are due to the
differing values of K used. The available rate data are given in Table 2,
with the relative rate data from Atkinson et al. (1984), Cantrell et al.
(1985) and Hjorth et al. (1988) being re-evaluated by use of an
equilibrium constant of XK = 1.26 X 10-27 ¢11275/T op3 molecule™! (K =
[N205]/{N02][N03]]). The (re-evaluated) relative rate constant of
Atkinson et al. (1984) agrees very well with the rate constant obtained
from the absolute rate measurements of Cantrell et al. (1985), while the
re-evaluated rate constants derived from the relative rate data of

Cantrell et al. (1985) and Hjorth et al. (1988) are 30-50% higher.

Table 2. Room Temperature Rate Constants, k,, for the Gas-Phase Reaction
of the N03 Radical with Formaldehyée

1016 x kg at T
(cm3 molecule'1 5'1) (K) Reference
5.9 + 0,58 298 + 1 Atkinson et al. (1984)
5.6P
8.9 + 0.78 298 + 2 Cantrell et al. (1989)
7.9 £ 1.62 265 + 2 Hjorth et al. (1988)

%Relative ?o an equilibrium constant of K = 1.26 x 10-27 e11275/T o3
molecule™', derived from the experimental data of Burrows et al. (1985),
Tuazon et al. (1984), Kircher et al. (1984) and Cantrell et al. (1988).

bN03 radicals monitored directly, leading to an absolute rate measurement.



Both of the recent NASA (DeMore et al., 1987) and IUPAC (Atkinson et
al., 1989) data evaluations recommend a rate constant for the reaction of
the NOy radical with HCHO of 6.0 x 10-16 om3 molecule~! s~ at 298 K, with
an estimated uncertainty of x a factor of 1.5-2. Moreover, the room
temperature rate constant for the reaction of the N03 radical with CH3CH0
also determined by Atkinson et al. (1984), when re-evaluated as discussed
above, is in excellent agreement with the recent absolute rate constant of
Dlugokencky and Howard (1989). Accordingly, the rate constant for the
reaction of the NO3 radical with HCHO is taken to be k3 = b x 10'16 cm3
molecule'1 5'1 at 298 K. As for the OH radical reaction, this reaction

proceeds by H-atom abstraction

4. Reaction with the HO, Radical
The HO, radical has been shown to react with HCHO (Su et al.,
1979a,b; Niki et al., 1980a,b; Veyret et al., 1982, 1989; Barnes et al.,
1985), with this reaction proceeding by initial HO, radical addition to
form the HOOCH,0 species

This alkoxy radical then rapidly undergoes isomerization via a 5-membered
transition state to the peroxy radical HOCH206

Furthermore, the available data show that this sequence of reactions is
reversible, and hence that the reactions to be considered are

HO, + HCHO + [HOOCH20] * 00CH20H (4,-4)

2
The rate constants for the forward [reaction (4)] and back [reaction (-1)1]
reactions are given in Table 3. Clearly, the reported rate data span a
significant range, especially for reaction (-4). The most recent IUPAC
data evaluation (Atkinson et al., 1989) utilizes the rate constants of
Barnes et al. (1985) and Veyret et al. (1989) to recommend that
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9.7 x 10'15 e625/T cm3 moles::ule'1 s'1

~
=
1]

7.9 % 10’114 em3 molecule™ s=1 at 298 K

1]

and
2. x 1012 e-?OOO/T S-l

K_y

150 s~ at 298 K.

Since HO, radicals react rapidly with NO (DeMore et al., 1987;
Atkinson et al., 1989), and the other reaction of the HOCH,00 radical [in
addition to reaction (-4)] is expected to be with NO,

the magnitude of the rate constant for decomposition of the HOCH206
radical [reaction (-4)] means that the reaction of the HO, radical with
HCHO is of minor importance as a tropospheric loss process for HCHO.
5. Photolysis
The absorption cross sections and quantum yields for the photoly-
sis of HCHO have most recently been reviewed and evaluated by DeMore et
al. (1987) and Atkinson et al. (1989). The most recent IUPAC evaluation
(Atkinson et al., 1989) accepts the absorption cross-section data of
Moortgat et al. (1983). At the longer wavelengths, these absorption
cross-sections of Moortgat et al. (1983) are higher than those measured by
Bass et al. (1980), but are substantiated by recent unpublished data of
H. W. Biermann (University of California, Riverside). The recommended
absorption cross-sections and guantum yields (Atkinson et al., 1989) for
the processes
HCHO + hv -~ H + HCO (5a)

HCHO + hv » Hy + CO (5h)

are tabulated in Table 4.
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Table 4. Absorption Cross Sections, ¢, and Quantum Yields, ¢, for
the Photolysis of HCHO (from Atkinson et al., 1989)

A 1020 cgcmz)a

(nm) 298 K $5a 4s5p
270 0.95 0.38 0.43
280 1.80 0.57 0.32
290 2.93 0.73 0.24
300 4.06 0.78 0.21
310 4.60 0.78 0.22
320 4.15 0.62 0.38
330 3.21 0.27 0.66
340 2.22 0 0.56P
350 1.25 0 0.21P
360 0.18 0 0.03P

8The values are averaged for 10 nm intervals centered on
the indicated wavelength.

B760 torr total pressure of air.

C. Physical Loss Processes

In addition to the tropospheric chemical loss processes of HCHO
discussed above, HCHO is soluble in water and is hence incorporated into
cloud, rain and fog water, with subsequent aqueous phase reactions (see,
for example, Graedel and Weschler, 1981; Jacob and Hoffmann, 1983; Munger
et al., 1983, 1986; Adewuyi et al., 1984; Jacob, 1986; McElroy, 1986;
Graedel et al., 1986; Pandis and Seinfeld, 1989). 1In the aqueous phase,
formaldehyde is present as the glycol through the reaction

HCHO(aq) + Hy0(aq) : H,C(OH),(aqg)
with this equilibrium almost totally favoring the glycol {Jacob, 1986),

with [H2C(OH)2aq]/[HCHO(aq)] = 2.3 x% 103 at 298 K (Betterton and Hoffmann,
1988).
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Betterton and Hoffmann (1988) measured the apparent Henry's law

coefficient, H', where
' - {[HCHO(aq)] + [H,C(OH),(aq)]}/[HCHO(gas)]

as a function of temperature over the range 288-318 K. At 298 K the value
of H' determined was H* = (3.0 £ 0.7) x 103 mol atm™’.

For gas-phase organic compounds which are very efficiently rained out
(and for particles, which are also very efficiently rained out), the
washout ratio W, where W = concentration in rain/concentration in air (W =
RTH® with the definition of H® given above), is 10° to 108 (Eisenreich et
al., 1981; Atkinson, 1988). The value of H* of Betterton and Hoffmann
(1988) corresponds to a washout ratio of W = 7.3 x 104 at 298 K. With a
washout ratio of this magnitude, wet deposition of HCHO is expected to be
significant as a tropospheric loss process for HCHO during rain or fog
events.

Incorporation of HCHO into rain, cloud and fog water is followed by a
series of aqueous-phase reactions, including the oxidation of formaldehyde
to formic acid (see, for example, Jacob, 1986; Pandis and Seinfeld, 1989).

O .
OH(aq) + H,C(OH),(aq) -2 HCOOH(ag) + HO,(aq) + H 0

H2C(0H)2(aq) + 03(aq) + products
Furthermore, the complexation of sulfur [S{IV)] to hydroxymethanesulfonate
HS03™(ag) + HCHO(aq) - HOCH,S03™(ag)
5032‘(aq) + HCHO(aq) + HOCH,S03™(aq) + OH™(aq)
leads to stabilization of S(IV) in clouds under nighttime conditions. In
the presence of light, the reaction of aqueous OH radicals with hydroxy-

methanesulfonate

OH(aq) + HOCH.SO,"(aq) » HCHO(ag) + SO;~(aq) + H,0
2503 3 2



is expected to be reascnably rapid, leading to a lifetime of hydroxymeth-
anesulfonate in cloudwater of the order of 30 min (Jacob, 1986).

The solubility of HCHO in water leads to efficient wet deposition of
HCHO, with gas-phase HCHO being expected to be efficiently scavenged into
rain, cloud and fog water. This wet deposition process is, of course,
episodic, and will, on average, lead to a tropospheric lifetime of HCHO
somewhat shorter than calculated solely from the gas-phase loss processes

discussed above (see below}.

D. Tropospheric Lifetime of Formaldehyde

As discussed above, the tropospheric lifetime of HCHO is determined
from the loss rates of both the chemical and physical loss processes.
Based upon the rate constants given above for the gas-phase reactions of
HCHO with OH, N03 and HO, radicals and with 03, and measured or estimated
tropospheric concentrations of these reactive species of: OH radicals,
1.5 x 106 molecule cm’3 during daylight hours (Prinn et al., 1987); N03
radicals, 2.4 x 108 molecule em™3 during nighttime hours (Platt et al.,
1984; Atkinson et al., 1986); HO, radicals, ~107 molecule em™3 (Hard et
al.,- 1984; Zellner and Weibring, 1989); and 03, 7 x 10"} molecule em™3
throughout a 24-hr period (Logan, 1985), the tropospheric loss rates of
HCHO due to these chemical processes can be calculated. The calculated
lifetimes due to these individual reactions are then: reaction with the OH
radical, 1.6 days; reaction with the NOg radical, 160 days; reaction with
the HO, radical {neglecting the back-decomposition reaction of the HOOCH20
radical), ~15 days; and reaction with 03, »2 X 10t years. Since the back-
decomposition of the HOCH200 radical formed from the HO, radical reaction
significantly decreases the importance of the HO, radical reaction as an
HCHO loss process [by around two orders of magnitude for 2 x 1011 molecule
cm'3 (10 ppb) of NO], the above calculated lifetime of HCHO due to
reaction with the H02 radical reaction is likely to be of minor importance
as a tropospheric loss process.

Clearly, the daytime OH radical reaction is the dominant of these
chemical reaction loss processes. Photolysis of HCHO is estimated to lead
to a lifetime (due to photolysis) of 0.4 day in the lower troposphere for
a zenith angle of u40° (Atkinson, 1988; W. P. L. Carter, University of
California, Riverside, private communication, 1989). Thus, photolysis and
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reaction with the OH radical are the major tropospheric chemical loss
processes, with an overall lifetime of HCHO of ~0.3 days and with
photolysis being the dominant removal route. Wet deposition will, on
average, lead to a shorter tropospheric lifetime, but since wet deposition
is episodic in nature, the above lifetime calculated from OH radical
reaction and photolysis is best regarded as being the tropospheric
lifetime, with faster removal of HCHO from the lower troposphere during
rain and/or fog events. 1t must also be noted that photolysis and

reaction with the OH radieal only occur during daytime hours.

E. Atmospheric Formation of HCHO

Formaldehyde is formed in the troposphere from the tropospheric
degradation reactions of many organic compounds. In the "clean"
troposphere, HCHO is formed as a product of the atmospheric reactions of

methane:
OH « CHy + Hy0 + CHg
CH3 + + CH30

[involving rapid formation of CH302, followed by reactions of the methyl
peroxy radical with NO, NO,, HO, radicals and other organic peroxy
radicals to ultimately lead to formation of the methoxy (CH36 radiecal
(Ravishankara, 1988; Atkinson, 1990)], followed by the reaction

The formation of CH36 and/or éH3 radicals during the atmospheric
degradation reactions of organic compounds thus leads to the formation of

HCHO. Sources of 6H3 radicals include the important tropospheric

reactions of acetaldehyde
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CHaCHO + hv » éH3 + HCO

OH + CH,CHO » H,0 + CHACO
| °2

CH3C(0)00'

No—t» NO,,

CH3 + CO2
and the decomposition reactions of the more complex alkoxy radicals; for
example
(CH3)3CO » CH3COCH3 + CHg

Analogous decompositions of alkoxy radicals can also lead directly to
HCHO. For example, the B-hydroxyalkoxy radicals formed after OH radical
addition to the terminal alkenes (such as the CH3CHOHCH20' radical formed

from propene) decompose, at least in part, as follows:
CH3CHOHCH20 - CH3CHOH + HCHO

The simplest a-hydroxy radical, CH20H, which is formed from the
decomposition reactions of R1RZC(6)CH20H B-hydroxyalkoxy radicals, reacts
rapidly with O, to yield HCHO and the HO2 radical (Atkinson and Lloyd,
1984 ; DeMore et al., 1987; Atkinson et al., 1989)

In addition, the gas-phase reactions of 03 with alkenes containing
terminal =CH, groups lead to the formation of HCHO. For example, for the
reaction of 03 with ethene at room temperature and atmospheric pressure of

air (Atkinson and Lloyd, 1984; Atkinson and Carter, 1684 ; Atkinson, 1990)

03 + CHy=CHy » HCHO + 0.37 CHy00 + 0.12 HOp + 0.13 Hy
+ 0.19 CO2 + 0."“" CO + 0.‘4”’ H20

with similar HCHO yields for other 1-alkenes (Atkinson, 1990).
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Thus, in polluted airmasses characteristic of urban areas, the atmos-
pheric formation of HCHO from organic precursors occurs. Grosjean et al,
(1983) concluded from ambient measurements that in many cases the
atmospheric formation of HCHO dominates over direct emission of HCHO from
combustion sources. More recent ambient air monitoring data in the Los
Angeles air basin (Lawson et al. 1990) provide clear evidence for directly
emitted HCHO as well as HCHO formed in the atmosphere by photochemical
reactions of organic precursors. However, Lawson et al. {(1990) also
conclude that the atmospheric formation of HCHO dominates over direct
emissions of HCHO under conditions of high photochemical activity in the

Los Angeles air basin.

F. Ambient Atmospheric Concentrations of HCHO

The measured HCHO mixing ratio in the clean lower troposphere is
around 0.2 parts-per-billion (ppb) [Lowe et al., 1981; Lowe and Schmidt,
1983], with these measured mixing ratios being in good agreement with the
predicted values of 0.25-0.35 ppb presented by Logan et al. (1981) for the
lower troposphere in the northern hemisphere. Reported data for the
ambient concentrations of HCHO in California since 1980 are given in
Table 5. These particular data were all collected in the Los Angeles air
basin, and vary from <1 ppb up to 86 ppb, with the most recent concentra-
tions measured in the California Air Resources Board-funded intercompari-
son studies at Claremont and Glendora in the Los Angeles air basin being
significantly lower, <25 ppb (Grosjean, 1988; Lawson et al. 1990).
Further, as yet unpublished, ambient HCHO data are available from the 1987
ARB-funded South Coast Air Quality Study (SCAQS).

It may be expected that the ambient atmospheric HCHO levels encoun-
tered in the Los Angeles air basin are among the highest to be expected in
California, and hence the ambient atmospheric HCHO mixing ratios in
California range from a few tenths of a part-per-billion (for clean
tropospheric air) up to a few tens of ppb, with the actual values
depending to a large extent on the organic precursor emissions, the extent

of photochemical activity and the meteorological conditions pertaining.
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Table 5. Recent Measurements of Formaldehyde Concentrations in Ambient
Air in California

HCHO Mixing Measurement Date

Ratioc (ppb) and Place Reference
2-40 5-6/1980, Los Angeles Grosjean (1982)
3-u8 9-10/1980, Claremont Grosjean (1982)
10-41 7/1980, Riverside Singh et al. (1982)
18-60 7-10/1980, Los Angeles Grosjean et al. (1983)
65-70 7-8/1980, Burbank Grosjean et al. (1983)
53 7/1980, Pasadena Grosjean et al. (1983)
5 8/1980, Pacoima Grosjean et al. (1983)
33 8/1980, Newhall Grosjean et al. (1983)
38-47 9-10/1980, Rosemead Grosjean et al. (1983)
27 9/1980, Covina Grosjean et al. (1983)
42 9/1980, Cucamonga Grosjean et al. (1983)
59-66 10/1980, El1 Monte Grosjean et al. (1983)
34 10/1980, San Dimas Grosjean et al. (1983)
34 10/1980, Upland Grosjean et al. (1983)
06.7-35 10/1980, Azusa Grosjean et al. (1983)
0.5-40 10/1980, Lennox Grosjean et al. (1983)
L-86 9-11/1981, Los Angeles Grosjean and Fung (1984)
1.5-11 /1985, Claremont Grosjean (1988)
3-22 8/1986, Glendora Lawson et al. (1990)
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G. Conclusions

Formaldehyde is both directly emitted into the atmosphere as well as
being formed in the atmosphere from the photochemical degradation of more
methane and other non-methane organic compounds. HCHO is removed from the
lower troposphere mainly by photolysis and reaction with the OH radical,
and by wet deposition (leading to incorporation of formaldehyde into rain,
cloud and fog water). The estimated lifetime of HCHO due to photolysis
and OH radical reaction is ~0.3 days, with episodic wet deposition events
leading to shorter lifetimes. Reported ambient atmospheric HCHO concen-
trations in the Los Angeles air basin (expected to have among the higher
levels encountered in California) range up 86 ppb, with mixing ratios
measured during two recent intercomparison studies in 1985 and 1986 rang-
ing up to 25 ppb.
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A. Introduction

The atmospheric fates of chemical compounds emitted into the tropos-
phere are governed by a number of chemical and physical removal processes.
As the result of laboratory studies carried out over the past 20 years,
the potentially important gas-phase chemical reaction pathways which must

be considered includes:

e Photolysis during daylight hours.
Reaction with the hydroxyl (OH) radical during daylight hours.

Reaction with the hydroperoxyl (HO,) radical, mainly during
afternoon/evening hours.

Reaction with the nitrate (NO3) radical during nighttime hours.
Reaction with nitrogen dioxide (NO,).

Reaction with ozone (03).

Reaction with gaseous nitric acid (HNO3).

For the great majority of organic compounds, the most important of these
remain photolysis and reaction with hydroxyl (OH) and nitrate (N03)
radicals and with ozone (03).

However, for a limited number of organic compounds, one or more of
the other reactive chemical species in the troposphere may react with
organic compounds at significant rates. For example, HO, radicals react
with formaldehyde and, more slowly, with acetaldehyde and glyoxal; NO,
reacts with dialkenes; and gaseous HNO3 reacts with basic compounds such
as the amines.

Additionally, for chemical compounds present in the adsorbed phase,
photolysis and reaction with 03, N205, NO,, HNG3, HONO, H,SOy and hydrogen
peroxide (H,0,) may contribute to their degradation. For certain of these
reactions involving adsorbed organics, synergistic interactions may be of
importance.

The physical removal processes can be defined in a simplistic manner
as accretion (or coagulation) of particles, and dry and wet deposition of
gases and particles. Removal of gases and particles at ground surfaces
(including snow and other moist surfaces) is referred to as dry deposi-
tion, while removal of these species by precipitation is referred to as

wet deposition. Our current understanding of these processes, which are
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dynamic in nature, must be considered to be semi-quantitative at the
present time, and in general there is a lack of experimental data con-
cerning these processes for most organic compounds (Atkinson, 1988;
Bidleman, 1988).

The atmospherie lifetime t of a chemical is defined as the time to
decay to a concentration of 1/e (=0.368) of that initially present. Also,

LI LN ! (1)

T chemical ' physical

where 1 1 and a1 are the lifetimes of the chemical with

chemica Tphysic
respect to only chemical reaction and only physical loss processes,

respectively. These chemical and physical lifetimes are composites of

those for the individual loss processes, for example

! - ! +-‘—+T’ +% (2)
N03 03 )

Ychemical Tphotolysis ToH

where Tphotolysis’® TOH ™NO and 1ty are the lifetimes with respect to
photolysis, reaction with tho OH radical, reaction with the N03 radical,
and reaction with 03, respectively. In turn, these reactive loss
processes are determined by the rate constants, k., for reaction and the
ambient atmospheric concentrations, [X], of the reactive intermediates.

For example

For photolysis, the photolysis rate depends on the absorption cross
section (o), the photolysis quantum yield {(¢), and the radiation intensity
{J), all of which are wavelength dependent:
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~80C nm
1

: kphotolysis = °1¢x

Jl dx
~290 nm

“photolysis

In this report, the available literature data concerning the chemical
and physical removal processes for acetaldehyde (CH3CH0) are presented and
its resulting atmospheric lifetime is estimated. The atmospheric
chemistry of this compound is also discussed. Although acetaldehyde is
gaseous at room temperature, its dissolution into the aqueous phase and
subseguent aqueous-phase reactions must also be considered in addition to

the gas-phase processes.

B. Chemical Loss Processes

1. Reaction with QOzone

Rate constants for the gas-phase reaction of 03 with acetaldehyde
have been reported by Stedman and Niki (1973) and Atkinson et al.
(1981). Both studies were carried out at room temperature using
essentially the same experimental technique. However, the rate constants
obtained differ substantially, with Stedman and Niki (1973) reporting a
rate constant of ky = (3.4 : 0.5) % 1020 ¢cn3 molecule™! s™! at 298 £ 2 K
and Atkinson et al. (1981) an upper limit to the rate constant of kj <6 X
10'21 cm3 molecule"l s at 296 :+ 2 K. Since only upper limits to the

0'20 cm3 molecule'1

s~ have been
obtained for the aldehydes HCHO, (CHO), and CH3COCHO (Atkinson and Carter,

1984), Atkinson and Carter (1984) recommended that

room temperature rate constants of k <1

kq(CHyCHO) <1 % 10-20 cp3 molecule~! s~! at 298 K

2. Reaction with the Hydroxyl Radical

The available literature data concerning the kinetics and
mechanism of the reaction of the OH radical with HCHO have been reviewed
and evaluated by Atkinson (1989). The available kinetic data are given in
Table 1, and those of Morris et al. (1971), Morris and Niki (1971), Niki
et al. (1978), Atkinson and Pitts (1978), Kerr and Sheppard (1981), Semmes
et al. (1985) and Michael et al. (1985) are plotted in Arrhenius form
in Figure 1. Within the cited experimental errors, the room
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Figure 1. Arrhenius plot of rate constants for the reaction of the OH
radical with acetaldehyde. (x) Morris et al., (1971) and
Morris and Niki (1971); ( O ) Niki et al. (1978); ( @ )
Atkinson and Pitts (1978); ( @ ) Kerr and Sheppard, (1981);
( & ) Semmes et al., (1985); ( O ) Michael et al., (1985);
( ) recommendation (see text).
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temperature rate constants of Morris et al. (1971), Morris and Niki
(1971), Niki et al. (1978), Atkinson and Pitts (1978), Kerr and Sheppard
(1981), Semmes et al. (1985) and Michael et al. (1985} are in reascnably
good agreement, although those of Kerr and Sheppard (1981) and Semmes et
al. (1985) are somewhat lower than the remaining data. The Arrhenius plot
(Fig. 1) does not show any definitive evidence of curvature, and hence the
experimental data were fitted by Atkinson (1989) to the Arrhenius

-B/T

expression k = Ae A unit-weighted least-squares analysis of the rate

constants of Niki et al. (1978), Atkinson and Pitts (1978) and Michael et
al. (1985) leads to the recommendation of

+0.76 -1

} -12 (311 = ¥2)/T 3
k,(CHiCHO) = (5.55_"¢e) x 107 e

cm molecule-‘l 5

over the temperature range 244-528 K, where the indicated errors are two

least-squares standard deviations, and

1 3 -1

k,(CH,CHO) = 1.58 x 107" cm molecule” ' s

3

at 298 K, with an estimated overall uncertainty at 298 K of £20%.

Using the three-parameter expression k = CTze'D/T, a unit-weighted

least-squares analysis of these same kinetic data (Niki et al., 1978;
Atkinson and Pitts, 1978; Michael et al., 1985) yields

+1.07) . 10-18 2 e(999 * 54)/T 3 1 -1

kz(CH3CHO) = (6.03_0'92 em® molecule ' s

over the temperature range 2U4-528 K, where the indicated errors are again

the two least-squares standard deviations, and

1 -1

3 molecule” s

) -1
ky(CH,CHO) = 1.53 x 107" cm



at 298 K. Over a wider temperature range extending to temperatures
>600 K, curvature in the Arrhenius plot is expected, and the above three-
parameter expression should probably then be used.

The recent rate constants of Semmes et al. (1985) were not included
in the evaluation of this rate constant since they reported difficulties
in adegquately determining the acetaldehyde concentrations in their
reactant mixtures.

While definite product and mechanistic data are not available for the
OH radical reaction with acetaldehyde, the observation of peroxyacetyl
nitrate (PAN) from the reaction of the OH radical with CH3CH0 in air in
the presence of NO, (Atkinson and Lloyd, 1984) shows that at room
temperature this reaction must proceed via overall H-atom abstraction from
the -CHO group.

OH + CH.CHO » H.0 + CH.CO

3 2 3
. M
CH3CO + 02 -~ CH3C(O)00
CHBC(O)OO' + NO2 pe CH3C(0)00N02
(PAN)

This is consistent with the observation that the room temperature rate
constants for the >C, aldehydes are reasonably similar, increasing only
slightly with the length of the alkyl side chain (Atkinson, 1989) and
showing that the alkyl substituent group has only a minimal effect on the
OH radical rate constant. As for formaldehyde, the observed negative
temperature dependence suggests that, although the reaction proceeds by
overall H-atom abstraction, the reaction involves initial OH radical
addition followed by rapid decomposition of the adduct to the observed
products. H-atom abstraction from the -CH3 group is expected to be of
minimal importance at room temperature, (Atkinson, 1987).
3. Reaction with the NO3 Radical

Kinetic data for the gas-phase reaction of the N03 radical with
CH3CHO have been obtained by Morris and Niki (1974), Atkinson et al.
(1984), Cantrell et al. (1986) and Dlugokencky and Howard (1989). The
studies of Morris and Niki (1974), Atkinson et al. (1984) and Cantrell et
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al. (1986) were relative rate measurements carried out at room tempera-
ture, with the rate constants for the N03 radical reaction with CHBCHO
being relative to the equilibrium constant K for the reactions
M

N03 + N02 b4 N205
The study of Dlugokencky and Howard (1989) was an absolute measurement
carried out using a flow system with laser-induced fluorescence detection
of the NO3 radical. The available rate data are given in Table 2, with
the relative rate data from Morris and Niki (1974#), Atkinson et al. (1984)
and Cantrell et al. (1986) being re-evaluated by use of an equilibrium
constant of K = 1.26 x 10727 e11275/T op3 molecule™! (kK = [N505]1/
([NO,][NO3I]) .

These re-evaluated room temperature rate constants of Morris and Niki
(1974), Atkinson et al. (1984) and Cantrell et al. (1986) are in good
agreement and are in excellent agreement with the absolute room tempera-
ture rate constant determined by Dlugokencky and Howard (1989). Since the
room temperature rate constants derived from the relative rate studies
(Morris and Niki, 1974; Atkinson et al., 198Y4; Cantrell et al., 1986) have
significant uncertainties associated with them because of the
uncertainties in the equilibrium constant K for the NO3 + NO; ¢ Ny0g reac-
tions, the absolute data of Dlugokencky and Howard (1989) are used to

obtain the recommendation of

k3(CH3CHO) = 1.4 x 10712 e~ 1860/T 13 porecule=! s=1

over the temperature range 264 - 274 K, and
k3(CHCHO) = 2.7 x 107'5 cm3 molecule~! s~! at 298 K.
The recent IUPAC evaluation (Atkinson et al., 1989) recommends an
identical rate expression.
As is the case for the OH radical reaction, this NO3 radical reaction

proceeds by H atom abstraction from the -CHO group (Cantrell et al., 1986)

N03 + CH3CH0 + HN03 + CH3C0
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Table 2. Room Temperature Rate Constants, k,, for the Gas-Phase Reaction
of the N03 Radical with Acetaldehyge

101 x kg at T
(cm3 molecule"1 5'1) (K) Reference
2.54 + 0.642 300 Morris and Niki (1974)
2.4 + 0,528 208 + 1 Atkinson et al. (1984)
3.06 + 0.592 299 * 1 Cantrell et al. (1986)
1.26 = 0.15 264 Dlugokencky and Howard (1989)°
2.74 + 0.33 298
5.27 + 0.63 332
10.0 * 1.2 374

3Relative to an equilibrium constant of K = 1.26 x 10~27 11275/T op3
molecule™ ', which is derived from the experimental data of Tuazon et al.
(1984), Kircher et al. (1984), Burrows et al. (1985) and Cantrell et al.
(1988).

o3

NO., radicals monitored directly by laser jpdu fluore ce, with a
temperatuqe d?pendence of k3 = 1.44 x 10-*58-??360 * 508?7? c$3
molecule™ ' s” .

4, Reaction with the HO, Radical

While the gas-phase reaction of the HO, radical with formaldehyde
is well documented (see, for example, Atkinson et al., 1989), less defini-
tive data are available concerning the rate constant and reaction products
of the analogous HO, radical reaction with CH3CH0. Moortgat and McQuigg
(1984) used Fourier transform infrared absorption spectroscopy to study
the photooxidation of CH3CHO in air, and ascribed the formation of CH3COOH
to the reaction of the HO, radical with CH3CHO. The initially formed
CH3CH(00H)0 radical was expected to rapidly isomerize (Moortgat and
McQuigg, 1984),

HO, + CHyCHO » [CH3CH(00H)6] N CH3CH(06)0H (4,-4)

followed by
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2 CH3CH(00)OH = 2 CHaCH(G)OH + 0,
CHaCH(O)OH + 0, + CH3COOH + HO,

Based upon the time-concentration profiles of the reactants and products
and unpublished rate data of Barnes and coworkers for a series of a-
dicarbonyls, Moortgat and McQuigg (198l4) derived a rate constant for the
reaction of HO, with CHyCHO at 298 K of ky = 1 X 1015 cm3 molecule~! s~1,
and a rate constant for the unimolecular decomposition of the CH3CH(00H)0
radical back to reactants of k_y = 1.5 s~ Moortgat and McQuigg (1984)
also cited an unpublished rate constant of Barnes and coworkers of kj = 1
x 10-17 cm3 molecule™! s~ for the HO, radical reaction with CH4CHO, based
upon the decay rate of HO, in the presence of CH3CH0. However,
reformation of the reactants from the initially formed CH3CH(00H)O radical
[reaction (-4)] would lead to this measured rate constant being a lower
limit to that for the initial addition reaction.

Moortgat and coworkers (Moortgat et al., 1987) have carried out
further studies of the photolysis of CH3CH0, and derived rate constants at
298 K of k = 1 x 10715 em3 molecule™! s~ and k_y = 100 s~1. With these
rate constants, the reaction of the HO, radical with CH3CHO is not
expected to be a significant loss process for CH3CH0 under tropospheric
conditions (see Section D below).

5. Photolysis

The absorption cross-sections and quantum yields for the photoly-
sis of CH3CHO have most recently been reviewed and evaluated by the IUPAC
data panel (Atkinson et al., 1989). This evaluation accepts the earlier
evaluation of Baulch et al. (1984). The recommended absorption cross-
sections were obtained from the experimental measurements of Calvert and
Pitts (1966) and Weaver et al. (1976/77). The recommended quantum yields

for the processes,
CH3CHO + hv » CHy + CO (5a)

CHyCHO + hv = éH3 + HCO (5b)
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derived from the studies of Horowitz and Calvert (1982), Horowitz et al.
(1982) and Meyrahn et al. (1982), are given in Table 3 together with the
recommended absorption cross-sections. At wavelengths >290 nm the other
possible photodissociation processes

CH3CHO + hv + H + CH3C0 (5¢)

CH3CHO + hv + Hy + CHCO (5d)

are of negligible importance (Atkinson and Lloyd, 1984; Baulch et al.,
1984) .

cC. Physical Loss Processes

Acetaldehyde can also dissolve in aqueous solutions, and hence the
possibility that CH3CH0 is incorporated into cloud, rain and fog water,
with subsequent aqueous-phase reactions, needs to be considered. As
discussed by Betterton and Hoffmann (1988), CH3CHO can exist in aqueous
solution as the hydrated, gem-diol, form

Betterton and Hoffmann (1988) measured the apparent Henry's law coeffi-

*
cient, H , where
H' = {[CHyCHO(aq)] + [CH3CH(OH),(aq)1]/[CHyCHO(gas) ]

as a function of temperature over the range 278-308 K. At 298 K the value
of H' determined was H* = 11.4 + 0.4 mol atm™'. The degree of hydration
for CH3CH0 is fairly small, with (Betterton and Hoffwann, 1988) Khyd =
[CH3CH(0H)2(aq)]/[CH3CH0(aq)] = 1.4 at 298 K (which can be contrasted to
formaldehyde, for which Khyd = 2.3x 103 at 298 K).

For gas-phase organic compounds which are very efficiently rained out
(and for particles, which are also very efficiently rained out), the
washout ratio W, where W = concentration in rain/concentration in air (W=
RTH' with the definition of H' given above), is 10° to 106 (Eisenreich et

al., 1981; Atkinson, 1988). The value of H" of Betterton and Hoffmann
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Table 3. Absorption Cross Sections, o, and Quantum Yields ¢ (for
1 atm air) for the Photolysis of CH3CH0 (from Atkinson
et al., 1989)

Wavelength A 10205 (cm?)

{nm) a st

260
270
280
290
295
300
305
315
320
325
330
335
340 0.15
345 0.08

+

o
o
o

[sNoRaReNoleNeNe N i)

QO 2 =W EFLMMUVWLWW

COm—MNNWFEIFEEEFWN
O FO-1~1W MW OO —=

(1988) corresponds to a washout ratio of W = 280 at 298 K, in good agree-
ment with the value of 370 reported earlier by Buttery et al. (1969).
With a washout ratio of this magnitude, wet deposition of CH3CH0 is
expected to be of minor significance as a tropospheric loss process for
CH3CH0, especially compared to the gas-phase processes.

D. Tropospheric Lifetime and Fate of Acetaldehyde

As discussed above, the tropospheric lifetime of CH3CHO is determined
from the loss rates of both the chemical and physical loss processes.
Based upon the rate constants given above for the gas-phase reactions of
CH3CH0 with OH, N03 and HO, radicals and with 03, and measured or
estimated tropospheric concentrations of these reactive species of: OH
radicals, 1.5 x 106 molecule em'3 during daylight hours (Prinn et al.,
1987); NO3 radicals, 2.4 x 108 molecule em™3 during nighttime hours {(Platt
et al., 1984; Atkinson et al., 1986); HO, radicals, :107 molecule cm™3 for
conditions applicable to polluted areas (Hard et al., 1984; Zellner and
Weibring, 1989); and 03, 7 x 101" molecule em™3 throughout a 2lU-hr period
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(Logan, 1985), the tropospheric loss rates of CH3CH0 due to these chemical
processes can be calculated. The calculated lifetimes due to these
individual reactions are then: reaction with the OH radical, 12 hours
(i.e., 1 day since the OH radical reaction occurs only during daylight);
reaction with the N03 radical, 35 days; reaction with the HO, radical
(neglecting the back-decomposition reaction of the CH3CH(00H)O radical),
~3 years; and reaction with 03, >4.5 years. Since the back-decomposition
of the CH3CH(00H)0 radical formed from the HO, radical reaction signifi-
cantly decreases the importance of the HO, radical reaction as a CH3CHO
loss process, the above calculated lifetimes of CH3CH0 due to reaction
with the HO, radical and with 03 show that these reactions will be totally
negligible as a tropospheric loss process for CH3CHO. Clearly, the
daytime OH radical reaction is the dominant of these chemical loss
processes.

Photolysis of CH3CH0 is estimated to lead to a lifetime {(due to
photolysis) of ~6.6 day {(~BO hrs) in the lower troposphere for a zenith
angle of 0° (Horowitz and Calvert, 1982; Meyrahn et al., 1982). Thus,
reaction with the OH radical and, to a lesser extent, photolysis are the
ma jor tropospheric chemical loss processes, with an overall lifetime of
CH3CHO of ~12 hours (or 1 day) and with the OH radical reaction being the
dominant removal route. Wet deposition will, on average, lead to a
shorter tropospheric lifetime, but since wet deposition is episodie in
nature, and expected to be of minor importance due to the relatively low
washout ratio, the above lifetime calculated from the CH radical reaction
can be regarded as being the tropospheric lifetime, with a somewhat faster
removal of CH3CHO from the lower troposphere during rain and/or fog events
(see Grosjean and Wright, 1983). It must also be noted that reaction with
the OH radical and photolysis only occur during daytime hours.

The reactions subsequent to the OH radical reaction are as discussed

below. The initial H atom abstraction reaction
OH + CHgCHO + Hy0 + CH3éo

forms the acetyl radical, which rapidly (and exclusively under tropo-
spheric conditions) adds 0, to yield the acetyl peroxy radical (Atkinson,
1990).



M
CH3CO + 05 » CH3C(O)OO

The acetyl peroxy radical reacts with NO and NO,

CH3C(O)OO' + NO » CH3C(0)0 + N02
l fast
CH3 + CO2
M
CH3C(0)00 + NO2 T CH3C(0)00N02
(PAN)

with rate constants of ~5.1 x 10-12 ¢200/T 3 polecule™! s {1.0 x 10~
cm3 molecule™! s~! at 298 K) and ~7.2 x 1012 cm3 molecule™! s~ (at 298 X
and 760 Torr total pressure of air), respectively (Atkinson, 1990). Addi-
tionally, in the "clean" troposphere, the reactions of the CH3C(0)OO'
radical with HO, and CH302 radicals may be important,

HO, + CH3C(0)00' + CH,C(0)O0H + O, {a)

+ CHyCOOH + Oy (b)

CH,05 + CHiC(0)00" » CH30"+ CHC(0)0" + O, (c)
l fast
CHy + CO,

+ HCHO + CH,COOH + 0, (d)

with k,/k, ~3 (Niki et al., 1985) and kg ~ kg = 5.5 x 10712 cu3 molecule™
s=! at 298 K (Moortgat et al., 1989). The 5H3 radical produced in
reaction pathuay (c¢) and from the reaction of the CH3C(0)00 radical with
NO ultimately forms HCHO (Ravishankara, 1988; Atkinson, 1990) by the
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following series of reactions

CH3 + O2 + CH3O2

CH3Oé + NO » CH,O" + NO2

3

CH30é + HO2 + CH3OOH + O2

CH3OOH + hv » CH3O' + OH
OH + CH300H +* HZO + CH3Oé
CH

30 + 02 » HCHO + HO,

Peroxyacetyl nitrate (PAN) acts as a temporary reservoir of the
CH3C(0)06 radical, with a lifetime with respect to thermal decomposition
of ~33 min at 298 K and 760 Torr total pressure of air (Atkinson et al.,
1989; Atkinson, 1990).

M

CH3C(O)00N0 - CH3C(0)00' + NO

2 2

As noted above, PAN formation occurs by the reaction of the acetyl peroxy
radical with NO,, and the organic precursor to PAN formation is the acetyl
radical, CH3éO. The CH3é0 radical is formed from the OH and N03 radical
reactions with acetaldehyde,

OH
+ CH,CHO + CH
3

. H.0
3 500 + { 2
NO

HNO3

from the photolysis of a-dicarbonyls such as methylglyoxal and biacetyl
[which are formed during the NO,-air photooxidations of toluene, the
xylenes and the trimethylbenzenes (Atkinson, 1990)],

CH.COCHO + hv - CH,CO + HCO

3 3

CH3C0COCH3 + hy = 2 CH3CO
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and from the decomposition reactions of certain g-carboxyalkoxy radicals
of the structure CH3C0C(0')R1R2. These CH3COC(0')R1R2 radicals are formed
subsequent to OH radical reaction with 2-ketones and certain «,B-

unsaturated ketones; for example

3 H20 + CHSCOCHCH3

| >

00"
CH3CO&HCH

OH + CH3COCH2CH

3

o

o

|
CH3COCHCH3

|

CH3CO + CH3CH0

(which also forms acetaldehyde)

OH + CHyCOCH=CH, cn3coéHCH20H and cu3cocn(ou)éu2
I 02 05

00 No —f~ o,
CH3COCHCH20H i o

2
NO NO2

HCHO + CH.,COCHO + HO
o 3 2

|
CHBCOCHCH20H

l

CH,CO + HOCH2CH0

3

F-18



Thus, acetaldehyde photooxidation is not the only route to PAN formation,
although it is expected from the ambient air data of Grosjean {1982) and
Grosjean et al. (1983) that the major precursors to PAN formation will be
acetaldehyde and the methyl-substituted benzenes.

E. Atmospheric Formation of Acetaldehyde

Acetaldenyde is formed in the troposphere from the tropospherie
degradation reactions of many organic compounds. In the "clean" tropos-
phere, CH3CHO is formed as a product of the atmospheric reactions of

ethane
OH + C2H6 - H20 + C2HS'
CQH5 + =+ CH3CH20

{involving rapid formation of CH3CH20é, followed by reactions of the ethyl
peroxy radical with NO, NO5, HO, radicals and other organic peroxy
radicals to ultimately lead to the formation of the ethoxy (CH3CH20')
radical (Atkinson, 1990)], followed by the reaction

CH3CHn0" + 0p + CHyCHO + HO,

The steady state concentration of acetaldehyde is then approximately given
by

k

OH + C2H6

Koy * CH,CHO

[CH3CHO] = [C2H6]

and for a northern hemisphere ethane mixing ratio of ~1 ppb (Blake and
Rowland, 1986; Singh et al., 1988) the acetaldehyde mixing ratio will be
~0.02 ppb.

The formation of CH3CH20' and/or CzHé radicals during the atmospheric
degradation reactions of organic compounds thus lead to the formation of
CH3CHO. Sources of CzHé radicals include the reaction of propionaldehyde
with the OH radiecal
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0 + CH,CH.CO

OH + CH,CH,CHO - H 3CH,

372 2
0
| 2

CH CH2C(0)00'

3

NO —L-v N02

02H5 + CO2
and the decomposition reactions of the more complex alkoxy radicals; for

example, of the 2-butoxy radical formed from the OH radical-initiated

reaction with n-butane

0

|
CH,CHCH,CH, - CH

3 oCHg CHO + CZH

3 5

This and analogous alkoxy radical decompositions lead directly to
CH3CH0. The B-hydroxyalkoxy radicals formed subsequent to OH radical
addition to propene and certain 2-alkenes decompose to form CH3CH0 or the
a~hydroxy radical CH3CH0H (Atkinson and Lloyd, 1984; Atkinson, 1990).

o

| .
CH CHCHZOH + CH,CHO + CHZOH

3 3

CHBCHOHCHEO + CH3CH0H + HCHO

The a-hydroxy radical CH3éH0H forms acetaldehyde by reaction with 0,
(Atkinson and Lloyd, 1984; Atkinson, 1990)

CH3CHOH + 0y + CH30H0 + HO,
In addition, the gas-phase reactions of 03 with propene and certain
2-alkenes leads to the formation of CH3CHO. For example, the reaction of

03 with propene at room temperature and atmospheric pressure is expected
to lead to the products (Atkinson, 1990):
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O + CH3CH=CHy » 0.50 CHCHO + 0.50 HCHO + 0.185 CH00 + 0.09 CH3CHOO
+ 0.25 HO, + 0.15 OH + 0.03 CHz0 + 0.31 CHy0; + 0.07 CHy
+ 0.065 Hy + 0.0325 CO5 + 0.40 CO + 0.22 H0

Thus, the atmospheric formation of CH3CHO from organic precursors
occurs in polluted areas characteristic of urban areas, and in many cases
this atmospheric formation of CH3CH0 dominates over direct emission of

CH3CH0 from combustion sources (Grosjean et al., 1983).

F. Ambient Atmospheric Concentrations of CH,CHO

The CH3CH0 mixing ratio in the clean lower troposphere is expected to
be low, and using a CyHg mixing ratio of ~1 ppb the CH3CH0 mixing ratio is
estimated to be Z0.02 ppb (see Section E above). Reported data for the
ambient concentrations of CH3CH0 in California since 1980 are given in
Table 4. These data were all collected in the Los Angeles air basin, and
vary from ~0.1 ppb up to ~50 ppb, with the most recent concentrations
measured in the California Air Resources Board-funded intercomparison
study at Claremont in the Los Angeles air basin being significantly lower
at <10 ppb. Further, as yet unpublished, ambient CH3CH0 data are
available from the 1987 ARB-funded South Coast Air Quality Study (SCAQS).

It may be expected that the ambient atmospheric CH3CH0 levels encoun-
tered in the Los Angeles air basin are among the highest to be encountered
in California, and hence the ambient atmospheric CH3CHO mixing ratios in
California range from <0.1 ppb (for clean tropospheric air) up to a few
tens of ppb, wWith the actual values depending on the organic precursor
emissions, the extent of photochemical activity and the meteorological

conditions pertaining.
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Table 4, Recent Measurements of Acetaldehyde Concentrations in Ambient
Air in California

Measurement Date

CH,CHO Mixing
R

atio (ppb) and Place Reference
0-32 5-6/1980, Los Angeles Grosjean (1982)
3-35 9-10/1980, Claremont Grosjean (1982)
13-38 7-10/1980, Los Angeles Grosjean et al. (1983)
B-16 7-8/1980, Burbank Grosjean et al. (1983)
13 7/1980, Pasadena Grosjean et al. (1983)
3 871980, Pacoima Grosjean et al. (1983)
8 8/1980, Newhall Gros jean et al. (1983)
16-41 9-10/1980, Rosemead Grosjean et al. (1983)
56 9/1980, Covina Grosjean et al. (1983)
38 9/1980, Cucamonga Grosjean et al, (1983)
25-34 10/1980, E1 Monte Grosjean et al. (1983)
15 10/1980, San Dimas Grosjean et al. (1983)
19 10/1980, Upland Grosjean et al. (1983)
1.5-10 10/1980, Azusa Grosjean et al. (1983)
0.1-2.7 10/1980, Lennox Grosjean et al. (1983)
2-39 9-11/1981, Los Angeles Grosjean and Fung (1984)
1.0-9.0 9/1985, Claremont Grosjean (1988)
G. Conclusions

Acetaldehyde is both directly emitted into the atmosphere as well as
being formed in the atmosphere from the photochemical degradation of non-
methane organic compounds. CH3CH0 is removed from the lower troposphere
by reaction with the OH radical and, to a lesser extent, by photolysis,
with wet deposition (leading to incorporation of acetaldehyde into rain,
cloud and fog water) being expected to be of minor importance. The
estimated lifetime of CH3CH0 due to OH radical reaction is ~1 day with
this OH radical reaction leading to the formation of (together with other
products) peroxyacetyl nitrate (PAN). Reported ambient atmospheric HCHO
concentrations in the Los Angeles air basin (expected to have among the

higher levels encountered in California) range up ~50 ppb.
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A. Introduction

The atmospheric fates of chemical compounds emitted into the tropos-
phere are governed by a number of chemical and physical removal processes.
As the result of laboratory studies carried out over the past 20 years,
the potentially important gas-phase chemical reaction pathways which must

be considered includes:

e Photolysis during daylight hours.
e Reaction with the hydroxyl (OH) radical during daylight hours.

Reaction with the hydroperoxyl (HO,)} radical, mainly during
afternoon/evening hours.

Reaction with the nitrate (N03) radical during nighttime hours.
Reaction with nitrogen dioxide (NO,).
Reaction with ozone (03).

Reaction with gaseous nitric acid (HN03).

For the great majority of organic compounds, the most important of these
remain photolysis and reaction with hydroxyl (OH) and nitrate (NO3)
radicals and with ozone (03).

However, for a limited number of organiec compounds, one or more of
the other reactive chemical species in the troposphere may react with
organic compounds at significant rates. For example, HO, radicals react
with formaldehyde and, more slowly, with acetaldehyde and glyoxal; NO,
reacts with dialkenes; and gaseous HNO3 reacts with basic compounds such
as the amines.

Additionally, for chemical compounds present in the adsorbed phase,
photolysis and reaction with 03, N205, NO,, HNO3, HONO, H,S50y and hydrogen
peroxide (H202) may contribute to their degradation. For certain of these
reactions involving adsorbed organies, synergistic interactions may be of
importance.

The physical removal processes can be defined in a simplistic manner
as accretion (or coagulation) of particles, and dry and wet deposition of
gases and particles. Removal of gases and particles at ground surfaces
(including snow and other moist surfaces) is referred to as dry deposi-
tion, while removal of these species by precipitation is referred to as

wet deposition. Our current understanding of these processes, which are
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dynamic in nature, must be considered to be semi-quantitative at the
present time, and in general there is a lack of experimental data con-
cerning these processes for most organic compounds (Atkinson, 1988;
Bidleman, 1988).

The atmospheric lifetime 1 of a chemical is defined as the time to
decay to a concentration of 1/e (=0.368) of that initially present. Also,

1. LIS, 1 (1)
T

' chemical ' physical

where 1 Tphysical are the lifetimes of the chemical with

chemical 2nd
respect to only chemical reaction and only physical loss processes,

respectively. These chemical and physical lifetimes are composites of

those for the individual loss processes, for example

1 1 1 1 1
= + — 4 +— . . . (2)
Tchemical Tphotolysis TOH TNO3 T03

where Tphotolysis' TOH' TNO and 15 are the lifetimes with respect to
photolysis, reaction with tho OH radical, reaction with the NO3 radical,
and reaction with 03, respectively. In turn, these reactive 1loss
processes are determined by the rate constants, k., for reaction and the
ambient atmospheric concentrations, [X], of the reactive intermediates.

For example

! -
= kpy[OH]

ToH
For photolysis, the photolysis rate depends on the absorption cross

section (o), the photolysis quantum yield (¢), and the radiation intensity
(J), all of which are wavelength dependent:
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~B00O nm

= k . = o.¢.J. da
photolysis ~290 nm ATA A

1
Tphotolysis

In this report, the available literature data concerning the chemical
and physical removal processes for styrene (C6HSCH=CH2) are presented and
its resulting atmospheric lifetime is estimated. The atmospheric
chemistry of this compound is also discussed. Styrene is gaseous at room
temperature, and hence this report focusses on the potential gas-phase

atmospheric loss processes.

B. Chemical Loss Processes

1. Reaction with Ozone

The rate constants determined for the gas-phase reaction of 03
with styrene are given in Table 1. All three rate constant determinations
have been carried out at room temperature, and the measured rate constants
are in reasonable agreement. In particular, the two most recent absolute
rate constant determinations of Atkinson et al. (1982, 1989) are in good
agreement, and a weighted average of these two rate constants leads to the

recommended rate constant of
ky = 1.8 x 10717 cm3 molecule™ | s~

at 298 K, with an estimated overall uncertainty of +40%.

The magnitude of this rate constant, when compared to the literature
rate constants at room temperature for the gas-phase reactions of 03 with
benzene and the methyl-substituted benzenes of k <1020 cp3 molecule'1 s
(Atkinson and Carter, 1984}, shows that the reaction of 03 Wwith styrene
proceeds by initial addition of 03 to the -CH=CH, substituent group.
Product studies using in situ long pathlength Fourier transform infrared
(FT-IR) absorption spectroscopy to monitor the reactants and products
(Atkinson et al., 1989) showed that the major products of the gas-phase
reaction of 03 with styrene in one atmosphere of air were formaldehyde
(HCHO) and benzaldehyde (C6H5CH0), together with a minor amount of formic
acid (HCOOH). The observed product yields were: HCHO and C6H5CHO, each
~40%; and HCOOH, -~1-2%. Analyses of reaction samples from analogous
experiments by gas chromatography (GC) and combined gas chromatography-
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Table 1. Rate Constants, k, for the Gas-Phase Reaction of 03 with Styrene

1017 x K, (cm3 at T
molecule™! s™') (K) Technique? Reference
3.0 303 F-CA Bufalini and Altshuller (1965)
2.16 = 0.46 296 + 2 S-CL Atkinson et al. (1982)
1.71 =+ 0.18 296 = 2 S-CL Atkinson et al. (1989)

aSymbols: F, flow system; S, static system; CA, chemical analysis by wet
chemical methods; CL, ozone monitored by chemiluminescence.

mass spectrometry (GC-MS) yielded the same major products as identified
from the FT-IR data.
The available kinetic and product data suggest that the reaction then

proceeds by

0
il
O3 + C6H5CH=CH2 E— CsHSCH———CH2
. . ¥ N
C6H5CH0 + [CH200] [CGHSCHOO] + HCHO

where [ 1% denotes an initially energy-rich biradical species. The
subsequent reactions of the [(':HZO()]t radical formed from the 03 + ethene
reaction have been discussed in detail previously (Atkinson and Lloyd,
1984; Atkinson and Carter, 1984; Atkinson, 1990). At atmospheric pressure

of air and room temperature
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[CH2OO] CH200 ( 37%)

co + H20 (~44%)

2H + CO2 { ~6%)

M

o 002 + H2 {~13%)

Wwith the thermalized éH206 piradical being expected to react with water
vapor to form HCOOH under atmospheric conditions. The reactions of the
[C6H5CH06]* radical are not presently known. The product data obtained by
Atkinson et al. (1989) are reasonably consistent with the above reaction
scheme, providing that the [CBHSCHOOJ* biradical does not produce C6H5CHO
in high yield.

2. Reaction with the OH Radical

Rate constants for the gas-phase reactions of the OH radical with
styrene have been determined at room temperature by Bignozzi et al. (19871)
and Atkinson and Aschmann (1988) using relative rate techniques. The rate
constants from these two studies, as reevaluated by Atkinson {(1989) to be
consistent with the most recent data for the rate constants for the refer-
ence reactions, are given in Table 2. The agreement is excellent, and a
rate constant of

ky = 5.8 x 10~ cm3 mc:lec:ule"'I s~

was recommended by Atkinson (1989). Analogous to the 03 reaction, the
magnitude of the rate constant k, Suggests that the reaction of the OH
radical with styrene proceeds by initial OH radical addition to the
substituent -CH=CH, group

OH + CoH.CH=CH-, + CzH=CHCH-OH and CgHzCHOHCH
6''5 2 675 2 65 2

The products of the OH radical reaction with styrene in air have been
investigated by Bignozzi et al. (1981) and Atkinson et al. (1989).
Bignozzi et al. (1981) observed benzaldehyde as the major product, and
derived a formation yield of benzaldehyde of 1.03 ¢ 0.15 from the time-
concentration profiles of styrene and benzaldehyde in an irradiated NO, -
styrene - air mixture. More recently, Atkinson et al. (1989) have used

long pathlength FT-IR absorption spectroscopy to monitor the reactants and
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Table 2. Literature Rate Constants k2 for the Gas-Phase Reaction of the
OH Radical with Styrene

1017 « ko (cm3 at T
molecule™! s ) (X) Technique? Reference

1+
ny

52

I+
ut

298 RR [relative to Bignozzi et al. (1981}
k(OH + 2,2,4-
trimethylpeg?a?g)

= 3.68 x 10
58.1 + 1.5 296

+
no

RR [relative to Atkinson and Aschmann
k(OH + 2-methyl- (1988}
1,3-butadiene) =

1.01 x 10'?8]%

asymbols: RR, relative rate.
Recommendations of Atkinson (1989).

products in irradiated C2H5ONO - NO - styrene - air mixtures, and observed
HCHO and C6H5CHO as the major products, with formation yields of 0.90 and
~0.75, respectively. A further product was observed by Atkinson et al.
(1989) which contained a nitrate (-ONO,) group. Heuss and Glasson (1968)
also observed HCHO and C6H50H0 as the major products of the NO, - air
photooxidation of styrene.

The products observed in these studies are those expected to arise
from the reactions subsequent to the initial OH radical addition to the
-CH=CH, substituent group. Thus, in the presence of NO, and neglecting
the formation of organic nitrates from the reaction of the peroxy radicals
with NO,

. M
CGH CHCHZOH + 02 + 06H CHCH,,OH

5 5 2
00° o

| |
CBHSCHCHon + NO » CGHSCHCHZOH + NO2
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0

| .
C6H5CHCH20H -+ C6H5CH0 + CH,OH

2

CH20H + 02 + HCHO + HO2

and M

C6H5CHOHCH2 + 02 + C6H5CH0HCH20O

C6H CHOHCH200' + NO - C6H

5 CHOHCH20' + NO

5 2

CGHSCHOHCHZO + CGHSCHOH + HCHO

CBHSCHOH + 02 + C6H5CH0 + HO2

3. Reaction with the NO, Radical
To date there has only been one determination of the rate

constant for the gas-phase reaction of the NO3 radical with styrene.
Using a relative rate technique, Atkinson and Aschmann (1988) determined
the rate constant kg relative to the rate constant for trans-2-butene at
296 + 2 K and, using a rate constant for the reaction of the N03 radical
with trans-2-butene of (3.87 % 0.45) x 1013 ¢n3 molecule™!
kara and Mauldin, 1985; Dlugokencky and Howard, 1989), this leads to

s~ (Ravishan-

k3 = (1.51 2 0.18) x 10’13 om3 tnolec:ule'1 s'1

at 296 = 2 K.

The products of the gas-phase reaction of styrene with the NO3
radical have been investigated by Atkinson et al. (1989) using long path-
length FT-IR absorption spectroscopy to monitor the reactants and
products. Formaldehyde (HCHO) and benzaldehyde (CGHSCHO) were observed as
products, with equal formation yields of ~0.10-0.12.
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Three as yet unidentified nitrogen-containing compounds were the most
conspicuous products of these N03 radical reactions with styrene (Atkinson
et al., 1989). These products (A, B and C) had infrared absorption bands
whiech indicated the presence of the following groups: A, -ONO, and
-00NO,; B and C, -ONO, and >C=0. Produet A was formed in the initial
stages of the reaction, and then disappeared rapidly (as expected from the
presence of the thermally unstable peroxynitrate, -00NO5, group). Product
B was more stable than A, but a steady decrease in its concentration with
time was also observed {Atkinson et al., 1989). Product C was the most
stable of these three nitrogen-containing compounds.

The NO3 radical reaction with styrene is expected to proceed by
initial N03 radical addition to the -CH=CH, substituent group:

NO, + C6H5CH=CH2 + CﬁHSCH(ONoz)CH2 and C6H5CHCH20NO2

3

followed by the reactions (taking the C H_CHCH,ONO, radical as an exam le)
65 2 2 P

00
. ]
C6H5CHCH20N02 + 02 -+ C6H5CHCH20NO2
o o,
CGHSCHCHzoNO2 + NO b C6H5CHCH20NO2
(possibly product A)
% NO i
C6H5CHCH20N02 + o C6H5CH0H2ON02
RO
2
00"

| .
{where the R02‘ radical can include the CGHSCHCH2ON02 or C6H5CH(0N02)CH200
radical)
o

|
CGH CHCH,ONO

5 5 o * 02 + C6H COCH20N02 + H02

5
(possibly product C)
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C6H5CHCH20NO2 + C6HSCHO + CH20N02
l fast

HCHO + N02

Analogous intermediate or first-generation products (C6H5CH(ON02)CH2OON02
and C6H5CH(0N02)CHO) are expected to be formed from the C6H5CH(ON02)CH2
radical.
4, Photolysis

According to Calvert and Pitts (1966), in solution styrene has
its largest wavelength absorption cross-section of -2 x 10'20 cmz. There
is no evidence for photolysis of styrene being of importance in the
studies of Bignozzi et al. (1981) or Atkinson and Aschmann (1988). In
particular, the good agreement between the studies of Bignozzi et al.
{1981) and Atkinson and Aschmann (1988) concerning the OH radical reaction
rate constant indicates that photolysis was of minor or negligible
significance in the NOx-styrene-aiE irradiations carried out by Bignozzi
et al. (1981), in which the light intensity and spectral distribution and

OH radical concentration approximated those in ambient air,

c. Physical Loss Processes

No data are available for styrene concerning dry and/or wet deposi-
tion, Since styrene 1s a hydrocarbon present in the gas phase, 1t is
expected that dry and wet deposition will be of negligible importance as
tropospheric loss processes for styrene, especially when compared to the
relatively short tropospheric lifetime calculated from the gas-phase
chemical loss process (see Section D below).

D. Tropospheric Lifetime and Fate of Styrene

As discussed in Section A, the tropospheric lifetime of styrene is
determined from the loss rates of both the chemical and physical loss
processes. The physical loss processes are expected to be of no signifi-
cance, and the tropospheric lifetime of styrene is determined by its reac-
tions with OH and N03 radicals and 03. Using measured or estimated trop-

ospheric concentrations of these species of: OH radicals, 1.5 x 106



molecule cm™3 during daylight hours (Prinn et al., 1987); NOg radicals,
2.4 x 108 molecule cm™3 during nighttime hours (Platt et al., 1984;
Atkinson et al., 1986); and 03, 7 x 10" molecule cm™3 throughout a 24-hr
period (Logan, 1985), the tropospheric loss rates of styrene due to these
chemical reactions can be assessed. The calculated lifetimes for these
individual reactions are then: reaction with the OH radieal, 3.2 hrs;
reaction with the N03 radical, 7.7 hrs; and reaction with 03, 22 hr. The
daytime OH radical reaction is the dominant of the reaction loss
processes, leading to a tropospheric lifetime of styrene during daylight
hours of ~3 hrs.

As discussed in Section B.2 above, the tropospheric degradation of
styrene will then lead (by reaction with the OH radical) to the formation
of HCHO and C6H5CH0 in high yield, and the tropospheric degradation of
styrene will lead to the formation in the atmosphere of both formaldehyde
and benzaldehyde. It should also be noted that the tropospheric degrada-
tion of benzaldehyde will lead to the production in the atmosphere of
peroxybenzoyl nitrate [PBzN; C6H5C(0)00N02] (Atkinson and Lloyd, 1984;
Atkinson, 1990).

E. Atmospheric Formation of Styrene

As presently understood, there are no in situ atmospheric formation
processes leading to styrene from other organics emitted into the tropos-

phere from anthropogenic or biogenic sources.

F. Ambient Concentrations of Styrene

Styrene has not been identified in most ambient atmospheric monitor-
ing studies nor in emission studies. However, Grosjean and Fung (1984)
report the presence of styrene in 16 ambient air samples collected in
downtown Los Angeles in the fall of 1981, with the styrene mixing ratios
peing in the range 0.5-3 part-per-billion (ppb). Ambient air samples
collected in August 1986 in Glendora during the Carbonaceous Species
Measurement Comparison Study did not show the presence of styrene (D.
Lawson, California Air Resources Board; private communication, 1989).



G. Conclusions

Styrene is removed from the troposphere by chemical reaction with OH
and N03 radicals and 03, with the daytime OH radical reaction being
expected to dominate and to lead to a styreme lifetime of ~3 hrs during
daylight hours. The photooxidation of styrene leads to the production in
the atmosphere of formaldehyde (HCHO) and benzaldehyde (C6H5CHO) in close
to unit yield.

Styrene is not formed in the atmosphere from either anthropogenic or
biogenic emissions, and ambient air measurement data show that the styrene

mixing ratios in the Los Angeles air basin are a few ppb or less.
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A, Introduction

The atmospheric fates of chemical compounds emitted into the tropos-
phere are governed by a number of chemical and physical removal processes.
As the result of laboratory studies carried out over the past 20 years, it
is recognized that the potentially important gas-phase chemical reaction

pathways include:

e Photolysis during daylight hours
e Reaction with the hydroxyl (OH) radical during daylight hours

e Reaction with the hydroperoxyl (HO,) radical, mainly during
afternoon/evening hours

¢ Reaction with the nitrate (N03) radical during nighttime hours

¢ Reaction with nitrogen dioxide (N02)

® Reaction with ozone (03)

e Reaction with gaseous nitric acid (HNO3)

For the great majority of organic compounds which are present in the gas
phase, the most important of these loss processes are photolysis and
reaction with hydroxyl (OH) and nitrate (N03) radicals and ozone (03).

However, for a limited number of gaseous organic compounds, ©one or
more of the other reactive chemical species in the troposphere may react
with these organic compounds at significant rates. For example, HO,
radicals react with formaldehyde and, more slowly, with acetaldehyde and
glyoxal; NO, reacts with conjugated dienes; and gaseous HNO3 reacts wWith
basic compounds such as the amines.

For chemical compounds present in the adsorbed phase, photolysis and
reaction with 03, NZOS' NO,, HN03, HONO, H,S80) and hydrogen peroxide
(H202) may contribute to their degradation. For certain of these reac-
tions involving adsorbed organics, synergistic interactions may be of
importance.

The physical removal processes can be defined in a simplistic manner
as accretion {or coagulation) of particles, and dry and wet deposition of
gases and particles. Removal of gases and particles at ground surfaces
(including snow and other moist surfaces) is referred to as dry deposi-
tion, while removal of these species by precipitation is referred to as

wet deposition. Our understanding of these processes, which are dynamic
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in nature, must be considered to be semi-quantitative at the present time,
and in general there is a lack of experimental data concerning these
processes for most organic compounds (Atkinson, 1988; Bidleman, 1988).

The atmospheric lifetime t of a chemical is defined as the time to

decay to a concentration of 1/e (=0.368) of that initially present. Also,

1 1 1
- + (1)

T chemical Tphysical

where 1 1 and Tphysical are the lifetimes of the chemical with

chemica
respect to only chemical reaction and only physical loss processes,
respectively. These chemical and physical lifetimes are composites of

those for the individual loss processes, for example

1 1 1 1 1

. P N R (2)

Tchemical Tphotolysis ToH TNO "o

where T ™O and 1y are the lifetimes with respect to

photolysis® TOH’
photolysis, reaction with the OH radical, reaction with the N03 radiecal,
and reaction with 03, respectively. In turn, these reactive loss
processes are determined by the rate constants, Ky, for reaction and the
ambient atmospheric concentrations, [X], of the reactive intermediates.

For example

1 -
—— = kpy[OH]

ToH

For photolysis, the photolysis rate depends on the absorption cross
section (o), the photolysis quantum yield (#), and the radiation intensity
(J), all of which are wavelength dependent:



~800 nm
1

T s 0,
photolysis

A XJl dx

= k .=
photolysis 290 rm

In this report, we describe the available literature data concerning
the physical and chemical removal processes for the particulate matter and
the gas- and particle-phase polyeyelic aromatic hydrocarbons (PAH) and
PAH-derivatives emitted in diesel exhaust. In addition to particles and
gas- and particle-phase PAH and PAH-derivatives, the exhaust from diesel-
fueled vehicles is comprised of a wide spectrum of inorganic and organic
compounds, including carbon dioxide (CO,), carbon monoxide (CO), water
vapor (H,0)}, oxides of nitrogen (NO,, consisting mainly of NO + NO5),
formaldehyde (HCHO) and other saturated and unsaturated aldehydes and
ketones, alkanes, alkenes and monocyclic aromatic hydrocarbons (see, for
example, National Research Council, 1983; Jonsson et al., 1985; Hayano et
al., 1985; Schuetzle and Frazier, 1986; Obuchi et al., 1987; Johnston,
1988). Discussion of the lifetimes and fates of all of these emitted
species is beyond the scope of this document, which focuses on the

following:

e The tropospheric lifetime and fate of particle matter emitted
from diesel-fueled vehicles.

e The atmospheric lifetimes and fates of PAH and PAH-deriva-
tives which are present in the atmosphere at least partially

in the gas phase.

e The atmospheric lifetimes and fates of PAH and PAH-deriva-

tives which are particle-associated in the atmosphere.
The processes to be considered are then

e Physical loss processes for the particles on which, or in
which, the PAH and PAH-derivatives reside.



e The gas-phase tropospheric removal and/or transformation
processes for PAH and PAH-derivatives present in the gas-

phase.

e Adsorbed-phase reactions of PAH and PAH-derivatives.

B. Physical and Chemical Characterization of Diesel Particles and PAH
and PAH-Derivatives

1. Particle-Size Distribution

The particles emitted from diesel-fueled vehicles have mass-
median aerodynamic diameters in the range 0.1-0.25 um (Groblicki and
Begeman, 1979; Dolan et al., 1980; National Research Council, 1982;
Williams, 1982; Pierson et al., 1983), with more than 75% of the mass
being associated with particles of diameter <1 um (Pierson et al.,
1983). The composition of diesel exhaust particulate is mainly elemental
carbon, which 1is then a good carrier for organic compounds of low
volatility which can reside on the particle surface or be included inside
the particles. The position of attachment of organic compounds on or in
the particles can profoundly affect the atmospheric chemistry and
lifetimes of these compounds, since those organic compounds present inside
the largely elemental carbon particles are prevented from volatilizing
into the gas phase and are protected against photolysis and chemical
reaction, while those organic compounds present on the surface of the
partiecles can undergo volatilization into the gas phase and be susceptible
to photolysis and/or chemical reaction. As noted by the National Research
Council (1983), diesel exhaust particulate is typically 25% extractable
into organic solvents, although there is a wide variability in the percent
extractable, from 10-90%, depending on the vehicle and operating
conditions (see, for example, Williams et al., 1989).

2. PAH and PAH-Derivatives

A chemical analysis of the non-polar and moderately polar
fractions of a diesel exhaust sample collected on filters from an exhaust
dilution tube is given in Table 1 [adapted from Schuetzle (1983)]. A
large proportion of diesel particulate extracts are heavy aliphatic
hydrocarbons and it seems generally accepted that these are mainly unburnt
fuel or lubricant oil components (Obuchi et al., 1987; Barbella et al.,



Table 1. Analysis of Nonpolar and Moderately Polar Fractions of an Extract
of Diesel Particles Collected on Filters using an Exhaust Dilution

Tube (from Schuetzle, 1983)

Compound

Approximate
Concentration
in Qldsmobile
Extract (ppm)

Nonpolar fractions

Phenanthrenes and anthracene
Methylphenanthrenes and methylanthracenes
Dimethylphenanthrenes and dimethylanthracenes
Pyrene

Fluoranthene

Methylpyrenes and methylfluoranthenes
Chrysene

Cyclopenta[cdlpyrene
Benzo({ghi]flucranthene

Benz[a]anthracene

Benzo[alpyrene

Other PAHs, heterocyclics

HCs and alkylbenzenes

Total nonpolar fractions

Moderately polar fractions

PAH ketones

Fluorenones

Methylfluorenones

Dimethylfluorenones

Anthrones and phenanthrones
Methylanthrones and methylphenanthrones
Dimethylanthrones and dimethylphenanthrones
Fluoranthones and pyrones

Benzanthrones

Xanthones

Methylxanthones

Thioxanthones

Methylthioxanthones

Total

PAH carboxaldehydes

Fluorene carboxaldehydes

Methyl fluorene carboxaldehydes

Phenanthrene and anthracene carboxaldehydes
Methylanthracene and methylphenanthrene carboxaldehydes
Dimethylanthracene and dimethylphenanthrene carboxaldehydes
Benz[alanthracene, chrysene, and triphenylene carboxaldehydes
Naphthalene dicarboxaldehydes

Dimethylnaphthalene carboxaldehydes

Trimethylnaphthalene carboxaldehydes

Pyrene and fluoranthene carboxaldehydes

H-T7

600
1,400
3,200
1,700
1,400

800

100

20

100

500

40
34,000
510,000

556,000

4,000
400
200

1,600

1,600

1,300

1,200
200
300
200

1,600
900

13,500

1,600
400
2,600
1,600
400
400
300
300
1,000
1,600



Table 1 {continued) - 2

Approximate
Concentration
in Oldsmobile
Compound Extract (ppm)
Xanthene carboxaldehydes 600
Dibenzofuran carboxaldehydes L4o0
Total 11,200
PAH acid anhydrides
Naphthalene dicarboxylic acid anhydrides 2,900
Methylnaphthalene dicarboxylic acid anhydrides 1,000
Dimethylnaphthalene dicarboxylic acid anhydrides 500
Anthracene and phenanthrene dicarboxylic acid anhydrides 600
Total 5,000
Hydroxy PAHs
Hydroxyfluorene 1,400
Methylhydroxyfluorene K00
Dimethylhydroxyfluorene 1,500
Hydroxyanthracenes and hydroxyphenanthrenes 600
Hydroxymethylanthracenes and hydroxymethylphenanthrenes 900
Hydroxydimethylanthracenes and hydroxydimethylphenanthrenes 1,300
Hydroxyfluorenone 2,100
Hydroxyxanthone 1,300
Hydroxyxanthene 1,000
Total 10,400
PAH quinones
Fluorene Quinones 700
Methylfluorene quinones 600
Dimethylfluorene guinones 500
Anthracene and phenanthrene quinones 1,900
Methylanthracene and methylphenanthrene guinones 2,100
Fluoranthene and pyrene quinones 200
Naphtho( 1,8-cd]pyrene 1,3-dione 600
Total 6,500
Nitro-PAHs
Nitrofluorenes 30
Nitroanthracenes and nitrophenanthrenes 70
Nitrofluoranthenes 5
Nitropyrenes 150
Methylnitropyrenes and methylnitrofluoranthenes 20
Total 270
Other oxygenated PAHs 7,700
PAH carryover from nonpolar fraction 6,000
Phthalates, HC contaminants 31,000
Total, moderately polar fractions 92,000
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1989). In addition to a wide range of PAH, with methylated PAH being the
most abundant, over one hundred species were identified in the moderately
polar fractions of a diesel exhaust extract (Schuetzle et al., 1981). The
moderately polar fractions contain mainly PAH derivatives including
hydroxy, ketone, quinone, carboxaldehyde, acid anhydride and nitro
derivatives of PAH (Schuetzle et al., 1981).

The PAH present in diesel exhaust may be either unburned fuel
components or combustion-formed PAH. Some researchers have found the
major PAH emissions to be unburned fuel components such as naphthalene,
fluorene, phenanthrene and their alkyl derivatives (Williams et al.,
1986), while other researchers have found the light naphthalenes present
in the fuel to be absent from the exhaust (Barbella et al., 1989}.
Certain PAH, when added to a hexadecane fuel, have been found to promote
soot formation and the emissions of other PAH, while the addition of
pyrene or phenanthrene increased the emission of these PAH, but caused no
increased soot formation (Henderson et al., 1984). There is some evidence
that benzo[alpyrene and other PAH may be formed during the combustion
process (Henderson et al., 1984; Kittelson et al., 1985; Obuchi et al.,
1987; see also below) and, consistent with PAH formation, diesel
combustion of fuels containing no PAH still results in PAH emissions
(Barbella et al., 1989).

Kittelson et al. (1985) measured selected PAH and 1-nitropyrene
concentrations in the cylinder and the exhaust manifold of an operating
5.7-liter V-B diesel engine and observed that the PAH concentrations were
higher in the cylinder than in the exhaust manifold, in contrast to higher
1-nitropyrene concentrations in the exhaust manifold. These data suggest
(Kittelson et al., 1985) that the PAH are formed early in the combustion
process and subsequently decay in the high temperature environment of the
expansion stroke and the exhaust process. In contrast, 1-nitropyrene
appears to be formed during the expansion and exhaust processes (Kittelson
et al., 1985).

Laboratory investigations of the formation of PAH and soot in flames
have shown that PAH are formed from non-PAH containing fuels, and that
poth PAH formation and destruction occur under combustion conditions (see,
for example, Bockhorn et al. 1981; Ciajolo et al., 1982; Prado et al.,
1985; Togan et al., 1985; Frenklach et al., 1988; Frenklach, 1989). These
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studies conclude that hydrogen atoms are involved in the formation/
destruction reactions of PAH (Bockhorn et al., 1981; Frenklach et al.,

1988; Frenklach, 1989) and suggest that the PAH are precursors to soot

formation (Bockhorn et al., 1981; Ciajolo et al., 1982; Prado et al.,

1985; Togan et al., 1985; Frenklach et al., 1988; Kroto, 1988; Frenklach,

1989) .

As is the case for combustion sources in general, a wide spectrum of
PAH and alkyl-PAH are emitted from diesel exhaust (see above and Schuetzle
et al., 1981; National Research Council, 1983; Jensen and Hites, 1983;
Williams et al., 1986; Barbella et al., 1988, 1989). These PAH exhibit a
wide range of volatilities (Table 2) and in the atmosphere are distributed
between the gas and particle phases (Coutant et al., 1988; Arey et al.,
1987, 1989a; Atkinson et al., 1988). Naphthalene and the other two ring
PAH (including biphenyl) are present in ambient air in the gas phase,
while the >5-ring PAH such as benzo[a]pyrene are particle associated. As
discussed by Bidleman and Foremen (1987), Bidleman (1988) and Pankow
(1989), the vapor pressure parameter determining the phase distribution of
semivolatile organic compounds is the subcooled liquid vapor pressure and
not the solid-phase vapor pressure.

Based upon the ambient air sampling measurements of Coutant et al.
(1988), those PAH with subcooled liguid vapor pressures of <10-® Torr are
essentially totally particle associated, and those with higher subcooled
liquid vapor pressures are present, at least partially, in the gas
phase. Thus, Bidleman (1988) concludes from ambient air monitoring data
that the majority of fluoranthene and pyrene (subcooled liquid vapor
pressures ~4 x 10'5 Torr) are present in the gas phase, that
benz[a)anthracene (subcooled liquid vapor pressure ~2 x 10-5 Torr) is
approximately equally distributed between gas and particle phase, and that
benzo[a]pyrene (subcooled 1liquid vapor pressure ~9 x 10'8 Torr) is
essentially totally particle associated. This translates into PAH with 25
rings being particle associated, and PAH with <4 rings being, at least
partially, in the gas phase in ambient air, A similar distribution
between gas- and particle-phase will occur for the PAH-derivatives, with,
for example, the zl4-ring nitro-PAH being particle-associated.



Table 2. Literature Room Temperature Vapor Pressures (Torr) for PAH

Vapor pressure at 298 K (Torr)

Subcooled
PAH Solid? LiquidP®

Naphthalene 7.8 x 10~2 1.3 x 10~
Biphenyl 9.9 x 1073 2.1 x 1072
Acenaphthylene 6.7 x 10-3

Acenaphthene 2.2 x 1073 7.6 x 103
Fluorene 6.0 x 10-1 3.1 x 10-3
Phenanthrene 1.2 x 10'1‘l 5.3 x 10'”
Anthracene 6.0 x 10'6 5.0 x 10-4
Fluoranthene 9.2 x 10'6 5.2 % 107
Pyrene 4.5 x 10-% 3.3 x 1072
Benzo(alfluorene 1.2 x 107
Benzo{blfluorene 1.1 x 1072
Benz[alanthracene 2.1 x 1077 1.9 x 10‘6
Chrysene 1.7 % 10'6
Triphenylene 1.7 % 1076
Benzo[b]fluoranthene 1.6 x 1077
Benzo[k]fluoranthene 1.6 x 1077
Benzo[ e ]pyrene 1.0 x 1077
Benzo[alpyrene 9.0 x ‘IO'8
1-Methylnaphthalene 6.7 x 1072

2-Methylnaphthalene 5.4 x 1072

8rpom Sonnefeld et al. (1983) unless indicated.

From Yamasaki et al. (1984},
CFrom Mackay et al. (1982).

dFrom Macknick and Prausnitz (1979).
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3. Nitro-PAH

The presence of nitroarenes in diesel exhaust particulate
extracts has received much attention because of the strong mutagenic
activity of certain nitro-PAH, and numerous studies of the health effects
of nitro-PAH have been conducted over the past ten years (see for example,
Rosenkranz and Mermelstein, 1983; Tokiwa and Ohnishi, 1986; King, 1988;
and references therein). More than fifty nitro-PAH have been tentatively
identified in diesel exhaust, including mononitro-PAH, mononitro-alkyl-
PAH, di- and trinitro-PAH and oxygenated nitro-PAH, such as nitrofluor-
enone (Schuetzle et al., 1982; Xu et al., 1982; Paputa-Peck et al., 1983;
Robbat et al., 1986).

When isomer-specific analyses have been conducted, the major nitro-
arenes observed in diesel exhaust have been the isomers formed by electro-
philic nitration of the parent PAH and in amounts consistent with the
abundance and reactivity (Schuetzle, 1983; Nielsen, 1984) of the parent
PAH toward electrophilic nitration. For example, 1-nitropyrene, 2-nitro-
fluorene, 9-nitroanthracene (Schuetzle and Perez, 1983; Paputa-Peck et
al., 1983; Robbat et al., 1986), 6-nitrobenzolalpyrene (Gibson 1982; 1983;
Schuetzle and Perez, 1983; Paputa-Peck et al., 1983) and 3-nitrofluor-
anthene (Robbat et al., 1986) have been observed in diesel exhaust
extracts, all nitro-PAH isomers that are the major electrophilic nitration
products of the parent PAH (Ruehle et al., 1985). Thus, although the PAH
isomer-pair of fluoranthene and pyrene are present in diesel exhaust in
very similar amounts (see Table 1), 1-nitropyrene is found in diesel
exhaust particles in large excess over 3-nitrofluoranthene (Schuetzle et
al., 1982; Paputa-Peck et al., 1983; Robbat et al., 1986) .

Adding pyrene to hexadecane fuel in a single cylinder diesel engine
increased nitropyrene emissions (Henderson et al., 1984). Henderson et
al. (198l4) suggested that since the nitropyrene/pyrene ratio decreased
with increasing pyrene emissions, the active NO, species in the exhaust
stream could be the limiting factor in nitro-PAH formation. Schuetzle and
Perez (1983) estimated that an average of 12% of the i-nitropyrene in
diesel emissions collected on filters and using dilution tubes was formed
on the filter during sampling. As will be discussed in more detail below,
the nitro-PAH isomers observed in ambient particulate samples have very
different isomer distributions than those found in diesel particulate
extracts (Arey et al., 1987; 1989b; 1990a; Atkinson et al., 1988).
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It is interesting to note that recent work (Ross et al., 1987)
suggests that dinitropyrenes observed in diesel exhaust (Pederson and
Siak, 1981; Nakagawa et al., 1983; Schuetzle, 1983; Schuetzle and Perez,
1983) are the result of direet nitration of pyrene rather than further
nitration of I1-nitropyrene. However, Lee et al. (1989) suggest that
dinitropyrene formation may be a collection artifact, being formed from 1-

nitropyrene nitration by NO,.

C. Physical Loss Processes

The particles with which the PAH and PAH-derivatives are assoclated
undergo wet and dry deposition. The average atmospheric lifetimes for
particles due to dry deposition are a function of the particle diameter,
as shown in Table 3 (Graedel and Weschler, 1981). As discussed above, the
particles emitted from diesel-fueled vehicles have mass-median aerodynamic
diameters of ~0.1-0.3 um, and hence the atmospheric lifetimes of these
particles due to dry deposition are expected to be of the order of ~5-15
days.

In the case of wet deposition, a washout ratio of particles Hp,
defined as,

W, =C

p rain/C

air
relates the particle concentration in the rain (Crain) to that in the

ambient air (C The deposition rate, F, is given by,

air)'
F = wp J Cair

where J is the precipitation rate. For particles of 0.1-10 um diameter
and for particle-associated organics such as the polychlorinated biphenyls
{(PCBs) and the 020—023 n-alkanes the washout ratio Hp is 105f1 {Eisenreich
et al., 1981; Ligocki et al,, 1985a). With a washout ratio of this magni-
tude, essentially complete scavenging of the particles and their asso-
ciated organics occurs during a rain event (Leuenberger et al., 1985). Of
course, rain-out is an episodic event which, in California, will lead to
generally shorter lifetimes of the particle-associated PAH and PAH-deriva-
tives in the winter months than during the summertime.
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Table 3. Average Atmospheric Lifetimes for Particles Due to Dry
Deposition (From Graedel and Weschler, 1981)

Diameter (um) Lifetime (days)
0.002 0.01
0.02 1
0.2 10
2 10
20 1
200 0.01

Thus, considering only its physical atmospheric removal processes,
the lifetime of particle-associated PAH and PAH-derivatives due to
particle dry deposition is expected to be around 5-15 days, with an addi-
tional efficient, but episodic, removal process involving the rain-out of

particles,

D. Gas-Phase Loss Processes of PAH and PAH-Derivatives

As noted in the Introduction, the PAH and PAH-derivatives present, at
least partially, in the gas phase can undergo wet and dry deposition,
photolysis and reaction with OH and N03 radicals and 03. To date, there
is no evidence for the occurrence of other gas-phase reactions (for
example, with NOZ, HNO3 or 502) for the PAH or nitroarenes (the only PAH-
derivatives for which experimental data are available). In this Section,
the available kinetic and product data concerning photolysis and reactions
with OH and N03 radicals and 03 are presented and discussed.

1. Wet Deposition of Gas-Phase PAH and PAH-Derivatives

Experimental data concerning the washout ratios Hg, of gas-phase
PAH, where

W. = [PAH]

g rain/ [PAH]

gas

have been obtained and reported by Ligocki et al. {1985b). The values

obtained are given in Table 4. From concurrent measurements of PAH and
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Table 4. Washout Ratios for Gas-Phase PAH (from Ligocki et al., 1985b)

Molecular Washout ratio W

PAH Weight (at 281 K)
Naphthalene 128 250 + 73
1-Methylnaphthalene 142 330 = 100
2-Methylnaphthalene 142 250 + 718
Acenaphthylene 152 1600 * 500
Acenaphthene 154 1000 * 310
Fluorene 166 1500 + 390
Phenanthrene 178 3400 + 740
Anthracene 178 1900 * 600
Methylphenanthrenes 192 2500 + 800
Fluoranthene 202 6300 £ 2000
Pyrene 202 5900 + 1800
Benz[a]anthracene 228 12000 + 4900
Chrysene 228 18000 * 6500
Benzo[e]pyrene 252 5800
Benzo[ b+ j+k]1fluoranthene 252 7400 + 1300
9-Fluorenone 180 11000 = 2200
9, 10-Anthracenedione 208 27000 % T000
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PAH-derivative concentrations in air and in rainwater, Ligocki et al.
(1985a) concluded that the PAH of molecular weight <252 underwent wet
deposition primarily from the gas phase, while the 2252 molecular weight
(MW) PAH underwent wet deposition primarily from the particle phase. This
conclusion is in reasonable agreement with the review of Bidleman (1988),
which concludes that wet deposition from the gas phase dominates for PAH
of MW <202 and wet deposition from the particle phase dominates for PAH of
MW 2228. These conclusions of Ligocki et al. (1985b) and Bidleman (1988)
are consistent with the PAH of MW <202 being predominantly in the gas
phase with relatively low washout ratios (102-104), while the PAH of MW
2252 reside on or in particles which generally have higher washout ratios
(10511). In comparison with the washout ratios of the very efficiently
removed particles, the washout ratios of 102_104 for the gas-phase PAH
suggest that wet deposition will not be a major tropospheric removal
process for the PAH.

Dry deposition of gas-phase PAH is expected to be of minor importance
(see, for example, Eisenreich et al., 1981).

2. Reaction with the OH Radical

The available rate constant data for the gas-phase reactions of

the OH radiecal with PAH and PAH-derivatives have been evaluated and
reviewed by Atkinson (1989). The rate constant data are given in Table
5. For most of the PAH and PAH-derivatives for which data are available,
only single studies have been carried out, and no firm recommendations
were made by Atkinson (1989) for these compounds. For biphenyl, naphtha-
lene and phenanthrene, sufficient data are available that recommendations
were made.

Biphenyl. The rate constants of Zetzsch (1982), Atkinson et al.
(1984), Atkinson and Aschmann (1985) and Klopffer et al. (1986), all
obtained at room temperature, are in generally good agreement, although
the rate constant determined by Zetzsch (1982) (which required knowledge
of the vapor pressure of biphenyl) is lower by ~25% than the other
values. Since no details are available concerning the study of Klopffer
et al. (1986), the rate constant from that study is not used in the
evaluation. A unit-weighted average of the room temperature rate
constants of Zetzsch (1982), Atkinson et al. (1984) and Atkinson and
Aschmann (1985) leads to the recommendation of
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k(biphenyl) = 7.2 x 10712 cm3 molecule™! s™! at 298 K,

with an estimated overall uncertainty of *30%. This rate constant is that
for OH radical addition to the aromatic rings. At temperatures 400 K the
OH-biphenyl adduet will rapidly thermally decompose and only H-atom
abstraetion from the C-H bonds of the aromatie rings will be observed.

Naphthalene. The available rate constants obtained at, or close
to, the high-pressure limit are given in Table 5. Lorenz and Zellner
(1983) have shown that at 378 * 2 K the rate constant for this reaction is
in the fall-off region between second- and third-order kineties below ~50
Torr total pressure of helium, but that no such fall-off behavior is
observed at 525 £ 1 K.

At temperatures <410 K the rate constants obtained by Lorenz and
Zellner (1983, 1984), Atkinson et al. (1984), Biermann et al. (1985),
Atkinson and Aschmann (1986) and Klopffer et al. (1986) are in good agree-
ment (the rate constant of Klopffer et al. (1986) was not used in the
evaluation because of a lack of details). A unit-weighted least-squares
analysis of the data of Lorenz and Zellner (1983, 1984), Atkinson et al.
(1984), Biermann et al. (1985) and Atkinson and Aschmann (1986) yields the

recommended Arrhenius expression of

+1,14 -12 e(895 + 239)/T
-0.55

cm3 molecule-1 s_1

k(naphthalene, T <410 X) = (1.07 ) x 10

over the temperature range 294-407 K, where the indicated errors are two
least-squares standard deviations, and

k(naphthalene) = 2.16 x 10" ex3 molecule™ ' s

-1

at 298 K, with an estimated overall uncertainty of *30% at 298 K,
Phenanthrene, The available rate constants of Lorenz and Zellner

(1984) and Biermann et al. (1985) are given in Table 5. The rate

constants obtained by Biermann et al. (1985) from a relative rate study

are consistent with the higher temperature (T 2338 K) data of Lorenz and

Zellner (1984). For the temperature range <410 K (the same as for
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naphthalene) a unit-weighted least-squares analysis of the data of Lorenz
and Zellner (1984) and Blermann et al. {1985) ylelds the recommendation of

k(phenanthrene; T <410 k) = (1.02:3':;) x 10712 (1021 2 634)/T
3 -1

om> molecule™' s

over the temperature range 298-399 K, where the indicated errors are two
least-squares standard deviations, and

k(phenanthrene) = 3.1 x 10~ 1! em3 molecule~! s™1 at 298 K,

with an estimated overall uncertainty at 298 K of * a factor of 2.
Reaction Mechanisms. As discussed by Atkinson {1986, 1989) the

OH radical reactions with the PAH and PAH-derivatives proceed by two

reaction pathways; namely OH radical addition to the aromatic ring to form

an initially energy-rich hydroxycyclohezadienyl-type radical and OH
radical interaction with the substituent groups, either through H atom
abstraction from C-H or O-H bonds or OH radical addition to >C=C< bonds,
For example, for acenaphthene

CH;—CH
2 2 OH
M H
— (plus other isomers)
CH2— CH2
OH + —_
CHE"‘CH
—_— H20 +
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and for acenaphthylene

CH===CH
OH
M H
— (plus other isomers)
CH==A{H
o (QIO) —
CH ——CHOH
M

These OH radical reactions are essentially at the high pressure
1imits at room temperature and atmospheric pressure. For the alkyl-
substituted PAH such as 1- and 2-methylnaphthalene, 2,3-dimethylnaph-
thalene and {probably) acenaphthene, the reaction pathway involving OH
radical addition to the aromatic ring dominates under atmospheric
conditions (Atkinson, 1989). For those PAH containing unsaturated cyclo-
penta-fused rings (acenaphthylene and acephenanthrylene), OH radical addi-
tion to the cyclopenta-fused ring >C=C< bond may be significant.

The products of these OH radical-initiated reactions are not well
understood. The observed products of the OH radical-initiated reactions
(in the presence of NO,) of naphthalene and biphenyl are hydroxy- and
nitro-arenes (Atkinson et al., 1987). The ylelds of the hydroxyarenes are
significantly higher than those of the nitroarenes, being 7% and 4% for 1-
and 2-naphthol, respectively, in comparison to ~0.3% each for 1- and 2-
nitronaphthalene. Similarly, the yield of 2-hydroxybiphenyl from biphenyl
is 20% (with much lower amounts of 3- and U-hydroxybiphenyl also being
produced), while the single nitro-derivative observed is 3-nitrobiphenyl
in ~5% yleld.

The specific nitroarene isomers formed, and their product yields,
from the gas-phase OH radical-initiated reactions of the 2- to Y4-ring PAH
1- and 2-methylnaphthalene (Zielinska et al., 1989a), biphenyl (Atkinson
et al., 1987; Arey et al., 1989b), acenaphthene (Arey et al., 1989b),
acenaphthylene (Arey et al., 1989b), phenanthrene (Arey et al., 1989b),
anthracene (Arey et al., 1989b), acephenanthrylene (Zielingka et al.,
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1988), fluoranthene (Arey et al., 1986; Atkinson et al., 1990a) and pyrene
(Arey et al., 1986; Atkinson et al., 1990a) are given in Table 6.
Preliminary results from a recent study of the gas-phase OH radical-
initiated reaction of fluorene shows that the major nitroarene product
from this PAH is 3-nitrofluorene with a yield of ~1% (Arey, Helmig and
Atkinson, unpublished results).

The available product data for the monocyclic aromatic hydrocarbons
and biphenyl (Atkinson et al., 1987, 1989b, 1990b) indicate that the
nitroarene product yields do not extrapolate to zero at low NO2 con-
centrations, and hence the nitroarene formation yields determined under
laboratory conditions (see Table 6) are believed to be applicable to
ambient atmospheric conditions. The nitroarene product formation yields
are in all cases low, ranging from ~0.5-5%, and as noted above, the
hydroxy-PAH yields for naphthalene and biphenyl are a factor of ~5-10
higher than their nitroarene yields. It is important to note that the
majority of the OH radical-initiated reaction products of the PAH remain
unidentified. While there are uncertainties about the reaction mech-
anisms, a recently postulated mechanism (Atkinson et al., 1989b) for the
reaction of the OH radical in the presence of NO, with fluoranthene which
is consistent with our recent product data is shown in Figure 1.

Note that the nitrcarenes formed from the OH radical-initiated
reactions of the PAH (Table 6) are often isomers distinet from those
observed in diesel exhaust particles. Thus as noted above, the most
abundant nitro-isomers of pyrene, fluorene and fluoranthene observed in
diesel exhaust are 1-nitropyrene, 2-nitrofluorene and 3-nitrofluoranthene,
respectively, while the isomers formed from the gas-phase OH radical-
initiated reactions of these PAH are 2-nitropyrene, 3-nitrofluorene and 2-

nitrofluoranthene, respectively.
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Figure 1. Reaction scheme for the OH radical-initiated reaction of
fluoranthene in the presence of Nox.



3. NOg Radical Reactions
Naphthalene and the alkyl-substituted naphthalenes are observed

to react in NyOg - N03 - NO, - air mixtures, in which NO3 radicals are
generated by the thermal decomposition of N205

The disappearance rates of the naphthalenes relative to those of the
alkenes such as propene and trans-2-butene in these reaction mixtures as a
function of the NO, concentration indicate that the PAH loss processes are
kinetically equivalent to reaction with N205 (Pitts et al., 1985a;
Atkinson et al., 1987; Atkinson and Aschmann, 1987, 1988; Atkinson et al.,
1990c). As discussed by Atkinson and Aschmann (1988) and Atkinson et al.
(1990c), this can be due to either an elementary reaction with N;0g or to
a complex reaction sequence involving initial addition of N03 to the
aromatic rings to form a nitratocyclohexadienyl-type radical which then
either back decomposes to reactants or reacts exclusively with N02

H_ ONO

2
a
NO, +
3 3

c N02

products, including
nitroarenes

with the measured rate constant kobs for reaction with the N03 radical
being

Kops = kgke/ky

A recent experimental study (Atkinson et al., 1990c) has shown that the
reaction of naphthalene in N205 - N03 - NO, - alr mixtures occurs by the
initial addition of the N03 radical, rather than by an elementary reaction
with N205, and the other PAH are expected to react in an analogous manner.

H-30



For those PAH containing substituent groups, a parallel reaction
pathway involving NO radical reaction with the substituent group(s) can
also occur (Atkinson and Aschmann, 1988; Arey et al., 1989b), in addition
to N03 radical addition to the aromatic ring. For example, for
acenaphthene

CHé“‘CH

— HN03 + @

products

and for acenaphthylene N03 radical addition to the cyclopenta-fused >C=C<
bond is the dominant reaction pathway (Atkinson and Aschmann, 1988).
Table 7 gives the available rate constant data for the N03 radiecal
reactions which proceed by H-atom abstraction from, or N03 radical
addition to, the substituent groups, and these reaction pathways are
experimentally kinetically equivalent to an H03 radical reaction,

Table 8 gives the rate coefficients k,,. (where k .. = k k. /k,) for
the reactions of NO; radicals with the aromatic ring(s), and these
reactions are experimentally kinetically equivalent to reaction with
N205. The rate coefficients for a reaction with N205, kNZO , may be
readily obtained from kg,  since kN20 = kopg/K, where is the
equilibrium constant for the N03 + H02 : N20 reactions and is given by
(Atkinson, 1990a) K = 1.26 x 10727 e11275/T o3 polecure~! (3.41 z 10°M
cm3 molecule™! at 298 K).
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The reactions which involve the initial addition of the NO3 radical
to the aromatic ring (termed hereafter an N205 reaction for simplicity)
lead to the formation of nitroarenes (Pitts et al., 1985a; Sweetman et
al., 1986; Atkinson et al., 1987, 1990a; Zielinska et al., 1989a; Arey et
al., 1989b), and these nitroarene yield data are given in Table 6. The
reaction routes involving N03 radical interaction with the substituent
group(s) do not lead to the formation of nitroarenes, as expected from the
likely subseguent chemistry (Atkinson, 1990b). The other products of
these gas-phase "N205" reactions of the PAH are presently not known with
any certainty, although they may include hydroxynitro-PAH.

4. 03 Reactions

The available rate constant data for reaction of PAH with 03 are
given in Table 9. Only for acenaphthylene has gas-phase reaction been
observed (Atkinson and Aschmann, 1988), and reaction is also expected to
occur for acephenanthrylene (Zielinska et al., 1988). Clearly, these PAH
react with 03 by addition of 03 at the cyclopenta-fused ring >C=C< bond
(Atkinson and Aschmann, 1988).

5. Photolysis

No evidence has been observed for the gas-phase photolysis of the
2-4 ring PAH (Atkinson et al., 198l4; Biermann et al., 1985; Atkinson and
Aschmann, 1986, 1988). However, photolysis of 1- and 2-nitronaphthalene
and 2-methyl-1-nitronaphthalene has been observed under ambient outdoor
sunlight conditions (Atkinson et al., 1989a; Arey et al., 1990b).
Photolysis of i-nitronaphthalene, 2-methyl-1-nitronaphthalene and the 2-,
7- and B8-nitrofluoranthenes (the nitrofluoranthenes being totally
particle-associated under atmospheric conditions) have also been observed
in an indoor chamber with blacklamp irradiation (Atkinson et al., 1989a,
1990a; Arey et al., 1990b), with the photolysis rates of the 1-nitro-
naphthalene and 2-methyl-l-nitronaphthalene in the indoor chamber being
approximately an order of magnitude higher than under ambient conditions
(Atkinson et al., 1980a; Arey et al., 1990b). The photolysis rates are
given in Table 10.

6. Atmospheric Lifetimes of Gas-Phase PAH and PAH-Derivatives

The photolysis and reaction rate data given above can be combined

with the ambient radiation flux and the ambient concentrations of OH and
NO3 radicals, NO, and 03 to allow the estimation of the lifetimes of the
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Table 10. Measured Photolysis Rates, kpp .+, of PAH and PAH-Derivatives
in a 6400 Liter Indoor TefloP Crhamber with Blacklight
Irradiation and Outdoors in a 1000 Liter Outdoor Teflon
Chamber with Sunlight Irradiation?®

10" % kopop (7))

Arcmatic Indoors Outdoors
1-Nitronaphthalene 15.9 £ 1.1 1.37 £ 0.10
2-Nitronaphthalene <2 1.06 £ 0.08
1,4-Naphthoguininone 1.1 2 0.8 ~0.9
2-Methyl-1-nitronaphthalene 37T+ 7 1.1 £ 0.3
3-Nitrobiphenyl <0.17
NO, 78 43

3From Atkinson et al. (1989a) and Arey et al. (1990b).

PAH and PAH-derivatives with respect to each of these tropospheric loss
processes. These lifetime data are given in Table 11, For the PAH not
containing cyelopenta-fused rings, the dominant tropospheric loss process
is by reaction with the OH radical, with calculated lifetimes of 1 day or
less {note that OH radical reaction only occurs during daylight hours).
The PAH containing cyclopenta-fused rings such as acenaphthene, acenaph-
thylene and acephenanthrylene are expected to also react with N03 radicals
at a significant rate. (Note that N03 radical addition to the fused rings
of the PAH is not significant as a tropospheric loss process for the
PAH.) PAH having unsaturated cyclopenta-fused rings, such as acenaph-
thylene, acephenanthrylene and cyclopenta[cdlpyrene (MW 226), are expected
to react with O3 at a significant rate.

In contrast to 03 and the OH radical, which are ubiquitous at
reasonably consistent (on a day-to-day level) ambient concentrations (see,
for example, Logan, 1985; Prinn et al., 1987; Arey et al., 1989a), the
ambient concentrations of the N03 radical in the lower troposphere over

continental areas exhibit large variations, with the mixing ratios ranging
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Table 11. Calculated Atmospheric Lifetimes of PAH and PAH—Derivatives Due
to Photolysis and Gas-Phase Reaction with OH and N03 Radicals

and 03
Lifetime due to reaction with
PAH on2 NO5° 04° Photolysisd
Naphthalene 8.6 hr 100 days >80 days
1-Methylnaphthalene 3.5 hr 50 days >125 days
2-Methylnaphthalene 3.6 hr 40 days >40 days
2,3-Dimethylnaphthalene 2.4 hr 25 days >40 days
Biphenyl 2.1 days »20 yr >80 days
Acenaphthene 1.8 hr 2.5 hr »30 days
Acenaphthylene 1.7 hr 13 min ~43 min
Phenanthrene 6.0 hr
Anthracene 1.4 hr
Fluoranthene ~3.7 hrt -85 days
Pyrene ~3.7 hr€ ~30 days
1-Nitronaphthalene 2.9 days 3.6 yr >28 days 1.7 hr
2-Nitronaphthalene 2.8 days 4.0 yr »28 days 2.2 hr
1,4-Naphthoguinone 5.0 days >100 days >80 days ~2,6 hr
2-Methyl-1-nitro- »1.8 days 4.0 yr »55 days 2.1 hr
naphthalene

8For a 12-hr daytime average OH radical concentration of 1.5 x 106 mole-

cule cm™3 (Prinn et al., 1987).
Peor a 12-hr average nighttime NO3 radical concentration of 2.4 x 108
molecule cm™3 and an NO, concentration of 2.4 x 102 molecule cm™3

(Atkinson et al., 1986).
CFor a 2U-hr average 03 concentration of 7 x 10"7 molecule cm™3 (Logan, 1985).
dFor an average 12-hr daytime NO, photolysis rate of Jyo, * 5.2 x 10"3 s-1.
€ysing estimated OH radical reaction rate constant of 5 x 10~11 en3
molecule™! s~) based on rate constant correlation with ionization poten-

tial (Biermann et al., 1985; Arey et al,, 1990b; Atkinson et al., 1990a).
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from <2 parts-per-trillion (ppt) to 430 ppt (Atkinson et al., 1986), and
the ambient tropospheric concentration of the N03 radical at any given
time (during nighttime) and place must be viewed as being uncertain by at
least a factor of 10, Hence to a good approximation the dominant
tropospheric removal process for the PAH is by daytime reaction with the
OH radical, leading to lifetimes of ~8 hours or less.

As seen from the rate constant data given in Table 5 and from the
calculated lifetimes in Table 11, the presence of the nitro- substituent
group in the nitroarenes leads to a marked decrease in their reactivity
towards the OH radical. To date kinetic and product studies have only
been carried out for three gas-phase fused-ring nitroarenes (Atkinson et
al., 1989a; Arey et al., 1990b), and photolysis will be the dominant
tropospheric removal process for these compounds, with calculated
lifetimes of ~2 hrs.

7. Evidence for Atmospheric Transformations of PAH

The recent ambient air measurement study of Arey et al. (1989a)
provided clear evidence for the reactions of the volatile PAH with the OH
radical, with the nighttime/daytime concentration ratios exhibiting a
clear linear correlation with the OH radical reaction rate constant
(Figure 2). From an estimate of the nighttime dilution rate, provided by
the daytime/nighttime ratio of 3-nitrobiphenyl [a nitroarene believed to
be formed only in the atmosphere from the daytime reaction of biphenyl
with the OH radical in the presence of NO, (Atkinson et al., 1987)], an
average 12-hr daytime OH radical concentration of 2.2 x 106 molecule em™3
(during August) was derived, uncertain to at least a factor of 2. This
estimated OH radical concentration in an urban area is essentially iden-
tical to the annually averaged global tropospheric 12-hr daytime OH
radical concentration of 1.5 x 106 molecule em™3 (Prinn et al., 1987) and
provides very strong evidence that the gas-phase PAH do react in the trop-
osphere. Furthermore, as discussed in detail in the literature (Nielsen
et al., 1984; Pitts et al., 1985b; Nielsen and Ramdahl, 1986; Sweetman et
al., 1986; Arey et al., 1986, 1987, 1989a,b, 1990a; Ramdahl et al., 1986;
Zielinska et al., 1988, 1989a,b; Atkinson et al., 1988), many of the
nitroarenes observed in ambient air are only formed in the atmosphere
through the gas-phase reactions of the 2-4 ring PAH. For example,

nitroarene isomers observed both in OH radical-initiated reactions of the
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Figure 2. Plot of the average nighttime/average daytime concentration

ratio for the volatile PAH measured in Glendora, CA against
their OH radical reaction rate constants (Adapted from Arey et
al. 198%a).
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parent PAH and in ambient air samples, but not in diesel exhaust samples
include: 2-nitrofluoranthene, 2-nitropyrene, 3-nitrobiphenyl and 2-
methyl-T-nitronaphthalene (Arey et al., 1989b; Zielinska et al., 1689a).
The importance of atmospheric formation of nitroarenes is clear from
a comparison of the calculated and observed 3-nitrobiphenyl, 1- + 2-nitro-
naphthalene, 2-nitrofluoranthene and 2-nitropyrene concentrations at two
sites in southern California (Arey et al., 1990b). The predicted concen-
trations of these nitroarenes were calculated from the reaction rate
constants (Table 5) and nitroarene product formation yields (Table 6) of
the OH radical-initiated reactions of biphenyl, naphthalene, fluoranthene
and pyrene, respectively, using estimated OH radieal concentrations and
the measured ambient parent PAH concentrations, and incorporating the
photolysis loss of the nitronaphthalenes (Table 10). There was excellent
agreement between the calculated nitroarene concentrations and the
measured ambient concentrations of .the nitroarenes at both sites (Table
12). Only the nitronaphthalenes are expected to be present in direct
emissions such as diesel exhaust, and the slightly higher predicted than
observed concentrations for the nitronaphthalenes suggests that atmos-
pheric formation of these species dominates over their direct emission, at

least at these two sites and at the time of the measurements.

Table 12. Ambient Nitroarene Concentrations at Torrance, CA in February
1986 and Glendora, CA, in August 1989 (Arey et al., 1990b)

12-Hr Average Daytime Concentration (ng m'3)

TORRANCE GLENDORA
Measured Calculated Measured Calculated

1- + 2-Nitro-

naphthalene 5.9 15 I § 8.0
3-Nitrobiphenyl 6.0 2.4 1.0 1.2
2-Nitrofluoranthene 0.3 1.3 0.27 0.41
2-Nitropyrene 0.04 0.15 0.012 0.028
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E. Adsorbed-Phase Loss Processes of PAH and PAH-Derivatives

In addition to the physical removal of the particles (Section C) with
which the =MW 252 PAH and some fraction of the four-ring PAH are asso-
ciated, the particle-associated PAH can also be transformed by a number of
chemical processes in the adsorbed phase. These include photolysis and
reaction with 03, 505, NO, and/or HNO3 and N205, and a large number of
experimental investigations of these potential reaction pathways have been
carried out (see, for example, Jager and Rakovic, 1974; Lane and Katz,
1977; Pitts et al., 1978, 1980, 1985c, 1986; Katz et al., 1979; Hughes et
al., 1980; Jager and Hanus, 1980; Korfmacher et al., 1980a,b, 1981; Peters
and Seifert, 1980; Blau and Gtisten, 1981; Butler and Crossley, 1981;
Tokiwa et al., 1981; Daisey et al., 1982; Brorstrém et al., 1983; Grosjean
et al., 1983; Nielsen et al., 1983; Ramdahl et al., 198l4; Valerio et al.,
1984, 1987; Van Vaeck and Van Cauwenberghe, 1984; Wu et al., 1984; Behymer
and Hites, 1985, 1988; Benson et al., 1985; Brorstrdm-Lunden and Lindskog,
1985; Kamens et al., 198%a,b, 1986, 1988, 1989; Lindskog et al., 1985; Wu
and Niki, 1985; Yokley et al., 1985, 1986; Gusten, 1986; Ménard et al.,
1986; Schuetzle and Frazier, 1986; Takeda and Teranishi, 1986; Cope and
Kalkwarf, 1987; Holloway et al., 1987; Arey et al., 1988; Coutant et al.,
1988; Nielsen, 1988; Greenberg, 1989). Interpretation of the experimental
data obtained from the laboratory studies is rendered difficult due to the
diverse substrates used, and in many cases conflicting data have been
obtained. As discussed below, some differences may be attributed to the
availability of the PAH for reaction, i.e., whether present as an adsorbed
surface layer or included in the particles, or whether the particles were
"freshly" emitted or were "aged" particles.

Benzo[alpyrene (BaP) is a carcinogenic (IRAC, 1983) PAH often
measured as a surrogate for all toxic PAH in ambient air particles. As
noted in Section C, BaP (MW 252) will be particle-associated in ambient
air and gas-phase reactions of BaP will be unimportant. Since the
adsorbed-phase reactions of BaP have been studied more than those for any
other single PAH, and in addition, BaP is considered to be among the more
reactive PAH (Nielsen, 1984; Greenberg and Darack, 1987), it is appro-
priate to discuss the adsorbed-phase reactions of BaP in some detail. As
can be seen from Table 13, which gives Nielsen's reactivity classifica-
tions toward electrophilic reactions, BaP is in Class 2 of a five class
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Table 13. Reactivity Scale of PAH (Including Benzene and Biphenyl) in
Electrophilic Reactions (from Nielsen, 1984)

Class 1: benzo[a]tetracene, dibenzo[a,h]pyrene, pentacene, tetracene

Class 2: anthanthrene, anthracene, benzo[alpyrene, cyclopenta[c,dlpyrene,
dibenzola,l]pyrene, dibenzo[a,ilpyrene, dibenzo[a,c]tetracene,

perylene

Class 3: benz[alanthracene, benzo[g)chrysene, benzo[ghi]perylene,

dibenzo[a,elpyrene, picene, pyrene

Class 4: benzo[c)chrysene, benzolclphenanthrene, benzo[e]pyrene,

chrysene, coronene, dibenzanthracenes, dibenzo[e,l]pyrene
Class 5: acenaphthylene, benzofluoranthenes, fluoranthene, indeno[1,2,3-
cd]fluoranthene, indeno[1,2,3-cd]pyrene, naphthalene,

phenanthrene, triphenylene

Class 6: benzene, biphenyl

(Class 1 being the most reactive) scale. The PAH in Class 1 have not
generally been observed in significant concentrations in diesel exhaust.

1. Reaction wWwith 03
Benzo[a]pyrene. The results obtained concerning the stability of

BaP adsorbed onto surfaces in the presence of 03 are disparate. Thus,
Katz and coworkers (Katz et al., 1979) and Peters and Seifert (1980)
observed that BaP reacted in the presence of ambient levels of 03, and
Pitts et al. (1980) identified the BaP-U,5-epoxide as a product of the
reaction of 03 with BaP deposited onto glass fiber filters. These studies
indicated a BaP lifetime with respect to reaction with 03 {at ambient
concentrations, i.e., levels reached in polluted atmospheres) of the order

of an hour. In contrast, Grosjean et al. (1983) observed no loss of BaP,
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either deposited onto blank filters or on filters coated with ambient
particles, fly ash or diesel particles, when exposed to 100 ppb of ozone
for three hours. Brorstrdm et al. (1983) observed no definitive evidence
for losses of BaP (or other PAH) under high-volume sampling conditions
with the addition of 200 ppb of 03. However, it should be noted that in
this latter study, no BaP was added to the ambient particles.

In contrast, the relatively recent studies of Van Vaeck and Van
Cauwenberghe (1984), Lindskog et al. (1985) and Pitts et al. (1986) all
obtained data showing that BaP exhibited significant losses (typically
50%) when exposed to 50-1500 ppb of O3 for time scales of 0.5-6 hr. Thus,
Van Vaeck and Van Cauwenberghe (1984) observed that the percentage conver-
sion of BaP in diesel exhaust particles, when exposed to 1.5 ppm of 03
under high-volume sampling conditions, increased slightly with the
exposure time, from 62% at 0.5 hr to 87% at 4 hr. Lindskog et al. (1985)
observed conversions of BaP, on soot generated in a smoke generator, at 6
hr exposure times [45% relative humidity (RH)] increasing from 3% at 0.1
ppm 03 to B80% at 1.0 ppm 03. Pitts et al, (1986) observed an approxima-
tely 50% conversion of BaP, independent of the 03 concentration (0.05-0.29
ppm 03 at 1% RH) and of the humidity (1-50% RH at 0.20 ppm 03), for a 3 hr
exposure time. In the study of Pitts et al. (1986), BaP was either
adsorbed on filters or present in particles collected close to a freeway,
and the exposures were both passive (in a chamber) and in a flow system.
Another recent study found degradation of BaP on ambient particles
enriched with BaP and exposed to 0.18 ppm 03, but no degradation on
ambient particles sampled with an 03 enriched (0.18 ppm) vapor stream
(Coutant et al., 1988).

These data are generally consistent with the fact that BaP reacts
with 03, providing that the BaP is available for reaction. This 1is
suggested by the often initially rapid BaP degradation followed by signif-
icantly slower BaP losses (Pitts et al., 1986; Coutant et al., 1988).
Those experiments in which BaP was coated or deposited onto surfaces
should then exhibit reactive losses of BaP, as generally observed (Katz et
al., 1979; Peters and Seifert, 1980; Pitts et al., 1980, 1986). Fresh
diesel particles (Van Vaeck and Van Cauwenberghe, 1984) and ambient
particles collected near a freeway (Pitts et al., 1986) also showed BaP
losses upon exposure to 03. In contrast, BaP included in particles, as
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may be expected to be the case for aged particulate matter or particles to
which condensation of secondary aerosol has occurred (expected to be the
case in urban atmospheres), will not be available for reaction with
gaseous ozone and hence under these conditions BaP will be observed to be
nonreactive (Brorstrdm et al., 1983; Coutant et al., 1988).

Other PAH. The general conclusions drawn above concerning the
reactions of BaP with ozone are also expected to apply for the other PAH,
and this is supported by the available experimental data (see, for
example, Brorstrtm et al., 1983; Grosjean et al., 1983; Van Vaeck and Van
Cauwenberghe, 1984; Lindskog et al., 1985; Pitts et al., 1986; Coutant et
al., 1988; Greenberg, 1989). Thus, PAH included in particles will be
essentially non-reactive, while those present on the particle surfaces
will react with 03, consistent with their reactivities toward 03. The PAH
which may be expected to be more reactive than BaP toward 03 include the
linear PAH (not generally very abundant in diesel exhaust) and the group
of PAH containing an unsaturated cyclopenta-fused ring fi.e., with an
extracyclic olefinic linkage] (Greenberg, 1989). Apart from the PAH with
unsaturated cyclopenta-fused rings [as noted above, acenaphthylene, a gas-
phase PAH with an unsaturated cyclopenta-fused ring, reacts in the gas-
phase with 05 (Atkinson and Aschmann, 1988)], the reactivities of the PAH
toward electrophilic reaction with 03 are expected to follow Nielsen's
reactivity scale (Table 13).

2. Reaction with Oxides of Nitrogen

Benzo[a]pyrene. A number of studies have been carried out to

investigate the reaction of BaP when BaP-associated particles are exposed
to oxides and oxyacids of nitrogen (Pitts et al., 1978, 1985; Jidger and
Hanus, 1980; Butler and Crossley, 1981; Grosjean et al., 1983; Brorstrom
et al., 1983; Ramdahl et al., 1984; Yokley et al., 1985; Lindskog et al.,
1985; Brorstrom-Lunden and Lindskog, 1985; Kamens et al., 1986; Arey et
al., 1988). Although all of these studies observed losses of BaP and,
generally, formation of nitro-BaP upon exposure of BaP-containing
particles to NO, and/or HN03, the data reported are conflicting as to
whether N02 or HN03 is the reactive species. In recent studies in which
HNO3 was removed from the NO, exposure gas, no reaction of adsorbed BaP
with NO, was observed (Grosjean et al., 1983; Yokley et al., 1985). 1In
contrast, Lindskog et al. (1985) did not detect any reaction of BaP on
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soot with HONO or HN03, but did observe reaction with NO, and NO, + HN03
mixtures. In this latter study, the buffering effect of the soot may have
played a role, and oxy- rather that nitro-PAH derivatives were generally
observed as products.

Other PAH. Recent studies of pyrene in methylene chloride
solution did not result in nitration when HNO3 was present, but resulted
in the formation of dinitropyrenes when N>0, was present (Ross et al.,
1987). These recent results of Ross and coworkers (1987) suggest that the
role of HN03 in the nitration of PAH adsorbed on diesel soot may be to
react with the soot, leading to deactivation of the soot surface and thus
allowing the limited amount of NO,/N,0y to nitrate the PAH. Whether under
ambient conditions HN03 alone can react to nitrate PAH adsorbed on diesel
soot remains in question. These PAH reactions are substrate dependent
(Jager and Hanus, 1980; Ramdahl et al., 1984; Yokley et al., 1985) and, as
noted above for the 03 reactions, presumably require that the PAH be
accessible for reaction.

A number of studies have been carried out in which several PAH, in
addition to BaP, were examined (Butler and Crossley, 1981; Tokiwa et al.,
1981; Brorstrom et al., 1983; Ramdahl et al., 1984; Lindskog et al., 1985;
Pitts et al., 1985c). In these studies in which several PAH were
examined, the nitro-PAH formed were the isomers expected from electro-
philic nitration and the amounts of reaction followed the reactivity
ranking of the PAH toward electrophilic nitration (Nielsen, 198U4; Table
13). An apparent exception is a tentative identification of 2-nitro-
pyrene, in addition to 1-nitropyrene, from exposure of pyrene adsorbed on
silica gel to NO, in Ny in the presence of light (Wu and Niki, 1985).

In ambient air, NO, and HNO3 will both be present. Recently, Arey et
al. (1988) studied the disappearance of perdeuterated fluoranthene,
pyrene, BaP, and perylene adsorbed onto ambient particles, and the forma-
tion of the perdeuterated nitro-PAH under high-volume sampling conditions
during a wintertime high-NO, (maximum NO, concentrations approximately 1
ppm) pollution episode in the Los Angeles air basin. BaP-d, losses of
~40% were observed during the daylight sampling periocd on one of the two
days, possibly mainly due to 03 reaction., In contrast, no obvious overall
losses of the perdeuterated fluoranthene or pyrene occurred, although
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these PAH volatilized from the filters onto the downstream polyurethane
foam (PUF) plugs. The data for perylene-d,, 10Ss was inconclusive.

The nitro-PAH isomers formed during the ambient air sampling were
perdeuterated 3-nitroperylene, f-nitroBaP, and 1-nitropyrene. The amounts
formed followed the ranking expected from the reactivity of the parent PAH
toward electrophilic nitration. The maximum nitro-PAH yield was 0.1% of
3-nitroperylene-d,4 and it was estimated that the 1-nitropyrene artifact,
i.e., the amount formed during sample collection, was only ~0.1% of the 1-
nitropyrene present on the particles. Thus, the formation of nitro-PAH
under ambient conditions is likely to be unimportant, especially if most
of the ambient particle-adsorbed PAH are unavailable for reaction,

3. Photolysis

Numerous studies have been carried out to investigate the
photolysis and photooxidation of BaP and other PAH on various surfaces
(Korfmacher et al., 1980; Blau and Gusten, 1981; Behymer and Hites, 1985,
1988; Kamens et al., 1985, 1986; Yokley et al., 1986; Valerio et al.,
1987). All studies employing a range of substrates have concluded that
photolysis rates are highly substrate dependent (Korfmacher et al., 1980;
Behymer and Hites, 1985, 1988; Yokley et al., 1986), with the darker
substrates leading to lower photolysis rates, presumably due to stabiliza-
tion of the PAH incorporated in the particles (Behymer and Hites, 1985,
1988; Yokley et al., 1986).

Kamens et al. (1988) observed that the PAH photolysis rates (on
freshly generated wood and gasoline combustion soot) depended on the
temperature and ambient water concentration, with, for example, a BaP
lifetime at 293 K and ~50% relative humidity at midday of ~1 hr. In
contrast, for dark fly ashes, half-lives on the order of several days were
observed for BaP (Behymer and Hites, 1988). The relative reactivities of
the alternant PAH followed the general reactivity ranking shown in Table
13. Specifiecally, Behymer and Hites (1988) found for the following PAH
isomer pairs that phenanthrene is more stable than anthracene, chrysene is
more stable than benz[a)anthracene, benzo[e]pyrene is more stable than BaP
and benzo[ghilperylene is more stable than the linear PAH anthanthrene.
Once again it ean be concluded that PAH are reactive, and thus may be
expected to photolyze in ambient atmospheres, but the extent to which this

occurs will depend on the exact nature of the adsorbed state.
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Cope and Kalkwarf (1987) and Kamens et al. (1989) have investigated
the photooxidation of certain adsorbed oxygenated PAH and have found these
to be generally stable to sunlight, but to decay under the influence of
light and 03.

4. Ambient Air Data

Further information concerning the atmospheric reactions and

lifetimes of PAH arises from ambient air data. Arey et al. (1988} have
shown that under wintertime high-NOx conditions in southern California
(with mid-day temperatures attaining 95 °F) losses of BaP-d;, during 12-hr
sampling periods were <40%, and nitration of BaP-d,, was of negligible
importance. Losses of particle-incorporated BaP would, presumably, have
been lower, From an analysis of ambient air and combustion emissions
data, Schuetzle and Frazier (1986) found that the benzo[e]ppyrene/benzo-
[alpyrene ratio (BeP/BaP) in ambient air of ~1.8 was very similar to the
ratio observed in emission sources. Since BaP is much more reactive than
BeP toward electrophilic reaction (Nielsen, 1984), reaction with Og {Van
Vaeck and Van Cauwenberghe, 1984) and photolysis (Behymer and Hites,
1988), this observation suggests that once the BaP and BeP are adsorbed on
particles they do not undergo significant degradation in the atmosphere.

Nielsen (1988) investigated the dependence of the BaP/BeP and cyclo-
pentalcd]pyrene/chrysene + triphenylene ratios on the wind direction, and
hence the vicinity of the source, in Denmark. Higher PAH concentrations
were associated with local sources, and the BaP/BeP and cyclopentalcd]-
pyrene/chrysene + triphenylene ratios were found to correlate with the BeP
and chrysene + triphenylene concentrations, respectively, suggesting that
BaP and cyclopenta[cd]pyrene were being degraded in the atmosphere. The
author concluded that the decay rates of these two PAH were relatively
fast (Nielsen, 1988). From ambient winter and summer measurements in New
Jersey, Greenberg (1989) confirmed the findings of Nielsen that BaP and,
especially, cyclopenta[cd]pyrene are reactive under atmospherie
conditions.

Atkinson et al. (1988) measured PAH and PAH-derivatives at seven
sites throughout California. Consistent with the work of Nielsen, the
sites with the highest BaP/BeP ratios, Mammoth Lakes (BaP/BeP = 1.5) and
Concord (BaP/BeP = 1.3), also had the highest BeP concentrations.
Furthermore the BaP/BeP ratio was lowest at Glendora (BaP/BeP = 0.35) a
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site where significant atmospheric reaction had occurred, as evidenced by
the formation of 2-nitropyrene from pyrene (Atkinson et al., 1988). (For
a complete discussion of the PAH transformations in the atmospheres
sampled see Section X of Atkinson et al., 1988.) The apparent inconsis-
tency in the data of Schuetzle and Frazier (1986) and that of Nielsen
(1988) and Atkinson et al. (1988) probably reflects differences due to
comparisons of averaged values from generally aged emissions {Schuetzle
and Frazier, 1986) versus BaP concentrations resulting from a single
emission source (such as wood smoke at Mammoth Lakes) and/or fresh
emissions (Nielsen, 1988; Atkinson et al., 1988).

F. Atmospheric Formation Processes

There are no atmospheric formation pathways for PAH. PAH are present
in essentially all combustion systems and sources of the PAH present in
ambient air will include, in addition to diesel exhaust, emissions from
gasoline-fueled automobiles, industrial processes, domestic heating
systems, waste incineration facilities, tobacco smoking, agricultural
burns and several natural sources, including forest fires and volecanic
eruptions (Nikolaou et al., 1984).

In contrast to the PAH, nitro-PAH and other PAH derivatives
(including hydroxy-PAH) are formed in the atmosphere from the gas- and
adsorbed-phase reactions of the parent PAH, as well as being directly
emitted from combustion sources. As discussed in Section D, the reactions
of the gas-phase PAH appear to dominate in the formation of nitro-PAH (and
other PAH derivatives) 1in the atmosphere. In ambient air studies
conducted in California, the majority of the nitro-PAH observed are formed
from the gas-phase atmospheric reactions of the parent PAH (Arey et al.,
1987, 1989a, 1990a; Atkinson et al., 1988; Zielinska et al., 1989p). It
should be noted that a large fraction of the atmospheric transformation

products of the gas-phase PAH remain unidentified.
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