1

## DETERMINATION OF SULFURIC ACID, TOTAL PARTICLE-PHASE ACIDITY AND NITRIC ACID IN AMBIENT AIR

(Contract No. ARB A6-209-30)

Final Report

June 1979

#### Prepared by

# B. R. Appel, Y. Tokiwa, S. M. Wall, M. Haik, E. L. Kothny and J. J. Wesolowski

Air and Industrial Hygiene Laboratory Laboratory Services Branch California Department of Health Services 2151 Berkeley Way Berkeley, CA 94704

Prepared for: California Air Resources Board Research Section P. O. Box 2815 Sacramento, CA 95812 The statements and conclusions in this report are those of the Contractor and not necessarily those of the State Air Resources Board. The mention of commercial products, their source or their use in connection with material reported herein is not to be construed as either an actual or implied endorsement of such products.

#### ABSTRACT

A study was conducted to evaluate measurement methods for sulfuric acid, strong acids in particulate matter, and nitric acid in ambient air. Selective extraction of  $H_2SO_4$  with benzaldehyde and titrimetry for strong acids were evaluated and compared using laboratory-generated mixtures of  $\leq 0.3 \ \mu\text{m}$  diameter  $H_2SO_4$ ,  $(NH_4)_2SO_4$ , and  $NH_4HSO_4$  aerosols on clean and atmospheric particulate-loaded filters. Filter media were selected based on filtration efficiency and acid recovery with  $\leq 0.3 \ \mu\text{m}$  H<sub>2</sub>SO<sub>4</sub> aerosols. Nitric acid collection by filter methods (NaCl-impregnated cellulose and nylon filters) were compared at varying HNO<sub>3</sub> concentrations, relative humidity levels and flow rates. Quantitation of nitric acid, as nitrate, employed an automated copper-cadmium reduction plus diazotization procedure. An ammonia denuder was employed in field sampling together with removal of non-respirable particles to increase the stability of  $H_2SO_4$  following collection.

The presence of atmospheric particulate matter was shown to sharply reduce recoveries of laboratory-generated  $H_2SO_4$  but recoveries of total strong acid usually remained  $\geq 60\%$ . Anhydrous benzaldehyde was found to extract NH<sub>4</sub>HSO<sub>4</sub> to a substantial degree. Laboratory-generated nitric acid was collected with high efficiency by both nylon and NaCl-impregnated filters while nitrogen dioxide was not retained by these filters at 90\% R.H. The ammonia denuder was shown to remove ammonia with > 99\% efficiency.

Samples collected in Pittsburg, CA showed good correlation between sulfuric acid and particulate strong acid measurements. As much as  $0.6 \ \mu g/m^3 \ H_2SO_4$  and  $1.6 \ \mu g/m^3$  acidity, expressed as  $H_2SO_4$ , was found. However, based on recovery studies we believe these represent lower limit values. Excellent agreement was found between nitric acid measurement by nylon and NaCl on cellulose filter collection with concentrations up to  $4 \ \mu g/m^3$ . Simultaneous gas phase ammonia measurements were made to assist in interpreting the particulate sample results. Glass fiber filters were shown to collect, quantitatively, both particulate nitrate and gas phase nitric acid. This is consistent with earlier studies of artifact particulate nitrate formation.

#### EXECUTIVE SUMMARY

A combined laboratory and field study has investigated methods for the determination of sulfuric acid and strong acids in atmospheric particulates as well as nitric acid, a gas at ambient concentrations. The procedures for particulate acids employed sampling with inert filters, processing of samples under conditions designed to preserve strong acids followed by analytical techniques appropriate for sulfuric acid ( $H_2SO_4$ ) and strong acids. To stabilize strong acids on filters, > 3 µm particles, which can contain alkaline soil components, were excluded. In addition, with one sampler, atmospheric ammonia was removed ahead of the filter by means of a diffusion denuder.  $H_2SO_4$  was determined by selective extraction with benzaldehyde followed by quantitation as sulfate by the AIHL microsulfate method. Strong acid was measured by microtitration with exclusion of carbon dioxide.

Nitric acid was sampled by collection on nylon, and on sodium chlorideimpregnated cellulose filters after removal of atmospheric particles with an inert pre-filter. The efficiency for collection of nitric acid was > 96% for NaCl-impregnated Whatman 41 filters. For nylon (Duralon) the efficiency appeared to depend on the total amount of nitric acid sampled. However, at atmospheric levels its efficiency was equivalent to that for NaCl-impregnated filters. Following its extraction, nitric acid was determined as nitrate by the automated copper-cadmiun reduction, diazotization procedure.

Based on filtration efficiencies and recovery studies with submicron sulfuric acid aerosol, acid-washed quartz fiber and one micron pore size Teflon filters were selected for use in sampling  $H_2SO_4$  and  $H^+$ . Recoveries of laboratory-generated  $H_2SO_4$  aerosol from clean filters ranged from 60 to 75%, and by titration, 80 to 100%. However, the presence of respirable atmospheric particulate (< 3.5 µm) matter reduced the recoveries of sulfuric acid to  $\leq 30\%$ . Recoveries of strong acid remained about 60% which is consistent with the formation of ammonium acid sulfate (NH<sub>4</sub>HSO<sub>4</sub>). In the absence of atmospheric particulate matter the efficiency for extraction of this acid sulfate by benzaldehyde was  $45 \pm 3\%$ , which is higher than that reported by other investigators. In the presence of atmospheric particulate matter, NH<sub>4</sub>HSO<sub>4</sub> was not extracted by benzaldehyde, however.

In three days of continuous sampling conducted at Pittsburg, CA, total strong acid and sulfuric acid maxima correlated well. Agreement between nitric acid methods was excellent. Ammonia and particle phase ammonium showed strong correlation consistent with the important role of ammonia as an aerosol precursor or reactant with acidic aerosols. Samples showed up to  $0.6 \ \mu g/m^3 \ H_2SO_4$  and  $1.6 \ \mu g/m^3$  strong acid expressed as  $H_2SO_4$ . Based on laboratory studies, these represent lower limit values. These results may be compared to the current sulfate standard of 25  $\mu g/m^3$  total water soluble sulfate (24 hour average).

A glass fiber filter, Gelman A, was shown to provide a measure of total nitrate (i.e. gaseous nitric acid plus particulate nitrate) rather than of particulate nitrate alone. This work confirms our prior studies demonstrating that gaseous nitric acid and not nitrogen dioxide (present at about  $40 \ \mu g/m^3$  during most of the field sampling) is the dominant contributor to artifact particulate nitrate.

. e. . . . . Principal conclusions from the current study are as follows:

- 1. Measurement of sulfuric acid and total acidity can be made by benzaldehyde extraction and titration with laboratory-generated  $H_2SO_4$  aerosol on clean filters with a recovery of > 60% of the true value. However, the presence of respirable atmospheric particulate matter decreased recoveries of  $H_2SO_4$  to below 30%. Strong acid recoveries usually remained above 60%. Furthermore, the elimination of large, soilrelated particles by use of a cyclone, alone, or in combination with ammonia removal is probably insufficient to permit measurement of  $H_2SO_4$  at least for samples collected from  $\geq 10 \text{ m}^3$  of air. Emphasis must be given to shorter term or lower flow rate sampling to decrease acid interaction with other aerosol constituents.
- 2. Additional work is needed to clarify the interference effects of ammonium acid sulfate in  $H_2SO_4$  and strong acid measurements.
- 3. Gaseous nitric acid can be measured by collection with either nylon or sodium chloride impregnated cellulose filters at ambient concentrations, with excellent agreement between methods. A 15% uncertainty in HNO<sub>3</sub> value remains, resulting from variability in the extent of nitric acid retained by adsorption on particulate-loaded pre-filters. This uncertainty should be eliminated by AIHL studies extending the present work.
- 4. Artifact nitrate formation on glass fiber filters in field sampling corresponded to the collection of 100% of the ambient nitric acid. Thus it is likely that nitrate values obtained by the present ARB Hi-vol network represent the sum of particulate nitrate and nitric acid rather than particulate nitrate, alone.
- 5. Further studies are needed employing continuous methods for  $H_2SO_4$  in an effort to overcome the large negative interference by other aerosol constituents. Since positive errors are more probable with continuous methods (e.g. volatilization of sulfate salts as well as  $H_2SO_4$ ), simultaneous application of continuous and the integrated techniques described herein should provide both lower and upper limits to the true  $H_2SO_4$  level.

|      |                                                                                             | Page |
|------|---------------------------------------------------------------------------------------------|------|
|      | Abstract                                                                                    | ii   |
|      | Executive Summary                                                                           | iii  |
|      | List of Figures                                                                             | vii  |
|      | List of Tables                                                                              | viii |
|      | Acknowledgements                                                                            | x    |
| Ŧ    |                                                                                             | r    |
| 1.   | Introduction                                                                                | -    |
|      | A. Sulfuric Acid and Particle Phase Acidity                                                 | 1    |
|      | B. Nitric Acid                                                                              | 2    |
|      | C. Chemistry of ${\rm HNO}_3$ as Related to ${\rm HNO}_3$ and Nitrate Sampling              | 6    |
| II.  | Technical Summary and Conclusions                                                           | 8    |
| III. | Sulfuric Acid Measurement by Selective Extraction                                           | 12   |
|      | A. Introduction .                                                                           | 12   |
|      | B. Method Development                                                                       | 14   |
|      | C. Benzaldehyde Purification and Storage                                                    | 16   |
| IV.  | The Microtitration Method for Strong Acid                                                   | 17   |
|      | A. Introduction                                                                             | 17   |
|      | B. Interference Studies and Alternatives to Use of a Gran's Plot                            | 21   |
| v.   | The West Method for Total Acidity                                                           | 27   |
|      | A. Introduction                                                                             | 27   |
|      | B. Evaluation                                                                               | 27   |
| VI.  | Evaluation of Filter Media for Sulfuric Acid and Particle Phase<br>Strong Acid Measurements | 32   |
|      | A. Artifact Sulfate Formation on Filters with Sulfur Dioxide                                | 32   |
|      | B. Efficiencies of Filter Media for $H_2SO_4$ Collection                                    | 32   |
| VII. | Evaluation of $H_2SO_4$ and Acidity Methods Using Laboratory Aerosols                       | 35   |
|      | A. Preliminary Study for Filter Selection                                                   | 35   |
|      | B. Recovery Studies with Inert Filters                                                      | 35   |
|      | C. Storage Stability of $H_2SO_4$ on Clean, Inert Filters                                   | 38   |

# Page

|       | D.         | Interference of Atmospheric Particulates in $\rm H_2SO_4$ Determination                                               | 38 |
|-------|------------|-----------------------------------------------------------------------------------------------------------------------|----|
|       | E.         | Interference of $(NH_4)_2SO_4$ in $H_2SO_4$ Determination                                                             | 42 |
|       | F.         | Interference of $NH_4HSO_4$ in $H_2SO_4$ Determination                                                                | 42 |
| VIII. | Nit        | tric Acid Measurement                                                                                                 | 47 |
|       | Α.         | Introduction                                                                                                          | 47 |
|       | в.         | Artifact Particulate Nitrate Formation                                                                                | 47 |
|       | C.         | Comparison of Nitric Acid Sampling Methods                                                                            | 49 |
| IX.   | Eva<br>Aci | luation of a Denuder for Ammonia Removal and of Oxalic<br>d Impregnated Filters for Ammonia Sampling                  | 53 |
|       | Α.         | Experimental Techniques                                                                                               | 53 |
|       | в.         | Results                                                                                                               | 55 |
|       | c.         | Stability of ${\rm H_2SO_4}$ on Filters in Particle and Armonia Free Air                                              | 58 |
| х.    | Fie        | ld Sampling Studies                                                                                                   | 60 |
|       | Α.         | Preliminary Trials-Berkeley                                                                                           | 60 |
|       | в.         | Trials in Pittsburg, CA                                                                                               | 60 |
| XI.   | Ref        | erences                                                                                                               | 73 |
| App   | endi       | ces                                                                                                                   | 7E |
|       | Α.         | Antilog Signal Processing for Gran's Titration                                                                        | 76 |
|       | в.         | Sulfuric Acid Aerosol Generation                                                                                      | 78 |
|       | с.         | Uniformity of $H_2SO_4$ Deposition and Sectioning of Filter Discs                                                     | 81 |
|       | D.         | Aerosol Generation with a Nebulizer                                                                                   | 83 |
|       | E.         | Nitrate Extraction and Analysis with Nylon and NaCl<br>Impregnated Filters                                            | 87 |
|       | F.         | Filter Heating Technique for Serial Filter Holder Samples                                                             | 89 |
|       | G.         | Collection of Ammonia on Acid Washed Pallfelx 2500 QAO<br>Quartz Fiber Filters                                        | 92 |
|       | H.         | AlHL Version of the Brookhaven Method for the Preparation of Quartz Filters for $H_2SO_4$ Sampling                    | 94 |
|       | I.         | Diurnal Variations for NO, $NO_2$ , $O_3$ , $SO_2$ , Soiling Index, Windspeed and Direction During Pittsburg Sampling | 98 |

------

ney en sista

-----

a a construction construction o activity of a construction of the construction of the second s

n dentification in a management of the second state of the second state of the second state of the second state

#### LIST OF FIGURES

#### Number

# Title

- 1 Comparison of Conventional Titrimetric Data (1A) and Linear Titration Plots Following Sample (S) and Titrant (T) Concentrations (1B)
- 2 Gran's Plot Titration of Mixed Acids
- 3 Degree of Neutralization of Acids in Titrations to a Given pH
- 4 Comparison of Observed and True Sulfuric Acid in Mixtures with Weak Acid
- 5 Comparison of AIHL and West Results for Calibration Curve (100 ml solutions)
- 6 Calibration Curve for West Method (10 ml solutions)
- 7 Diurnal Variations for Aerosol Constituents, Nitric Acid and Ammonia Pittsburg, California
- A-1 Gran's Plot Function Generator

B-1 Sulfuric Acid Aerosol Generator and Sampling System

D-1 Ammonium Sulfate Salts Aerosol Generator

- E-1 Nitrate Recovery as a Function of pH Using the Automated Cu-Cd Reduction-Diazotization Method
- F-1 System for Heating Filter Sampler to Desorb NH<sub>3</sub> and HNO<sub>3</sub>
- F-2 Isopleths for Relative Humidity at Varying Temperature
- H-1 Glass Rod Tray
- H-2 Class Rod Frame

# LIST OF TABLES

| Number | Title                                                                                                                                                              |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| l      | Summary of Nitric Acid Method in Current Use                                                                                                                       |
| 2      | Evaluation of Interferences to Coulometric Nitric Acid Monitoring                                                                                                  |
| 3      | Benzaldehyde Extraction of $H_2SO_4$ and $NH_4HSO_4$ from Filters                                                                                                  |
| ц      | The Effect of Benzaldehyde on Working Curves for the AIHL Micro-<br>sulfate Method                                                                                 |
| 5      | Anthropogenic Acids and Their Approximate Strength                                                                                                                 |
| 6      | Analysis of $ m H_2SO_4$ by Gran's Titration in Mixtures with Weak Acids                                                                                           |
| 7      | Interference Effects in H <sup>+</sup> Determination by Titrimetry                                                                                                 |
| 8      | Analysis of $ m H_2SO_4$ by the Nest Method in Mixtures with Weak Acids                                                                                            |
| 9      | Collection Efficiencies of Selected Filters for $\leq$ 0.3 µm Sulfuric Acid Aerosol (µg SO <sub>4</sub> =)                                                         |
| 10     | Preliminary Screening of $H_2SC_4$ Recovery from Candidate Filters (µg $SO_4 = /2$ filter)                                                                         |
| 11     | $H_2SO_4$ Recovery from Inert Filter Media (µg $SO_4^{=}/\frac{1}{2}$ filter)                                                                                      |
| 12     | Storage Stability of $H_2SO_4$ on Clean Filters (as $\mu g SO_4^{=}$ per filter)                                                                                   |
| 13     | Sulfuric Acid Recovery from Particulate-Loaded Filters ( $ec{a}$ )                                                                                                 |
| 14     | Interference of Ammonium Sulfate [(NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub> ] on Sulfuric Acid<br>Measurement (as µg sulfate per filter)                     |
| 15     | Interference of NH <sub>4</sub> HSO <sub>4</sub> on $H_2SO_4$ Determination on Clean Zefluor . Filters (as $\mu g$ sulfate per filter)                             |
| 16     | Interference of $NH_4HSO_4$ on $H_2SO_4$ Determination in the Presence of Atmospheric Particulate Matter (as $\mu g$ sulfate per filter)                           |
| 17     | Artifact Particulate Nitrate from Six-hour Exposures to $\rm NO_2$ at 90% R.H. with and Without Added $\rm NH_3$                                                   |
| 18     | Nitric Acid Collection on "Inert" Filters at 50% R.H. ( $\mu g/m^3$ )                                                                                              |
| 19     | Comparison of Methods for Nitric Acid Determinations (as $\mu g/m^3 NO_3^-$ )                                                                                      |
| 20     | Denuder Tube Configuration                                                                                                                                         |
| 21     | Efficiency of Oxalic Acid Impregnated Gelman AE Glass Fiber Filters for Ammonia Collection with Approximately 75 $\mu$ g/m <sup>3</sup> NH <sub>3</sub>            |
| 22     | Efficiency of the Ammonia Denuder at 22 lpm                                                                                                                        |
| 23     | Stability of $\leq$ 0.3 µm H <sub>2</sub> SO <sub>4</sub> Aerosol on Zefluor Filters in Particle Free Ambient Air Using an Ammonia Denuder and Gelman A Pre-filter |
| 24     | Sampling Strategy for Pittsburg Samples                                                                                                                            |
| 25     | Analysis of Zefluor Respirable Particulate Samples (with $\text{NH}_3$ denuder) from Pittsburg, CA $(\mu g/m^3)$                                                   |
| 26     | Analysis of Zefluor Respirable Particulate Samples (with NH3 denuder) from Pittsburg, CA $(\mu equiv/m^3) \ x \ 10^2$                                              |
| 27     | Analysis of Acid-Washed Quartz Respirable Particulate Samples from Pittsburg, CA ( $\mu g/m^3)$                                                                    |

viii

 name of our track strapport of the strapport

The second s

-----

المحاجب المحاجب بالموجب ويستعظم فالتعادي المحاور المحاج والمعار فيحر فيحير المحاجا المارد المروا بالمعاور موجها

#### Number

NA8 844 - 1

# <u>Title</u>

- 28 Analysis of Acid-Washed Quartz Respirable Particulate Samples from Pittsburg, CA (µequiv/m<sup>3</sup>) x 10<sup>2</sup>
- 29 Analysis of Nitric Acid and Ammonia Samples from Pittsburg, CA  $(\mu g/m^3)$
- 30 Analysis of Nitric Acid and Ammonia Samples from Pittsburg, CA  $(\mu equiv/m^3) \ x \ 10^2$
- 31 Comparison of Nitrate on Gelman A Glass Fiber Filters with Total Nitrate ( $\mu g \ NO_3^{-}/m^3$ )
- B-1 Results with the H<sub>2</sub>SO<sub>4</sub> Generator
- C-1 Uniformity of H<sub>2</sub>SO<sub>4</sub> Deposition on 47 mm Filters
- D-1 Comparison of Calculated and Observed Ammonium Concentration for Ammonium Sulfate Aerosols
- G-1 Collection of Ambient NH3 on Acid Washed Pallflex 2500 QAO Filters

and the second secon

#### ACKNOWLEDGEMENTS

The authors gratefully acknowledge Ms. Laurel Raftery and Mr. Jeffrey Benzing for their very capable assistance in the laboratory and in data reduction and display. The cyclone employed for low volume, respirable particulate matter sampling was designed and calibrated by Dr. N. John and co-workers.

Messrs. Dario Levaggi, Wayman Siu and Arthur Friedenburg of the Bay Area Air Quality Management District generously provided use of their Pittsburg Station facilities for field sampling as well as air monitoring data.

Special thanks are extended to Drs. Jack Suder and John Holmes of the California Air Resources Board for their continued interest and support.

#### I. INTRODUCTION

#### A. Sulfuric Acid and Particle Phase Acidity

California's significant harm level for airborne sulfate of  $25 \ \mu g/m^3$  is based upon water-soluble sulfate in 24-hour high volume filter samples. Such sulfate may include ammonium sulfate, ammonium acid sulfate, sulfuric acid as well as various metal and mixed metal ammonium salts. Some of these are relatively harmless (e.g., calcium sulfate), while others appear relatively hazardous (e.g., sulfuric acid). In part, the rationale for setting the California standard is based on the presumption that a significant route for formation of the currently measured water-soluble sulfate involves sulfuric acid; but the actual levels in the atmosphere are unknown. In part, because of the lack of specific data on ambient particulate sulfuric acid levels, the standard has met significant opposition. As yet, no technique has received general acceptance for determining sulfuri acid or any other individual sulfate compound in ambient air.

Existing techniques for determining sulfuric acid in ambient air may be divided into continuous and integrated methods. The continuous methods rely on such physical properties as changes in light scattering induced by the addition of ammonia (the humidified nephelometer technique)<sup>1,3</sup> to provide both qualitative and quantitative data on acid sulfates (i.e. sulfuric acid and/or ammonium acid sulfate). While acid sulfates were measured in St. Louis, none were detectable in Los Angeles by this technique.<sup>3</sup>

The greater volatility of sulfuric acid, relative to its ammonium salts, has been utilized in both continuous<sup>2-4</sup> and integrated methods.<sup>6</sup> One approximately continuous method employs an acid gas diffusion denuder to remove SO<sub>2</sub> and  $H_2SO_4$  when in gas phase.<sup>2</sup> By cycling the temperature of the ambient air pumped through the instrument up to about 150°C,  $H_2SO_4$  aerosol is vaporized allowing it to be trapped by the denuder. The decrease in sulfur reaching the flame photometric detector, relative to the level at room temperature, provides a measure of sulfuric acid. However, since  $H_2SO_4$  is measured by difference and since the level of SO<sub>2</sub> plus sulfate salts will generally by much greater than that of  $H_2SO_4$ , precision can be expected to be poor.

Integrated sampling techniques usually involve collection of  $H_2SO_4$ on a filter or in a liquid medium. EPA's Method 8 relies on an isopropanol-water solution as a trapping medium.<sup>5</sup> However, it is subject to substantial positive error from  $SO_2$ . Collection and analysis of sulfuric acid in filter samples has been studied extensively. The reader is referred to a recent review by Newman.<sup>7</sup> The problems inherent in determining ambient air concentrations of sulfuric acid from such samples result from both sampling and analytical errors, including:

1. Penetration through the filter.

•

2. Fixation and oxidation of  $SO_2$  to sulfate by interaction with the filter and adsorbed water.

the second se

- 3. Irreversible reaction of sulfuric acid and acid sulfates with the filter.
- 4. Oxidation of  $SO_2$  to  $H_2SO_4$  promoted by constituents of the collected atmospheric particulate matter which may be catalytically active (e.g., manganese, iron and vanadium compounds).
- 5. Neutralization of sulfuric acid and acid sulfates by basic particles (e.g.,  $CaCO_3$ ) or gaseous pollutants (e.g.,  $NH_3$ ), reaction with NaCl (and loss of HCl) or reaction with nitrate salts (and loss of HNO<sub>3</sub>).
- 6. Interference due to other sulfates [e.g., (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>, NH<sub>4</sub>HSO<sub>4</sub>].
- 7. Interferences in the quantitation method used due to other ionic species extracted from the filter medium or particulate matter (e.g.,  $Ca^{+2}$  and  $PO_4^{-}$  can be interferents in wet chemical methods).

Attempts to overcome some of these problems include reaction of sulfuric acid on the filter or within the sampler inlet to form a derivative which can still be distinguished from  $(NH_4)_2SO_4$  and  $NH_4HSO_4$ .<sup>42,43</sup> The Atlantic Research Institute's approach employed acetaldehyde oxime to form a salt with  $H_2SO_4$ .<sup>42</sup> Initial studies suggested this derivative was decomposed to a volatile, sulfur-containing species at a temperature well below the decomposition temperature for the ammonium salts. If true, the volatile sulfur species could be measured with a flame photometric detector to provide an indirect measure of  $H_2SO_4$ . However, recent work has demonstrated that the temperature for volatilization of these materials is particle size-dependent, limiting the potential for specificity.<sup>44</sup> This approach appears to have been abandoned.

Because of the rationale stated above for imposing the California sulfate standard, a need exists for a validated technique to monitor sulfuric acid. The present study was conducted in an effort to satisfy this need.

In addition to techniques specific for  $H_2SO_4$ , evaluation of techniques for total particulate strong acidity was included since this is conceptually simpler and possibly of equivalent medical significance.

### B. Nitric Acid

Under ambient conditions nitric acid is believed to exist principally in gas phase. The measurement of nitric acid in ambient air has been reported by Spicer, sampling at West Covina, California<sup>8</sup> and elsewhere, and by Okita, sampling in Tokyo<sup>9</sup>. For the California site, a mean maximum for the acid of about 25  $\mu$ g/m<sup>3</sup> was observed. Both the California and Japanese studies measured nitric acid in the gas phase. However, nitric acid may also exist in particle phase adsorbed on other aerosol constituents where it may contribute to the observed acidity of the aerosol (as well as to the observed nitrate). Such adsorption may occur both before and after collection of the aerosol on a filter. In addition to provible adsorption on particles, nitric acid has been demonstrated to coorb readily on various filter media. If ambient nitric acid adsorption filter media, it should contribute to the observed particulate nitrate as well as to particulate acidity. Appel et al<sup>10</sup>,<sup>11</sup> demonstrated that the pattern of artifact particulate nitrate formation in ambient air was consistent with nitric acid adsorption as the dominant precursor.

In addition to providing data on a potentially hazardous pollutant, a reliable technique for monitoring gaseous nitric acid in ambient air can be used (1) to assist in evaluating the extent of artifact particulate nitrate formation under conditions used for routine monitoring, and (2) to evaluate the contribution to the total particulate acidity of nitric acid adsorbed on filter media and aerosol constituents.

The nitric acid methods in current use and their corresponding investigators are listed in <u>Table 1</u>. The methods can be divided into continuous and integrated techniques. An exception is the Fourier Transform IR technique which was operated to provide analysis of grab samples at 20 minute intervals. The immobility, high cost, and sophistication of this procedure limit its general use.

The two continuous methods utilize an inert pre-filter to remove particle-phase nitrates and either a modified Mast coulometric ozone analyzer or a modified chemiluminescence  $NO-NO_2$  monitor. The Mast analyzer is converted to measure total gas phase acids by changing the chemicals employed and the instrument plumbing. By periodically diverting the sample air flow through a nylon filter to selectively remove  $HNO_3$ , the nitric acid concentration is obtained by difference. This approach suffers from relatively high instrument noise levels. Only Spicer and co-workers have been able to achieve the limit of detection quoted, 2-5 ppb. Spicer's evaluation of potential interference effects with this method is given in <u>Table 2</u>.

Only formic acid provides interference ( $\leq 10\%$ ) at realistic concentrations. However, the maximum formic acid level found in Los Angeles was 6 ppb implying  $\leq 0.6$  ppb interference. Spicer considers the electro-chemical method to be decidedly inferior to the chemiluminenescent analyzer approach in both limit of detection and response time.

The modified chemiluminescent  $NO_x$  monitor also uses a nylon filter to selectively remove  $HNO_3$  from one instrument channel. At  $300-325^{\circ}C$  $NO_2$ ,  $HNO_3$  and PAN are completely converted to NO on a molybdenum catalyst. No conversion of ammonia was found at these temperatures. Since PAN is not retained on the nylon filter to a significant degree, both channels register the effect of PAN equally and no interference results. By means of a chopper, two channels provide continuous measurement of  $NO_x$  +  $HNO_3$  and  $NO_x$  alone.

Considering the integrated sampling methods, after pre-filtration of particle phase nitrates on inert filters, quantitative collection of nitric acid on nylon filters at levels down to 0.5 ppb has been reported. Although Millipore no longer supplies Duralon (nylon) filters, Ghia Corp. produces nylon filters which have been found equally suitable.15

# Table 1

i

# Summary of Nitric Acid Method in Current Use

|    | Method                                       | Method Description                                                                                                                                                            | Reported<br>Limit of<br>Detection, ppb | Principal Investigator  | <u>Ref</u> .         |
|----|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------------------------|----------------------|
|    | Fourier Transform IR                         | Kilometer pathlength infrared cell.<br>Units at Claremont and Riverside, CA.                                                                                                  | 7                                      | J. N. Pitts, Jr         | 12, 13, 20           |
|    | Okita                                        | HNO <sub>3</sub> collected on NaCl impregnated<br>filters following an inert pre-<br>filter yielding integrated sample.<br>Nitrate measured by wet chemistry.                 | $\leq 0.4$ ca. 0.1                     | T. Okita<br>L. Newman   | 9<br>13, 14          |
|    | Chemiluminescence                            | A dual channel $NO_x$ monitor (e.g. Teco 14D) with a nylon filter in one channel yields (HNO <sub>3</sub> ) by difference. Provides continuous measurement.                   | < 1<br>ca. 0.3                         | C. Spicer<br>D. Stedman | 13, 15, 25<br>13, 16 |
| 4- | Nylon Filter (Spicer)                        | HNO <sub>3</sub> collected on nylon filter<br>following an inert pre-filter<br>yielding integrated sample.<br>Nitrate measured by wet chemistry.                              | <u>&lt;</u> 0.5<br>                    | A. Lazrus<br>C. Spicer  | 13, 17<br>15         |
|    | Nylon Filter-GLC                             | HNO <sub>3</sub> collected on nylon fiber<br>following inert pre-filter yielding<br>integrated sample. Nitrate con-<br>verted to nitrobenzene which is<br>measured by GLC-EC. | <u>&lt;</u> 0.5                        | R. E. Sievers           | 13, 18               |
|    | Modified Mast<br>Electrochemical<br>(Spicer) | From total gas phase acid less<br>HNO <sub>3</sub> removed by nylon, HNO <sub>3</sub><br>measured by difference. Use inert<br>pre-filter. Continuous measurement.             | 2-5                                    | C. Spicer               | 13, 15, 19           |

# Table 2

.•

Evaluation of Interferences to Coulometric Nitric Acid Monitoring

| Specie               | Comment                                                           |  |  |
|----------------------|-------------------------------------------------------------------|--|--|
| Ozone                | No interference up to 0.8 ppm                                     |  |  |
| Nitrogen Dioxide     | No interference up to 1 ppm                                       |  |  |
| Sulfur Dioxide       | No interference up to 1.1 ppm                                     |  |  |
| Sulfuric Acid        | No interference up to 100 $\mu\text{g}/\text{m}^3$                |  |  |
| Hydrochloric Acid    | No interference up to 0.4 ppm                                     |  |  |
| Formaldehyde         | No interference up to 0.5 ppm                                     |  |  |
| Peroxyacetyl Nitrate | No interference up to 0.2 ppm                                     |  |  |
| Formic Acid          | Variable interference between 0-10% of formic acid concentration. |  |  |
| Nitrous Acid         | No inference up to 0.4 ppm                                        |  |  |

Nylon filters, nylon or cotton fiber packed in Teflon tubes have all been used for  $HNO_3$  removal. In each case quantitative  $HNO_3$  retention is claimed without interference from NO and  $NO_2$ . Using 100 mg nylon fiber packing, sampling rates up to 10 lpm could be used. However, the efficiency of nitric acid extraction from nylon was reported to depend on the extraction medium.<sup>16</sup>,<sup>17</sup> Extraction in distilled water caused low recoveries at low  $HNO_3$  concentrations. Using 0.1N NaOH, 1% aqueous NaOH or "acid solutions" for extraction, quantitative recoveries were claimed.

Nitric acid has also been collected on filters loaded with NaCl employing pre-filtration with inert filters. $^{9,14}$  Fixation of HNO<sub>3</sub> is believed to proceed via the reaction:

 $HNO_3$  (gas) + NaCl  $\rightarrow$  HCl (gas) + NaNO<sub>3</sub>

Following collection, nitrate can be determined wet chemically. Okita<sup>9</sup> employed a lo-vol system with a 1 µm pore size Fluoropore pre-filter followed by a single 50 mm diameter inpregnated cellulose filter. A mean collection efficiency of 96.6% for a single filter was determined at 20 lpm.  $NO_2$  showed increasing interference with increasing R.H. For example, 1.5 ppm  $NO_2$  at 93% R.H. yielded about 5% positive interference.

Newman used a hi-vol configuration with 5" diameter (127 mm) filters in which acid-washed Pallflex 2500 QAO quartz fiber was used for the pre-filter. Two S and S 2W cellulose filters impregnated with NaCl were routinely run in series to collect  $HNO_3$ . At high R.H. (e.g.  $\geq 90\%$ )collection of  $HNO_3$  on the pre-filter became significant. Under these conditions, the  $HNO_3$  was desorbed and collected on the impregnated filters by sampling warm air provided by a heat gun for 10 minutes after the collection period.

#### C. Chemistry of HNO3 as Related to HNO3 and Nitrate Sampling

Rapid advances in understanding the chemistry of atmospheric nitric acid and nitrates are currently being made. We summarize here those elements relevant to our current program as well as to ARB's nitrate sampling efforts.

It has been proposed that the observed concentration of nitric acid and particulate nitrate in the atmosphere are interrelated by the equilibrium:

 $NH_4NO_3(s) \stackrel{2}{\leftarrow} HNO_3(g) + NH_3(g)$ 

$$K = (HNO_3)(NH_3)$$

Two estimates of this equilibrium constant have been made:

Using Fourier Transform infra-red spectroscopy to measure 62 pairs of  $\text{HNO}_3$  and  $\text{NH}_3$  values under varying atmospheric conditions, a mean value for K of 162 (ppb)<sup>2</sup> was reported.<sup>12</sup> Seinfeld<sup>21</sup> has made similar calculations of apparent equilibrium constants from simultaneous  $\text{HNO}_3$  and  $\text{NH}_3$  data obtained from Spicer. His observed values range from ca. 7 to ca. 200 (ppb)<sup>2</sup> with most values around 30 (ppb)<sup>2</sup>. The observed K appears to vary with temperature and relative humidity. The temperature dependence paralleled that for the equilibrium constant obtained from laboratory measurements of the vapor pressure of  $\rm NH_4NO_3$  at temperatures > 76°C. For dry  $\rm NH_4NO_3$  at 25°C, a K = 51 (ppb)<sup>2</sup> can be calculated by extrapolation from these lab data. At high relative humidity values, the apparent atmospheric equilibrium constant, as defined above, was increased by up to a factor of ca. 6 relative to values at < 60% R.H.

If such an atmospheric equilibrium exists then a fraction of total nitrate (i.e. nitric acid plus  $NH_4NO_3 + MNO_3$  where M is a metal) collected on a filter could be lost by volatilization into air with lower ammonia concentration passing through the filter. Indeed, R. K. Stevens has confirmed loss of  $NH_4NO_3$  from filters into a stream of ammonia-free air.<sup>22</sup> Evaporative loss of nitrate from a pre-filter used in connection with nitric acid sampling should lead to an equivalent enhancement in levels of  $HNO_3$ .

A second source of error involving particulate nitrate and  $HNO_3$  is by reaction of particulate nitrate with acids. For example:

$$\mathrm{NH}_4\mathrm{NO}_3$$
 +  $\mathrm{NH}_4\mathrm{HSO}_4$  + ( $\mathrm{NH}_4$ )<sub>2</sub>SO<sub>4</sub> +  $\mathrm{HNO}_3(\mathrm{gas})$ 

Again, particulate nitrate is lost from a pre-filter and a positive error in  $\rm HNO_3$  measurement would result. This mechanism was first demonstrated in smog chamber studies<sup>23</sup> but has since been inferred from atmospheric data under situations in which atmospheric sulfuric acid levels exceeded ammonium nitrate concentrations.<sup>24</sup> Loss of nitrate was demonstrated by addition of a tenfold excess of ca. 0.2 µm particle size H<sub>2</sub>SO<sub>4</sub> aerosol to a filter containing 0.2 µm particle size ammonium nitrate.<sup>22</sup>

It should be noted that neither evaporative loss nor loss by acid reaction would be expected on alkaline filters (e.g. glass fiber hi-vol filters) since any  $HNO_3$  formed should be immediately trapped by the filter. However, such negative errors could be noticeable with inert filters such as Fluoropore. Thus the ratio of atmospheric particulate nitrate observed on reactive vs. inert (e.g. Teflon) filters may reflect, in part, nitrate values on the inert filters which are too low.

The AIHL study of artifact nitrate formation<sup>10</sup> observed a mean ratio of 2.2 for  $NO_3^-$  on MSA 1106BH relative to that of Fluoropore for 24-hour samples. It is unlikely that this ratio was grossly influenced by reaction with acids since similar results were observed at San Jose and Los Alamitos, sites which should differ markedly in H<sub>2</sub>SO<sub>4</sub> levels, if present. However, this ratio may contain some error because of evaporative loss from Fluoropore filters. The influence of evaporative loss may be visible in comparing observed 24-hour nitrate values from those calculated from four successive six hour samples. The ratio calculated/observed was about 1.3 for Fluoropore and close to 1.0 for filters considered more likely to form artifact nitrate. Loss of nitrate during 24-hour sampling with Fluoropore due to either evaporation or (less likely) acid reaction could have caused this result.

#### II. TECHNICAL SUMMARY AND CONCLUSIONS

A combined laboratory and field study has investigated methods for the determination of sulfuric acid and nitric acids as well as strong acids in atmospheric particulates. The sulfuric acid method, developed at the Brookhaven National Laboratory (BNL) employs benzaldehyde for selective extraction of sulfuric acid. This procedure was adapted for use with low volume samples by using the AIHL microchemical sulfate procedure for quantitation of sulfate following its separation from the benzaldehyde. Residual benzaldehyde and its oxidation products were shown not to interfere with the sulfate analyses. Nitric acid sampling was done with nylon filters and sodium chloride-impregnated cellulose filters following removal of particulate nitrate with a Teflon filter (1  $\mu$ m pore size Zefluor, Ghia Corp.). Following extraction, nitric acid was measured as nitrate by the automated, copper-cadmium reduction, diazotization method.

A micro-titrimetric procedure developed by C. Brosset was used to assess strong acids. The output signal was processed with an anti-log amplifier to permit automatic generation of Gran's titration plots. Subsequent work established that by adding to each sample an amount of strong acid sufficient to produce pH = 4.0 in distilled water and then titrating each sample back to this pH, interference from weak acids was largely eliminated without reliance on extrapolations from Gran's plots. In the mixtures  $H_2SO_4$ -hexanedioic acid (pKa = 4.4) and  $H_2SO_4$ -benzoic acid (pKa = 4.0) the organic acid interference was O and 18%, respectively, while permitting 96\% determination of the  $H_2SO_4$ . Under the same conditions, aluminum and ammonium sulfates showed no interference while ferric sulfate behaved as a dibasic strong acid in aqueous solution. Accordingly, determination of water-soluble iron in atmospheric samples was considered necessary to exclude this source of potential inter-ference.

An analytical procedure for strong acid developed by P. West utilizing indicators was briefly evaluated and rejected because of insufficient selectivity and sensitivity.

Eight quartz and Teflon filter types were evaluated for use in sulfuric acid sampling by determining efficiencies for collecting  $\leq 0.3 \ \mu m \ H_2 SO_4$  aerosol and by recovery studies. One  $\mu m$  Fluoropore, 1  $\mu m$  Teflo (Ghia Corp. Teflon), Gelman microquartz and acid-washed Pallflex 2500 QAO quartz exhibited > 98% collection efficiencies; 3  $\mu m$  Fluoropore, 3  $\mu m$  Teflo and Zefluor (Ghia Corp. Teflon), 5  $\mu m$  Mitex and 0.5  $\mu m$  unbacked Fluoropore exhibited lower values. Based on their freedom from artifact sulfate formation, high filtration efficiency, and ease in handling, 1  $\mu m$  pore size Zefluor Teflon filters (Ghia Corp.) and acid-washed Pallflex 2500 QAO quartz filters were chosen for low and high volume particulate acid sampling, respectively.

The recovery of ca. 10  $\mu$ g sulfuric acid aerosol by benzaldehyde extraction from clean quartz filters averaged 60% compared to 75% recovery reported by BNL for similar conditions. With Teflon filters, recoveries were about 70%. Storage of sulfuric acid aerosol on these clean filters in air-tight containers was sufficient to prevent its neutralization. However, the presence of atmospheric particulate matter caused relatively rapid (if not immediate) loss of  $H_2SO_4$ , with recoveries by benzaldehyde extraction of  $\leq 30\%$ . Recoveries of total particulate acidity remained relatively high, 60-70\%, suggesting that reaction of  $H_2SO_4$  with  $(NH_4)_2SO_4$  was occurring forming the strong acid,  $NH_4HSO_4$  (ammonium acid sulfate).

Direct evaluation of interference effects from  $(NH_4)_2SO_4$  in the absence of atmospheric particulates was also consistent with formation of NH4HSO4. However, it appeared that substantial amounts of the acid sulfate were extracted into anhydrous benzaldehyde. Using clean filters loaded with  $NH_4HSO_4$  aerosol, alone, and in the presence of  $H_2SO_4$ , benzaldehyde was determined to extract, on average, 53% of this salt. It has been suggested that the water content of the sample and benzaldehyde determine the extent of  $NH_4HSO_4$  extraction. We believe the extraction of the undried acid salt into anhydrous benzaldehyde in the present work reflects the influence of its small particle size increasing the rate of solution. Prior studies were conducted with filter samples prepared by spotting with aqueous solutions. In the presence of atmospheric particulate matter, a positive interference by  $NH_4HSO_4$  in the benzaldehyde extraction method was not observed; evidently both  $H_2SO_4$  and the  $HSO_4^-$  react with aerosol constituents. The median recovery of total strong acid was 36%by titration. It remains unclear why recovery of strong acid, following atmospheric particulate-H<sub>2</sub>SO4 interaction, was substantially higher if the acid sulfate was the dominant strong acid being measured.

For low volume filter sampling , an ammonia denuder was fabricated and shown to remove > 99% NH<sub>3</sub> at the 100 ppb level. It was intended to minimize neutralization of acid sulfates after their collection by removing NH<sub>3</sub> ahead of the filter. However, use of an ammonia denuder with a nearly neutral pH glass fiber pre-filter was found ineffective in preserving  $H_2SO_4$  aerosol on a Teflon filter when exposed to ambient air. We speculate that dissociation of NH<sub>4</sub>NO<sub>3</sub> on the pre-filter may provide the NH<sub>3</sub> needed to neutralize the acid on the downstream filter. Since a pre-filter is not used in atmospheric sampling for  $H_2SO_4$ , this experiment may not be totally relevant.

The efficiency for collection of nitric acid was > 96% for NaClimpregnated Whatman 41 filters. For nylon (Duralon) the efficiency appeared to depend on the total amount of nitric acid sampled. However, at atmospheric levels its efficiency was equivalent to that for NaClimpregnated filters. Duralon (Millipore Corp.) and Ghia Corp. nylon filters were equivalent at up to 300  $\mu g/m^3$  HNO<sub>2</sub>. Teflon and acid-washed quartz filters showed negligible artifact nitrate formation with NO2 at 90% relative humidity. Results for artifact particulate nitrate due to nitric acid collected on clean and particulate-loaded filters were variable, with up to 16% HNO3 retention, probably reflecting the effect of variability in losses of adsorbed nitric acid in storage and handling. In all cases Teflon filters showed the least artifact particulate nitrate from nitric acid. Heating of the pre-filter and holder during or just following sampling to transfer adsorbed nitric acid to the collection filter appeared to be desirable to maximize nitric acid recovery. Such a procedure was used in field sampling.

Sampling was done in Pittsburg, CA for strong particulate acid,  $H_2SO_4$ ,  $HNO_3$ ,  $NH_3$ ,  $NO_3^-$ ,  $SO_4^=$ ,  $NH_4^+$ ,  $SO_2$ , NO and  $NO_2$  for a 72-hour period in early February, 1979. Side-by-side sampling was done with a respirable particulate hi-vol (acid washed quartz fiber filter), and a respirable particulate lo-vol sampler (Teflon filter) the latter employing an ammonia denuder. Ammonia was sampled with oxalic acid-impregnated filters using glass fiber (pH = 7.6) pre-filters. Filter changes were made at 2 to 8 hour intervals. The nitric acid and ammonia samplers' pre-filters were briefly heated at ca. 50°C following sampling to maximize recoveries on the collection filters.

The highest  $H_2SO_4$  level observed was  $0.6 \ \mu g/m^3$  which coincided with a maximum in total particulate acidity  $(1.6 \ \mu g/m^3 \text{ expressed as } H_2SO_4)$ . While acidity was measurable, no  $H_2SO_4$  was detectable with the hi-vol sampler. Ferric ion was shown to be a minor (< 10%) contributor to the total strong acid. There was no obvious benefit in using the denuder. Based on the preceding laboratory studies, these results represent lower limits to the true levels of  $H_2SO_4$  and strong acid, which may be a factor of three higher. These initial results may be compared to the current California significant harm level standard for 24-hour average water-soluble sulfate,  $25 \ \mu g/m^3$ .

The two sampling procedures for nitric acid showed average agreement within 4%, with levels of nitric acid in the range 0.7 to 4 µg/m<sup>3</sup> (0.3 to 1.5 ppb). Ammonia levels ranged from zero to 13 µg/m<sup>3</sup> (19 ppb). The diurnal variations for NH<sub>3</sub> and particulate NH<sub>4</sub><sup>+</sup> were strongly correlated even though NH<sub>3</sub> and HNO<sub>3</sub> levels were well below values causing saturation with respect to NH<sub>4</sub>NO<sub>3</sub> formation. The cation-anion balance in the aerosol phase indicated a substantial excess of NH<sub>4</sub><sup>+</sup> consistent with the presence of other important anions (not determined) such as Cl<sup>-</sup>. or with the collection of NH<sub>3</sub> by adsorption on the filter and/or particulate. The latter would be consistent with prior observations of the volatility behavior of particulate bound NH<sub>3</sub> in atmospheric samples.

Comparison of the total nitrate (i.e particulate nitrate collected on a Teflon pre-filter plus nitric acid retained on an active filter downstream) with the nitrate observed on a glass fiber filter (Gelman A) showed agreement, on average, within 3%. Thus, at least at the low HNO<sub>3</sub> levels encountered, these glass fiber filters collected all the true particulate nitrate as well as the nitric acid. Ambient NO<sub>2</sub> appeared to play no role in influencing artifact particulate nitrate, consistent with prior studies.

A sampling study for  $H_2SO_4$ ,  $HNO_3$ , particulate acidity and true particulate nitrate in the South Coast Air Basin is planned for the summer, 1979.

Principal conclusions from the current study are as follows:

- 1. Measurement of sulfuric acid and total acidity can be made by benzaldehyde extraction and titration with laboratory-generated H<sub>2</sub>SO<sub>4</sub> aerosol on clean filters with a recovery of > 60% of the true value. However, the presence of respirable atmospheric particulate matter decreased recoveries of H<sub>2</sub>SO<sub>4</sub> to below 30%. Strong acid recoveries usually remained above 60%. Furthermore, the elimination of large, soilrelated particles by use of a cyclone, alone, or in combination with ammonia removal is probably insufficient to permit measurement of H<sub>2</sub>SO<sub>4</sub> at least for samples collected from  $\geq 10$  m<sup>3</sup> of air. Emphasis must be given to shorter term or lower flow rate sampling to decrease acid interaction with other aerosol constituents.
- 2. Additional work is needed to clarify the interference effects of ammonium acid sulfate in H<sub>2</sub>SO<sub>4</sub> and strong acid measurements.
- 3. Gaseous nitric acid can be measured by collection with either nylon or sodium chloride impregnated cellulose filters at ambient concentrations, with excellent agreement between methods. A 15% uncertainty in HNO3 value remains, resulting from variability in the extent of nitric acid retained by adsorption on particulate-loaded pre-filters. This uncertainty should be eliminated by AIHL studies extending the present work.
- 4. Artifact nitrate formation on glass fiber filters in field sampling corresponded to the collection of 100% of the ambient nitric acid. Thus it is likely that nitrate values obtained by the present ARB Hi-vol network represent the sum of particulate nitrate and nitric acid rather than particulate nitrate, alone.
- 5. Further studies are needed employing continuous methods for  $H_2SO_4$  in an effort to overcome the large negative interference by other aerosol constituents. Since positive errors are more probable with continuous methods (e.g. volatilization of sulfate salts as well as  $H_2SO_4$ ), simultaneous application of continuous and the integrated techniques described herein should provide both lower and upper limits to the true  $H_2SO_4$  level.

#### III. SULFURIC ACID MEASUREMENT BY SELECTIVE EXTRACTION

#### A. Introduction

Leahy et al at Brookhaven National Laboratory (BNL) have demonstrated the selectivity of benzaldehyde for extraction of sulfuric acid (Table 3); ammonium sulfate and acid sulfate are relatively insoluble.<sup>27</sup> The  $H_2SO_4$  removed is extracted from the benzaldehyde into water by liquid-liquid extraction. Once in the water phase, the sulfate from the  $H_2SO_4$  can be analyzed by any procedure with adequate sensitivity. For our work these analyses were done by the AIHL microchemical method.<sup>20</sup> This is a colorimetric procedure operating in the range 1 to 14 µg/ml.

From the data given in Table 3, the recovery of the acid appeared to depend somewhat on filter type and amount of acid. For samples  $\geq 10~\mu g$  collected on acid treated quartz, a recovery of  $\geq 75\%$  was found in the absence of atmospheric particulates. Employing atmospheric samples collected on acid treated quartz filters without protection from ammonia, BNL found sulfuric acid levels of up to 0.16  $\mu$ moles/m<sup>3</sup> (15  $\mu g/m^3$ ) from aerial sampling in the St. Louis urban plume. Sulfuric acid in general was only measurable when the H<sup>+</sup>/NH<sub>4</sub><sup>+</sup> molar ratio was > 1. Otherwise, any sulfuric acid initially present was presumably be converted to the acid sulfate, NH<sub>4</sub>HSO<sub>4</sub>. While still titratable as a strong acid (see Section IV) the acid sulfate seemed to be relatively insoluble in benzaldehyde. The conversion of the sulfuric acid to the acid sulfate could involve reaction with gaseous ammonia and/or reaction with sulfate salts such as ammonium sulfate.

An independent evaluation of the BNL selective extraction procedure was performed by the Southern Research Institute (SRI)<sup>30</sup>. Their work demonstrated H<sub>2</sub>SO<sub>4</sub> recoveries of approximately 90% (C.V.  $\leq$  5%) from Teflon (Mitex) filters using a microtitration of sulfate with barium perchlorate to a thorin end point. The minimum quantity of H<sub>2</sub>SO<sub>4</sub> that could be determined was 5 µg. Calcium sulfate, NH<sub>4</sub>HSO<sub>4</sub> and (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> in the absence of H<sub>2</sub>SO<sub>4</sub>, were shown to be > 95% insoluble in anhydrous distilled benzaldehyde, stored under N<sub>2</sub>, when spiked onto filters. However, in another study of the BNL method using reagent grade benzaldehyde, about 25% of NH<sub>4</sub>HSO<sub>4</sub> was solubilized.<sup>4</sup>

Following partial neutralization by NH<sub>3</sub> of an H<sub>2</sub>SO<sub>4</sub> aerosol on a clean Mitex filter, SRI workers found that what was thought to be H<sub>2</sub>SO<sub>4</sub> was still extractable by benzaldehyde. For example, after adding 0.41 µequiv NH<sub>3</sub> to 0.80 µequiv H<sub>2</sub>SO<sub>4</sub>, 0.29 µequiv of NH<sub>4</sub><sup>+</sup> were found in the aerosol and 0.57 µequiv residual H<sub>2</sub>SO<sub>4</sub> were determined by extraction. If it is assumed that a given aerosol particle is either completely neutralized to (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> or remains as H<sub>2</sub>SO<sub>4</sub> then the theoretical amount of H<sub>2</sub>SO<sub>4</sub> which should remain is  $0.80 - \frac{0.29}{2} = 0.66$  µequiv, only 16% greater than observed. If all

acid particles were neutralized to the same degree, then in the above example, 50% of all  $H_2SO_4$  particles would have been converted to NH<sub>4</sub>HSO<sub>4</sub> and 0.40 µequiv of  $H_2SO_4$  would remain (about 30\% below the observed). Assuming that NH<sub>4</sub>HSO<sub>4</sub> remained insoluble in benzal-dehyde, preferential neutralization to  $(NH_4)_2SO_4$  of an upper layer of acid particles is inferred.

# Table 3

# Benzaldehyde Extraction of ${\rm H_2SO_4}$ and ${\rm NH_4HSO_4}$ from Filters $^{\bf a}$

| Amount   | Sample                         | No. of<br>Determinations | Filter<br><u>Material</u> | %<br><u>Recovery</u> |
|----------|--------------------------------|--------------------------|---------------------------|----------------------|
| 10 µg    | H <sub>2</sub> SO <sub>4</sub> | 2                        | Quartz                    | 75                   |
| 20-40 µg | H <sub>2</sub> SO <sub>4</sub> | 2                        | Mitex 5 µm                | 71                   |
| 30 µg    | H <sub>2</sub> SO <sub>4</sub> | 1                        | Fluoropore<br>0.2 µm      | 90                   |
| 20-40 µg | H <sub>2</sub> SO <sub>4</sub> | Ц                        | Quartz                    | 78                   |
| 70-80 µg | H <sub>2</sub> SO <sub>4</sub> | 14                       | Quartz                    | 86                   |
| 100 µg   | H <sub>2</sub> SO <sub>4</sub> | 5                        | Any of the<br>above       | 94 <u>+</u> 8        |
| 10-70 µg | NH4HSO4                        | 3                        | Fluoropore<br>0.2 µm      | 1.2                  |

a. Data from Reference 29.

D. J. Eatough and co-workers evaluated the technique for analysis of  $H_2SO_4$  in smelter flue dust samples.<sup>31</sup> The level of contaminant benzoic acid in benzaldehyde was found to be critical in influencing the selectivity of  $H_2SO_4$  extraction. In the presence of benzoic acid, bevalent metal sulfates (e.g. Cu, Zn, Pb sulfates) were also extracted.

In the current program both clean and soiled filters were loaded with sulfuric acid alone, and in the presence of  $(NH_4)_2SO_4$  and  $NH_4HSO_4$ . The filters were analyzed by both benzaldehyde extraction and the titrimetric method for strong acid as reported in Section VII.

#### B. Method Development

## 1. Effect of Benzaldehyde on the AIHL Microsulfate Method

Benzaldehyde is soluble in water to the extent of 0.3%. The aqueous extract analyzed for sulfate is saturated with benzaldehyde and also contains the oxidation product, benzoic acid. To assess the response of the microsulfate method to these contaminants, working curves were constructed using aqueous  $H_2SO_4$  standards with and without contacting with benzaldehyde.  $H_2SO_4$  solutions were shaken with varying amounts of benzaldehyde and then centrifuged. Both redistilled and unpurified benzaldehyde were used.

Results were compared to simultaneous sulfate analyses of  $H_2SO_4$ solutions without benzaldehyde extraction (<u>Table 4</u>). While the linearity of response remained unaffected, both the slope and intercept can be altered. No consistent trend is evident in the changes observed. Since in all cases a new working curve is prepared for each set of samples using benzaldehyde-extracted standards, such changes are likely to be insignificant. No effect of the ratio of benzaldehyde/water was observable. Accordingly, the AIHL microsulfate was considered compatible with the benzaldehyde extraction technique.

#### 2. Procedure for Sample Analysis

Filter samples with laboratory-generated or atmospheric aerosols were sectioned as necessary and transferred to Teflon-lined screw capped test tubes in an NH<sub>3</sub>-free chamber. No drying of samples was done. The tubes were flushed with argon, capped and stored in a dessicator under argon pending analysis. Ten ml anhydrous benzaldehyde were added under argon and the samples shaken 30 minutes (60 minutes for atmospheric samples) on an Eberbach Model 6000 platform shaker at 90 oscillations per minute.\* Samples were then centrifuged 2 to 3 minutes at an estimated 2500 rpm. Eight ml aliquots were transferred to a new set of test tubes containing 3 ml H<sub>2</sub>0 under argon (benzaldehyde/water ratio 2.7). The mixtures were shaken 30 minutes as above, centrifuged briefly, and an aliquot of the aqueous phase (< 1.0 ml) removed for sulfate analysis by the AIHL microchemical method.<sup>28</sup>

Sulfate standards were prepared in 3 ml  $H_2O$ . Eight ml benzaldehyde were added to each of these and the standards shaken and analyzed together with each batch of samples.

<sup>\*</sup>For field samples in which  $H_2SO_4$  acrosol might be physically shielded by other acrosol constituents the longer extraction period was considered desirable.

# Table 4

| ØСНО/Н <sub>2</sub> О, | With B | enzaldehyde |       | Without | Benzaldehy | de    |
|------------------------|--------|-------------|-------|---------|------------|-------|
| dv/v                   | Slope  | Intercept   | r     | Slope   | Intercept  | r     |
| 1.0                    | 0.0585 | -0.0153     | 0.999 | 0.0540  | -0.003     | 0.999 |
| 1.0                    | 0.0581 | -0.0570     | 0.999 | 0.0558  | -0.016     | 0.999 |
| 1.7 <sup>°</sup>       | 0.0523 | -0.008      | 0.999 |         |            |       |
| 3.3°                   | 0.0470 | -0.0720     | 0.994 |         |            |       |
| 3.3 <sup>°</sup>       | 0.0538 | +0.0264     | 0.999 | 0.0546  | -0.003     | 0.999 |
| Mean                   | 0.0539 | -0.025      |       | 0.0548  | -0.0073    |       |
| Std. Dev.              | 0.0047 | 0.0396      |       | 0.0009  | 0.0075     |       |

# The Effect of Benzaldehyde on Working Curves for the AIHL Microsulfate Method<sup>a</sup>

a. In all cases 3.0 ml of  $\rm H_2SO_4$  standards were extracted.

b. Benzaldehyde/water volume ratio.

c. Benzaldehyde distilled in inert atmosphere.

#### C. Benzaldehyde Purification and Storage

Pre-dried benzaldehyde was redistilled from Linde type 4A molecular sieve at 40 mm Hg under nitrogen through a 12" Vigreaux column, stored with protection from light, and dispensed under argon. Freshly distilled benzaldehyde was found to contain  $0.06 \pm .006\%$  benzoic acid. After five months storage and immediately following interference studies with NH4HSO4 (Section VII), reanalysis indicated  $0.6 \pm 0.06\%$  benzoic acid. Thus the acid content had increased by a factor of 10.

An estimate of the water content of the benzaldehyde following 5 months storage was made by comparing the color change of anhydrous copper sulfate in benzaldehyde to that in chloroform with known water content. The results indicated < 0.004% water.

## IV. THE MICROTITRATION METHOD FOR STRONG ACID

#### A. Introduction

Brosset reported that in atmospheric samples, titrated in the absence of CO<sub>2</sub>, strong acids (pKa < ca. 3) can be distinguished from weak acids (pKa > ca. 7). A tabulation of acidity constants for some acids of possible significance is given in <u>Table 5</u>. In the presence of a mixture of one or more strong and weak acids, the Gran's plot exhibits a linear section followed by a curved section. Extrapolation of the linear section to the horizontal axis gives the total strong acids present. <u>Figure 2</u> illustrates Brosset's data as a Gran's plot for a mixture of sulfuric acid and hydrated Al<sup>+3</sup>, Al(H<sub>2</sub>O)<sub>6</sub><sup>3+</sup> which titrates as a strong monoprotic acid.\* Extrapolation of the linear portion yields a total H<sup>+</sup> of O.8 x 10<sup>-6</sup> moles H<sup>+</sup> compared to a theoretical value of 0.85 x 10<sup>-6</sup> moles H<sup>+</sup> (from H<sub>2</sub>SO<sub>4</sub> and the hydrated aluminum ion). Quantitation of weak acids (as defined above) in the presence of strong acids does not appear feasible.

The instrument evaluated for the analysis at AIHL was the "Autoburette AB 12" manufactured by Radiometer of Denmark with 250  $\mu$ l capacity. Using 0.01 N NaOH, each microliter neutralizes about 0.5  $\mu$ g H<sub>2</sub>SO<sub>4</sub>. The readout of the volumetric counter allows a precision of 0.1  $\mu$ l, and the pH meter digital display, a precision of 0.001 units of pH. The instrument titrates automatically to a preset value of pH. The speed of the burette or by a proportional time chopper, which reduces the increments of addition of titrant as the value of the measured pH approaches the preset value. The endpoint is sensed by a delay mechanism, which at a preset value of waiting time shuts off the instrument.

The relationship between  $H^{+}$  concentration and electrode response as well as an antilog amplifier circuit for processing the electrode output to generate Gran's plots automatically are shown in Appendix A.

<sup>\*</sup>The axes have been multiplied by volumes to obtain sample and titrant in moles.





| Table 5 | સ |
|---------|---|
|---------|---|

Anthropogenic Acids and Their Approximate Strength

| <u>Acid</u>                    | <u>Strength</u><br>(pKa) | Acid                                               | <u>Strength</u><br>(pKa) | Acid               | <u>Strength</u><br>(pKa) |
|--------------------------------|--------------------------|----------------------------------------------------|--------------------------|--------------------|--------------------------|
| HCl                            | strong                   | HF                                                 | 3.2                      | B(OH) <sub>3</sub> | 9.0                      |
| HNO3                           | strong                   | Fe(H <sub>2</sub> O) <sub>6</sub> 3 <sup>+</sup>   | ∿ 3                      | NH4 <sup>+</sup>   | 9.3                      |
| H <sub>2</sub> SO <sub>4</sub> | strong                   | Fe(H <sub>2</sub> O) <sub>5</sub> OH <sup>2+</sup> | ∿ 3                      | HCN                | 9.4                      |
| H <sub>2</sub> SO <sub>3</sub> | 1.9                      | benzoic                                            | 4.2 <sup>b</sup>         |                    |                          |
| HSO4                           | 2.0                      | adipic (pKa <sub>1</sub> )                         | 4.4 <sup>b</sup>         |                    |                          |
| H <sub>3</sub> PO <sub>4</sub> | 2.1                      | acetic                                             | 4.8 <sup>b</sup>         |                    |                          |
|                                |                          | Al(H <sub>2</sub> O) <sub>6</sub> <sup>3+</sup>    | ∿ 5                      |                    |                          |
|                                |                          | H <sub>2</sub> S                                   | 6.9                      |                    |                          |
|                                |                          | HSO3                                               | 7.2                      |                    |                          |
|                                |                          | H <sub>2</sub> PO <sub>4</sub>                     | 7.2                      |                    |                          |

a. Data from reference 33 except as noted.

b. Data from reference 45.



#### B. Interference Studies and Alternatives to Use of a Gran's Plots

Figure 3 shows the fraction of individual acids, in distilled H<sub>2</sub>O, titratable by NaOH at a given pH using the Radiometer automatic titrator. It reflects directly the degree of ionization of each acid at a given pH when in the presence of ions formed by neutralization (e.g. Na<sup>+</sup>, adipate ion) but without other added electrolyte. The degree of ionization is a function of the acid considered and varies with the ionic strength of the medium. While  $H_2SO_4$  is nearly totally ionized at  $pH \geq 4$  (and, therefore, the equivalents of base added to neutralize the  $H_3O^+$  in solution is equal to the equivalent of H<sub>2</sub>SO<sub>4</sub> in the sample) organic acids show reduced ionization at pH values below 7 and approach zero at pH 3 and below. The degree of ionization of organic acids in a mixture with strong acids (e.g.  $H_2SO_{L}$ ,  $HNO_3$ ) and salts may differ substantially from that for pure, individual acids in distilled water. For example, the ionization of acid, HA, in solution reflects the equilibium HA +  $H_2O \stackrel{*}{\downarrow} H_3O^+ + A^-$ . Addition of strong acid should shift the equilibrium to the left while addition of neutral electrolyte favors increased ionization by lowering activity coefficients for the ionic species. As the result of repressed ionization, weak acids should exhibit lesser interference in the titration of strong acids than is implied by Figure 3. Furthermore, by titrating such mixtures to pH = 4 (rather than 7),  $\geq 96\%$  of the  $H_2SO_L$  should be determined while benzoic acid should exhibit <  $37^{\circ}_{\mu}$ positive interference and adipic acid (hexanedioic acid),  $\leq 17\%$ positive interference.

As a trial of interference effects and of analytical techniques, a set of ten solutions were prepared containing  $H_2SO_4$  plus hexanedioic acid,  $H_2SO_4$  plus benzoic acid, and  $H_2SO_4$  plus both organic acids. Assuming a  $2^{4}$ -hour collection of  $H_2SO_4$  at 1 µg/m<sup>3</sup> with a low volume (20 m<sup>3</sup>) sampler and extraction into 5 ml of water, an acid concentration of 0.4 µequiv/5 ml would be expected. The ten solutions were adjusted to provide concentrations in this range. To 5 ml of each sample was added sufficient HNO<sub>3</sub> to reach pH = 4.0 in a pure water solution. The observed pH was between 3.4 and 3.8. The solution was then titrated back to pH = 4.0. In only three cases (VII, VIII, IX of <u>Table 6</u>) was the Gran's plot non-linear. The difference in results between the extrapolated intercept (from initial slope) at pH = 4 and the observed intercept was  $\leq 10\%$  in these cases.

The observed intercept corresponds to the volume of titrant required to reach pH = 4.0. Under these circumstances an extrapolated intercept was generally unnecessary and the volume of titrant could be obtained with better precision from the digital readout of titrant volume. These studies suggested that by titrating to pH = 4.0, Gran's plots were usually unnecessary.

Results for analysis of the ten known mixtures, with direct reading of titrant volume required to reach pH = 4.0 (i.e. without extrapolation from a Gran's plot) are given in Table 6 and plotted as  $\mu g/ml$ in <u>Figure 4</u>. They generally show excellent agreement with true values. The presence of benzoic acid (pKa = 4.2), which is distinctly more



\_ 22\_

-

# Table 6

# Analysis of H<sub>2</sub>SO<sub>4</sub> by Gran's Titration in Mixtures with Weak Acids<sup>a</sup> (µequiv/5 ml)

| Sample | H <sub>2</sub> SO <sub>4</sub> | H <b>exane</b> doic<br>Acid | Benzoic<br>Acid | Observed<br>Strong Acid |
|--------|--------------------------------|-----------------------------|-----------------|-------------------------|
| I      | 0.40                           | 0.40                        | 0               | 0.41                    |
| II     | 0.20                           | 0.40                        | 0               | 0.21                    |
| III    | 0.40                           | 0.20                        | 0               | 0.39                    |
| ÍV     | 0.50                           | 0                           | 0.20            | 0.51                    |
| v      | 0.20                           | 0                           | 0.50            | 0.29                    |
| IV     | 0.40                           | 0.20                        | 0.20            | 0.43                    |
| VII    | 0.20                           | 0.20                        | 0.20            | 0.22                    |
| VIII   | 0.79                           | 0.80                        | 0               | 0.78                    |
| IX     | 0.79                           | 0.40                        | 0               | 0.77                    |
| х      | 0.79                           | 0.20                        | 0               | 0.74                    |

a. Titrations to pH = 4.0. Results corrected by division by 0.96 for the 4% H<sub>2</sub>SO<sub>4</sub> remaining unneutralized at pH = 4.0 in a single system containing KNO<sub>3</sub> at the concentration used with samples. The percentage unneutralized varies slightly from day-to-day leading to correction of 3-6%.



Figure 4

acidic than adipic acid ( $pKa_1 = 4.4$ ), caused a consistently positive error. The largest error was observed for sample V which was about 30% H<sub>2</sub>SO<sub>4</sub> and 70% benzoic acid (on an equivalents basis). The results suggest an 18% positive interference by benzoic acid at this concentration compared to the value < 37% predicted from Figure 3.

For the remainder of this study all microtitration data were based on titrations to pH = 4.0 with direct reading of titrant volume. With ambient air samples, Gran's plots were made to verify that the slope was equivalent to that for sulfuric acid.\* In all cases where there was sufficient strong acid to permit determination, this was the case.

In a similar manner interference effects of aluminum and ferric salts and ammonium sulfate was evaluated by analyzing 0.2 µequivalents of H<sub>2</sub>SO<sub>4</sub> alone and in mixtures with one of the interferents. Results were calculated both from the recorded volume of titrant (0.010N NaOH) required to reach the starting pH (4.0) and, graphically, from the simultaneously constructed Gran's plot. The results (<u>Table 7</u>) indicate no interference from (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>. This is consistent with expectations since the resulting HSO<sub>4</sub> (pKa = 2.0) should still be titrated as a strong acid. Similarly the Al<sup>+3</sup> salt showed  $\leq 10\%$ interference. However, interference from the Fe<sup>+3</sup> salt was strong. In aqueous solution this hydrolyzes to Fe(H<sub>2</sub>0)<sup>+3</sup> which, in turn, dissociates as a dibasic acid (pK<sub>1</sub>  $\approx$  pK<sub>2</sub>  $\approx$  3). Thus 0.134 µmoles Fe<sup>+3</sup> (from 0.067 µmoles Fe<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>) should yield 0.27 µmoles H<sup>+</sup>. This compares to 0.26  $\pm$  0.04 µequiv (or µmoles) H<sup>+</sup> observed, averaging results by both techniques with and without added H<sub>2</sub>SO<sub>4</sub>.

The degree of interference from  $Fe^{+3}$  in atmospheric samples depends on the extent of water solubility of the iron in particulate matter. Selected aqueous extracts were analyzed for iron concentrations by atomic absorption as discussed in Section X.

\*The slope for  $H_2SO_4$  is not distinguishable from that for  $HSO_4$  and other strong acids.
Interference Effects in H<sup>+</sup> Determination by Titrimetry

|                                                                                                                                  | Observe                 | ed H (µequiv)                     |
|----------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------------------------|
| Sample                                                                                                                           | Titrimetry <sup>b</sup> | Gran's Plot to $pH = 4.0^{\circ}$ |
| 0.20 µequiv H <sub>2</sub> SO <sub>4</sub>                                                                                       | 0.22 <u>+</u> .01       | 0.21 <u>+</u> .02                 |
| 0.20 $\mu$ equiv H <sub>2</sub> SO <sub>4</sub> + 4 $\mu$ mole(NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub>                    | 0.20                    | 0.20                              |
| 0.20 $\mu$ equiv H <sub>2</sub> SO <sub>4</sub> + 0.067 $\mu$ moles Al <sub>2</sub> (SO <sub>4</sub> ) <sub>3</sub> <sup>d</sup> | 0.22                    | 0.20                              |
| 0.20 $\mu$ equiv $H_2SO_4$ + 0.067 $\mu$ moles Fe <sub>2</sub> (SO <sub>4</sub> ) <sub>3</sub> <sup>d</sup>                      | 0.46                    | 0.42 <sup>e</sup>                 |
| 0.067 µmoles $Al_2(SO_4)_3^d$                                                                                                    | 0.02                    | 0.00                              |
| 0.067 $\mu$ moles Fe <sub>2</sub> (SO <sub>4</sub> ) <sup>d</sup>                                                                | 0.31                    | 0.26 <sup>e</sup>                 |

a. All samples have 0.88  $\mu$ eq HNO<sub>3</sub> in 5 ml H<sub>2</sub>O yielding pH = 4.0 in pure water.

- b. Based on volume of base to reach pH = 4.0.
- c. Volume of base to reach  $pH = \frac{1}{4}$  from automatic generation of Gran's plot. Except as noted, Gran's plot was linear to  $pH = \frac{1}{4}$  requiring no extrapolation.
- d. 0.067 µmoles yields 0.2 µmoles sulfate.
- e. Extrapolated from initial slope.

V. THE WEST METHOD FOR TOTAL ACIDITY

#### A. Introduction

The West procedure<sup>26</sup> is based on the displacement of the equilibrium between an indicator in its basic  $(In^-)$  and acidic form (HIn) in the presence of acids:

$$K = \frac{[H^+] [In^-]}{HIn}$$

or 
$$\frac{[In^{-}]}{[HIn]} = \frac{[form with alkaline color]}{[form with acid color]} = \frac{K}{[H^{+}]}$$

In this technique bromphenol blue (BPB), which is protonated at about pH = 4, was selected because it is not affected by carbon dioxide and because it provides an appropriate working range with strong acids. The measured absorbance at approximately 590 nm is used as a direct measure of the H<sup>+</sup>.

#### B. Evaluation

Initial studies at AIHL sought 1) to reproduce the reported working curve, 2) to estimate the working range of the method, 3) to adapt the method for use with 10 ml rather than 100 ml samples and 4) to evaluate the effects of possible interferents.

A comparison of the lower portion of West's working curve relating total acid (as  $\mu$ g/ml H<sub>2</sub>SO<sub>4</sub>) and absorbance is shown in <u>Figure 5</u>. The solid lines represent several AIHL trials differing in the freshness of the reagent or length of standing of solutions. The AIHL results show generally better agreement with West's data at higher concentrations. Below 1  $\mu$ g/ml the method loses sensitivity.

For this method to be useful with low volume filter samples it is essential to demonstrate its usefulness with smaller aqueous extracts. <u>Figure 6</u> shows three trials differing in order of addition of acid and indicator and time for standing before reading absorbance (30 or 60 minutes). The results for the three trials showed excellent reproducibility and a useful working curve in the range 1 to at least 15  $\mu$ g/ml, using H<sub>2</sub>SO<sub>4</sub>. For these trials, absorbance readings were made at 592 nm rather than 587 nm as specified by West. Using a B&L Model UV 200 spectrophotometer, 592 nm corresponded to the midpoint of the absorbance maximum.

The effect of the following potential interferents was briefly evaluated:

| CO <sub>2</sub>   | $Al_2(SO_4)_3$ |
|-------------------|----------------|
| $Fe_2(SO_4)_3$    | $(NH_4)_2SO_4$ |
| FeS0 <sub>4</sub> | NH4HSO4        |

In separate experiments, each of the sulfate salts was added at a concentration sufficient to produce 10  $\mu$ g/ml SO<sub>4</sub> (assuming complete ionization and dissociation). Carbon dioxide was added



Figure 5



by saturating an aqueous solution with gaseous  $CO_2$ . The response for  $CO_2$  in this solution was equivalent to 3.3 µg/ml H<sub>2</sub>SO<sub>4</sub>. Since a dissolved  $CO_2$  level of < 1% of saturation is more typical, a negligible effect of atmospheric  $CO_2$  is expected, which is consistent with West's claims. The results for  $Fe_2(SO_4)_3$  (ferric sulfate) and NH<sub>4</sub>HSO<sub>4</sub> (ammonium acid sulfate) indicate complete hydrolysis to a strong acid (i.e. one equivalent of sulfate yielded one equivalent of H<sup>+</sup>). With NH<sub>4</sub>HSO<sub>4</sub> the equivalence of sulfate and H<sup>+</sup> was also demonstrated at the 5 µg/ml sulfate level. Thus, if present, these materials would be indistinguishable from sulfuric acid. However, FeSO<sub>4</sub>, Al<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> and (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> showed no measurable interference.

To complete these studies of interference effects known amounts of sulfuric acid were analyzed in mixtures with two weak acids, hexanedioic acid ( $pKa_1 = 4.4$ ) and benzoic acid (pKa = 4.2). The results shown in <u>Table 8</u> indicate positive interference by both acids of, on average, 18%. Since aliphatic dicarboxylic acids are likely components in atmospheric samples<sup>46</sup>, this method was considered of limited value and it was dropped from further studies.

# Analysis of H<sub>2</sub>SO<sub>4</sub> by the West Method in Mixtures with Weak Acids . (µequiv/5 ml)

| Sample | H <sub>2</sub> SO <sub>4</sub> | H <b>exan</b> edoic<br>Acid | Benzoic<br>Acid | Observed<br>Strong Acid |
|--------|--------------------------------|-----------------------------|-----------------|-------------------------|
| I      | 0.40                           | 0.40                        | 0               | 0.47                    |
| II     | 0.20                           | 0.40                        | 0               | 0.44                    |
| III    | 0.40                           | 0.20                        | 0               | 0.45                    |
| IV     | 0.50                           | 0                           | 0.20            | 0.55                    |
| v      | 0.20                           | 0                           | 0.50            | 0.36                    |
| VI     | 0.40                           | 0.20                        | 0.20            | 0.48                    |
| VII    | 0.20                           | 0.20                        | 0.20            | o.48                    |
| VIII   | 0.79                           | 0.80                        | 0               | 0.81                    |
| XI     | 0.79                           | 0.40                        | 0               | 0.73                    |
| x      | 0.79                           | 0.20                        | ŋ               | 0.75                    |

Ratio of Means Obs./True = 1.18

.

- VI. EVALUATION OF FILTER MEDIA FOR SULFURIC ACID AND PARTICLE PHASE STRONG ACID MEASUREMENTS
  - A. Artifact Sulfate Formation on Filters with Sulfur Dioxide

Filters to be used for  $H_2SO_4$  sampling must minimize artifact sulfate formation due to filter-SO<sub>2</sub> interaction. Accordingly, the following filters were evaluated for artifact sulfate:

Acid-Treated Quartz (Pallflex 2500 QAO)\* Gelman Microquartz Mitex, 5 µm Fluoropore, 1 µm Fluoropore, 3 µm Teflo, 1 µm Teflo, 3 µm

The filters were exposed to 0.2 ppm  $SO_2$  at 50 and 90% R.H. in 2-hour periods. Two trials were made with each condition. Flow rates were 22 lpm except with the quartz filter. This was run at a flow rate of 1.3 cfm to provide a face velocity equivalent to that of an 8 x 10" filter at 40 cfm. None of the filters formed measurable ( i.e. > 5 µg/SO<sub>4</sub>=/filter) levels of artifact sulfate.

Retention of  $SO_2$  as sulfuric acid, if significant, would have caused increased values of both sulfuric acid by benzaldehyde extraction and increase in particulate acidity. Retention of  $NO_X$  species such as HNO<sub>3</sub> would also have caused increase in particulate acidity. Studies of retention of  $NO_2$  and  $HNO_3$  on filter media, including those used for sulfuric acid and particulate acid measurement, are included in Section VIII.

#### B. Efficiencies of Filter Media for H<sub>2</sub>SO<sub>4</sub> Collection

Filter efficiencies for  $\leq 0.3 \ \mu m \ H_2 SO_4$  particles were determined by sampling laboratory-generated  $H_2 SO_4$  aerosol at 1 cfm (face velocity 34 cm/sec) with a 47 mm multiple filter holder (Nuclepore #470400) containing the filter type under evaluation followed by a 1  $\mu m$ Fluoropore filter (after-filter) to collect any aerosol which penetrated through the initial filter. Fluoropore (1  $\mu m$ ) was employed as the after-filter in all evaluations based on its high collection efficiency\*\* and high sulfuric acid recovery with water extraction. Immediately following exposure, the filter being evaluated, the underlying filter support grid and Fluoropore after-filter were extracted in 5 ml of distilled water with periodic, vigorous manual agitation for 48 hours at room temperature (22°C). Sulfate analyses

\*The acid treatment procedure is described in Appendix H.

<sup>\*\*</sup>Liu and Lee<sup>47</sup> reported > 99.99% efficiency for this filter with 0.03 to 1 µm diameter dioctyl phthalate particles while John and Reischl<sup>37</sup> found > 99.9% efficiency with room air dust.

were performed by the AIHL microsulfate method.<sup>28</sup> Analysis of the filter support screen was included as it was the only filter holder surface upstream of the after-filter capable of collecting detectable amounts of sulfate. Design of the sulfuric acid aerosol generator and characterization of the aerosols produced are discussed in Appendix B.

Filtration efficiencies for a filter were determined as the fraction of  $H_2SO_4$  on the filter compared to the total  $H_2SO_4$  on it, the after-filter, and the filter screen.  $H_2SO_4$  penetrating the after-filter (1 µm Fluoropore) was ignored, based on studies in which an impinger was used following the after-filter (see Appendix B).

Nine filter types were evaluated for filtration efficiency including two quartz and seven Teflon filters. The latter included Fluoropore in three pore sizes and two types of Teflon filter from the Ghia Corporation, "Teflo" (Teflon filters bonded to a polyester ring about the perimeter) and "Tefluor" (Teflon filters stiffened with a backing of a coarse Teflon). In addition to filtration efficiency, ease in mounting, cutting and  $H_2SO_4$  recovery were evaluated.

Results of the filter efficiency evaluation are given in <u>Table 9</u>. In general the efficiency decreased with increasing nominal pore size; both 1 µm Teflon filters, Fluoropore and Teflo, showed about 98% efficiency. The 0.5 µm unbacked Fluoropore results appear anomalous. Both quartz fiber filters showed > 98% efficiency.

The current program for  $H_2SO_4$  collection required one filter medium suitable for hi-vol sampling and at least one for lo-vol sampling. Based on its ease of handling and cutting, the Zefluor type Teflon filter was selected for further study. Because of the decreased efficiency of the Ghia 3 µm compared to their 1 µm filter the 1 µm pore size Zefluor filter was chosen.

Based on ease of handling, collection efficiency, and lack of artifact sulfate formation both acid washed quartz and Gelman microquartz appeared suitable for further evaluation.

Collection Efficiencies of Selected Filters for  $\leq 0.3 \ \mu m$  Sulfuric Acid Aerosol ( $\mu g \ SO_4^=$ )

| Filter Type                                     | lst<br><u>Filter</u> | Screen           | 2nd<br>Filter  | Filter <sup>a</sup><br>Collection<br>Eff. (%) |
|-------------------------------------------------|----------------------|------------------|----------------|-----------------------------------------------|
| Fluoropore, 1 µm <sup>c</sup>                   | 549                  | 5.0              | 6.0            | 98.0                                          |
|                                                 | 503                  | 4.0              | 6.5            | 97.9                                          |
| Teflo <sup>d</sup> , l µm                       | 1069                 | 5.9              | 6.2            | 98.9                                          |
|                                                 | 746                  | 5.2              | 9.6            | 98.1                                          |
| Fluoropore, 3 µm <sup>C</sup>                   | 534                  | N/A <sup>b</sup> | 8.5            | N/A                                           |
|                                                 | 560                  | 8.3 <u>+</u> 1.1 | 5.0            | 97.7 <u>+</u> .2                              |
| Teflo <sup>d</sup> , 3 µm                       | 709                  | 10.4             | 26.4           | 95.1                                          |
|                                                 | 657                  | 10.5             | 18.0           | 95.8                                          |
| Zefluor <sup>d</sup> , 3 $\mu$ m (thin backing) | 673                  | 14.8             | 15.7           | 95.7                                          |
|                                                 | 624                  | 12.6             | 15.9           | 95.6                                          |
| Mitex, 5 µm <sup>c</sup>                        | 317                  | 8.0              | 11.5           | 94.2                                          |
|                                                 | 384                  | 8.5              | 14             | 94.5                                          |
| Microquartz <sup>e</sup>                        | 453                  | 3.0              | 1.5            | 99.0                                          |
|                                                 | 470                  | 0.5              | 1.5            | 99.6                                          |
| Acid Washed Quartz                              | 537                  | 1.5              | 6.5            | 98.5                                          |
| (Pallflex 2500 QAO) <sup>f</sup>                | 516                  | 1.5              | 7.0            | 98.4                                          |
| Unbacked Fluoropore, 0.5 µm <sup>C</sup>        | 440                  | 4.0              | $14.8 \pm 3.2$ | 95.9 <u>+</u> 0.7                             |
|                                                 | 429                  | 5.5              | 12             | 96.1                                          |

a. Filter collection Efficiency % = 1 - [((Screen) + (2nd filter)) (lst filter) + (Screen) + (2nd filter)] x 100

- b. N/A = data not available.
- c. Millipore Corp.
- d. Ghia Corp., Pleasanton, CA.
- e. Gelman Instruments Co.
- f. Pallflex Products Corp., Putnam, CT.

34

#### VII. EVALUATION OF H2SO4 AND ACIDITY METHODS USING LABORATORY AEROSOLS

#### A. Preliminary Study for Filter Selection

The objective of this preliminary study was to select filters showing high recoveries of  $H_2SO_4$  for detailed evaluation. Loss of  $H_2SO_4$  in these studies could be ascribed to acid-filter interaction since great care was taken to minimize the possibility of neutralization by ambient ammonia.\*

Three filters of each of six types were loaded with a nominal 60-80  $\mu$ g H<sub>2</sub>SO<sub>4</sub>. Filters were cut in half in an NH<sub>3</sub> free chamber, and twice distilled water added to one set of filter halves, contained in sealed polystyrene tubes, for strong acid and sulfate measurement. The second set of filter halves was placed in sealed glass tubes for benzaldehyde extraction and H<sub>2</sub>SO<sub>4</sub> determination. Sample transport and storage was done under argon to minimize neutralization by atmospheric armonia.

Results of  $H_2SO_4$ ,  $H^+$  and  $SO_4^-$  analyses are given in <u>Table 10</u>. Acidwashed quartz showed 95 ± 7% and 96 ± 26% recoveries by titration and benzaldehyde extraction, respectively. One and 3 µm Fluoropore yielded about 90% acid by both techniques. Recoveries with unbacked Fluoropore (0.5 µm) were close to quantitative, prompting further evaluation of similar Teflon filters lacking a polyethylene backing but with somewhat greater pore size.

#### B. Recovery Studies with Inert Filters

H<sub>2</sub>SO<sub>4</sub> recoveries were determined with acid-treated quartz and Teflon membrane filters using about 50 µg per filter H<sub>2</sub>SO<sub>4</sub> loadings. Filters were quartered as described in Appendix B. One quarter was used for benzaldehyde extraction and the remaining quarters were used for  ${\rm H}^+$ measurement and sulfate determinations. The expected level of  $H_2SO_{44}$ was about 13  $\mu g$  extracted by benzaldehyde and 39  $\mu g$  for the other analyses. The results are given in Table 11. The acid levels determined titrimetrically were similar to those in Table 10. Recoveries of the acid by titration were relatively high and similar for the two experiments using acid-washed quartz and 1 µm Fluoropore. Recovery of the acid by benzaldehyde extraction is somewhat lower in Table 11 compared to Table 10. This is to be expected since the  $H_2SO_4$ levels are lower. Recovery of ca. 10  $\mu g \ H_2 SO_4$  from acid-washed Pallflex 2500 QAO averaged 60% (Table 11) which compares to 75% recovery reported by BNL for similar conditions. Zefluor, a Teflon filter backed with coarse Teflon, showed a somewhat lower recovery of acid by titration compared to Fluoropore or acid-washed quartz. However, average recovery of H<sub>2</sub>SO<sub>4</sub> by benzaldehyde extraction was slightly higher.

<sup>\*</sup>Loss of  $H_2SO_4$  by neutralization with  $NH_3$  during and after sampling and by interaction with particulate matter is considered following choice of filter media.

| Filter Type                      | No.            | H <sup>+</sup> (titrimetric) <sup>a</sup>                   | H <sub>2</sub> SO <sub>4</sub> (benzaldehyde<br>extraction) | $\underline{SO_4}^{=d}$ | $\frac{\text{H}^{+}(\text{titrimetric})}{\text{SO}_{4}^{\pm}} \times 100^{\text{e}}$ | $\frac{H_2SO_4}{SO_4} = x 100^{f}$ |
|----------------------------------|----------------|-------------------------------------------------------------|-------------------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------|------------------------------------|
| Acid Washed Quartz               | 76<br>77<br>78 | 39.5 <sup>b</sup><br>44.0 <sup>b</sup><br>42.6 <sup>b</sup> | 55.2<br>35.2<br>37.1                                        | 44.2<br>47.1<br>41.6    | 89<br>93<br>102                                                                      | 125<br>75<br>89                    |
| Gelman Microqu <b>artz</b>       | 79<br>80<br>81 | $\bigcirc^{\mathbf{C}}_{\mathbf{C}}$                        | 34.1<br>47.4<br>0                                           | 7.3<br>26.1<br>6.6      | 0<br>0<br>0                                                                          | 470<br>180<br>0                    |
| Mitex, 5 μm<br>pore size         | 85<br>86<br>87 | 5.0<br>25.4<br>12.5                                         | 32.0<br>27.4<br>24.1                                        | 8.8<br>22.4<br>28.2     | 57<br>113<br>44                                                                      | 340<br>122<br>85                   |
| Fluoropore, 1 µm<br>pore size    | 82<br>83<br>84 | 32.3 <sup>b</sup><br>32.8 <sup>b</sup><br>32.1 <sup>b</sup> | 27.4<br>30.6<br>32.7                                        | 36.5<br>35.8<br>33.7    | 88<br>92<br>95                                                                       | 75<br>85<br>97                     |
| Fluoropore, 3 µm<br>pore size    | 88<br>89<br>90 | 34.5<br>30.4<br>29.1                                        | 33.5<br>30.7<br>27.2                                        | 38.9<br>33.6<br>31.9    | 89<br>99<br>91                                                                       | 86<br>91<br>85                     |
| Fluoropore, 0.5 µm<br>(unbacked) | 91<br>92<br>93 | 25.0<br>29.5<br>34.2                                        | 23.8<br>35.0<br>26.0                                        | 23.8<br>32.2<br>31.6    | 105<br>92<br>108                                                                     | 100<br>109<br>82                   |

Preliminary Screening of  $H_2SO_4$  Recovery from Candidate Filters ( $\mu g SO_4^{-}/\frac{1}{2}$  filter)

a. Except as noted results are not corrected for filter blank.

b. Results corrected using filter blank values given in Table 3.

c. Subsequent studies indicated a filter blank of ca. -40 (i.e. the filter is alkaline).

d. Using the AIHL microchemical method.

e. Percent recovery of acid by titration.

f. Percent recovery of acid by benzaldehyde extraction.

5 S

| Filter Type                   | No.                                  | H <sup>+</sup> (titrimetric) <sup>a</sup>     | H <sub>2</sub> SO <sub>4</sub> (benzaldehyde<br>extraction) <sup>b</sup> | $SO_4$ =b,c $\frac{1}{2}$    | $\frac{I^{+}(\text{titrimetric})}{SO_{4}} \times 100^{d}$ | $\frac{H_2SO_4}{SO_4} \times 100^{d}$ |
|-------------------------------|--------------------------------------|-----------------------------------------------|--------------------------------------------------------------------------|------------------------------|-----------------------------------------------------------|---------------------------------------|
| Acid Washed Quartz            | 147AQ<br>148AQ<br>149AQ<br>150AQ     | 34.5<br>28.7<br>35.8<br>30.0                  | 18.0<br>20.6<br>25.4<br>17.8                                             | 34.5<br>29.8<br>37.1<br>35.5 | 100<br>96<br>96<br>85                                     | 52<br>69<br>68<br>50                  |
| Fluoropore, 1 µm<br>pore size | 139F1<br>140F1<br>141F1<br>142F1     | 33.2<br>29.3<br>31.9<br>25.4                  | 28.0<br>16.4<br>20.0<br>23.1                                             | 33.8<br>31.1<br>32.9<br>29.6 | 98<br>94<br>97<br>86                                      | 83<br>53<br>61<br>78                  |
| Zefluor, l µm<br>pore size    | 143ZT1<br>144ZT1<br>145ZT1<br>146ZT1 | 24.9<br>27.6<br>20.4<br>31.5                  | 21.1<br>23.3<br>18.9<br>23.6                                             | 30.1<br>33.5<br>23.3<br>31.9 | 83<br>82<br>88<br>99                                      | 70<br>70<br>81<br>74                  |
| Ratio of Means:               | <u>I</u><br>-                        | $\frac{H^{+}(titrimetric)}{SO_{4}} \times 10$ | $\frac{\dot{H}_2SO_4}{SO_4} \times 100$                                  |                              |                                                           |                                       |

# $H_2SO_4$ Recovery from Inert Filter Media (µg $SO_4^{-}/\frac{1}{2}$ filter)

| Ratio of Means:                          | $\frac{\text{H'(titrimetric)}}{\text{SO}_4} \times 100$ | $\frac{H_2SO_4}{SO_4} \times 100$ |
|------------------------------------------|---------------------------------------------------------|-----------------------------------|
| Acid Washed Quartz:<br>Fluoropore, 1 µm: | 94<br>94                                                | 60<br>69                          |
| Zefluor, l µm:                           | 88                                                      | 73                                |

a. Filter blanks (from recovery of H<sup>+</sup> added to aqueous filter extract as  $\mu g SO_4^{-1/2}$  filter):

Acid washed quartz =  $-1.9 \pm 1.0$ Fluoropore, 1 µm =  $-1.2 \pm 1.1$ Zefluor, 1 µm =  $-2.1 \pm 0.7$ 

b. Filter blanks below detectable limits in all cases.

c. Analyses by AIHL microchemical method.

d. See footnotes e and f, Table 8.

37

#### C. Storage Stability of H2SO4 on Clean, Inert Filters

Preceding studies demonstrated that clean, acid-washed Pallflex 2500 QAO quartz and Teflon filters (e.g. Fluoropore or Zefluor) gave relatively high recoveries of sulfuric acid within  $^{14}8$  hours of filter loading with laboratory-generated H<sub>2</sub>SO<sub>4</sub> aerosol. To evaluate the effect of storage of  $H_2SO_{\mu}$  recovery, sets of four quartz and 1  $\mu$ m pore size Zefluor filters were loaded with about 50  $\mu$ g H<sub>2</sub>SO<sub>4</sub> each. Since the filter loading was not sufficiently reproducible, equal loadings on each filter could not be obtained. To permit monitoring of changes with time, each loaded filter was cut into quarters, and one quarter from each was combined and packaged in closed, Millipore disposable plastic Petri dishes. With this strategy the total  $H_2SO_4$  on the four quarters in each of four boxes was equal within the precision of sectioning one filter into equal quarters (C.V. = 2.5%). Zefluor filters were treated similarly. To evaluate storage stability four plastic bags were sealed each containing one loaded quartz, one loaded Zefluor and one each blank filter of each type, all in quarters inside closed Millipore Petri dishes. Two bags were opened after one week of storage in laboratory air and analyzed for  $H^+$  and  $H_2SO_4$ . The results were compared to those for two bags of samples analyzed within 48 hours of loading (Table 12).

Using the benzaldehyde extraction technique, the results indicate, on average  $71 \pm 6\%$  and  $91 \pm 10\%$  recovery of the acid from AW quartz and Zefluor filters, respectively. Using the titrimetric method, recovery of the acid was  $35 \pm 18\%$  and  $93 \pm 11\%$  for quartz and Zefluor filters, respectively. In all cases, an apparent increase in acidity with storage time was observed. Further trials would be needed to establish this as a consistent trend and establish its cause. However, the present results serve to confirm that, in the absence of ammonia and particulate matter, storage of the acid does not cause measurable loss.

#### D. Interference of Atmospheric Particulates in H<sub>2</sub>SO<sub>4</sub> Determination

#### 1. Introduction

To evaluate the effect of atmospheric particulate matter on recovery of  $H_2SO_4$ , sulfuric acid aerosol was added to particulate samples collected on both acid-washed quartz and Teflon (1 µm pore size Fluoropore filters. An 8"x 10" quartz filter was loaded with atmospheric particulate by sampling in Berkeley for 24 hours at ca. 40 cfm during a period of relatively heavy pollution (compared to typical Berkeley pollution levels) using a high volume respirable particulate sampler (particles  $\geq 3.5$  µm are removed with a cyclone). The purpose of the cyclone was to exclude much of the soil particulates which might neutralize sulfuric acid. From this filter 12, 47 mm discs were punched. Five of these were loaded with approximately 100 µg  $H_2SO_4$ , five with 50 µg  $H_2SO_4$  and two with none to permit measurement of the initial sulfate and acid levels.

Storage Stability of  $H_2SO_4$  on Clean Filters (as  $\mu g SO_4^{=}$  per filter)

| Filter             | H <sub>2</sub> SO <sub>4</sub><br>added | H <sub>2</sub> S<br>(benzal)<br>_extrac | 04<br>dehyde <sup>a</sup><br>tion) | H <sup>+</sup> (titrimetric) <sup>b</sup> |                 |  |
|--------------------|-----------------------------------------|-----------------------------------------|------------------------------------|-------------------------------------------|-----------------|--|
|                    |                                         | <u>initial</u> <sup>C</sup>             | one week                           | <u>initial</u>                            | <u>one week</u> |  |
| Acid-washed Quartz | 61 <u>+</u> 3 <sup>d</sup>              | 41                                      | 46                                 | 44                                        | 60              |  |
| Zefluor, l µm      | 50.8 <u>+</u> 0.7                       | 43                                      | 50                                 | 43                                        | 51              |  |

a. Filter blanks ca. 1  $\mu$ g/filter which is below the limit of reliable quantitation.

- b. Corrected for the mean blank for quartz =  $-3.9 \pm 2.0$  and Zefluor =  $-4.2 \pm 1.4 \mu g SO_4^{=}/filter$ . Note that  $\mu g H_2SO_4/filter$  is not significantly different than  $\mu g SO_4^{=}/filter$ .
- c. Analysis completed within 48 hours of filter loading.
- d. Based on analysis for total  ${\rm H_2O}\text{-}{\rm soluble}$  sulfate following analysis for  $\text{H}^+.$

Since it was not feasible to obtain simultaneous atmospheric samples on 47 mm Fluoropore filters, 14, 24-hour samples were obtained in Berkeley over a period of about 3 weeks in October 1978. Of these, four were analyzed without added  $H_230_4$  and the mean and standard deviation for atmospheric sulfate assumed to relate to all samples. Initial sulfuric acid loadings were calculated by subtracting this mean from the total sulfate measured after adding acid. Five samples were loaded with approximately 50 µg, and five with approximately 100 µg  $H_2S0_4$ . Filters were then analyzed for sulfuric acid, total acidity and sulfate after varying storage periods following filter loading.

#### 2. Results

The results given in Table 13 are expressed as percent  $H_2SO_4$  recoveries. Acid recovery values for quartz filters should be considered more reliable since the atmospheric sulfate level of the samples was accurately established. Results have been corrected for the acidity observed in the atmospheric samples.

The results by benzaldehyde extraction indicate, in most cases, < 20% recovery of  $H_2SO_4$ . These findings contrast with those by the titrimetric method which gave an overall mean recovery of  $64 \pm 15\%$ . These findings are consistent with the reaction of > 80% of the  $H_2SO_4$  with  $(NH_4)_2SO_4$  to yield  $NH_4HSO_4$ . This salt would be still be titrated as an equivalent amount of strong acid but would not be recovered by the benzaldehyde extraction method. The initial level of sulfate on the quartz filter,  $206 \mu g/filter$  as sulfate, probably existed primarily as  $(NH_4)_2SO_4$ . As such, it represented more than twice the level of sulfuric acid added. The initial sulfate level on Fluoropore,  $60 \pm 13 \mu g$ , indicates that the added  $H_2SO_4$  could be about twice the molar level of ammonium sulfate. Recoveries of acid up to about 50% by benzaldehyde extraction were observed with the high  $H_2SO_4$ /initial sulfate ratio.

#### 3. Conclusions

- a. The reaction of  $\leq 0.3 \ \mu m$  sulfuric acid aerosol with previously collected particulate matter appears to occur relatively soon after contact. No loss with storage time between 42 and 216 hours was observed.
- b. The removal of large particles from the air stream may be useful but it does not prevent transformation of  $H_2SO_4$  to a form not extracted by benzaldehyde.
- c. Results are consistent with the reaction of a large fraction of  $H_2SO_4$  with  $SO_4^-$  forming 2 moles of  $HSO_4^-$  per mole of  $H_2SO_4$ . The  $HSO_4^-$  is indistinguishable from  $H_2SO_4$  by titration.
- d. Under conditions in which moles of  $H_2SO_4 \leq moles(NH_4)_2SO_4$  it appears doubtful that  $H_2SO_4$  can escape conversion to  $HSO_4^-$ . However, further work is necessary to confirm this with lightly loaded atmospheric samples.

| Filter                             | Mean µg<br>Added H <sub>2</sub> SO <sub>4</sub> | 42 1                 | Hours                       | % H <sub>2</sub> SO <sub>4</sub> R<br><u>96 H</u> | ecovered<br>ours  | 216_H                                | ours                         |
|------------------------------------|-------------------------------------------------|----------------------|-----------------------------|---------------------------------------------------|-------------------|--------------------------------------|------------------------------|
|                                    |                                                 | H <sup>+ d</sup>     | <u>øсно</u> е               | H+d                                               | ØCHO <sup>e</sup> | $H^{+d}$                             | ØCHO <sup>e</sup>            |
| Acid-Washed<br>Quartz <sup>a</sup> | 46<br>46<br>82<br>82                            | 67<br>80<br>58<br>61 | < 19<br>< 18<br>< 9<br>< 11 | 49<br><br>73<br>                                  | 21                | 65<br>98<br>67<br>66                 | < 33<br>< 11<br>< 11<br>< 11 |
|                                    | Mean:                                           | 67 <u>+</u> 11       | < 14                        | 61 <u>+</u> 17                                    | 16 <u>+</u> 8     | 74 <u>+</u> 16                       | < 17                         |
| Fluoropore, l µm <sup>b</sup>      | 54<br>54<br>96<br>96                            | 51<br>51<br>74<br>69 | 7<br>ca.0<br>48<br>24       | 37<br><br>35<br>                                  | ca.0<br>          | (176) <sup>°</sup><br>59<br>80<br>67 | ca.0<br>ca.0<br>54<br>10     |
|                                    | Mean:                                           | 61 <u>+</u> 12       | 20 <u>+</u> 21              | 36 <u>+</u> 1.4                                   | 15 <u>+</u> 22    | 69 <u>+</u> 11                       | 32 <u>+</u> 31               |

## Sulfuric Acid Recovery from Particulate-Loaded Filters (%)

a. Mean  $SO_4^{-}$  loading without added  $H_2SO_4$ : 205.5  $\pm$  3.8 µg/filter. All discs cut from the same 8 x 10" filter for loading with  $H_2SO_4$ . Results corrected for the acidity observed for the atmospheric samples by titration, 24.5  $\pm$  8. By benzaldehyde extraction,  $H_2SO_4$  below detection (<8).

b. Mean  $SO_4$  loading without added  $H_2SO_4$ :  $60.2 \pm 13 \mu g/filter$  for four filters collected on different days. Results corrected for acidity observed for the atmospheric samples by titration,  $-3.6 \pm 2.9$  by titration and  $12.5 \pm 3$  by benzaldehyde extraction.

c. Excluded from mean.

d. By titration

e. By benzaldehyde extraction.

#### E. Interference of $(NH_{4})_2SO_4$ in $H_2SO_4$ Determination

#### 1. Introduction

Studies, described above, of atmospheric particulate matter interference were consistent with the formation of  $HSO_4^-$  from  $H_2SO_4$  and  $(NH_4)_2SO_4$ , since strong acid was still titratable but no  $H_2SO_4$  was extractable by benzaldehyde. To evaluate this more directly, clean 1 µm pore size Zefluor filters were first loaded with  $(NH_4)_2SO_4$  aerosol (< 0.3 µm particle diameter) in sets of three. Two of the three filters from each of two sets were then loaded with  $\leq 0.3 \mu m H_2SO_4$  aerosol at two levels. Sulfate analysis (following H<sup>+</sup> determination) gave the sum of sulfuric acid and ammonium sulfate. Sulfate analysis of the third filter in each set gave the level of  $(NH_4)_2SO_4$ . Since the filters within a set were equivalent in  $(NH_4)_2SO_4$  loading within 2% (Appendix D),  $H_2SO_4$  loadings were obtainable by difference.

#### 2. Results and Conclusions

From the results given in Table 14 it is concluded that:

- a. At the lower  $H_2SO_4$  level, results are subject to large uncertainty because of the reliance on a difference technique to determine  $H_2SO_4$ .
- b. Recovery by titration of strong acid, expressed as  $\rm H_2SO_4$  , averages 128%.
- c. Recovery of  $H_2SO_4$  by benzaldehyde extraction is anomalously high when compared to the level of  $H_2SO_4$  and to results of previous experiments without  $(NH_4)_2SO_4$ . The results are consistent with the extraction of substantial quantities of ammonium acid sulfate  $(NH_4HSO_4)$  by benzaldehyde, the latter being formed from interaction of  $H_2SO_4$  and  $(NH_4)_2SO_4$ .
- d. Direct evaluation of interference effects with  $\rm NH_4HSO_4$  is needed.
- F. Interference of NH4HSO4 in H2SO4 Determinations
  - 1. Introduction

Ammonium acid sulfate ( $NH_4HSO_4$ ) titrates as a strong acid, indistinguishable from  $H_2SO_4$ . However, studies at BNL indicated only slight solubility for dry  $NH_4HSO_4$  in benzaldehyde. To evaluate the potential interference of  $NH_4HSO_4$  on sulfuric acid determination by benzaldehyde extraction under the conditions used in this study, two experiments were performed. In the first, sets of three clean Zefluor filters were simultaneously loaded with equal amounts of  $NH_4HSO_4$  aerosol ( $\leq 0.3 \ \mu$ m)\* followed by sulfuric acid aerosol on two filters from each set. The level of  $H_2SO_4$  added could then be obtained by difference and compared to the observed  $H_2SO_4$ .

<sup>\*</sup>A malfunction in the optical particle counter prevented monitoring particle size. The conditions used were those previously found to yield  $\leq 0.3 \ \mu m$  for 99% of all particles using  $(NH_4)_2SO_4$ .

| Interference | of Ammonium | Sulfate | $[(NH_4)_2SO_4]$ | $\mathbf{on}$ | Sulfuric | Acid | Measurement | (as | μg | sulfate | per | filter) |
|--------------|-------------|---------|------------------|---------------|----------|------|-------------|-----|----|---------|-----|---------|

| $\frac{\text{Set}}{(\text{NH}_4)_2 \text{SO}_4}^{\text{a}}$ |                   | $(NH_4)_2SO_4 + H_2SO_4$ |          | H <sub>2</sub> S<br>(by diff | H <sub>2</sub> SO <sub>4</sub><br>(by difference) |          | by<br>ayde Ext. | $H_2SO_4$ by<br>Titration |                 |
|-------------------------------------------------------------|-------------------|--------------------------|----------|------------------------------|---------------------------------------------------|----------|-----------------|---------------------------|-----------------|
|                                                             |                   | Filter A                 | Filter B | Filter A                     | Filter B                                          | Filter A | Filter B        | <u>Filter A</u>           | <u>Filter B</u> |
| 1                                                           | 81.6 <u>+</u> 4.5 | 113                      | 122      | 32 <u>+</u> 6.7              | 41 <u>+</u> 6.7                                   | 41       | 42              | 46                        | 44              |
| 2                                                           | 89.6 <u>+</u> 2.8 | 97                       | 100      | 7 <u>+</u> 5                 | 10 <u>+</u> 5.5                                   | 21       | 21              | 15                        | 12              |

4

•

a. Mean  $\pm \sigma$  for two determinations made by analyzing separate halves of the same filter.

In the second experiment,  $\rm NH_4HSO_4$  was added in equal amounts to sets of three quartz filters loaded with equal levels of atmospheric particulate matter.\*\* This was followed by deposition of  $\rm H_2SO_4$ aerosol on two of the three discs. Both  $\rm NH_4HSO_4$  and  $\rm H_2SO_4$  were calculated by difference.

# 2. Interference of NH2HSO4 on Clean Teflon Filters

Table 15 shows the extent of interference of ca. 100 µg NH<sub>4</sub>HSO<sub>4</sub> (as SO<sub>4</sub><sup>=</sup>) on the analysis of 0 to 60 µg H<sub>2</sub>SO<sub>4</sub>. Between 39 and 71% of the NH<sub>4</sub>HSO<sub>4</sub> was extracted by benzaldehyde. The presence of H<sub>2</sub>SO<sub>4</sub> did not have a consistent effect on the extent of NH<sub>4</sub>HSO<sub>4</sub>interference. In the absence of H<sub>2</sub>SO<sub>4</sub>, 45 ± 3% of the NH<sub>4</sub>HSO<sub>4</sub> was extracted. This compares to about 25% extraction reported by Richards et al<sup>41</sup> and < 5% reported by Barrett el al.<sup>30</sup>

The latter group as well as BNL employed filters spiked with aqueous solutions of the salt and then dried rather than adding the salt as a submicron aerosol. An additional source of variability arises from the water content of the benzaldehyde-salt system. BNL and Richards et al employed benzaldehyde without purification. As noted by Earrett, et al, such benzaldehyde contains appreciable water causing increased extraction of salts such as  $\mathrm{NH}_4\mathrm{HSO}_4$ . However, both BNL and Richards et al dried each sample (rather than the benzaldehyde) prior to extraction.

In the present work the benzaldehyde had been initially stored over Linde molecular sieve Type 3A, vacuum distilled from fresh molecular sieve under argon, stored with protection from light and air and dispensed through Teflon stopcocks by pressuring with argon. After five months storage its water content was determined to be < 0.004% and its benzoic acid content, 0.6%. However. the samples were not dried. Assuming that after air contact the NH4HSO4-loaded filter absorbed an amount of water equal to the weight of salt (ca. 100  $\mu$ g) the water content of the 10 ml benzaldehyde due to this source would reach 0.02%w. (The water saturation level is 0.3%.) It appears doubtful that water from either laboratory or atmospheric samples could influence the extent of extraction into dried benzaldehyde. Variation in rate of extraction of the acid sulfate with particle size may be a more significant factor causing variability in results between investigators. Further work is needed to evaluate this possibility.

#### 3. <u>NH4HSO4</u> Interference on Atmospheric Particulate-Loaded Filters

<u>Table 16</u> summarizes the level of atmospheric sulfate,  $NH_4HSO_4$  and  $H_2SO_4$  added, and recovered levels of acid. In both sets, approximately 120 µg  $NH_4HSO_4$  (as sulfate) was combined with about 50 µg  $H_2SO_4$  in the presence of about 150 µg atmospheric sulfate and other aerosol constituents on quartz filters. In all cases the level of  $H_2SO_4$  observed by benzaldehyde extraction was below the level added. Apparently, both the acid sulfate and sulfuric acid reacted to a major extent with aerosol constituents preventing assessment of interference effects by  $NH_4HSO_4$ . The average recovery of strong acid (by titration) was only 36%.

\*\*A series of 47 mm discs were cut from an 8 x 10" sheet following sampling respirable particulate for 5 hours at ca. 40 cfm (15.2 m<sup>3</sup> per 47 mm disc).

| <u>Se</u> 1 | <u>t</u> <u>Filter</u> | NH. HSOI          | NH <sub>4</sub> HSO4<br>+<br><u>H2SO4</u> | H2SO4<br>(by difference) | H <sub>2</sub> SO <sub>4</sub><br>Benzaldehyde Ext, | H <sub>2</sub> SO <sub>4</sub> by<br><u>Titration</u> | % Interference by<br>NH4HSO4<br>in Benzaldehyde Ext. | <pre>% Recovery of H<sup>+</sup>     by Titration</pre> |
|-------------|------------------------|-------------------|-------------------------------------------|--------------------------|-----------------------------------------------------|-------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------|
|             | A                      | 97.6              | _ <sup>a</sup>                            | 0                        | 42                                                  | 42                                                    | 43                                                   | 86                                                      |
| 1           | В                      | N.D. <sup>b</sup> | 82.2 <sup>c</sup>                         | - 15 <sup>°</sup>        | 87                                                  | 50                                                    | -                                                    | -                                                       |
|             | С                      | N.D. <sup>b</sup> | 150                                       | 52                       | 86                                                  | 80                                                    | 65                                                   | 84                                                      |
|             | A                      | 99.6              | _ <sup>c</sup>                            | C                        | 47                                                  | 60                                                    | 47                                                   | 120                                                     |
| 2           | В                      | N.D. <sup>b</sup> | 136                                       | 36                       | 107                                                 | 72                                                    | 71                                                   | 84                                                      |
| 45          | с                      | N.D. <sup>b</sup> | 162                                       | 62                       | 101                                                 | 94                                                    | 39                                                   | 85                                                      |
|             |                        |                   |                                           |                          |                                                     | м                                                     | ledian: 47% N                                        | Median: 85%                                             |

ź

Interference of  $NH_4HSO_4$  on  $H_2SO_4$  Determination on Clean Zefluor Filters (as  $\mu g$  sulfate per filter)

a. No  $H_2SO_4$  added to this filter.

b. Assumed equal to value for filter A of the same set (see Appendix D).

c. Probably analytical error.

-----

d. The percent  $\rm NH_4HSO_4$  extracted into benzaldehyde.

Interference of NH4HSO4 on H2SO4 Determination in the Presence of Atmospheric Particulate Matter<sup>a</sup> (as µg sulfate per filter)

| Set | Filter | Atm SO <sub>4</sub><br>+<br><u>NH<sub>4</sub>HSO4</u> | Atm $SO_4^{\pm}$<br>+ NH <sub>4</sub> HSO <sub>4</sub><br>+ H <sub>2</sub> SO <sub>4</sub> | NH4HSO4<br>(by difference) | H <sub>2</sub> SO <sub>4</sub><br>(by difference) | H <sub>2</sub> SO4 by<br>Benzaldehyde Ext. <sup>b</sup> | H <sub>2</sub> SO <sub>4</sub> by<br>Titration | Interference<br>by NH <sub>4</sub> HSO <sub>4</sub><br>Benzaldehyde Ext. | * Recovery<br>of H by<br>Titration |
|-----|--------|-------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------|---------------------------------------------------|---------------------------------------------------------|------------------------------------------------|--------------------------------------------------------------------------|------------------------------------|
|     | A      | 269 <u>+</u> 2.3                                      | -                                                                                          | 118 <u>+</u> 12            | υ                                                 | ca. 0                                                   | 18                                             | Not measurable                                                           | 31                                 |
| 1   | в      | N.D. <sup>d</sup>                                     | 317 <u>+</u> 1.4                                                                           | 118 <u>+</u> 12            | 48 <u>+</u> 3                                     | ca. 0                                                   | 46                                             | Not measurable                                                           | 43                                 |
|     | с      | N.D. <sup>d</sup>                                     | 325 <u>+</u> 2                                                                             | 118 <u>+</u> 12            | 56 <u>+</u> 3                                     | 12.5                                                    | <b>ե</b> կ                                     | Not measurable                                                           | 38                                 |
|     | A      | 281 <u>+</u> 1.4                                      | -                                                                                          | 130 <u>+</u> 12            | 0                                                 | <b>ca.</b> 0                                            | 16                                             | Not measurable                                                           | 24                                 |
| £ 2 | в      | N.D.ª                                                 | 330 <u>+</u> 2                                                                             | 130 <u>+</u> 12            | 49 <u>+</u> 2                                     | 7.8                                                     | 38                                             | Not measurable                                                           | 33                                 |
|     | с      | N.D. <sup>d</sup>                                     | 339 <u>+</u> 1                                                                             | 130 + 12                   | 58 <u>+</u> 2                                     | 13.7                                                    | 46                                             | Not measurable                                                           | 38                                 |
|     |        |                                                       |                                                                                            |                            |                                                   |                                                         |                                                | Median:                                                                  | 36\$                               |

a. Mean atmospheric sulfate level 151  $\pm$  12 µg/47 mm disc cut from single 8 x 10" filter.

- b. No H<sub>2</sub>SO<sub>4</sub> detectable in atmospheric particulate.
- c. Results corrected for 24  $\mu$ g H<sub>2</sub>SO<sub>4</sub> (as SO<sub>4</sub><sup> $\pi$ </sup>) per filter for the atmospheric particulate matter.
- d. Assumed equal to value for filter A of same set (see Appendix D).

#### VIII. NITRIC ACID MEASUREMENT

#### A. Introduction

Previous studies evaluated the use of a coulometric method for continuous nitric acid measurement. While the method proved adequate for laboratory use at concentrations > 0.1 ppm, it lacked sensitivity for ambient concentrations. A Teco, single channel chemiluminescent  $NO-NO_2$  analyzer was used for laboratory analysis of nitric acid at < 0.1 ppm, but could not be used for field sampling because of  $NO-NO_2$  interference.

The present study has evaluated two integrated sampling techniques, one employing NaCl-impregnated filters<sup>9</sup>, and the second, nylon filters for HNO<sub>3</sub> collection.<sup>15</sup> This approach requires initial removal of particulate nitrate with a pre-filter and penetration of HNO<sub>3</sub> to the collector mounted as an after-filter.

Our studies included assessment of artifact nitrate formation on NaClimpregnated and nylon filters with  $NO_2$ , the degree of retention of nitric acid on the inert filters used for pre-filters, with and without atmospheric particulate matter, and comparison of the two techniques.

#### B. Artifact Particulate Nitrate Formation

#### 1. <u>Clean Filter-NO<sub>2</sub> Interaction</u>

Previous AIHL studies of artifact particulate nitrate formation demonstrated only slight retention of NO<sub>2</sub> at  $\leq 90\%$  R.H. using a wide variety of filter types. For the present study it was necessary to establish that the filters intended to collect nitric acid, viz., nylon (Duralon and Ghia nylon) and NaCl-impregnated cellulose (Whatman 41) did not cause errors due to NO<sub>2</sub> collection. Prior studies with Duralon filters demonstrated little NO<sub>2</sub> retention at or close to ambient concentrations. However, NaCl impregnated cellulose filters have been reported to retain NO<sub>2</sub> somewhat at high relative humidity.9

The present study employed 0.5 ppm NO<sub>2</sub> at 90% R.H., with and without added 0.1 ppm NH<sub>3</sub>, in 6-hour exposures. Following exposures samples were refrigerated to minimize desorption as well as oxidation of nitrogen-containing species. Extractions were done by mechanical shaking for 30 min. in 5-10 ml H<sub>2</sub>O at room temperature except with nylon filters. The latter were extracted in 0.1N NaOH as discussed in Appendix E. The results are given in <u>Table 17</u> together with those for a blank run made immediately before the trials with added NO<sub>2</sub>. In spite of a careful detergentwater wash and clean air purge, the interior walls of the exposure system remained contaminated with a material which desorbed and was collected and analyzed as nitrate. The 6-hour chamber blank run conducted with two Duralon and two NaCl/Whatman 41 filters in parallel observed about 3-9  $\mu$ g/m<sup>3</sup> artifact nitrate, with the higher level on the latter filters.

# Table 17 ARTIFACT PARTICULATE NITRATE FROM SIX-HOUR EXPOSURES TO

NO<sub>2</sub> AT 90% R.H. WITH AND WITHOUT ADDED NH<sub>3</sub><sup>a</sup>  $(\mu g/m^3)$ 

| Filter/Conditions      | Chamber<br>Blank Run <sup>b</sup> | 0.5 ppm NO <sub>2</sub> (940 μg/m <sup>3</sup> )<br>0 NH <sub>3</sub> | 0.5 ppm NO <sub>2</sub> (940 µg/m <sup>3</sup> )<br>0.1 ppm NH <sub>3</sub> (70 µg/m <sup>3</sup> ) |
|------------------------|-----------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| Duralon                | 2.6 <u>+</u> 0.2                  | 6.1 <u>+</u> 0                                                        | 2.6 <u>+</u> 0.1                                                                                    |
| NaCl/W41               | 8.5 <u>+</u> 0.3                  | 5.6 <u>+</u> 1<br>8.3 (9 lpm)                                         | 2.9 <u>+</u> 0.4<br>2.4 (10 lpm)                                                                    |
| Ghia Nylon             |                                   | 5.3 <u>+</u> 0.6                                                      | 1.9 <u>+</u> 0.2                                                                                    |
| Zefluor Pre-filter     |                                   | o c <sup>c</sup>                                                      | , o <sup>c</sup>                                                                                    |
| Duralon After-filter 🦯 |                                   | 2.5                                                                   | 1.0                                                                                                 |
| Zefluor Pre-filter     |                                   | C                                                                     | 6                                                                                                   |
| NaCl/W41 After-filter  |                                   | 1.6                                                                   | 0.5                                                                                                 |

- a. Except as noted all results obtained at ca. 20 lpm and  $21 \pm 1^{\circ}C$ .
- b. Exposure system was cleaned with aqueous detergent, rinsed with distilled water and air dried. Blank run made after purging system overnight with purified air.
- c. Results for pre-filter plus after-filter.

÷.

Runs with  $NO_2$ , with and without ammonia, were done with filter pairs as above at 20 lpm plus an NaCl/W<sup>4</sup>l filter at 10 lpm. In addition, filters with Teflon pre-filters such as would be used in field sampling for nitric acid, were also evaluated. Comparing results with added  $NO_2$  to those in the blank run, Duralon exhibited a small increase (corresponding to 0.3%  $NO_2$  retention) while results with NaCl/W<sup>4</sup>l decreased slightly. The filters with prefilters showed total nitrate levels  $\leq$  the controls. The addition of ammonia caused a decrease in observed artifact particulate nitrate. This parallels observations previously reported using glass fiber, cellulose acetate and Teflon filters.<sup>10</sup>,11

In summary the level of artifact particulate nitrate from  $NO_2$  appears negligibly small. Published reports of significant  $NO_2$  collection on NaCl impregnated filters may have been influenced to some degree by system contamination.

#### 2. Filter-HNO3 Interactions

Previous work at AIHL demonstrated, in many cases, retention of gas phase nitric acid on clean filter media leading to what is referred to as artifact particulate nitrate. Those studies were restricted to acid levels of  $\geq$  ca. 500 µg/m<sup>3</sup> which is about an order of magnitude higher than the highest ambient air mitric acid levels expected. The present study extended this work down to 165 µg/m<sup>3</sup> as measured with Duralon filters, and included clean filters intended for sampling total particle-phase acids, as well as pre-filters for HNO<sub>3</sub> measurement with and without atmospheric particulate matter. Fluoropore filters were included to permit comparison with prior work. Filters were refrigerated at 5°C following exposures until immediately prior to extraction to minimize desorption.

The results given in Table 18 show about 2% retention of  $HNO_3$ on clean Teflon filters except for Zefluor at > 500 µg/m<sup>3</sup>  $HNO_3$ . Acid-treated quartz exhibited higher but variable retention relative to Teflon filters. The effect of particulate addition was to sharply increase the nitric acid retained.

We conclude that Teflon filters are preferable for use as prefilters in sampling nitric acid on nylon or NaCl/W41. The enhancement of HNO<sub>3</sub> retention on Fluoropore filters by particulate matter suggests that filter changes be made as frequently as possible.

#### C. Comparison of Nitric Acid Sampling Methods

To compare filter methods for nitric acid, 47 mm Duralon and Ghia nylon filters and NaCl-impregnated Whatman 41 filters were exposed side-by-side with ca. 200 to 500  $\mu$ g/m<sup>3</sup> HNO<sub>3</sub> at 50 or 80% relative humidity and at 10 and 20 lpm (<u>Table 19</u>). To evaluate the methods under simulated field sampling conditions, the Duralon and NaCl/W41 filters were mounted in Nuclepore double filter holders with Zefluor pre-filters. In an effort to assess wall loss in the double filter holders, these were washed with distilled water and analyzed for nitrate following each exposure. The two runs at 50% R.H. employed

| Tab | le | 18 |
|-----|----|----|
|     |    |    |

NITRIC ACID COLLECTION ON "INERT" FILTERS AT 50% R.H.  $\left(\,\mu g/m^3\,\right)^{\mathbf{a}}$ 

|                                           | HNO <sub>3</sub> | Concentratio | on (µ            | $g/m^3)$     |
|-------------------------------------------|------------------|--------------|------------------|--------------|
| Filter                                    | <u> 165</u>      | + 5          | <u>557</u> ·     | + 117        |
| Fluoropore (Teflon)                       | 2.9              | <u>+</u> 0.6 | 8.9              | <u>+</u> 0.6 |
| Zefluor (Teflon)                          | 3.6              | <u>+</u> 4   | 33               | <u>+</u> 12  |
| Acid-treated Quartz <sup>b</sup>          | 16               | <u>+</u> 14  | 147 <sup>e</sup> |              |
| Fluoropore + 23 m <sup>3</sup> air sample | 47               | <u>+</u> 31  | 56               | <u>+</u> 30  |
| Gelman GA-1 (cellulose acetate)           | 35               | <u>+</u> 7   | 57               | <u>+</u> 30  |

a. Except as noted, samples exposed for 6 hours at 21 ± 1°C and 22 lpm.
b. Flow rate 37 lpm to match face velocity in a high volume sampler.
c. Single value.

# COMPARISON OF METHODS FOR NITRIC ACID DETERMINATION (as $\mu g/m^3 NO_3^-$ )

| Sampler                                                      | Exposure<br>Conditions: | $50\%$ at $2x10^2$ | R.H.<br>µg/m <sup>3</sup> HNO <sub>3</sub>                              | 80<br>at 3x10 <sup>2</sup> | 0% R.H.<br>µg/m <sup>3</sup> HNO <sub>3</sub> | 80% R.H.<br>at $5x10^2 \mu g/m^3$ HNO <sub>3</sub> |                               |  |
|--------------------------------------------------------------|-------------------------|--------------------|-------------------------------------------------------------------------|----------------------------|-----------------------------------------------|----------------------------------------------------|-------------------------------|--|
|                                                              |                         | <u>10 lpm</u>      | 20 lpm                                                                  | <u>10 lpm</u>              | <u>20 lpm</u>                                 | <u>10 lpm</u>                                      | <u>20 lpm</u>                 |  |
| Duralon filter                                               |                         | 157 <u>+</u> 15    | 154 <u>+</u> 28                                                         | 284                        | 279                                           | 569                                                | 522                           |  |
| NaCl/W41 filter                                              |                         | 190 <u>+</u> 4     | 182 <u>+</u> 11                                                         | 472                        | 331 <u>+</u> 2                                | 577                                                | 548 <u>+</u> 51               |  |
| Ghia nylon filter                                            |                         | 178 <u>+</u> 23    | 148 <u>+</u> 28                                                         | 285                        | 276                                           | 402                                                | 476                           |  |
| Zefluor pre-fil <b>ter</b><br>Duralon after-filter<br>Holder |                         |                    | $\begin{array}{r} 0.7 \pm 0.7 \\ 130 \pm 31 \\ 3.5 \pm 0.4 \end{array}$ |                            | 44 <sup>b</sup><br>236<br>4.5                 |                                                    | 34 <sup>b</sup><br>153<br>5.6 |  |
|                                                              |                         | Σ                  | = 134 <u>+</u> 31                                                       |                            | <b>E</b> 285                                  |                                                    | Σ 193                         |  |
| Zefluor pre-filter<br>NaCl/W41 after-filter<br>Holder        |                         |                    | $\begin{array}{r} 0.5 + 0.3 \\ 128 + 56 \\ 6.7 + 2.7 \end{array}$       | <b></b>                    | 25 <sup>b</sup><br>233<br>5                   | <b>E F</b>                                         | 40 <sup>b</sup><br>329<br>5   |  |
|                                                              |                         | Σ                  | = 135 <u>+</u> 56                                                       |                            | Σ 262                                         |                                                    | Σ 374                         |  |

a. All samples stored at room temperature following  $HNO_3$  exposure.

b. Pre-filter pre-loaded with atmospheric particulate sampling 4 hours at 16 lpm. Value corrected by about 10% to allow for estimated level of atmospheric nitrate.

12

clean Zefluor filters while those at 80% R.H. were done with filters pre-loaded with atmospheric particulate matter. In all cases, samples were maintained at room temperature following exposures to simulate field sampling conditions.

From the results in Table 19 it is concluded that:

- 1. There was no significant effect of a change in flow rate, in the range 10 to 20 lpm.
- 2. Duralon (Millipore Corp.) and Ghia Corp., nylon filters are equivalent except at HNO<sub>3</sub> concentrations >  $500 \text{ }\mu\text{g/m}^3$ .
- 3. Although Duralon and Ghia nylon filters showed no flow rate dependence, both gave lower nitric acid recoveries as compared to NaCl/Whatman 41 (average 21% lower at < 500 µg/m<sup>3</sup> HNO<sub>3</sub>).
- 4. Nitric acid recovered from the filter pairs plus holder at >  $500 \text{ }\mu\text{g/m}^3$ was less than that recovered by the corresponding single filter. Below 200  $\mu\text{g/m}^3$  HNO<sub>3</sub> the agreement was within experimental error, however. The results suggest that adsorbed HNO<sub>3</sub> on the pre-filter, particulate matter or filter holder may to lost before extraction of nitrate can be accomplished. Heating the 2-filter sampler to desorb HNO<sub>3</sub> from the pre-filter and walls to permit its transfer to the collecting filter (as employed by Okita9) may overcome this problem.
- 5. The level of nitric acid retained on the Zefluor pre-filters bearing particulate matter was greatly in excess of that without particulate matter, making adsorption on, or reaction with the particulate matter likely. However, adsorption on clean Zefluor was determined at 50% relative humidity. Since adsorption of HNO<sub>3</sub> on clean Zefluor is expected to be somewhat greater at 80% R.H., no quantitative assessment of HNO<sub>3</sub>- particulate interaction can be made from these data.

The lower nitric acid recoveries from nylon compared to NaCl-impregnated filters suggested lower collection efficiencies with the nylon filters. To evaluate collection efficiency more directly, a clean nylon and a NaCl-impregnated filter were each paired with a clean NaCl-impregnated after-filter. The percentage of the total recovered nitric acid which was on the first filter in series provided a measure of its efficiency. The results for NaCl on Whatman 41 were 97.4  $\pm$  1.4% at 50 and 80% R.H. sampling 220-350 µg/m<sup>3</sup> HNO<sub>3</sub> for 6 hours at 20 lpm. For the same conditions Duralon nylon filters showed 58.7  $\pm$  9.1% efficiency.

The efficiency of a Duralon filter for collection of 220-350  $\mu g/m^3$  HNO<sub>3</sub> for ca. 60 minutes at 1 lpm was evaluated by adding the filter to the sampling line of a Teco chemiluminescent NO<sub>X</sub> analyzer. The total signal, representing the sum of HNO<sub>3</sub>, NO<sub>2</sub>, and NO, was reduced to < 2.9% of its original value. Thus the efficiency of the filter for HNO<sub>3</sub> removal was > 97.1% under these conditions. Accordingly, the efficiency of nylon filters appears to increase with decreasing total nitric acid sampled. The very low flow rate of the Teco might also increase efficiency to some degree.

IX. EVALUATION OF A DENUDER FOR AMMONIA REMOVAL AND OF OXALIC ACID IMPREGNATED FILTERS FOR AMMONIA SAMPLING

#### A. Experimental Techniques

The field studies employed an ammonia denuder on the inlet to a lo-volume filter sampling unit. This was included in an effort to eliminate the neutralization of collected sulfuric acid particles by atmospheric ammonia. The denuder was patterned after that developed by Stevens and Dzubay.<sup>35</sup> It consists of an array of parallel glass tubes forming a laminar flow element which is coated on the inner surfaces with fused phosphorous acid. Gases diffuse to the walls of the denuder much more rapidly than aerosols which permits removal of ammonia with minimal losses of particulate matter.

The theoretical basis for denuder design was obtained from the solution of the steady state mass diffusion equation governing the concentration of particles within a fluid moving in a circular tube.<sup>49</sup> For laminar viscous flow:

$$\frac{\overline{C}}{\overline{C}_{0}} = 0.82 \exp(-15\Delta) + 0.098 \exp(-89\Delta) + 0.033 \exp(-228\Delta)$$

where  $\Delta = DLII/4Q$  and

- D = diffusion coefficient (cm<sup>2</sup>/sec) For NH<sub>3</sub>, D = 0.4
- L = total length of tube (cm)
- Q = flow rate through tube (cm<sup>3</sup>/sec)
- $C_{o}$  = concentration entering tube
- $\overline{C}$  = average concentration exiting tube

 $(1 - \overline{C}/C_0) \times 100 = \text{percent removal}$ 

This expression is valid if the Reynolds number is kept below 2000 to prevent turbulent flow.

Based on this design, at 99% ammonia removal,  $\leq 6\%$  of an 0.01 µm aerosol of density 1.0 should be lost to the tube walls for these flow rates. It should be noted that tube diameter is not critical as long as the Reynolds number is maintained below 2000. The total tube length is independent of tube geometry. Accordingly, the most compact denuder configuration consists of an array of shorter parallel tubes, the sum of whose lengths yield the desired total tube length. This configuration has the additional advantage of minimizing the flow turbulence in the denuder system. Table 20 lists the optimum denuder tube configurations for three flow rates and the corresponding Reynolds number.

## Denuder Tube Configuration

| Flow rate <sup>a</sup><br>(l/min) | Total Tube <sup>C</sup><br>Length Required<br>(cm) | Tube Configuration <sup>b</sup><br>No. Tubes @ 30 cm Length | Reynolds<br>Number |
|-----------------------------------|----------------------------------------------------|-------------------------------------------------------------|--------------------|
| 15.9                              | 250                                                | 9                                                           | 480                |
| 22.0                              | 350                                                | 12                                                          | 460                |
| 37.4                              | 600                                                | 20                                                          | 480                |

a. Flow rates 15.9 and 37.4 l/min correspond to face velocity of a hi-vol sampler at 40 CFM scaled to 25 mm and 47 mm filters, respectively. 22 l/min is the maximum flow rate to be used with the AIHL cyclone.

- b. Tubes are 0.6 cm inner diameter.
- c. Total tube length for 99% NH3 removal.

For evaluation of the ammonia denuder as well as atmospheric sampling, a technique for gas phase ammonia was required. The procedure used was a modification of a technique described by Richards et al.<sup>41</sup> Gelman AE glass fiber filters were washed with 0.1N HCl, air dried and then heated for 4 hours at 400°C. To 47 mm filter discs was added 0.7 ml of a freshly prepared 5% woxalic acid in ethanol solution. The solvent was evaporated under N<sub>2</sub>.

#### B. Results

The ammonia denuder was evaluated for use at a flow rate of 22 lpm by sampling air containing approximately 100 ppb ammonia for two six-hour periods at 50% R.H. and at 80-90% R.H., respectively. Downstream of the sampler the ammonia penetrating the denuder was collected on an oxalic acid impregnated Gelman AE glass fiber filter (OAE). The ammonia level upstream of the denuder was measured by two sets of two OAE filters in series. This design permitted measurement of the efficiency of the ammonia denuder as well as the efficiency of the OAE filters for NH<sub>3</sub> collection, and the precision of the NH<sub>3</sub> determination. The filter samplers provided an integrated sample for the six-hour period. In addition, three midget impingers in series containing 0.1N  $H_2SO_4$  were used to collect 3 or 4, one hour NH<sub>3</sub> samples upstream of the denuder throughout the six-hour runs for comparison with the OAE filter results.

Following collection, the ammonia was determined as  $NH_3^+$  using the indophenol blue procedure. $38^*$  Filter storage was < 48 hours prior to extraction and analysis.

The OAE filter blank for  $NH_4^+$  was  $1.0 \pm 0.7 \mu g/filter$  (n = 4). Accordingly, the limit of detection for  $NH_3$ , as  $NH_4^+$ , is considered 2.4  $\mu g/filter$  (i.e. the mean blank + 2  $\sigma$  of the blank). The efficiency of single OAE filters for ammonia collection, shown in <u>Table 21</u>, is based on the total  $NH_4^+$  retained by two filters in series. With the ammonia level used, ca. 75  $\mu g/m^3$  (107 ppb), the efficiency for a single filter was > 98%.

Results for the denuder evaluation are given in <u>Table 22</u> indicating > 99% ammonia removal. Assuming this efficiency to be relevant at a more typical ambient concentrations, 5  $\mu$ g/m<sup>3</sup>, then 0.03  $\mu$ g/m<sup>3</sup> NH<sub>3</sub> would penetrate to the filter collecting sulfuric acid. This concentration is sufficient to convert up to 0.09  $\mu$ g/m<sup>3</sup> H<sub>2</sub>SO<sub>4</sub> to NH<sub>4</sub>HSO<sub>4</sub>.

<sup>\*</sup>A comparison of the indophenol blue procedure to the automated methylthymol blue sulfate method<sup>39</sup> in analysis of  $(NH_4)_2SO_4$  is given in Appendix D. The coefficient of variation of the indophenol blue procedure was previously determined to be 5%.40

Efficiency of Oxalic Acid Impregnated Celman AE Glass Fiber Filters for Ammonia Collection with Approximately 75  $\mu g/m^3$   $\rm NH_3^a$ 

|                       | Efficiency for Sir | ngle Filter (3) <sup>b</sup> |
|-----------------------|--------------------|------------------------------|
| Relative Humidity (%) | Set 1              | Set 2                        |
| 50                    | 98.1               | 99.3                         |
| 80-90                 | 99.1               | 97.7                         |

a. Sampling rate 25 lpm.

b. The fraction of the total ammonia obtained on the first filter compared to the total ammonia retained by the two filters in series.

# Efficiency of the Ammonia Denuder at 22 lpm<sup>a</sup>

| Relative<br>Humidity (%) | Ammon<br>Filter Set 1 | ia Concentration<br>(µg/m <sup>3</sup> )<br>Filter Set 2 | b<br>Impinger              | Ammonia Penetrating<br>Denuder (µg/m <sup>3</sup> ) | Efficiency of<br>NH <sub>3</sub> Removal (%) <sup>e</sup> |
|--------------------------|-----------------------|----------------------------------------------------------|----------------------------|-----------------------------------------------------|-----------------------------------------------------------|
| 50                       | 96                    | 57                                                       | 62 <u>+</u> 9 <sup>d</sup> | 0.47                                                | 99.3                                                      |
| 80-90                    | 70                    | 73                                                       | 94 <u>+</u> 57d            | 0.51                                                | 99.3                                                      |

a. Sampling time: 6 hours, 20°C.

57

- b. Filter samplers operated at 25 lpm and the impingers, at 1.0 lpm. Results are for total ammonia retained in each set of two filters in series.
- c. Based on mean of three determinations of upstream concentration.
- d. Six hour mean values estimated from 3-4 one hour bubbler samples collected with three midget impingers in series.

## C. Stability of H2SO4 on Filters in Particle and Ammonia Free Air\*

While it was shown that the NH<sub>3</sub> denuder could remove > 99% of the ammonia in an air stream containing about 100 ppb (70  $\mu$ g/m<sup>3</sup>) NH<sub>3</sub>, it was desirable to evaluate the stability of sulfuric acid on an inert filter protected with such a denuder, as well as a pre-filter to remove particulate matter. For this purpose, Berkeley ambient air was passed through two H<sub>2</sub>SO<sub>4</sub> loaded-Zefluor filters at one time at 22 lpm. Each filter contained 60 to 80  $\mu$ g H<sub>2</sub>SO<sub>4</sub> ( $\leq$  3  $\mu$ m particle size). Both Zefluor filters were preceded by Gelman A (pH = 7.6) glass fiber filters to remove particulate matter. In front of one stacked filter pair was a cyclone to remove particles > 2.5  $\mu$ m and a NH<sub>3</sub> denuder in series. The second stacked filter pair sampled ambient air directly.

Results for recovery of  $H_2SO_4$  after two six-hour sampling trials are given in <u>Table 23</u>. Recovery of  $H_2SO_4$  by benzaldehyde extraction averaged 16% and 38% for two trials. By titration, recovery of the acid was zero in one case and averaged 45% in the second. Ambient  $NH_3$ levels were not measured during these trials but probably were 2-5 µg/m<sup>3</sup> based on Pittsburg, CA, results.

The remarkable feature of these results is that the denuder had no significant effect on the recovery of  $H_2SO_4$  or  $H^+$ . Assuming the observed denuder efficiency for NH<sub>3</sub> removal extends to ambient concentration, ambient NH<sub>3</sub> cannot account for the acid loss. However, a decrease in denuder efficiency to 50%, with an average NH<sub>3</sub> level of 5 µg/m<sup>3</sup>, would provide sufficient NH<sub>3</sub> to neutralize all of the acid present, assuming 100% efficiency for the reaction. Alternatively, NH<sub>4</sub>NO<sub>3</sub> may decompose to NH<sub>3</sub> + HNO<sub>3</sub> on the Gelman A pre-filter, with neutralization of the H<sub>2</sub>SO<sub>4</sub> by NH<sub>3</sub>. Since atmospheric sampling for H<sub>2</sub>SO<sub>4</sub> with the denuder is done without a pre-filter, the above mechanism would have to take place on the same filter bearing the H<sub>2</sub>SO<sub>4</sub>. Thus this experiment might not be relevant to field sampling conditions.

Further studies are needed to determine the cause of  $H_2SO_4$  loss in this experiment and to evaluate its relevance to atmospheric sampling.

\*This experiment was suggested by Willard Richards, Rockwell International.

1

7

| Stability | of | < | 0.3 | μm   | H <sub>2</sub> SO | $_4$ Aerosc | ol on | Zef | luor | Filter | $\mathbf{rs}$ | in  | Particle | Free | Ambient | Air |
|-----------|----|---|-----|------|-------------------|-------------|-------|-----|------|--------|---------------|-----|----------|------|---------|-----|
|           |    |   | Us  | sing | z an              | Ammonia     | Denu  | der | and  | Gelman | Α             | Pre | e-filter |      |         |     |

| Trial | <u>Filter</u>    | μg H <sub>2</sub> SO <sub>4</sub> Loaded<br>(as SO <sub>4</sub> =) | µg H <sub>2</sub> SO <sub>4</sub> Recovered by<br>Benzaldehyde (as SO <sub>4</sub> <sup>-</sup> ) | μg H <sub>2</sub> SO <sub>4</sub> Recovered by<br>H <sup>+</sup> Titration <sup>a</sup> (as SO <sub>4</sub> <sup>-</sup> ) | Percer<br>ØCHO | nt Recovery<br>Titration |
|-------|------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------|
| 1     | A (with denuder) | 84.0                                                               | 11.0                                                                                              | 0                                                                                                                          | 13             | 0                        |
|       | В                | 59.2                                                               | 10.8                                                                                              | 0                                                                                                                          | 18             | 0                        |
| 2     | C (with denuder) | 64,2                                                               | 20                                                                                                | 32                                                                                                                         | 31             | 50                       |
|       | D                | 72.4                                                               | 33.5                                                                                              | 28                                                                                                                         | 46             | 39                       |

59

a. Results corrected for filter blank =  $-4.2 \pm 1.4 \ \mu g/47 \ mm$  filter.

#### X. FIELD SAMPLING STUDIES

#### A. Preliminary Trials - Berkeley

#### 1. Introduction

As a preliminary trial, a 24-hour, a 90-minute and a 5-hour respirable particulate hi-vol sample were collected in Berkeley, the 90 min. sample during an early morning foggy period. In all cases acid-wash quartz filters were used without an  $NH_3$  denuder. The results are discussed in relation to possible interference effects.

#### 2. Results for 24-hour Samples

Two 47 mm acid-washed quartz discs from the 24-hour hi-vol respirable particulate matter sampler were analyzed for  $H_2SO_4$  and strong acid. Results by the benzaldehyde extraction technique were below detectable levels. The results by titration,  $0.51 \pm .16$  µequivalents H<sup>+</sup>/filter correspond to an  $H_2SO_4$  level of  $25 \pm 8$  µg/filter or to a concentration of  $NH_4HSO_4$  of  $59 \pm 18$  µg/filter. The absence of  $H_2SO_4$  by benzaldehyde extraction and the demonstration of relatively rapid reaction of  $H_2SO_4$  with atmospheric particles forming a species which still titrates as a strong acid, suggests that  $NH_4HSO_4$  accounts for the observed results. The 24-hour average atmospheric concentration of strong acid from this sample was  $0.007 \pm 0.002$  µequiv/m<sup>3</sup> ( $0.4 \pm .1$  µg/m<sup>3</sup> as  $H_2SO_4$ ).

Water-soluble iron would be another source of strong acid by the titrimetric method. Accordingly,35 cm<sup>2</sup> of the 24-hour loaded filter sample was extracted with water and the extract analyzed for Fe by atomic absorption. The results indicated  $10 \pm 1 \mu g$  Fe/35 cm<sup>2</sup>. Assuming the Fe to be exclusively Fe<sup>+3</sup>, this amount of iron would titrate as 0.0025 µequiv acid/m<sup>3</sup>. Thus iron could represent as much as 36% of the 0.007  $\pm$  .002 µequiv/m<sup>3</sup> total strong acid observed.

#### 3. Results with Short Term Samples

A 90-minute hi-vol respirable particulate sample collected on quartz fiber during an early morning foggy period gave negligible  $H_2SO_4$  but measurable strong acidity by titration, 0.03  $\mu$ equiv/m<sup>3</sup>. This corresponds to 1.5  $\mu$ g/m<sup>3</sup> expressed as  $H_2SO_4$ .

A 5-hour hi-vol respirable particulate sample collected between 1000 and 1500 hours on quartz fiber also yielded negligible  $H_2SO_4$  and 0.03 µequiv/m<sup>3</sup> strong acid corresponding to 1.6 µg/m<sup>3</sup>, expressed as  $H_2SO_4$ .

#### B. Trials in Pittsburg, CA

#### 1. Introduction

Samples were collected for three consecutive days in February 1979 at the Pittsburg station of the Bay Area Air Quality Management District. The strategy for sample collection and analysis is shown in <u>Table 24</u>. In addition, the BAA0MD supplied ozone,  $SO_2$  (by coulometry), wind speed and direction data. Diurnal variations for gaseous pollutants and meteorological variables are included in Appendix I.

Ammonia was sampled on oxalic acid-impregnated Gelman AE glass fiber filters following a Gelman A glass fiber pre-filter using a technique similar to that of Richards et al.<sup>41</sup> Filter changes were made at the same times as for the respirable particulate hi-vol sampler. Ammonia was monitored since, together with the concentration of nitric acid, it may determine the level of particulate nitrate observed.

To minimize loss of nitric acid and ammonia by adsorption on prefilters and filter holder surfaces, heated air was passed through the nitric acid and ammonia samplers following each sampling period. The procedure followed is described in Appendix F. Following collection the hi-vol samples were stored in Saran wrap-lined manila folders inside sealed plastic bags at room temperature. The remaining filter samples were stored in plastic Millipore boxes in sealed plastic bags at room temperature.

The results, expressed as both  $\mu g/m^3$  and  $\mu equivalents/m^3$ , are included in Tables 25 to 30.

#### 2. H<sub>2</sub>SO<sub>4</sub> and Total Particulate Acidity

All  $H_2SO_4$  results on the quartz fiber samples and most of those on Zefluor were below limits of detection (typically 0.4 µg/m<sup>3</sup> for the short term samples). Higher levels of sulfuric acids coincided with maxima in H<sup>+</sup> concentration by titration. The highest sulfuric acid value found, 0.6 µg/m<sup>3</sup> (0.012 µequiv/m<sup>3</sup>) included a time period on February 8 in which a white plume, more persistant than steam, was visible from the PG&E power plant 1/4 mile to the north. During most of this period the wind came from the north.

Diurnal variations in  $SO_2$  concentration also correlate with wind direction; most elevated  $SO_2$  values occurred with wind coming from the NW to NE quadrant, consistent with the nearby power plant as the predominant source.

As with the Berkeley samples, an evaluation was made of the extent of possible interference by  $Fe^{+3}$  in total acidity measurements. For this purpose, two quartz filter samples from each sampling day representing the maximum and typical acidity levels for that period, were analyzed for total water soluble iron by flame atomic absorption. All results were at or below the limit of detection. Accordingly, the Fe<sup>+3</sup> concentration upper limit was 0.04 to 0.09  $\mu g/m^3$ . This corresponds, in turn to 0.001 to 0.003  $\mu equiv/m^3$  H<sup>+</sup> or about 10% of the observed acidity, which is not significant.
## Sampling Strategy for Pittsburg Samples

| Sampler                                                                          | Collection Medium                                                   | Samples<br>per 24 hr | Species Determined                                                                                                                           |
|----------------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| Respirable (< 3.5 µm)<br>Hi-vol sampler (40 cfm)                                 | Acid-washed<br>Pallflex 2500QAO<br>quartz fiber filter              | 6                    | H <sub>2</sub> SO <sub>4</sub> , H <sup>+</sup> , NO <sub>3</sub> <sup>-</sup> , SO <sub>4</sub> <sup>-</sup> , NH <sub>4</sub> <sup>+</sup> |
| Respirable (< 2.5 µm)<br>Lo-vol sampler (22 lpm)<br>with NH <sub>3</sub> denuder | l µm pore size Zefluor<br>filter (Ghia Corp.)                       | 3                    | $H_2 SO_4$ , $H^+$ , $SO_4^=$                                                                                                                |
| Ammonia                                                                          | Oxalic acid on Gelman<br>AE glass fiber with<br>Gelman A pre-filter | 6                    | $NH_{3}$ (pre-filter)                                                                                                                        |
| Nitric acid                                                                      | NaCl-impregnated<br>Whatman 41 with<br>Zefluor pre-filter           | 3                    | HNO <sub>3</sub> as NO <sub>3</sub><br>NO <sub>3</sub> , SO <sub>4</sub> (pre-filter)                                                        |
| Nitric acid                                                                      | Nylon (Duralon)<br>1.2 µm filters with<br>Zefluor pre-filter        | 3                    | HNO <sub>3</sub> as NO <sub>3</sub><br>NO <sub>3</sub> , SO <sub>4</sub> (pre-filter)                                                        |
| Meloy SA-160                                                                     |                                                                     | Continuous           | 50 <sub>2</sub>                                                                                                                              |
| TECO 14B                                                                         |                                                                     | Continuous           | NO, NO <sub>2</sub>                                                                                                                          |
| Environment 1                                                                    |                                                                     | Continuous           | Condensation nuclei                                                                                                                          |

·..

.

# Analysis of Zefluor Respirable Particulate Samples (with NH<sub>3</sub> denuder) from Pittsburg, CA $(\mu g/m^3)$

|       | February 5, 1979 |                                |         | February 6, 1979 |           |                  | February 7, 1979 |                                |     |
|-------|------------------|--------------------------------|---------|------------------|-----------|------------------|------------------|--------------------------------|-----|
| Time  | H <sup>+a</sup>  | H <sub>2</sub> SO <sub>4</sub> | <u></u> | H <sup>+a</sup>  | $H_2SO_4$ | 504 <sup>=</sup> | н <sup>+а</sup>  | H <sub>2</sub> SO <sub>4</sub> | S04 |
| 06-14 | <u>&lt;</u> 0.8  | < 0.7                          | _b      | 0.6 <u>+</u> .1  | N.D.      | 1.3              | <u>&lt;</u> 0.4  | < 0.4                          | 4.2 |
| 14-22 | <u>&lt;</u> 0.4  | 0.5 <u>+</u> .1                | 4.9     | <u>&lt;</u> 0.4  | < 0.3     | 2.4              | 1.1 <u>+</u> .1  | 0.6 <u>+</u> .1                | 4.6 |
| 22-06 | <u>&lt;</u> 0.4  | < 0.4                          | 4.0     | <u>&lt;</u> 0.4  | < 0.4     | 4.1              | 0.7 <u>+</u> .2  | 0.5 <u>+</u> .3                | 7.7 |

a. As  $\mu g/m^3 H_2SO_4$ 

b. Filter plugged during run

Analysis of Zefluor Respirable Particulate Samples (with NH<sub>3</sub> denuder) from Pittsburg, CA ( $\mu$ equiv/m<sup>3</sup>) x 10<sup>2</sup>

|       | February 5, 1979 |                  | <u>February 6, 1979</u> |                  |           | February 7, 1979 |                  |                  |            |
|-------|------------------|------------------|-------------------------|------------------|-----------|------------------|------------------|------------------|------------|
| Time  | H <sup>+</sup>   | H2SO4            | <u>504</u>              | <u>H</u> +       | $H_2SO_4$ | <u>504</u>       | <u>H</u> +       | $H_2SO_4$        | <u>504</u> |
| 06-14 | <u>&lt;</u> 1.6  | < 1.4            | a                       | 1.2 <u>+</u> 0.2 | N.D.      | 2.8              | <u>&lt;</u> 0.8  | < 0.8            | 8.8        |
| 14-22 | <u>&lt;</u> 0.8  | 1.0 <u>+</u> 0.2 | 10                      | <u>&lt;</u> 0.8  | < 0.6     | 5.0              | 2.2 <u>+</u> 0.2 | 1.2 <u>+</u> 0.2 | 9.6        |
| 22-06 | <u>&lt;</u> 0.8  | < 0.8            | 8.4                     | <u>&lt;</u> 0.8  | < 0.8     | 8.6              | 1.4 <u>+</u> 0.4 | 1.0 <u>+</u> 0.6 | 16         |

a. Filter plugged during run.

,

|                   |                  | February 5,                    | 1979  |                   |                         |
|-------------------|------------------|--------------------------------|-------|-------------------|-------------------------|
| Time              | H <sup>+a</sup>  | H <sub>2</sub> SO <sub>4</sub> | SO4=p | NO3 <sup>-c</sup> | $\underline{NH_4}^{+d}$ |
| 06-08             | 0.8 <u>+</u> .3  | < 0.3                          | 2.87  | 10.7              | 6.5                     |
| 08-10             | 1.6 <u>+</u> .3  | < 0.4                          | 5.78  | 13.0              | 10.5                    |
| 10-14             | 0.7 <u>+</u> .2  | < 0.2                          | 3.36  | 10.9              | 5.6                     |
| 1430-1830         | 0.6 <u>+</u> .2  | < 0.2                          | 1.34  | 1.01              | 1.5                     |
| 1830-2230         | 0.7 <u>+</u> .2  | < 0.2                          | 2.73  | 3.94              | 2.7                     |
| 2230-0630         | 0.45 <u>+</u> .1 | < 0.1                          | 1.35  | 1.34              | 1.2                     |
|                   |                  | February 6,                    | 1979  |                   |                         |
| <b>0630-</b> 0830 | <u>&lt;</u> 0.6  | < 0.3                          | 1.48  | 0.74              | 1.0                     |
| 09-11             | 1.1 <u>+</u> .4  | < 0.3                          | 1.67  | 0.75              | 2.1                     |
| 11-15             | 0.5 <u>+</u> .2  | < 0.2                          | 1.55  | 0.49              | 1.1                     |
| 15 <b>-1</b> 9    | 0.5 <u>+</u> .2  | < 0.2                          | 1.23  | 1.19              | 1.0                     |
| 19-23             | 0.5 <u>+</u> .2  | < 0.2                          | 1.33  | 1.47              | 1.4                     |
| 23-07             | 0.5 <u>+</u> .1  | < 0.1                          | 1.40  | 0.88              | 0.8                     |
|                   |                  | February 7,                    | 1979  |                   |                         |
| 07-09             | 1.0 <u>+</u> .3  | < 0.3                          |       | 1.74              | 2.0                     |
| 09-11             | 1.6 <u>+</u> .4  | < 0.3                          | 1.39  | 2.25              | 2.8                     |
| 11-15             | 1.0 <u>+</u> .2  | < 0.2                          | 2.13  | 3.67              | 2.4                     |
| <b>1530-</b> 1930 | 1.5 <u>+</u> .2  | < 0.2                          | 2.58  | 4.50              | 2.8                     |
| 1930-23           | 1.2 <u>+</u> .2  | < 0.3                          | 2.54  | 7.49              | 6.0                     |
| 2330-0730         | 0.5 <u>+</u> .1  | < 0.1                          | 6.53  | 14.6              | 6.4                     |

Analysis of Acid-Washed Quartz Respirable Particulate Samples from Pittsburg, CA  $(\mu g/m^3)$ 

a. Expressed as  $H_2SO_4$ .

b. Precision using the AIHL microsulfate method was  $\pm$  10-15% in the range of these samples.

c. Precision using the automated Cu-Cd reduction, diazotization procedure was estimated as  $\pm$  25% in the range 0.5 to 0.75 µg/m<sup>3</sup> and < 10% at > 1 µg/m<sup>3</sup>.

d. Precision by the indophenol blue method.

# Analysis of Acid-Washed Quartz Respirable Particulate Samples from Pittsburg, CA ( $\mu equiv/m^3)$ x $10^2$

|           |                        | Fe                             | bruary 5, 1 | <u>.97</u> 9 |                  |
|-----------|------------------------|--------------------------------|-------------|--------------|------------------|
| Time      | H <sup>+</sup>         | H <sub>2</sub> SO <sub>4</sub> | <u></u>     | NO3          | NH4 <sup>+</sup> |
| 06-08     | 1.6 <u>+</u> 0.6       | < 0.6                          | 5.97        | 17.3         | 36               |
| 08-10     | 3.3 <u>+</u> 0.6       | < 0.8                          | 12.0        | 21.0         | 58.3             |
| 10-14     | 1.4 <u>+</u> 0.4       | < 0.4                          | 7.00        | 17.6         | 31               |
| 1430-1830 | 1.2 <u>+</u> 0.4       | < 0.4                          | 2.79        | 1.6          | 8.3              |
| 1830-2230 | 1.4+0.4                | < 0.4                          | 5.69        | 6.4          | 15               |
| 2230-0630 | 0.9 <u>+</u> 0.2       | < 0.2                          | 2.81        | 2.2          | 6.7              |
|           |                        | Fe                             | bruary 6, 1 | .979         |                  |
| 0630-0830 | < 1.2                  | < 0.6                          | 3.08        | 1.2          | 5.6              |
| 09-11     | 2 <b>.2<u>+</u>0.8</b> | < 0.6                          | 3.48        | 1.2          | 12               |
| 11-15     | 1.0 <u>+</u> 0.4       | < 0.4                          | 3.23        | 0.8          | 6.1              |
| 15-19     | 1.0+0.4                | < 0.4                          | 2.56        | 1.9          | 5.6              |
| 19-23     | 1.0 <u>+</u> 0.4       | < 0.4                          | 2.77        | 2.4          | 7.8              |
| 23-07     | 1.0 <u>+</u> 0.2       | < 0.2                          | 2.92        | 1.4          | 4.4              |
|           |                        | Fel                            | bruary 7, 1 | <u>979</u>   |                  |
| 07-09     | 2.0 <u>+</u> 0.6       | < 0.6                          |             | 2.8          | 11               |
| 09-11     | 3.3 <u>+</u> 0.8       | < 0.6                          | 2.90        | 3.6          | 16               |
| 11-15     | 2.0 <u>+</u> 0.4       | < 0.4                          | 4.44        | 5.9          | 13               |
| 1530-1930 | 3.1 <u>+</u> 0.4       | < 0.4                          | 5.38        | 7.2          | 16               |
| 1930-23   | 2.4 <u>+</u> 0.4       | < 0.6                          | 5.29        | 12.1         | 33               |
| 2330-0730 | 1.1+0.2                | < 0.2                          | 13.6        | 23.5         | 36               |

.

.

| Analysis | of | Nitric | Acid | and | Ammonia | Samples | from | Pittsburg,CA | $(\mu g/m^3)$ |
|----------|----|--------|------|-----|---------|---------|------|--------------|---------------|

|                             | i de la constante de |                                   | Ammonia                                          | Sampler                           |                                     |                                     |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--------------------------------------------------|-----------------------------------|-------------------------------------|-------------------------------------|
| Time                        | February                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5, 1979                           | February                                         | 6, 1979                           | Februar                             | y_7, 1979                           |
|                             | Prefilter<br>NO <sub>3</sub> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NH3 as<br>NH4+                    | Prefilter<br>NO <sub>3</sub> -                   | NH3 as<br>NH4+                    | Prefilter<br>NO3 <sup>-</sup>       | NH3 as<br>NH4+                      |
| 07-09<br>09-11              | 16.3<br>23.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.96<br>13.3                      | 1.2<br>1.8                                       | 4.00<br>2.94                      | 4.57                                | 3.34                                |
| 11-15<br>15-19<br>20. 24    | 16.4<br>6.16<br>7.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6.35<br>3.19<br>0.40              | 3.14<br>4.67<br>1.15                             | 0<br>3.32                         | 9.19<br>11.5                        | 2.98<br>3.80<br>6.08                |
| 24-08                       | 2.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.75                              | 2.22                                             | 1.59                              | 19.2                                | 14.4                                |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   | Nitric Acid<br>February                          | Samplers<br>5, 1979               |                                     |                                     |
| Time                        | Prefil<br>NO <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\frac{\text{SO}_4}{\text{SO}_4}$ | NaC1/W41<br>HNO <sub>3</sub> (as NO <sub>3</sub> | $\frac{\text{Pref}}{\text{NO}_3}$ | Cilter =                            | Duralon Nylon<br>$HNO_3(as NO_3)$   |
| 06-14<br>1430-2230<br>23-07 | 13.0<br>5.86<br>1.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.54<br>1.95<br>1.54              | 2.22<br>3.75<br>0.90                             | 14.1<br>2.83<br>1.67              | 3.65<br>1.82<br>1.56                | 3.27<br>3.28<br>0.91                |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   | February                                         | 6,1979                            |                                     |                                     |
| 07-15<br>1530-2330<br>24-08 | 0.39<br><br>1.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.08<br><br>1.57                  | 1.71<br>1.02<br>0.72                             | 0.46<br>2.53<br>1.38              | 1.07<br>1.62<br>1.36                | 1.47<br>1.03<br>0.79                |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   | February                                         | 7, 1979                           |                                     |                                     |
| 08-16<br>16-24<br>24-08     | 5.08<br>10.7<br>18.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.03<br>3.12<br>3.88              | 2.61<br>3.85<br>3.49                             | 4.74<br>10.1<br>10.7              | 3.10<br>2.99<br>(7.65) <sup>a</sup> | 2.63<br>3.99<br>(9.05) <sup>a</sup> |

a. Results suggests leakage around poorly fitting prefilter.

·

Analysis of Nitric Acid and Ammonia Samples from Pittsburg,CA  $(\mu equiv/m^3)_{\rm X}~10^2$ 

|                |                                   |                                     | Ammonia S                                          | ampler                                                           |                           |                                             |
|----------------|-----------------------------------|-------------------------------------|----------------------------------------------------|------------------------------------------------------------------|---------------------------|---------------------------------------------|
| Time           | February 5<br>Prefilter           | <u>, 1979</u><br>NH <sub>3</sub> as | <u>February 6</u><br>Prefilter                     | <u>, 1979</u><br><sup>NH</sup> 3 as                              | February<br>Prefilter     | 7, 1979<br>NH <sub>3</sub> as               |
|                | <u>NO3-0</u>                      | NH4+                                | NO_3                                               | NH4 <sup>+</sup>                                                 | NO3                       | NH4                                         |
| 07-09<br>09-11 | 26.3                              | 55<br>շև                            | 1.9                                                | 22<br>16                                                         | 7.4                       | 19                                          |
| 11-15          | 26.5                              | 35                                  | 5.1                                                | 0                                                                | 14.8                      | 17                                          |
| 15-19          | 9.9                               | 18                                  | 7.5                                                | 18                                                               | 18.5                      | 21                                          |
| 20-24          | 12                                | 53                                  | 6.7                                                | 24                                                               | 25.8                      | 34                                          |
| 24-08          | 3.3                               | 21                                  | 3.6                                                | 9                                                                | 31.0                      | 80                                          |
| Time           | Prefilt<br><u>NO3<sup>-</sup></u> | $er^{c} = \frac{SO_{4}}{SO_{4}}$    | Nitric Acid<br>February<br>NaCl/W41<br>HNO3(as NO3 | Samplers<br><u>5, 1979</u><br>Prefil<br>) <u>NO3<sup>-</sup></u> | $\frac{\text{ter}}{SO_4}$ | Duralon Nylon<br>HNO3(as NO3 <sup>-</sup> ) |
| 06-14          | 21.0                              | 7.78                                | 3.6                                                | 22.7                                                             | 7.60                      | 5.3                                         |
| 1430-2230      | 9.5                               | 4.06                                | 6.0                                                | 4.6                                                              | 3.80                      | 5.3                                         |
| 23-0(          | 2.0                               | 3.20                                | 1.5                                                | 2.(                                                              | 3.24                      | 1.>                                         |
|                |                                   |                                     | February (                                         | 6, 1979                                                          |                           |                                             |
| 07-15          | 0.6                               | 2.24                                | 2.8                                                | 0.7                                                              | 4.46                      | 2.4                                         |
| 1530-2330      |                                   | 3 28                                | 1.0                                                | 4.1<br>2.2                                                       | 3.30<br>2.84              | ⊥•1<br>1 3                                  |
| 24-00          | J.U                               | J.20                                | 1.6                                                | C + C                                                            | 2.04                      | ر ، <u>۲</u>                                |

|                         | February 7, 1979    |                      |                   |             |              |                     |  |  |  |  |
|-------------------------|---------------------|----------------------|-------------------|-------------|--------------|---------------------|--|--|--|--|
| 08-16<br>16-24<br>24-08 | 8.2<br>17.3<br>30.5 | 6.32<br>6.50<br>8.08 | 4.2<br>6.2<br>5.6 | 7.7<br>16.3 | 6.46<br>6.72 | 4.2<br>6.4<br>14 68 |  |  |  |  |

a. Results suggest leakage around poorly fitting prefilter.

b. Gelman A glass fiber.

c. Teflon (Zefluor) membrane.

#### 3. Effectiveness of NH<sub>3</sub> Denuder

Since the lo-vol respirable particulate samplers were preceded by an ammonia denuder, the higher  $H_2SO_4$  levels observed on Zefluor filters compared to results on the quartz hi-vol respirable particulate samples might be ascribed to the denuder. However, the Berkeley atmospheric samples previously described, which were collected without a denuder, as well as the spiked quartz and Zefluor filters bearing atmospheric particulate matter showed similar trends. Thus, there is no clear indication from the Pittsburg findings that the denuder was useful.

#### 4. Nitric Acid, Ammonia and Comparison of Diurnal Patterns

Nitric acid values ranged from 0.7 to  $4.0 \ \mu g/m^3$  with excellent agreement between results with NaCl/W41 and Duralon filters (ratio of means nylon/NaCl filter = 1.04, n = 8). Ammonia levels ranged from 0 to 13  $\mu g/m^3$ .

To evaluate the internal consistency of the results and to identify sources of strong acid, diurnal variations of particulate H<sup>+</sup>, NO<sub>3</sub><sup>-</sup>, SO<sub>4</sub><sup>=</sup>, NH<sub>4</sub><sup>+</sup> and gaseous NH<sub>3</sub> and HNO<sub>3</sub> are shown in <u>Figure 7</u>, in units of µequiv/m<sup>3</sup>. NH<sub>3</sub> and NH<sub>4</sub><sup>+</sup> show very similar diurnal patterns with maxima at approximately 12 hour intervals. These results raised suspicions that the acid-washed quartz filters were trapping NH<sub>3</sub>. However, as described in Appendix G, a control experiment placed the limit of collection of NH<sub>3</sub> on these filters at  $\leq 10\%$ .

The collection of nitric acid by adsorption on the filter samples could contribute to the total particulate acidity. Comparison of diurnal variations of  $HNO_3$  and particulate  $H^+$  shows only moderate correlation, however.

Ammonium is present in substantial excess relative to the sum of  $NO_3^-$  and  $SO_4^-$  and is about a factor of ten more abundant than H<sup>+</sup> in these particulate samples at the time of analysis. We conclude that the source of strong acid in these samples is probably NH<sub>4</sub>HSO<sub>4</sub>, primarily, with adsorbed HNO<sub>3</sub> a possible minor contributor.

Concerning the relationship between particulate nitrate, NH<sub>3</sub> and HNO<sub>3</sub>, diurnal variations do not suggest a strong negative correlation between NH<sub>3</sub> and HNO<sub>3</sub> as required by the equilibrium discussed in Section IC. However, the level of NH<sub>3</sub> and HNO<sub>3</sub> were sufficiently low such that saturation with respect to NH<sub>4</sub>HNO<sub>3</sub> would generally not have occurred based on an assumed equilibrium constant of  $30 \ (ppb)^2$ .

#### 5. Evaluation of a Glass Fiber Filter as a Total Nitrate Sampler

Earlier studies suggested that nitric acid rather than NO<sub>2</sub> was the dominant source of artifact particulate nitrate in atmospheric sampling.<sup>11</sup>Accordingly, it was considered likely that the observed particulate nitrate on a glass fiber filter would be equivalent to particulate nitrate plus nitric acid nitrate (i.e. total nitrate) as measured by the Teflon (Zefluor) pre-filter-nylon (or NaCl/W41)





sampler. For this reason Gelman A glass fiber pre-filters to the NH3 sampler were analyzed for nitrate. To permit comparison of these nitrate results to those on the Zefluor-nylon (or NaCl/W41) sampler, S-hour average nitrate values were calculated from the 2 or 4-hour Gelman A samples. Table 31 includes these values together with those for Zefluor filter nitrate, nitric acid, and their total (as  $NO_3^-$ ). Zefluor filter results are mean values for two filters sampling simultaneously for 8 hours, and the nitric acid results, means for samples collected on nylon and NaCl/W41. The ratio of means, Gelman A nitrate/total nitrate is 0.97. Thus, at least under conditions of relatively low nitric acid levels, the Gelman A glass fiber filters approximated a total nitrate sampler. Nitrogen dioxide, which was present at about 0.02 ppm (40  $\mu$ g/m<sup>3</sup>) throughout most of the sampling (Appendix I), did not appear to influence the level of artifact nitrate.

|        | Approx. Time<br>Period | Prefilter<br>NO3 | Nylon and NaCl/W4l<br>HNO <sub>3</sub> as NO <sub>3</sub> | Total NO3 | Gelman A<br>NO <sub>3</sub> |
|--------|------------------------|------------------|-----------------------------------------------------------|-----------|-----------------------------|
|        | 06-14                  | 13.55            | 2.75                                                      | 16.3      | 18.2                        |
| Feb. 5 | 1430-2330              | 4.35             | 3.52                                                      | 7.86      | 6.87                        |
|        | 23-07                  | 1.42             | 0.91                                                      | 2.33      | 2.03                        |
|        | 07-15                  | 0.43             | 1.59                                                      | 2.02      | 2.32                        |
| Feb. 6 | 1530-2330              | 2.53*            | 1.03                                                      | 3.56      | 4.41                        |
|        | 24-08                  | <b>1.</b> 61     | 0.76                                                      | 2.36      | 2.22                        |
|        | 08-15                  | 4.91             | 2.62                                                      | 7.53      | 7.65                        |
| Feb. 7 | 1530-2330              | 10.4             | 3.92                                                      | 14.3      | 13.8                        |
|        | 23300730               | 18.9 <b>*</b>    | 3.49*                                                     | 22.4      | 19.2                        |

.

# COMPARISON OF NITRATE ON GELMAN A GLASS FIBER FILTERS WITH TOTAL NITRATE ( $\mu g \ \text{NO}_3^{-}/\text{m}^3$ )

Ratio of Means: Gelman A/Total  $NO_3^- = 0.97$ 

\*Value from only one filter.

#### XI. REFERENCES

- 1. R. J. Charlson et al, Science 184 156 (1974).
- 2. J. J. Huntzicker et al, Atmos, Environ. 12 83 (1978).
- 3. D. B. Kittleson et al, Atmos. Environ. 12 105 (1978).
- 4. W. G. Coburn, R. B. Husar and J. D. Husar, Atmos. Environ. 12 89 (1978).
- 5. Federal Register, 36 (24) 24892, December 23, 1971.
- 6. P. S. Mudgett, L. W. Richards, and J. R. Roehrig, "New Technique to Measure Sulfuric Aicd in the Atmosphere," in <u>Analytical Methods Applied</u> to <u>Air Pollution Measurements</u>, R. K. Stevens and W. F. Herget, Eds. (Ann Arbor Science Publishers, Inc., Ann Arbor, MI, 1974).
- 7. L. Newman, Atmos. Environ. 12 113 (1978).
- 8. D. F. Miller and C. W. Spicer, J. Air Poll. Cont. Assoc. 25 940 (1975).
- 9. T. Okita et al, Atmos. Environ. 10 1085 (1976).
- B. R. Appel et al, Effect of Environmental Variables and Sampling Media on the Collection of Atmospheric Sulfate and Nitrate. Final Report to Air Resources Board, Contract No. ARB 5-1032.
- 11. B. R. Appel et al, Atmos. Environ. 13 319 (1979).
- 12. E. C. Tuazon et al, "Measurement of Ambient HNO<sub>3</sub> in the California South Coast Air Basin by Kilometer Pathlength Fourier Transform Infrared Spectroscopy. Presented at EPA Workshop on the Measurement of Atmospheric Nitrates, Southern Pines, NC, October 1978.
- 13. R. K. Stevens, Current Methods to Measure Atmospheric Nitric Acid and Nitrate Artifacts, EPA-600/2-79-051 (1979).
- 14. J. Forrest et al, Determination of Atmospheric Nitric Acid with NaCl-impregnated Filters at High Volume Flow Rates, EPA Workshop on the Measurement of Atmospheric Nitrates, Southern Pines, NC, October 1978.
- 15. C. W. Spicer, Measurement of Gaseous Nitric Acid by Electrochemistry and Chemiluminescence, EPA Workshop on the Measurement of Atmospheric Nitrates, Southern Pines, NC, October 1978.
- 16. T. J. Kelly, D. H. Stedman and G. L. Kok, Preliminary Measurement of  $H_2O_2$  and  $HNO_3$  in Rural Air. Submitted for publication to Geophysical Research Letters (1978).
- A. Lazrus, Nitric Acid Measurements in Western USA. Presented at EPA Workshop on the Measurement of Atmospheric Nitrates, Southern Pines, NC, October 1978.
- R. J. Hare et al, Gas Chromatographic Measurements of Nitric Acid, EPA Workshop on the Measurement of Atmospheric Nitrates, Southern Pines, NC, October 1978.

#### XI. REFERENCES (continued)

- 19. D. F. Miller and C. W. Spicer, Air Poll. Cont. Assoc, 25 940 (1975).
- 20. E. C. Tuazon et al, Atmos. Environ. 12 865 (1978).
- J. Seinfeld et al, A Note on the Equilibrium Relationship Between Ammonia and Nitric Acid and Particulate Ammonium Nitrate, unpublished (1978).
- 22. R. K. Stevens, private communication, (1978).
- 23. A. B. Harker et al, Atmos. Environ. 11 87 (1977).
- W. R. Pierson et al, EPA Workshop on the Measurement of Atmospheric Nitrates, Southern Pines, NC, October 1978, and private communication, 1978.
- 25. D. W. Joseph and C. W. Spicer, Anal. Chem. 50 1400 (1978).
- 26. P. W. West et al, J. Air Poll. Cont. Assoc. 24 671 (1974).
- 27. D. Leahy et al, Atmos. Environ. 9 219 (1975).
- 28. E. M. Hoffer, E. L. Kothny and B. R. Appel, Atmos. Environ. 13 303 (1979).
- 29. R. L. Tanner et al, "Separation and Analysis of Aerosol Sulfate Species at Ambient Concentration Levels" presented at 1st Chem. Congress of North American Continent, Mexico City, December 1975.
- 30. W. J. Barrett et al, "Development of a Portable Device to Collect Sulfuric Acid Aerosol" EPA Report 600/2-77-027 (1977).
- 31. Eatough et al, The Use of Benzaldehyde as a Selective Solvent for Sulfuric Acid: Interferences by Sulfate and Sulfite Salts. Submitted for publication to Environ. Sci and Technol., November 1977.
- 32. C. Askne and C. Brosset, Atmos. Environ. 6 695 (1972).
- 33. C. Brosset, "Determination of Air-Borne Acidity with some Examples of the Role of Acid Particles in Acidification", IVL Publication B226 (1975).
- 34. C. Askne "Method of Determining Strong Acid in Precipitation Based on Coulometric Titration with Application of Gran's Plot" IVL Publication B152, (1973).
- 35. R. K. Stevens et al, Atmos, Environ. 12 (1-3)55 (1978).
- 36. B. R. Appel et al, Intern, J. Environ. Anal. Chem <u>4</u> 169 (1976).
- 37. W. John and G. Reischl, "Measurements of the Filtration Efficiencies of Selected Filter Media", AIHL Report No. 184, January 1977.

#### XI. REFERENCES (continued)

- 38. J. E. Harwood and A. Kuhn, Water Res. <u>4</u> 805 (1970).
  P. J. Rommers and J. Visser, Analyst, <u>94</u> 653 (1969).
- 39. Evaluation of the method as automated for the Technicon Autoanalyzer II is given by Appel et al, "Comparison of Wet Chemical and Instrumental Methods for Measuring Airborne Sulfate", EPA Report 600/7-77-123 (1977).
- 40. B. R. Appel et al, Environ. Sci and Technol. 12 418 (1978).
- 41. J. W. Richards et al, Sulfate Aerosol Study Final Report to CRC, Contract CAPA-13-76 (1978).
- 42. R. E. Snyder and T. J. Reed, Evaluation of Methodology and Prototype to Measure Atmospheric Sulfuric Acid, EPA Report 600/2-77-010 (1977).
- 43. C. Huygen, Atmos. Environ. <u>9</u> 315 (1975).
- 44. R. E. Snyder, private communication, 1978.
- 45. Handbook of Chemistry and Physics, 38th Ed. Chemical Rubber Publishing Co., Cleveland (1956).
- 46. B. R. Appel et al, Environ. Sci and Technol. 13 98 (1979).
- 47. B. Y. H. Liu and K. W. Lee, Environ. Sci and Technol. 10 345 (1976).
- 48. W. John and G. Reischl, Atmos. Environ. 12 2015 (1978).
- 49. P. G. Gormley and M. Kennedy, Proc. R. Ir. Acad. 52 163 (1949).
- 50. S. Wall, Master's Thesis, University of California, 1977.
- 51. D. Husar, R. B. Husar and P. K. Stubits, Anal. Chem. 47 2062 (1975).
- 52. B. R. Appel et al, The Chemistry, Dispersion and Transport of Air Pollutants Emitted from Fossil Fuel Power Plants in California (Chemical Analysis of Particulate Samples for Sulfate, Nitrate and Trace Element Compositon). Final Report for ARE Contract 3-948 (NTIS No. PB 264-823).

75

#### Antilog Signal Processing for Gran's Titration

The concentration of H<sup>+</sup> can be expressed as follows:

 $[H^+] = antilog \left[\frac{E}{S}\right] - E_1$ where  $E_1 = antilog \left(\frac{E_0}{S}\right) = a \text{ constant}$ S = slope of electrode (millivolt per pH unit)E = electrode potential

Plotting antilog  $(\frac{E}{S})$  against titrant added yields an initially linear curve which can be extrapolated to the equivalence point based on a minimum number of data points. However, a disadvantage of the technique is the time required to convert observed pH values to the corresponding (H<sup>+</sup>).

R. K. Stevens and co-workers reported the use of an antilog amplifier to directly convert the pH to H<sup>+</sup> thereby permitting automatic generation of Gran's plots.<sup>35</sup> For the present study an improved version of their system was designed and constructed.

For the AIHL system, Gran's plots are made directly from the analog output signal from the Radiometer pH meter (#PHM64Sa) using the circuit shown in Figure A-1. The output voltage ( $E_{in}$ ) from the pH meter is introduced to the non-inverting input of a 741K operational amplifier\* (op-amp) in a voltage follower configuration to provide a high impedance interface with the pH meter. The signal is then offset to the correct input range for the 755N antilog amplifier\* with a 100K potentiometer before entering the inverting input of a second 741K op-amp. This op-amp divides the electrode potential by the slope of the electrode yielding (E/S). The antilog calculation performed by the 755N device yields the required Gran's function (antilog E/S). A table of the input and cutput voltages of the Gran's function generator are included in the figure. During titrations the Gran's plot is produced on a 100 mv strip chart recorder at a fixed chart speed synchronized with the titrant addition. Precise values for volume of titrant added are recorded manually from a digital readout on the titrator.

\*Analog Devices, Norwood, Mass.



| П   | PH meter<br>output (volts) | Grans Plot<br>Generator Output |
|-----|----------------------------|--------------------------------|
| 30  | -/5                        | 10.01                          |
| 4.0 | -2.0                       | 1.0 V                          |
| 5.0 | - 2.5                      | NW CO/                         |
| 6.0 | - 3.0                      | 10.0mV                         |
| 0.7 | -3.5                       | 1.0 mv                         |

Figure A-1 Gran's Plot Funchion Generator

#### Sulfuric Acid Aerosol Generation

To develop and validate reliable methods for collection and analysis of airborne sulfuric acid particles, a convenient method for producing a well characterized submicron aerosol was necessary. Such an aerosol generator was developed in our laboratory<sup>50</sup> and is shown schematically in Figure B-1.

Aerosol is generated by passing very dry nitrogen through fuming sulfuric acid, diluting and heating the effluent vapor and injecting it into a stream of humidified air through a small diameter nozzle. This technique has been shown to produce a monodisperse aerosol over the range 0.3 to 1.0  $\mu$ m particle diameter as measured by a Royco PC 200B optical counter (coefficient of variation < 0.2). The diameter of the particles produced can be selected by setting the generator operating parameters to the corresponding experimentally determined values. For the current program the generator has been operated so as to produce particles < 0.3  $\mu$ m optical diameters.

To assess the mass output rate of the generator, the aerosol was sampled at 1 CFM for one hour through a 1 µm pore size polyethylene backed Fluoropore filter followed by a Greenburg-Smith impinger containing 70 ml of distilled water. The impinger was included to collect  $H_2SO_u$  vapor which penetrated the filter plus any SO3 present in the generator output. The efficiency of this impinger for such collection was not established, however. The filter was subsequently extracted in 5 ml distilled water, and both the filter extract and impinger solution analyzed by the flash vaporization-flame photometric detection method for sulfur.<sup>51,52</sup> The results of several runs performed over the course of one day of continuous generator operation are included as Table B-1. Based on these data, the generator's aerosol output was 557 +  $\overline{65 \ \mu\text{g/m}^3}$  which allows a 47 mm filter loading rate of 16 ± 1.7  $\mu\text{g}$  H<sub>2</sub>SO<sub>4</sub>/min at 1 CFM. Results indicate  $42 \ \mu g/m^3 \ SO_4^{=}$  collected by the impinger which corresponds to 7% of the generator output. Since the efficiency of the impinger was not established this value provides an lower limit estimate to the sulfur species reaching the filter.

Although the number of particles < 0.3  $\mu$ m could not be measured a comparison of Royco data for particles in the 0.3 to 1  $\mu$ m range with the sulfate results from filter plus impinger samples permits estimation of the proportion of H<sub>2</sub>SO<sub>4</sub> particles < 0.3  $\mu$ m in the generator output. Assuming an average density of 1.7 g/cm<sup>3</sup> for the generated aerosol\*, this comparison indicates that particles less than 0.3  $\mu$ m account for 97% of the H<sub>2</sub>SO<sub>4</sub> mass. All particles generated were less than 0.4  $\mu$ m in diameter.

\*The density of H<sub>2</sub>SO<sub>4</sub> is 1.83 for 100% H<sub>2</sub>SO<sub>4</sub> and 1.67 for 75% H<sub>2</sub>SO<sub>4</sub> (25% H<sub>2</sub>O).







¥

## Table B-1

Results with the  ${\rm H_2SO_4}$  Generator  $^{\rm a}$ 

|                                                           | Run       |      | Mean + 1 σ |                   |
|-----------------------------------------------------------|-----------|------|------------|-------------------|
|                                                           | <u>#1</u> | #2   | <u>#3</u>  |                   |
| Total $H_2SO_4$ collected, <sup>b</sup> µg                | 900       | 1105 | 1070       | 1022 <u>+</u> 107 |
| Loading on first 1 µm Fluoropore<br>filter (%)            | 91        | 92   | 94.5       | 93                |
| Loading on 2nd l µm Fluoropore<br>filter (%) <sup>C</sup> |           |      | 0.5        |                   |
| Loading in impinger (%)                                   | 9         | 8    | 5          | 7                 |
| Aerosol concentration at 1 cfm, $(\mu g/m^3)^d$           | 482       | 598  | 590        | 557 <u>+</u> 65   |
| Filter loading rate at 1 cfm, µg/min                      | 14        | 17   | 17         | 16                |

a. All particles < 0.4 µm.

b. Sum of the  $\rm H_2SO_4$  on filters plus impinger.

c. Second filter in series between first filter and impinger.

d. Based on mass collected by filter.

Uniformity of H<sub>2</sub>SO<sub>4</sub> Deposition and Sectioning of Filter Discs

The  $H_2SO_4$  aerosol generator as well as the intended lo-volume field sampling system for  $H_2SO_4$  employed 47 mm filters which required sectioning for analysis by different methods. Before beginning the intermethod comparison it was necessary to establish that 1) 47 mm filters could be reproducibly sectioned by a technique which would minimize losses of  $H_2SO_4$  and 2) that the filter was uniformly loaded by the generator.

Filter cutting was done in a chamber under a stream of  $N_2$  which minimized  $NH_3$  exposure. A cookie-cutter type device was fabricated to provide reproducible sectioning of filters into four quarters. For this operation the filter was immobilized and flattened in a holder using slight suction. The precision and equivalence of the resulting sections as well as loss of filter in cutting was established by weighing the pieces cut from Fluoropore filters. Based on weighing sections from five filters, the average weight loss during cutting was  $1.1 \pm .6\%$ . The 20 filter sections were equivalent within a mean coefficient of variation of 2.5\%.

To establish the uniformity of  $H_2SO_4$  loading, five 47 mm filters were loaded with about 200 µg of  $\leq 0.3$  µm  $H_2SO_4$  aerosol, sectioned into quarters and the quarters analyzed for sulfate employing the automated methylthymol blue (MTB) procedure. The results are shown in <u>Table C-1</u> and indicate variations of 4% or less. Since the variability in results due only to the analytical method is at least 2%, the variability in deposition between quarters is  $\leq 2\%$ .

## Table C-1

## Uniformity of $H_2SO_4$ Deposition on 47 mm Filters

| Sample ID      | Mean $SO_4^{\pm}$ Per Quarter Filter (µg) | Coefficient of<br>Variation (%) |
|----------------|-------------------------------------------|---------------------------------|
| 133F1          | 58.5 <u>+</u> 2.5                         | 4.3                             |
| 134F1          | 46.0 <u>+</u> 0.8                         | 1.7                             |
| 135F1          | 46.3 <u>+</u> 1.9                         | 4.2                             |
| 136F1          | 45.0 <u>+</u> 1.1                         | 2.4                             |
| 137F1          | 37.9 <u>+</u> 1.0                         | 2.6                             |
| 138F1 (Blank)* | < 2.5                                     |                                 |

\*Sample to assess contamination of clean filter by cutter following sectioning of loaded filters.

#### Aerosol Generation with a Nebulizer

A nebulizer-type aerosol generator was constructed and used to provide  $(NH_4)_2SO_4$  and  $NH_4HSO_4$  aerosols (Figure D-1). Aerosol was generated from a dilute aqueous solution of the ammonium salt by a glass nebulizer operated at 20 psi with dry air. The nebulizer design incorporates an atomization jet impaction surface to provide a rather sharp cut point for removing any relatively large particles. Coagulation of the particles is inhibited by constantly purging the nebulizer chamber with dry dispersion air, which also serves to transport the aerosol to the dilution air inlet. The dry dilution and dispersion air (< 1% RH) evaporates water from the particles until the aerosol is reduced to equilibrium size as calculated from the equation:\*

$$D_{p} = D_{d} \left[ \frac{C_{\rho d}}{\rho_{p}} \right]^{\frac{1}{3}}$$

where  $D_p$  = final particle diameter (µm)  $D_d$  = initial droplet diameter (from nebulizer)  $\rho_d$  = density of dry particle (g/cm)  $\rho_p$  = density of droplet C = weight fraction of ammonium sulfate salt in solution

The initial droplet diameter produced by the nebulizer is < 2 µm, which would yield an aerosol of < 0.35 µm diameter after water evaporation from a 1% (w/w) solution of the ammonium sulfate salt. To prevent an increase in the particle size with time due to evaporation of water from the aerosol solution in the nebulizer chamber, the nebulizer solution drainage is not recycled into the fresh solution reservoir. Based on particle sizing with a Royco 200B optical particle counter, an average particle size of < 0.3 µm was achieved with (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>. The generator was operated such that 99% of all particles were  $\leq 0.3$  µm as determined by comparing the aerosol mass and Royco 200B optical particle counter data.

The aerosol reaches equilibrium size during transport through the 1-1/2" ID tubular flow reactor and is collected from a plexiglass manifold using three 47 mm polycarbonate filter holders. Loading rate per filter was about 80  $\mu$ g sulfate/hour. Using ammonium sulfate, comparison of the filter weight increase (AW) for filters conditioned at 44% R.H. to the sulfate observed by the automated MTB method yielded the relationship:

 $(SO_4^{=})_{\text{MTB}} = -26.9 + 0.938 (\Delta W)$ r = 0.982 $S_{y.x} = 12.3$ 

\*R. Dennis, Handbook on Aerosols, ERDA Report #TID-26608 (1976).

Medit Steeper set in the set of the set of the set

• • • • • •

والمراجع والمراجع



.1

To evaluate the equivalence of sulfate loadings between filters, uniformity of deposition within one filter, and loss of anmonia from filters causing strong acid formation, two sets of three filters were each loaded with about 200  $\mu$ g (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> per filter using Ghia Zefluor filters. The filters were quartered as described in Appendix C and the quarters analyzed for SO<sub>4</sub><sup>=</sup>, (automated MTB), NH<sub>4</sub><sup>+</sup> (indophenol blue procedure) and H<sup>+</sup> by the titrimetric method.

Based on the mean sulfate result for four quarters (<u>Table D-1</u>) the three filters had equivalent loadings within 2% (C.V.). The uniformity of deposition on the four quarters within one filter was 5.7% (median C.V. for 6 filters).

Based on the mean observed sulfate per filter quarter and the composition  $(NH_4)_2SO_4$ , the expected concentration of  $NH_4^+$  was calculated. The results given in Table D-1 show about 2% excess of  $NH_4^+$ , which is within the combined experimental error of the analytical methods. This suggests that the analytical methods for sulfate and ammonium are consistent with one another and that there is no loss of  $NH_3$  during aerosol formation. The latter was confirmed by direct titration for strong acid. No acidity was detectable.

|     |        | umoles SO <sub>L</sub>   | obset   | observed umoles $NH_{l_1}$       |   |
|-----|--------|--------------------------|---------|----------------------------------|---|
| Set | Filter | per quarter <sup>a</sup> | calc    | ulated umoles $NH_{\frac{1}{4}}$ |   |
|     |        |                          |         |                                  | - |
| A   | 18ZT1  | 0.66 <u>+</u> .05        |         | 1.06                             |   |
| A   | 19ZT1  | 0.69 <u>+</u> .03        |         | 1.02                             |   |
| A   | 20ZT1  | 0.68 <u>+</u> .04        |         | 1.01                             |   |
| B   | 21ZT1  | 0.74 <u>+</u> .07        |         | 1.03                             |   |
| в   | 22ZT1  | 0.71 <u>+</u> .04        |         | 0.99                             |   |
| В   | 23ZT1  | 0.73 <u>+</u> .04        |         | 0.99                             |   |
|     |        |                          | Median: | 1.02                             |   |

## Table D-1 Comparison of Calculated and Observed Ammonium

Concentrations for Ammonium Sulfate Aerosols

a. Mean  $\pm \sigma$  for 4 quarters.

b. Calculation based on stoichiometry for  $(NH_4)_2SO_4$ .

Nitrate Extraction and Analysis with Nylon and NaCl Impregnated Filters

Nitric acid collected on nylon and sodium chloride-impregnated Whatman 41 (NaCl/W41) (cellulose) filters was analyzed as nitrate by the automated Cu-Cd reduction, diazotization procedure following extraction. Extractions of laboratory-generated HNO<sub>3</sub> from clean NaCl-impregnated or nylon filters used 30-minute mechanical shaking (Eberbach Model 6000). With atmospheric samples, 60 minutes shaking time was used. The NaCl-impregnated filters were extracted with distilled water and the nylon filters, with 0.1N NaOH.<sup>17</sup>

To establish that the sampling media did not interfere in the subsequent analysis, an NaCl/W4l filter was added to 10 ml standard solutions containing 5  $\mu$ g/ml nitrate. The level of nitrate in the extract remained unchanged The filter blank was below detection (approx. 0.2  $\mu$ g/ml or 2  $\mu$ g/47 mm filter).

For the nylon filters, following extraction in 5 or 10 ml base, an equal volume of 0.1N HCl was added to neutralize the solution. Some care was required because of the observed dependence of the nitrate result on pH (Figure E-1). Over a pH range of 2-10 the error was < 10%.

The filter blank observed for Duralon nylon filters was  $6.9 \pm 0.1 \ \mu g/47 \ mm$  filter. The NaOH and HCl solutions had no detectable nitrate.



Figure E-1

Appendix F

#### Filter Heating Technique for Serial Filter Holder Samples

The apparatus used for this procedure is shown in <u>Figure F-1</u>. A heat gun is used to force hot air through a 2" copper Tee used as a flow distribution manifold. The filter holder to be heated is attached to the manifold vertical side arm and the heated air drawn through the filters by applying a vacuum source. The temperature of the volatilization air is controlled by admitting a desired amount of unheated ambient air through variable bleed holes in a collar fitted to the manifold side arm. Rotation of the bleed collar allows adjustment of the size of the bleed holes to set the required volatization air temperature. To ensure reproducible heating of the filter stack samplers, a filter holder specially fitted with thermistors upstream and downstream of the particle pre-filter (see figure) was peridically used as a temperature reference.

The following protocol was used for the loaded filter heating technique when sampling  $HNO_3$  or  $NH_3$ :

- 1. Turn on heat gun and allow 10 min. to establish thermal equilibrium.
- 2. Measure flow rate of loaded filter stack and disconnect from vacuum source.
- 3. Connect temperature reference filter holder to vacuum and set flow rate equal to that of loaded sampler to be heated.
- 4. Estimate from <u>Figure F-2</u> the temperature required to reduce volatization air relative humidity to less than 15% (typically 45-50°C).
- 5. Install temperature reference filter holder on heated air manifold and set corresponding temperature using air bleed collar.
- 6. Attach filter holder containing collected samples on heated air manifold, connect holder to vacuum source and draw heated air through filters for three minutes.
- 7. Dismount loaded filters from filter holder and store in air-tight plastic Millipore boxes.



Figure F-1 System for Heating Filter Sampler to Desorb  $NH_3$  and  $HNO_3$ 

#### **ISOPLETHS FOR RELATIVE HUMIDITY AT VARYING TEMPERATURE**



Note: Data from Chemical Rubber Co., Handbook of Chemistry and Physics, 34th ed. P 2134.



Collection of Ammonia on Acid Washed Pallflex 2500 QAO Quartz Fiber Filters

The striking similarity in diurnal variations for ammonia and  $NH_4^+$  in particulate matter noted in Pittsburg sampling raised the suspicion that acid washed quartz filters were collecting ammonia. To evaluate this possibility ambient Berkeley air was sampled for 6 hours through 47 mm quartz filters following particulate removal with slightly alkaline Gelman A (pH = 7.6) pre-filters. The flow rate was adjusted to 1.32 cfm to provide a face velocity equal to that of the 8 x 10" filter at 40 cfm.

The results for two trials run simultaneously are given in <u>Table G-1</u>. Particulate NH<sub>4</sub><sup>+</sup> levels were about 2  $\mu$ g/m<sup>3</sup> on the pre-filter. While ambient NH<sub>3</sub> values were not obtained because of experimental difficulties, we estimate NH<sub>3</sub> concentrations to be  $\geq 3 \mu$ g/m<sup>3</sup> based on results in Pittsburg as well as previously published results for urban areas.<sup>40</sup> Accordingly the quartz filters are concluded to be  $\leq 10\%$  efficient for NH<sub>3</sub> collection.

### Table G-1

Collection of Ambient  $NH_3$  on Acid Washed Pallflex 2500 QAO Quartz Filters

i

| Trial | Filter                | $NH_4$ in<br>Particulate<br>$(\mu g/m^3)$ | $\frac{NH_3}{on \ Quartz}$ |
|-------|-----------------------|-------------------------------------------|----------------------------|
| l     | Gelman A (pre-filter) | 1.9                                       |                            |
|       | Pallflex Quartz       |                                           | 0.34                       |
| 2     | Gelman A (pre-filter) | 1.9                                       |                            |
|       | Pallflex Quartz       |                                           | 0.26                       |

a. Results corrected for filter blank run in same batch. Filter blank  $3.5 \pm 0.7 \ \mu g/47 \ mm_{+}$  filter. Blank represented about 50% of the gross NH<sub>3</sub> (as NH<sub>4</sub>) observed on the quartz filters.

AIHL Version of the Brockhaven Method for the Preparation of Quartz Filters for  $\rm H_2SO_4$  Sampling.

Apparatus and Equipment

Stainless steel pan,  $10\frac{1}{2}$ " x  $18\frac{1}{4}$ ", lined with Tedlar film Glass rod tray, 9" x 11" (Fig. 1) Glass rod tray, 8" x 10" (Fig. 2) Steambath Muffle furnace Drying oven Plastic buchner funnel, 8-3/4" x 10-3/4" Suction flask Ultrasonic bath with detachable 10" x  $1\frac{1}{4}$ " tub, Blackstone Model SG2A Drying rack with removable screens Laminar flow hood Pancake spatulas (2) Micro spatula, thin blade

#### Reagents and Supplies

Reagent grade H<sub>3</sub>PO<sub>4</sub>, 85% Quartz filter material, 8" x 10" (QAO 2500 Pallflex Corp., Putnam, Conn.) Glass fiber filters, 8" x 10"

#### Procedure

- 1. Six 8" x 10" Pallflex QAO 2500 quartz filters are used with the backing removed. Three filters are stacked and then an  $8\frac{1}{2}$ " x  $10\frac{1}{2}$ " liner is placed on top. This liner consists of two  $5\frac{1}{2}$ " x  $3\frac{1}{2}$ " pieces of quartz filters which have been previously treated by this method and may be reused. Three more 8" x 10" quartz filters are stacked on top of the liner.
- 2. The filter stack is washed with distilled  $H_2O$  using a prewashed glass fiber filter-lined plastic buchner funnel and suction. A liter of  $H_2O$ , poured in small portions from a 250 ml Erlenmeyer, is used for each group of filters. The filters are removed from the funnel by pressing a sheet of aluminum foil into the funnel so that it fits flush against the filters. The ends of the foil should extend up and over the walls of the funnel. The funnel is then placed upside down on the bench top and clean air is blown into the funnel to disengage the filters. The funnel is then lifted off the aluminum foil. The glass fiber filter is removed from the filter stack and replaced into the funnel.
- 3. The aluminum foil is removed and the stack is lined top and bottom by quartz filters. The quartz material is then placed in a cold muffle furnace and ignited at 750°C for 4 hours (including warmup time). Note that the quartz liners may be reused.

<sup>\*</sup>For some batches of filters as supplied by Pallflex, it was necessary to ignite the filters initially as described in par. 3. Otherwise the filters stuck together following step 2 causing damage. In these cases, filters were fired a second time at 750°C under par. 3.

#### Appendix H (continued)

- 4. The outer quartz liners are removed and the cooled quartz material (6 sheets and the middle liner) is placed on the larger glass rod tray. The smaller glass rod tray is placed on top and the unit is carefully placed in a Tedlar-lined stainless steel tray containing hot (steambath temperature) concentrated  $H_3PO_4$ . The top glass rod tray prevents the filters from floating. The  $H_3PO_4$  level must be high enough to cover the quartz material and is reused. The filter stack is allowed to soak 30 min.
- 5. The glass tray assembly is removed from the acid bath and placed in the tub from the sonic bath, which has been removed from the sonic bath apparatus and placed next to the acid bath. After the transfer, the tub is replaced in the ultrasonic unit and distilled  $H_2O$  is added slowly and carefully to cover the assembly. The filter material is very weak at this time and may be damaged by the force of pouring water. The bath is then agitated for 15 min. at the lowest setting. This procedure is repeated twice more, removing the glass rod tray assembly from the bath for each change of  $H_2O$ .
- 6. The group of filter sheets is transferred to the buchner funnel. Transfer is most easily accomplished by removing the assembly from the sonic bath, inverting it, and placing it upon two beakers for support. The larger glass rod tray, now on top, is removed, and the plastic buchner funnel is gently placed over the filters on the remaining tray. The funnel, filters, and tray are then inverted and placed on a filter flask. The filters should be flat with no wrinkles.
- 7. The filter material is rinsed thoroughly with distilled H<sub>2</sub>O using suction. Rinsing is continued until 4 liters have been collected. The filter material is still weak.
- 8. The wet stack of filters is removed from the funnel as in (2) and lined top and bottom with overlapping quartz sheets. This stack is then placed in the cold muffle furnace and again ignited to 750°C. At the conclusion of this step there is a noticeable improvement in the tensile strength of the quartz.
- 9. The filters should separate easily into two stacks of three; the liner may be removed at this time. Individual filters are then separated by gently working around the edges and in towards the center with a small spatula.
- 10. The filters are placed in the large glass rod tray, which is then placed in the ultrasonic bath. Two liters of a pH 5  $H_3PO_4$  solution are added and the bath is excited for 15 min. at the maximum setting.
- 11. The glass rod tray containing the six filters is removed from the bath. The filters are then individually removed from the stack with large pancake spatulas and placed on the screens in the drying rack.



#### Appendix H (continued)

- 12. Preliminary drying is carried out in the laminar flow hood overnight. Final drying is accomplished in the drying oven at 65-75°C.
- 13. The cooled filters are each placed in a plastic film-lined manila folder. These folders are placed in a plastic bag which is then taped shut and stored in the clean air bench.

#### Notes on the Procedure

- 1. The purpose of the initial ignition step (3) is to remove organic binding substance from the quartz material. If the quartz is placed in the hot concentrated  $H_3PO_4$  without ignition, discoloration of the acid may occur. A stack of 30 filter sheets have been ignited at one time (by Brookhaven) with no difficulties. If more than one filter batch is to be ignited, however, liners should be placed between each set of 6 filters to allow easy separation.
- 2. The quartz becomes translucent when saturated with concentrated  $H_3PO_4$ and easily damaged. After prolonged soaking in  $H_2O$ , a return of the characteristic white color of the quartz will be noticed, although the filters remain fragile.
- 3. In step 8, the rate of filtration will decline as the glass fiber lining on the buchner funnel is used over and over. After 3 groups of quartz material (6 sheets plus the middle liner) have been rinsed, new glass fiber material should be used.
- 4. The increase in quartz tensile strength indicated after completion of step 9 is probably caused by the formation of a type of phosphate glass fresidual phosphate remaining despite the rinsing step 8). If the filters are not thoroughly rinsed they become very stiff or brittle, (easily cracked), after ignition step 9 and cannot be separated.
- 5. Dilute  $H_3PO_4$ , pH 5 used in step 11 is conveniently prepared by diluting one drop of concentrated  $H_3PO_4$  to a liter. A further dilution of this stock solution by 1 to 50 will yield a pH of approximately 5. The soak procedure in the ultrasonic cleaner allows a uniform distribution of very slight acidity resulting in repeatable blank values for the microtitration of H<sup>+</sup>. The pH 5 solution should be prepared for use from the stock solution daily and may be used for several groups of filters.

Figure H-1 GLASS ROD TRAY



Glass rods for screen ∼ 1/8" diameter.

Glass rods for frame and handles  $\geq 1/4"$  diameter.

Figure H-2 GLASS ROD FRAME


Diurnal Variations for NO,  $NO_2$ ,  $O_3$ ,  $SO_2$ , Soiling Index, Windspeed and Direction During Pittsburg Sampling.







.

HOURLY AVERAGE SO -EVELS DURING SAMPLING



HOURLY AVERAGE WIND DIRECTION & WIND SPEED AND MAKINUM TEMPERATURE DURING SAMUPLING AT PITTSBURGE (2/0/79 - 2/0/79)



103

1