IX. TOYOTA CELICA CONVERSION AND EMISSIONS ANALYSIS

The 1990 Toyota Celica was factory equipped with a close-coupled catalytic converter plus a relatively small underbody catalyst. There is no air injection with the original catalyst configuration. This vehicle has two oxygen sensors, one located immediately upstream and the other immediately downstream of the stock (original) close-coupled catalyst. Photographs of the original Toyota Celica catalysts are shown in Figure 15. An electrically-heated catalyst was mounted just upstream of the original underbody catalyst as shown in Figure 16. A blank "spool" replaces the electrically-heated catalyst for original configuration tests. The Celica provided an opportunity to study the emission control potential of an electricallyheated catalyst located downstream of a close-coupled catalyst. In this downstream location, the electrically-heated catalyst would be expected to operate at lower overall temperatures than if located first in the exhaust stream, close to the engine. Therefore, long-term durability for the heated catalyst may be enhanced in this cooler location.

Take-apart flanges were fitted to the exhaust pipe and electrically-heated catalyst so that emission tests could be performed easily with or without the preheated catalyst. An onvehicle air injection pump was mounted behind the front bumper, along with the solenoidoperated air control valve. The original Toyota battery was replaced with the strongest battery available that would fit into the underhood location. For emission tests at SwRI, the catalyst power controller was located behind the right-front seat, as shown previously (Figure 7).

A total of 27 FTP emission tests were performed on the Toyota Celica while at SwRI. Studies were performed on air injection flowrate and duration, battery configurations, alternator recharge loads, and fuel economy penalties. Electrically-heated catalyst emissions were compared with baseline (stock) catalyst emission results. During the course of Celica emission testing, it was determined that cables carrying high pulse-width modulated heating currents can cause engine control interference if not routed properly. A summary of the emission results for each test configuration is given in Appendix L. Toyota Celica FTP emission results for each test are located in Appendix M.

A. <u>Air Injection Flowrate Calibration</u>

An air injection calibration verification was performed on the Toyota Celica with the electrically-heated catalyst installed. FTP cold-start and hot-start emissions were measured with air injection flowrates of 0, 85, 140, and 300 L/min (0, 3.0, 5.0, and 10.7 CFM). Cold-start air injection began at engine cranking and stopped 65 seconds into the FTP, while hot-start air injection lasted 20 seconds. Air was injected with the same laboratory pump (Figure 14) used to determine the optimal flowrate on the Buick. Celica FTP emissions at the various air injection flowrates are given in Table 33. Note that air injection significantly improved control of HC and CO, although NO_x emissions were higher when air was injected.

1. Cold-Start

Celica cold-start emissions for each of the air injection flowrates are given in Table 34. Air injection provided the lowest cold-start HC and CO emissions at a rate of 170 L/min (5.9 CFM) for the Celica, and this flow was used for other tests. This flowrate

Catalyst Close-coupled to Exhaust Manifold

Underbody Catalyst

FIGURE 15. TOYOTA CELICA STOCK CATALYSTS

Electrically-Heated Catalyst

Blank "Spool"

FIGURE 16. TOYOTA CELICA EXHAUST SYSTEM CONVERSION

TABLE 33. TOYOTA CELICA FTP EMISSIONS WITHPREHEATED CATALYST AND AIR INJECTION

FTP	Air Injection Flowrate, L/min					
Emissions	No Air ^a	85	170	300		
HC, g/mi	0.08	0.05	0.05	0.14		
CO, g/mi	0.84	0.43	0.49	0.69		
NO _x , g/mi	0.14	0.20	0.24	0.15		
^a Heat only. Air Injection: Cold-start 65 sec.; hot-start 20 sec.						

TABLE 34. TOYOTA CELICA COLD-START EMISSIONS WITHPREHEATED CATALYST AND AIR INJECTION

Bag 1A	Air Injection Flowrate, L/min					
Emissions	No Air ^a	85	170	300		
HC, g/mi	1.21	0.74	0.56	2.88		
CO, g/mi	9.12	5.12	3.71	15.64		
NO _x , g/mi	2.08	2.66	3.44	2.20		
^a Heat only. Air injection for 65 seconds.						

TABLE 35. TOYOTA CELICA HOT-START EMISSIONS WITHPREHEATED CATALYST AND AIR INJECTION

Bag 3	Air Injection Flowrate, L/min					
Emissions	No Air ^a	85	170	300		
HC, g/mi	0.07	0.07	0.07	0.10		
CO, g/mi	0.09	0.10	0.14	0.18		
NO _x , g/mi	0.07	0.11	0.12	0.11		
^a Heat only. Air injection for 20 seconds.						

corresponds to that measured for the vehicle-mounted electric air pump. Future "official" Toyota Celica tests incorporated the vehicle air pump instead of the experimental laboratory air injection pump.

2. Hot-Start

Toyota Celica hot-start emissions at the various air flowrates are given in Table 35. This table shows that all air flow increases caused slightly <u>higher</u> emissions rather than lower ones. Hot-start hydrocarbon emissions were relatively constant from the "no air" configuration up through the highest flowrate of 300 L/min (10.7 CFM). The CO emissions, which have typically demonstrated more sensitively to the secondary air, show a continuously increasing trend. Hot-start NO_x emissions also suffered with the introduction of air. Toyota Celica air injection during the FTP hot-start was discontinued because it provided no emission benefit.

B. Air Injection Duration Study

The air injection duration for the Toyota Celica was also evaluated. It was expected that moderate air injection flowrates would improve control of HC and CO with increased duration. Conversely, NO_x emission control would be expected to suffer with longer periods of air injection. Automotive catalytic converters will not control NO_x emissions in the presence of excess oxygen, therefore NO_x control is favored by short air injection periods.⁽²⁰⁾ A review of the HC, CO, and NO_x emissions at the various air injection periods tested suggests that the expectations were loosely realized. There was some scatter in the emission data as the injection duration increased from zero to 140 seconds (in six steps). Emissions of HC and CO generally tended downward, and NO_x tended upward as air injection duration increased. It was difficult to experimentally ascertain the precise air injection cut-off point (duration) that provided the maximum emission benefit. The cold-start air injection period was originally determined, therefore, based on the open-loop air-fuel ratio period (65 seconds). Subsequent experiments demonstrated no emission control loss with shorter injection duration. Final air injection duration for the Toyota Celica at SwRI was 50 seconds for the cold-start and zero (no air injection) for the hot-start.

C. <u>Battery Recharging Configuration Study</u>

Toyota Celica battery recharging modes were examined to determine the effect of alternator recharge load on FTP emissions and fuel economy. An FTP emission test was run on the Toyota with an unloaded alternator (Configuration A). This alternator configuration is unrealistic, but was performed to establish a best case FTP emission and fuel economy test result. FTP emission test results are given in Table 36 along with results of other battery recharging strategies and battery configurations. Configuration B was a dual-battery system where only the vehicle battery is recharged in order to isolate the effect on emissions of normal recharging loads. The second battery, which is used to preheat the catalyst, is not recharged in this configuration. Configuration C is a single battery system in which the vehicle battery is used to preheat the catalyst as well as start the vehicle. In this configuration, the alternator charges the battery. The final two configurations (D and E) recharge the batteries over the entire FTP except for the periods noted (all of segment 1A and the heating period only). Battery and alternator configurations were analyzed to determine their effect on FTP emissions and fuel economy. Nitrogen oxide emissions (Table 17) increased with alternator recharge load as seen from battery recharging configurations A, B, and C. In Configuration A, the alternator produces no power and the FTP NO_x emission rate is 0.08 grams/mile (g/mi). In Configuration B, the engine starting battery is charged, but not the electrically-heated catalyst battery; and the NO_x emission rate is 0.15 g/mi. Finally (Configuration C), the entire load of the engine starting and catalyst heating energy is replaced by the alternator, and the engine produces a NO_x emission rate of 0.23 g/mi. For each step, the fuel economy drops by slightly more than one mile per gallon. (Note that the emission tests incorporated a long post-start heating time, up to 60 seconds. This energy drain, which was later reduced, resulted in an unnecessarily lengthy battery recharging time). The HC and CO emissions tended to decrease when the alternator recharge load was removed from the system. This suggests that alternator recharge load has an effect on all emissions. These conclusions are preliminary and would have to be verified by a larger number of tests on several vehicles.

	Battery	_	FTP Em	Fuel		
Configuration Identification	Recharging Strategy	Battery Configuration	нс	СО	NOx	Economy, mi/gal
A	No recharging	Dual batteries in parallel	0.03	0.11	0.08	26.89
В	No recharging of EHC battery	Dual batteries separated	0.03	0.08	0.15	25.74
С	Recharging	Vehicle battery only	0.06	0.11	0.23	24.33
D	Recharging except for Segment 1A	Dual batteries in parallel	0.05	0.19	0.19	24.58
E	Recharging except for heating period	Vehicle battery only	0.05	0.16	0.23	24.62
EHC - electrically-heated catalyst						

TABLE 36. TOYOTA CELICA BATTERY RECHARGING CONFIGURATIONS AND EMISSIONS

D. Electrically-Heated Catalyst Replacement

The electrically-heated catalyst was replaced with a larger unit, and further improvement in emissions was observed. Emissions from the Toyota Celica with the electrically-heated catalyst are then compared to the original stock configuration emissions.

1. Larger Heated Catalyst

Toyota Celica FTP emissions were improved by exchanging the electricallyheated catalyst for a larger unit. The larger heated catalyst had a volume of 460 cubic centimeters (28.0 cubic inches) as compared to the 240 cubic centimeter (14.5 cubic inches) of the previous unit. Precious metal loadings of both catalysts were the same, namely 40 grams per cubic foot; and both had platinum to rhodium ratios of 5 to 1 (Table 25). The new electrically-heated catalyst was operated using a dual battery configuration. A second battery was placed in parallel with the first so that both batteries supply power to the catalyst during preheating. Both batteries were recharged by the alternator during the emission test. The emission tests performed on the Toyota Celica in the dual (parallel) battery configuration with the larger electrically-heated catalyst had the lowest overall emissions of HC and CO. The larger catalyst controlled the increase in NO_x emissions associated with alternator loading. These tests were performed with the on-vehicle air pump supplying 170 L/min (5.9 CFM) of air ahead of the preheated catalyst. No electrical heating or air injection was used on the hot-start position of these final Celica emission tests.

2. Comparison to Stock Configuration

Baseline emissions from the Celica were already low, meeting the 1990 U.S. EPA and California emission standards easily. The electrically-heated catalyst conversion reduced these emissions even further with the air and heating calibrations developed in this program. These emissions are compared to the original baseline emissions in Table 37. Emissions of HC and CO were reduced about 50 percent. Emissions of NO_x were lowered about 40 percent with the final (larger) heated catalyst. The original heated catalyst was of insufficient volume to control the increased engine-out NO_x emissions associated with the battery recharging load. In the final configuration, the larger electrically-heated catalyst was able to control NO_x emissions to levels lower than the stock configuration (Table 18).

FTP Emissions, g/mi			Fuel Economy,	
NMHC	СО	NOx	mi/gal	
0.08	0.66	0.09	25.4	
0.02	0.30	0.05	24.3	
	FTP E NMHC 0.08 0.02	FTP Emissions, NMHC CO 0.08 0.66 0.02 0.30	NMHC CO NO _x 0.08 0.66 0.09 0.02 0.30 0.05	

TABLE 37. TOYOTA CELICA EMISSIONS WITH LARGER ELECTRICALLY-HEATED CATALYST COMPARED TO STOCK

E. <u>Difficulties Encountered</u>

Conducted at SwRI.

Extended post-start heating (~60 sec.)

Difficulties were encountered while performing the electrically-heated catalyst conversion on the Toyota Celica. Some difficulties stem from the layout of the exhaust system and others from the conversion itself.

1. Close-Coupled Catalyst Configuration

In an absolute sense, the emission benefit for this vehicle was less than for the Buick LeSabre. As already mentioned, the Celica had good control of emissions in stock form due to an effective close-coupled catalyst. This close-coupled catalyst presented additional problems for the installation of an electrically-heated catalyst system. Since the electricallyheated catalyst was placed downstream of the close-coupled Toyota catalyst, the close-coupled catalyst (being the first catalyst in the exhaust stream), acted as a heat sink. This reduced the heat available to the electrically-heated catalyst, causing excessively long post-start heating times. The extended low temperature period of the electrically-heated catalyst caused the heating controller to supply power to the catalyst for up to 60 seconds following the cold-start. This excessively long heating period consumed electrical energy from the battery that subsequently had to be replaced by the alternator, increasing engine load. The increased alternator load has been shown to increase emissions (HC, CO, and NO_x) and decrease fuel economy. Based on the Buick LeSabre conversion and on previous studies (20). it would appear that the electrically-heated catalyst performs best when it is the first (upstream) catalyst in the exhaust system, although close-coupling of an electrically-heated catalyst may reduce its long-term durability. (Another approach would be to reduce the Toyota's electrically-heated catalyst energy consumption by limiting the post-start heating time to 20 seconds. This approach was investigated by ARB following this program.)

2. Electrical Interference

While investigating multiple battery configurations, the effect of high current cabling on engine calibration was discovered. Electrically-heated catalyst cables were inadvertently placed near engine sensors or electronics during preliminary emissions tests. These cables carried approximately 600 to 700 amperes of current to the electrically-heated catalyst. A magnetic field, caused by the pulse width modulation of the current, apparently caused the engine to run rich, increasing HC and CO emissions. This problem was discovered and corrected by rerouting the catalyst cables along a path previously determined successful. Another possible approach could have been to use shielded cables for catalyst power. Celica FTP emission tests that exhibited this electrical interference are so labeled in Appendix O.

X. BUICK LESABRE AND TOYOTA CELICA EXHAUST HYDROCARBON SPECIATION

Hydrocarbon speciation of exhaust emissions from selected Buick LeSabre and Toyota Celica FTP emission tests, in both stock (original) and electrically-heated catalyst configurations, was performed for the ARB. This speciation work was based on ARB Contract No. A996-204, "Measurement of Emissions from Advanced Technology Vehicles," and identified within SwRI as Project 08-3734. The speciation measurements for the LeSabre and Celica are given in this report for completeness, and include C_1 to C_{10} hydrocarbons, aldehydes, and ketones for several Buick and Toyota tests. Emission tests were performed using two different test fuels.

A. Test Fuels

Two test fuels were used in this study, Howell EEE emissions test fuel and Phillips RF-A "national average" gasoline. Phillips RF-A is currently being used by the Coordinating Research Council (CRC) in the Auto/Oil program. The Auto/Oil program is a cooperative research study to determine the effect of fuel composition on exhaust and evaporative emissions. It is being conducted by the automobile manufacturers and the oil companies. A wide variety of vehicle models, vehicle model years, and fuel formulations are being studied. The Howell EEE emissions test fuel was identified by fuel codes EM-1035-F and EM-995-F. The Phillips RF-A "national average" gasoline was identified by fuel code EM-1026-F. Analyses of the Howell EEE test fuels and the Phillips RF-A national average fuel are provided in Appendix A.

B. Speciation Measurements

The Buick LeSabre and Toyota Celica catalyst configurations and FTP emissions are given in Table 38. FTP hydrocarbon speciation measurements for the Buick LeSabre are given in Appendix N. Buick LeSabre cold-start (Bag 1) hydrocarbon speciation measurements are divided further into segments 1A (0-140 seconds) and 1B (140-505 seconds), and are located in Appendix O. FTP hydrocarbon speciation measurements for the Toyota are given in Appendix P. Toyota Celica cold-start (Bag 1) hydrocarbon speciation measurements are further divided into Bags 1A and 1B and are located in Appendix Q. Note that the Celica emission speciation tests numbered CS-VAH-12-2 and CS-VAH-15 were those tests that experienced electrical interference during the heating sequence. These speciation test results, along with the results of CS-VAH-12 (which was performed with the smaller volume heated catalyst), are included in the appropriate appendices.

Speciation procedures identified and quantified over 106 individual hydrocarbons and aldehydes and ketones in the exhaust from selected FTP tests conducted in this study.⁽²⁴⁾ Electrically-heated catalyst emissions for selected hydrocarbons were examined and compared to the stock catalyst emissions. The hydrocarbons examined in some detail included methane, 1,3-butadiene, benzene, toluene, formaldehyde, p-xylene/m-xylene, and o-xylene. These compounds are of interest due to their reactivity and/or toxicity.

FTP benzene emissions were generally lowered by 40 to 75 percent with the preheated catalyst, except for one Celica emissions test using Howell EEE gasoline where emissions

						Air In Durati	jection on, sec.		I	TP Emiss	sions, g/mi	le	
	Test Date	Test No.	Odometer Miles	Test Description	Airflow Rate, cfm	Bag 1A	Bag 3	Fuel	CO2	нс	со	NO _X	Fuel Eco. mi/gal
					1990 E	UICK LES	ABRE						
19	7-10-90 7-11-90 7-12-90 7-13-90 7-14-90 7-18-90	LS-AH-11 LS-AH-12 LS-OE-13 LS-OE-14 LS-AH-15 LS-AH-16	404 417 437 475 488 523	Heat & Air Heat & Air Stock Catalyst Stock Catalyst Heat & Air Heat & Air	10.7 10.7 10.7 10.7	75 75 75 75	30 30 30 30	EEE EEE RF-A RF-A RF-A	446.4 453.5 438.4 429.2 447.6 445.0	0.06 0.05 0.15 0.15 0.06 0.07	0.41 0.41 1.10 0.85 0.45 0.45	0.23 0.21 0.15 0.18 0.20 0.20	19.86 19.55 20.15 20.59 19.78 19.92
Ì					1990 T	ογοτα Ci	ELICA						
	9-13-90 7-12-90 7-15-90 9-14-90	CS-VAH-26 CS-OE-13 CS-OE-14 CS-VAH-27	681 326 396 716	Heat & Air Stock Catalyst Stock Catalyst Heat & Air	V5.9 V5.9	50 50	None None	EEE EEE RF-A RF-A	366.7 349.0 338.1 357.7	0.03 0.09 0.07 0.04	0.30 0.66 0.48 0.24	0.05 0.09 0.10 0.06	24.27 25.40 26.21 24.89
	9-14-90 CS-VAR-27 710 Heat & Air V 3.9 30 None RF-A 357.7 0.04 0.24 0.06 24.89 OE -Original Equipment A -Air H -Heat V -Vehicle Air EEE -Howell EEE RF-A -National Average												

TABLE 38. BUICK LESABRE AND TOYOTA CELICA CATALYST CONFIGURATIONS AND FTP EMISSIONS

,

were increased. Toluene and formaldehyde emissions were lowered by 30 to 100 percent using the preheated catalyst system on both the LeSabre and Celica. Cold transient (bag 1) emission rates (grams/mile) of toluene and formaldehyde were actually lower than cold stabilized (Bag 2) rates on the Buick LeSabre equipped with the electrically-heated catalyst (Appendices N and P).

The xylenes, which have a high reactivity related to ozone formation, were reduced by 50 to 90 percent with the electrically-heated catalyst. Emissions of 1,3-butadiene were below the measurement detection limits when the heated catalyst and air injection were employed. The effect of fuel formation on electrically-heated catalyst emission results could not be evaluated in any detail due to the limited number of tests conducted in this study. When available, results from the CRC Auto/Oil cooperative research study on the effects of fuel properties on emissions may provide information that can be extended to the heated catalyst application.

REFERENCES

- 1. Lyons, J.M., "Exhaust Benzene Emissions from Three-Way Catalyst-Equipped Light-Duty Vehicles," APCA, 1987.
- 2. "Proposed Benzene Control Plan," prepared by the Toxic Pollutants Branch Stationary Source Division of California Air Resources Board, May 1986.
- 3. "Addendum to Proposed Benzene Control Plan," prepared by the Toxic Pollutants Branch Stationary Source Division of California Air Resources Board, July 1986.
- 4. Seizinger, D.E., Marshall, W.F., et al, "Vehicle Evaporative and Exhaust Emissions as Influenced by Benzene Content of Gasoline," SAE Paper 860531, February 1986.
- 5. Tims, J.M., "Benzene Emissions from Passenger Cars." Concawe, The Hague (Netherlands), 1983.
- 6. Urban, C.M., "Regulated and Unregulated Exhaust Emissions from Malfunctioning Three-way Catalyst Gasoline Automobiles." Final Report to the U.S. Environmental Protection Agency under Contract No. 68-03-2588, Report No. EPA 460/3-80-004, January 1980.
- 7. Urban, C.M., "Regulated and Unregulated Exhaust Emissions from a Malfunctioning Three-way Catalyst Gasoline Automobile." Final Report to the U.S. Environmental Protection Agency under Contract No. 68-03-2692, Report No. EPA 460/3-80-005, January 1980.
- 8. Smith, L.R., "Characterization of Emissions from Motor Vehicles Designed for Low NOx Emissions." Final Report prepared for the U.S. Environmental Protection Agency, Research Triangle Park, under Contract No. 68-02-2497, Report No. EPA-600/2-80-176, published March 1981.
- 9. Marshall, W.F., "Study to Determine the Fate of Benzene Precursors in Gasoline," Final Report prepared for the California Air Resources Board, Sacramento, CA, ARB Agreement No. A5-128-32, December 1988.
- 10. Dishart, K.T., "Exhaust Hydrocarbon Composition: Its Relation to Gasoline Composition," American Petroleum Institute, Division of Refining, Volume 50, pp 514-540, May 1970.
- 11. Spencer, E.N., Conrad, M.C., et al, "Consequences of Limiting Benzene Content of Motor Gasoline." Concawe, The Hague (Netherlands), 1983.
- 12. Nelson, P.F., Quigley, S.M., "The Hydrocarbon Composition of Exhaust Emitted from Gasoline Fueled Vehicles," Atmospheric Environment, Volume 18, No. 1, pp 79-87, 1984.

13. Raley, D.L., McCallum, P.W., and Shadis, W.J., "Analysis of Benzene Emissions from Vehicles and Vehicle Refueling," SAE Paper 841397, 1984.

- 14. Personal communication with Manjit Ahuja of the Air Resources Board December 18, 1990.
- 15. Information provided to Lawrence Smith (SwRI) by Joseph Pantalone (CARB), Memo dated July 27, 1987.
- 16. Warner-Selph, M.A., "The Effect of Methanol on Evaporative Canister Charcoal Capacity." Final Report to the U.S. Environmental Protection Agency under contract No. 68-03-3162, Report No. EPA 460/3-84-014, January 1985.
- 17. Smith, L.R., "Additional Mini-Canister Evaluation." Final Report to the U.S. Environmental Protection Agency under Contract No. 68-03-3162, Report No. EPA 460/3-85-101, December 1985.
- 18. Blair, D. M. and Piotrowski, G. K., "Evaluation of a Resistively Heated Metal Monolith Catalytic Converter on an M100 Neat Methanol-Fueled Vehicle," Technical Report EPA/AA/CTAB/88-12, August 1988.
- 19. Hellman, K. H., Bruetsch, R. I., Piotrowski, G. K., and Tallent, W. D., "Resistive Materials Applied to Quick Light-Off Catalysts," SAE Paper 890799, February 27-March 3, 1989.
- 20. Heimrich, M. J., "Air Injection to an Electrically-Heated Catalyst for Reducing Cold-Start Benzene Emissions from Gasoline Vehicles," SAE Paper 902115, October 22-25, 1990.
- 21. Information provided to Southwest Research Institute in a letter by K.D. Drachand of the State of California Air Resources Board dated February 13, 1990.
- 22. Product Manual, "Camet Electrically-Heated Catalytic Converter, How to get the Camet EHC Up and Running." Published by Camet Co., A Unit of W. R. Grace & Co., 12000 Winrock Road, Hiram, Ohio, 44234.
- 23. Code of Federal Regulations, Title 40, Chapter 1, Part 86, Subpart B, Sections applicable to light-duty vehicles.
- 24. Current SwRI Program, "Measurement of Emissions from Advanced Technology Vehicles," conducted by the Department of Emissions Research for the California Air Resources Board, Contract No. A996-204, SwRI Project 08-3734, 1991.

APPENDIX A

FUEL ANALYSES

- Howell EEE Emissions Test Fuel, Code EM-780-F
- Howell EEE Emissions Test Fuel, Code EM-1035-F
- Howell EEE Emissions Test Fuel, Code EM-995-F
- Phillips 66 RF-A Fuel, Code EM-1026-F

DEPT. OF EMISSIONS RESEARCH

stands the stand of a stand magnetic stands of the standard stand

GASOLINE EMISSIONS FUEL SPECIFICATIONS QUALITY ASSURANCE

LEADED		UNLEADED	X SUPPLIER	HOWEI	L HYDROCARBONS
lot no.	B-87-155	SwRI CODE	EM-780-F	<u> </u>	CERTIFICATION SERVICE ACCUMULATION

		CFR Specificat	Supplier	SwRI	
Item	ASTM	Leaded	Unleaded	Analyses	Analyses
Octane, research, min.	D2699	98	93	96.7	96.4
Sensitivity (min.)		7.5	7.5	8.9	7.7
Pb(organic), gm/U.S., gal		1.4 ^a	0.00-0.05	0.001	<0.001
Distillation range:					
IBP ^o F	D86	75-95	75-95	90	87
10% Point, ^o F	D86	120-135	120-135	128	124
50% Point, ^o F	D86	200-230	200-230	214	215
90% Point, ^o F	D86	300-325	300-325	317	320
EP, ^O F (max.)	D86	415	415	375	388
Sulfur, wt. % (max.)	D1266	0.10	0.10	0.004	0.016
Phosphorus, gm/U.S., gal (max.)		0.01	0.005	0.0005	0.0014
RVP, psi	D323	8.7-9.2	8.7-9.2	9.0	9.2
Hydrocarbon Composition:					
Olefins, %, (max.)	D1319	10	10	1.7	1.0
Aromatics, % (max.)	D1319	35	35	33.2	31.1
Saturates	D1319	Ъ	b	65.1	67.9

aMinimum

^bRemainder

Supplier Analyses Date Nov., 1987 SwRI Analyses by Kathy Olsen

Date 11-20-87

SOUTHWEST RESEARCH INSTITUTE

6220 CULEBRA ROAD • POST OFFICE DRAWER 28510 • SAN ANTONIO, TEXAS, USA 78228-0510 • (512) 684-5111 • TELEX 244846

TABLE 1. GASOLINE EMISSIONS FUEL SPECIFICATIONS **QUALITY ASSURANCE**

UNLEADED X LOW-LEADED SUPPLIER HOWELL HYDROCARBONS

LOT NO. <u>89S-24</u> SwRI CODE <u>EM-995-F</u> <u>X</u> Certification

Service Accumulation

	CFR Spe	cification ^a		
Item	ASTM	Unleaded	Supplier Analysis	SwRI Analyses
Octane, research, min.	D2699	93	96.4	95.8
Sensitivity (min.)		7.5	8.4	
Pb (organic), gm/U.S., gal		0.05 ^b	0.002	<0.001
Distillation Range: IBP°F 10% Point, °F 50% Point, °F 90% Point, °F EP, °F (max.)	D86 D86 D86 D86 D86 D86	75-95 120-135 200-230 300-325 415	90 128 222 318 379	88 123 221 319 372
Sulfur, wt. % (max.)	D1266	0.10	0.004	0.013
Phosphorus, gm/U.S.,gal (max.)	D3231	0.005	0.0	0.0002
RVP, psi	D323	8.0-9.2d	9.1	9.1
Hydrocarbon Composition: Olefins, %, (max.) Aromatics, % (max.) Saturates, %	D1319 D1319 D1319 D1319	10 35 c	1.0 31.7 67.3	1.2 28.9 69.2

and CFR 86.1313-90(a)(1) for heavy-duty gasoline engines.

^bMaximum

^cRemainder

^dFor testing unrelated to evaporative emissions control.

Supplier Analyses Date: 10/26/89_

SwRI Analyses by: Karen Kohl Date: 1/23/90

SOUTHWEST RESEARCH INSTITUTE

a second as a second of the second second second

6220 CULEBRA ROAD . POST OFFICE DRAWER 28510 . SAN ANTONIO, TEXAS, USA 78228-0510 . (512) 684-5111 . TELEX 244846

TABLE. GASOLINE EMISSIONS FUEL SPECIFICATIONS QUALITY ASSURANCE

UNLEADED X	LOW-LEADED	SUPPLIER	HOWELL HYDROCARBONS
LOT NO. <u>905-8</u>	SwRI CODE <u>EM-1035-F</u>	<u> </u>	Certification Service Accumulation

	CFR Specification ^a					
Item	ASTM	Leaded	Unleaded	Supplier Analysis	SwRI Analyses	
Octane, research, min.	D2699	98	93	96.4	96.6	
Sensitivity (min.)		7.5	7.5	8.4	8.5	
Pb (organic), gm/U.S., gal		0.10 ^b	0.05b	0.001	<0.001	
Distillation Range: IBP°F 10% Point, °F 50% Point, °F 90% Point, °F EP, °F (max.)	D86 D86 D86 D86 D86	75-95 120-135 200-230 300-325 415	75-95 120-135 200-230 300-325 415	92 131 219 312 406	90 131 220 306 395	
Sulfur, wt. % (max.)	D1266	0.10	0.10	0.004	0.025	
Phosphorus, gm/U.S.,gal (max.)	D3231	0.01	0.005	0	0.0001	
RVP, psi	D323	8.0-9.2	8.0-9.2	9.2	9.1	
Hydrocarbon Composition: Olefins, %, (max.) Aromatics, % (max.) Saturates	D1319 D1319 D1319 D1319	10 35 c	10 35 c	3.0 30.0 67.0	5.7 31.4 62.9	
^a Gasoline fuel specification as in CFR 86.113-87(b)(2) for light-duty gasoline vehicles and CFR 86.113-87(b)(2) for heavy-duty gasoline engines. ^b Maximum ^c Remainder						

Supplier Analyses Date: <u>4/25/90</u>

SwRI Analyses by: <u>Karen Kohl</u> Date: <u>5/9/90</u>

DATE OF SELFMENT

Laboratory Report

PHILLIPS 66 COMPANY

A SUBSIDIARY OF PHILLIPS PETROLEUM COMPANY

SPECIALTY CHEMICALS P.O. BOX 968 BORGER, TX 79008-0968 INV./REQU. NO.

REFORMULATED FUEL RE-A

CODE EM-1026-F

101 K-579

TESTS	RESULTS	SPECIFICATION		
API Gravity	57.4	Report		
Sulfur, ppm	339	300 <u>+</u> 50		
Color	Purple	Report		
Benzene, Vol. 🕻	1.53	1.6 ± 0.3		
Reid Vapor Pressure	8.7	8.7 ± 0.3		
Driveability	1195	1250 Max.		
Antiknock Index	87.3	87.3 Min.		

Distillation, D-86 *F

IBP 10% 50% 90%	91 128 218 330	240 Mex. 323 - 333
EP	415	

Hydrocarbon Type, Vol. ; FIA

Aromatics	32.0	32 ± 3.0
Olefins	9.2	12 ± 3.0
Saturates	58.8	Report

BGL:LK:gao 10-05-90

APPENDIX B

(1) A second se second sec

ARB LETTER REQUESTING A CHANGE OF CONTROL TECHNOLOGY

STATE OF CALIFORNIA-RESOURCES AGENCY

GEORGE DEUKMEJIAN, Governor

Reference No. Z-88-02

AIR RESOURCES BOARD HAAGEN-SMIT LABORATORY 528 TELSTAR AVENUE cL MONTE 91731 PHONE: (213) 575-6800 MAR 2.3 1988

> Mr. Lawrence R. Smith Department of Emissions Research Southwest Research Institute 6220 Culebra Road San Antonio, TX 78284

Dear Mr. Smith:

This is a follow-up to your February 22, 1988, and March 8, 1988, telephone conversations with Mr. Jack Kitowski, of my staff regarding our contract for the control of benzene from light-duty motor vehicles.

You had indicated the two prototype demonstration vehicles would be equipped with an air pump and dual-bed catalyst. The staff recognizes that an air pump and dual-bed catalyst may provide a greater HC and benzene control than a single-bed catalyst. However, we are concerned about the compatibility of this technology with California's 0.4 g/mile NOx certification standard. The injection of air significantly inhibits the reduction of NOx emissions and can actually generate NOx emissions by the oxidation of ammonia. In order to meet our low NOx standard, the vast majority of new-vehicle manufacturers no longer use air pumps or dual-bed catalysts. Therefore, your use of test vehicles with air pump and dualbed catalyst technology would provide only minimal benefit to us. We strongly urge you to reconsider your choice of control technology.

You also indicated that your cold storage device (CSD) may not be effectively used without an air pump to purge the stored hydrocabons/ benzene. Several alternative systems may be available which would inject/ induct the purged hydrocarbons into the intake system, including systems analogous to the evaporative canister and to the PCV system. Please submit a progress report which considers these options in your choice of control systems.

If you have any questions, please contact Mr. Jack Kitowski, Air Resources Engineer, at (818) 575-6675.

Sincerely,

K. D. Drachand, Chief Mobile Source Division

cc: Manjit Ahuja

APPENDIX C

COLD-START DEVICE EXPERIMENT REGULATED EMISSION AND FUEL ECONOMY RESULTS

TABLE C-1. EMISSIONS TEST RESULTS WITHOUT COLD-START HYDROCARBON COLLECTION

SOUTHWEST RESEARCH INSTITUTE - DEPARTMENT OF EMISSIONS RESEARCH

FTP - VEHICLE EMISSIONS RESULTS - OEM CAT, CSD EXH SYS PROJECT 08-1815-001

TEST NO. 3 RUN 1 VEHICLE MODEL 86 HONDA ACCORD ENGINE 1.9 L(119. CID) -4 TRANSMISSION M5	VEHICLE NO.535 DATE 5/24/8 BAG CART NO. 1 DYNO NO.	8 /CVSNO.2 3	test Height 130 Actual Road Load Gasoline EM-788 Odometer 37578.	4. KG(2875. LBS) 5.7 KW(7.7 HP) -F KM(23350. MILES)
BARDWETER 741.93 MM HG(29.21 IN HG) RELATIVE HUMIDITY 62. PCT BAG RESULTS	DRY BULB TEMP. ABS. HUMIDITY	23.3 DEG C(74.0 DEG F 11.4 GM/KG) Nox humidity cor	RECTION FACTOR 1.02
BAG NURBER	1A	1B	2	3
DESCRIPTION	COLD TRANSIENT	COLD TRANSIENT	STABILIZED	HOT TRANSIENT
	0-140 SEC	140-505 SEC		
BLOWER DIF P MM. H20(IN. H20)	762.0 (30.0)	762.0 (30.0)	762.0 (30.0)	762.0 (30.0)
BLOWER INLET P MM. H2O(IN, H2O)	762.0 (30.0)	762.0 (30.0)	762.0 (30.0)	762.0 (30.0)
BLOWER INLET TEMP, DEG. C(DEG. F)	43.3 (110.0)	43.3 (110.0)	43.3 (110.0)	43.3 (110.0)
BLOWER REVOLUTIONS	11337.	29183.	69591.	40231.
TOT FLOW STD. CU. METRES(SCF)	21.1 (745.)	54.3 (1918.)	129.5 (4572.)	74.9 (2643.)
THC SAMPLE METER/RANGE/PPM	15.1/ 3/ 148.	29.5/ 2/ 30.	11.9/ 2/ 12.	13.5/ 2/ 14.
THC BCKGRD METER/RANGE/PPM	.8/ 3/ 8.	7.2/ 2/ /.	7.3/ 2/ 7.	6.9/ 2/ 7.
CU SAMPLE METER/RANGE/PPM	34.3/ 3/ 808.	81.1/ 13/ 80.	56.2/ 13/ 53.	42.2/ 13/ 39.
	.1/ 3/ C.	1.0/ 13/ 1. 95 // 11/ 00E0	1.1/ 13/ 1.	.9/ 13/ 1.
CU2 SHIPPLE HETER/RHINGE/PUT	00.1/ 11/ .0CJ1	7 6/ 11/ . 3330	7 6/ 11/ 6040	0/.1/ 11/ .044C
NDY COMDER METER/RANGE/DDM	977/ 1/274	81 3/ 1/ 20 4	59/ 1/ 18	46 1/ 1/ 11 5
NOX SHIFEL HETER/RHNDE/FER	.9/ 1/ .2	.7/ 1/ .2	.0/ 1/ 0	5/ 1/ 1
DILUTION FACTOR	14.54	13.32	20, 28	15.78
THC CONCENTRATION PPM	141.	23.	5.	7.
CO CONCENTRATION PPM	777.	76.	51.	37.
CO2 CONCENTRATION PCT	.7841	. 9544	.6125	.80 07
NOX CONCENTRATION PPM	23.2	20.2	1.8	11.5
THC MASS GRAMS	1.72	.72	. 37	. 30
CO MASS GRAMS	19.09	4.82	7.62	3.22
CO2 MASS GRAMS	302.8	948.9	1452.1	1097.3
NOX MASS GRAMS	.96	2.15	. 45	1.68
THC GRAMS/MI	2.52	.25	.09	.08
Co grams/mi	27.95	1.66	1.95	.89
CO2 GRAMS/MI	443.4	327.2	371.8	303.7
NOX GRAMS/MI	1.40	.74	. 12	. 46
FUEL ECONOMY IN MPG	17.90 2	24.50 26.82	23.64 25.	96 29.04
NUN LINE SECONDS	141.	364.	869.	503.
PICHOUKED DISTHINGE MI	.68 J	3.06 2.90 	3.91 7.5	12 J.61
DET (NOV)	، ۲/۲ ، دع	17(1, 17)1 7(1, 17)1 7(1, 17)1	17/4 .3/ DAC/	っ・3/ビ (207)
DEGUMEN (DEST) TOT UNI (SOMI) / SOMIDID (SOMI)	• 3C 75	1	• 346 (204 2 /	• 35.() 00
TOT THE YOURT? / JPHP DEA YOURS?	(J	** ***	EV-1, 0/	• • •

IDMPOSITE RESULTS

TEST NUMBER		3
BARDNETER	MM HG	741.9
HUMIDITY	6/K6	11.4
TEMPERATURE	DEG C	23.3

		3-BAG
CARBON DIOXIDE	G/MI	348.5
FUEL ECONOMY	MPG	25.13
hydrocarbons (THC)	6/MI	.21
CARBON MONOXIDE	G/MI	2.63
OXIDES OF NITROGEN	6/MI	.37

TABLE C-2. EMISSIONS TEST RESULTS WITH CSD HYDROCARBON COLLECTION FOR 140 SECONDS

SOUTHWEST RESEARCH INSTITUTE - DEPARTMENT OF EMISSIONS RESEARCH

FTP - VEHICLE EMISSIONS RESULTS - HC COLLECTION - 140 SEC PROJECT 08-1815-001

TEST NO. 1 RUN 1 VEHICLE MODEL 86 HONDA ACCORD ENGINE 1.9 L (119. CID) L-4 TRANSMISSION NO	VEHICLE NO.535 DATE 5/20/88 BAG CART NO. 2 DYNO NO. 3 CVS NO. 2	TEST WEIGHT 1304. KG(2875. LBS) ACTUAL ROAD LOAD 5.7 KW(7.7 HP) GASOLINE EM-780-F ODOMETER 37552. KM(23334. MILES)
BAROMETER 738.38 NM HG(29.07 IN HG) RELATIVE HUMIDITY 46. PCT BAG RESULTS	DRY BULB TEMP. 25.6 DEG C(78.0 DEG F) ABS. HUMIDITY 9.8 GM/KG	NOX HUMIDITY CORRECTION FACTOR .97
BAG NUMBER DESCRIPTION	IA IB COLD TRANSIENT COLD TRANSIENT 0-140 sec 140-505 sec	
BLOWER DIF P NH. H20(IN. H20)	762.0 (30.0) 762.0 (30.0)	
BLOWER INLET P MM. H20(IN, H20)	762.0 (30.0) 762.0 (30.0)	
BLOWER INLET TEMP. DEG. C(DEG. F)	43.3 (110.0) 42.8 (109.0)	
BLOWER REVOLUTIONS	11266. 29410.	
TUT FLOW STD. CU. METRES(SDF)	20.9 (736.) 54.5 (1924.)	
THE SHIPLE PETER/RENDE/PAT	98.9/ 2/ 99. 24.4/ 2/ 25.	
THU BURGRU PETER/RHINDE/PPH		
	/b.// 1/ /39. 33.2/ 13/ 125.	
	.4/ 1/ 39/ 13/ C.	
COC SHIPLE HELER/RHWOC/PG1		
NOY SOMELE METER/ROADE/DOM		
NOX SHAFEL HETER/RENOL/PPH		
NOX DESCRIPTER ANNOLVER		
THE CONCENTRATION POW	93. 19	
CA CONCENTRATION DOM	716 119	
	7698 9582	
NOX CONCENTRATION DOM	19.5 12.7	
THE MASS GRAMS	1.11 .59	
CO MASS GRAMS	17.33 7.53	
CO2 MASS GRAMS	293.9 956.1	
NOX MASS GRAMS	.75 1.29	
THC GRAMS/MI	1.64 .20	
CD GRAMS/MI	25.55 2.58	
CO2 GRANS/MI	433.4 327.3	
NOX GRAMS/MI	1.11 .44	
FUEL ECONOMY IN MPG	18.52 26.71	
RUN TIME SECONDS	140. 366.	
MEASURED DISTANCE HI	.68 2.92	
SCF, DRY	.977 .976	
COMPOSITE RESULTS		3-BAG (4-BAG)

TEST NUMBER	-	1
Bardmeter	MM HG	738.4
HUMIDITY	6/K6	9.8
TEMPERATURE	DEG C	25.6

CARBON DIOXIDEG/MIFUEL ECONOMYMPGHYDROCARBONS (THC)G/MICARBON MONOXIDEG/MIOXIDES OF NITROGENG/MI

TABLE C-3. EMISSIONS TEST RESULTS WITH CSD COLLECTION FOR 70 SECONDS

SOUTHWEST RESEARCH INSTITUTE - DEPARTMENT OF EMISSIONS RESEARCH

- VEHICLE EMISSIONS RESULTS - HC COLLECTION - 70 SEC FTP PROJECT 08-1815-001

TEST NO. 2 RUN 1 VEHICLE MODEL 86 HONDA ACCORD ENGINE 1.9 L(119. CID) L-4 TRANSMISSION M5	VEHICLE NO.535 DATE 5/23/84 BAG CART NO. DYNO NO. CVS NO. 2	8 2 3	TEST WEIGHT 1 ACTUAL ROAD LO GASOLINE EM-7 ODOMETER 37565	304. KG(2875. AD 5.7 KW(80-F . KM(23342. MI	LBS) 7.7 HP) LES)
BAROMETER 741.93 NM H6(29.21 IN H6)	DRY BULB TEMP.	24.4 DEG C(76.0 DEG F)			
RELATIVE HUMIDITY 52. PCI	RBS. HUMIDITY	10.2 GM/KG	NOX HUMIDITY C	ORRECTION FACT	OR .98
SHE KESULIS	1A	18			
BHD NURBER	COLD TRANSIENT	COLD TRANSIENT			
DESCRIPTION	0-140 sec	140-505 sec			
BLOWER DIF P MM. H20(IN. H20)	762.0 (30.0)	774.7 (30.5)			
BLOWER INLET P MM. H20(IN. H20)	762.0 (30.0)	774.7 (30.5)			
BLOWER INLET TEMP. DEG. C(DEG. F)	43.3 (110.0)	42.8 (109.0)			
BLOWER REVOLUTIONS	11314.	29189.			
TOT FLOW STD. CU. METRES(SCF)	21.1 (744.)	54.3 (1917.)			
THC SAMPLE METER/RANGE/PPM	98.8/ 2/ 99.	20,7/ 2/ 21.			
THC BCKGRD METER/RANGE/PPM	7.6/ 2/ 8.	7.2/2/7.			
Co sample meter/range/ppm	83.3/ 1/ 829.	52.0/ 12/ 52.			
CO BCKGRD METER/RANGE/PPM	1.0/ 1/ 7.	5.1/ 12/ 5.			
CO2 SAMPLE METER/RANGE/PCT	88.4/ 14/ .8303	93.1/ 14/ .9455			
CO2 BCKGRD METER/RANGE/PCT	13.7/ 14/ .0485	14.0/ 14/ .0497			
NOX SAMPLE HETER/RANGE/PPH	91.4/ 1/ 22.8	59.0/ 1/ 14.8			
NDX BCKGRD HETER/RANGE/PPH	.4/ 1/ .1	.5/ 1/ .1			
DILUTION FACTOR	14.56	14.07			
THE CONCENTRATION PPH	92.	14.			
CO CONCENTRATION PPM	795.	46.			
CO2 CONCENTRATION PCT	. 7852	. 899 3			
NDX CONCENTRATION PPM	22.7	14.7			
THC MASS GRAMS	1.11	. 44			
CO MASS GRAMS	19.49	2.88			
CO2 MASS GRAMS	302.7	893. 7			
NOX MASS GRAMS	.90	1.50			
THC GRAMS/HI	1.63	. 15			
CD GRAMS/MI	28.56	. 99			
CD2 GRAMS/MI	443.5	307.2			
NDX GRAMS/NI	1.32	.51			
FUEL ECONDHY IN MPG	17.97	28.68			
RUN TIME SECONDS	141.	363.			
MEASURED DISTANCE MI	.68	2.91			
SCF, DRY	. 976	.974			
MPOSITE RESULTS				2_8 . ~	/4 T.A.
TEST NUMBER 2				J-DAG	(4-BA)
BARDMETER MM HG 741.9		CARBON DIO	IDE G/N	11	
HUMIDITY 6/K6 10.2		FUEL ECONON	AY MP(3 AT	
TEMPERATURE DEG C 24, 4		CARBON MON OXIDES OF NI	OXIDE G/N TROGEN G/N	11 11 41	

. •

(4-BAG)

APPENDIX D

.

a series of the second s

BASELINE REGULATED EMISSION AND FUEL ECONOMY RESULTS FOR THE DEMONSTRATION VEHICLE USED FOR COLD-START HYDROCARBON COLLECTION

TEST ND. 1 RUN 1 VEHICLE MODEL 86 HONDA ACCORD ENGINE 1.9 L(119. CID) L-4 TRANSMISSION M5 BARDNETER 740.66 NM HG(29.16 IN HG) RELATIVE HUMIDITY 67. PCT BAG RESULTS BAG NUMBER DESCRIPTION BLOWER DIF P NM. H20(IN. H2D) BLOWER INLET P MM. H2O(IN. H2O) BLOWER INLET TEMP. DEG. C(DEG. F) BLOWER REVOLUTIONS TOT FLOW STD. CU. METRES(SCF) THE SAMPLE METER/RANGE/PPM THE BEKGRD METER/RANGE/PPM CO SAMPLE METER/RANGE/PPM CO BCKGRD METER/RANGE/PPM CO2 SAMPLE METER/RANGE/PCT CO2 BCKGRD METER/RANGE/PCT NOX SAMPLE METER/RANGE/PPM NOX BCKGRD METER/RANGE/PPM DILUTION FACTOR THE CONCENTRATION PPM CO CONCENTRATION PPM CO2 CONCENTRATION PCT NOX CONCENTRATION PPM THE MASS GRAMS CO MASS GRAMS CO2 MASS GRAMS NOX MASS GRAMS THE GRAMS/MI CO GRANS/MI CO2 GRAMS/MI NOX GRAMS/MI FUEL ECONOMY IN MPG SECONDS RUN TIME MEASURED DISTANCE ΗI SCF, DRY

COMPOSITE	RESULTS
TEST N	LMBER

BARDMETER	MM H6	740.7
HUMIDITY	G/KG	13.2
TEMPERATURE	DEG C	24.4

1

VEHICLE NO. 535 DATE 7/12/88 BAG CART NO. 2 DYNO NO. 3 CVS NO. 2 DRY BULB TEMP. 24. ABS. HUMIDITY 13.2

TEST WEIGHT 1304. KG (2875. LBS) ACTUAL ROAD LOAD 5.7 KW (7.7 HP) GASOLINE EM-780-F ODOMETER 35999. KM (22369. MILES)

DRY BULB TEMP. 24.4 DEG C(76.0 DEG F) ABS. HUMIDITY 13.2 SM/KG NO

NOX HUMIDITY CORRECTION FACTOR 1.09

1	2	3
COLD TRANSIENT	STABILIZED	HOT TRANSIENT
774.7 (30.5)	774.7 (30.5)	767.1 (30.2)
774.7 (30.5)	774.7 (30.5)	767.1 (30.2)
40.6 (105.0)	40.0 (104.0)	40.6 (105.0)
40555.	69580.	40551.
75.6 (2668.)	129.8 (4583.)	75.6 (2671.)
79.3/ 2/ 80.	15.1/ 2/ 15.	14.0/ 2/ 14.
7.8/ 2/ 8.	8.1/ 2/ 8.	7.0/ 2/ 7.
43.5/ 1/ 359.	9.6/ 1/ 69.	6.2/ 1/ 44.
.4/ 1/ 3.	.3/ 1/ 2.	.1/ 1/ 1.
92.6/ 14/ .9323	80.5/ 14/ .6680	88.9/ 14/ .8411
12.4/ 14/ .0415	12.3/ 14/ .0411	12.3/ 14/ .0411
56.6/ 1/ 14.2 =	5.5/ 1/ 1.4	25.7/ 1/ 6.5
.7/ 1/ .2	.7/ 1/ .2	.6/ 1/ .2
13.75	19.82	15.83
72.	8.	8.
3 42.	64.	41.
. 8939	.6290	. 8026
14.0	1.3	6.4
3.15	. 56	. 33
30.08	9.71	3.65
1236.7	1494.6	1111.5
2.20	. 34	1.00
.88	. 15	. 09
8.45	2.53	1.02
347.3	389.6	311.4
.62	. 09	. 28
24.40	22.51	28.31
505.	868.	506.
3.56	3.84	3.57
.970	.972	. 971

		3~BAG	(4-BAG)
CARBON DIOXIDE	G/MI	359.3	(.0)
FUEL ECONOMY	MPG	24.26	(.00)
Hydrocarbons (THC)	G/MI	.28	(.00)
CARBON MONOXIDE	G/MI	3.34	(.00)
OXIDES OF NITROGEN	G/MI	.25	(.00)

TEST NO. 2 RUN 1 VEHICLE MODEL 86 HONDA ACCORD ENGINE 1.9 L(119. CID) L-4 TRANSMISSION MS	VEHICLE NO.535 DATE 7/18/88 BAG CART NO. 1 / CVS NO. 2 DYNO NO. 3		TEST WEIGHT 1304. KG(2875. LBS) ACTUAL ROAD LOAD 5.7 KW(7.7 HP) GASOLINE EM-780 . ODOMETER 37721. KM(23439. MILES)			
BAROMETER 743.71 MM HG(29.28 IN HG) RELATIVE HUMIDITY 62. PCT	DRY BULB TEMP. A ABS. HUMIDITY 1	23.9 DEG C(75.0 DEG F) 1.8 GM/KG	NOX HUMIDITY CORR	ECTION FACTOR 1.04		
	10	18	2	7		
DESCRIPTION	Cold transient 0-140 Sec	COLD TRANSIENT 140-505 SEC	STABILIZED	HOT TRANSIENT		
BLOWER DIF P MM. H2O(IN, H2O)	774.7 (30.5)	784.9 (30.9)	787.4 (31.0)	784.9 (30.9)		
BLOWER INLET P MM, H2O(IN, H2O)	774.7 (30.5)	784.9 (30.9)	787.4 (31.0)	784.9 (30.9)		
BLOWER INLET TEMP. DEG. C(DEG. F)	41.7 (107.0)	41.7 (107.0)	40.0 (104.0)	41.1 (106.0)		
BLOWER REVOLUTIONS	11219.	29371.	69611.	40 539.		
TOT FLOW STD. CU. METRES(SCF)	21.0 (740.)	54.8 (1935.)	130.2 (4598.)	75.7 (2673.)		
THE SAMPLE METER/RANGE/PPM	16.7/ 3/ 164.	31.6/ 2/ 32.	11.4/ 2/ 11.	13.2/ 2/ 13.		
THE BEKGRD METER/RANGE/PPM	.8/ 3/ 8.	8.27 27 8.	7.47 27 7.	7.1/ 2/ 7.		
CU SAMPLE METER / RANCE / PPM	34.2/ 3/806.	31.// 12/ 108.	26.0/ 12/ 50.	21.// 12/ 41.		
UU BUKERD METER (2000EE (DCT	.0/ 3/ 0. 95.6/ 11/ 0216	4.0/ 16/ 3. 9/ 7/ 11/ 0507	4.3/ 12/ 8.	2.8/ 12/ 3.		
LUC SHAPLE METER/RHADE/PC1	7 7/ 11/ 0459	77/11/0459	77/11/0459	77/11/0050		
NOY CONDUC METER/PONGE/DOM	86.5/ 1/21.7	57 2/ 1/ 14 4	45/ 1/ 12	257/ 1/ 59		
NOY REVERT METER/RENGE/PPM	.4/ 1/ .1	.7/ 1/ .2	-0/ 1/ 0	3/ 1/ 1		
	14.63	13.77	20.22	16.03		
THE CONCENTRATION PPM	157.	24.	4.	7.		
CD CONCENTRATION PPM	777.	96.	41.	35.		
CO2 CONCENTRATION PCT	. 7789	.9168	.6133	.7876		
NOX CONCENTRATION PPM	21.6	14.2	1.2	6.7		
THC MASS GRAMS	1.90	. 76	. 33	.29		
CD MASS GRAMS	18.96	6.12	6.20	3.08		
CO2 MASS GRAMS	298.9	919.7	1462.1	1091.5		
NOX MASS GRAMS	. 30	1.54	. 30	1.01		
THC GRAMS/MI	2.81	.26	. 09	. 08		
CO GRAMS/MI	28.02	2.11	1.61	.87		
CO2 GRAMS/MI	441.8	316.7	380.6	307.2		
NOX GRAMS/MI	1.33	.53	.08	. 28		
FUEL ECONDAY IN MPG	17.93 25	.07 27.64	23.13 25.5	28.72		
	140.	300. 50 2.00	867. 704 714	303.		
REPORT DOV	. bö ئ. محم	363 C.370 71 971	· 3.84 /.40	د در در در د		
שנר, שוו הבר שבו (הפע)	ני בולי עספס	910)	.374 .373) .J/C (709		
UFL, WEI (URI) TOT (ON (COM DID (COM)	. 7571	. 101	· 346(· 327)			
	13.17	• • • •	200.3/	• • • •		

-

COMPOSITE RESULTS TEST NUMBER 2 BAROMETER MM HG 743.7 HUMIDITY G/KG 11.8 TEMPERATURE DEG C 23.9

		3- BAG
CARBON DIOXIDE	G/MI	352.1
FUEL ECONOMY	MP6	24.88
HYDROCARBONS (THC)	6/MI	.22
CARBON MONOXIDE	G/MI	2.53
OXIDES OF NITROGEN	G/MI	.26

APPENDIX E

REGULATED EMISSION AND FUEL ECONOMY RESULTS FOR EXPERIMENTAL LOW BENZENE CATALYST EXPERIMENTS

SOUTHWEST RESEARCH INSTITUTE - DEPARTMENT OF EMISSIONS RESEARCH FTP - VEHICLE EMISSIONS RESULTS - CATALYST PZN-3292

TEST NO. 1 RUN 1 VEHICLE NO. 535 TEST WEIGHT 1304, KG(2875, LRS) VEHICLE MODEL 86 HONDA ACCORD DATE ACTUAL ROAD LOAD 5.7 KH (7.7 HP) 7/13/88 ENGINE 1.9 L(119. CID) L-4 BAG CART NO. 1 GASOLINE EM-780-F DYNO NO. 3 ODOMETER 37639, KM (23388, MILES) TRANSMISSION M5 CVS NO. 2 DRY BULB TEMP. 23.3 DEG C(74.0 DEG F) BARDMETER 741.68 MM H6(29.20 IN H6) RELATIVE HUMIDITY 62, PCT ABS, HUMIDITY 11.4 GM/KG NOX HUMIDITY CORRECTION FACTOR 1.02 BAG RESULTS BAG NUMBER 1 2 3 DESCRIPTION COLD TRANSIENT STABILIZED HOT TRANSIENT BLOWER DIF P MM. H20(IN. H20) 774.7 (30.5) 774.7 (30.5) 767.1 (30.2) BLOWER INLET P MM. H20(IN. H20) 774.7 (30.5) 774.7 (30.5) 767.1 (30.2) BLOWER INLET TEMP. DEG. C(DEG. F) 41.1 (106.0) 40.0 (104.0) 40.6 (105.0) BLOWER REVOLUTIONS 40707. 69622. 40516. TOT FLOW STD. CU. METRES(SCF) 75,9 (2680.) 130.1 (4593.) 75.7 (2673.) THE SAMPLE METER/RANGE/PPM 80.6/ 2/ 81. 32.6/ 2/ 33. 32.6/ 2/ 33. THE BEKGRD METER/RANGE/PPM 7.3/ 2/ 7. 7.0/ 2/ 7. 6.9/ 27 7. 65.9/ 11/ 262. CO SAMPLE METER/RANGE/PPM 57.9/ 13/ 55. 47.3/ 13/ 44. CO BCKGRD METER/RANGE/PPM .4/ 11/ 1. .1/ 13/ 0. .5/ 13/ 0. CO2 SAMPLE METER/RANGE/PCT 90.4/ 11/ .8956 73.3/ 11/ .6504 85.1/ 11/ .8141 7.8/ 11/.0465 CO2 BCKGRD METER/RANGE/PCT 7.2/ 11/ .0427 5.6/ 11/ .0390 NOX SAMPLE METER/RANGE/PPM 79.4/ 1/ 19.9 8.4/ 1/ 2.2 56.7/ 1/ 14.2 .5/ 1/ .1 NOX BCKGRD METER/RANGE/PPH .5/ 1/ .1 = .8/ 1/ .2 DILUTION FACTOR 14.42 20.33 16.31 THE CONCENTRATION PPM 74. 26. 26. CO CONCENTRATION PPN 252. 53. 42. CO2 CONCENTRATION PCT .8524 .6098 .7775 NOX CONCENTRATION PPM 19.8 2.0 14.1 THE MASS GRAMS 3.23 1.95 1.14 CO MASS GRAMS 22.23 8.04 3.71 CO2 MASS GRAMS 1184.4 1452.2 1077.4 NOX MASS GRAMS 2.94 .50 2.09 THE GRAMS/MI . 90 .50 . 32 CO GRAMS/MI 6.21 2.08 1.04 CO2 GRAMS/MI 330.8 375.3 301.2 NOX GRAMS/MI . 82 .13 . 58 FUEL ECONOMY IN MPG 25.82 23.33 29.18 RUN TIME SECONDS 507. 868. 505. MEASURED DISTANCE MI 3, 58 3.87 3.58 SCF. DRY . 972 .974 .972 COMPOSITE RESULTS 3-BAG TEST NUMBER 1 CARBON DIOXIDE G/MI 345.8 MM HG 741.7 BAROMETER FUEL ECONOMY 25.22 MPG G/KG HUMIDITY 11.4 HYDROCARBONS (THC) G/MI .54

E-1

CARBON MONOXIDE

OXIDES OF NITROGEN G/MI

G/MI

TEMPERATURE DEG C 23.3

(4-BAG)

Ł

(

(

(

2.65

.40

.0)

.00)

.00)

.00) (

.00)

Southmest research institute - department of emissions research FTP - Vehicle emissions results - Catalyst PZM-3292

VEHICLE NO. 535 TEST NO. 2 RUN 1 TEST WEIGHT 1304, KG (2875, LBS) VEHICLE MODEL 86 HONDA ACCORD DATE 7/14/88 ACTUAL ROAD LOAD 5.7 KW (7.7 HP) BAG CART NO. 2 ENGINE 1.9 L(119. CID) L-4 6ASOLINE EM-780-F DYNO NO. 3 TRANSMISSION MS ODOMETER 37663. KM(23403. MILES) CVS NO. 2 DRY BULB TEMP. 23.9 DEG C(75.0 DEG F) BAROMETER 743.46 MM H6(29.27 IN H6) RELATIVE HUMIDITY 59. PCT ABS. HUMIDITY 11.1 GM/KG NOX HUMIDITY CORRECTION FACTOR 1.01 BAG RESULTS 2 BAG NUMBER 1 3 COLD TRANSIENT STABILIZED DESCRIPTION HOT TRANSIENT BLOWER DIF P NM. H20(IN. H20) 774.7 (30.5) 774.7 (30.5) 774.7 (30.5) 774.7 (30.5) 774.7 (30.5) BLOWER INLET P MM. H20(IN. H20) 774.7 (30.5) 39.4 (103.0) 37.8 (100.0) BLOWER INLET TEMP. DEG. C(DEG. F) 40.0 (104.0) 40538. 69536. BLOWER REVOLUTIONS 40481. 75.0 (2684.) 130.8 (4620.) 75.8 (2677.) TOT FLOW STD. CU. METRES(SCF) 86.2/ 2/ 87. 33.1/ 2/ 33. THE SAMPLE METER/RANGE/PPM 32.3/ 2/ 33. 6.9/ 2/ 7. 6.4/ 2/ 7. THE BEKGRD METER/RANGE/PPM 6.8/ 2/ 7. CO SAMPLE METER/RANGE/PPM 34.9/ 1/ 277. 58.6/ 12/ 59. 38.3/ 12/ 38. .1/ 1/ 1. .6/ 12/ 1. .6/ 12/ 1. CO BCKGRD METER/RANGE/PPM 91.1/ 14/ .8940 78.8/ 14/ .6376 87.5/ 14/ .8092 CO2 SAMPLE METER/RANGE/PCT 12.7/ 14/ .0426 12.8/ 14/ .0430 13.1/ 14/ .0442 CO2 BCKGRD METER/RANGE/PCT 9.5/ 1/ 2.5 84.8/ 1/21.2 39.5/ 1/ 9.9 Nox sample meter/range/ppm .5/ 1/ .1 - .5/ 1/ .1 .5/ 1/ .1 NOX BCKGRD METER/RANGE/PPM 14.42 20.72 DILUTION FACTOR 16.42 80. 27. THE CONCENTRATION PPM 26. CO CONCENTRATION PPN 266. 56. 37. .8543 .5966 CO2 CONCENTRATION PCT .7677 NOX CONCENTRATION PPM 21.1 2.3 9.8 3.50 THE MASS GRAMS 2.05 1.14 23.56 CO MASS GRAMS 8.58 3.22 1189.0 CO2 MASS GRAMS 1429.0 1065.8 NOX MASS GRAMS 3.11 . 59 1.44 THC GRAMS/MI . 98 .53 . 32 CO GRAMS/MI 6.61 .91 2.23 CO2 GRAMS/MI 333.8 372.2 299.3 NOX GRAMS/MI . 87 .15 .40 FUEL ECONOMY IN MPG 25.53 23.49 29.39 RUN TIME SECONDS 506. 868. 505. 3.56 MEASURED DISTANCE MI 3.84 3.56 SCF, DRY .973 .975 .974 COMPOSITE RESULTS 3-BAG (4-BAG)

TEST NUMBER		2	Carbon Dioxide	G/HI	344.3	(.0)
BARDMETER	MH HG	743.5	FUEL ECONOMY	MPG	25.30	(.00)
HUMIDITY	6/K6	11.1	Hydrocarbons (THC)	G/MI	.57	(.00)
TEMPERATURE	DEG C	23.9	CARBON MONDXIDE	6/MI	2.78	(.00)
			OXIDES OF NITROGEN	6/MI	.37	(.00)

APPENDIX F

-

.

REGULATED EMISSION AND FUEL ECONOMY RESULTS FOR THE HIGH-TEMPERATURE CATALYST EXPERIMENTS

.

TEST NUMBER 1 BAROMETER MM HG 742.2

TEMPERATURE DEG C 23.9

HUMIDITY

6/KG 11.1

TEST NO. 1 RUN 1 VEHICLE MODEL 86 HONDA ACCORD ENGINE 1.9 L(119. CID) L-4 TRANSMISSION M5	VEHICLE NO.535 DATE 7/19/88 BAG CART NO. 1 DYNO NO. 3	VEHICLE NO.535 DATE 7/19/88 BAG CART NO. 1 / CVS NO. 2 DYNO NO. 3		TEST WEIGHT 1304. KG(2875. LBS) ACTUAL ROAD LOAD 5.7 KW(7.7 HP) GASOLINE EM-780-F ODDMETER 37752. KM(23458. MILES)		
BAROMETER 742.19 MM HG(29.22 IN HG) RELATIVE HUMIDITY 59. PCT BAG RESULTS	DRY BULB TEMP. ABS. HUMIDITY 1	23.9 DEG C(75.0 DEG F) 1.1 GM/KG	NOX HUMIDITY COR	RECTION FACTOR 1.01		
BAG NUMBER	1A	1B	2	3		
DESCRIPTION	COLD TRANSIENT 0-140 SEC	COLD TRANSIENT 140-505 SEC	STABILIZED	HOT TRANSIENT		
BLOWER DIF P MM. H2O(IN. H2D)	762.0 (30.0)	762.0 (30.0)	762.0 (30.0)	762.0 (30.0)		
BLOWER INLET P MM. H2O(IN. H2O)	762.0 (30.0)	762.0 (30.0)	762.0 (30.0)	762.0 (30.0)		
BLOWER INLET TEMP. DEG. C(DEG. F)	41.1 (106.0)	41.7 (107.0)	39.4 (103.0)	40.6 (105.0)		
BLOWER REVOLUTIONS	11225.	29305.	6 9581.	40 481.		
TOT FLOW STD. CU. METRES(SCF)	21.0 (741.)	54.7 (1932.)	130.5 (4607.)	75.7 (2675.)		
THC SAMPLE METER/RANGE/PPM	10.1/ 3/ 99.	12.77 27 13.	9.07 27 9.	9.6/ 2/ 10.		
THE BEKERD METER/RANGE/PPM	.9/ 3/ 9.	8.9/ 2/ 9.	9.4/ 2/ 9.	9.77 27 10.		
CO SAMPLE METER/RANGE/PPH	26.1/ 3/ 606.	22.27 137 20.	23.9/ 13/ 22.	13.8/ 13/ 12.		
		.3/ 13/ U.	.6/ 13/ 1.	.9/ 13/ 1.		
ULE SAMPLE METER (RANGE/PL)	08.3/ 11/ .06C/ ~	- 93.8/ 11/ .9310	74.3/ 11/ .6634	35.// 11/ .8.381		
	5.9/ 11/ .0409 21.2/ 1/ 5.6	6.9/ 11/ .0409	7.2/ 11/ .042/	/.3/ 11/ .0433		
NUX SHANNE METER/RANDE/MAR	21.27 17 3.4	41.0/ 1/ 10.3	2.3/1/.5	1.9/ 1/ .9		
NUL BUNDRU METER/RHNOE/PPM DILUTION FORTOP	14 70	1/ 1/ .0	20 11	15 95		
JILUIIUN FHLIUR TUC COMCENTRATION DOM	91	4	20.11	1		
CO CONCENTRATION PAN	, 582	19	20	1.		
CO CONCENTRATION PPM	8245	9130	6228	7975		
NOY CONCENTRATION POT	5 4	10.3	.0000	5		
THE MOSS GROMS	1.10	. 14	.0	 02		
	14, 22	1.21	3.09			
CD2 MASS GRAMS	316.8	914.7	1487.8	1105.9		
NOX MASS GRAMS	.22	1.09	. 15	. 07		
THC GRAMS/MI	1.63	.05	. 00	.01		
CD GRAMS/MI	21.08	. 42	. 80	.27		
CO2 GRAMS/MI	469.4	315.7	386.1	309.1		
NOX GRAMIS/MI	. 32	. 38	.04	.02		
FUEL ECONOMY IN MPG	17.47 25	5.15 28.02	22.89 25.	35 2 8.6 5		
RUN TIME SECONDS	140.	365.	867.	505.		
MEASURED DISTANCE MI	.67 3.	.57 2.90	3.85 7.4	3 3.58		
SCF, DRY	.973 .9	972 .972	.975 .97	.973		
DFC, WET (DRY)	. 329	(.912)	.946(. 928)		
TOT VOL (SCM) / SAM BLR (SCM)	75.7/	/ .00	206.2/	.00		
COMPOSITE RESULTS				3-BAG		

CARBON DIDXIDE	G/MI	356.4
FUEL ECONOMY	MPG	24.74
Hydrocarbons (THC)	G/MI	.07
CARBON MONOXIDE	G/MI	1.39
DXIDES OF NITROGEN	G/MI	.10

Southmest research institute - department of emissions research FTP - VEHICLE Emissions results - HI TEMP & DEM CAT.

-

BAROMETER MM HG 744.7

TEMPERATURE DEG C 23.9

G/KG

11.1

HUMIDITY

TEST NO. 2 RUN 1 VEHICLE MODEL 86 HONDA ACCORD ENGINE 1.9 L(119. CID) L-4 TRANSMISSION M5	VEHICLE NO.535 DATE 7/20/88 BAG CART NO. 2 / CVS NO. 2 DYNO NO. 3		TEST HEIGHT 1304. KG(2875. LBS) ACTUAL ROAD LOAD 5.7 KH(7.7 HP) GASOLINE EM-780-F ODDMETER 37770. KM(23469. MILES)			
BAROMETER 744.73 MM HG(29.32 IN HG) RELATIVE HUMIDITY 59. PCT BAG RESULTS	DRY BULB TEMP. 2 ABS. HUMIDITY 11	23.9 DEG C(75.0 DEG F) .1 GM/KG) Nox humidity corr	ECTION FACTOR 1.01		
BAG NUMBER	18	1B	2	3		
DESCRIPTION	COLD TRANSIENT 0-140 SEC	COLD TRANSIENT 140-505 SEC	STABILIZED	HOT TRANSIENT		
BLOWER DIF P MM. H2O(IN. H2O)	774.7 (30.5)	774.7 (30.5)	774.7 (30.5)	774.7 (30.5)		
BLOWER INLET P MM. H2D(IN. H2O)	774.7 (30.5)	774.7 (30.5)	774.7 (30.5)	774.7 (30.5)		
BLOWER INLET TEMP. DEG. C(DEG. F)	41.1 (106.0)	41.1 (106.0)	40.6 (105.0)	40.6 (105.0)		
BLOWER REVOLUTIONS	11252.	29362.	69635.	40527.		
TOT FLOW STD. CU. METRES(SCF)	21.1 (744.)	55.0 (1942.)	130.6 (4610.)	76.0 (2683.)		
THE SAMPLE METER/RANGE/PPM	10.0/ 3/ 101.	11.1/ 2/ 11.	7.7/ 2/ 8.	7.8/ 2/ 8.		
THC BCKGRD METER/RANGE/PPM	.8/ 3/ 8.	7.1/ 2/ 7.	7.7/ 2/ 8.	7.2/ 2/ 7.		
CO SAMPLE METER/RANGE/PPM	97.8/ 14/ 489.	25.9/ 12/ 26.	21.5/ 12/ 22.	8.7/ 12/ 9.		
CD BCKGRD METER/RANGE/PPM	.0/ 14/ 0.	.0/ 12/ 0.	.0/ 12/ 0.	.0/ 12/ 0.		
CO2 SAMPLE METER/RANGE/PCT	88.4/ 14/ .8295 -	92.0/ 14/ .9168	78.6/ 14/ .6341	88.0/ 14/ .8204		
CO2 BCKGRD METER/RANGE/PCT	11.3/ 14/ .0372	11.2/ 14/ .0369	11.5/ 14/ .0380	11.8/ 14/ .0391		
NOX SAMPLE METER/RANGE/PPM	2.8/ 1/ .7	36.9/ 1/ 9.3	1.7/ 1/ .4	6.6/ 1/ 1.7		
NOX BCKGRD METER/RANGE/PPM	.4/ 1/ .1	.5/ 1/ .1	.5/ 1/ .1	.6/ 1/ .2		
DILUTION FACTOR	15.11	14.56	21.04	16.30		
THE CONCENTRATION PPM	93.	5.	0.	1.		
CD CONCENTRATION PPM	472.	25.	21.	9.		
CO2 CONCENTRATION PCT	. 7948	.8824	.5979	.7837		
NOX CONCENTRATION PPM	.6	9.2	.3	1.6		
THC MASS GRAMS	1.13	.14	.03	.05		
CO MASS GRAMS	11.59	1.61	3.19	.76		
CO2 MASS GRAMS	306.6	888.5	1429.1	1090.1		
NOX MASS GRAMS	. 03	. 98	. 08	.23		
THE GRAMS/MI	1.69	.05	.01	.01		
Co grams/mi	17.23	. 55	.83	.21		
CO2 GRAMS/MI	455.8	306.6	372.0	305.1		
NOX GRAMS/MI	. 04	. 34	.02	.06		
FUEL ECONOMY IN MPG	18.16 25.	96 28.83	23.75 26.0	3 29.03		
RUN TIME SECONDS	140.	36 6.	868.	505.		
MEASURED DISTANCE MI	.67 3.5	57 2.90	3.84 7.41	3.57		
SCF, DRY	.973 .97	'3 . 973	.975 .975	. 973		
DFC, WET (DRY)	.932(.914)	.947(.	929)		
Tot Vol. (SCM) / SAM BLR (SCM)	76.1/	.00	206.5/	.00		
COMPOSITE RESULTS				3-BAG		
IESI NUMBER 2		CARBON DI	IUXIDE G/MI	345.9		

OXIDES OF NITROGEN G/MI

FUEL ECONOMY

CARBON MONOXIDE

HYDROCARBONS (THC) G/MI

MPG

G/MI

25.49

.08

1.25

. 09

SOUTHWEST RESEARCH INSTITUTE - DEPARTMENT OF EMISSIONS RESEARCH FTP - VEHICLE EMISSIONS RESULTS - HI TEMP & DEM CAT.

TEST NO. 2 RUN 2 VEHICLE MODEL 86 HONDA ACCORD ENGINE 1.9 L(119. CID) L-4 TRANSMISSION MS	VEHICLE NO.535 DATE 7/21/88 BAG CART NO. 2 / CVS NO. 2 DYNO NO. 3		TEST WEIGHT 1304. KG(2875. LBS) ACTUAL ROAD LOAD 5.7 KW(7.7 HP) GASOLINE EM-780-F ODOMETER 37794. KM(23484. MILES)			
BAROMETER 746.25 MM H6(29.38 IN H6) RELATIVE HUMIDITY 54. PCT BAG RESULTS	DRY BULB TEMP. ABS. HUMIDITY	23.3 DEG C(74.0 DEG F) 9.9 GM/KG	NOX HUMIDITY CORF	ECTION FACTOR .97		
BAG NUMBER	1A	1B	2	3		
DESCRIPTION	COLD TRANSIENT 0-140 SEC	COLD TRANSIENT 140-505 SEC	STABILIZED	HOT TRANSIENT		
BLOWER DIF P MM. H2O(IN. H2O)	784.9 (30.9)	784.9 (30.9)	787.4 (31.0)	784.9 (30.9)		
BLOWER INLET P MM. H2O(IN. H2O)	784.9 (30.9)	784.9 (30.9)	787.4 (31.0)	784.9 (30.9)		
BLOWER INLET TEMP. DEG. C(DEG. F)	41.1 (106.0)	40.0 (104.0)	38.3 (101.0)	40.6 (105.0)		
BLOWER REVOLUTIONS	11228.	29339.	69639.	40571.		
TOT FLOW STD. CU. METRES(SCF)	21.0 (743.)	55.1 (1946.)	131.2 (4632.)	76.1 (2688.)		
THE SAMPLE METER/RANGE/PPM	10.1/ 3/ 102.	10.5/ 2/ 11.	7.8/ 2/ 8.	7.9/ 2/ 8.		
THC BCKGRD METER/RANGE/PPM	.8/ 3/ 8.	7.5/ 2/ 8.	7.6/ 2/ 8.	7.5/ 2/ 8.		
CO SAMPLE METER/RANGE/PPM	98. 7/ 14/ 495.	20.1/ 12/ 20.	16.1/ 12/ 16.	7 .8/ 12/ 8.		
Co BCKGRD METER/RANGE/PPN	.1/ 14/ 0.	.3/ 12/ 0.	.0/ 12/ 0.	.0/ 12/ 0.		
CO2 SAMPLE METER/RANGE/PCT	90.0/ 14/ .8571 ~	- 92.0/ 14/ .9168	79.0/ 14/ .6411	87.8/ 14/ .8159		
CO2 BCKGRD METER/RANGE/PCT	12.4/ 14/ .0415	12.5/ 14/ .0418	12.6/ 14/ .0422	12.6/ 14/ .0422		
NOX SAMPLE METER/RANGE/PPM	2 6. 3/ 1/ 6.7	32.6/ 1/ 8.2	2.6/ 1/ .7	9.9/ 1/ 2.6		
NOX BCKGRD METER/RANGE/PPM	1.2/ 1/ .3	.9/ 1/ .2	.8/ 1/ .2	.9/ 1/ .2		
DILUTION FACTOR	14.49	14.57	20.83	16.39		
THC CONCENTRATION PPM	94.	4.	1.	1.		
CO CONCENTRATION PPM	478.	19.	16.	8.		
CO2 CONCENTRATION PCT	. 8285	.8778	. 6009	.7763		
NOX CONCENTRATION PPM	6.4	8.0	.5	2.3		
THC MASS GRAMS	1.14	. 11	. 04	.04		
CO MASS GRAMS	11.71	1.24	2.41	. 68		
CO2 MASS GRAMS	319.2	885.7	1443.2	1081.9		
NOX MASS GRAMS	. 25	. 82	.12	. 33		
THC GRAMS/MI	1.70	.04	.01	.01		
CO GRAMS/MI	17.38	. 43	.63	. 19		
CO2 GRAMS/MI	474.0	306.5	375.7	304.8		
NOX GRAMS/MI	. 37	.28	.03	.09		
FUEL ECONOMY IN MPG	17.50 25	5.70 28.85	23, 54 25, 9	30 29.06		
RUN TIME SECONDS	140.	365.	868.	506.		
MEASURED DISTANCE MI	.67 3.	56 2.89	3.84 7.3	3.55		
SCF, DRY	.974 .9	.974	.977 .97	5.975		
DFC, WET (DRY)	. 931 ((.915)	. 947 (. 931)		
TOT VOL (SCM) / SAM BLR (SCM)	76.2/	.00	207.3/	.00		
COMDOSITE RESULTS				3- 806		

COMPOSITE RESULTS

test number		2
BAROMETER	MM HG	746.3
HUMIDITY	6/K6	9.9
Temperature	DEG C	23.3

CARBON DIOXIDE	G/MI	348.5
FUEL ECONOMY	MPG	25.31
HYDROCARBONS (THC)	G/MI	. 08
CARBON MONOXIDE	G/MI	1.13
OXIDES OF NITROGEN	6/MI	.10

TEST NO. 1 RUN 1 VEHICLE MODEL 85 HONDA ACCORD ENGINE 1.9 L(119. CID) L-4 TRANSMISSION M5	VEHICLE NO.535 DATE 7/22/88 BAG CART NO.2 DYNO NO. 3	/ CVS NO. 2	TEST WEIGHT 1304. KG(2875. LBS) ACTUAL ROAD LOAD 5.7 KW(7.7 HP) GASOLINE EN-780-F ODOMETER 37818. KM(23499. MILES)			
BARDMETER 745.24 MM H6(29.34 IN H6)	DRY BULB TEMP.	22.2 DEG C(72.0 DEG F				
RELATIVE HUMIDITY D3. PUT	HBS. HUMIDIIY	5.1 GM/KG	NUX HUMIDITY CORR	ELIIUN FHLIUK .95		
DOC NUMBER	10	đi	2	7		
DESCRIPTION	COLD TRANSIENT 0-140 SEC	COLD TRANSIENT 140-505 SEC	STABILIZED	40T TRANSIENT		
BLOWER DIF P MM. H2O(IN. H2O)	774.7 (30.5)	774.7 (30.5)	774.7 (30.5)	774.7 (30.5)		
BLOWER INLET P MM. H20(IN. H2D)	774.7 (30.5)	774.7 (30.5)	774.7 (30.5)	774.7 (30.5)		
BLOWER INLET TEMP. DEG. C(DEG. F)	41.7 (107.0)	41.1 (106.0)	40.0 (104.0)	40.6 (105.0)		
BLOWER REVOLUTIONS	11294.	29342.	69613.	40533.		
TOT FLOW STD. CU. METRES(SCF)	21.1 (747.)	55.0 (1942.)	130.8 (4617.)	76.1 (2685.)		
THC SAMPLE METER/RANGE/PPM	9.6/ 3/ 97.	17.0/ 2/ 17.	11.1/ 2/ 11.	13.2/ 2/ 13.		
THC BCKGRD METER/RANGE/PPM	1.0/ 3/ 10.	9.7/ 2/ 10.	10.2/ 2/ 10.	10.4/ 2/ 11.		
CO SAMPLE METER/RANGE/PPM	96.1/ 14/ 4/9.	42.9/ 12/ 43.	34.6/ 12/ 35.	28.8/ 12/ 29.		
CO BCKGRD METER/RANGE/PPH	.0/ 14/ 0.	.6/ 12/ 1.	1.2/ 12/ 1.	2.4/ 12/ 2.		
UU2 SAMPLE METER/RANDE/PUT	89.27 147.8481 ~	~ 90.97 147 .8890	/5.9/ 14/ .588/	84.1/ 14/ .7371		
LUZ BLKGRU FILLER/RHNOE/PLI	12.3/ 14/ .V411	12.4/ 14/ .0415	12.9/ 14/ .0434	13.5/ 14/ .0458		
NUX SHAMPLE METER/RANDE/PPM	33.07 17 8.8	91.9/ 1/ 23.0	23.8/ 1/ 5.3	/3.1/ 1/ 18.3		
NUX BERGRU METER/RHWGE/PPM	1.3/ 1/ .3	,9/ l/ .2	.3/ 1/ .2	1.1/ 1/ .3		
VILUIIUN FHUIUN TUC CONCENTRATION DOM	14.0C 07	14.9/	cc. 39	18.08		
CO CONCENTRATION PPM	07. 467	0. 41	1.	ు. సం		
CO CONCENTRATION PPH	100. 2002	41.	ىن. 5672	6070		
NEY CONCENTRATION DOM	.0050 8 5	22 7	.J#/E 5.7	19 0		
	1.07	26	10	10.0		
	11 40	2 52	. 10 6 GC	. 1.3		
CO2 MASS GRAMS	313 5	856.2		944 1		
NOX MASS GRAMS	.33	2.27	1.50	2.49		
THC GRAMS/MI	1.58	. 09	.03	.04		
CO GRAMS/MI	16.87	.92	1.30	.64		
CO2 GRAMS/MI	464.0	299.0	343.2	271.9		
NOX GRAMS/MI	. 48	.79	. 39	.70		
FUEL ECONDAY IN MPG	17.90 26	.25 29.49	25.68 28.5	6 32.48		
RUN TIME SECONDS	141.	365.	867.	505.		
MEASURED DISTANCE MI	. 68 3.	54 2.86	3.82 7.37	3.55		
SLF, DRY	.975 .9	75 .975	.977 .977	.976		
DFC, WEI (DRY)	. 933 (.917)	.952(.	935)		
IUI VUL (SUM) / SHAM BLK (SUM)	76.1/	. 00	206.8/	.00		

COMPOSITE RESULTS

-

test number		1
BAROMETER	MM HG	745.2
HUMIDITY	G/K G	9 . 1
TEMPERATURE	DEG C	32.2

		3-B AG
CARBON DIOXIDE	6/MI	321.0
FUEL ECONOMY	MPG	27.44
Hydrocarbons (THC)	G/MI	.10
CARBON MONOXIDE	G/MI	1.67
OXIDES OF NITROGEN	G/MI	.55

APPENDIX G

BET SURFACE AREA ANALYSIS
MICROMERITICS INSTRUMENT CORPORATION FlowSorb 2300

.

BET SURFACE AREA ANALYSIS REPORT DATE: 8/20/88

SAMPLE I. SAMPLE M MOL. CRO AMBIENT	.D.: GM (EIGHT: 0.(SS-SECTION TEMPERATUR	Charcoal 0782 g NL AREA: 0. E: 0.00 C	162 mm*2	adsorbe Barometric Pressl Saturation Pressl	NTE: Nitrogen JRE: 760 mmHg JRE: 775 mmHg
	EXPERIMEN (%)	tal data (Vol)	VOL ADSORBED (cmr^3/g AT STP)	χ= ₽/₽ ₀	Y=X/[(1-X)V]
	5.010 10.000 14.900 22.000	23.47 25.64 28.04 30.96	x300. 13 x327. 88 x358. 57 x395. 91	0.0491 0.0981 0.1461 0.2157	0.00017 0.00033 0.00048 0.00069
	BET SURFA SLOPE: INTERCEPT C: Vm: CORRELATI	ce area: : ON COEFFIC	1382.97 +/- 12. 0.0031 +/- 0. 0.0000 +/- 0. 149.55 317.69 cm^3/g IENT 0.9999	21 ⊯^2/g 0000 0000	
0.00069 $Y = \frac{X}{(1-X)^{1/2}}$	- V 1 1 1 1 1 1 1 1 1 1 1 1 1	*	¥	*	
	 	_			,

FIGURE G-1. BET SURFACE AREA ANALYSIS FOR GM CHARCOAL

X=P/Po

T

0

0-+

G-1

I

0.23

MICROMERITICS INSTRUMENT CORPORATION FlowSorb 2300

BET SURFACE AREA ANALYSIS REPORT DATE: 8/20/88

 SAMPLE I.D.: FORD charcoal
 ADSORBATE: Nitrogen

 SAMPLE WEIGHT: 0.0728 g
 BARCMETRIC PRESSURE: 760 wmHg

 MOL. CROSS-SECTIONAL AREA: 0.162 nm²2
 SATURATION PRESSURE: 775 wmHg

 AMBIENT TEMPERATURE: 0.00 C
 SATURATION PRESSURE: 775 wmHg

EXPERIMEN	tal data	VOL ADSORBED	X=₽/₽o	Y=X/[(1-X)V]
(7)	(VOL)	(cmr^3/g AT STP)		
5.010	20.14	¥276.65	0.0491	0.00019
10,000	22.68	× 311.54	0.0981	0.00035
14.900	24.69	×339. 15	0.1461	0.00050
22.000	27.40	±376. 37	0.2157	0.00073

BET SURFACE AREA:	1323.12 +/-	4 .54 ∎^ 2/g
SLOPE:	0.0033 +/-	0.0000
INTERCEPT:	0.0000 +/-	0.0000
C:	119.17	
Vm:	303 .94 cm ^3/g	Į
CORRELATION COEFFIC	IENT 1.0000	

FIGURE G-2. BET SURFACE AREA ANALYSIS FOR FORM CHARCOAL

APPENDIX H

AIR INJECTION TO AN ELECTRICALLY-HEATED CATALYST FOR REDUCING COLD-START BENZENE EMISSIONS FROM GASOLINE VEHICLES

by

Martin J. Heimrich Department of Emissions Research Southwest Research Institute San Antonio, Texas

Based on Work Performed

for

Advisory Committee for Research Southwest Research Institute San Antonio, Texas

Presented at

Society of Automotive Engineers International Fuels and Lubricants Meeting and Exposition Tulsa, Oklahoma October 22-25, 1990

ABSTRACT

This paper describes the laboratory effort to determine the emissions benefit of coldstart air injection to a preheated automotive catalyst. Previous experimentation with an electrically-heated catalyst on a gasoline-fueled vehicle with no supplemental air showed little improvement in hydrocarbon emission control.

In this study, air was injected ahead of an electrically-heated catalyst during cold-start operation. Analysis of continuously recorded raw exhaust emissions were used to determine air injection calibrations and oxidation-reduction trade-offs. Improved control of non-methane hydrocarbons (NMHC), benzene, and carbon monoxide (CO) emissions was observed. Nitrogen oxides (NO_X) emission control was maintained by the use of a carefully controlled air injection flowrate and schedule.

This study determined that heating an automotive exhaust emission catalyst prior to cold-start operation may not be sufficient in itself. Supplemental oxygen may be required for improved emissions control. Finally, it was demonstrated that the gasoline vehicle used in this study, equipped with an electrically-heated catalyst and air injection, provided FTP emission rates of non-methane organic gases (NMOG), CO, and NO_X near or at the California standards for the ultra-low emission vehicle (ULEV).

COLD-START EMISSIONS represent the greatest concentration of emissions from today's catalyst-equipped vehicles. A cold-start is defined by the Code of Federal Regulations (CFR) as an engine start following a 12- to 36-hour continuous vehicle soak in a constant temperature environment of 20° C to 30° C.(1)* The catalyst is not active during this period due to its low operating temperature. Depending on the particular engine, vehicle tailpipe emissions can be excessive for a period of one to two minutes following the cold-start. Any strategy to significantly reduce vehicle emissions, therefore, needs to address the cold-start.

One strategy to reduce the quantity of pollutants emitted during the cold-start operation is to have the catalyst active at the time the engine starts. Electrically heating the catalyst prior to cold engine cranking can help achieve catalyst activity during the cold-start.(2,3,4,5,6) The goal is to have an active catalyst capable of controlling cold-start emissions to the levels achieved during hot starting.

A gasoline-fueled vehicle was equipped with an electrically-heated catalyst at Southwest Research Institute (SwRI). This experiment produced the initial finding that heating alone did not significantly improve emission control over an unheated catalyst baseline vehicle test.(7) With only electrical preheating, cold-start catalyst activity is still impaired because of a lack of oxygen in the engine-out exhaust. In many vehicle fuel system calibrations, a cold engine is run fuel-rich to maintain driveability. Rich fuel-air ratios result in insufficient oxygen levels in the raw exhaust, limiting the oxidation of hydrocarbons and carbon monoxide.

One of the objectives of the gasoline-fueled vehicle study was to reduce the quantity of total hydrocarbon emissions through the development of a total emission control system, without sacrificing control of other pollutants such as nitrogen oxides (NO_x) . The maintenance of NO_x emission control was of special interest because of the NO_x contribution to smog formation. Benzene emission control was also of special interest. The vehicle was equipped with an electrically-heated catalyst for cold-start control of total hydrocarbons and benzene emissions. A prototype cold-start air injection system was developed. This paper describes the results of an effort to improve cold-start emission control from a gasoline-fueled vehicle by introducing secondary air ahead of an electrically-heated catalyst. The emission data generated in this program has contributed to the establishment of future vehicle emission standards by the State of California Air Resources Board (ARB).

^{*}Numbers in parentheses designate references at the end of the paper.

CALIFORNIA PROPOSED VEHICLE STANDARDS

In California, hydrocarbon emissions from motor vehicles have traditionally been represented in terms of non-methane hydrocarbons (NMHC). Instead of a NMHC standard, the ARB is currently considering a non-methane organic gases (NMOG) standard for the vehicle and its fuel. NMOG consists of all measurable reactive hydrocarbons: NMHC, aldehydes and ketones, and alcohols containing 12 or fewer carbon atoms.(8)

Light-duty gasoline vehicle emission standards being considered by ARB are given in Table 1. This table provides the certification standards for Transitional Low-Emission Vehicles (TLEVs), Low-Emission Vehicles (LEVs), and Ultra-Low-Emission Vehicles (ULEVs) at 50,000 miles.(8) In addition, the State of California is proposing that all vehicles certified for sale in California must meet specified fleet average NMOG standards starting in 1994. In this paper, the emission results achieved by a gasoline-fueled vehicle equipped with an electrically-heated catalyst will be compared to the proposed California emission standards.

Vehicle	Exhaust Emissions, g/mi					
Category	NMOG	СО	NOx			
TLEV	0.125	3.4	0.40			
LEV	0.075	3.4	0.20			
ULEV	0.040	1.7	0.20			
Proposed standar	rds as of July 1990					

Table 1 - Proposed California Vehicle Exhaust Emission StandardsFor Light-Duty Vehicles

TEST VEHICLE AND GASOLINE

A gasoline-fueled 1986 Toyota Camry was used for experimentation. This vehicle was equipped with electronic port fuel injection and a three-way (only) catalytic converter. The 1986 Toyota Camry was 50-state emissions certified. At the start of the air injection experiments, the vehicle odometer read 21,835 miles. A vehicle description is given in Table 2. The original underbody stock catalyst was removed and replaced with an electricallyheated catalyst, a three-way formulation designed as a total replacement for the stock catalyst. The front face of the underbody electrically-heated catalyst was located a distance of 76 centimeters (30 inches) from the exit of the exhaust manifold. This replacement catalyst was evaluated with and without air injection and electrical heating. A photograph of the Camry is given in Figure 1. The test fuel was a Chevron regular unleaded gasoline, and was shipped from California to SwRI. Test fuel composition was typical of unleaded gasolines sold in California. Fuel analysis results are given in Table 3.

ELECTRICALLY-HEATED CATALYST AND POWER CONTROL DESCRIPTION

The electrically-heated catalyst used in these experiments was composed of two separate sections. The larger downstream section was a metal substrate catalyst without heating capability. The smaller upstream section was a catalyzed metal substrate with the ability to be heated electrically. Figure 2 shows a schematic of the electrically-heated catalyst. The catalytic converter was installed on the vehicle with the heated catalyst portion upstream (toward the engine). A description of the electrically-heated converter is given in

Item	Toyota Camry
Model Year	1986
Body Style	4-Door Sedan
Odometer ^a	35,140 km (21,835 miles)
Transmission	Automatic
No. of Gears	4
VIN	JT25V16E3G0486387
Texas License No.	860-NJF
Tires	185/70SR13
Accessories	Air Conditioning Overdrive Transmission Power Steering Power Brakes
Engine Family	GTY2.0V5FBB3
Engine Displacement	2.0 Liter
No. of Cylinders	4
Fuel System	Electronic Port Fuel Injection
Ignition System	Electronic Ignition
Emission Control	Three-way Catalyst
Evaporative Family	EV - E
Chassis Dynamometer: Inertia Setting Road Load @ 50 mph	1304 kg (2875 lb) 6.0 kW (8.1 hp)
^a Odometer mileage as of Septer	mber 28, 1989.

Table 2 - Demonstration Vehicle Description1986 Toyota Camry

Measurement	Results
Distillation, D-86, °F	
IBP	95
5% Point	118
10% Point	132
20% Point	158
30% Point	184
40% Point	208
50% Point	231
60% Point	255
70% Point	280
80% Point	300
90% Point	332
95% Point	352
End Point	399
Recovery. %	98.3
Residue. %	0.9
Loss, %	0.8
Hydrocarbon Types	
Aromatics I.V %	37.0
Olefing LV %	79
Saturates I.V. %	55 1
Baturates, D.V. 70	
Manganese Content, g/gal	<0.001
Motor Octane Number, Clear	83.2
Research Octane Number, Clear	93.0
(R+M)/2	88.1
Oxygenates, L.V. %	
Methanol	<0.1
Tertiary butyl alcohol	<0.1
Methyl tertiary butyl ether (MTBE)	<0.1
Ethanol	<0.1
Lead Content D-3237 g/gal	<0.002
Phoenhomic Content D 2021 a/rel	0.002
r nosphorus Content, D-3231, g/gal	0.0006
Keid Vapor Pressure, D-323, psi @ 100°F	8.4
Total Sulfur, D-3246, Wt. %	0.002
API gravity @ 60°F	53.6
Density, g/mL @ 81°F	0.756
Benzene, Vol. %	2.44
Toluene, Vol. %	9.74
Xylene, Vol. %	9.41

Table 3 - Fuel Analysis of Unleaded Gasoline

Figure 1 - 1986 Toyota Camry Demonstration Vehicle

Figure 2 - Schematic of Electrically-Heated Catalyst

Table 4. A photograph of the actual demonstration electrically-heated catalyst unit is given in Figure 3.

	Electrically-Heated Catalytic Converter			
Item	Heated Segment	Unheated Segment		
Piece Dimensions, in.: ($W \times H \times L$)	5.5 imes 2.87 imes 1	6 × 3.37 × 3.5		
Percent Open Area, %	61	85		
Heating Element Voltage (nominal):	24 volts			
Substrate Type:	Stainless Steel Foil	Stainless Steel Foil		
Wall Thickness, inch	0.002	0.002		
Metal Loading, g/ft ³ Type Ratio	35-40 Pt/Rh 7:1	35-40 Pt/Rh 7:1		
Description provided by Camet Co.				

Table 4 - Description of Electrically-Heated CatalyticConverter Used on the Toyota Camry

Prior to the experimentation, the electrically-heated catalyst was initially aged on the vehicle for 805 kilometers (500 miles) using the Alternate Mileage Accumulation (AMA) driving schedule. The AMA driving schedule was based on a 10-kilometer driving route. Each lap had a maximum speed between 48 and 80 kilometers per hour (30 and 55 miles per hour). AMA vehicle driving incorporated stops, decelerations from lap speed, and accelerations to lap speed. This preliminary catalyst aging was performed to remove the initial high level of catalytic activity associated with fresh catalysts.

A small 12-volt (motorcycle) battery was placed in series with the original vehicle battery to provide a maximum of 24 volts to the catalyst. Power to the electrically-heated catalyst was controlled with on-vehicle solenoids.(9) For recharging, solenoids placed the second battery in parallel with the original battery (when the catalyst was not being electrically heated). A timer was built into this solenoid-based controller to provide a 15second cold-start- and a 5-second hot-start-precrank heating time. For our experiments, the catalyst electrical heating resumed immediately for 30 seconds following cold-starts and for 10 seconds following hot-starts.

EMISSION TEST PROCEDURES

The Toyota Camry with the electrically-heated catalyst was evaluated with experimental air injection strategies using the Federal Test Procedure (FTP). The FTP is an emissions certification test procedure used for light-duty vehicles. It uses the Urban Dynamometer Driving Schedule (UDDS), which is 1372 seconds in duration. The UDDS is divided into two segments; the first consisting of 505 seconds and the second consisting of 867 seconds. An FTP is composed of a cold transient 505 and a cold stabilized 867 portion followed by a ten-minute soak and then a hot transient 505.

Figure 3 - Prototype Electrically-Heated Catalyst on the Toyota Camry

For use in studying cold-start exhaust emissions, the first segment (Bag 1) of the UDDS was divided into two parts. Bag 1A was defined as the first 140 seconds of the cold-transient portion of the UDDS. This segment contains the majority of the cold-start emissions produced by the test vehicle. The remainder of the cold-transient segment is designated as Bag 1B (140-505 seconds). The sum of the mass emissions produced in Bags 1A and 1B is equal to the emissions generated during a conventional FTP Bag 1. The FTP driving schedule with the cold and hot transient test segments identified is given in Figure 4.

LABORATORY EMISSION MEASURING EQUIPMENT AND INSTRUMENTATION

This section briefly describes some of the emission measuring equipment and laboratory instrumentation used to conduct the experimentation. Laboratory equipment such as the chassis dynamometer, exhaust sampling system, instrumentation for determining mass emissions, and instrumentation for measuring raw exhaust constituent concentrations is discussed.

DYNAMOMETER, CVS, AND EXHAUST SAMPLING SYSTEM - A Clayton Model ECE-50 chassis dynamometer with a direct drive variable inertia system was used for all testing. The inertia system simulates equivalent vehicle test weights from 1,000 lb to 4,750 lb in 125 lb increments. A nominal 18-inch diameter by 16-foot length dilution tunnel was used in conjunction with a constant volume sampler (CVS). The CVS used for these evaluations has a nominal capacity of 315 SCFM. A Hartzell vehicle cooling fan of 5,000 CFM capacity was used in front of the test vehicles during all tests. Vehicle hoods were fully open during engine operation and closed during soak periods. Both the dynamometer and the CVS were calibrated, maintained, and operated in accordance with manufacturers' instructions and the appropriate sections of the Code of Federal Regulations applicable to light-duty vehicles.(1) Gaseous emissions samples were taken in Tedlar bags. Photographs of the dynamometer, CVS, and dilute exhaust sampling system are shown in Figures 5 and 6.

INSTRUMENTATION FOR REGULATED EMISSIONS - Regulated exhaust emissions of hydrocarbons (HC), carbon monoxide (CO), carbon dioxide (CO₂), and oxides of nitrogen (NO_x) were measured using continuous proportional bag samples of dilute exhaust. Dilute exhaust emission measuring instruments were calibrated and operated in accordance with the appropriate sections of the Code of Federal Regulations applicable to the light-duty vehicles. Fuel consumption was calculated based on the carbon balance method.

INDIVIDUAL HYDROCARBON ANALYSIS - An individual hydrocarbon analysis was performed to measure quantities of methane, benzene, and toluene exhaust emissions. Measurement of individual hydrocarbons in dilute exhaust was conducted with a gas chromatography technique.(10) Tedlar film bags were filled with dilute exhaust during each driving cycle. Sample concentrations were determined by comparison to a calibration blend of hydrocarbons.

CONTINUOUS RAW EXHAUST EMISSION MEASUREMENT - Continuous raw exhaust emissions were monitored during the experimentation. Raw exhaust concentrations of HC, CO, O_2 , and NO_x were measured before and after the catalytic converter. The continuous raw exhaust emission traces were used to examine emission characteristics during cold-start and hot-start modes. The continuous raw exhaust emission sampling cart is shown in Figure 7.

Figure 4. FTP Driving Schedule Showing Test Segments

Figure 5 · Vehicle Dynamometer and Dilution Tunnel

Figure 6 - Dilute Exhaust Emission Collection in Tedlar Bags

Figure 7 - Continuous Raw Exhaust Emission Sampling Cart

THREE-WAY CATALYST TECHNOLOGY AND EMISSION CONTROL BACKGROUND

A basic review of three-way catalyst technology is required to follow the emission reduction strategy of the electrically-heated catalyst. The three most influential factors affecting catalyst performance, other than the catalyst design itself, are exhaust composition (air-fuel ratio), catalyst temperature, and engine fuel control characteristics.

Three desirable chemical reactions occur in an active three-way catalyst. These three reactions are the oxidation of HC, the oxidation of CO, and the reduction of NO_x . Principal equations for the reactions are given below.

$$2HC + 5/2 O_2 \rightarrow 2CO_2 + H_2O$$
 [1]

$$\rm CO + 1/2 \ O_2 \rightarrow \rm CO_2$$
 [2]

$$NO + CO \rightarrow CO_2 + 1/2 N_2$$
[3]

 $10 \text{ NO} + 4\text{HC} \rightarrow 4\text{CO}_2 + 2\text{H}_2\text{O} + 5\text{N}_2$ [4]

$$NO + H_2 \rightarrow 1/2 N_2 + H_2O$$
 [5]

HC represents unburned fuel.

A three-way catalyst is so named because it is designed to simultaneously convert HC, CO, and NO_x to CO_2 , N_2 , and H_2O .

The conversion characteristics of a three-way catalyst are a strong function of the airfuel ratio. Ideally, for complete combustion of a fuel with a hydrogen to carbon (H to C) ratio of 1.85 to 1 and without oxygenates, a stoichiometric air-fuel (mass) ratio of approximately 14.56 to 1 is required. With stoichiometric exhaust constituents, the catalyst has the correct proportions of HC, CO, NO_x and O_2 available for optimal three-way control. Note that in equation 2, CO is a controlled emission and, in equation 3, a reducing agent for NO_x .

Combustion air-fuel ratio affects catalyst conversion efficiency. If the air-fuel ratio (AFR) is fuel-rich (AFR less than stoichiometric), there is insufficient oxygen in the exhaust stream for maximum conversion of HC and CO. Therefore, more CO is available for the reduction of NO_x , and catalyst conversion efficiency for NO_x is improved (refer to Equations 2 and 3). When lean air-fuel ratios prevail, oxygen is available for the oxidation of HC and CO, but NO_x conversion suffers without a sufficient supply of CO. A well controlled stoichiometric air-fuel ratio affords the best simultaneous control of HC, CO, and NO_x . A diagram of catalyst conversion efficiency versus air-fuel ratio for HC, CO, NO_x is given in Figure 8.

Temperature is also a critical factor in catalyst performance. Immediately following the cold start, an unheated catalyst is not active because it is not up to temperature. An automotive catalyst needs to be at a temperature of approximately 500°F to 600°F (260°C to 320°C) before catalyst "light-off" can occur. Catalyst light-off is often defined as the occurrence of a 50- percent conversion efficiency.

Catalyst efficiency and emission control is strongly affected by the control of the fuel delivery system. Today, in modern technology vehicles, electronic port fuel injection is used. Fuel control is achieved with exhaust gas oxygen content feedback. An oxygen sensor in the exhaust system relays exhaust gas oxygen concentrations to a computerized fuel control system. The air-fuel ratio of the engine cycles from slightly rich to slightly lean with a characteristic frequency and amplitude. Each vehicle model has its own unique fuel system calibration. The characteristics of this fuel calibration ultimately influence the characteristic of the exhaust emissions.

Figure 8 - Three-Way Catalyst Conversion Efficiency

DEVELOPMENT OF THE AIR INJECTION STRATEGY

It was thought that air injection ahead of the preheated catalyst would provide the required oxygen for more complete oxidation of exhaust hydrocarbons and carbon monoxide. In order to demonstrate the feasibility of secondary air, an air injection system consisting of a constant-speed rotary vane air pump driven by an off-vehicle electric motor was constructed. The air pump was an automotive production pump typical of what is used on gasoline engines equipped with three-way plus oxidation catalyst systems. The experimental pump assembly had a four-belt pulley so that four separate flowrates could be achieved. Manually operated gate valves were used to fine tune the air injection flowrate and pump backpressure. A one-way check valve was located in the line supplying air to the vehicle exhaust system. A laminar flow element (LFE) was used to measure air injection rates during vehicle emission experiments. The experimental air injection pump is shown in Figure 9.

AIR INJECTION FLOWRATE - The air injection flowrate was determined such that the exhaust gas ahead of the electrically-heated underbody catalyst contained a sufficient amount of oxygen. It was hypothesized that at some point, an increased rate of air injection would not contribute to improved emission control, but rather would tend to saturate the exhaust and possibly cool the preheated catalyst, inhibiting further emission control. To this end, several quick experiments were performed to determine the effects of different rates of air injection. A summary of the air injection experiments is given in Table 5.

	Bag 1A Emissions, grams			
Description	нс	СО	NOx	
No Air - No Heat (Baseline)	1.68	16.77	1.89	
Air (3.8 CFM, 70 seconds) - Heat	1.38	15.40	1.74	
Air (5.0 CFM, 140 seconds) - Heat	0.70	1.95	2.03	
Air (5.0 CFM, 140 seconds) - Heat	0.28	1.34	2.07	
Air (5.0 CFM, 140 seconds) - Heat	0.23	0.93	1.79	
Air (5.0 CFM, 140 seconds) - Heat	0.22	0.21	2.45	
Heat - 15 seconds pre-crank, 30 seco	onds post-start			

Table 5 - FTP Cold-Start Air Injection Flowrate Experiments

Based on the results of these tests, an air injection rate of approximately 140 liters per minute (5 cubic feet per minute) was selected. It is recognized that the flowrate selected is dependent upon the flowrate-backpressure characteristics of the experimental air pump. Engine-out emission rates of HC and CO are also a factor in selecting the air injection flowrate.

AIR INJECTION DURATION - Once the air injection flowrate was selected, the duration of air injection needed to be determined. The duration of the flow can have a tradeoff effect on HC and NO_x emissions. Hydrocarbon (and carbon monoxide) exhaust emissions are easily controlled in a lean (oxygen-rich) exhaust gas environment within an active catalytic converter. Oxides of nitrogen exhaust emissions, on the other hand, are controlled

Figure 9 - Developmental Air Injection Pump

best in a fuel-rich exhaust gas environment. In keeping with the objective of this demonstration, the HC emissions (specifically benzene) could not be controlled at the expense of a NO_x emission increase. Air injection could not be continued beyond the point where NO_x emissions would normally be controlled with the original catalyst. It was found that air-fuel ratio does not come into control (initially) until about 130 to 160 seconds into the coldtransient segment of the FTP. It is hypothesized that NO_x control was not fully achieved during the first 140 seconds of the FTP, because the original catalyst was not up to efficient operating temperature during this time. In addition, the uncontrolled open-loop fluctuations in exhaust gas air-fuel ratio during the first 140 seconds would not provide an environment for steady control of NO_x. Based on these experiments, a cold-start air injection duration was set for a time of 140 seconds. A limited number of hot-start air injection experiments appeared to result in an increase in NO_x emissions and only a minimal reduction of HC emissions for this vehicle. There was, therefore, no air injection during hot-starts for this demonstration. (Other electrically-heated catalyst applications have shown emission benefits with the use of hot-start air injection.(7)).

CATALYST POWER CONSUMPTION AND TEMPERATURE

The electrical function of the heated catalyst was monitored during a cold-start FTP. During this test, catalyst bed temperature, voltage drop across the catalyst, voltage at the battery, and catalyst electrical current were continuously recorded. Cold-start pre-crank and post-start heating times were 15 seconds and 30 seconds, respectively. As shown in Figure 10, battery-supplied catalyst power drops almost 50 percent by the end of the 30-second poststart heating period. The extreme power loss is most likely due to the undersized second battery placed in series with the original vehicle battery. Table 6 contains the catalyst voltage and current at the start and end of the cold-start heating periods. The catalyst was preheated to a temperature of 520°C in 15 seconds prior to engine starting. The catalyst power is turned off at this time. After about 10-13 seconds (during which time the engine is started) the catalyst bed drops to a temperature of 225°C. At this time, the post-start electrical catalyst heating begins and the temperature of the catalyst bed begins to rise (again). It is noted that the engine-out exhaust gas initially cools the preheated catalyst. This cooling effect is temporary. At some point, the engine-out exhaust gas temperature is able to maintain sufficient catalyst temperature and activity.

· .		Cata Volt Drop,	alyst tage , volts	Cata Cur: an	alyst rent, 1ps	Pov Consur wa	wer nption, itts
Catalyst Heating	Time, sec.	Max.	Min.	Max.	Min.	Max.	Min.
Pre-Crank ^a	15 ,	18.5	17.3	210	190	3890	3290
Post-Start	30	18.8	13.5	210	150	3950	2030
a _{Maximum} p	^a Maximum pre-crank catalyst temperature is 520°C.						

Table 6 - (Catalyst P	ower Consum	ption During	Cold-Start
-------------	------------	-------------	--------------	-------------------

Figure 10 - Catalyst Power Consumption and Temperature

RESULTS AND DISCUSSION

Following the determination of an optimal air injection strategy, final FTP emission tests were conducted on the gasoline-fueled Camry. Benzene and toluene emissions were measured in addition to the regulated emissions (HC, CO, NO_x). FTP emissions for each of the four catalyst preheating and air injection configurations are given in Table 7. The proposed California Emission standards for the ultra-low emission vehicle (ULEV) are also listed in the table. Catalyst preheating combined with air injection produced emissions that were near or at the proposed ULEV standards.

Test	FTP Emissions, g/mile						
Description	тнс	NMHC	СО	NOx	Benzene	Toluene	
No Heat, No Air	0.12	0.12	1.13	0.22	0.0078	0.0140	
Heat, No Air	0.10	0.09	1.50	0.12	0.0066	0.0091	
Air, No Heat	0.13	0.12	1.48	0.23	0.0071	0.0113	
Heat and Air Heat and Air Heat and Air Heat and Air	$0.07 \\ 0.05 \\ 0.04 \\ 0.04$	0.03 0.03 0.03	0.40 0.35 0.49 0.26	$\begin{array}{c} 0.25 \\ 0.22 \\ 0.25 \\ 0.27 \end{array}$	0.0017 0.0038 0.0022	0.0012 0.0018 0.0026	
(Average)	0.05	0.03	0.38	0.25	0.0026	0.0019	
Proposed California ULEV Standards		0.04 ^a	1.70	0.20			
aproposed NMOG	^a Proposed NMOG Standard						

 Table 7 - FTP Air Injection and Heated Catalyst Experiments

 on a Gasoline-Fueled Camry

As depicted in Figure 11, the lowest FTP emission rates for HC, CO, benzene, and toluene were achieved with catalyst preheating and secondary air injection. NO_x emissions, however, were minimized with the catalyst preheating alone (no air injection). This is because the heated catalyst was an active NO_x reduction catalyst without the addition of air. The continuous raw exhaust measurements show cold-start engine-out exhaust gas air-fuel ratio to be rich (oxygen low), which is ideal for NO_x conversion in an active catalyst. The NO_x emissions during the air injection experiments (air alone; heat and air) were slightly higher than the no-air baseline. This slight increase in NO_x emissions occurred during the cold transient portion of the FTP, when the secondary air was injected.

Continuous raw exhaust emissions were monitored for the no-heat-no-air, heat only, air only, and the heat-plus-air catalyst configurations. Raw exhaust hydrocarbon concentrations were of particular interest here. Figure 12 (Graphs A-D) compares the raw tailpipe hydrocarbon concentrations for the four catalyst configurations over the cold-start portion of the FTP (Bag 1A). The hydrocarbon emissions come into control when the catalyst becomes sufficiently active, depicted by a quick (and lasting) decrease in the hydrocarbon tailpipe emission level. Note that the vehicle cold-start with catalyst heating plus air injection (Graph D of Figure 12) resulted in the earliest drop in raw hydrocarbon level (after

FTP CAMRY BENZENE AND TOLUENE EXHAUST EMISSIONS Air Injection and Preheated Catalyst Experiments

Figure 11 - FTP Camry Exhaust Emissions

Figure 12 - Cold-Start Raw Exhaust Hydrocarbon Emissions

H-19

the catalyst). The times at which each catalyst configuration came into (subjective) hydrocarbon control are given Table 8. These times correspond to the mass emission rates of the Bags 1A. That is, the longer the time required for the hydrocarbons to come into control, the greater the mass emission rate.

Electrically-Heated Catalyst Configuration	Hydrocarbon Emission Control ^a First Achieved at (sec)		
No Heat - No Air	204		
Heat Only	134		
Air Only	120		
Heat plus Air 75			
^a Catalyst-out HC concentrat	ion controlled to 150 ppmC		

Table 8 - Hydrocarbon Emission Control

Oxygen concentrations were measured before and after the underbody electricallyheated catalyst unit for each catalyst configuration and are shown in Figures 13 (Graphs A-D). Recall that during the air injection experiments (air only; heat plus air), the air was injected ahead of the electrically-heated catalyst for 140 seconds into the cold-start. The noheat-no-air oxygen traces before and after the electrically-heated catalyst (Graph A of Figure 13) show that the exhaust oxygen concentration ranges from 0.5% to 2% for the majority of Bag 1A. By comparison, this range (and mean) is greater than the heat-no-air test in Graph B of Figure 13. It is believed that the lower concentrations of catalyst-out oxygen indicates a consumption of oxygen within the catalyst, probably due to an increase in catalyst activity, following preheating.

Graph C of Figure 13 shows the before and after catalyst oxygen concentration for the air-no-heat experiment. This figure shows the before and after oxygen concentration traces following each other very closely, indicating little consumption of oxygen during most of Bag 1A. This suggests that air injection alone does not significantly increase catalyst activity.

Catalyst preheating plus air injection, shown in Graph D of Figure 13, realizes the greatest gain in catalyst activity, as seen by the oxygen consumption within the catalyst. The difference in oxygen levels between the inlet and outlet of the catalyst indicates oxidation (of hydrocarbons and carbon monoxide) during this period. This is supported by substantially lower hydrocarbon and carbon monoxide mass emissions in Figure 11. A summary of the oxygen content observations is given in Table 9.

Figure 13 - Cold-Start Oxygen Before and After the Catalyst

H-21

Electrically-Heated Catalyst Configuration	Oxygen Level	Observable Oxygen Consumption	Significant Improvement in Bag 1A Mass Emissions
No Heat - No Air	Low	No	
Heat - No Air	Low	Possible	No
Air - No Heat	High	No	No
Heat plus Air	High	Yes	Yes

Table 9 - Oxygen Before and After Catalyst Observations

SUMMARY

Based on the results of the gasoline-fueled vehicle experiments, the electrically-heated catalyst with air injection represents a possible control technology for meeting future California emission standards. This study concludes that air injection is required with the electrically-heated catalyst for improved HC and CO control in some applications. Some issues, however, have yet to be studied. For each vehicle application, catalyst heating and air injection strategies will need to be optimized. Battery-related issues such as recharging times and the effect of this energy replacement on fuel economy and exhaust emissions need to be addressed. Vehicle battery specifications are likely to limit heating times and catalyst preheat temperatures. Long-term durability of the preheated catalyst and associated heat and air controls will have to be studied. Development will be necessary to optimize the system for cold-ambient starting conditions. Finally, a consumer-acceptable preheating time will be crucial to the commercial success of such an emission control system.

Emissions from current gasoline-fueled vehicles, although improved greatly over the years, still remain a concern. The electrically-heated catalyst has successfully demonstrated proof-of-concept in the laboratory, but much development work remains to be done. The future of electrically-heated catalyst technology will be determined by emission regulations, and conversely, the future of emission regulations may depend on the electrically-heated catalyst and other cold-start emission control strategies.

ACKNOWLEDGEMENTS

This paper is based on work performed by the Department of Emissions Research at Southwest Research Institute for the SwRI Advisory Committee for Research. The study was titled, "Experimentation to Determine the Feasibility of Air Injection on an Electrically-Heated Catalyst for Reducing Cold-Start Benzene Emissions from Gasoline Vehicles," and identified as SwRI Project No. 08-9574. Need for the SwRI internal research on this subject was identified while performing a program for the State of California Air Resources Board entitled, "Control of Benzene Emissions from Light-Duty Motor Vehicles," SwRI Project No. 08-1815, under ARB Contract No. A732-148. The electrically-heated catalyst was provided by Camet Co. of Hiram, Ohio. The author would like to thank the SwRI personnel who were instrumental in the success of this demonstration.

REFERENCES

1. Code of Federal Regulations, Title 40, Chapter 1, Part 86, Subpart B, Sections applicable to light-duty vehicles.

2. Blair, D. M. and Piotrowski, G. K., "Evaluation of a Resistively Heated Metal Monolith Catalytic Converter on an M100 Neat Methanol-Fueled Vehicle," Technical Report EPA/AA/CTAB/88-12, August 1988.

3. Piotrowski, G.K., "A Resistively Heated Catalytic Converter with Air Injection for Oxidation of Carbon Monoxide and Hydrocarbons at Reduced Ambient Temperatures," Technical Report EPA/AA/CTAB/89-06, September 1989.

4. Hellman, K. H., Bruetsch, R. I., Piotrowski, G. K., and Tallent, W. D., "Resistive Materials Applied to Quick Light-Off Catalysts," SAE Paper 890799, February 27-March 3, 1989.

5. Piotrowski, G. K., "Evaluation of a Resistively Heated Metal Monolith Catalytic Converter on a Gasoline-Fueled Vehicle," Technical Report EPA/AA/CTAB/88-12, December 1989.

6. Heimrich, M. J., "Experimentation to Determine the Feasibility of Air Injection on an Electrically-Heated Catalyst for Reducing Cold-Start Benzene Emissions from Gasoline Vehicles," Final Report prepared for the Advisory Committee for Research, Southwest Research Institute, January 1990.

7. Current Southwest Research Institute program, "Control of Benzene Emissions from Light-Duty Motor Vehicles," conducted by the Department of Emissions Research for the California Air Resources Board, Contract No. A6-204-32, SwRI Project No. 08-1815, 1987-1990.

8. Technical Support Document for "A Proposal to Amend Regulations Regarding Exhaust Emission Standards and Test Procedures for Passenger Cars, Light-Duty Trucks, and Medium-Duty Vehicles for the Control of Criteria Pollutant and Toxic Air Contaminant Emissions," by the State of California Air Resources Board, Mobile Source Division Draft, April 23, 1990.

9. Whittenberger, W. A. and Kubsh, J. E., "Recent Developments in Electrically Heated Metal Monoliths," SAE Paper 900503, February 26-March 2, 1990.

10. Dietzmann, H. E., et al., "Analytical Procedures for Characterizing Unregulated Pollutant Emissions from Motor Vehicles," Report EPA-600/2-79-017, prepared under Contract No. 68-02-2497, February 1979.

APPENDIX I

ELECTRIC AIR PUMP PERFORMANCE DATA

Colt Automotive Products Electric Air Pump Performance Data

Colt	part	number:	X030174D	Customer	part number:
Seria	al #:	439		Run date:	2/15/90

Volts	Amps	Discharge (in. H ₂ O)	Pressure (kPa)	Fl (SCFM)	ow (SLPM)	Disch Temper (°F)	arge ature (°C)	Sound Level 0.0-12.8 kHz (dBa)
				** ** ** **				*********
13.50	5.30	10.00	2.49	6.79	192.2	108	42	
13.50	5.30	10.00	2.49	6.79	192.2	108	42	
13.50	5.90	20.00	4.98	5.22	147.8	114	46	
13.50	5.90	20.00	4.98	5.22	147.8	114	46	
13.50	6.30	25.00	6.23	4.40	124.7	117	47	61.4
13.50	6.30	25.00	6.23	4.40	124.7	117	47	62.3
13.50	6.50	30.00	7.47	3.67	103.9	122	50	
13.50	6.50	30.00	7.47	3.67	103.9	122	50	
13.50	7.00	40.00	9.97	1.39	39.4	135	57	
13.50	7.00	40.00	9.97	1.39	39.4	135	57	

Colt Automotive Products

Electric Air Pump Performance Data

Colt part	number:	X030174D	Customer	part number:
Serial #:	460		Run date:	2/27/90

Volts	Amps	Discharge (in. H ₂ O)	Pressure (kPa)	F1 (SCFM)	ow (SLPM)	Disch Temper (°F)	arge ature (°C)	Sound Level 0.0-12.8 kHz (dBa)
13.50	5.30	10.00	2.49	7.05	199.6	107	42	
13.50	6.10	20.00	4.98	5.53	156.6	113	45	
13.50	6.30	25.00	6.23	4.90	138.6	115	46	55.1
13.50	6.60	30.00	7.47	3.96	112.2	121	49	
13.50	7.30	40.00	9.97	2.03	57.4	134	57	

APPENDIX J

1990 BUICK LESABRE CATALYST CONFIGURATION AND EMISSIONS

Table J-

1 Buick LeSabre Catalyst Configurations and FTP Emissions

2 Buick LeSabre Test Segment Emissions

3 Buick LeSabre -- Selected Methane, Benzene, and Toluene Emissions

TABLE J-1. BUICK LESABRE CATALYST CONFIGURATIONS AND FTP EMISSIONS

		1			AIR INJ	ECTION	1					T	
TEST		ODOMETER		AIRFLOW	DURAT	ION, scc.		I	TP EMISSI	ONS, g/mi	ile	FUEL ECO.	
DATE	TEST NO.	MILES	TEST DESCRIPTION	RATE, cfm	BAG 1A	BAG 3	FUEL	CO2	HC	CO	NOx	mi/gal	NOTES
	CARB BASELI	NE TESTING											
03-09-90	L-OE-0	100	OE-STOCK CATALYST]				463.4	0.17	1.36	0.18	19.05	CARB BASELINE TEST
03-13-90	L-OE-00	119	OE-STOCK CATALYST					466.8	0.15	1.08	0.19	18.93	CARB BASELINE TEST
	SWRI BASELIN	IE STUDY							_				
04-18-90	L-OE-01	209	OE-STOCK CATALYST			·	AS REC'D.	443.2	0.18	1.53	0.15	19.90	SWRI BASELINE TEST
	ELECTRICALL	Y - HEATED	CATALYST										
05-16-90	L-H-02	229	HEAT ONLY				EEE	446.9	0.12	1.06	0.13	19.78	OFF-VEHICLE HEAT
05-22-90	L-AH-03	248	HEAT AND AIR	4.7	100	None	EEE	452.8	0.07	0.83	0.15	19.54	OFF-VEHICLE HEAT AND AIR
06-26-90	L-H-04	276	HEAT ONLY				RF-A	435.9	0.07	0.45	0.19	20.33	ON-VEHICLE HEAT
06-27-90	L-VAH-05	296	HEAT AND AIR	V5.9	75	None	RF-A	427.0	0.07	0.33	0.19	20.76	ON-VEHICLE HEAT AND AIR
	AIR INJECTION	N STUDY											
06-29-90	L-AH-06	334	HEAT AND AIR	10.7	75	30	EEE	444.5	0.04	0.18	0.21	19.96	OFF-VEHICLE AIR
06-30-90	L-AH-07	345	HEAT AND AIR	13.0	75	30	EEE	447.2	0.03	0.22	0.18	19.83	OFF-VEHICLE AIR
07-01-90	L-AH-08	358	HEAT ONLY				EEE	459.0	0.08	0.63	0.18	19.31	NO AIR
07-02-90	L-AH-09	369	HEAT AND AIR	5.9	75	30	EEE	446.5	0.03	0.26	0.21	19.87	OFF-VEHICLE AIR
07 -03-9 0	L-AH-10	382	HEAT AND AIR	10.7	75	30	EEE	447.9	0.04	0.21	0.19	19.80	OFF-VEHICLE AIR
	FUEL AND SPI	ECIATION STU	JDY										
07-10-90	LS-AH-11	404	HEAT AND AIR	10.7	75	30	EEE	446.4	0.06	0.41	0.23	19.86	OFF-VEHICLE AIR
07-11-90	LS-AH-12	417	HEAT AND AIR	10.7	75	30	EEE	453.5	0.05	0.41	0.21	19.55	OFF-VEHICLE AIR
07-12-90	LS-OE-13	437	STOCK CATALYST				EEE	438.4	0.15	1.10	0.15	20.15	STOCK CATALYST ONLY
07-13-90	LS-OE-14	475	STOCK CATALYST				RF-A	429.2	0.15	0.85	0.18	20.59	STOCK CATALYST ONLY
07-14-90	LS-AH-15	488	HEAT AND AIR	10.7	75	30	RF-A	447.6	0.06	0.45	0.20	19.78	OFF-VEHICLE AIR
07-18-90	LS-AH-16	523	HEAT AND AIR	10.7	75	30	RF-A	445.0	0.07	0.45	0.20	19.92	OFF-VEHICLE AIR
	VEHICLE SHIP	PED TO CARE						+	·			· ·	· · · · · · · · · · · · · · · · · · ·

OE - ORIGINAL EQUIPMENT

V - VEHICLE AIR

EEE - HOWELL EEE

RF-A - NATIONAL AVERAGE

A - AIR H - HEAT

J-1

TABLE J-2. BUICK LESABRE TEST SEGMENT EMISSIONS

[]		1											-				
TEST	TEST	TOTAL	HYDROCA	RBONS, g	/mi	CARB	ON MONO	XIDE, g/m	i	NITR	OGEN OXI	DES, g/ mi		FUEI	ECONOM	IY, mi/gal	
DATE	NUMBER	BAG 1A	BAG 1B	BAG 2	BAG 3	BAG 1A	BAG 1B	BAG 2	BAG 3	BAG 1A	BAG 1B	BAG 2	BAG 3	BAG 1A	BAG 1B	BAG 2	BAG 3
	CARB BASELI	E TESTIN	G			·	· · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·						
03-09-90	L-OE-0																
03-13-90	L-OE-00																
	SWRI BASELIN	E STUDY															
04-18-90	L-OE-01	2.06	0.08	0.10	0.11	12.74	0.34	1.12	1.44	1.99	0.05	0.00	0.22	14.29	21.26	18.78	22.71
	ELECTRICALL	Y - HEAT	ED CATAL	YST													
05-16-90	L-H-02	1.39	0.06	0.05	0.09	8.97	0.17	0,68	1.20	1.55	0.01	0.00	0.26	14.34	21.42	18.58	22.62
05-22-90	L-AH-03	0.39	0.03	0.04	0.10	2.39	0.13	0.77	1.15	2.15	0.01	0.00	0.23	14.10	21.18	18.41	22.16
06-26-90	L-H-04	0.75	0.05	0.03	0.05	7.60	0.10	0.14	0.24	1.77	0.01	0.01	0.44	14.16	21.44	19.33	23.18
06-27-90	L-VAH-05	0.25	0.06	0.06	0.06	0.79	0.21	0.34	_0.34	2.34	0.02	0.01	0.32	14.01	21.98	19.81	23.60
	AIR INJECTION	N STUDY															
06-29-90	L-AH-06	0.29	0.04	0.02	0.03	1.09	0.12	0.17	0.13	2.53	0.02	0.00	0.40	13.43	21.07	19.11	22.57
06-30-90	L-AH-07	0.42	0.03	0.00	0.02	2.92	0.10	0.11	0.11	1.80	0.02	0.00	0.40	13.64	21.20	18. 9 3	22.32
07-01-90	L-AH-08	1.05	0.04	0.02	0.06	9.68	0.13	0.15	0.50	2.24	0.01	0.00	0.32	13.40	19.97	18.39	22.15
07-02-90	L-AH-09	0.36	0.03	0.01	0.03	1.96	0.12	0.22	0.19	2.80	0.01	0.00	0.36	13.68	21.15	18.89	22.61
07-03-90	L-AH-10	0.50	0.03	0.01	0.03	1.22	0.14	0.13	0.28	2.69	0.02	0.00	0.31	13.31	21.15	18.97	22.22
	FUEL AND SPI	ECIATION	STUDY	-													
07-10-90	LS-AH-11	0.46	0.06	0.03	0.07	1.28	0.18	0.27	0.68	2.79	0.02	0.00	0.41	13.07	20.86	19.15	22.29
07-11-90	LS-AH-12	0.42	0.05	0.02	0.04	1.28	0.25	0.39	0.42	2.78	0.01	0.01	0.33	13.46	20.65	18.72	21.99
07-12-90	LS-OE-13	2.40	0.07	0.04	0.10	13.82	0.15	0.45	1.12	2.17	0.02	0.00	0.24	14.60	21.13	19.09	23.06
07-13-90	LS-OE-14	2.03	0.10	0.07	0.07	9.43	0.18	0.56	0.63	1.69	0.04	0.01	0.35	15.09	21.87	19.51	23.34
07-14-90	LS-AH-15	0.48	0.05	0.04	0.04	0.95	0.51	0.33	0.56	2.00	0.07	0.01	0.37	13.92	21.25	19.07	21.65
07-18-90	LS-AH-16	0.37	0.06	0.06	0.06	0.32	0.23	0.52	0.46	2.48	0.02	0.00	0.34	13.45	21.35	18.86	22.81
	VEHICLE SHIP	PED TO C.	ARB														

TABLE J-3. BUICK LESABRE-METHANE, BENZENE, AND TOLUENE EMISSIONS

TEST	TEST	ODOMETER		METHANE, mg/mi			BENZENE, mg/mi				TOLUENE, mg/mi							
DATE	NUMBER	MILES	TEST DESCRIPTION	1A	1B	2	3	FTP	1 A	1B	, 2	3	FTP	1A	1 B	2	3	FTP
	SWRI BASELIN	IE TESTING																
04-19-90	L-OE-01	209	OE-STOCK CATALYST	126.4	15.8	22.7			78.7	5.4	6.1			273.9	7.1	6.7		
	ELECTRICALL	Y - HEATED	CATALYST															
05-16-90	L-H-02	229	HEAT ONLY	110.4	10.8				93.5	7.3				176.8	3.7	1		
05-22-90	L-AH-03	248	HEAT AND AIR	117.8	11.6	16.8	21.9	21.2	15.5	2.2	2.9	9.0	4.9	46.3	5.1	5.4	12.0	8.7

2

APPENDIX K

1990 BUICK LESABRE VEHICLE EMISSION RESULTS

Southwest Research Institute - Department of Emissions Research FTP - VEHICLE Emissions Results -As Recd Baseline PROJECT 08-1815-001

TEST NO. L-OE-01 RUN 1 VEHICLE MODEL 90 BUICK LESABRE ENGINE 3.8 L(232. CID) V-6 TRANSMISSION A4	VEHICLE NO.88 DATE 4/18/90 BAG CART NO. 2 / DYNO NO. 3	CVS NO. 2	TEST WEIGHT 1644. KG(3625. LBS) ACTUAL ROAD LOAD 5.4 KW(7.3 HP) GASOLINE EM-995-F ODOMETER 336. KM(209. MILES)					
BARDMETER 743.46 MM HG(29.27 IN HG)	DRY BULB TEMP. 2	2.2 DEG C(72.0 DEG F)						
RELHIVE HUMIDIN DI. PLI	HDS. HUMIDILY IN	.4 0M/KO	NUX HUMIDIIY CURI	CUTION PHOTOR . 37				
	10	10	o .	2				
	COUNT TOONCIENT			UNT TOONCIENT				
	0-140 SEC	140-505 SEC	SINDICIZED					
BLOWER DIF P MM. H2O(IN. H2O)	787.4 (31.0)	789.9 (31.1)	789.9 (31.1)	789.9 (31.1)				
BLOWER INLET P MM. H2O(IN. H2O)	787.4 (31.0)	789.9 (31.1)	789.9 (31.1)	789.9 (31.1)				
BLOWER INLET TEMP. DEG. C(DEG. F)	42.8 (109.0)	41.7 (107.0)	40.0 (104.0)	39.4 (103.0)				
BLOWER REVOLUTIONS	11225.	29232.	69329.	40364.				
TOT FLOW STD. CU. METRES(SCF)	20.9 (737.)	54.5 (1923.)	129.6 (4575.)	75.5 (2666.)				
THC SAMPLE METER/RANGE/PPM	12.4/ 3/ 124.	16.4/ 2/ 16.	14.5/ 2/ 14.	18.2/ 2/ 18.				
THE BEKERD METER/RANGE/PPM	1.0/ 3/ 10.	9.5/ 2/ 9.	10.0/ 2/ 10.	9.5/ 2/ 9.				
CO SAMPLE METER/RANGE/PPM	76.4/ 14/ 366.	17.6/ 12/ 17.	30.9/ 12/ 30.	62.5/ 12/ 62.				
CO BCKGRD METER/RANGE/PPM	.0/ 14/ 0.	.6/ 12/ 1.	.6/ 12/ 1.	.5/ 12/ 0.				
CO2 SAMPLE METER/RANGE/PCT	59.0/ 1/1.0830	68.1/ 1/1.2537	87.2/ 14/ .8026	96.7/ 14/1.0475				
CO2 BCKGRD METER/RANGE/PCT	2.6/ 1/ .0459	2.6/ 1/ .0459	12.9/ 14/ .0434	13.1/ 14/ .0442				
NOX SAMPLE METER/RANGE/PPM	33.9/ 2/ 33.9	6.1/ 1/ 1.6	.0/ 1/ .0	22.0/ 1/ 5.6				
NOX BCKGRD METER/RANGE/PPM	.2/ 2/ .2	.3/ 1/ .1	.0/ 1/ .0	.3/ 1/ .1				
DILUTION FACTOR	11.85	10.66	16.61	12.70				
THC CONCENTRATION PPM	115.	8.	5.	9.				
CO CONCENTRATION PPM	351.	16.	29.	59.				
CO2 CONCENTRATION PCT	1.0410	1.2121	.7618	1.0067				
NOX CONCENTRATION PPM	33.8	1.5	. 0	5.5				
THC MASS GRAMS	1.38	.24	. 38	. 41				
CU MASS GRAMS	8.54	1.00	4.31	5.18				
LU2 MASS GRAMS	398.0	1208.6	1806.9	1391.8				
NUX MASS GRAMS	1.34	. 16	. 00	. 79				
THC GRAMS/MI	2.06	. 08	. 10	.11				
CD GRAMS/MI	12.74	.34	1.12	1.44				
CO2 GRAMS/MI	594.2	416.4	470.0	387.9				
NOX GRAMS/MI	1.99	.05	. 00	.22				
FUEL ECONOMY IN MPG	14.29 19.	47 21.26	18.78 20.	49 22.71				
RUN TIME SECONDS	140.	365.	867.	505.				
MEASURED DISTANCE MI	.67 3.5	7 2.90	3.84 7.4	3 3.59				
SLF, DRY	.970 .96	.969	.973 .97i	2.971				
DFC, WET (DRY)	. 909 (.891)	. 933 (.915)				
IUI VUL (SUM) / SAM BLR (SCM)	75.3/	. 00	205.1/	. 00				

COMPOSITE RESULTS

TEST NUMBER	1	
BAROMETER	MM HG 74	43.5
HUMIDITY	G/K6	10.4
TEMPERATURE	DEG C a	22.2

		3- BA G
CARBON DIOXIDE	G/MI	443.2
FUEL ECONOMY	MPG	19.90
HYDROCARBONS (THC)	6/MI	.18
CARBON MONOXIDE	6/MI	1.53
OXIDES OF NITROGEN	G/MI	.15

SOUTHWEST RESEARCH INSTITUTE - DEPARTMENT OF EMISSIONS RESEARCH FTP - VEHICLE EMISSIONS RESULTS -PROJECT 08-1815-001

TEST ND. L-H-02 RUN 1 VEHICLE MODEL 90 BUICK LESABRE ENGINE 3.8 L(232. CID) V-6 TRANSMISSION A4	VEHICLE NO.88 DATE 5/16/90 BAG CART NO. 2 DYNO NO. 3	/ CVS NO. 2	TEST WEIGHT 164 ACTUAL ROAD LOAD GASOLINE EM-995 ODOMETER 369.	4. KG(3625. LBS) 5.4 KW(7.3 HP) -F KM(229. MILES)				
BARDMETER 736.85 MM HG(29.01 IN HG) RELATIVE HUMIDITY 62. PCT	DRY BULB TEMP. ABS. HUMIDITY 1	22.8 DEG C(73.0 DEG F) 1.0 GM/KG	NOX HUMIDITY COR	NOX HUNIDITY CORRECTION FACTOR 1.01				
	10	10	2	7				
DESCRIPTION	COLD TRANSIENT 0-140 SEC	COLD TRANSIENT 140-505 SEC	STABILIZED	HOT TRANSIENT				
BLOWER DIF 9 MM. H2O(IN. H2O)	762.0 (30.0)	762.0 (30.0)	764.5 (30.1)	772.2 (30.4)				
BLOWER INLET P MM. H2O(IN. H2O)	762.0 (30.0)	762.0 (30.0)	762.0 (30.0)	769.6 (30.3)				
BLOWER INLET TEMP. DEG. C(DEG. F)	43.3 (110.0)	43.3 (110.0)	41.7 (107.0)	42.8 (109.0)				
BLOWER REVOLUTIONS	11207.	29228.	69450.	40470.				
TOT FLOW STD. CU. METRES(SCF)	2 0. 7 (731.)	54.0 (1906.)	128.6 (4541.)	74.7 (2638.)				
THC SAMPLE METER/RANGE/PPM	90.8/ 2/ 98.	17.3/ 2/ 17.	13.9/ 2/ 14.	19.1/ 2/ 19.				
THC BCKGRD METER/RANGE/PPM	12.4/ 2/ 12.	12.5/ 2/ 12.	11.9/ 2/ 12.	12.1/ 2/ 12.				
CD SAMPLE METER/RANGE/PPM	58.5/ 14/ 266.	12.7/ 12/ 12.	21.8/ 12/ 21.	53.5/ 12/ 53.				
CO BCKGRD METER/RANGE/PPM	1.1/ 14/ 4.	4.3/ 12/ 4.	3.0/ 12/ 3.	1.0/ 12/ 1.				
CD2 SAMPLE METER/RANGE/PCT	60.5/ 1/1.1111	68.8/ 1/1.2669	88.3/ 14/ .8273	97.2/ 14/1.0627				
CO2 BCKGRD METER/RANGE/PCT	2.6/ 1/ .0459	2.6/ 1/ .0459	12.6/ 14/ .0422	12.3/ 14/ .0411				
NOX SAMPLE METER/RANGE/PPM	26.4/ 2/26.5	.8/ 1/ .2	.0/ 1/ .0	25.6/ 1/ 6.5				
NUX BCKGRD METER/RANGE/PPM	.3/ 2/ .3	.1/ 1/ .0	.0/ 1/ .0	.1/ 1/ .0				
DILUTION FACTOR	11.70	10.55	16.13	12.53				
THE CONCENTRATION PPM	/9.	<i>ь.</i>	ۍ. د ۲	8.				
CU CUNCENTRATION PPF	251.	8.	18.	50.				
LUC LUNLENIKHIIUN PLI	1.0591	1.2233	. /8/8	1.0249				
NUX LUNCENTRHITUN PPM	26.2	.2	.0	b.0 74				
166 ALSO COMPS	. 54	- 18	.20	- 34 4 77				
CU 11430 CCHING CU 2400C CO 2400C	5.05	1010	C.00	4.33				
NOX MASS GRAMS	1.05	. 02	1014-0 88	.93				
THC GRAMS/MI	1.39	. 06	.05	. 09				
CO GRAMS/MI	8.97	.17	.68	1.20				
CO2 GRAMS/MI	599.9	413.6	476.2	389.9				
NOX GRAMS/MI	1.55	.01	. 00	. 26				
FUEL ECONOMY IN MPG	14.34 19	.60 21.42	18.58 20.	32 22.62				
RUN TIME SECONDS	140.	365.	868.	506.				
MEASURED DISTANCE MI	.68 3.	60 2.93	3.90 7.4	9 3.60				
SCF, DRY	.970 .9	.968	.972 .97	2.970				
DFC, WET (DRY)	. 988 (. 890)	.931(.913)				
Tot Vol (SCM) / SAM BLR (SCM)	74.7/	.00	203.3/	. 80				

COMPOSITE RESULTS

TEST NUMBERL-H-02BAROMETERMM HG736.9HUMIDITYG/KG11.0TEMPERATUREDEG C22.8

		3-BAG
CARBON DIOXIDE	G/MI	446.9
FUEL ECONOMY	MPG	19.78
Hydrocarbons (THC)	G/MI	.12
CARBON MONOXIDE	G/MI	1.06
OXIDES OF NITROGEN	6/MI	.13
SOUTHWEST RESEARCH INSTITUTE - DEPARTMENT OF EMISSIONS RESEARCH FTP - VEHICLE EMISSIONS RESULTS -

PR0JECT 08-1815-001

TEST ND. L-AH-03 RUN 1 VEHICLE MODEL 90 BUICK LESABRE ENGINE 3.8 L(232. CID) V-6 TRANSMISSION A4	vehicle NO.88 Date 5/22/90 Bag Cart NO. 2 Dyno No. 3	/ CVS NO. 2	TEST WEIGHT 164 ACTUAL ROAD LOAD GASOLINE EM-995 ODOMETER 399.	4. KG(3625. LBS) 5.4 KW(7.3 HP) -F KM(248. MILES)
BAROMETER 741.17 MM HG(29.18 IN HG) RELATIVE HUNIDITY 59. PCT	DRY BULB TEMP. ABS. HUMIDITY 1	23.9 DEG C(75.0 DEG F) 1.2 GM/KG	NOX HUMIDITY COR	RECTION FACTOR 1.02
BAG NUMBER	10	1 B	2	3
DESCRIPTION	COLD TRANSIENT 0-140 SEC	COLD TRANSIENT 140-505 SEC	STABILIZED	HOT TRANSIENT
BLOWER DIF P MM. H2O(IN. H2O)	774.7 (30.5)	774.7 (30.5)	774.7 (30.5)	774.7 (30.5)
BLOWER INLET P MM. H2O(IN. H2O)	774.7 (30.5)	774.7 (30.5)	774.7 (30.5)	774.7 (30.5)
BLOWER INLET TEMP. DEG. C(DEG. F)	43.3 (110.0)	42.8 (109.0)	41.1 (106.0)	42.8 (109.0)
BLOWER REVOLUTIONS	11256.	29309.	69445.	40438.
TOT FLOW STD. CU. METRES(SCF)	20.9 (737.)	54.4 (1922.)	129.4 (4567.)	75.1 (2651.)
THC SAMPLE METER/RANGE/PPM	34.3/ 2/ 34.	15.9/ 2/ 16.	14.6/ 2/ 14.	19.6/ 2/ 19.
THC BCKGRD METER/RANGE/PPM	13.9/ 2/ 14.	14.5/ 2/ 14.	13.2/ 2/ 13.	12.2/ 2/ 12.
CO SAMPLE METER/RANGE/PPM	72.1/ 12/ 72.	9.6/ 12/ 9.	22.6/ 12/ 22.	50.0/ 12/ 49.
CO BCKGRD METER/RANGE/PPM	3.7/ 12/ 4.	3.3/12/3.	2.0/ 12/ 2.	.6/ 12/ 1.
CO2 SAMPLE METER/RANGE/PCT	61.4/ 1/1.1280	68.5/ 1/1.2612	87.6/ 14/ .8114	58.0/ 1/1.0643
CO2 BCKGRD METER/RANGE/PCT	2.4/ 1/ .0423	2.6/ 1/ .0459	11.9/ 14/ .0395	2.3/ 1/.0406
NOX SAMPLE METER/RANGE/PPM	35.9/ 2/ 35.9	1.8/ 1/ .5	.2/ 1/ .1	22.6/ 1/ 5.7
NOX BCKGRD METER/RANGE/PPM	.5/ 2/ .5	.5/ 1/ .1	.0/ 1/ .0	.2/ 1/ .1
DILUTION FACTOR	11.77	10.60	16.44	12.51
THC CONCENTRATION PPM	21.	3.	2.	8.
CO CONCENTRATION PPM	66.	6.	19.	47.
CO2 CONCENTRATION PCT	1.0892	1.2197	.7743	1.0270
NOX CONCENTRATION PPM	35.5	.4	.,1	5.7
THC MASS GRAMS	. 26	.09	. 16	. 36
CO MASS GRAMS	1.59	. 38	2,93	4.09
CU2 MASS GRAMS	416.4	1215.4	1833.7	1411.9
NUX MASS GRAMS	1.44	. 04	. 01	. 83
THC GRAMS/MI	. 39	.03	.04	. 10
CO GRAMS/MI	2.39	. 13	.77	1.15
CO2 GRAMS/MI	623.8	418.5	480.3	398.0
NDX GRAMS/MI	2.15	.01	. 00	.23
FUEL ECONOMY IN MPG	14.10 19	.36 21.18	18.41 20.	05 22.16
RUN TIME SECONDS	141.	366.	868.	505.
MEASURED DISTANCE MI	.67 3.	57 2.90	3.82 7.3	7 3.55
SCF, DRY	.971 .9	70.969	.974 .97	3 .971
DFC, WET (DRY)	. 908 (.891)	.932(.915)
TOT VOL (SCM) / SAM BLR (SCM)	75.3/	. 00	204.4/	. 00

COMPOSITE RESULTS

TEST NUMBER		L-AH-03
BAROMETER	MM HG	741.2
HUMIDITY	6/K6	11.2
Temperature	DEG C	23.9

		3- BAG
CARBON DIOXIDE	6/MI	452.8
FUEL ECONOMY	MPG	19.54
Hydrocarbons (THC)	6/MI	.07
CARBON MONOXIDE	G/MI	.83
OXIDES OF NITROGEN	G/MI	.15

Southwest research institute - department of emissions research FTP - VEHICLE Emissions results -PROJECT 08-1815-001

TEST NO. L-H-04 RUN 1	VEHICLE NO.88	/ CVS NO. 2	TEST WEIGHT 1644	. KG(3625, LBS)
VEHICLE MODEL 90 BUICK LESABRE	DATE 6/26/90		ACTUAL ROAD LOAD	5.4 KW(7.3 HP)
ENGINE 3.8 L(232. CID) V-6	BAG CART NO.2		GASOLINE EM-1026	-F
TRANSMISSION A4	DYNO NO. 3		ODOMETER 444.	KM(276, MILES)
BARDMETER 737.87 MM HB(29.05 IN HG)	DRY BULB TEMP. A	23.9 DEG C(75.0 DEG F)	ECTION FACTOR 1.02
RELATIVE HUMIDITY 59. PCT	ABS. HUMIDITY 1	1.2 GM/KG	NOX HUMIDITY CORR	
BHG KESULIS	10	10	2	7
DESCRIPTION	COLD TRANSIENT 0-140 SEC	COLD TRANSIENT 149-595 SEC	STABILIZED	HOT TRANSIENT
BLOWER DIF P MM. H2O(IN. H2O)	774.7 (30.5)	774.7 (30.5)	774.7 (30.5)	774.7 (30.5)
BLOWER INLET P MM. H2O(IN. H2O)	774.7 (30.5)	774.7 (30.5)	774.7 (30.5)	774.7 (30.5)
BLOWER INLET TEMP. DEG. C(DEG. F)	43.3 (110.0)	42.2 (108.0)	41.1 (106.0)	42.2 (108.0)
BLOWER REVOLUTIONS	11499.	29012.	69458.	40447.
TOT FLOW STD. CL. METRES(SCE)	21.3 (750.)	53.6 (1894.)	128.7 (4546.)	74.8 (2642.)
THC SAMPLE METER/RANGE/PPM	52.6/ 2/ 52.	15.8/ 2/ 16.	12.4/ 2/ 12.	14.2/ 2/ 14.
THC BCKGRD METER/RANGE/PPM	10.8/ 2/ 11.	11.8/ 2/ 12.	11.4/ 2/ 11.	10.8/ 2/ 11.
CO SAMPLE METER/RANGE/PPM	59.2/ 14/ 223.	7.9/ 12/ 8.	6.2/ 12/ 6.	12.1/ 12/ 12.
CO BCKGRD METER/RANGE/PPM	.8/ 14/ 3.	2.8/ 12/ 3.	2.3/12/2.	1.6/ 12/ 2.
CO2 SAKPLE METER/RANGE/PCT	61.0/ 1/1.1205	69.5/ 1/1.2800	87.0/14/.7982	96.6/ 14/1.0445
CU2 BORGRD METER/RANGE/PDM	2.4/ 1/.0423	2.4/ 1/ .0423	12.8/ 14/.0430	12.8/ 14/ .0430
NOX SAMPLE METER/RANGE/PDM	29.5/ 2/29.5	2.9/ 1/ .8	1.7/ 1/ .4	44.7/ 1/ 11.2
NOX BORGRD METER/RANGE/PDM	.1/ 2/ .1	2.2/ 1/ .6	1.3/ 1/ .3	1.6/ 1/ .4
DILUTION FACTOR	11.68	10.45	16.75	12.80
THE CONCENTRATION PPM	42.	5.	2.	4.
CO CONCENTRATION PPM	211.	5.	4.	10.
CO2 CONCENTRATION PCT	1.0818	1.2418	.7577	1.0048
NOX CONCENTRATION PPM	29.5	.2		10.8
CD MASS GRAMS CD2 MASS GRAMS	5.22 42 0. 9	.18 .30 1219.5	. 12 . 56 1785. 9	.86 1376.3
NOX MASS GRAMS	1.22	.02 05	. 03 03	1.58
CO GRAMS/MI	7.60	. 10	. 14	.24
CO2 GRAMS/MI	612.1	413. 3	458. 5	382.0
NDX GRAMS/MI FUEL ECONOMY IN MPG PIN TIME SECONDS	1.77 14.16 19.	.81 .54 21.44 .745	.01 19.33 21.0	.44 1 23.18 595
MEASURED DISTANCE MI SCF, DRY	.69 3.6 .971 .97	563. 564 2.95 70 .969	3.90 7.50 .974 .973	3.60 3.971
DFC, WET (DRY)	.907(. 890)	.934(.	916)
TOT VOL (SCM) / SAM BLR (SCM)	74.9/	. 00	203.6/	.00

COMPOSITE RESULTS

TEST NUMBERL-H-04BAROMETERMM HG737.9HUMIDITYG/KG11.2TEMPERATUREDEG C23.9

		3-BAG
CARBON DIOXIDE	6/MI	435.9
FUEL ECONOMY	MPG	20.33
Hydrocarbons (THC)	6/MI	.07
CARBON MONOXIDE	G/MI	.45
OXIDES OF NITROGEN	G/MI	. 19

SOUTHWEST RESEARCH INSTITUTE - DEPARTMENT OF EMISSIONS RESEARCH

FTP - VEHICLE EMISSIONS RESULTS -

PROJECT 08-1815-001

TEST ND. L-VAH-05 RUN 1 VEHICLE MODEL 90 BUICK LESABRE ENGINE 3.8 L(232. CID) V-6 TRANSMISSION A4	VEHICLE NO.88 DATE 6/27/9 BAG CART NO. 2 DYNO NO.	0 2 / CVS ND. 2 3	TEST WEIGHT 1644 ACTUAL ROAD LOAD GASOLINE EM-1026- ODOMETER 476.F	▶. KG(3625. LBS) 5.4 KW(7.3 HP) F (M(296. MILES)
BARDMETER 737.11 MM HG(29.02 IN HG)	DRY BULB TEMP.	25.0 DEG C(77.0 DEG F)		
RELATIVE HUMIDITY 46, PCT	ABS. HUMIDITY	9.3 GM/KG	NOX HUMIDITY CORRE	CTION FACTOR .96
BAG RESULTS			-	_
BAG NUMBER	16	1B	2	3
DESCRIPTION	COLD TRANSIENT	COLD TRANSIENT	STABILIZED	HOT TRANSIENT
	0-140 SEC	140-505 SEC		
BLOWER DIE P.MM. H20(IN. H20)	774.7 (30.5)	774.7 (30.5)	774.7 (30.5)	774.7 (30.5)
BLOWER INLET P MM. H2O(IN. H2O)	774.7 (30.5)	774.7 (30.5)	774.7 (30.5)	774.7 (30.5)
BLOWER INLET TEMP. DEG. C(DEG. F)	42.8 (109.0)	42.2 (108.0)	41.7 (107.0)	42.2 (108.0)
BLOWER REVOLUTIONS	11209.	29279.	69516.	40498.
TOT FLOW STD. CU. METRES(SCF)	20.7 (731.)	54.1 (1910.)	128.6 (4540.)	74.8 (2642.)
THC SAMPLE METER/RANGE/PPM	23.4/ 2/ 23.	15.0/ 2/ 15.	12,7/ 2/ 13.	14.1/ 2/ 14.
THC BCKGRD METER/RANGE/PPM	9.6/ 2/ 9.	10.1/ 2/ 10.	9.9/ 2/ 10.	10.0/ 2/ 10.
CO SAMPLE METER/RANGE/PPM	24.7/ 12/ 24.	11.7/ 12/ 11.	10.2/ 12/ 10.	15.7/ 12/ 15.
CO BCKGRD METER/RANGE/PPM	.9/ 12/ 1.	1.3/ 12/ 1.	1.0/ 12/ 1.	.9/ 12/ 1.
CO2 SAMPLE METER/RANGE/PCT	63.5/ 1/1.1673	66.6/ 1/1.2255	42.1/ 1/ .7679	55.5/ 1/1.0176
CO2 BCKGRD METER/RANGE/PCT	2.4/ 1/.0423	2.5/ 1/.0441	2.4/ 1/ .0423	2.5/ 1/.0441
NOX SAMPLE METER/RANGE/PPM	42.2/ 2/ 42.2	2.7/ 1/ .7	.7/ 1/ .2	33.6/ 1/ 8.5
NOX BCKGRD METER/RANGE/PPM	.4/ 2/ .4	.8/ 1/ .2	.2/ 1/ .1	.4/ 1/ .1
DILUTION FACTOR	11.43	10.91	17.40	13.13
THE CONCENTRATION PPM	14.	6.	3.	· 5.
CO CONCENTRATION PPM	22.	10.	9.	14.
CO2 CONCENTRATION PCT	1.1287	1.1854	.7280	.9769
NOX CONCENTRATION PPM	41.8	.5	.1	8.4
THC MASS GRAMS	. 17	. 18	.25	.21
CD MASS GRAMS	. 54	.61	1.29	1.21
CO2 MASS GRAMS	427.5	1174.1	1713.5	1338.1
NOX MASS GRAMS	1.58	.0 5 .	.03	1.15
THC GRAMS/MI	.25	.06	.06	.06
CD GRAMS/MI	. 79	.21	. 34	.34
CD2 GRAMS/MI	6 30. 7	402.9	447.0	375.1
NOX GRAMS/MI	2.34	.02	. 01	.32
FUEL ECONOMY IN MPG	14.01 1	19.85 21.98	19.81 21.4	7 23.60
RUN TIME SECONDS	140.	365.	868.	506.
MEASURED DISTANCE MI	. 68	3.59 2.91	3.83 7.40	3.57
SCF, DRY	.974 .	.974 .974	.978 .977	.976
DFC, WET (DRY)	. 910	0(.896)	.936(.)	922)
TOT VOL (SCM) / SAM BLR (SCM)	74.8	3/ .00	203.4/	. 00

COMPOSITE RESULTS

TEST NUMBER		L-VAH05
BAROMETER	MM HG	737.1
HUMIDITY	G/K G	9.3
TEMPERATURE	DEG C	25.0

		3-BAG
CARBON DIOXIDE	G/MI	427.0
FUEL ECONOMY	MPG	20.76
Hydrocarbons (THC)	G/MI	.07
CARBON MONOXIDE	6/MI	. 33
OXIDES OF NITROGEN	G/MI	.19

.

SOUTHWEST RESEARCH INSTITUTE - DEPARTMENT OF EMISSIONS RESEARCH FTP - VEHICLE EMISSIONS RESULTS -PROJECT 08-1815-001

TEST NO. L-AH-266 RUN 1	VEHICLE NO.88	TEST WEIGHT 1644. KG(3625. LBS)
VEHICLE MODEL 90 BUICK LESABRE	DATE 6/29/90	Actual Road Load 5.4 KW (7.3 HP)
ENGINE 3.8 L(232, CID) V-6	BAG CART NO. 2 / CVS NO. 2	GASOLINE EM-995-F
TRANSMISSION A4	DYNO NO. 3	ODOMETER 538. KM (334. MILES)
BARDHETER 739.39 MM HG(29.11 IN HG)	DRY BULB TEMP. 24.4 DEG C(76.0 D	EG F)
RELATIVE HUMIDITY 45. PCT	ABS. HUMIDITY 8.9 GM/KG	NOX HUMIDITY CORRECTION FACTOR .94
BAG RESULTS		
BAG NUMBER	1A 1B	2 3
DESCRIPTION	COLD TRANSIENT COLD TRANSIENT	STABILIZED HDT TRANSIENT
	0-140 SEC 140-505 SEC	
BLOWER DIF P MM. H2O(IN. H2O)	767.1 (38.2) 767.1 (38.2)	769.6 (30.3) 769.6 (30.3)
BLOWER INLET P MM. H20(IN. H20)	762.0 (30.0) 762.0 (30.0)	762.0 (30.0) 762.0 (30.0)
BLOWER INLET TEMP. DEG. C(DEG. F)	48.6 (105.0) 42.2 (108.0)	41.7 (107.0) 41.7 (107.0)
BLOWER REVOLUTIONS	11208. 29259.	69410. 40 492.
TOT FLOW STD. CU. METRES(SCF)	20.9 (737.) 54.3 (1918.) 129.0 (4555.) 75.3 (2657.)
THC SAMPLE METER/RANGE/PPM	25.5/ 2/ 25. 12.5/ 2/ 12	. 10.5/ 2/ 10. 11.8/ 2/ 12.
THC BCKGRD METER/RANGE/PPM	9.7/ 2/ 10. 9.8/ 2/ 10	. 10.0/ 2/ 10. 9.8/ 2/ 10.
CO SAMPLE METER/RANGE/PPM	32.3/ 12/ 32. 6.1/ 12/ 6	. 4.9/ 12/ 5. 5.8/ 12/ 6.
CO BUXERD METER/RANGE/PPM	.2/ 12/ 01/ 12/ 0.	3/ 12/ 02/ 12/ 0.
CU2 SAMPLE METER/RANGE/PCT	65.2/ 1/1.1992 69.2/ 1/1.2/	44 87.27 147 8626 97.17 1471.6596
LUZ BUKERU METER/RANGE/PUT	2.3/ 1/.0406 2.5/ 1/.04	41 13.5/ 14/ .0458 12.0/ 14/ .0399
NUX SHAPLE AFTER (RANDE/PPM	43.87 27 43.8 3.87 17 .1	
NUX DUNUKU HELIEN/KHINDE/PPM DILITIAN EORTOD	.4/ Ľ/ .4 .0/ i/ .) 11 12 10 50	۲۰۰۵ ۲/ ۵۰۰ ۲/ ۵۰۰ ۲/ ۵۰۰ ۱۲/۲۰ ۱۵/۲
THE FREIDE THE FRANCENTRATION DOM	11.12 10.30	10.07 12.03
CA CONCENTRATION PER	10. 4. 20. C	1. J. 4 5
		7. J. 7595 1.0000
NOY CONCENTRATION POM	45 4 5	9 10.5
THE MASS GRAMS	. 29 . 11	08 12
CD MASS GRAMS	.73 .35	-64 -45
CD2 MASS GRAMS	444.3 1228.0	1793.9 1409.4
Nox Mass Grams	1.71 .06	.00 1.43
THC GRAMS/MI	. 29 . 04	.02 .03
CD GRAMS/MI	1.09 .12	. 17 . 13
CO2 GRAMS/MI	657.5 420.5	463.8 392.6
Nox Grams/Mi	2 . 53 . 8 2	. 88 . 48
FUEL ECONOMY IN MPG	13.43 19.04 21.07	19.11 20.63 22.57
RUN TIME SECONDS	140. 366.	868. 596.
MEASURED DISTANCE MI	.68 3.60 2.92	3.87 7.46 3.59
SCF, DRY	.974 .974 .974	.978 .977 .976
DFC, WET (DRY)	.906(.893)	.933(.919)
IUI VUL (SCM) / SAM BLR (SCM)	75.2/ .00	204.3/ .00
COMPOSITE RESULTS		3-BAG

TEST NUMBER L-AH-06 BAROMETER MM HG 739.4

HUMIDITYG/KG8.9TEMPERATUREDEG C24.4

CARBON DIGXIDE	6/MI	3-5H63 444.5
FUEL ECONOMY	MPG	19.96
HYDROCARBONS (THC)	G/MI	.04
CARBON MONOXIDE	G/MI	.18
OXIDES OF NITROGEN	G/MI	.21

SOUTHWEST RESEARCH INSTITUTE - DEPARTMENT OF EMISSIONS RESEARCH

FTP - VEHICLE EMISSIONS RESULTS -

PROJECT 08-1815-001

TEST ND. L-AH-07 RUN 1 VEHICLE MODEL 90 BUICK LESABRE ENGINE 3.8 L(232. CID) V-6 TRANSMISSION A4	Vehicle no. 88 Date 6/30/90 Bag Cart no. 2 / CVS no. 2 Dyno no. 3	test weight 1644. Actual Road Load Gasoline em-995-f Odometer 555. Ki	KG(3625. LBS) 5.4 KW(7.3 HP) M(345. MILES)
BAROMETER 742.70 MM HG(29.24 IN HG) RELATIVE HUMIDITY 58. PCT BAG RESULTS	DRY BULB TEMP. 22.8 DEG C(73. ABS. HUMIDITY 10.2 GM/KG	0 DEG F) NOX HUMIDITY CORRE	CTION FACTOR .98
BAG NUMBER DESCRIPTION	1A 1B COLD TRANSIENT COLD TRANSI 0-140 SEC 140-505 SE	2 ENT STABILIZED I C	3 Hot transient
BLOWER DIF P MM. H20(IN. H20) BLOWER INLET P MM. H20(IN. H20) BLOWER INLET TEMP. DEG. C(DEG. F) BLOWER REVOLUTIONS TOT FLOW STD. CU. METRES(SCF) THC SAMPLE METER/RANGE/PPM THC BCKGRD METER/RANGE/PPM CO SAMPLE METER/RANGE/PPM CO SAMPLE METER/RANGE/PPM CO SAMPLE METER/RANGE/PPM CO2 SAMPLE METER/RANGE/PPM NOX SCROD METER/RANGE/PPM NOX BCKGRD METER/RANGE/PPM NOX BCKGRD METER/RANGE/PPM DILUTION FACTOR THC CONCENTRATION PPM CO CONCENTRATION PPM CO2 CONCENTRATION PPM THC MASS GRAMS CO MASS GRAMS CO2 MASS GRAMS	767.1 (30.2) 774.7 (30.1) 762.0 (30.0) 767.1 (30.1) 43.3 (110.0) 41.7 (107) $11240.$ $29328.$ 20.9 $(739.)$ 54.7 (19) $34.0/$ $2/$ $34.$ $13.6/$ $2/$ $11.7/$ $2/$ $12.$ $12.3/$ $2/$ $84.1/$ $12/$ $84.$ $5.5/$ $12/$ $.7/$ $12/$ $1.$ $.4/$ $12/$ $63.1/$ $1/1.1598$ $67.6/$ $1/1$ $2.2/$ $1/$ $.0388$ $2.4/$ $1/$ $30.8/$ $2/$ 30.8 $2.2/$ $1/$ $.3/$ $2/$ $.3$ $.3/$ $1/$ 11.444 10.75 $23.$ $2.$ $80.$ $5.$ 1.1244 1.2059 30.6 $.5$ $.28$ $.08$ 1.95 $.30$ 431.0 1208.7 1.220 $.05$ $.05$	5) 777.2 (30.6) 2) 769.6 (30.3) .0) 40.0 (104.0) 69571. 33.) 130.2 (4598.) 13. 11.6/ 2/ 11. 12. 12.1/ 2/ 12. 5. 3.4/ 12/ 3. 05/ 12/ 0. .2443 86.9/ 14/ .7960 .0423 11.9/ 14/ .0395 .6 .0/ 1/ .0 .1 .0/ 1/ .0 .1 .0/ 1/ .0 .6 .3. .7588 .0 .02 .41 1809.1 .00	782.3 (30.8) 772.2 (30.4) 41.7 (107.0) 40487. 75.5 (2666.) 12.9/ 2/ 13. 11.9/ 2/ 12. 5.3/ 12/ 5. .5/ 12/ 0. 97.3/ 14/1.0658 12.0/ 14/.0399 39.9/ 1/ 10.0 .0/ 1/ .0 12.55 2. 4. 1.0290 10.0 .08 .39 1422.7 1.42
THC GRAMS/MI CO GRAMS/MI CO2 GRAMS/MI NOX GRAMS/MI FUEL ECONDMY IN MPG RUN TIME SECONDS MEASURED DISTANCE MI SCF, DRY DFC, WET (DRY) TOT VOL (SCM) / SAM BLR (SCM)	.42 .03 2.92 .10 644.4 418.0 1.80 .02 13.64 19.20 21.20 140. 366. .67 3.56 2.89 .971 .970 .970 .909(.892) 75.7/ .00	.00 .11 468.4 .00 18.93 20.42 868. 3.86 7.45 .974 .973 .933(.9 205.7/	.02 .11 397.1 .40 22.32 505. 3.58 .972 16) .00
COMPOSITE RESULTS TEST NUMBER L-AH-07	C	ARBON DIDXIDE G/MI	3-8A6 447.2

BAROMETER	MM HG	742.7
HUMIDITY	G/KG	10.2
TEMPERATURE	DEG C	22.8

CARBON DIDXIDE G/MI 447.2 FUEL ECONOMY MPG 19.83 HYDROCARBONS (THC) G/MI .03 CARBON MONOXIDE G/MI .22 OXIDES OF NITROGEN G/MI .18

Southwest research institute - department of emissions research FTP - vehicle emissions results -PROJECT 08-1815-001

TEST ND. L-AH-08 RUN 1 VEHICLE MODEL 90 BUICK LESABRE ENGINE 3.8 L(232. CID) V-6 TRANSMISSION A4	VEHICLE NO.88 DATE 7/1/90 BAG CART NO.2 DYNO NO. 3	/ CVS NO. 2	TEST WEIGHT 1644 ACTURL ROAD LOAD GASOLINE EM-1035 ODOMETER 576.	. KG(3625. LBS) 5.4 KW(7.3 HP) -F KM(358. MILES)
BARDMETER 743.71 MM HG(29.28 IN HG)	DRY BULB TEMP. (22.8 DEG C(73.0 DEG F		
RELATIVE HUMIDITY 53. PUT	HOS. HUMIDITI	1.0 04/10	NUX HUMIDIIY CORN	ELIIUN FHUIUK 1.03
DAG NUMBER	10	18	2	2
DESCRIPTION	COLD TRANSIENT 0-140 SEC	COLD TRANSIENT 140-505 SEC	STABILIZED	HOT TRANSIENT
BLOWER DIE P MM. H2O(IN. H2O)	769.6 (38.3)	772.2 (30.4)	772.2 (30.4)	772.2 (38.4)
BLOWER INLET P MM. H20(IN. H20)	762.0 (38.0)	762.0 (30.0)	762.0 (30.0)	762.0 (30.0)
BLOWER INLET TEMP. DEG. C(DEG. F)	42.8 (109.0)	42.2 (108.0)	41.1 (106.0)	42.2 (108.0)
BLOWER REVOLUTIONS	11223.	29283.	69495.	40486.
TOT FLOW STD. CU. METRES(SCF)	21.0 (740.)	54.7 (1932.)	130.1 (4595.)	75.7 (2671.)
THC SAMPLE METER/RANGE/PPM	70.1/ 2/ 69.	12.8/ 2/ 13.	18.2/ 2/ 18.	14.1/ 2/ 14.
THE BEKERD METER/RANGE/PPM	9.6/ 2/ 9.	9.7/ 2/ 10.	9.7/ 2/ 10.	9.4/ 2/ 9.
CO SAMPLE METER/RANGE/PPM	62.9/ 14/ 298.	6.8/ 12/ 7.	4.3/ 12/ 4.	22.9/ 12/ 22.
CO BCKGRD METER/RANGE/PPM	.0/ 14/ 0.	.2/ 12/ 0.	.0/ 12/ 0.	.2/ 12/ 0.
CO2 SAMPLE METER/RANGE/PCT	65.8/ 1/1.2105	72.1/ 1/1.3290	88.0/ 14/ .8204	98.6/ 14/1.1069
CO2 BCKGRD METER/RANGE/PCT	2.5/ 1/ .0441	2.5/ 1/ .0441	11.7/ 14/ .0388	11.8/ 14/ .0391
NOX SAMPLE METER/RANGE/PPM	38.0/ 2/ 38.0	1.5/ 1/ .4	.3/ 1/ .1	31.9/ 1/ 8.0
NOX BCKGRD METER/RANGE/PPM	.1/ 2/ .1	.0/ 1/ .0	.1/ 1/ .0	.3/ 1/ .1
DILUTION FACTOR	10.76	10.07	16.30	12.07
THE CONCENTRATION PPM	61.	4.	1.	5.
CO CONCENTRATION PPM	277.	6.	4.	21.
CO2 CONCENTRATION PCT	1.1785	1.2893	.7841	1.0710
NOX CUNCENTRATION PPM	37.9	.4	.1	8.0
THE MASS GRAMS	.73	.13	.88	.24
LU MADO CAMPO	b./b	. 38	.60	1.86
LUC 75435 UKHF15	449.0	1291.8	1999. 6	1483.4
NUX PHOS GRHAD	1.07	. 184	.01	1.19
THC GRAMS/MI	1.05	.04	. 02	. 86
CD GRAMS/MI	9.68	.13	. 15	. 50
CO2 GRAMS/MI	643.0	443.8	482.0	399.3
NOX GRAMS/MI	2.24	.01	. 00	.32
FUEL ECONOMY IN MPG	13.40 18.	. 24 19. 97	18.39 20.0	5 22.15
RUN TIME SECONDS	148.	366.	868.	586.
MEASURED DISTANCE MI	.70 3.1	61 2.91	3.88 7.59	3.71
SLF, DRY	.968 .90	67 ,967	.971 .970	.969
DFC, WEI (DRY) TOT VOL (SCM) / SAM BLR (SCM)	.902(75.7/	.883) .00	.931(. 2 95. 8/	911) .00

COMPOSITE RESULTS

TEST NUMBERL-AH-08BAROMETERMM HG743.7HUMIDITYG/KG11.6TEMPERATUREDEG C22.8

Carbon Dioxide	G/MI	3-BAG 459.0
FUEL ECONOMY	MPG	19.31
Hydrocarbons (THC)	6/MI	.08
CARBON MONOXIDE	G/MI	.63
OXIDES OF NITROGEN	6/MI	. 18

Southwest Research Institute - Department of Emissions Research FTP - Vehicle Emissions Results -PROJECT 08-1815-001

TEST NO. L-AH-09 RUN 1 VEHICLE MODEL 90 BUICK LESABRE ENGINE 3.8 L(232. CID) V-6 TRANSMISSION A4	VEHICLE NO.88 DATE 7/2/90 BAG CART NO. 2 / CVS NO. 2 DYNO NO. 3		TEST WEIGHT 1644. KG(3625. LBS) ACTUAL ROAD LOAD 5.4 KW(7.3 HP) GASOLINE EM-1035-F ODOMETER 594. KM(369. MILES)	
BARDMETER 737.87 MM HG(29.05 IN HG) RELATIVE HUMIDITY 39. PCT BAG RESULTS	DRY BULB TEMP. 2 ABS. HUMIDITY S	27.2 DEG C(81.0 DEG F)).1 GM/KG	NOX HUMIDITY COR	RECTION FACTOR .95
BAG NUMBER	1A	iB	2	3
DESCRIPTION	COLD TRANSIENT 0-140 SEC	COLD TRANSIENT 140-505 SEC	STABILIZED	HOT TRANSIENT
BLOWER DIF P MM. H2O(IN. H2O)	762.0 (30.0)	762.0 (30.0)	772.2 (30.4)	762.0 (30.0)
BLOWER INLET P MM. H20(IN. H20)	756.9 (29.8)	756.9 (29.8)	762.0 (30.0)	756.9 (29.8)
BLOWER INLET TEMP. DEG. C(DEG. F)	43.3 (110.0)	42.8 (109.0)	41.7 (107.0)	42.2 (108.0)
BLOWER REVOLUTIONS	11218.	29190.	69383.	40468.
TOT FLOW STD. CU. METRES(SCF)	20.8 (733.)	54.1 (1909.)	128.6 (4543.)	75.0 (2649.)
THC SAMPLE METER/RANGE/PPM	28.3/ 2/ 28.	12.0/ 2/ 12.	9.4/ 2/ 9.	11.2/ 2/ 11.
THC BCKGRD METER/RANGE/PPM	8.3/ 2/ 8.	9.7/ 2/ 10.	9.6/ 2/ 9.	9.3/ 2/ 9.
CO SAMPLE METER/RANGE/PPM	26.2/ 13/ 60.	8.0/ 12/ 8.	7.9/ 12/ 8.	9.6/ 12/ 9.
CO BCKGRD METER/RANGE/PPM	1.0/ 13/ 2.	2.3/ 12/ 2.	1.9/ 12/ 2.	1.2/ 12/ 1.
CO2 SAMPLE METER/RANGE/PCT	65.6/ 1/1.2067	70.2/ 1/1.2932	87.7/ 14/ .8137	97.1/ 14/1.0596
CO2 BCKGRD METER/RANGE/PCT	2.5/ 1/ .0441	2.7/ 1/ .0476	12.0/ 14/ .0399	12.2/ 14/ .0407
NOX SAMPLE METER/RANGE/PPM	51.3/ 2/ 51.3	1.6/ 1/ .4	.3/ 1/ .1	38.0/ 1/ 9.6
NOX BCKGRD METER/RANGE/PPM	.1/ 2/ .1	.1/ 1/ .0	.0/ 1/ .0	.0/ 1/ .0
DILUTION FACTOR	11.03	10.35	16.43	12.62
THC CONCENTRATION PPM	21.	3.	0.	3.
CO CONCENTRATION PPM	56.	5.	6.	8.
CO2 CONCENTRATION PCT	1.1666	1.2502	.7762	1.0222
NOX CONCENTRATION PPM	51.2	.4	.1	9.6
THC MASS GRAMS	.25	. 10	. 03	.11
CO MASS GRAMS	1.35	. 34	.85	.69
CD2 MASS GRAMS	443.4	1237.5	1828.2	1404.1
NDX MASS GRAMS	1.93	. 04	.02	1.30
THC grams/mi	. 36	.03	.01	.03
CO GRAMS/MI	1,96	. 12	. 22	. 19
CO2 GRAMS/MI	643.9	419.0	469.2	391.8
NDX GRAMS/MI	2.80	.01	. 00	. 36
FUEL ECONOMY IN MPG	13.68 19.	. 17 21. 15	18.89 20.	50 22.61
RUN TIME SECONDS	140.	365.	868.	506.
MEASURED DISTANCE MI	.69 3.6	54 2.95	3.90 7.4	8 3.58
SCF, DRY	.976 .97	76.975	.980 .97	9.978
DFC, WET (DRY)	. 905 (.894)	.932(.921)
tot Vol. (SCM) / SAM BLR (SCM)	74.8/	. 00	203.7/	. 00

MPOSITE RESULTS

TEST NUMBER		L-AH-09
BAROMETER	MM HG	737.9
HUMIDITY	G/KG	9.1
TEMPERATURE	DEG C	27.2

		3-BAG
CARBON DIOXIDE	G/MI	446.5
FUEL ECONOMY	MPG	19.87
hydrocarbons (THC)	G/MI	.03
CARBON MONOXIDE	G/MI	.26
OXIDES OF NITROGEN	G/MI	.21

SOUTHWEST RESEARCH INSTITUTE - DEPARTMENT OF EMISSIONS RESEARCH FTP - VEHICLE EMISSIONS RESULTS -PROJECT 08-1815-001

TEST NO. L-AH-10 RUN 1	VEHICLE NO.88		TEST WEIGHT 164	4. KG(3625. LBS)
VEHICLE MODEL 90 BUICK LESABRE	DATE 7/3/90		ACTUAL ROAD LOAD	5.4 KW(7.3 HP)
ENGINE 3.8 L(232. CID) V-6	BAG CART NO.2/CVS NO.2		GASOLINE EM-103	5-F
TRANSMISSION A4	DYNO NO. 3		ODOMETER 615.	KM(382. MILES)
BAROMETER 736.85 MM HG(29.01 IN HG) RELATIVE HUMIDITY 40. PCT BGG RESULTS	DRY BULB TEMP. ABS. HUMIDITY	23.3 DEG C(74.0 DEG F) 7.4 GM/KG) Nox humidity cor	RECTION FACTOR .90
BAG NUMBER	1A	1B	2	3
DESCRIPTION	COLD TRANSIENT	COLD TRANSIENT	STABILIZED	Hot tr ans ient
BLOWER DIF P MM. H2O(IN. H2O)	762.0 (30.0)	774.7 (30.5)	767.1 (30.2)	762.0 (30.0)
BLOWER INLET P MM. H2O(IN. H2O)	756.9 (29.8)	767.1 (30.2)	762.0 (30.0)	756.9 (29.8)
BLOWER INLET TEMP. DEG. C(DEG. F)	41.7 (107.0)	46.1 (115.0)	40.6 (105.0)	42.2 (108.0)
BLOWER REVOLUTIONS TOT FLOW STD. CU. METRES(SCF) THC SAMPLE METER/RANGE/PPM THC BCKGRD METER/RANGE/PPM CD SAMPLE METER/RANGE/PPM	11212. 20.8 (734.) 37.7/2/37. 10.7/2/11. 35.2/12/35	53.9 (1905.) 12.5/ 2/ 12. 11.0/ 2/ 11. 7.5/ 12/ 7	69395. 128.8 (4547.) 9.6/ 2/ 9. 9.6/ 2/ 9. 4.3/ 12/ 4	40479. 74.9 (2646.) 12.2/ 2/ 12. 10.3/ 2/ 10. 12.9/ 12/ 12.
CO BCKGRD METER/RANGE/PPM	.6/ 12/ 1.	.8/ 12/ 1.	.8/ 12/ 1.	.7/ 12/ 1.
CD2 SAMPLE METER/RANGE/PCT	65.6/ 1/1.2067	69.0/ 1/1.2706	87.2/ 14/ .8026	97.3/ 14/1.0658
CD2 BCKGRD METER/RANGE/PCT	2.6/ 1/.0459	2.6/ 1/ .0459	12.8/ 14/ .0430	12.9/ 14/.0434
NOX SAMPLE METER/RANGE/PPM	50.3/ 2/ 50.3	2.1/ 1/ .6	.0/ 1/ .0	33.3/ 1/ 8.4
NOX BCKGRD METER/RANGE/PPM	.2/ 2/ .2	.3/ 1/ .1	.0/ 1/ .0	.0/ 1/ .0
DILUTION FACTOR	11.04	10.53	16.67	12.54
THC CONCENTRATION PPM	28.	3.	1.	3.
CO CONCENTRATION PPM	34.	6.	3.	11.
CO2 CONCENTRATION PCT	1.1650	1.2291	.7621	1.8258
NOX CONCENTRATION PPM	50.1	.5	.0	8.4
THC MASS GRAMS	.33	.08	.04	.12
CO MASS GRAMS	.81	.39	.49	1.80
CO2 MASS GRAMS	443.2	1214.0	1796.7	1407.4
NOX MASS GRAMS	1.80	.84	.00	1.09
THC GRAMS/MI CD GRAMS/MI CO2 GRAMS/MI NOX GRAMS/MI	.50 1.22 663.0 2.69	.03 .14 419.0 02	.01 .13 467.1	.03 .28 398.6 31
FUEL ECONOMY IN MPG RUN TIME SECONDS MEASURED DISTANCE MI SCF. DRY	13.31 19. 140. .67 3.5	.04 21.15 365. 57 2.90 75 .975	18.97 20. 867. 3.85 7.3	48 22.22 586. 8 3.53 9 .977
DFC, WET (DRY)	.906(.894)	.933 (.921)
TOT VOL (SCM) / SAM BLR (SCM)	74.7/	.08	203.7/	.00
COMPOSITE RESULTS				3-BAG

TEST NUMBERL-AH-10BAROMETERMM HG736.9HUMIDITYG/KG7.4TEMPERATUREDEG C23.3

CARBON DIOXIDE G/MI 447.9 FUEL ECONOMY MPG 19.80 HYDROCARBONS (THC) G/MI .04 CARBON MONOXIDE G/MI .21 OXIDES OF NITROGEN G/MI .19

SOUTHWEST RESEARCH INSTITUTE - DEPARTMENT OF EMISSIONS RESEARCH FTP - VEHICLE EMISSIONS RESULTS -

PROJECT 08-1815-001

TEST NO. LS-AH-11 RUN 1 VEHICLE MODEL 90 BUICK LESABRE ENGINE 3.8 L (232. CID) V-6	VEHICLE NO.88 Date 7/10/90 Bag Cart No. 2 / CVS No. 2		test weight 1644 Actual Road Load Gasoline em-995-	•. K6(3625. LBS) 5.4 KW(7.3 HP) F
IRANSMISSIUN A4	DYNO NO. 3		ODOMETER 650.	KM(404. MILES)
BAROMETER 739.65 MM H6(29.12 IN H6)	DRY BULB TEMP. 26	.1 DEG C(79.0 DEG F)		
RELATIVE HUMIDITY 47. PCT BAG RESULTS	ABS. HUMIDITY 10.	2 GM/KG	NOX HUMIDITY CORF	ECTION FACTOR .98
BAG NUMBER	10	18	2	2
DESCRIPTION	COLD TRANSIENT	COLD TRONSTENT		UNT TRANSIENT
	0~140 SEC	140~505 SEC	JINDICILLU	
BLOWER DIF P MM. H2O(IN. H2O)	762.0 (30.0)	762.0 (30.0)	787.4 (31.0)	769.6 (30.3)
BLOWER INLET P MM. H2O(IN. H2O)	756.9 (29.8)	759.5 (29.9)	762.0 (30.0)	759.5 (29.9)
BLOWER INLET TEMP. DEG. C(DEG. F)	43.3 (110.0)	42.8 (109.0)	42.8 (109.0)	42.8 (109.0)
BLOWER REVOLUTIONS	11210.	29218.	6941 0.	40447.
TOT FLOW STD. CU. METRES(SCF)	20.8 (734.)	54.2 (1915.)	128.7 (4545.)	75.1 (2651.)
THC SAMPLE METER/RANGE/PPM	35.9/ 2/ 36.	16.0/ 2/ 16.	11.6/ 2/ 12.	14.9/ 2/ 15.
THC BCKGRD METER/RANGE/PPM	11.0/ 2/ 11.	11.5/ 2/ 11.	10.9/ 2/ 11.	9.7/ 2/ 10.
CU SAMPLE METER/RANGE/PPM	38.5/ 12/ 38.	9.6/ 12/ 9.	7.9/ 12/ 8.	30.0/ 12/ 29.
CU BUKGRD METER/RANGE/PPM	.8/ 12/ 1.	.5/ 12/ 0.	.3/ 12/ 0.	.5/ 12/ 0.
LUZ SAMPLE METER/RANGE/PUT	67.1/ 1/1.2349	69.7/ 1/1.2838	87.0/ 14/ .7982	97.6/ 14/1.0751
LUZ BUKGRD METER/RANGE/PCT	2.4/ 1/.0423	2.6/ 1/ .0459	12.6/ 14/ .0422	12.5/ 14/ .0418
NUX SHEPLE METER (RANGE/PPM	48.4/ 2/ 48.4	2.5/ 1/ .7	.3/ 1/ .1	42.1/ 1/ 10.6
NUX BUNGRU METER/KHNGE/PPM	.3/ 2/ .3	.6/ 1/ .2	.1/ 1/ .0	.3/ 1/ .1
THE CONCENTRATION DOM	10.79	10.42	16.75	12.41
CO CONCENTRATION PPM	26.	6.	1.	6.
CO CONCENTRATION OPT	36.	8.	7.	28.
NOY CONCENTRATION DOM	1.1965	1.2423	. 7584	1.0366
THE MOSS GROME	48.1	.5	.1	10.5
LUC MUSS CRUMS	. 31	.18	. 10	.26
CO2 MARS GRAMS	• OD	.53	1.06	2.43
NOX MOSS GROMS	400.0	1233.9	1/8/.3	1424.8
	1.00	.00	. 01	1.48
THC GRAMS/MI	. 46	.06	.03	.07
CO GRAMS/MI	1.28	. 18	. 27	.68
CD2 GRAMS/MI	675.1	424.7	462.6	396.5
NUX GRAMS/MI	2.79	. 82	. 00	. 41
FUEL ECONOMY IN MPG	13.07 18.75	5 20.86	19.15 20.54	¥ 22.29
KUN LIME SECONDS	140.	365.	868.	506.
MEHSUKED DISTANCE MI	.67 3.58	2.91	3.86 7.46	3.59
SUF, DKY	.973 .973	.973	.977 .976	. 975
UTL, WEI (DRY)	.905(.8	391)	.933(.9)18)
TUT VUL (SUM) / SAM BLR (SCM)	75.0/	. 00	203.8/	. 00

COMPOSITE RESULTS

TEST NUMBER		LS-AH-11
BAROMETER	MM HG	739.6
HUMIDITY	G/KG	10.2
TEMPERATURE	DEG C	26.1

		3-Bag
CARBON DIOXIDE	G/MI	446.4
FUEL ECONOMY	MPG	19.86
hydrocarbons (THC)	G/MI	. 06
CARBON MONOXIDE	G/MI	. 41
OXIDES OF NITROGEN	6/MI	.23

SOUTHWEST RESEARCH INSTITUTE - DEPARTMENT OF ENISSIONS RESEARCH FTP - VEHICLE EMISSIONS RESULTS -PROJECT 08-1815-001

TEST ND. LS-AH-12 RUN 1 VEHICLE MODEL 90 BUICK LESABRE ENGINE 3.8 L(232. CID) V-6 TRANSMISSION A4	VEHICLE NO.88 DATE 7/11/90 BAG CART NO. 2 / CVS NO. 2 DYNO NO. 3		TEST WEIGHT 1644 ACTUAL ROAD LOAD GASOLINE EM-995- ODOMETER 671.	TEST WEIGHT 1644. KG(3625. LBS) ACTUAL ROAD LOAD 5.4 KW(7.3 HP) GASOLINE EM-995-F DDOMETER 671. KM(417. MILES)	
BAROMETER 739.14 MM HG(29.10 IN HG) RELATIVE HUMIDITY 43. PCT	DRY BULB TEMP. ABS. HUMIDITY	25.6 DEG C(78.0 DEG F) 9.1 GM/KG	NOX HUMIDITY CORR	ECTION FACTOR .95	
BHG KEDULID	18	1B	2	3	
DESCRIPTION	COLD TRANSIENT 0-140 SEC	COLD TRANSIENT 140-505 SEC	STABILIZED	Hot transient	
BLOWER DIF P MM. H2O(IN. H2O) BLOWER INLET P MM. H2O(IN. H2O) BLOWER INLET TEMP. DEG. C(DEG. F)	762.0 (30.0) 756.9 (29.8) 43.3 (110.0)	767.1 (30.2) 762.0 (30.0) 42.8 (109.0)	762.0 (30.0) 756.9 (29.8) 42.8 (109.0)	764.5 (30.1) 756.9 (29.8) 42.8 (109.0)	
BLOWER REVOLUTIONS	11218.	29183.	69447.	40377.	
TOT FLOW STD. CU. METRES(SCF)	20.8 (734.)	54.1 (1911.)	128.9 (4551.)	74.9 (2646.)	
THC SAMPLE METER/RANGE/PPM	32.8/ 2/ 33.	13.5/ 2/ 13.	10.7/ 2/ 11.	12.0/ 2/ 12.	
THC BCKGRD METER/RANGE/PPM	9.5/2/9.	9.9/ 2/ 10.	10.2/ 2/ 10.	9.3/ 2/ 9.	
CO SAMPLE METER/RANGE/PPM	40.5/ 12/ 40.	14.2/ 12/ 14.	12.3/ 12/ 12.	19.3/ 12/ 19.	
CO BCKGRD METER/RANGE/PPM	2.3/ 12/ 2.	2.1/ 12/ 2.	1.6/ 12/ 2.	.9/ 12/ 1.	
CO2 SAMPLE METER/RANGE/PCT	66.6/ 1/1.2255	71.1/ 1/1.3102	88.3/ 14/ .82/3	98.4/ 14/1.1004	
CO2 BCKGRD METER/RANGE/PCT	2.8/ 1/ .0494	2.7/ 1/ .0476	13.5/ 14/ .0458	12.9/ 14/ .0434	
NOX SAMPLE METER/RANGE/PPM	51.0/ 2/ 51.0	2.8/ 1/ ./	1.3/ 1/ .3	33.1/ 1/ 0.0	
NOX BCKGRD METER/RANGE/PPM	.5/ 2/ .5	1.3/ 1/ .3	.8/ 1/ .2	1- 1/ 1/ -1	
DILUTION FACTOR	10.87	10.21	10.10	7	
THE CONCENTRATION PPM	24.	3.	1.	17	
CO CONCENTRATION PPM	۵۵. ۱۹۹۷	11.	10.	1 96.96	
CU2 CUNCENTRATION PCT	1.1505	1.20/2	. (040	9.7	
NUX CUNCENTRATION PPM	30.3	•**	• ± 00	. 15	
	. 27	- 14	.00	1.51	
	.00 440 (1055 6	1850 6	1454_A	
NDX MASS GRAMS	1.91	.04	.03	1.19	
THE GRAMS/MI	. 42	.05	. 02	. 84	
CO GRAMS/MI	1.28	.25	. 39	.42	
CD2 GRAMS/MI	655.4	428.8	4/3.0	402.0	
NOX GRAMS/MI	2.78	.91	.01	.33	
FUEL ECONOMY IN MPG	13.46 1	3.75 20.65	18.72 20.	10 21.99 E0E	
RUN TIME SECONDS	140.	364.	868.	343.	
MEASURED DISTANCE MI	.69 3.	.61 2.93	3.91 /.5	3 3.01 7 07/	
SCF, DRY	.975 .	974 .974	.978 .97	/ .9/6	
DFC, WET (DRY)	. 904	(.891)	.931(.918)	
TOT VOL (SCM) / SAM BLR (SCM)	74.9	/ .00	203.8/	. 1946	

COMPOSITE RESULTS

TEST NUMBERLS-AH-12BAROMETERMM HG739.1HUM IDITYG/KG9.1TEMPERATUREDE6 C25.6

		3-BAG
CARBON DIOXIDE	G/MI	453.5
FUEL ECONOMY	MPG	19.55
Hydrocarbons (THC)	G/MI	.05
CARBON MONOXIDE	G/MI	. 41
OXIDES OF NITROGEN	6/MI	.21

SOUTHNEST RESEARCH INSTITUTE - DEPARTMENT OF EMISSIONS RESEARCH FTP - VEHICLE EMISSIONS RESULTS -

PROJECT 08-1815-001

TEST NO. LS-OE-13 RUN 1 VEHICLE MODEL 90 BUICK LESABRE ENGINE 3.8 L(232. CID) V-6 TRANSMISSION A4	VEHICLE NO.88 DATE 7/12/90 BAG CART NO. 2 DYND NO.	0 /CVSND.2 3	test weight 164 Actual Road Load Gasoline em-103 Odometer 703.	4. KG(3625. LBS) 5.4 KW(7.3 HP) 5-F KM(437. MILES)
BAROMETER 741.68 MM H5(29.20 IN H6)	DRY BULB TEMP.	22.8 DEG C(73.0 DEG F)	
RELATIVE HUMIDITY 61. PUT BAG RESULTS	ABS. HUMIDITY :	10.9 GM/KG	NOX HUMIDITY COR	RECTION FACTOR 1.01
BAG NUMBER	18	1B	2	3
DESCRIPTION	COLD TRANSIENT 0-140 SEC	COLD TRANSIENT 140-505 SEC	STABILIZED	HOT TRANSIENT
BLOWER DIF P MM. H2O(IN. H2O)	762.0 (30.0)	762.0 (30.0)	762.0 (30.0)	767.1 (30.2)
BLOWER INLET P MM. H2D(IN, H2D)	756.9 (29.8)	756.9 (29.8)	756.9 (29.8)	762.0 (30.0)
BLUWER INLET TEMP. DEG. C(DEG. F)	43.3 (110.0)	42.8 (109.0)	42.8 (109.0)	43.3 (110.0)
BLUWER REVULUIIUNS	11212.	29213.	69433.	40431.
THE SAMELE METER/RESISCE)	20.9 (737.)	54.4 (1922.)	129.3 (4567.)	75.2 (2655.)
THC BCKGRD METER/RONGE/DDM	14.C/ 3/14C. 0/ 7/ 0	13.3/ 2/ 13.	9.6/ 2/ 10.	16.0/ 2/ 16.
CO SAMPLE METER/RANGE/PPM	82.3/ 14/ 499	A 2/ 12/ B	0.1/ 2/ 8. 17.0/ 12/ 17	8.07 C/ 8.
CO BCKGRD METER/RANGE/PPM	.4/ 14/ 2.	6/ 12/ 1	7/ 12/ 1	47.1/ 12/ 48.
CD2 SAMPLE METER/RANGE/PCT	57.4/ 1/1.0531	67.8/ 1/1.2480		-J/ 16/ 16.
CO2 BCKGRD METER/RANGE/PCT	2.2/ 1/ .0388	2.4/ 1/ .0423	11.8/ 14/ .9391	11.9/ 14/ 0395
NOX SAMPLE METER/RANGE/PPM	36.5/ 2/ 36.5	1.8/ 1/ .5	.0/ 1/ .0	23.2/ 1/ 5.9
NOX BCKGRD METER/RANGE/PPM	.2/ 2/ .2	.2/ 1/ .1	.0/ 1/ .0	.0/ 1/ .0
DILUTION FACTOR	12.12	10.72	16.79	12.90
THC CONCENTRATION PPM	134.	7.	2.	9.
CO CONCENTRATION PPM	383.	7.	11.	46.
CO2 CONCENTRATION PCT	1.0175	1.2097	.7592	.9961
NUX CUNCENTRATION PPM	36.3	. 4	.0	5.9
THL MHSS GRAMS	1.62	.21	.15	. 37
	9.30	. 44	1.73	4.03
NOX MOSS EROMS	388.7	1205.3	1797.8	1371.2
CHING CONT AUT	1.46	. 04	. 00	. 85
THC GRAMS/MI	2.40	.07	. 04	. 10
LU 3KH495/約1 FD2 GDAME/MT	13.82	. 15	. 45	1.12
	5/7.9	419.1	463.6	382.5
FUEL FORIDAY IN MOC	2.1/	- 20.	.00	.24
RINTIME	14.50 19	.48 21.13	19.09 20.8	1 23.06
MEASURED DISTANCE MI	1 40. 27 7	300. 55 2.00	86/. 3.00 7.11	565.
SCF, DRY	.0/ J. Q701 Q	JJ C.00	3.00 /.4b	۲ <u>۲</u> ۰ ۲۰
DFC, WET (DRY)	. 9101 - 7 . 9101	. A92)	.7/۵ .۶/۵ ۱۸۲۸	7/1 015)
TOT VOL (SCM) / SAM BLR (SCM)	75.3/	. 69	204.5/	.00
COMPOSITE RESULTS				3- 80 6

POSITE RESULTS TEST NUMBER LS-DE-13 BARDMETER MM HG 741.7 HUMIDITY G/KG 10.9 TEMPERATURE DEG C 22.8

		3 000
CARBON DIOXIDE	G/MI	438.4
FUEL ECONOMY	MPG	20.15
HYDROCARBONS (THC)	G/MI	.15
CARBON MONOXIDE	G/MI	1.10
OXIDES OF NITROGEN	G/MI	.15

SOUTHWEST RESEARCH INSTITUTE - DEPARTMENT OF EMISSIONS RESEARCH FTP - VEHICLE EMISSIONS RESULTS -PROJECT 88-1815-601

TEST NO. LS-OE-14 RUN 1 VEHICLE MODEL 90 BUICK LESABRE ENGINE 3.8 L(232. CID) V-6 TRANSMISSION A4	VEHICLE NO.88 Date 7/13/90 BAG Cart NO.2 DYNO NO. 3	/ CVS ND. 2	test Weight 1644. Actual Road Load Gasoline em-1026- Odometer 764. K	KG(3625. LBS) 5.4 KW(7.3 HP) F M(475. MILES)
BARDMETER 748.56 MM HG(29.16 IN HG) RELATIVE HIMIDITY 34 PCT	DRY BULB TEMP. ABS. HUMIDITY	27.8 DEG C(82.0 DEG F) 8.1 GM/KG	NOX HUMIDITY CORRE	CTION FACTOR .92
BAG RESULTS				
BAG NUMBER	1A	1B	2	3
DESCRIPTION	COLD TRANSIENT 0-140 SEC	COLD TRANSIENT 149-505 SEC	STABILIZED	HOT TRANSIENT
BLOWER DIF P MM. H2O(IN. H2O)	762.0 (38.0)	769.6 (38.3)	769.6 (30.3)	767.1 (38.2)
BLOWER INLET P MM. H20(IN. H20)	756.9 (29.8)	762.0 (30.0)	762.0 (30.0)	762.0 (30.0)
BLOWER INLET TEMP. DEG. C(DEG. F)	43.3 (110.0)	43.3 (118.0)	42.8 (109.0)	42.8 (109.0)
BLOWER REVOLUTIONS	11216.	29241.	69453.	40383.
TOT FLOW STD. CU. METRES(SCF)	20.8 (736.)	54.3 (1917.)	129.1 (4558.)	/5.1 (2650.)
THC SAMPLE METER/RANGE/PPM	12.0/ 3/ 120.	15.0/ 2/ 15.	9.9/ 2/ 10.	14.0/ 2/ 14.
THC BCKGRD METER/RANGE/PPM	.7/ 3/ 7.	6.5/ 2/ 6.	5.4/ 2/ 5 .	8.9/ 2/ 3.
CO SAMPLE METER/RANGE/PPM	58.9/ 14/ 268.	9.2/ 12/ 9.	15.4/ 12/ 13.	2/.4/ 12/ C/.
CO BCKGRD METER/RANGE/PPM	.1/ 14/ 0.	.5/ 12/ 0.	.3/ 1¢/ 10.	.47/ 1C/ 0.
CO2 SAMPLE METER/RANGE/PCT	96.0/ 14/1.0265	66.4/ 1/1.221/	11 0/ 14/ 1//CO	11 5/ 14/1.0149
CO2 BCKGRD METER/RANGE/PCT	11.2/ 14/ .0369	2.2/ 1/ .0388	11.0/ 14/ .0001	27 7/ 1/ 95
NOX SAMPLE METER/RANGE/PPM	31.17 = 27 = 31.1	4. // 1/ 1.C	1.07 17 .0	1/ 1/ 2/
NOX BCKGRD METER/RANGE/PPM	.3/ 2/ .3	.b/ 1/ .C	.1/ 1/ .10 17 79	13 15
DILUTION FACTOR	12.09	10.30	17.30 6	6
THE CONCENTRATION PPM	113.	7. C	т. 14	26.
CU LUNUENTRATION PPM	COU. 0027	1 1945	7787	. 9798
LUZ LUNUENINHIIUN PUI	- 77-7	1.1003		9.5
NUX LUNCENTRHIION PPM	176	28	.29	.25
Inl mar crans	6 30	51	2.14	2.23
CO 11102 COMPS	378.8	1179.4	1744.6	1346.5
NOX MASS GRAMS	1.13	. 10	.05	1.25
THC GRAMS/MI	2.03	. 10	. 07	.07
Co grams/mi	9.43	. 18	.56	.63
CO2 GRAMS/MI	566.3	485.0	453.5	3/8.8
NOX GRAMS/MI	1.69	. 04	.01	
FUEL ECONOMY IN MPG	15.09 2	0.18 21.87	19.51 21.1	ბ ნეფნ
RUN TIME SECONDS	140.	365.	868. D 05 7 (9	303.
MEASURED DISTANCE MI	.67 3	.58 2.91	<u> చ.రం /.40</u>	5, 33 000
SCF, DRY	.980	978 .978	.782 .781	. 700
DFC, WET (DRY)	.912	(.982)	. 1351 .	7537
tot vol (SCM) / SAM BLR (SCM)	75.1	/ .1090	204.17	. 00

COMPOSITE RESULTS

TEST NUMBERLS-DE-14BAROMETERMM HG740.7HUMIDITYG/KG8.1TEMPERATUREDEG C27.8

		3-BAG
CARBON DIOXIDE	G/MI	429.2
FUEL ECONOMY	MPG	20.59
hydrocarbons (THC)	6/MI	. 15
CARBON MONOXIDE	6/MI	. 85
OXIDES OF NITROGEN	6/MI	.18

SOUTHWEST RESEARCH INSTITUTE - DEPARTMENT OF EMISSIONS RESEARCH

FTP - VEHICLE EMISSIONS RESULTS -

PROJECT 08-1815-001

TEST ND. LS-AH-15 RUN 1 VEHICLE MODEL 90 BUICK LESABRE ENGINE 3.8 L(232. CID) V-6 TRANSMISSION A4	VEHICLE NO.88 DATE 7/14/90 BAG CART NO. 2 DYNO NO. 3) / CVS NO. 2 3	test weight 164 Actual Road Load Gasoline em-107 Odometer 785,	94. KG(3625. LBS)) 5.4 KW(7.3 HP) 26-F KM(488. MILES)
BARDMETER 742.19 MM H6 (29.22 IN H6)	DRY BULB TEMP.	22.2 DEG C(72.0 DEG F)	
RELATIVE HUMIDITY 46. PCT	ABS. HUMIDITY	7.8 GM/KG	NOX HUMIDITY COP	RECTION FACTOR .91
	19	18	2	3
DESCRIPTION	LULU IKANSIENI Ruita CCC	CULD TRANSIENT	STABILIZED	HOT TRANSIENT
	07140 SEL	140-303 SEC		
BLOWER DIF P MM. H2D(IN. H2D)	774.7 (30.5)	777.2 (39.6)	767.1 (397.2)	764 5 (30) 1)
BLOWER INLET P MM. H2O(IN. H2O)	764.5 (39.1)	769.6 (30.3)	762.0 (30.0)	759.5 (29.9)
BLOWER INLET TEMP. DEG. C(DEG. F)	37.2 (99.0)	37.8 (100.0)	38.9 (102.0)	42.8 (109.0)
BLOWER REVOLUTIONS	11224.	29292.	69443.	49475.
TOT FLOW STD. CU. METRES(SCF)	21.1 (746.)	55.0 (1943.)	138.3 (4682.)	75.4 (2664.)
THC SAMPLE METER/RANGE/PPM	34.0/ 2/ 34.	13.0/ 2/ 13.	10.3/ 2/ 10.	18.6/ 2/ 11.
THC BCKGRD METER/RANGE/PPM	8.3/ 2/ 8.	9.0/ 2/ 9.	8.7/2/9.	7.5/ 2/ 7.
CO SAMPLE METER/RANGE/PPM	29.0/ 12/ 28.	25.9/ 12/ 25.	9.9/ 12/ 10.	24.8/ 12/ 24.
CO BCKGRD METER/RANGE/PPM	1.4/ 12/ 1.	1.5/ 12/ 1.	.9/ 12/ 1.	.3/ 12/ 0.
CO2 SAMPLE METER/RANGE/PCT	62.2/ 1/1.1429	67.4/ 1/1.2405	86.6/ 14/ .7894	59.9/ 1/1.0999
CD2 BCKGRD METER/RANGE/PCT	2.4/ 1/ .0423	2.5/ 1/.0441	11.8/ 14/ .0391	2.3/ 1/.0406
NUX SAMPLE METER/RANGE/PPM	36.9/ 2/ 36.9	9.4/ 1/ 2.4	1.1/ 1/ .3	40.5/ 1/ 10.2
NUX BCKGRD METER/RANGE/PPM	.4/ 2/ .4	1.1/ 1/ .3	.4/ 1/ .1	.8/ 1/ .2
DILUTION FACTOR	11.66	1 0. 77	16.93	12.15
	26.	5.	2.	4.
	26.	23.	8.	23.
LUZ LUNDENTRATION PCT	1.1042	1.2005	. 7526	1.0626
NUX CUNUENTRATIUN PPM	36.6	2.2	.2	10.0
100 MADO CRAMO	. 32	. 15	. 16	. 16
CO MARS CRAMS	.64	1.47	1.28	2.02
NBY MORE CROME	427.1	1209.5	1795.7	1467.6
CIRANO CCHR NUN	1.35	.21	. 04	1.31
THC GRAMS/MI	. 48	.05	. 914	04
CD GRAMS/MI	.95	. 51	.33	. 56
CO2 GRAMS/MI	634.0	416.4	464.5	408.5
NOX GRAMS/MI	2.00	.07	.01	.37
FUEL ECONOMY IN MPG	13.92 19.	.33 21.25	19.07 20.3	23 21.65
RUN TIME SECONDS	140.	366.	868.	505.
MEASURED DISTANCE MI	.67 3.5	58 2 .90	3.87 7.4	3.59
SUF, DRY	.975 .97	74 .974	.978 .97	7.975
DFC, WET (DRY)	. 909 (. 896)	.932(.919)
iui vol (SCM) / SAM Blr (SCM)	76.2/	. 00	205.8/	. 00
COMPOSITE RESULTS				2.000
TEST NUMBER LS-AH-15		CARBON DI	OXIDE G/MT	3-10HB 447.6
			write	

		- Ini I
BAROMETER	MM HG	742.2
HUMIDITY	G/KG	7.8
TEMPERATURE	DEG C	22.2

CARBON DIOXIDE	G/MI	447.6
FUEL ECONOMY	MPG	19.78
hydrocarbons (THC)	G/MI	.06
CARBON MONOXIDE	G/MI	.45
OXIDES OF NITROGEN	G/MI	.20

K-15

Southwest research institute - department of emissions research FTP - VEHICLE Emissions results -PROJECT 08-1815-001

TEST ND. LS-AH-16 RUN 1 VEHICLE MODEL 90 BUICK LESABRE ENGINE 3.8 L(232. CID) V-6 TRANSMISSION A4	VEHICLE NO.88 Date 7/18/90 Bag Cart No. 2 Dyno No. 3	/ CVS NO. 2	TEST WEIGHT 1644 ACTUAL ROAD LOAD GASOLINE EM-1026 ODOMETER 842.	. KG(3625. LBS) 5.4 KW(7.3 HP) -F KM(523. MILES)
BAROMETER 742.19 MM HG(29.22 IN HG) RELATIVE HUMIDITY 60. PCT BAG RESULTS	DRY BULB TEMP. ABS. HUMIDITY 1	25.0 DEG C(77.0 DEG F) 2.1 GM/KG	NOX HUMIDITY CORR	ECTION FACTOR 1.05
BAG NUMBER DESCRIPTION	1A COLD TRANSIENT 0-140 SEC	1B COLD TRANSIENT 140-505 SEC	2 STABILIZED	3 Hot transient
BLOWER DIF P MM. H20(IN. H20) BLOWER INLET P MM. H20(IN. H20) BLOWER INLET TEMP. DEG. C(DEG. F) BLOWER REVOLUTIONS TOT FLOW STD. CU. METRES(SCF) THC SAMPLE METER/RANGE/PPM THC BCKGRD METER/RANGE/PPM CO SAMPLE METER/RANGE/PPM CO BCKGRD METER/RANGE/PPM CO2 SAMPLE METER/RANGE/PPM CO2 SAMPLE METER/RANGE/PPM NOX SAMPLE METER/RANGE/PPM NOX SCHRD METER/RANGE/PPM DILUTION FACTOR THC CONCENTRATION PPM CD CONCENTRATION PPM	759.5 (29.9) 759.5 (29.9) 43.3 (110.0) 11225. 20.9 (738.) 29.7/2/30. 9.5/2/9. 10.3/12/10. .6/12/1. 65.4/1/1.2030 2.5/1/.0441 40.2/2/40.2 .3/2/.3 11.10 21. 9.	774.7 (30.5) 767.1 (30.2) 42.8 (109.0) 29233. 54.4 (1921.) 14.2/ 2/ 14. 9.7/ 2/ 10. 12.1/ 12/ 12. .5/ 12/ 0. 68.3/ 1/1.2575 2.6/ 1/ .0459 2.4/ 1/ .6 .2/ 1/ .1 10.64 5. 11.	764.5 (30.1) 756.9 (29.8) 42.8 (109.0) 69472. 129.5 (4573.) 12.4/ 2/ 12. 10.1/ 2/ 10. 14.9/ 12/ 14. .5/ 12/ 0. 87.3/ 14/ .8048 12.2/ 14/ .0407 .2/ 1/ .1 .0/ 1/ .0 16.60 3. 13.	774.7 (30.5) 767.1 (30.2) 42.8 (109.0) 40449. 75.3 (2659.) 13.7/ 2/ 14. 9.7/ 2/ 10. 20.6/ 12/ 20. .4/ 12/ 0. 96.9/ 14/1.0535 12.3/ 14/.0411 32.3/ 1/ 8.1 .2/ 1/ .1 12.68 5. 19. 19.
CO2 CONCENTRATION PCT NDX CONCENTRATION PPM THC MASS GRAMS CO MASS GRAMS CO2 MASS GRAMS NDX MASS GRAMS	1.1628 39.9 .25 .22 445.0 1.67	1.2159 .6 .17 .68 1211.4 .06	.7665 .1 .22 2.03 1817.5 .01	8.1 .21 1.65 1400.1 1.22
THE GRAMS/MI CD GRAMS/MI CO2 GRAMS/MI NOX GRAMS/MI FUEL ECONOMY IN MPG RUN TIME SECONDS MEASURED DISTANCE MI SEF, DRY DFC, WET (DRY) TOT VOL (SEM) / SAM BLR (SEM)	.37 .32 657.8 2.48 13.45 1 140. .68 3 .970 . .907 75.3	.06 .23 414.8 .02 9.22 21.35 365. .60 2.92 969 .969 (.890) / .08	.06 .52 469.1 .00 18.86 20.5 868. 3.87 7.44 .973 .975 .933(.204.8/	.06 .46 388.0 .34 58 22.81 505. 8 3.61 2 .971 .915) .00
COMPOSITE RESULTS TEST NUMBER LS-AH-16		Carbon I	DIOXIDE G/MI	3-8AG 445.0

BAROMETER MM HG 742.2 HUMIDITY G/KG 12.1 TEMPERATURE DEG C 25.0

		3-886
CARBON DIOXIDE	6/MI	445,0
FUEL ECONOMY	MPG	19.92
Hydrocarbons (THC)	G/MI	.07
CARBON MONOXIDE	G/MI	. 45
OXIDES OF NITROGEN	G/MI	. 20

APPENDIX L

1990 TOYOTA CELICA CATALYST CONFIGURATION AND EMISSIONS

Table L-

- 1 Toyota Celica Catalyst Configurations and FTP Emissions
- 2 Toyota Celica Test Segment Emissions
- 3 Toyota Celica -- Selected Methane, Benzene, and Toluene Measurements

TABLE L-1. TOYOTA CELICA CATALYST CONFIGURATIONS AND FTP EMISSIONS

		<u> </u>									-		
TEST	TEST	ODOMETER		AIRFLOW		SCTION ON. BCC			ISSIME d.	im's SNO	 	UFI. BCO	
DATE	NUMBER	MILES	TEST DESCRIPTION	RATE, cfm	BAG IA	BAG 3	FUEL	C02	HC	8	NOR	mi/gal	NOTES
	CARB BASELD	NE TESTING											
03-08-90	C-0E-0	41	OE-STOCK CATALYST	1	1	1		335.3	0.11	0.68	0.05	26.37	CARB BASELINE TEST
03-09-90	C-0E-00	53	OE-STOCK CATALYST		-	1		356.6	0.13	1.10	0.04	24.75	CARB BASELINE TEST
	SWRI BASELIN	IE TESTINO											
04-19-90	C-0E-01	8	OE-STOCK CATALYST	1		1	AS-REC'D.	352.3	0.08	0.52	0.09	25.14	SWRI BASELINE TEST
	ELECTRICALL	Y - HEATED C	ATALYST										
05-18-90	C-AH-02	111	HEAT AND AIR	4.7	140	1	EEE	369.6	0.04	0.13	0.17	24.03	OPP-VEHICLE HEAT AND AIR
06-26-90	C-VAH-03	136	HEAT AND AIR	V5.9	. 59	1	RF-A	371.2	0.05	0.39	0.17	23.89	ON-VEHICLE HEAT AND AIR
06-27-90	C-VH-04	157	HEAT ONLY		-	-	RF-A	359.3	0.10	0.34	0.22	24.68	ON-VEHICLE HEAT
	AIR INJECTION	4 STUDY											
06-29-90	C-AH-05	¥	HEAT AND AIR	10.7	65	20	EEE	390.7	0.14	69.0	0.15	22.65	OFF-VEHICLE AIR
06-30-90	C-AH-06	208	HEAT AND AIR	3.0	65	8	EEE	389.1	0.05	0.43	0.20	22.78	OFF-VEHICLE AIR
06-10-10	C-H-07	219	HEAT ONLY	1	1	1	EEE	380.9	0.08	0.84	0.14	23.25	NO AIR
07-02-90	C-AH-08	233	HEAT AND AIR	5.9	65	8	EEE	384.3	0.05	0.49	0.24	23.08	OFF-VEHICLE AIR
07-03-90	C-AH-09	248	HEAT AND AIR	5.9	85	None	EEE	376.6	0.05	0.22	0.18	23.57	OFF-VEHICLE AIR
03-06-90	C-AH-10	112	HEAT AND AIR	5.9	100	None	EEE	374.0	0.05	0.43	0.14	23.72	OFF-VEHICLE AIR
06-00-00	C-AH-II	290	HEAT AND AIR	5.9	140	None	EEE	375.7	0.05	0.29	0.19	23.62	OFF-VEHICLE AIR
	FUEL AND SPE	CIATION STUI	λ										
06-1100	CS-VAH-12	311	HEAT AND AIR	V5.9	85	None	EEE	369.9	0.05	0.24	0.18	24.00	ON-VEHICLE AIR
07-12-90	CS-0E-13	326	STOCK CATALYST	I	1	ł	EEE	349.0	0.09	0.66	0.09	25.40	STOCK CATALYST ONLY
07-13-90	CS-VAH-12-2	343	HEAT AND AIR	V5.9	85	None	EEE	342.3	0.42	0.90	0.12	25.78	OFF-VEHICLE BAT. (ELECT. INTERFERENCE)
07-14-90	CS-VAH-15	369	HEAT AND AIR	V5.9	85	None	RP-A	344.5	0.25	0.70	0.07	25.66	OFF-VEHICLE BAT. (ELECT. INTERFERENCE)
07-15-90	CS-0E-14	396	STOCK CATALYST	-			RF-A	338.1	0.07	0.48	0.10	26.21	STOCK CATALYST ONLY
-	BATTERY CON.	FIGURATION 5	TUDY										
07-18-90	C-VAH-16	438	HEAT AND AIR	V5.9	85	None	RP-A	347.1	0.23	0.42	0.11	25.51	OFF-VEHICLE BAT. (ELECT. INTERPERENCE)
04-19-90	C-VAH-16-3	473	HEAT AND AIR	V5.9	85	None	RP-A	371.4	0.05	0.15	0.18	23.92	ON-VEHICLE BATTERY ONLY
01-20-90	C-VAH-17	499	HEAT AND AIR	V5.9	85	None	RP-A	364.9	90.06	0.11	0.23	24.33	ON-VEHICLE BATTERY ONLY
08-02-90	C-AH-18	533	HEAT AND AIR	V5.9	85	None	RF-A	345.0	0.03	0.08	0.15	25.74 0	BP-VEHICLE BAT. (INTERFERENCE CORRECTED)
08-03-90	C-AH-19	545	HEAT AND AIR	V5.9	S	None	RP-A	339.2	0.04	0.14	0.08	26.16	OFF-VEHICLE BATTERY
08-07-90	C-VAH-20	564	HEAT AND AIR	V5.9	8	None	RF-A	366.2	90.06	0.21	0.13	24.26	OFF-VEHICLE BATTERY IN PARALLEL
	ULTERNATOR	CONFIGURATI	ON STUDY										
08-08-30	C-VAH-21	575	HEAT AND AIR	V5.9	8	None	RF-A	330.4	0.03	0.11	0.08	26.89	TWO BAT., NO ALT, CHARGER ON
08-10-20	C-VAH-22	596	HEAT AND AIR	V5.9	8	None	RP-A	347.8	0.08	0.43	0.11	25.52	VEH. BAT. ONLY ALT. ON.(1),(2)
08-12-90	C-VAH-23	617	HEAT AND AIR	V5.9	8	None	RF-A	361.5	0.05	0.16	0.23	24.62	ON-VEHICLE BATTERY ONLY. (1).(3)
08-16-90	C-VAH-24	631	HEAT AND AIR	V5.9	80	None	RF-A	361.7	0.05	0.19	0.19	24.58	OFF-VEH. BAT. IN PARALLEL, (1),(4)
	INAL HYDROC	CARBON SPECI	ATION STUDY										
09-12-90	C-VAH-25	646	HEAT AND AIR	V5.9	8	None	RF-A	382.6	0.09	0.53	0.04	23.17	VEH. PREP - NEW LARGER EHC INSTALLED,(I)
09-13-90	CS-VAH-26	681	HEAT AND AIR	V5.9	8	None	EEE	366.7	0.03	0.30	0.05	24.27	OPP-VEH. BATTERY IN PARALLEL. (1)
09-14-90	CS-VAH-27	716	HEAT AND AIR	V5.9	8	None	RF-A	357.7	0.04	0.24	0.06	24.89	OFF-VEH. BATTERY IN PARALLEL. (I)
	/EHICLE SHIPF	ED TO CARB											
J	DE - ORIGINAL	EQUIPMENT		V - VEHICLI	EAIR	н	EEE - HOWE	LL EEE)	I) NO HOT-START HEATING
	A - AIR						ITAN - A-TJ	ONAL AVE	RAGE				2) NO COLD-START POST-START HEATING
	H - HEAT												3) ALTERNATOR OFF DURING HEATING

L-1

.

TABLE L-2. TOYOTA CELICA TEST SEGMENT EMISSIONS

TEST	TEST	TOTAL	HYDROCA	ARBONS , g	t∕mi	CARBC	XONOM NG	IDE, g/mi		NITR	OGEN OXI	DES, g/mi		FUEL	L ECONOM	Y, mi/gal	
DATE	NUMBER	BAG 1A	BAG 1B	BAG 2	BAG 3	BAG 1A	BAG 1B	BAG 2	BAG 3	BAG 1A	BAG IB	BAG 2	BAG 3	BAGIA	BAG IB	BAG 2	C DYG
	CARB BASELD	VETESTIN	G														
03-08-90	C-0E-0																
03-09-90	C-0E-00																
	SWRI BASELIN	HE TESTING	rh.								0.0	100	90.0	10.00	14 84	74 60	7 00
04-19-90	C-0E-01	1.55	0.02	0.02	0.02	12.01	0.0	0.08	0.05	0.89	0.12	40.0	60.0	10.02	5.5	23.23	20117
	ELECTRICALL	Y - HEAT	ED CATAL	YST				ľ					000	1 10	03.60	10 20	77.46
05-18-90	C-AH-02	0.53	0.02	10.0	0.02	2.78	0.01	0.03	0.02	2.69	0.16	0.0	60.0	11.35	70.62	17.07	04.12
06-26-90	C-VAH-03	0.41	0.05	0.01	0.06	1.87	1.50	0.07	0.11	2.82	0.17	0.02	0.09	17.25	23.34	23.33	40.07
06-27-90	C-VH-04	1.72	0.03	0.00	0.09	7.24	0.09	0.00	0.18	3.14	0.18	0.05	0.17	17.12	23.48	24.12	20.5/
	AIR INJECTIO	V STUDY													100 00	74.10	15 70
06-29-90	C-AH-05	2.88	0.02	0.00	0.10	15.64	0.05	0.05	0.18	2.20	0.06	0.04	0.11	70.01	11.22	0/ .17	01.12
06-30-90	C-AH-06	0.74	0.00	00.00	0.07	5.12	1.12	0.02	0.10	2.66	0.32	0.03	0.11	16.84	22.47	67.77	01.02
07-01-90	С-Н-07	1.21	0.05	0.01	0.07	9.12	2.26	0.17	0.09	2.08	0.06	0.00	10.0	F. 0	CV.12	41.62	10.04
07-02-90	C-AH-08	0.56	0.02	0.00	0.07	3.71	1.73	0.03	0.14	3.44	0.26	90.00	0.12	15.51	27.23	C1.52	21.62
07-03-90	C-AH-09	0.52	0.01	0.01	0.07	3.91	0.04	0.05	0.13	2.67	0.18	0.05	0.07	17.22	CI .77	CI.CZ	C7.02
07-06-90	C-AH-10	0.45	0.05	0.00	0.09	2.98	1.50	0.07	0.11	2.47	0.06	0.03	0.06	16.41	22.30	23.82	76.07
07-07-00	C-AH-11	0.62	0.01	0.00	0.10	4.18	0.29	0.05	0.19	2.83	0.14	0.04	0.11	16.66	22.61	23.53	25.83
	FUEL AND SP	ECIATION	srupy														
07-11-00	CS-VAH-12	150	0.03	0.00	0.10	2.85	0.21	0.02	0.31	3.41	0.06	0.0 10	0.07	16.67	22.72	24.04	26.17
06-11-/0	CS-OF-13	181	0.05	0.02	0.03	13.43	0.55	0.05	0.09	0.85	0.12	0.04	0.05	17.39	24.45	24.78	28.99
04-71-70	C3-0L-13	10.1	000	00.0	0.31	21.71	0.02	0.02	0.17	0.81	0.23	0.07	0.04	16.34	25.61	25.21	29.18
04-61-70	CS-VAH-15	3.75	90.0	00.0	0.35	11.07	0.98	0.05	0.28	0.65	0.09	0.03	0.04	17.66	25.23	25.08	28.84
07-15-90	CS-0E-14	1.61	0.04	0.00	0.02	11.41	0.08	0.02	0.04	0.43	0.20	0.07	0.05	18.16	25.81	25.56	29.52
	RATTERY COL	VFIGURAT	ION STUD	γ													
07-18-00	C-VAH-16	2.07	0.03	0.03	0.48	7.96	0.01	0.03	0.32	1.49	0.12	0.03	0.06	17.70	25.62	24.52	29.21
m-10-00	C-VAH-16-3	0.62	0.03	0.03	0.04	1.52	0.09	0.07	0.17	3.03	0.12	0.03	0.0	16.99	22.30	23.98	26.19
0.0-00-00	C-VAH-17	0.88	0.02	0.02	0.03	1.68	0.01	0.05	0.08	2.97	0.30	0.06	0.12	17.30	23.12	24.34	26.48
08-07-00	C-AH-18	0.42	0.01	0.01	0.01	1.56	0.03	0.02	0.01	2.29	0.16	0.04	0.05	18.20	26.36	24.59	29.42
08-03-90	C-AH-19	0.52	0.02	0.02	0.02	1.93	0.03	0.07	0.08	0.76	0.10	0.03	0.05	18.13	26.36	25.54	29.01
08-01-90	C-VAH-20	0.69	0.06	0.03	0.04	3.21	0.13	0.04	0.14	1.23	0.22	0.0	0.07	17.35	22.55	96.57	21.41
	ALTERNATOR	CONFIGL	IRATION S	TUDY											05 00	00.00	10.00
08-80-80	C-VAH-21	0.39	0.01	0.02	0.01	1.53	0.01	0.07	0.02	1.11	0.03	0.03	0.08	CC.81	c1.c2	07.02	17.67
08-10-90	C-VAH-22	1.30	0.06	0.03	0.01	4.90	1.25	0.06	0.01	0.72	60.0	0.08	0.08	17.12	24.08	22.52	10.82
08-15-00	C-VAH-23	0.62	0.02	0.03	0.02	1.83	0.04	0.13	0.07	3.11	0.44	<u>0</u> 0	0.0	18.94	22.44	£1.6Z	c1.92
08-16-00	C-VAH-24	0.57	0.03	0.02	0.0	2.17	0.09	0.09	0.12	2.24	0.41	0.03	0.04	20.70	22.36	23.70	28.75
	FINAL HYDR	DCARBON	SPECIATIC	VUDY NO													
N 11 00	SC-NYN-J	1 60	0.08	0.03	10.0	11.37	0.39	0.05	0.03	0.16	0.04	0.03	0.06	15.48	23.02	22.51	26.31
N-61-00	C-NVII-1	22.0	90.0	0.02	10'0	1.37	1.35	0.02	0.03	0.35	0.07	0.03	0.04	16.81	22.25	23.63	28.56
10-14-0X	CS-VAH-27	0.47	0.06	0.02	0.01	1.64	0.74	0.07	0.05	0.54	0.06	0.02	0.01	16.55	22.55	24.69	28.63

.

TENE EMISSIONS
AND TOLU
BENZENE,
A-METHANE,
A CELIC
TOYOT
TABLE L-3.

•

[]	Т	Т	Т	ज्ञ	1	<u></u>	
	arra	111		6. 6		5.8	
į		2		1.62		8.1	
ENP mg	 	7		1.81		3.7	
TOL	-	15		2.91		4	
		4		207.2		25.8	
	E	1		3.87		1.88	
				0.65		2.40	
				.41		.47	
		7		12 2		3	
μ μ	۽ ڊ ب	IB		0.0		2.2	
	:	4		59.9		15.45	
		HIP		7.37		10.60	
	- 	۳ ۳		2.36		6.58	
	8 - 1 - 1	2		3.74		6.45	
MEHU		18		3.63		5.82	
		</td <td></td> <td>06.9</td> <td></td> <td>16.5</td> <td></td>		06.9		16.5	
				1			
		NOIT		TALYST		AIR	
		DESCRI		CK CA		AT AND	
		TEST		OE-ST(TALYST	HE	
		ES	ĐN	8	VTED CA	111	
	WOOD	MIL	HE TEST		.Y - HE/		
		MBER	BASELD)E-01	RICALL	H-02	
		5N	SWRI	0-	ELECT	C-A	
		DATE		74-19-90		<u>)5-18-9C</u>	