## FINAL REPORT FOR ARB AGREEMENT A6-162-30

The Impact of Sulfur Dioxide On Vegetation: A Sulfur Dioxide-Ozone Response Model

R. J. Oshima, Plant Pathologist, CDFA

Statewide Air Pollution Research Center University of California, Riverside, CA March 15, 1978

ť

ł

ť,

LIBRARY AIR RESOURCES BOARD P. O. BOX 2815 SACRAMENTO, CA 95812

#### ABSTRACT

The objective of this project was to determine the effect of oxidant alone and in combination with 10 pphm sulfur dioxide upon red kidney bean, a commercial California crop. A major portion of the effort was expended in the construction of an adequate exposure facility to study the effects of air pollution on vegetation. Followinbg the construction of the facility, red kidney beans were studied using exposure conditions that were characterized and validated as being similar to ambient conditions. Red kidney beans were grown in exposure chambers with 0%, 25%, 50%, 75% and 100% carbon filtered air alone and in combination with 10 pphm SO<sub>2</sub>. Additionally, 2 ambient plots were utilized. The levels of ambient ozone in the nonfiltered chambers were 17 to 21% lower than ambient measurements because of ozone loss within the blowers and ducting system.

An interaction with ozone and  $SO_2$  was documented in the 50% carbon filtered treatment (5144 pphm-hrs) and produced a significant reduction in yield and plant biomass. The data also indicated the suggestion of an interaction in the 75% filtered treatment (2822 pphm-hrs) but at an unacceptable level of significance (p=.20 level). No reductions in yield or plant biomass were detected on red kidney beans exposed to equivalent doses of ambient ozone alone. Ambient ozone alone produced significant reduction in yield ( $\geq$  65%) but only at doses exceeding 5144 pphm-hrs. Sulfur dioxide at 10 pphm did not produce detectable plant or yield responses alone and did not have an interactive effect at ozone doses exceeding 5144 pphm-hrs.

í

This report was submitted in fulfillment of Agreement A6-162-30 by Statewide Air Pollution Research Center under sponsorship of The California Air Resources Board. Work was completed as of March 15, 1978.

# TABLE OF CONTENTS

Page

| Abstr | act  | :          | ••  | •   | •   | •   | •   | •   | •   | • | • | • | • | • | • | • | • | •   | • | • | •   | • | • | • | • | • | • | • | •  | • | 1  |
|-------|------|------------|-----|-----|-----|-----|-----|-----|-----|---|---|---|---|---|---|---|---|-----|---|---|-----|---|---|---|---|---|---|---|----|---|----|
| List  | of   | Fi         | gur | es  | •   | •   | •   | •   | •   | • | • | • | • | • | • | • | • | •   | • | • | •   | • | • | • | • | • | • | • | •  | • | 3  |
| List  | of   | Та         | ble | s   | •   | •   | •   | •   | •   | • | • | • | • | • | • | • | • | •   | • | • | •   | • | • | • | • | • | • | • | •  | • | 4  |
| Ackno | owle | edg        | men | ts  | •   | •   | •   | •   | •   | • | • | • | • | • | • | • | • | •   | • | • | •   | • | • | • | • | • | • | • | •  | • | 6  |
| Conc1 | .usi | lon        | 5.  | •   | .•  | •   | ٠   | •   | •   | • | • | • | • | • | • | • | • | •   | • | • | •   | • | • | ٠ | • | • | • | • | •  | • | 7  |
| Recom | mer  | nda        | tio | ns  | •   | •   | •   | •   | •   | • | • | • | • | • | • | • | • | •   | • | • | •   | • | • | • | • | • | • | • | •  | • | 8  |
| Discl | ain  | ner        | •   | •   | •   | ٠   | •   | ٠   | •   | • | • | • | • | • | • | • | • | . • | • | • | •   | • | • | ٠ | • | • | • | • | •  | • | 9  |
| Body  | of   | Re         | por | t   |     |     |     |     |     |   |   |   |   |   |   |   |   |     |   |   |     |   |   |   |   |   |   |   |    |   |    |
|       | Int  | ro         | duc | tic | on  | •   | •   | •   | •   | • | • | • | • | • | • | • | • | •   | • | • | • . | • | • | • | • | • | • | • | •  | • | 10 |
|       | Mat  | er         | ial | s a | and | 1 1 | ſet | :hc | ods | 3 | • | • | • | • | • | • | • | •   | • | • | •   | • | • | • | • | • | • | • | •. | • | 11 |
|       | Res  | sul        | ts  | •   | •   | •   | •   | •   | •   | • | • | • | • | • | • | • | • | •   | • | • | ٠   | • | • | • | • | • | • | • | •  | • | 20 |
|       | Dis  | scu        | ssi | on  | •   | •   | •   | •   | •   | • | • | • | • | • | • | • | • | •   | • | • | •   | • | • | • | • | • | • | • | ٠  | • | 58 |
| Refer | enc  | es         | •   | •   | •   | •   | •   | •   | •   | • | • | • | • | • | • | • | • | •   | • | • | •   | • | • | • | • | • | • | • | •  | • | 61 |
| Appen | ndix | <b>.</b> . |     |     |     |     |     |     |     |   |   | • |   |   |   |   |   | •   |   | • |     | • |   |   | • |   |   |   |    |   | 62 |

1

į

(

í

ſ

## LIST OF FIGURES

|        |     |                                                                                                                                                                                 | Page |
|--------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Figure | 1.  | General schematic of fumigation facility                                                                                                                                        | 12   |
| Figure | 2.  | Detail of air handling system for fumigation chambers                                                                                                                           | 13   |
| Figure | 3.  | Structural diagram of a fumigation chamber • • • • •                                                                                                                            | 14   |
| Figure | 4.  | Flow diagram of gas sampling system •••••••••                                                                                                                                   | 16   |
| Figure | 5.  | Flow diagram for sulfur dioxide dispensers                                                                                                                                      | 18   |
| Figure | 6.  | Comparison of foliar injury and time of natural defoliation between treatments                                                                                                  | 22   |
| Figure | 7.  | Comparison of flower production at various plant ages between treatments                                                                                                        | 24   |
| Figure | 8.  | Comparison of pod set at various plant ages<br>between treatments                                                                                                               | 25   |
| Figure | 9.  | Responses of red kidney beans with seasonal ozone dose alone and in combination with 10 pphm ${\rm SO}_2$ .                                                                     | • 38 |
| Figure | 10. | Relationship of ambient ozone and ambient ozone<br>plus 10 pphm SO <sub>2</sub> with total weight of seeds produced<br>by red kidney beans •••••••••••••••••••••••••••••••••••• | • 49 |

Ì

t

t

à,

ĺ

ť

## LIST OF TABLES

|       |     |                                                                                                                        | Page |
|-------|-----|------------------------------------------------------------------------------------------------------------------------|------|
| Table | 1.  | Revised Fumigation Schedule • • • • • • • • • • • • • • • • • • •                                                      | 21   |
| Table | 2•  | Table of Means (Anova) ••••••••••••••••••••••••••••••••••••                                                            | 26   |
| Table | 3.  | Table of Doses (Anova)                                                                                                 | 26   |
| Table | 4.  | Analysis of Variance of Variable IPlant Dry Weight .                                                                   | 29   |
| Table | 5.  | Analysis of Variance of Variable IINumber of Filled<br>Pods                                                            | 31   |
| Table | 6.  | Analysis of Variance of Variable III——Total Weight of<br>Pods                                                          | 32   |
| Table | 7.  | Analysis of Variance of Variable IVTotal Weight of<br>Seeds                                                            | 33   |
| Table | 8.  | Analysis of Variance of Variable VTotal Number of Seeds                                                                | 34   |
| Table | 9.  | Analysis of Variance of Variable VIAverage Number of Seeds/Pod • • • • • • • • • • • • • • • • • • •                   | 35   |
| Table | 10. | Analysis of Variance of Variable VIIAverage Filled<br>Pod Weight                                                       | 36   |
| Table | 11. | Analysis of Variance of Variable IPlant Dry Weight,<br>$0_3$ Dose > 0 pphm-hrs, $SO_2 = 0$ pphm $\cdots \cdots \cdots$ | 39   |
| Table | 12. | Analysis of Variance of Variable IPlant Dry Weight,<br>03 Dose > 0 pphm-hrs, S02 = 10 pphm • • • • • • • • • • •       | 39   |
| Table | 13. | Analysis of Variance of Variable IINumber of Filled<br>Pods, $0_3$ Dose > 0 pphm-hrs, $S0_2 = 0$ pphm $\cdots$         | 40   |
| Table | 14. | Analysis of Variance of Variable IINumber of Filled<br>Pods, $0_3$ Dose > 0 pphm-hrs, $S0_2 = 10$ pphm · · · · · ·     | 40   |
| Table | 15. | Analysis of Variance of Variable IIITotal Weight of<br>Pods, $0_3$ Dose > 0 pphm-hrs, $S0_2 = 0$ pphm                  | 41   |
| Table | 16. | Analysis of Variance of Variable IIITotal Weight of<br>Pods, $0_3$ Dose > 0 pphm-hrs, $S0_2 = 10$ pphm · · · · · ·     | 41   |
| Table | 17. | Analysis of Variance of Variable IVTotal Weight of<br>Seeds, $0_3$ Dose > 0 pphm-hrs, $S0_2 = 0$ pphm • • • • • •      | 42   |

ł

ſ

1

Ĺ

ſ

## List of Tables Continued

Į.

ί

ł

ŧ

Ę

| Table | 18. | Analysis of Variance of Variable IVTotal Weight of<br>Seeds, $0_3$ Dose > 0 pphm-hrs, $S0_2 = 10$ pphm · · · · · ·                                                                                                                                             | 42 |
|-------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Table | 19. | Analysis of Variance of Variable VTotal Number of<br>Seeds, $0_3$ Dose > 0 pphm-hrs, $S0_2 = 0$ pphm                                                                                                                                                           | 43 |
| Table | 20. | Analysis of Variance of Variable VTotal Number of<br>Seeds, 0 <sub>3</sub> Dose > 0 pphm-hrs, S0 <sub>2</sub> = 10 pphm                                                                                                                                        | 43 |
| Table | 21. | Analysis of Variance of Variable VIAverage Number of Seeds/Pod, $0_3$ Dose > 0 pphm-hrs, $S0_2 = 0$ pphm • • • •                                                                                                                                               | 44 |
| Table | 22. | Analysis of Variance of Variable VIAverage Number of Seeds/Pod, $0_3$ Dose > 0 pphm-hrs, $SO_2 = 10$ pphm · · · ·                                                                                                                                              | 44 |
| Table | 23. | Analysis of Variance of Variable VIIAverage Filled<br>Pod Weight, $0_3$ Dose > 0 pphm-hrs, $S0_2 = 0$ pphm · · · ·                                                                                                                                             | 45 |
| Table | 24. | Analysis of Variance of Variable VIIAverage Filled<br>Pod Weight, $0_3$ Dose > 0 pphm-hrs, $S0_2 = 10$ pphm • • •                                                                                                                                              | 45 |
| Table | 25. | Table of Means (Regression)                                                                                                                                                                                                                                    | 47 |
| Table | 26. | Table of Doses (Regression)                                                                                                                                                                                                                                    | 48 |
| Table | 27  | Peak ambient ozone concentration with calculated chamber concentrations • • • • • • • • • • • • • • • • • • •                                                                                                                                                  | 50 |
| Table | 28  | Three fumigated $SO_2$ concentrations and averages<br>within fumigation chambers. Ambient $SO_2$ concentra-<br>tions never exceeded .06 ppm peak concentration and<br>were never monitored as a significant intrusion in<br>chambers without $SO_2$ generators | 51 |
| Table | 29. | Soluble Sulfate from Soil ••••••••••••••••••••••••••••••••••••                                                                                                                                                                                                 | 55 |
| Table | 30. | Constituents of Experimental Soil Tabulated per Cubic<br>Yard of Mix                                                                                                                                                                                           | 56 |
| Table | 31. | Average Soil Salinity for Chambers: Measured as<br>Electrical Conductivity                                                                                                                                                                                     | 57 |

Page

#### ACKNOWLEDGMENTS

This program was funded by the California Air Resources Board under Agreement A6-162-30.

I am indebted to Richard Flagler, Staff Research Associate I, and Ingrid Carmean, Laboratory Assistant I, for their diligence in carrying out the experiment. This work could not have been completed without their dedication.

Special thanks is extended to O. C. Taylor for his advice, Patricia Braegelmann and Minn Poe for their efforts with the computer analysis and data processing, Donna Shaw for her efforts in typing and compiling the Final Report, Ervin Mateer and Mike Kienitz for their help in designing and constructing the fumigation facility and to the many students who contributed their efforts.

#### CONCLUSIONS

Sulfur dioxide at 10 pphm interacted with ambient ozone dose at 5144 pphm-hrs > 0 pphm (50% Riverside ambient) to produce a significant reduction in red kidney bean yield and plant biomass. No detectable response occurred at the same ozone dose without the inclusion of  $SO_2$ . No other interactions were detected at ambient ozone doses greater than 5144 pphm-hrs or at 2822 or 1175 pphm-hrs > 0 pphm. The  $SO_2/ozone$  interaction occurred at an ozone dose just below the threshold of red kidney bean yield response to ozone alone.

The effect of ambient ozone alone and 10 pphm  $SO_2$  in combination with 5144 pphm-hrs > 0 pphm ambient ozone reduced red kidney bean yield in terms of weight of seed, number of seed and number of filled pods. Its primary effect was to reduce the total weight of seed produced. The size of seed was not affected.

ł

Ċ

An analysis of ozone doses characterized by 0, 3, 5, 8, 10, 15 and 20 pphm calculation thresholds was inconclusive in determining the best dose representation. A dose calculated as the product of ozone and  $SO_2$  hourly averages was less significantly correlated with red kidney bean yield response than the ozone dose calculated from summing hourly averages > 0 pphm.

The  $SO_2$ /ambient ozone interaction should be quantified to allow prediction of yield responses. The following experiments are recommended to determine the range of pollutant doses which contributes to the interaction and to quantify a dose response surface to serve as a model.

- 1. A 3 x 3 analysis of variance design should be initiated using 25, 50 and 75% filtered ambient ozone and 5, 10 and 15 pphm  $SO_2$ . This would allow quantification of an interaction term and initially test the range of doses and  $SO_2$  concentrations involved.
- 2. A 4 x 5 regression design utilizing no treatment replication should be run after the 3 x 3 analysis of variance experiment to quantify the dose response surface. The 3 x 3 design would provide a data base to select both ambient oxidant doses and  $SO_2$  concentrations.

### DISCLAIMER

"The statements and conclusions in this report are those of the contractor and not necessarily those of the California Air Resources Board. The mention of commercial products, their source or their use in connection with material reported herein is not to be construed as either an actual or implied endorsement of such products."

#### Introduction

1

ť

Ć

4

This experiment was designed to determine the impact of 10 pphm SO<sub>2</sub> in combination with several doses of ambient ozone on red kidney beans. The selected experimental design allowed the following specific objectives to be investigated:

- 1. Determine whether 10 pphm  $SO_2$  and 0, 25, 50, 75 and 100% filtered ambient Riverside ozone in combination would produce a detectable interactive response.
- 2. Define the yield response function for 0, 25, 50, 75 and 100% filtered ambient ozone alone and in combination with 10 pphm  $SO_2$ .
- 3. Define which yield components were affected by the gradient of ambient ozone doses alone and in combination with 10 pphm  $SO_2$ .
- 4. Evaluate an analysis of dose representations utilizing various calculation thresholds to determine which, if any, best characterized dose in terms of plant response.

An ambient fumigation facility utilizing FEP teflon exposure chambers was required. It was designed to minimize chamber differences with ambient meteorological variables.

The overall objective of this experiment was to develop a data set which would indicate whether potential future increases in ambient  $SO_2$  levels would have a serious impact on crops being already exposed to a gradient of ambient ozone doses.

#### Materials and Methods

#### Fumigation Facility

¢

Í

Į.

1. General schematic (Figure 1)

The facility consists of 20 Teflon exposure chambers divided into 2 replicate 10 chamber sets. Each set of chambers is connected to a common air handling system, consisting of ambient and filtered ducts. An instrument shack is centrally located between chamber sets to minimize sampling line lengths.

2. Air Handling System (Figure 2)

This system consists of 2 sets of 2 backward-curved blowers powered by 2 H.P. 220 V motors. Each set consists of a filtered (three-2' x 2' x 8" activated carbon filters) and an unfiltered blower, central underground plenums of 12" PVS (polyvinyl-coated steel spirallok pipe), and 6" PVS pipes with butterfly valves leading to each of 10 chambers. All PVS pipe, electrical, and water lines, and butterfly valves are underground. The proportion of filtered to ambient air going to each chamber is controlled by the 6" butterfly valves. A comparison of replicate 0% filtered chambers with ambient ozone indicated that 17 to 21% of the ozone was lost in the air handling system.

3. Exposure Chambers (Figure 3)

The exposure chambers are a modification of the constant-stirred reactor (2) designed by Hugo Rogers, USDA, North Carolina State University, Raleigh North Carolina. Each chamber consists of a 7' x 7' PVC schedule 80 frame bolted to a concrete ring. A 5 mil FEP Teflon envelope is suspended from the uppermost ring and anchored to the concrete with a 1/2" PVC ring. A small 1/120 H.P. shade pole 110 V motor is mounted at the apex of the PVC





ť

ť

К,

Į

í

Ę,



f

ł

ť

į



Figure 3. Diagram of chamber showing structural components. dimensions are  $7' \times 7'$ . Chamber



ŧ

ł

Í

frame and anchors the uppermost portion of the Teflon envelope. An extension shaft from the motor protrudes through the Teflon envelope and supports a 6-blade impeller which rotates at 60 rpm. The mixture of filtered and nonfiltered air enters the chamber via a 10" PVS underground duct which then extends 5 ft vertically and directs the air stream directly at the impeller. Chamber exhaust is vented through a 10" PVS "U" tube directly into the atmosphere.

4. Fumigant Sampling System (Figure 4)

ť

ł

ł.

ť

Į.

ſ.

Seventy ft 1/4" FTE Teflon lines run from each chamber. The air sample is pulled through a 3-way Teflon solenoid valve to an exhaust manifold. An electrical control box regulates solenoid activation. Once activated, the solenoid valve diverts the flow to a sampling manifold from which the ozone and SO<sub>2</sub> instruments sample. This system continually pulls about 30 liters/min. through sampling lines. Different chambers can therefore be monitored with a minimal lag time for purging the sampling manifold. All gas lines, solenoids and sampling manifolds are Teflon. All other valves, connectors and fittings are stainless steel. The entire sampling system, exclusive of the sampling lines, electronic control box and pumps, is contained in an insulated, thermally regulated box kept at 100°F.

Ozone was monitored by 2 Dasibi Model 1003-AH ozone monitors which use an ultraviolet absorption method for detection. Sulfur dioxide was monitored by 2 Thermoelectron Model 43  $SO_2$  analyzers which use a pulsed flourescence method of detection.

Ozone calibrations were conducted using an additional Dasibi ozone monitor as a transfer standard. This calibration instrument was verified at the ARB facility in El Monte, California by ultra violet photometry and kept solely as a calibration standard for the Statewide Air Pollution Research Center.

Figure 4. Flow diagram of gas sampling system.

ŕ

í

Ć

Į

ť

£



The Thermoelectron Model 43  $SO_2$  analyzers were calibrated using a monitor labs calibrator with a permeation tube. The calibrations were then verified using a known gas standard of  $SO_2$  in nitrogen.

5. SO<sub>2</sub> Dispensing System (Figure 5)

The SO<sub>2</sub> dispensing system consists of 10 independent SO<sub>2</sub> generators housed in insulated, heated 40 gal trash cans. Each generator contains a 6.7 liter tank of liquid SO<sub>2</sub> (99.8%), a pressure regulator, a 7  $\mu$  in-line filter, a Teflon solenoid valve, a 29 inch length of .005 in I.D. stainless steel capillary tubing, and a manual shut-off valve. All fittings and tubing are stainless steel. The SO<sub>2</sub> flow is diverted into the exposure chamber inlet duct to be diluted before entering the exposure chamber. Flow adjustments can be accomplished by changing the setting on the pressure regulator. Fumigation Facility Calibration

The complete series of calibrations and testing carried out on the fumigation facility is presented in the Appendix. The facility performed to expectations, providing excellent uniformity between chambers and closely approximating ambient conditions.

#### Plant Selection and Cultivation

1. Selection and screening:

Five hundred 4" pots of red kidney beans were seeded July 26, 1977. Four seeds were used in each pot then thinned to 461 most uniform individuals during transplanting into the exposure chambers on August 4, 1977. A total of 21 bean plants were transplanted in each of the exposure chambers and ambient plots.

#### 2. Fertilization:

All chambers received an equal amount of fertilizer in the form of calcium nitrate during growth. The seasonal application was equivalent to commercial practices.

Figure 5. Flow diagram for sulfur dioxide dispensers. The flow of  $SO_2$  starts at the tank (A) and continues through the regulator (B), a solenoid (C), a 7  $\mu$  filter (D), a capillary tube (E), and through a shut off valve (F) to the chamber.

ι

î



#### 3. Irrigations:

Plants were irrigated uniformly through a drip system. Irrigation was initiated when irrometers measured 20 to 30 millibars vacuum. All treatments were given a standard amount of water when soil moisture level triggered irrometer readings.

4. Pest control:

Cygon was applied twice during the experimental period to control insects. The exposure chambers proved to do an excellent job excluding insect pests. Insect predation was not a significant variable in the experiment.

5. <u>Soil</u>:

ť

ť

Ĺ

The planting medium was produced by the Riverside Agricultural Station and delivered by project personnel. The formula and soluble sulfate analysis is presented in the Results section.

#### Soil Samples

#### 1. Soluble sulfate samples:

Core samples were taken from each can and mixed together to form one composite sample for each chamber and each of the two ambient plots. The samples were then sent to an independent laboratory for analysis.

2. Salinity samples:

Core samples were taken from each can at two depths (0-8 inches and 8-16 inches) to determine the concentration of soluble salts. The analysis was performed using the electrical conductivity method (1).

#### Harvest Procedures

Plants were cut at soil level and individually localized in paper bags. All samples were collected and transported to the laboratory. Each plant was then separated into unfilled pods, filled pods and the residual plant structure and the following evaluation carried out:

1. <u>Unfilled pods</u>: These were counted, oven dried at 70<sup>°</sup> C for 48 hours and weighed.

2. Filled pods: These were counted, oven dried and processed as follows:

a. Each pod was shelled and the number of seeds counted.

b. Dry weights of pods and seeds were taken.

3. <u>Harvested plants</u>: These were oven dried at 70<sup>°</sup> C for 48 hours and weighed. Plant dry weight refers to oven dried weight of attached leaves plus stems and branches (without pods or seed).

#### Exposure Schedule

Ű

í

ţ

ŧ

ł

The exposure schedule for 10 pphm  $SO_2$  fumigations is given in Table 1. Red kidney beans were exposed to a total of 335.6 hours of 10 pphm  $SO_2$ . Dose Calculation

Doses for ambient ozone and  $SO_2$  were calculated individually using:

dose =  $\sum$  pphm-hrs for the experiment.

Dose therefore represented the sum of all hourly averages for the experimental period. The series of ozone doses using concentration thresholds of 3, 5, 8, 10, 15 and 20 pphm were calculated using the following calculations:

dose =  $\sum$  pphm-hrs - threshold concentration

The use of the concentration thresholds effectively remove the hourly averages below the threshold from the calculated dose. This calculation method was identical to the dose calculations previously submitted in final reports for 1973, 1974, 1975 and 1976 studies.

#### Results

<u>Foliar injury</u>: Ozone injury was observed on plants in the 50%, 25%, and 0% filtered treatments starting 16 days after stand establishment (Figure 6). An evaluation of the extent of injury was recorded only as an arbitrary index of no injury, mild or severe. No differentiation between  $SO_2$  and non- $SO_2$  treatments could be distinguished on this basis although the unfiltered and

| Date | Start                        | End  | Duration<br>(Hours) | Date         | Start | End  | Duration<br>(Hours) |
|------|------------------------------|------|---------------------|--------------|-------|------|---------------------|
| 8-5  | 09001                        | 1500 | 6                   | <b>9-</b> 15 | 0900  | 1500 | 6                   |
| 8-8  | 0900                         | 1600 | 7                   | 9-16         | 0900  | 1600 | 7                   |
| 8-9  | 0945                         | 1545 | <b>6</b> ·          | 9-19         | 0900  | 1500 | 6                   |
| 8-10 | 1000                         | 1600 | 6                   | 9-20         | 0900  | 1500 | 6                   |
| 8-11 | 0930                         | 1530 | 6                   | 9-21         | 0900  | 1500 | 6                   |
| 8-12 | 0900                         | 1500 | 6                   | 9-22         | 0800  | 1400 | 6                   |
| 8-13 | 1200                         | 1800 | 6                   | 9-28         | 0900  | 1500 | 6                   |
| 8-15 | 0900                         | 1250 | 3.6                 | 9-29         | 0900  | 1500 | 6                   |
| 8-20 | 0900                         | 1500 | 6                   | 9-30         | 0900  | 1500 | 6                   |
| 8-23 | 1030                         | 1630 | 6                   | 10-1         | 0900  | 1500 | 6                   |
| 8-24 | 0900                         | 1500 | 6                   | 10-2         | 1100  | 1700 | 6                   |
| 8-25 | 0900                         |      | · _                 | 10-4         | 1100  | 1700 | 6                   |
| 8-26 |                              | 0900 | 24                  | 10-5         | 0900  | 1500 | 6                   |
| 8-29 | 0900                         | 1500 | 6                   | 10-7         | 0900  | 1500 | 6                   |
| 8-30 | 0900                         | 1500 | 6                   | 10-10        | 0900  | 1500 | 6                   |
| 8-31 | 0900                         | 1500 | 6                   | 10-11        | 0900  | 1500 | 6                   |
| 9-1  | 0900                         | 1500 | 6                   | 10-12        | 0900  | 1500 | 6                   |
| 9-2  | 0900                         | 1500 | 6                   | 10-13        | 1000  | 1800 | 8                   |
| 9-7  | 0900                         |      | -                   | 10-14        | 0900  | 1500 | 6                   |
| 9-9  | and the second second in the | 0900 | 48                  | 10-17        | 0900  | 1500 | 6                   |
| 9-10 | 0900                         | 1800 | 9                   | 10-18        | 0900  | 1500 | 6                   |
| 9-11 | 0900                         | 1500 | 6                   | 10-19        | 0900  | 1500 | 6                   |
| 9-13 | 0900                         | 1600 | 7                   | 10-20        | 0900  | 1500 | 6                   |
| 9-14 | 0900                         | 1500 | 6                   | TOTAL        |       |      | 335.6               |
|      |                              |      |                     |              |       |      |                     |

Table 1. Fumigation Schedule for Sulfur Dioxide at 10 pphm.

1<sub>All times</sub> are Pacific Standard Time.

ĺ

i

í

Į

Figure 6. Comparison of foliar injury and time of natural defoliation between treatments



ambient treatments were observed to have severe injury as early as the 16th day. Plants exposed to various treatments of ozone and SO<sub>2</sub> appeared to defoliate earlier than 100% filtered treatments.

<u>Flower production</u>: Bean plants exposed to 100% filtered air and the lower ozone doses appeared to flower earlier than those exposed to higher ozone doses (Figure 7). These plants also ended the flowering period earlier than those plants in the higher ozone dose treatments. Sulfur dioxide exposures did not appear to influence flowering trends.

<u>Pod set</u>: As expected, the pod set of plants followed the trend observed in flower production (Figure 8). The 100% filtered and low ozone dose treatments set pods earlier than high dose treatments. The application of SO<sub>2</sub> did not appear to influence pod set.

ſ

ſ

<u>Anova analysis (3)</u>: The Table of Means (2) and Doses (3) summarize the data used in the (5 x 2) 2-way anova analysis of harvest parameters. The anova analysis was used only with doses > 0 and not with the doses utilizing calculated thresholds. An analysis and evaluation of the relationship of the doses from calculated thresholds and yield is presented later in the results section.

Six variables were measured at final harvest: 1) plant dry weight; 2) number of filled pods; 3) number of unfilled pods; 4) total weight of filled pods; 5) total weight of seeds; 6) total number of seeds. The following derived variables were calculated and also used in the analysis: 7) average number of seeds per pod; 8) average filled pod weight; 9) average seed weight.

A test comparing the variation within individual plants with treatment variation was conducted to determine whether the analysis could utilize them as experimental units. This test (3) indicated that the variations were not equivalent and the analysis was run using chambers as the experimental units.



Figure 7. Comparison of flower production at various plant ages between treatments.



Figure 8. Comparison of pod set at various plant ages between treatments.

Table 2. Table of Means (ANOVA)

| Filtered    | Level           | Plant   | # Filled | Total wt. | Total wt. | Total # | Avg. #    | Avg. filled |
|-------------|-----------------|---------|----------|-----------|-----------|---------|-----------|-------------|
| ambient air | s0 <sub>2</sub> | dry wt. | pods     | pods      | seeds     | seeds   | seeds/pod | pod wt.     |
| (%)         | pphm            | (g)     |          | (g)       | (g)       |         |           | (g)         |
| 0           | 0               | 3.05    | 5.95     | 7.98      | 5.26      | 13.95   | 2.40      | 1.40        |
| 25          | 0               | 3.39    | 9.45     | 12.44     | 8.28      | 22.95   | 2.50      | 1.34        |
| 50          | 0               | 6.66    | 20.65    | 34.22     | 24.11     | 62.60   | 3.05      | 1.65        |
| 75          | 0               | 6.06    | 19.50    | 35.26     | 25.66     | 61.85   | 3.15      | 1.85        |
| 100         | 0               | 7.39    | 19.05    | 33.68     | 23.66     | 59.30   | 3.10      | 1.77        |
| 0           | 10              | 3.71    | 7.70     | 9.69      | 6.37      | 16.50   | 2.25      | 1.30        |
| 25          | 10              | 3.86    | 9.35     | 13.33     | 9.20      | 24.80   | 2.70      | 1.46        |
| 50          | 10              | 4.68    | 14.75    | 22.79     | 16.10     | 43.00   | 3.00      | 1.56        |
| 75          | 10              | 5.88    | 16.70    | 29.25     | 20.71     | 53.70   | 3.20      | 1.76        |
| 100         | 10              | 6.65    | 18.65    | 33.04     | 23.42     | 59.10   | 3.15      | 1.75        |
|             |                 |         |          |           |           |         |           |             |

# Table 3. Table of Doses (ANOVA)

f

ć

| Filtered    | Lovel    | Dose     | Dose     | Dose              | Doce     | Dose     | Dose     | Doce              |
|-------------|----------|----------|----------|-------------------|----------|----------|----------|-------------------|
| ambient air | SOo      | >0       | >3       | >5                | >8       | >10      | >15      | >20               |
| (%)         | DDhm     | pphm-hrs | pphm-hrs | pphm-hrs          | pphm-hrs | pphm-hrs | pphm-hrs | pphm-hrs          |
|             | <u> </u> | FF       | r r      | <u>F</u> <u>F</u> | FF       | FF       | FI       | <u>r</u> <u>r</u> |
| 0           | 0        | 8361     | 4895     | 3475              | 1938     | 1232     | 340      | 61                |
| 25          | 0        | 6902     | 3591     | 2317              | 1033     | 564      | 87       | 6                 |
| 50          | 0        | 5161     | 1840     | 852               | 203      | 67       | 8        | 2                 |
| 75          | • 0      | 2794     | 402      | 71                | 1        | 0        | 0        | 0                 |
| 100         | 0        | 1012     | 2        | 0                 | 0        | 0        | 0        | 0                 |
| 0           | 10       | 8298     | 4831     | 3414              | 1890     | 1183     | 313      | 48                |
| 25          | 10       | 6929     | 3612     | 2309              | 1041     | 569      | 83       | 6                 |
| 50          | 10       | 5144     | 2029     | 1006              | 275      | 95       | 4        | 0                 |
| 75          | 10       | 2822     | 450      | 83                | 3        | 0        | 0        | 0                 |
| 100         | 10       | 1175     | 3        | 0                 | 0        | 0        | 0        | 0                 |
|             |          |          |          |                   |          |          |          |                   |

The complete anova analysis consisted of the following:

| Sources of variation             | df  |   |
|----------------------------------|-----|---|
| blocks (B)                       | 1   |   |
| ozone (0)                        | 4   |   |
| sulfur dioxide (S)               | 1   |   |
| 0 x S                            | 4   |   |
| s <sub>2</sub> (0 <sub>1</sub> ) |     | 1 |
| S <sub>2</sub> (0 <sub>2</sub> ) |     | 1 |
| s <sub>2</sub> (0 <sub>3</sub> ) |     | 1 |
| s <sub>2</sub> (0 <sub>4</sub> ) |     | 1 |
| s <sub>2</sub> (0 <sub>5</sub> ) |     | 1 |
| 0 x B                            | 4   |   |
| B (0 <sub>1</sub> )              |     | 1 |
| B (0 <sub>2</sub> )              |     | 1 |
| B (0 <sub>3</sub> )              |     | 1 |
| B (0 <sub>4</sub> )              |     | 1 |
| B (0 <sub>5</sub> )              |     | 1 |
| S x B                            | . 1 |   |
| B (S <sub>1</sub> )              |     | 1 |
| B (S <sub>2</sub> )              |     | 1 |
| Error                            | 4   |   |
| Total                            | 19  |   |
|                                  |     |   |

ţ

t

É.

١

Where:  $0_1 = 0\%$  filtered;  $0_2 = 25\%$  filtered;  $0_3 = 50\%$  filtered;  $0_4 = 75\%$  filtered;  $0_5 = 100\%$  filtered;  $S_1 = 0$  pphm  $S0_2$ ;  $S_2 = 10$  pphm  $S0_2$ ; B = blocks.

The partitioning of the  $0 \ge B$  and  $S \ge B$  interaction terms were included only to insure that potential differences in the ozone gradient could not be due to block (chamber replicate) differences. This was confirmed as neither the  $0 \ge B$ ,  $S \ge B$  interaction terms nor the individual treatment contrasts within them were significant. Their degrees of

freedom were then added to the error term and the following analysis carried out:

| df |                                          |
|----|------------------------------------------|
| 1  |                                          |
| 4  |                                          |
| 1  |                                          |
| 4  |                                          |
|    | 1                                        |
|    | 1                                        |
|    | 1                                        |
|    | 1                                        |
|    | 1                                        |
| 9  |                                          |
| 19 |                                          |
|    | <u>df</u><br>1<br>4<br>1<br>4<br>9<br>19 |

ć

The 0 x S interaction was partitioned into individual df contrasts to better scrutinize potential component interactions. This practice increased the power of the analysis because the components of the interaction term were evaluated individually and were not diluted by the remaining components.

The standard practice of using asterisks to denote statistical significance is utilized in all tables and figures: (\*) indicates significance at the .05 level; (\*\*) indicates significance at the .01 level; (\*\*\*) indicates significance at the .001 level.

The analyses indicated that 2 variables, number of unfilled pods and average weight of seeds, were not influenced by the  $0_3$  and/or  $S0_2$ treatments. The remaining 7 variables were then further evaluated.

1) <u>Plant dry weight</u> - The anova analysis indicated that  $0_3$  significantly reduced plant dry weight (Table 4), a measure of total plant growth. Sulfur dioxide alone had no effect but an interaction with  $0_3$  at the 50%

|                         |     |          |         |          | Coefficient  |
|-------------------------|-----|----------|---------|----------|--------------|
| Source of Variation     | df  | SS       | MS      | F        | of variation |
|                         |     |          |         |          |              |
| В                       | 1   | 0.10368  | 0.10368 | 0.18     |              |
| 0                       | 4   | 39.65237 | 9.91309 | 16.79*** |              |
| S                       | 1   | 0.61952  | 0.61952 | 1.05     |              |
| 0 x S                   | 4   | 4.54873  | 1.13718 | 1.93     |              |
| $S0_{2}(0_{1})$         | 1   | 0.44223  | 0.44223 | 0.75     |              |
| $SO_{2}(0_{2})$         | 1   | 0.22562  | 0.22562 | 0.38     |              |
| $S0_{2}^{2}(0_{3}^{2})$ | 1   | 3.92040  | 3.92040 | 6.64*    |              |
| $SO_{2}^{-}(O_{4})$     | 1   | 0.03240  | 0.03240 | 0.05     |              |
| $S0_{2}^{-}(0_{5})$     | · 1 | 0.54759  | 0.54759 | 0.93     |              |
| Error                   | 9   | 5.31402  | 0.59045 |          | 15.0%        |
| TOTAL                   | 19  | 50.23832 |         |          |              |

-----

Table 4. Analysis of Variance of Variable I - Plant Dry Wt.

|             | Count per |     |       |   |       |
|-------------|-----------|-----|-------|---|-------|
| Combination | mean      | Sub | oclas | s | Means |
|             |           | 0   | S     | В |       |
|             |           |     |       |   |       |
| В           | 10        |     |       |   |       |
|             |           | 0   | 0     | 1 | 5.06  |
|             |           | 0   | 0     | 2 | 5.20  |
|             |           |     |       |   |       |
| 0           | 4         |     |       |   |       |
|             |           | 1   | 0     | 0 | 3.38  |
|             |           | 2   | 0     | 0 | 3.62  |
|             |           | 3   | 0     | 0 | 5.67  |
|             |           | 4   | 0     | 0 | 5.97  |
|             |           | 5   | 0     | 0 | 7.02  |
|             |           |     |       |   |       |
| S           | 10        |     |       |   |       |
|             | ч.        | 0   | 1     | 0 | 5.31  |
|             |           | 0   | 2     | 0 | 4.96  |
|             |           |     |       |   |       |
| 0 x S       | 2         |     |       |   |       |
|             |           | 1   | 1     | 0 | 3.05  |
|             |           | 2   | 1     | 0 | 3.39  |
|             |           | 3   | 1     | 0 | 6.66  |
|             |           | 4   | 1     | 0 | 6.06  |
|             |           | 5   | 1     | 0 | 7.39  |
|             |           | 1   | 2     | 0 | 3.71  |
|             |           | 2   | 2     | 0 | 3.86  |
|             |           | 3   | 2     | 0 | 4.68  |
|             |           | 4   | 2     | 0 | 5.88  |
|             |           | 5   | 2     | 0 | 6.65  |
|             |           |     |       |   |       |

ť

á

29

-----

filtered dose significantly reduced plant dry weight beyond the effect of  $0_3$  alone.

2) <u>Number of filled pods</u> - Ozone significantly reduced the number of filled pods (Table 5). Again, sulfur dioxide alone had no effect but an interaction occurred at the 50% filtered dose reducing the number of pods below the level of the ozone effect.

3) <u>Total weight of filled pods</u> - The anova Table (6) shows that the same effects described in variables 1 and 2 occurred again.

4) Total weight of seeds - Table 7 again shows the same effects as variables 1, 2, and 3.

5) <u>Total number of seeds</u> - The same effect described in variables 1, 2, 3 and 4 were observed (Table 8).

6) <u>Average number of seeds per pod</u> - The analysis of this derived variable was statistically similar to the other variables (Table 9). Ozone reduced the number of seeds per pod and 2 interactions with  $SO_2$  were observed. Unfortunately, the statistical inference does not have much biological significance. The interaction indicated that a difference of 0.1 seeds between treatments was significant. This value was too small to be biologically significant given the range of responses that have been demonstrated for different fertilizer treatments, irrigation methods, or environmental variables.

ť

7) <u>Average filled pod weight</u> - The analysis of this derived variable indicated that ozone was the only significant factor influencing reduced average pod weights (Table 10). The reduced average filled pod weights and the lack of reduction in the average bean weight indicated that this effect could be attributed to differences in weights of shelled pods, a parameter with little economic significance.

| Source of Variation      | df | SS         | MS        | F        | Coefficient<br>of variation |
|--------------------------|----|------------|-----------|----------|-----------------------------|
| R                        | 1  | 0 22050    | 0 22050   | 0.07     |                             |
| 0                        | 4  | 508.31650  | 127.07910 | 40.60*** |                             |
| S                        | 1  | 11.58242   | 11.58242  | 3.70     |                             |
| 0 x S                    | 4  | 34.79053   | 8.69763   | 2.78     |                             |
| $S0_{2}(0_{1})$          |    | 1 2.95837  | 2.95837   | 0.95     |                             |
| $S0_{2}^{2}(0_{2}^{1})$  |    | 1 0.01445  | 0.01445   | 0.00     |                             |
| $S0_{2}^{-}(0_{3}^{-})$  |    | 1 35.16490 | 35.16490  | 11.24**  |                             |
| $SO_{2}^{2}(0_{4})$      |    | 1 8.03723  | 8.03723   | 2.57     |                             |
| $S0^{2}_{2}(0^{-1}_{5})$ |    | 1 0.19820  | 0.19820   | 0.06     |                             |
| Error                    | 9  | 28.16760   | 3.12973   |          | 12.5%                       |
| TOTAL                    | 19 | 583.07750  |           |          |                             |

Table 5. Analysis of Variance of Variable II - No. Filled Pods

ſ

-----

| Means<br>14.07<br>14.28<br>6.82<br>9.39<br>17.68 |
|--------------------------------------------------|
| 14.07<br>14.28<br>6.82<br>9.39<br>17.68          |
| 14.07<br>14.28<br>6.82<br>9.39<br>17.68          |
| 14.07<br>14.28<br>6.82<br>9.39<br>17.68          |
| 14.28<br>6.82<br>9.39<br>17.68                   |
| 6.82<br>9.39<br>17.68                            |
| 6.82<br>9.39<br>17.68                            |
| 9.39<br>17.68                                    |
| 17.68                                            |
|                                                  |
| 18.13                                            |
| 18.87                                            |
|                                                  |
| 14.94                                            |
| 13.42                                            |
|                                                  |
| 5,96                                             |
| 9.45                                             |
| 20.65                                            |
| 19.55                                            |
| 19.10                                            |
| 7.68                                             |
| 9.33                                             |
| 14.72                                            |
| 16.72                                            |
| 18.65                                            |
|                                                  |

| Source of Variation     | đf |   | çç         | мс        | r        | Coefficient  |
|-------------------------|----|---|------------|-----------|----------|--------------|
| Source of variation     |    |   |            | 10        | L.       | UL VALIACIÓN |
| В                       | 1  |   | 6.72800    | 6.72800   | 0.40     |              |
| 0                       | 4  |   | 2138.39600 | 534.59890 | 31.66*** |              |
| S                       | 1  |   | 53.72642   | 53.72642  | 3.18     |              |
| 0 x S                   | 4  |   | 128.88960  | 32.22240  | 1.91     |              |
| $S0_2(0_1)$             |    | 1 | 2.90723    | 2.90723   | 0.17     |              |
| $SO_{2}^{-}(O_{2}^{-})$ |    | 1 | 0.79224    | 0.79224   | 0.05     |              |
| $SO_{2}^{-}(O_{3}^{-})$ |    | 1 | 130.75920  | 130.75920 | 7.74*    |              |
| $SO_{2}^{-}(O_{4}^{-})$ |    | 1 | 47.74829   | 47.74829  | 2.83     |              |
| $S0_{2}^{-}(0_{5})$     |    | 1 | 0.40991    | 0.40991   | 0.02     |              |
| Error                   | 9  |   | 151.97360  | 16.88594  |          | 17.7%        |
| TOTAL                   | 19 |   | 2479.71300 |           |          |              |

Table 6. Analysis of Variance of Variable III - Total Wt. Pods

-----

|             | Count per |     |       |    |                |
|-------------|-----------|-----|-------|----|----------------|
| Combination | mean      | Sub | oclas | ss | Means          |
|             |           | 0   | S     | В  |                |
| R           | 10        |     |       |    |                |
| D           | 10        | 0   | 0     | 1  | 22.68          |
|             |           | Ő   | Õ     | 2  | 23.84          |
| 0           | ,         |     |       |    |                |
| 0           | 4         | r   | ^     | 0  | 0 0 0          |
|             |           | 1   | 0     | 0  | 0,03           |
|             |           | 2   | 0     | 0  | 12.88          |
|             |           | 3   | 0     | 0  | 28.50          |
|             |           | 4   | 0     | 0  | 32.71          |
|             |           | 5   | 0     | 0  | 33.36          |
| S           | 10        |     |       |    |                |
|             |           | 0   | 1     | 0  | 24.90          |
|             |           | 0   | 2     | 0  | 21.62          |
| ΟΥΒ         | 2         |     |       |    |                |
| U A D       | L         | 1   | 1     | 0  | 7.98           |
|             |           | 2   | 1     | 0  | 12.44          |
|             |           | 3   | 1     | 0  | 34.22          |
|             |           | 4   | 1     | 0  | 36.16          |
|             |           | . 5 | 1     | 0  | 33.68          |
|             |           | 1   | 2     | Õ  | 9.69           |
|             |           | 2   | 2     | õ  | 13 33          |
|             |           | 2   | 2     | 0  | 13.33          |
|             |           | 5   | 2     | 0  | 22.17          |
|             |           | 4   | 2     | 0  | 27·2J<br>22 0/ |
|             |           | C   | 2     | U  | 33.04          |

Ć

4

i,

| Source of Variation     | df |   | SS         | MS        | т        | Coefficient<br>of variation |
|-------------------------|----|---|------------|-----------|----------|-----------------------------|
|                         |    |   |            |           |          |                             |
| В                       | 1  |   | 5.46012    | 5.46012   | 0.55     |                             |
| 0                       | 4  |   | 1125.46600 | 281.36650 | 28.30*** |                             |
| S                       | 1  |   | 24.93144   | 24.93144  | 2.51     |                             |
| 0 x S                   | 4  |   | 65.92553   | 16.48137  | 1.66     |                             |
| $S0_2(0_1)$             |    | 1 | 1.24390    | 1.24390   | 0.13     |                             |
| $SO_{2}^{-}(O_{2}^{-})$ |    | 1 | 0.84631    | 0.84631.  | 0.09     | •                           |
| $S0_{2}^{-}(0_{3}^{-})$ |    | 1 | 64.16011   | 64.16011  | 6.45*    |                             |
| $SO_{2}^{2}(O_{4})$     |    | 1 | 24.55200   | 24.55200  | 2.47     |                             |
| $SO_{2}^{2}(O_{5}^{2})$ |    | 1 | 0.05530    | 0.05530   | 0.01     |                             |
| Error                   | 9  |   | 89.48623   | 9.942913  |          | 19.4%                       |
| TOTAL                   | 19 |   | 1311.26900 |           |          |                             |

Table 7. Analysis of Variance of Variable IV - Total Wt Seeds

Count

-

ť

ť

Ć

ŧ

ſ

ť

| Combination | mean | Sub | oclas | ss | Means  |
|-------------|------|-----|-------|----|--------|
|             |      | 0   | S     | В  |        |
|             |      |     |       |    |        |
| В           | 10   |     | -     |    |        |
|             |      | 0   | 0     | 1  | 15.75  |
|             |      | 0   | 0     | 2  | 16.80  |
| 0           | 4    |     |       |    |        |
|             | ·    | 1   | 0     | 0  | 5.81   |
|             |      | 2   | 0     | 0  | 8.74   |
|             |      | 3   | 0     | 0  | 20.11  |
|             |      | 4   | 0     | Õ  | 23.18  |
|             |      | 5   | Õ     | Õ  | 23.54  |
|             |      | 2   | Ŭ     | v  | 23.31  |
| S           | 10   |     |       |    |        |
| -           |      | 0   | 1     | 0  | 17.39  |
|             |      | 0   | 2     | 0  | 15.16  |
|             |      |     |       |    |        |
| 0 x S       | 2    |     |       |    |        |
|             |      | 1   | 1     | 0  | 5.26   |
|             |      | 2   | 1     | 0  | 8.28   |
|             |      | 3   | 1     | 0  | 24.11  |
|             |      | 4   | 1     | 0  | 25.66  |
|             |      | 5   | 1     | 0  | 23.66  |
|             |      | 1   | 2     | 0  | 6.37   |
|             |      | 2   | 2     | 0  | 9.20   |
|             |      | 3   | 2     | 0  | 16.10  |
|             |      | 4   | 2     | 0  | 20.71  |
|             |      | 5   | 2     | 0  | 23 / 2 |

|                                   |    |   | ,          |            |          | Coefficient  |
|-----------------------------------|----|---|------------|------------|----------|--------------|
| Source of Variation               | df |   | SS         | MS         | F        | of variation |
| -                                 | -  |   | 17 00/00   | 17 00/00   |          |              |
| В                                 | 1  |   | 1/.09400   | 17.09400   | 0.41     |              |
| 0                                 | 4  |   | 6824.34900 | 1706.08700 | 41.42*** |              |
| S                                 | 1  |   | 110.59100  | 110.59100  | 2.68     |              |
| 0 x S                             | 4  |   | 349.92740  | 87.48186   | 2.12     |              |
| SO <sub>2</sub> (0 <sub>1</sub> ) |    | 1 | 6.40137    | 6.40137    | 0.16     |              |
| $SO_{2}^{-}(O_{2}^{-})$           |    | 1 | 3.51660    | 3.51660    | 0.09     |              |
| $SO_{2}^{-}(O_{3}^{-})$           |    | 1 | 384.55220  | 384.55220  | 9.34*    |              |
| $SO_{2}^{-}(O_{4}^{-})$           |    | 1 | 66.01685   | 66.01685   | 1.60     |              |
| $SO_{2}^{-}(O_{5})$               |    | 1 | 0.03442    | 0.03442    | 0.00     |              |
| Error                             | 9  |   | 370.74970  | 41.19441   |          | 15.4%        |
| TOTAL                             | 19 |   | 7672.71100 |            |          |              |

ţ

Ű

ť

ŧ

ſ

i

2

ţ

|             | Count per |          |   |   |                                                  |
|-------------|-----------|----------|---|---|--------------------------------------------------|
| Combination | mean      | Subclass |   |   | Means                                            |
| · · · ·     |           | 0        | S | В | ۱۹۹۹ میں دور |
| D           | 10        |          |   |   |                                                  |
| ם           | 10        | 0        | 0 | 1 | 40.95                                            |
|             |           | 0        | 0 | 1 | 40.85                                            |
|             |           | 0        | 0 | 2 | 42.70                                            |
| 0           | 4         |          |   |   |                                                  |
|             |           | 1        | 0 | 0 | 15.22                                            |
|             |           | 2        | 0 | 0 | 23.89                                            |
|             |           | 3        | 0 | 0 | 52.77                                            |
|             |           | 4        | 0 | 0 | 57.80                                            |
|             |           | 5        | 0 | 0 | 59.19                                            |
|             |           | -        | - | - |                                                  |
| S           | 10        |          |   |   |                                                  |
|             |           | 0        | 1 | 0 | 44.12                                            |
|             | •         | 0        | 2 | 0 | 39.42                                            |
|             |           |          |   |   |                                                  |
| 0 x S       | 2         |          |   |   |                                                  |
|             |           | 1        | 1 | 0 | 13.95                                            |
|             |           | 2        | 1 | 0 | 22.96                                            |
|             |           | 3        | 1 | 0 | 62.57                                            |
|             |           | 4        | 1 | 0 | 61.86                                            |
|             |           | 5        | 1 | 0 | 59.29                                            |
|             |           | 1        | 2 | 0 | 16.48                                            |
|             |           | 2        | 2 | 0 | 24.83                                            |
|             |           | 3        | 2 | 0 | 42.96                                            |
|             |           | 4        | 2 | 0 | 53.74                                            |
|             |           | 5        | 2 | Ō | 59.10                                            |
|             |           |          | - | • |                                                  |

| Source of Variation     | đf | SS         | MS       | F        | Coefficient<br>of variation |
|-------------------------|----|------------|----------|----------|-----------------------------|
|                         |    |            |          |          |                             |
| В                       | 1  | 0.023805   | 0.023805 | 1.37     |                             |
| 0                       | 4  | 2.234230   | 0.558557 | 32.19*** |                             |
| S                       | 1  | 0.000005   | 0.000005 | 0.00     |                             |
| 0 x S                   | 4  | 0.124870   | 0.031217 | 1.80     |                             |
| $SO_2(0_1)$             |    | 1 0.052901 | 0.052901 | 3.05     |                             |
| $S0_{2}^{2}(0_{2})$     |    | 1 0.065025 | 0.065025 | 3.75     |                             |
| $S0_{2}^{2}(0_{3}^{2})$ |    | 1 0.005625 | 0.005625 | 0.32     |                             |
| $SO_{2}^{2}(0_{1})$     |    | 1 0.001226 | 0.001226 | 0.07     |                             |
| $SO_{2}^{2}(05)$        |    | 1 0.000100 | 0.000100 | 0.01     |                             |
| Error                   | 9  | 0.156145   | 0.017349 |          | 4.6%                        |
| TOTAL                   | 19 | 2.539055   |          |          |                             |

Table 9. Analysis of Variance of Variable VI - Avg No. Seeds/Pod

í

|             | Count per |          |   |   |       |
|-------------|-----------|----------|---|---|-------|
| Combination | mean      | Subclass |   |   | Means |
|             |           | 0        | S | В | ·     |
| P           | 10        |          |   |   |       |
| D           | 10        | 0        | 0 | 1 | 2 82  |
|             |           | 0        | 0 | 2 | 2.02  |
|             |           | U        | 0 | 2 | 2.09  |
| 0           | 4         |          |   |   |       |
|             |           | 1        | 0 | 0 | 2.33  |
|             |           | 2        | 0 | 0 | 2.60  |
|             |           | 3        | 0 | 0 | 3.00  |
|             |           | 4        | 0 | 0 | 3.20  |
|             |           | 5        | 0 | 0 | 3.13  |
|             |           |          |   |   |       |
| S           | 10        |          |   |   |       |
|             |           | 0        | 1 | 0 | 2.85  |
|             |           | 0        | 2 | 0 | 2.85  |
| 0 7 8       | 0         |          |   |   |       |
| UXS         | 2         | 1        | 1 | 0 | 2.45  |
|             |           | 2        | 1 | 0 | 2.47  |
|             |           | 3        | 1 | 0 | 3.04  |
|             |           | 4        | 1 | 0 | 3.19  |
|             |           | 5        | 1 | 0 | 3.13  |
|             |           | 1        | 2 | Ō | 2.22  |
|             |           | 2        | 2 | 0 | 2.73  |
|             |           | 3        | 2 | 0 | 2.96  |
|             |           | 4        | 2 | Ō | 3.22  |
|             |           | 5        | 2 | 0 | 3.14  |
|             |           | 2        | - | - |       |
|                         |    |   |         |         |          | Coefficient  |
|-------------------------|----|---|---------|---------|----------|--------------|
| Source of Variation     | df |   | SS      | MS      | F        | of variation |
|                         |    |   |         |         |          |              |
| В                       | 1  |   | 0.00800 | 0.00800 | 1.30     |              |
| 0                       | 4  |   | 0.67328 | 0.16832 | 27.30*** |              |
| S                       | 1  |   | 0.00648 | 0.00648 | 1.05     |              |
| 0 x S                   | 4  |   | 0.03452 | 0.00863 | . 1.40   |              |
| $SO_2(0_1)$             |    | 1 | 0.01000 | 0.01000 | 1.62     |              |
| $SO_{2}^{-}(O_{2}^{-})$ |    | 1 | 0.01440 | 0.01440 | 2.34     |              |
| $SO_{2}^{-}(O_{3}^{-})$ |    | 1 | 0.00810 | 0.00810 | 1.31     |              |
| $SO_{2}^{-}(O_{4}^{-})$ |    | 1 | 0.00810 | 0.00810 | 1.31     |              |
| $SO_{2}^{-}(O_{5}^{+})$ |    | 1 | 0.00040 | 0.00040 | 0.06     |              |
| Error                   | 9  |   | 0.05550 | 0.00617 |          | 5.0%         |
| TOTAL                   | 19 |   | 0.77778 |         |          |              |

Table 10. Analysis of Variance of Variable VII - Avg. Filled Pod Wt.

-----

ί

Ć

ſ

ſ

(

| ·           | Count per |          |       |    |       |
|-------------|-----------|----------|-------|----|-------|
| Combination | mean      | Sub      | oclas | ss | Means |
|             |           | 0        | S     | B  |       |
| D           | 10        |          |       |    |       |
| D           | 10        | 0        | Ο     | 1  | 1.56  |
|             |           | Ő        | õ     | 2  | 1.50  |
|             |           | Ū        | Ŭ     | 2  | 1.00  |
| 0           | 4         |          |       |    |       |
|             |           | 1        | 0     | 0  | 1.35  |
|             |           | 2        | 0     | 0  | 1.40  |
|             |           | 3        | 0     | 0  | 1.60  |
|             |           | 4        | 0     | 0  | 1.80  |
|             |           | 5        | 0     | 0  | 1.76  |
|             |           |          |       |    |       |
| S           | 10        |          | -     | _  |       |
|             |           | 0        | 1     | 0  | 1.60  |
|             |           | 0        | 2     | 0  | 1.56  |
| θχς         | 2         |          |       |    |       |
| 0 A D       | 2         | 1        | 1     | 0  | 1.40  |
|             |           | 2        | 1     | Õ  | 1,34  |
|             |           | 3        | 1     | 0  | 1.65  |
|             |           | 4        | 1     | 0  | 1.85  |
|             |           | 5        | 1     | Õ  | 1.77  |
|             |           | 1        | 2     | 0  | 1.30  |
|             |           | 2        | 2     | Õ  | 1.46  |
|             |           | 3        | 2     | Õ  | 1.56  |
|             |           | 4        | 2     | Õ  | 1.76  |
|             |           | 5        | 2     | Õ  | 1.75  |
|             |           | <i>,</i> | -     | Ū  | 1.75  |

<u>Functional analysis (3)</u>: The two derived variables, average number of seeds per pod and average weight of filled pods, did not have sufficient biological or economic value to be continued in the analysis and were discarded. Plots of the remaining five harvest variables and ozone dose alone and in combination with SO<sub>2</sub> were constructed (Figures 9). The ozone and ozone plus SO<sub>2</sub> treatments were partitioned into orthogonal polynomials to assist functional analysis. A computer program was utilized to calculate the polynomial coefficients since the doses were not strictly orthogonal. Tables (11-24) summarize this analysis.

1) <u>Plant dry weight</u> - The ozone response only had a linear component despite the apparent curvilinear distribution. The responses at the 100, 75, and 50% filtered treatments (1000, 2700, and 5100 pphm-hrs ozone dose) were not significantly different from a 0 slope when evaluated as a function and the linear component was represented only by the 50, 25, and 0% filtered treatments. No quadratic, cubic or quartic component proved to be significant.

ł

ί

Ĺ

ţ

1

I,

ſ

The ozone plus SO<sub>2</sub> response was found to have a highly significant linear component but no other curvilinear components.

2) <u>Number of filled pods</u> - The ozone treatment response had a highly significant linear component based on the 3 high dose points. No curvilinear components were significant.

The ozone + SO<sub>2</sub> treatment response was observed to have only a highly significant linear component.

3) <u>Total weight of filled pods</u> - The ozone treatment response again had only a significant linear component.

The ozone + SO2 treatment response had only a significant linear component.

Figure 9. Responses of red kidney beans with seasonal ozone dose alone and in combination with 10 pphm  $SO_2$ .



| Source of Variation | df | SS       | MS       | F       | Coefficient<br>of variation |
|---------------------|----|----------|----------|---------|-----------------------------|
| 0                   | 4  | 31.09446 | 7.77361  | 6.32    |                             |
| Linear              | 1  | 26.98093 | 26.98093 | 21.92** |                             |
| Quadratic           | 1  | 0.26694  | 0.26694  | 0.22    |                             |
| Cubic               | 1  | 0.31288  | 0.31288  | 0.25    | · · · · ·                   |
| Quartic             | 1  | 3.53368  | 3 53368  | 2.87    |                             |
| В                   | 1  | 0.01600  | 0.01600  | 0.01    |                             |
| Error               | 4  | 4.92370  | 1.23092  |         | 20.9%                       |
| TOTAL               | 9  | 36.03416 |          |         |                             |

Table 11. Analysis of Variance of Variable I - Plant Dry Wt.,  $0_3$  Dose >0 pphm-hrs,  $S0_2 = 0$  pphm.

Table 12. Analysis of Variance of Variable I - Plant Dry Wt.,  $0_3$  Dose >0 pphm-hrs,  $S0_2 = 10$  pphm.

ł

|      |                 |    |          |          | _         | Coefficient  |
|------|-----------------|----|----------|----------|-----------|--------------|
| Sour | ce of Variation | dt | SS       | MS       | F         | of variation |
| 0    |                 | 4  | 13.10664 | 3.27666  | 35.44**   |              |
|      | Linear          | 1  | 12.36998 | 12.36998 | 133.79*** |              |
|      | Quadratic       | 1  | 0.66873  | 0.66873  | 7.23      |              |
|      | Cubic           | 1  | 0.04450  | 0.04450  | 0.48      |              |
|      | Quartic         | 1  | 0.02342  | 0.02342  | 0.25      |              |
| В    |                 | 1  | 0.10816  | 0.10816  | 1.17      |              |
| Erro | r               | 4  | 0.36984  | 0.09246  |           | 6.1%         |
| TOTA | L               | 9  | 13.58464 |          |           |              |

| Source of Var | iation d | £ | SS        | MS        | F       | Coefficient<br>of variation |
|---------------|----------|---|-----------|-----------|---------|-----------------------------|
| 0             |          | 4 | 363.86690 | 90.96672  | 15.25*  |                             |
| Linear        |          | 1 | 288.02340 | 288.02340 | 48.30** |                             |
| Quadrati      | c        | 1 | 45.86856  | 45.86856  | 7.69    |                             |
| Cubic         |          | 1 | 12.82058  | 12.82058  | 2.15    |                             |
| Quartic       |          | 1 | 17.15401  | 17.15401  | 2.88    |                             |
| В             |          | 1 | 1.14921   | 1.14921   | 0.19    |                             |
| Error         |          | 4 | 23.85514  | 5.96378   |         | 16.3%                       |
| TOTAL         |          | 9 | 388.87130 |           |         |                             |

í

ť

Table 13. Analysis of Variance of Variable II - No. Filled Pods,  $0_3$  Dose >0 pphm-hrs,  $SO_2 = 0$  pphm.

Table 14. Analysis of Variance of Variable II - No. Filled Pods,  $0_3$  Dose >0 pphm-hrs,  $S0_2 = 10$  pphm.

| Source of Variation | df  | SS        | MS        | F         | Coefficient<br>of variation |
|---------------------|-----|-----------|-----------|-----------|-----------------------------|
| 0                   | 4   | 179.24010 | 44.81001  | 55.71***  |                             |
| Linear              | 1   | 176.27480 | 176.27480 | 219.16*** |                             |
| Quadratic           | . 1 | 0.20955   | 0.20955   | 0.26      |                             |
| Cubic               | 1   | 1.28632   | 1.28632   | 1.60      |                             |
| Quartic             | 1   | 1.46941   | 1.46941   | 1.83      |                             |
| В                   | 1   | 0.16641   | 0.16641   | 0.21      |                             |
| Error               | 4   | 3.21734   | 0.80433   |           | 6.7%                        |
| TOTAL               | 9   | 182.62380 |           |           |                             |

40

.

| Source of Variation | df | SS         | MS         | F       | Coefficient<br>of variation |
|---------------------|----|------------|------------|---------|-----------------------------|
| 0                   | 4  | 1464.80200 | 366.20040  | 11.50*  |                             |
| Linear              | 1  | 1220.85500 | 1220.85500 | 38.34** |                             |
| Quadratic           | 1  | 112.75710  | 112.75710  | 3.54    |                             |
| Cubic               | 1  | 98.95384   | 98.95384   | 3.11    |                             |
| Quartic             | 1  | 32.23340   | 32.23340   | 1.01    |                             |
| В                   | 1  | 7.93881    | 7.93881    | 0.25    |                             |
| Error               | 4  | 127.35780  | 31.83945   |         | 22.7%                       |
| TOTAL               | 9  | 1600.09800 |            |         |                             |

Table 15. Analysis of Variance of Variable III - Total Wt. Pods,  $0_3$  Dose >0 pphm-hrs.,  $S0_2 = 0$  pphm.

Table 16. Analysis of Variance of Variable III - Total Wt. Pods,  $0_3$  Dose >0 pphm-hrs  $SO_2 = 10$  pphm.

1

L

|                     |    |           |           |                                          | Coefficient  |
|---------------------|----|-----------|-----------|------------------------------------------|--------------|
| Source of Variation | df | SS        | MS        | F                                        | of variation |
| 0                   | 4  | 802.48350 | 200.62090 | 35.38**                                  |              |
| Linear              | 1  | 797.19970 | 797.19970 | 140.59***                                | e            |
| Quadratic           | 1  | 0.21493   | 0.21493   | 0.04                                     |              |
| Cubic               | 1  | 4.83313   | 4.83313   | 0.85                                     |              |
| Quartic             | 1  | 0.23619   | 0.23619   | 0.04                                     |              |
| В                   | 1  | 0.72361   | 0.72361   | 0.13                                     |              |
| Error               | 4  | 22.68134  | 5.67033   | en e | 11.0%        |
| TOTAL               | 9  | 825.88840 |           |                                          |              |

| Source of Variation | df  | SS        | MS        | F       | Coefficient<br>of variation |
|---------------------|-----|-----------|-----------|---------|-----------------------------|
| 0                   | 4   | 766.10370 | 191.52590 | 10.34*  |                             |
| Linear              | 1   | 635.69360 | 635.69360 | 34.32** |                             |
| Quadratic           | 1   | 58.44855  | 58.44855  | 3.16    |                             |
| Cubic               | . 1 | 55.76494  | 55.76494  | 3.01    |                             |
| Quartic             | 1   | 16.19656  | 16.19656  | 0.87    |                             |
| В                   | 1   | 5.01264   | 5.01264   | 0.27    |                             |
| Error               | 4   | 74.08906  | 18.52226  |         | 24.7%                       |
| TOTAL               | 9   | 845.20540 |           |         |                             |

Table 17. Analysis of Variance of Variable IV - Total Wt. Seeds, 03 Dose >0 pphm-hrs S02 = 0 pphm.

-----

ł

- - - -

Table 18. Analysis of Variance of Variable IV - Total Wt. Seeds,  $0_3$  Dose >0 pphm-hrs,  $S0_2 = 10$  pphm.

| Sour | ce of Variation | df | SS        | MS        | F         | Coefficient<br>of variation |
|------|-----------------|----|-----------|-----------|-----------|-----------------------------|
| 0    |                 | 4  | 425.28780 | 106.32190 | 28.91**   |                             |
|      | Linear          | 1  | 422.84230 | 422.84230 | 114.99*** |                             |
|      | Quadratic       | 1  | 0.01395   | 0.01395   | 0.00      |                             |
|      | Cubic           | 1  | 2.29498   | 2.29498   | 0.62      |                             |
|      | Quartic         | 1  | 0.13651   | 0.13651   | 0.04      |                             |
| В    |                 | 1  | 1.13569   | 1.13569   | 0.31      |                             |
| Erro | r               | 4  | 14.70896  | 3.67724   |           | 12.6%                       |
| TOTA | L               | 9  | 441.13250 |           |           |                             |

| Source of Variation | df | SS         | MS         | F       | Coefficient<br>of variation |
|---------------------|----|------------|------------|---------|-----------------------------|
| 0                   | 4  | 4486.54700 | 1121.63600 | 14.68*  |                             |
| Linear              | 1  | 3645.12000 | 3645.12000 | 47.71** |                             |
| Quadratic           | 1  | 426.48730  | 426.48730  | 5.58    |                             |
| Cubic               | 1  | 242.58330  | 242.58330  | 3.17    |                             |
| Quartic             | 1  | 172.35040  | 172.35040  | 2.26    |                             |
| В                   | 1  | 6.56100    | 6.56100    | 0.09    |                             |
| Error               | 4  | 305.61710  | 76.40427   |         | 19.8%                       |
| TOTAL               | 9  | 4798.72500 |            |         |                             |

Table 19. Analysis of Variance of Variable V - Total No. Seeds,  $0_3$  Dose >0 pphm-hrs,  $SO_2 = 0$  pphm.

Table 20. Analysis of Variance of Variable V - Total No. Seeds,  $0_3$  Dose >0 pphm-hrs,  $S0_2 = 10$  pphm.

Į.

|                     |    |   |            |            |           | Coefficient |
|---------------------|----|---|------------|------------|-----------|-------------|
| Source of Variation | df |   | SS         | MS         | F o       | f variation |
| 0                   | 4  |   | 2687.73000 | 671.93240  | 41.43**   |             |
| Linear              |    | 1 | 2664.34300 | 2664.34300 | 164.29*** |             |
| Quadratic           |    | 1 | 5.54985    | 5.54985    | 0.34      |             |
| Cubic               |    | 1 | 16.78029   | 16.78029   | 1.03      |             |
| Quartic             |    | 1 | 1.05402    | 1.05402    | 0.06      |             |
| В                   | 1  |   | 10.79521   | 10.79521   | 0.67      |             |
| Error               | 4  |   | 64.87044   | 16.21761   |           | 10.2%       |
| TOTAL               | 9  |   | 2763.39500 |            |           |             |

| Sourc | e of Variation | df |   | SS      |    | MS    | F         | Coefficient<br>of variation |
|-------|----------------|----|---|---------|----|-------|-----------|-----------------------------|
| 0     |                | 4  |   | 1.06096 | 0. | 26524 | 40.13**   |                             |
|       | Linear         |    | 1 | 0.92000 | 0. | 92000 | 139.18*** |                             |
|       | Quadratic      | :  | 1 | 0.02426 | 0. | 02426 | 3.67      |                             |
|       | Cubic          | :  | 1 | 0.10546 | 0. | 10546 | 15.95*    |                             |
|       | Quartic        |    | 1 | 0.01125 | 0. | 01125 | 1.70      |                             |
| В     |                | 1  |   | 0.00676 | 0. | 00676 | 1.02      |                             |
| Error |                | 4  |   | 0.02644 | 0. | 00661 |           | 2.9%                        |
| TOTAL |                | 9  |   | 1.09416 |    |       |           |                             |

Table 21. Analysis of Variance of Variable VI - Avg. No. Seeds/Pod,  $0_3$  Dose >0 pphm-hrs,  $S0_2 = 0$  pphm.

Table 22. Analysis of Variance of Variable VI - Avg. No. Seeds/Pod,  $0_3$  Dose >0 pphm-hrs,  $S0_2 = 10$  pphm.

ł

| Source of Variation | df |   | SS       | MS      | F        | Coefficient<br>of variation |
|---------------------|----|---|----------|---------|----------|-----------------------------|
| 0                   |    |   | 1 20.91/ | 0 22452 | 22 0044  |                             |
| U                   | 4  | 1 | 1.12692  | 1 12692 | 22.30^^  |                             |
| Linear              |    | 1 | 1.12082  | 1.12002 | /9.//*** |                             |
| Quadratic           |    | 1 | 0.14143  | 0.14143 | 10.01*   |                             |
| Cubic               |    | 1 | 0.00106  | 0.00106 | 0.08     |                             |
| Quartic             |    | 1 | 0.02883  | 0.02883 | 2.04     | · · · · ·                   |
| В                   | 1  |   | 0.09025  | 0.09025 | 6.39     |                             |
| Error               | 4  |   | 0.05660  | 0.01412 |          | 4.2%                        |
| TOTAL               | 9  |   | 1.44489  |         |          |                             |
|                     |    |   |          |         |          |                             |

| Source of Variation | df |   | SS      | MS      | F       | Coefficient<br>of variation |
|---------------------|----|---|---------|---------|---------|-----------------------------|
| 0                   | 4  |   | 0.39896 | 0.09974 | 10.84*  |                             |
| Linear              |    | 1 | 0.32598 | 0.32598 | 35.43** |                             |
| Quadratic           |    | 1 | 0.00002 | 0.00002 | 0.00    |                             |
| Cubic               |    | 1 | 0.07288 | 0.07288 | 7.92*   |                             |
| Quartic             |    | 1 | 0.00008 | 0.00008 | 0.01    |                             |
| В                   | 1  |   | 0.00100 | 0.00100 | 0.11    |                             |
| Error               | 4  |   | 0.03680 | 0.00920 |         | 6.0%                        |
| TOTAL               | 9  |   | 0.43676 |         |         |                             |
|                     |    |   |         |         |         |                             |

Į

ί

ĺ

Table 23. Analysis of Variance of Variable VII - Avg. Filled Pod Wt.,  $0_3$  Dose > 0 pphm-hrs,  $S0_2 = 0$  pphm.

Table 24. Analysis of Variance of Variable VII - Avg. Filled Pod Wt.,  $0_3$  Dose >0 pphm-hrs,  $S0_2 = 10$  pphm.

| Source of Variation | df |   | SS      | MS      | F       | Coefficient<br>of variation |
|---------------------|----|---|---------|---------|---------|-----------------------------|
| 0                   | 4  |   | 0.30546 | 0.07636 | 15.96*  |                             |
| Linear              |    | 1 | 0.29252 | 0.29252 | 61.13** |                             |
| Quadratic           |    | 1 | 0.00213 | 0.00213 | 0.45    |                             |
| Cubic               |    | 1 | 0.00055 | 0.00055 | 0.12    |                             |
| Quartic             |    | 1 | 0.01025 | 0.01025 | 2.14    |                             |
| В                   | 1  |   | 0.00841 | 0.00841 | 1.76    |                             |
| Error               | 4  |   | 0.01914 | 0.00478 |         | 4.4%                        |
| TOTAL               | 9  |   | 0.33301 |         |         |                             |
|                     |    |   |         |         |         |                             |

4) <u>Total weight of seeds</u> - The ozone treatment had only a significant linear component.

-----

í

Ĺ

ĺ

I

ĺ

The ozone + SO<sub>2</sub> treatment had only a significant linear component. 5) <u>Total number of seeds</u> - The ozone treatment had only a significant linear component.

The ozone +  $SO_2$  treatment had only a significant linear component. <u>Regression Analysis (3)</u>: The Tables of Means (25), Doses (26) summarize the data for this analysis. All plant harvest variables and doses are presented but the regression analysis incorporates only the principal yield component, total weight of seeds. Peak ozone concentrations (Table 27) and peak  $SO_2$ concentrations (Table 28) are presented for information only.

1) Ozone effect - Ozone was by far the most significant factor defined in the anova analysis in reducing the total weight of seeds harvested. The functional analysis indicated that the response was linear, and reduced yields occurred when the dose was greater than 5160 pphm-hrs. A regression of weight of seeds per plant and doses greater than 4739 pphm-hrs produced the following:

> wt of seeds = 43.839 + (-.00445 x dose) r = .90454\*\*

A plot of the data points (Figure 10) revealed that the addition of the ambient data points had extended the dose range to 9880 pphm-hrs and appeared to produce a curvilinear function. A log transformation was used and produced a better fit.

wt of seeds = 
$$306.7 + (-33.317 \times \log_e \text{ dose})$$
  
r =  $.9449**$ 

2) <u>SO<sub>2</sub> effect</u> - The ozone dose + 10 pphm SO<sub>2</sub> response (Figure 10) was extremely linear as predicted by the functional analysis and closely associated

| Table | 25. | Table | of | Means | (Regression) |
|-------|-----|-------|----|-------|--------------|
|-------|-----|-------|----|-------|--------------|

Í

ĺ

1

| Chamber<br># | Block | Level<br>S02<br>pphm | Filtered<br>ambient<br>air (%) | Plant<br>dry wt.<br>(g) | # Filled pods | Total wt.<br>pods<br>(g) | Total wt.<br>seeds<br>(g) | Total<br>#<br>seeds | Avg. #<br>seeds/<br>pod | Avg.<br>filled<br>pod wt.(g) |
|--------------|-------|----------------------|--------------------------------|-------------------------|---------------|--------------------------|---------------------------|---------------------|-------------------------|------------------------------|
| 3            | 1     | 0                    | 0                              | 3.32                    | 6.9           | 9.01                     | 6.08                      | 15.9                | 2.4                     | 1.40                         |
| 8            | 1     | 0                    | 25                             | 3.29                    | 9.5           | 12.39                    | 8.23                      | 22.8                | 2.5                     | 1.33                         |
| 9            | 1     | 0                    | 50                             | 5.72                    | 17.4          | 27.44                    | 19.04                     | 51.6                | 3.0                     | 1.58                         |
| 5            | 1     | 0                    | 75                             | 5.52                    | 19.0          | 33.69                    | 23.50                     | 61.4                | 3.2                     | 1.77                         |
| 2            | 1     | 0                    | 100                            | 8.49                    | 20.1          | 37.49                    | 26.57                     | 64.9                | 3.2                     | 1.86                         |
| 1            | 1     | 10                   | 0                              | 3.52                    | 8.3           | 10.17                    | 6.70                      | 17.2                | 2.2                     | 1.27                         |
| 6            | 1     | 10                   | 25                             | 3.94                    | 8.9           | 12.50                    | 8.52                      | 22.8                | 2.6                     | 1.44                         |
| 10           | 1     | 10                   | 50                             | 4.81                    | 15.4          | 22.76                    | 15.82                     | 41.8                | 2.8                     | 1.49                         |
| 7            | 1     | 10                   | 75                             | 5.74                    | 17.2          | 31.03                    | 22.01                     | 56.1                | 3.2                     | 1.80                         |
| 4            | 1     | 10                   | 100                            | 6.25                    | 18.0          | 30.28                    | 21.06                     | 54.0                | 3.0                     | 1.67                         |
| 14           | 2     | 0                    | 0                              | 2.77                    | 5.0           | 6.95                     | 4.43                      | 12.0                | 2.4                     | 1.4                          |
| 16           | 2     | 0                    | 25                             | 3.48                    | 9.4           | 12.48                    | 8.33                      | 23.1                | 2.5                     | 1.34                         |
| 19           | 2     | 0                    | 50                             | 7.60                    | 23.9          | 41.00                    | 29.18                     | 73.6                | 3.1                     | 1.71                         |
| 17           | 2     | 0                    | 75                             | 6.60                    | 20.0          | 38.63                    | 27.82                     | 62.3                | 3.1                     | 1.92                         |
| 11           | 2     | 0                    | 100                            | 6.29                    | 18.0          | 29.87                    | 20.74                     | 53.7                | 3.0                     | 1.67                         |
| 12           | 2     | 10                   | 0                              | 3.90                    | 7.1           | 9.20                     | 6.04                      | 15.8                | 2.3                     | 1.33                         |
| 18           | 2     | 10                   | 25                             | 3.78                    | 9.8           | 14.15                    | 9.88                      | 26.8                | 2.8                     | 1.47                         |
| 20           | 2     | 10                   | 50                             | 4.55                    | 14.1          | 22.81                    | 16.38                     | 44.2                | 3.2                     | 1.62                         |
| 15           | 2     | 10                   | 75                             | 6.02                    | 16.2          | 27.47                    | 19.40                     | 51.3                | 3.2                     | 1.71                         |
| 13           | 2     | 10                   | 100                            | 7.05                    | 19.3          | 35.80                    | 25.78                     | 64.2                | 3.3                     | 1.83                         |
| AMB 1        |       |                      |                                | 1.95                    | 3.3           | 4.00                     | 2.67                      | 7.0                 | 2.2                     | 1.25                         |
| AMB2         |       |                      |                                | 2.20                    | 3.6           | 4.38                     | 2.93                      | 7.8                 | 2.2                     | 1.27                         |

Table 26. Table of Doses (Regression)

ť.

Í.

| Chamber<br># | Block | Level<br>SO2<br>pphm | Filtered<br>ambient<br>air (%) | Dose<br>>0<br>pphm/hrs | Dose<br>>3<br>pphm/hrs | Dose<br>>5<br>pphm/hrs | Dose<br>>8<br>pphm/hrs | Dose<br>>10<br>pphm/hrs | Dose<br>>15<br>pphm/hrs | Dose<br>>20<br>pphm/hrs |
|--------------|-------|----------------------|--------------------------------|------------------------|------------------------|------------------------|------------------------|-------------------------|-------------------------|-------------------------|
| 3            | 1     | 0                    | 0                              | 8033                   | 4625                   | 3211                   | 1730                   | 1061                    | 270                     | 39                      |
| . 8          | 1     | 0                    | 25                             | 6892                   | 3680                   | 2404                   | 1116                   | 619                     | 104                     | 9                       |
| 9            | 1     | 0                    | 50                             | 5582                   | 1991                   | 955                    | 248                    | 85                      | 11                      | 3                       |
| 5            | 1     | 0                    | 75                             | 2706                   | 455                    | 93                     | 1                      | 0                       | 0                       | 0                       |
| 2            | 1     | 0                    | 100                            | 1032                   | 3                      | 0                      | 0                      | 0                       | 0                       | 0                       |
| 1            | 1     | 10                   | 0                              | 8010                   | 4603                   | 3189                   | 1716                   | 1045                    | 261                     | 32                      |
| 6            | 1     | 10                   | 25                             | 6722                   | 3510                   | 2237                   | 998                    | 553                     | 78                      | 4                       |
| 10           | 1     | 10                   | 50                             | 5254                   | 2146                   | 1099                   | 333                    | 125                     | 4                       | 0                       |
| 7            | 1     | 10                   | 75                             | 2825                   | 563                    | 122                    | 5                      | 0                       | 0                       | 0                       |
| 4            | 1     | 10                   | 100                            | 1310                   | 6                      | 0                      | 0                      | 0                       | 0                       | 0                       |
| 14           | 2     | 0                    | 0                              | 8688                   | 5164                   | 3739                   | 2146                   | 1403                    | 410                     | 83                      |
| 16           | 2     | 0                    | 25                             | 6912                   | 3502                   | 2229                   | 949                    | 509                     | 70                      | 3                       |
| 19           | 2     | 0                    | 50                             | 4739                   | 1688                   | 748                    | 158                    | 48                      | 4                       | 0                       |
| 17           | 2     | 0                    | 75                             | 2881                   | 349                    | 48                     | 0                      | 0                       | 0                       | 0                       |
| 11           | 2     | 0                    | 100                            | 992                    | 0                      | 0                      | 0                      | 0                       | 0                       | 0                       |
| 12           | 2     | 10                   | 0                              | 8586                   | 5059                   | 3638                   | 2063                   | 1320                    | 364                     | 64                      |
| 18           | 2     | 10                   | 25                             | 7136                   | 3713                   | 2381                   | 1084                   | 584                     | 87                      | 7                       |
| 20           | 2     | 10                   | 50                             | 5033                   | 1912                   | 913                    | 217                    | 65                      | 3                       | 0                       |
| 15           | 2     | 10                   | 75                             | 2818                   | 337                    | 44                     | 0                      | 0                       | 0                       | 0                       |
| 13           | 2     | 10                   | 100                            | 1040                   | 0                      | 0                      | 0                      | 0                       | 0                       | 0                       |
| AMB 1        |       |                      |                                | 9880                   | 6465                   | 4935                   | 3170                   | 2270                    | 854                     | 273                     |
| AMB 2        |       |                      |                                | 9880                   | 6465                   | 4935                   | 3170                   | 2270                    | 854                     | 273                     |





ł

ŧ

| % Filtered | Chamber # | 8/19/77<br>(ppm 0 <sub>3</sub> ) | 10/14/77<br>(ppm 0 <sub>3</sub> ) | 10/15/77<br>(ppm 0 <sub>3</sub> ) |
|------------|-----------|----------------------------------|-----------------------------------|-----------------------------------|
| ambient    |           | •300                             | •300                              | •360                              |
| 0          | 1         | •246                             | •246                              | •295                              |
| 100        | 2         | •016                             | •016                              | •016                              |
| 0          | 3         | •246                             | •246                              | •295                              |
| 100        | 4         | •016                             | •016                              | •016                              |
| 75         | 5         | •061                             | •061                              | •074                              |
| 25         | 6         | •185                             | •185                              | •221                              |
| 75         | 7         | •061                             | •061                              | •074                              |
| 25         | 8         | •185                             | •185                              | •221                              |
| 50         | 9         | •123                             | •123                              | •148                              |
| 50         | 10        | •123                             | •123                              | •148                              |
| 100        | 11        | •016                             | •016                              | •016                              |
| 0          | 12        | •246                             | •246                              | •295                              |
| 100        | 13        | •016                             | •016                              | •016                              |
| 0          | 14        | •246                             | •246                              | •295                              |
| 75         | 15        | •061                             | •061                              | .074                              |
| 25         | 16        | •185                             | •185                              | •221                              |
| 75         | 17        | •061                             | •061                              | •074                              |
| 25         | 18        | •185                             | •185                              | •221                              |
| 50         | 19        | •123                             | •123                              | •148                              |
| 50         | 20        | •123                             | •123                              | •148                              |

ſ

ŝ

# Table 27. Peak ambient ozone concentration with calculated chamber concentrations.

|           |               | SOc           |                        |
|-----------|---------------|---------------|------------------------|
| Chamber # | ppm-hr        | 6 hr avg.     | 24 hr avg <sup>1</sup> |
| 1         | •14, •14, •13 | •13, •12, •11 | .10, .09               |
| 4         | •14, •14, •14 | •13, •13, •13 | •11, •12               |
| 6         | •14, •14, •14 | •12, •12, •12 | .12, .10               |
| 7         | •13, •12, •12 | .12, .12, .12 | •09, •09               |
| 10        | .13, .13, .13 | .12, .12, .12 | •11, •10               |
| 12        | •15, •14, •14 | •12, •12, •12 | .12, .10               |
| 13        | •14, •14, •13 | •13, •13, •12 | •12, •10               |
| 15        | •13, •13, •13 | •12, •12, •11 | .10, .08               |
| 18        | •13, •12, •12 | •11, •11, •10 | •09, •08               |
| 20        | •14, •14, •14 | •12, •12, •11 | •12, •10               |
|           |               |               |                        |

Three fumigated  ${\rm SO}_2$  concentrations and averages within fumigation chambers. Ambient  ${\rm SO}_2$  concentrations never exceeded .06 ppm peak Table 28. concentration and were never monitored as a significant intrusion in chambers without  $SO_2$  generators.

 $1_{\text{only}}$  2 24 hr. fumigations were run

£

with the weight of seeds harvested (r = -.9727). The regression equation describing the functional relationship follows:

wt seeds =  $27.22 + (-.0024 \times \text{dose})$ 

The SO<sub>2</sub>/ozone interaction described in the anova analysis at 5160 pphm-hrs dose reduced the yield to produce the highly linear function. <u>Dose Analysis (3)</u>: Ozone doses were calculated utilizing several concentration thresholds to determine which representation was best. The various dose representations were then regressed with the total weight of harvested seeds per plant to test for closeness of fit and to determine whether significant differences between functions were detectable.

1) <u>Doses without  $SO_2$ </u> - These doses which included the ambient plots were tested separately because of the lack of significant slopes at doses less than 4739 pphm-hrs. The analysis follows:

| <u>Threshold</u><br>pphm | Intercept | <u>Slope</u> | <u> </u>                |
|--------------------------|-----------|--------------|-------------------------|
| 0                        | 43.8      | •00445       | •905**                  |
| 3                        | 29.1      | •00453       | <b>.</b> 890 <b>*</b> * |
| 5                        | 24.8      | •00506       | <b>.</b> 877 <b>*</b> * |
| 8                        | 20.5      | .00653       | •832 <b>*</b>           |
| 10                       | 18.7      | •00831       | •793*                   |
| 15                       | 16.0      | .01810       | .693 n.s.               |
| 20                       | 14.1      | •04650       | •595 n•s•               |
|                          |           |              |                         |

slopes = 1.93 n.s.

ĺ

ŧ,

t

ĺ

ĩ

í

intercepts = 7.88\*\*

No significant differences between slopes of functions were detected but a significant difference between intercepts was observed. A significant relationship between weight of harvested seeds per plant and the 0, 3, 5, 8 and 10 pphm dose representation was determined. Only the 15 and 20 pphm dose representations were not significantly related.

2) Doses with  $SO_2$  - ozone doses in the  $SO_2$  treatments were tested using the same methods as discussed for doses without  $SO_2$ . The analysis follows:

| Threshold<br>pphm | Intercept | Slope  | Ľ        |
|-------------------|-----------|--------|----------|
| 0                 | 27.2      | .00248 | .973**   |
| 3                 | 20.5      | .00437 | .977**   |
| 5                 | 22.3      | .00337 | .978**   |
| 8                 | 16.8      | .00585 | .951**   |
| 10                | 15.8      | .00852 | .938**   |
| 15                | 14.0      | .02610 | .853*    |
| 20                | 9.3       | .05541 | .883 n.s |

#### F slopes = 9.75\*\*

Į

A highly significant difference was determined between slopes of the various dose representations and the weight of harvested seeds per plant. The intercepts could not be tested because of the significant difference in slopes. Six of the 7 functions were found to have a significant relationship.

3) Dose calculated  $(SO_2)(O_3)$  - The doses were calculated for the  $SO_2$  treatments using  $O_3$  pphm-hrs (for non-fumigated period) +  $(O_3)(SO_2)$  pphm-hrs (for fumigated periods). The resultant doses were as follows:

| Chamber | dose   | Chamber | dose   |
|---------|--------|---------|--------|
| 1       | 23,483 | 12      | 26,300 |
| 4       | 3,567  | 13      | 3,497  |
| 6       | 22,337 | 15      | 7,120  |
| 7       | 8,641  | 18      | 18,029 |
| 10      | 16,081 | 20      | 13,516 |

These doses were regressed with weight of seeds per plant and produced the following:

weight of seeds = 26.71 + (-.0081 x dose) r = .96512\*\*

The correlation coefficient indicated an excellent fit but less than the 9727 for the ozone dose >0 correlation with the same dependent variable. This method of dose calculation creates some problems in calculation and application. The product of the 2 gases is not representative of the total exposure since large periods of time were not utilized for SO<sub>2</sub> exposures. The SO<sub>2</sub> treatment plants were exposed only to various levels of ambient ozone during nonfumigated periods. The combination of the product representation of dose and ozone dose alone creates a problem with units:

(pphm-hr)(pphm-hr) vs. pphm-hr

ł

The ozone doses appear to be a more representative method of calculation. <u>Soil Analyses</u>: A soluble sulfate analysis (4) indicated high variability among chambers at harvest (Table 29). No relationship with SO<sub>2</sub> treatment chambers was apparent. The initial soil mix constituents are given in Table 30. No indications of sulfur deficiency were observed.

<u>Salinity</u>: Soil salinity readings taken after harvest indicated extremely uniform low readings which would not interfere with the experiment (Table 31). Salinity would have had to exceed 1.5 millimhos per cm to influence the bean yields.

| Chamber         | % Filtered | SO <sub>2</sub> (ppm) | SO <sub>4</sub> (ppm) |
|-----------------|------------|-----------------------|-----------------------|
| 1               | 0          | 0.10                  | 40                    |
| 2               | 100        | 0                     | 45                    |
| 3               | 0          | 0                     | 5                     |
| 4               | 100        | 0.10                  | 25                    |
| 5               | 75         | 0                     | 15                    |
| 6               | 25         | 0.10                  | 10                    |
| 7               | 75         | 0.10                  | 20                    |
| 8               | 25         | 0                     | 10                    |
| 9               | 50         | 0                     | 10                    |
| 10              | 50         | 0.10                  | 10                    |
| 11              | 100        | 0                     | 20                    |
| 12              | 0          | 0.10                  | 5                     |
| 13              | 100        | 0.10                  | 5                     |
| 14              | 0          | 0                     | 0                     |
| 15              | 75         | 0.10                  | 0                     |
| 16              | 25         | 0                     | 0                     |
| 17              | 75         | 0                     | 0                     |
| 18              | 25         | 0.10                  | 0                     |
| 19              | 50         | 0                     | 10                    |
| 20              | 50         | 0.10                  | 0                     |
| A1 <sup>1</sup> | -          |                       | 35                    |
| A2              |            |                       | 0                     |
| UC <sup>2</sup> |            |                       | 80                    |

Table 29. Soluble Sulfate From Soil - 1977.

<sup>1</sup>Ambient plot.

ł

Ę

 $^2$ Standard University of California Soil Mix.

| <br>Soil                       | 14   | ft <sup>3</sup> |
|--------------------------------|------|-----------------|
| Canadian Peat Moss             | 7    | ft <sup>3</sup> |
| Redwood Shavings               | 7    | ft <sup>3</sup> |
| Single Super Phosphate         | 2.5  | lbs             |
| KN03                           | 4.0  | oz              |
| к <sub>2</sub> s0 <sub>4</sub> | 4.0  | oz              |
| Dolomite Limestone             | 3.75 | 1bs             |
| Oyster Shell Lime              | 1.50 | lbs             |
| Micronutrients                 |      |                 |
| Cu                             | 30   | ppm             |
| Zn                             | 10   | ppm             |
| Mn                             | 15   | ppm             |
| Fe                             | 15   | ppm             |
|                                |      |                 |

ſ

í

Ć

í

í

Table 30. Constituents of Experimental Soil Tabulated per Cubic Yard of Mix.

| Chamber | Electrical Conductivity <sup>1</sup><br>(millimhos/cm) |        |  |
|---------|--------------------------------------------------------|--------|--|
| Number  | Top <sup>2</sup>                                       | Botton |  |
| 1       | 0.26                                                   | 0.29   |  |
| 2       | 0.33                                                   | 0.30   |  |
| 3       | 0.31                                                   | 0.27   |  |
| 4       | 0.31                                                   | 0.37   |  |
| 5       | 0.29                                                   | 0.31   |  |
| 6       | 0.29                                                   | 0.29   |  |
| 7       | 0.28                                                   | 0.42   |  |
| 8       | 0.26                                                   | 0.28   |  |
| 9       | 0.35                                                   | 0.34   |  |
| 10      | 0.33                                                   | 0.31   |  |
| 11      | 0.31                                                   | 0.31   |  |
| 12      | 0.32                                                   | 0.34   |  |
| 13      | 0.31                                                   | 0.30   |  |
| 14      | 0.30                                                   | 0.26   |  |
| 15      | 0.29                                                   | 0.30   |  |
| 16      | 0.34                                                   | 0.29   |  |
| 17      | 0.26                                                   | 0.31   |  |
| 18      | 0.29                                                   | 0.25   |  |
| 19      | 0.28                                                   | 0.27   |  |
| 20      | 0.30                                                   | 0.33   |  |
| A1      | 0.28                                                   | 0.23   |  |
| A2      | 0.33                                                   | 0.27   |  |

#### Table 31. Average Soil Salinity for Chamber: Measured as Electrical Conductivity.

<sup>1</sup>Entries are the mean of 7 samples

t

ť

ŧ

£

 $^2\mathrm{Top}$  denotes upper 8 inches of soil in can, bottom denotes lower 8 inches.

#### Discussion

#### SO<sub>2</sub> Effect

Sulfur dioxide alone or in combination with 25, 75 and 100% ambient oxidant did not produce a statistically significant response on red kidney beans. The only detectable response was the interaction in combination with 50% ambient oxidant.

#### Ozone effect

ť

ĺ,

The primary yield parameter, total weight of seeds harvested per plant, was reduced by ambient ozone at a rate of 33.3 grams per increment of  $\log_e$ dose beyond a dose level of 5160 pphm-hrs (dose > 0 pphm-hrs). This rate was taken from the regression of total weight of seeds on ozone dose > 0 pphm:

# wt of beans = $306.7 + (-33.317 \times \log_e \text{ dose})$

This equation was derived using the ambient plots in combination with the 50, 25 and 0% filtered treatments. The intercept was not functional as a statistical control since the 24.1 grams total weight of beans is indicative of yield at 5160 pphm-hrs (dose > 0 pphm), an equivalent response with the 100% filtered treatment. The 33.3 slope value could be used, however, to predict yield to a maximum dose of 9880 pphm-hrs.

The dose analysis of ozone treatments indicated that the variation in the slopes of the significant functions using calculation thresholds of 0, 3, 5, 8, and 10 pphm and weight of seed harvested, were not different. Only the comparison of calculated intercepts were statistically different. A choice of which dose representation was most accurate would be particularly hazardous. A simple choice of the highest r value would not be definitive

since 5 dose representations were significant at the .05 level and 3 significant at the .01 level.

#### $Ozone + SO_2$ Effect

ĺ

An ambient ozone/SO<sub>2</sub> interaction was clearly defined across all but two measured harvest parmeters in the 50% filtered treatment. Plant growth, pod set, pod weight, and weight and number of harvested seeds were all reduced by this reponse defined in the partitioned interaction term in the anova analysis. The overall interaction term was not significant because of the dilution effect of the 4 nonsignificant components. There is some suggestion that the interaction on the yield components may extend to the next lowest dose level (75% filtered) since the F values of these components are substantial. This must, however, remain speculative since the statistical analysis did not substantiate it at a high enough level of probability (p = .20).

The ozone/SO<sub>2</sub> interaction with weight of seeds effectively reduced this yield parameter at a dose (5160 pphm-hrs > 0 pphm) where no effect was observed for ozone alone (Figure 10). The SO<sub>2</sub>/ozone response function predicted a loss of 3.4 mg seed weight for each pphm-hr of ozone dose > 0 pphm. The interaction effectively accentuated the ozone response in the 50% filtered treatment. Characteristically, it reduced the number of seeds produced but did not affect the size of seeds.

It was of interest that the interaction was present only at the specific ozone dose range which just preceded plant response. No interaction occurred when the ozone dose was high enough to initiate a response by itself. Plants impacted by these higher doses were not affected by the presence of 10 pphm  $SO_2$ .

The dose analysis utilizing several calculation thresholds  $plus SO_2$ regressed with total weight of harvested seeds per plant differed from the previous analysis using no  $SO_2$  treatments. The analysis indicated that slopes of the various functions were significantly different indicating altered rates of response. Six of the 7 functions were significant at .05 or better.

#### REFERENCES

- Branson, R. L. 1972. Soluble Salts, Exchangeable Sodium, and Boron in Soils. Proceedings of Statewide Conference on Soil and Tissue Testing. Dept. of Agronomy, Univ. of Calif., Davis. pp. 120-129.
- 2. Rogers, H. H., H. E. Jeffries, E. P. Stahel, W. W. Heck, L. A. Ripperton, and A. M. Witherspoon. 1978. Measuring Air Pollutant Uptake by Plants: A Direct Kinetic Technique. J. Air Pollut. Control Assoc. 27(12): 1192-1197.
- 3. Sokal, R. R. and F. J. Rohlf. 1969. <u>Biometry</u>, W. H. Freeman Co., San Francisco, CA p. 776.
- 4. Nelson, R. E. 1970. Proceedings of the Soil Science Society of America 74:343-345.

#### APPENDIX

Calibration data and test specifications for fumigation facility built under ARB Agreement A6-162-30.

ł

í

The figures and tables contained in this appendix represent the testing and calibration data obtained from the fumigation facility built under ARB Agreement A6-162-30. The 20 chambers each consist of an FEP Teflon bag suspended from a rigid PVC frame. The chambers were tested for a variety of variables, including: ability to approximate ambient conditions; homogeneity of conditions within individual chambers; and homogeneity among chambers.

Several tests were performed to find out if the chambers approximated ambient conditions. The chambers were compared with ambient conditions in the following areas: amount of available PAR, temperature, relative humidity, and levels of pollutants and aerosol.

Individual chambers were tested to be certain that internal conditions were homogeneous. Tests were conducted to determine if any differences could be found in spacial distribution of temperature, pollutants, and PAR.

Finally, all chambers were tested to be certain that they were homogeneous among each other. Tests were conducted to determine if any real differences existed in total PAR, levels of pollutants (among replicate chambers), temperature, and relative humidity.

The specific calibrations follow:

ş

ί

ĺ

1) FEP Teflon transmission spectrum: Figures 1, 2, 3, and 4 were provided by E.I. DuPont de Nemours, Inc.

2) Photosynthetically active radiation (PAR): Transmission (400-700 nm) readings were taken at 1/2 hour intervals both inside and outside of a chamber on five separate days to determine if any differences existed (Figures 5, 6, 7, 8, 9, and Table 1). Shadows from the motor mount or support-ing frames sometimes caused sharp drops in transmission but were not a significant factor on a seasonal basis.

3) PAR transmission differences among chambers: No significant dif-

ferences were detected among four randomly selected chambers at midday (Table 2).

4) Chamber air exchanges: Chamber air exchanges are held uniform by adjustments of the butterfly valves previously described in the air handling system. All flows are checked weekly using a hot wire anemometer calibrated against a peto tube and velometer. To date, only minor adjustment on a few chambers has been necessary. Current air flows allow ~1.3 changes per minute at 1800 linear ft./min. through the 6 in. ducting. Chambers are extremely uniform in their linear flow rates. This factor combined with the excellent spacial concentration homogeneity insure uniform fumigant fluxes in replicate chambers.

ſ

ł

5) Spacial fumigant gradient tests: Three chambers were randomly selected to test for internal concentration gradients. Twelve sampling points within each chamber (Figure 10) were monitored and replicated four times using a given SO<sub>2</sub> concentration. Results indicate the chamber design main-tains an extremely homogeneous fumigant concentration throughout its interior (Table 3).

6) Sample line efficiency for sulfur dioxide: One chamber was randomly selected to measure the sulfur dioxide concentration directly in the chamber and simultaneously through the 70 foot sample line. The test was replicated six times. The results indicate that the chamber concentration of sulfur dioxide was for all intents the level monitored through the 70 foot sample line (Table 4).

7) Chamber exhaust sampling-sulfur dioxide: One chamber was randomly selected to measure the sulfur dioxide concentration at varying distances above, downwind, and upwind from the exhaust outlet. The test was replicated three times. The results indicate that the sulfur dioxide is dispersed

adequately into the atmosphere and there is virtually no chance of gas being recirculated through the air handling system (Table 5).

8) Paired replicate chamber concentration tests: The replicate ozone concentration from each chamber set was tested to determine chamber differences. The results (Tables 6 and 7) indicate close replication of ozone concentration. Statistical significance testing detected differences among some chambers but the magnitude of the differences was inconsequential relative to plant response.

9) Sample line efficiency-ozone: Ten chambers (1/treatments) were selected to measure the ozone concentration directly in each chamber and simultaneously through the 70 foot sample line that runs to the instrument shed. Results indicate that the level of ozone actually in each chamber is extremely close to the value monitored through the 70 foot sample line (Table 8). A comparison of replicate 0% filtered chambers with ambient ozone indicated that 17-21% of the ozone was lost in the air handling system (Figure 11).

10) Aerosol mass loading experiment to determine chamber alterations: A cooperative experiment was run by T. Mischke of Dr. D. Grosjean's SAPRC Aerosol program, Dr. J. N. Pitts, Jr., Director. The results are given in Table 9.

¢

11) Relative humidity: Monitored relative humidity readings between chambers were found to range from 0 to 7% RH (Table 10). However, the accuracy of such measurements leave much to be desired since relative humidity constantly varies during the day and is influenced by soil moisture level and the amount of transpiring biomass with the chamber.

12) Spacial temperature gradient tests within chambers: Twelve of the 20 chambers were tested for possible interior temperature gradients. Fifteen sampling points within each chamber (Figure 12) were monitored. A total

of 6 replicate readings were taken at each location. Temperatures were found to be extremely homogeneous within chambers with measured differences within 1.5°F with rare exceptions. Again, some statistical separation was possible (Table 11) but acutal differences between locations were inconsequential.

13) Temperature differences between chambers: Initial measurements of chamber temperatures indicated that a 2 to 3°F differential existed between internal and ambient temperature. This proved to be erroneous. Interior temperature measurements were subsequently found to be related to thermocouple position (shaded or unshaded), radiation shielding variations, or effectiveness of the thermocouple weld. Tables 12, 13, 14, and 15 indicate the range of fluctuation on 2 very hot days (August 14, 15) and 2 moderate days (August 27, 28). One can see from the data that chamber to chamber variation often straddles ambient day temperature. Chamber temperatures sometimes fall below ambient during the day and inevitably rise above ambient at night. Hot and cool chamber trends can be altered by moving thermocouple positions, readjusting the foil shielding, or rewelding thermocouples.

## FIGURES

| Figure l.  | Absorbtion spectrum for Teflon FEP film                                                                       | 69 |
|------------|---------------------------------------------------------------------------------------------------------------|----|
| Figure 2.  | Absorbtion spectrum for Teflon FEP film • • • • • • • • •                                                     | 69 |
| Figure 3.  | Light transmission vs. thickness for Teflon FEP film $$ .                                                     | 70 |
| Figure 4.  | Light transmission vs. thickness for Teflon FEP film $$ .                                                     | 70 |
| Figure 5.  | Comparison of PAR curve for Chamber 3 with the ambient curve. Data take August 20, 1977                       | 71 |
| Figure 6.  | Comparison of PAR curve for Chamber 3 with the ambient curve. Data taken August 24, 1977                      | 72 |
| Figure 7.  | Comparison of PAR curve for Chamber 3 with the ambient curve. Data taken August 25, 1977                      | 73 |
| Figure 8.  | Comparison of PAR curve for Chamber 3 with the ambient curve. Data taken August 26, 1977                      | 74 |
| Figure 9.  | Comparison of PAR curve for Chamber 3 with the ambient curve. Data taken September 10, 1977                   | 75 |
| Figure 10. | Sample point locations for sulfur dioxide spacial gradient test                                               | 76 |
| Figure 11. | Comparison of ambient ozone concentration with two 0% filtered chambers • • • • • • • • • • • • • • • • • • • | 77 |
| Figure 12. | Sample point locations for temperature spacial gradient                                                       | 78 |

(

i

TABLES

Page

| Table | 1.  | Percent of outside PAR transmission through Chamber 3 $\cdot$ $\cdot$ | 79 |
|-------|-----|-----------------------------------------------------------------------|----|
| Table | 2.  | Total PAR measured through four chambers at noon $\ldots$ .           | 79 |
| Table | 3.  | Comparison of sulfur dioxide concentrations spacially within chambers | 80 |
| Table | 4.  | Sample line efficiency for sulfur dioxide                             | 81 |
| Table | 5.  | Chamber exhaust samples for sulfur dioxide                            | 81 |
| Table | 6.  | Comparison of replicate chambers at moderate ozone<br>levels          | 82 |
| Table | 7.  | Comparison of replicate chambers at high ozone levels $\cdot$ .       | 83 |
| Table | 8.  | Sample line efficiency for ozone                                      | 84 |
| Table | 9.  | Comparison of aersol mass loading inside and outside of a chamber     | 85 |
| Table | 10. | Comparison of chamber and ambient relative humidity $\cdot$ .         | 86 |
| Table | 11. | Comparison of spacial temperature within chambers $\cdot$ . $\cdot$ . | 87 |
| Table | 12. | Chamber temperature data for August 14, 1977                          | 88 |
| Table | 13. | Chamber temperature data for August 15, 1977                          | 89 |
| Table | 14. | Chamber temperature data for August 27, 1977                          | 90 |
| Table | 15. | Chamber temperature data for August 28, 1977                          | 91 |

í

Figure 1.

ABSORPTION SPECTRUM FOR "TEFLON" FEP FILM



#### Figure 2.



## **REFRACTIVE INDEX**

The refractive index of "Teflon" FEP film is between 1.341 and 1.347.

\*Reg. U.S. Pat. Off.

\*1 Micron = 10,000 Angstroms = 0.001 mm





Figure 4. LIGHT TRANSMISSION VS. THICKNESS--"TEFLON" FEP FILM

į



Figure 5. Comparison of PAR Curve for Chamber 3 With the Ambient Curve. Data taken August 20, 1977.

ł

l

ť

į.

ļ

ĺ




Figure 6. Comparison of PAR Curve for Chamber 3 with the Ambient Curve. Data taken August 24, 1977.

3

ł

į

ſ

i

 $\langle \cdot, \cdot \rangle$ 



Pacific Standard Time

Figure 7. Comparison of PAR Curve for Chamber 3 with the Ambient Curve. Data taken August 25, 1977.

į

ì

ţ

i





Figure 8. Comparison of PAR Curve for Chamber 3 with Ambient Curve. Data taken August 26, 1977.

1

į

Ę

í

í



Figure 9. Comparison of PAR Curve for Chamber 3 with the Ambient Curve. Data taken September 10, 1977.



ŧ

í

í

ę

Pacific Standard Time





£

ĺ

ĺ

ſ.









ł

ŧ

(

Ę



| Date    | Mean Daily Transmission<br>(percent) |
|---------|--------------------------------------|
| 8-20-77 | $79.6 \pm 9.4 a^{1}$                 |
| 8-24-77 | $80.3 \pm 6.2 a$                     |
| 8-25-77 | 81.5 ± 8.6 a                         |
| 8-26-77 | 79.6 ± 6.7 a                         |
|         |                                      |

Table 1. Percent of outside PAR transmission through Chamber 3.

<sup>1</sup>Entries followed by the same letter are not significantly different at the .05 level.

Ĭ

ť

¢

ſ

ń,

ſ

Table 2. Total PAR measured through four chambers at noon.

| Chamber<br>Number | PAR<br>(µ einsteins m-2 sec -1) |
|-------------------|---------------------------------|
| 4                 | 1357 a <sup>l</sup>             |
| 7                 | 1342 a                          |
| 17                | 1252 a                          |
| 14                | 1267 a                          |

<sup>1</sup>Entries followed by the same letter are not significnatly different at the .05 level.

| Sample<br>Point | e | Chamber 4            | SO <sub>2</sub> (ppm) <sup>1</sup><br>Chamber 6 | Chamber 15 |
|-----------------|---|----------------------|-------------------------------------------------|------------|
|                 |   |                      |                                                 |            |
| 1               |   | 0.141 a <sup>2</sup> | 0.117 a                                         | 0.102 a    |
| 2               |   | 0.141 a              | 0.117 a                                         | 0.102 a    |
| 3               |   | 0.141 a              | 0.120 a                                         | 0.101 a    |
| 4               |   | 0.141 a              | 0.120 a                                         | 0.101 a    |
| 5               |   | 0.139 a              | 0.116 a                                         | 0.101 a    |
| 6               |   | 0.137 a b            | 0.112 a                                         | 0.102 a    |
| 7               |   | 0.139 a              | 0.111 a                                         | 0.106 a    |
| 8               |   | 0.140 a              | 0.114 a                                         | 0.106 a    |
| 9               |   | 0.137 a b            | 0.114 a                                         | 0.109 a    |
| 10              |   | 0.132 c              | 0.111 a                                         | 0.107 a    |
| 11              |   | 0.135 bc             | <b>0.114</b> a                                  | 0.102 a    |
| 12              |   | 0.140 a              | 0.117 a                                         | 0.102 a    |
|                 |   |                      |                                                 |            |

| Table 3. | Comparison | of | sulfur | dioxide | concentrations | spacially | within |
|----------|------------|----|--------|---------|----------------|-----------|--------|
|          | chambers.  |    |        |         |                |           |        |

 $^{1}\mathrm{All}$  values are the mean of three replicates.

í

í

ŧ

 $^{2}$ Entries followed by the same letter are not significantly different at the .05 level.

Table 4. Sample line efficiency for sulfur dioxide.

| Instrument              | Sample    | Rep 1 | SO2 (ppm) |      |      |       |       |
|-------------------------|-----------|-------|-----------|------|------|-------|-------|
|                         |           |       | мер 2     |      |      | Kep J | Kep 0 |
| Teco I                  | Chamber 6 | .120  | .120      | .125 | .130 | .130  | .130  |
| Teco II                 | Chamber 6 | .120  | .120      | .125 | .130 | .130  | .130  |
| Differencel             |           | 0     | 0         | 0    | 0    | 0     | 0     |
| Teco I                  | Chamber 6 | .110  | .115      | .115 | .120 | .120  | .120  |
| Teco II                 | Chamber 6 | .115  | .115      | .115 | .120 | .120  | .125  |
| Difference <sup>2</sup> |           | .005  | 0         | 0    | 0    | 0     | .005  |

<sup>1</sup>Both instruments sampling the chamber directly to verify both are calibrated the same.

<sup>2</sup>Teco I sampling through 70 foot sample line to instrument shed; Teco II sampling directly.

Table 5. Chamber exhaust samples for sulfur dioxide.

í

[\_\_]

í

ť

đ

ĺ

| Distance<br>from source | $SO2 (ppm)^{1}$ |        |           |  |  |  |
|-------------------------|-----------------|--------|-----------|--|--|--|
| (feet)                  | Vertical        | Upwind | Down wind |  |  |  |
| 0                       | .111            | .111   | .111      |  |  |  |
| 1                       | .086            | 0      | 0         |  |  |  |
| 2                       | .045            | 0      | 0         |  |  |  |
| . 3                     | .023            | 0      | 0         |  |  |  |
| 4                       | .006            | 0      | 0         |  |  |  |
|                         |                 |        |           |  |  |  |

 $^{1}\mathrm{All}$  values are the mean of 3 replications.

| Percent  | Ozone              | (ppm)       | SO <sub>2</sub> (ppm) |
|----------|--------------------|-------------|-----------------------|
| Filtered | Replicate 1        | Replicate 2 |                       |
| 100      | 0.007 <sup>1</sup> | 0.007       | 0                     |
| 75       | 0.023              | 0.022       | 0                     |
| 50       | 0.049              | 0.047       | 0                     |
| 25       | 0.081              | 0.081       | 0                     |
| 0        | 0.105              | 0.105       | 0                     |
| 100      | 0.012              | 0.008       | 0.10                  |
| 75       | 0.033              | 0.031       | 0.10                  |
| 50       | 0.071              | 0.062       | 0.10                  |
| 25       | 0.103              | 0.099       | 0.10                  |
| 0        | 0.130              | 0.135       | 0.10                  |

Table 6. Comparison of replicate chambers at moderate ozone levels.

 $l_{Values}$  are the mean of 10 replications.

ſ

t

ł

ť.

ţ

| Percent  | Ozone       | SO <sub>2</sub> (ppm) |      |
|----------|-------------|-----------------------|------|
| Filtered | Replicate 1 | Replicate 2           | -    |
| 100      | 0.0251      | 0.017                 | 0    |
| 75       | 0.062       | 0.067                 | 0    |
| 50       | 0.125       | 0.115                 | 0    |
| 25       | 0.180       | 0.175                 | 0    |
| 0        | 0.205       | 0.215                 | 0    |
| 100      | 0.025       | 0.017                 | 0.10 |
| 75       | 0.070       | 0.060                 | 0.10 |
| 50       | 0.135       | 0.120                 | 0.10 |
| 25       | 0.170       | 0.180                 | 0.10 |
| 0        | 0.205       | 0.225                 | 0.10 |
|          |             |                       |      |

Table 7. Comparison of replicate chambers at high ozone levels.

 $1_{Values}$  are hourly averages.

ĺ

ĺ

(

| % filtered | Sulfur<br>dioxide | Ozone <sup>l</sup><br>chamber<br>(ppm) | Ozone <sup>2</sup><br>Inst. Shed<br>(ppm) | Difference<br>(ppm) | Sample line<br>efficiency<br>(%) |
|------------|-------------------|----------------------------------------|-------------------------------------------|---------------------|----------------------------------|
| 0          | yes               | .135                                   | .130                                      | .005                | 96                               |
| 25         | yes               | .070                                   | .070                                      | 0                   | 100                              |
| 50         | yes               | .050                                   | .050                                      | 0                   | 100                              |
| 75         | yes               | .030                                   | .030                                      | 0                   | 100                              |
| 100        | yes               | .015                                   | .015                                      | 0                   | 100                              |
| 0          | no                | .120                                   | .120                                      | 0                   | 100                              |
| 25         | no                | .080                                   | .080                                      | 0                   | 100                              |
| 50         | no                | .050                                   | .050                                      | 0                   | 100                              |
| 75         | no                | .020                                   | .020                                      | 0                   | 100                              |
| 100        | no                | .010                                   | .010                                      | 0                   | 100                              |

Table 8. Sample line efficiency for ozone.

1<sub>Measured</sub> at chamber.

Į.

{

ł

1

 $^{2}$ Measured after passage through 70 feet of 1/4 inch O.D. Teflon sampling line.

|         | Sampling |                 | Sampling | Size    | Mass      | າ<br>ງ                   |         |
|---------|----------|-----------------|----------|---------|-----------|--------------------------|---------|
|         | Rate 1   | Stage           | Time     | Range   | Collected | TSP <sup>2</sup> 3       | Sample  |
| Date    | (SCFM)   | Number          | (Min)    | ()      | (g)       | <u>(g/m<sup>3</sup>)</u> | point   |
| 7-27-77 | 40       | $_{\rm THV}$ 3  | 1441.5   | 0-00    | 0.1436    | 88.0                     | Chamber |
| 7-27-77 | 40       | THV             | 1440.0   | 0-00    | 0.2202    | 135.1                    | Ambient |
| 7-29-77 | 40       | THV             | 1435.3   | 0-00    | 0.1166    | 71.8                     | Chamber |
| 7-29-77 | 40       | THV             | 1440.0   | 0-00    | 0.2386    | 146.4                    | Ambient |
| 7-31-77 | 40       | After<br>filter | 1464.8   | 0-0.5   | 0.0491    |                          | Chamber |
| 7-31-77 | 40       | 5               | 1464.8   | 0.5-1.0 | 0.0074    |                          | Chamber |
| 7-31-77 | 40       | 4               | 1464.8   | 1.0-2.1 | 0.0043    |                          | Chamber |
| 7-31-77 | 40       | 3               | 1464.8   | 2.1-3.5 | 0.0024    |                          | Chamber |
| 7-31-77 | 40       | 2               | 1464.8   | 3.5-8.2 | 0.0018    |                          | Chamber |
| 7-31-77 | 40       | 1               | 1464.8   | 8.2-00  | 0.0026    |                          | Chamber |
| 7-31-77 | 40       | Total           |          |         | 0.06764   |                          | Chamber |
| 7-31-77 | 40       | THV             | 1440     | 0-00    | 0.1882    | 115.5                    | Ambient |
|         |          |                 |          |         |           |                          |         |

## Table 9. Comparison of aerosol mass loading inside and outside of a chamber.

<sup>1</sup>Standard cubic feet per minute.

<sup>2</sup>Total suspended particulates.

<sup>3</sup>Total Hi-Vol sampler.

í

í

£

<sup>4</sup>Total of stages is usually about 70% of THV mass.

| Sample        | % Relat | ive Humidity<br>Sample Point | Difference |
|---------------|---------|------------------------------|------------|
| 101mc         |         | bumpie roine                 | (78)       |
| West Air Duct | 68      | 64                           | 4          |
| East Air Duct | 68      | 61                           | 7          |
| Chamber 13    | 62      | 62                           | 0          |
| Chamber 14    | 65      | 65                           | 0          |
|               |         |                              |            |

Ĩ

ł

C

ŕ

1

ş

Table 10. Comparison of chamber and ambient relative humidity.

| Sample |                     | Temperatu | re (°F)/Chamb | oer Number |                 |        |
|--------|---------------------|-----------|---------------|------------|-----------------|--------|
| Point  | 1                   | 3         | 6             | 11         | 16              | 20     |
| 1      | 96.2 a <sup>l</sup> | 101.0 d   | 105.5 abc     | 99.2 a     | 102.0 a         | 97.7 a |
| 2      | 96.3 a              | 101.2 bc  | 105.7 ab      | 99.3 a     | 102.3 a         | 97.7 a |
| 3      | 96.5 a              | 101.5 c   | 105.8 a       | 99.3 a     | 102.5 a         | 97.5 a |
| 4      | 96.7 a              | 102.2 ab  | 105.8 a       | 99.3 a     | 102.7 a         | 97.5 a |
| 5      | 96.3 a              | 101.7 bc  | 105.7 ab      | 99.3 a     | 102.2 a         | 97.2 a |
| 6      | 96.3 a              | 102.0 abc | 105.2 bcd     | 98.2 a     | 101.0 a         | 96.7 a |
| 7      | 96.3 a              | 102.0 abc | 105.3 abcd    | 98.0 a     | 101.0 a         | 96.5 a |
| 8      | 96.2 a              | 102.0 abc | 105.5 abc     | 98.2 a     | 101.0 a         | 96.5 a |
| 9      | 96 <b>.</b> 2 a     | 102.5 a   | 105.5 abc     | 98.3 a     | 101.2 a         | 96.7 a |
| 10     | 96.2 a              | 101.8 bc  | 105.3 abcd    | 98.3 a     | 101.3 a         | 96.5 a |
| 11     | 96.8 a              | 102.2 ab  | 105.0 cd      | 98.5 a     | 101.3 a         | 96.3 a |
| 12     | 96.7 a              | 102.0 abc | 105.0 cd      | 97.8 a     | 101.2 a         | 96.3 a |
| 13     | 96.3 a              | 102.2 ab  | 104.8 d       | 97.8 a     | 101.8 a         | 96.3 a |
| 14     | 96.2 a              | 102.5 a   | 105.0 cd      | 97.8 a     | 102 <b>.2</b> a | 96.8 a |
| 15     | 96.2 a              | 102.2 ab  | 105.0 cd      | 97.3 a     | 102.2 a         | 96.3 a |
|        |                     |           |               |            |                 |        |

Table 11. Comparison of spacial temperatures within chambers.

l

ſ

í

1

 $^{1}\mathrm{Entries}$  followed by the same letter are not significantly different at the .05 level.

|          |                |     | the Volta Course |           | -              |     | -    | néme       |         |      |           | ***** |      |      |                                       |                    |             |           |     |           |                 |                   | •         |     |       |      |
|----------|----------------|-----|------------------|-----------|----------------|-----|------|------------|---------|------|-----------|-------|------|------|---------------------------------------|--------------------|-------------|-----------|-----|-----------|-----------------|-------------------|-----------|-----|-------|------|
| AMBER    |                |     |                  |           |                | :   |      |            | <u></u> | ock  | Ho        | ur l  | PST  | )    | tales Similar the B                   |                    | -<br>-      |           |     | r         |                 |                   |           |     | Daily | Penk |
| MBER     | 00             | 01  | 02.              | 03        | 04             | 05  | 06   | 07         | 08      | 02   | 10        | 11    | 12   | 13   | 11                                    | 15                 | 16          | 17        | 18  | 15        | 20              | 21                | 2.2       | 2.3 | Temp  | Tir  |
|          | 20             | 69  | 68               | 67        | 67             | 65. | 72   | 78         | 85-     | 91   | 96        | 99    | 13   | 64   | 103                                   | 61                 | 101         | 96        | 89  | 82        | 79              | 77                | 75        | 74  |       |      |
| 2        | 20             | 69  | 68               | 67        | 67             | 65- | 21   | 76         | 81      | 86   | 91        | 94    | 98   | 99   | 100                                   | 100                | 98          | 96        | 89  | 82        | 79              | 77                | 75        | 74  |       |      |
| 3        | 70             | 69  | 68               | 67        | 67             | 65  | 72   | 78         | 84      | 90   | 96        | 100   | 101  | 104  | 103                                   | 102                | 101         | 96        | 89  | 82        | 79              | 77                | 75        | 74  |       |      |
| 4        | 70             | 69  | 68               | 67        | 671            | 65  | 71   | 77         | 84      | 87   | 94        | 98    | 101  | 104  | 105                                   | 102                | 101         | 96        | 89  | 82        | 79              | 77                | 25        | 74  |       |      |
| 5        | 70             | 69  | 68               | 67        | 67             | 65  | 22   | 78         | BH      | 90   | 96        | 99    | 101  | 705  | 105                                   | 103                | 101         | 96        | 89  | 82        | 79              | 77                | 75        | 24  |       |      |
| 6        | 70             | 69  | 68               | 67        | 67             | 65  | シン   | 98         | 84      | 90   | 96        | 99    | 101  | 104  | 105                                   | 104                | 101         | 96        | 89  | 82        | 79              | 77                | 75        | 74  |       |      |
| 7        | 70             | 69  | 68               | 67        | 67             | 65  | 73   | 79         | 68      | 94   | 47        | 100   | 104  | 105  | 105                                   | 103                | 101         | 96        | 89  | 82        | 79              | 77                | 75        | 77  |       |      |
| ß        | 70             | 69  | 68               | 67        | 67             | 65  | 70   | 76         | 83      | AB   | 94        | 99    | 122  | 104  | 104                                   | 104                | 100         | 96        | 89  | 82        | 79              | 77                | 75        | 74  |       |      |
| 9        | 70             | 69  | 69               | 67        | 67.            | 65  | 22   | 79         | 87      | 91   | 99        | 103   | 106  | 107  | 106                                   | 103                | 101         | 96        | 89  | 82        | 79              | 71                | 75        | 74  |       |      |
| 10       | 70             | 69  | 68               | 67        | 6 <del>2</del> | 65  | 72   | 77         | 85      | 91   | 92        | 101   | 105  | 106  | 105                                   | 12                 | 101         | 96        | 89  | 82        | 79              | 77                | 75        | 74  |       |      |
|          | 20             | 69  | 69               | 67        | 67             | 65  | 22   | 22         | 84      | 21   | 91        | 100   | 123  | 103  | 104                                   | 99                 | 101         | 96        | 89  | 82        | 79              | 77                | 75        | 34  |       | -    |
| 12-      | 70             | 69  | 68               | 67        | 67             | 65  | 72   | 22         | 66      | 87   | 95        | 94    | 27   | 100  | 100                                   | 99                 | 97          | <u>96</u> | CA. | 82        | 79              | 77                | 75        | 71  |       |      |
| 1.3      | 20             | .69 | 68               | 67        | 67             | 65  | 76   | 79.        | 88      | 89   | 95        | 99    | 10L  | 104  | 104                                   | 103                | <u>f 01</u> | <u>96</u> | 89  | 82        | 71              | 77                | 75        | 王儿  | ·     |      |
| !+       | 70             | 69  | 68               | 67        | ja7.           | 65  | 74   | 79         | 85      | 191_ | 95        | 99    | 102  | 101  | 100                                   | .99                | <u>97</u>   | 96        | 89  | 82        | 79              | 17                | 75        | 24  |       | ·    |
| 15       | 70             | 69  | 68               | 67        | 67             | 65  | 73   | 81         | 85      | 91   | 95        | 100   | 102  | 104  | 105                                   | 104                | 101-        | <u>96</u> | 89  | 82        | <del>7</del> 9_ | 77                | <u>75</u> | 24  |       | ×9   |
| 16       | 70             | 69_ | 68               | 67        | 67             | 65  | 126  | 111        | 85      | 91   | 95        | 28    | 102  | 102  | 102                                   | 102                | <u>lol</u>  | 96_       | 89  | 83        | <u>79</u>       | 77                | 75        | 24  | . •   | -    |
|          | 120            | 69  | 68               | 67.       | 67             | 65  | 23   | 76         | 84      | 91   | 95        | 101   | 104  | 105  | 105                                   | 101                | 101         | <i>16</i> | 89_ | 82        | .79             | 7.2               | 35        | 74  |       |      |
| 10       | 1.40           | 69  | 68.              | 67        | 67             | 65  | 170  | <u> 81</u> | 82      | 11   | 15        | 199   | 103  | 105  | 145                                   | 101                | 101         | 96        | 82  | 82        | <u> </u>        | 27_               | 75        | 14  |       |      |
|          | 170            | 64. | 65               | 61        | 67.            | 65  | 12   | 177        | 87      | 123  | 199       | 103   | 108. | 107  | 105                                   | <u>04</u>          | DL          | 16        | 81_ | <u>82</u> | 79              | 17                | 15        | 74  | ·     |      |
| 50       | 10             | 69. | 68               | <u>61</u> | <u>61</u>      | 65  | 121. | 1.77       | 82      | 89   | 99        | 199   | 103  | 105  | 105                                   | 104                | 101         | 76        | 89  | 82        | 49              | 11                | 75        | 11. |       |      |
| LIBIED   | 67             | 66  | 65               | 65        | 64             | 63  | 1.21 | 1.72       | 6       | 193  | 100       | 103   | 106  | 10.5 | 104                                   | 103                | 101         | 26        | 84  | 82        | <u> 19</u>      | 74                | T.L.      | 72  |       |      |
| <u>.</u> |                |     |                  | -         |                |     |      |            |         |      |           |       |      |      | -                                     |                    |             |           |     |           |                 |                   |           |     |       | -    |
|          |                |     |                  |           |                |     |      |            |         | -    |           |       |      |      |                                       |                    |             |           |     |           |                 |                   |           |     |       |      |
| 3.       | -              |     |                  |           |                |     |      |            |         |      |           |       |      |      |                                       |                    |             |           |     |           |                 |                   |           |     | ·     | -    |
| 25       |                |     |                  |           |                |     |      |            |         | -    | -         |       |      |      |                                       |                    |             |           |     |           |                 |                   |           |     |       |      |
| 26       | -              |     |                  |           |                |     |      |            |         |      |           |       |      |      |                                       | 6.00033000         |             |           |     |           |                 |                   |           |     |       |      |
| A.1      |                |     |                  |           |                | -   |      |            |         |      |           |       |      |      | -                                     | parajaran di sa    |             |           |     |           |                 |                   |           | -   | -     |      |
| <u></u>  |                |     | -                |           | -              |     | -    |            |         |      |           |       |      |      | • • • • • • • • • • • • • • • • • • • |                    |             | -         | -   |           | -               | training distance | -         |     |       |      |
| 29       | · 88 04 036 40 | -   |                  |           |                |     |      |            |         | -    | - 10 0000 |       |      |      | -                                     | S and and a second |             |           |     | -         |                 |                   |           | -   |       | -    |
| 30       |                |     |                  |           |                |     | -    |            |         |      | -         |       | -    |      |                                       | 1                  | 1           | Anter     | -   |           |                 |                   |           |     | -     | -    |
| 31       |                | -   |                  |           |                |     |      |            |         |      |           |       |      | 1    | 1                                     | 1                  | 1           | 1         |     |           |                 |                   |           |     |       |      |
|          | 1              | 1   |                  | <u> </u>  |                | .,  | 1    | •          |         |      | 1         |       | 1    |      |                                       |                    |             |           | []  |           |                 |                   |           |     |       |      |

.

• .

• • • •

Table 12. Chamber temperature data for August 14, 1977.

|                                          |                                         |                 |      |             |           | 1                 |       | e and the sec |           |            |      | e ou t | i anticaja      |           | • •              |      | •    |        |                                                 |                        |                                       | :       |                                         |                               | 1                                         | •            |
|------------------------------------------|-----------------------------------------|-----------------|------|-------------|-----------|-------------------|-------|---------------|-----------|------------|------|--------|-----------------|-----------|------------------|------|------|--------|-------------------------------------------------|------------------------|---------------------------------------|---------|-----------------------------------------|-------------------------------|-------------------------------------------|--------------|
|                                          | Ta                                      | ble 1           | .3.  | Cham        | ber t     | empe              | ratur | e.da          | ta io     | or. Au     | gust | 15,    | 19 <b>-</b> 7-7 | •         |                  | •    | ,    |        |                                                 |                        |                                       |         |                                         | ٠                             | . <b>.</b>                                |              |
| 5 /17 # 12 Can 14 April 7 April          | 0 15-145 U Bras                         | -               |      | i.en.en.in. | da 6000   | ili.<br>Hii Gurdi | 1     |               | CL        | n le       | LI m |        | DST             | '}        |                  | •    |      |        |                                                 |                        | • • • • • • • • • • • • • • • • • • • |         | •                                       | 1                             | LINILY                                    | 1-2015       |
| AMBER                                    | 60.                                     | 0.1             | 02   | 03          | 0.11      | 051               | ne l  | 0:1           |           |            |      |        | 12              | 11        | 111              | 15   | 71.  | 12     | 18                                              | 16                     | 201                                   | 21      | 22                                      | 23                            | Tomm                                      | Tin          |
| I                                        | 37                                      | 売               | 7    | 30          | 31        | 71                | 177   | <u> </u>      |           | 92         | in.  | 104    | 102             | 96        | 105              | TOS  | 98   | 94     | m                                               | 0                      | <u>Q11</u>                            | 87      | 81                                      | 87                            | 1 (2111)                                  |              |
|                                          | 77                                      | 127             | 玏    | 70          | 뒦         | 11                | 국장    | 25            | 88        | onl        | 99   |        | 104             | 96        | 102              | 102  | 100  | 94     | <u>9</u><br>87                                  | 22                     | 84                                    | 3       | 81                                      | \$7                           |                                           |              |
| .3                                       | 22                                      | 32              | 7    | 20          | 뀌         | 71.               | 圳     | 84            | 90        | 42         | 1/2  | 105    | 07              | 46        | 105              | 105  | 98   | 94     | 07                                              | 25                     | \$4                                   | 82      | 81                                      | 82                            |                                           |              |
|                                          | 72                                      | 12              | 77   | 70          | 카         | 针                 | 31    | 82            | 89        | às         | 10.2 | 105    | 107             | 46        | 105              | 105  | 98   | 94     | 87                                              | 85                     | 84                                    | 82      | 81                                      | 82                            |                                           |              |
| 5                                        | 16                                      | 72              | 11   | 药           | 케         | 21                | 切     | 83            | 90        | 96         | 103  | Ido    | 107             | Qr.       | 106              | TOT  | 08   | 94     | 87                                              | 85                     | 84                                    | 82      | 81                                      | 82                            | *******                                   | -            |
| 6                                        | 72                                      | 12              | 71   | 70          | 1         | 竹                 | オゴ    | 83            | 90.       | 61         | 163  | 106    | 107             | 96        | 104              | Tod  | 48   | 94     | 81                                              | \$5                    | 84                                    | 82      | 81                                      | 82                            | ad adar-tara (5a)d <sup>a</sup> -Castad a |              |
|                                          | 72                                      | 72              | 71   | 70          | 立         | 71                | 21    | 83            | 44        | 100        | Tos  | 107    | 108             | 96        | 106              | 107  | 98   | 94     | 87                                              | 185                    | 84                                    | 82      | हा                                      | 82                            |                                           |              |
| 63                                       | 72                                      | 72              | 71   | 70          | す         | 打                 | 77    | 83            | 89        | 96         | 102  | 195    | roll            | 76        | ros              | 105  | 98   | 94     | 87                                              | 85                     | 84                                    | 82      | 81                                      | 82                            | *****                                     |              |
| 9                                        | 72                                      | 72              | 71   | 70          | 71        | 71                | 77    | 85            | 93        | 99         | 106  | IVI    | 109             | 96        | 108              | 107  | 98   | 94     | 87                                              | 85                     | 84                                    | 82      | 81                                      | 82                            |                                           |              |
| 10                                       | 72                                      | 72              | 71   | 70          | 71        | 71                | 77    | 84            | 91-       | 99         | 104  | IA     | 108             | 96        | 107              | 106  | 798  | 94     | 87                                              | 85                     | 84                                    | 82      | 81                                      | 82                            | 41 A 1943-1947                            |              |
| 11                                       | 72                                      | 72              | 71   | 70          | 71        | 71                | ŦŦ    | 84            | 90        | 97         | 103  | 106    | 104             | 96        | 104              | 104  | 98   | 94     | 87                                              | -85                    | 84                                    | 82      | 81                                      | 82                            |                                           |              |
| 15                                       | 72                                      | 72              | 71   | 70          | FL        | 31                | 71    | 82            | 87        | 92         | 97   | 100    | 101             | 96        | 10               | 102  | 95   | 94     | 87                                              | :85                    | 84                                    | 82      | 8                                       | 82                            |                                           |              |
| 1.3                                      | 32                                      | 72              | 71.  | 70          | <u>91</u> | 31                | 27    | 85            | <u>93</u> | 97         | 102  | 106    | 105             | 96        | 105              | 105  | 96   | 94     | 87                                              | 85                     | 84                                    | 82      | 81                                      | 82                            | . <del> </del>                            |              |
|                                          | 32                                      | 72              | 71   | <u>+0</u>   | 71.       | ]]                | 37    | 85            | 90        | 97         | 101  | 104    | 104             | 96        | 102              | 103  | 95   | 94     | 87-                                             | 85                     | 84                                    | 62      | 81                                      | 82                            | o                                         |              |
| _15                                      | 172                                     | 12              | 71   | 70          | 171       | 1 <u>7</u> L      | 80    | 84            | 91        | 45         | 0    | 107    | 106             | <u>96</u> | 106              | 105  | 96   | 94     | 87                                              | .85                    | 84                                    | 82      | <u>&amp;L</u>                           | 82                            |                                           |              |
| 16                                       | 172                                     | 12              | 71   | 70          | 7         | 1_1_              | 80    | 87            | 92        | 97         | 102  | 105    | 05              | <u>76</u> | 105              | 105  | 148  | 1.94   | 87                                              | . 85                   | 84                                    | 82      | 81                                      | 82                            | -                                         |              |
| - 17                                     | 12.                                     | 22              | 171  | <u>+0</u>   | 14        | 171               | ユ     | 85            | 90        | <u>9</u> t | 102  | .107   | 101             | 76        | 107              | 106  | 148  | -94    | 87                                              | 185                    | 84                                    | 82_     | 8                                       | 82                            |                                           |              |
| 18                                       | 12                                      | 14              | 171  | 10          | 17        | Bi                | 11    | 83            | -84       | 177.       | 102  | 105    | 106             | 76        | 107              | 100  | 148  | 14     | 81                                              | 52                     | 84                                    | 82      | 81                                      | 87                            |                                           |              |
| 9                                        | 14                                      | 15              | 1-1- | 10          | 1-1-      | 11                | II-   | 28            | 94        | 100        | 106  | 111_   | ,III            | 10        | 10_t             | 101  | 178  | 1-7-1- | 87                                              | 5                      | 84                                    | 81      | 81                                      | 482                           |                                           | -            |
| 90                                       | 12                                      | 14              | ŧ,   | 10          | け         |                   |       | 28            | 100       | 76         | 98   | 105    | 100             | 76        | 103              | 103  | 10   | 14     | 0 <u>†</u>                                      | 83                     | 24                                    | 82      | XL                                      | 82                            |                                           |              |
| TUNBINIT_                                | 64                                      | 101             | 60   | 60          | 67        | 10                | 17-2  | []]           | 1.96      | 103        | 100  | 101    | 101             | 174       | 103              | 102  |      | -10    | <u> 07</u> .                                    | <u><u><u> </u></u></u> | 94.                                   | -71     |                                         | 10-                           |                                           |              |
| 1.7                                      |                                         |                 |      |             |           |                   |       |               |           | .]         |      |        |                 |           |                  |      |      |        | -                                               |                        |                                       |         |                                         |                               |                                           | -            |
| 2                                        |                                         | • • • • • • • • |      |             |           |                   |       |               |           |            |      |        | ~~~~            |           |                  |      |      |        | •                                               |                        |                                       |         |                                         |                               |                                           |              |
| ~~ <u>~</u> ~                            | ·                                       |                 |      | ·           | ·         |                   |       | ·}            |           |            |      |        |                 |           |                  | · ]i |      |        |                                                 |                        |                                       |         |                                         |                               | ·                                         |              |
|                                          | -                                       |                 |      |             |           |                   |       |               | ·         | .          |      | ·      |                 |           |                  |      | ·    | ·]     | •]+                                             |                        |                                       | · [     |                                         |                               |                                           |              |
| · · · / //                               | ·                                       |                 |      |             |           | ·                 |       |               |           |            |      |        |                 |           |                  |      |      | .]     | -                                               |                        |                                       |         | • • • • • • • • • • • • • • • • • • • • |                               |                                           |              |
|                                          | -                                       |                 |      |             |           | -                 |       |               |           |            |      |        |                 |           |                  |      |      | -      | -<br>                                           |                        |                                       |         |                                         | -                             |                                           |              |
|                                          | • • • • • • • • • • • • • • • • • • • • |                 |      | -           |           |                   | -     |               |           | -          |      |        |                 |           | • \$50 (tab) iso |      |      |        |                                                 |                        | - 912030000                           |         | -                                       |                               |                                           | 4- am 075 35 |
|                                          | 1 23 Ten (200 ve                        | W (ARADO        |      |             | -         | -                 |       |               |           |            |      | -      |                 |           |                  |      | -    | -      | -                                               | -                      |                                       |         |                                         |                               | - Martin Barlinto Barlantaria             |              |
| 5000 T                                   |                                         |                 |      |             |           |                   | -     | -             | · [       |            |      |        |                 |           |                  |      | .    | -      | -                                               |                        | -                                     |         | -                                       | a <b>a ga bai 2</b> 27 \$3 az | 6.477) 32.927 BB (995) 655                | -            |
| <u>U</u>                                 |                                         |                 |      |             |           |                   | 1     | .]            |           |            |      |        |                 |           | -                |      | 1    |        | a <b> </b> ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | -                      |                                       | ese:200 | -                                       | -                             | -00-1000                                  | -            |
| i se | 1                                       | 1               | 1    | 1           | 1         | 1                 | 1     | h             | 1         | 1          |      | 1      | 1               | 1         | 1                | 1    | 1.21 | ¥'`    |                                                 | 1 ·                    | 1                                     | 1       | 1                                       | 1                             | 1                                         | ,            |

Table 14. Chamber temperature data for August 27, 1977.

|                  |                    |            |                  |      |                  | ، نو      |                 |      |     |            |            |       | .ž              |             |           |           | •. · ·       |                 |           |                 |           | •  |                 |           | 1                                                                                                               | i    |
|------------------|--------------------|------------|------------------|------|------------------|-----------|-----------------|------|-----|------------|------------|-------|-----------------|-------------|-----------|-----------|--------------|-----------------|-----------|-----------------|-----------|----|-----------------|-----------|-----------------------------------------------------------------------------------------------------------------|------|
|                  | Tab1               | e 14       | • Cł             | ambe | r tem            | pera      | ture            | data | for | Augu       | st 2       | 7, 19 | 77.             |             | · ,       | •         | •            |                 |           | ·               | •         |    |                 | •         | •                                                                                                               |      |
| PHI A S (D) TO D | 1                  |            | had Viced Shares |      |                  | <u></u>   |                 | K    | Cl  | ock        | Но         | ur (  | PST             | ·<br>·<br>· | <b></b>   | 000000000 | ) aposto apo | -               | ' 1       |                 | ·         |    | <b></b>         | · · ·     | Daily                                                                                                           | Pen. |
| NUMBER           | 00                 | 01         | 02               | 03   | 04               | 05        | 06              | 04   | OR  | <b>P</b> 9 | 10         | 11    | 12              | 13          | 14        | 15        | 16           | 14              | 181       | 15              | 20        | 21 | 2.2             | 2.3       | Temp                                                                                                            | T    |
| 1                | 68                 | 67         | 67               | 68   | 67               | 67        | 67              | 70   | 75  | 85         | 38         | 89    | 90              | 93          | 93        | 91        | 87           | 81              | 76        | 73              | 71        | 70 | 69              | 68        |                                                                                                                 |      |
|                  | 68                 | 67         | 67               | 68   | 67               | 67        | 67              | 70   | 76  | 80         | 83         | 84    | 87              | 88          | 89        | 88        | 85           | 81              | 76        | 73              | 71        | 70 | 69              | 68        | anna ann ann ann ann ann ann ann ann an                                                                         | *    |
| Э                | 68                 | 67         | 67               | 68   | 67               | 67        | 67              | 70   | 77  | 83         | 87         | 84    | 4.1             | 92          | 23        | 90        | 87           | 81              | 76        | 73              | 71        | 70 | 69              | 65        |                                                                                                                 |      |
| 4                | 68                 | 67         | 67               | 68   | 67               | 67        | 67              | 70   | 78  | 80         | 84         | 87    | 86              | 88          | 89        | 87        | 85           | A1              | 76        | 73              | 71        | 70 | 69              | 68        |                                                                                                                 |      |
| 5                | 68                 | 67         | 67               | 68   | 67               | 67        | 67              | 90   | 76  | 82         | 8Ca        | 86    | 90              | 90          | 92        | 89        | 87           | 81              | 76        | 73              | 71        | 70 | 69              | 68        |                                                                                                                 |      |
| 6                | 68                 | 127        | 67               | 68   | 67               | 67        | 67              | 70   | 75  | 81         | 87         | 86    | 88              | 91          | 91        | 89        | 87           | 81              | 76        | 73              | 71        | 70 | 69              | 68        |                                                                                                                 |      |
|                  | 68                 | 67         | 67.              | 68   | 67               | 67        | 67              | 70   | 74  | 85         | 85         | 87.   | 20              | 89          | 91        | .89       | 87           | 81              | 7.6       | 73              | 21        | 70 | 69              | 68        |                                                                                                                 | _    |
| 8                | 68                 | 67         | 67               | 68   | 67.              | 67        | 67              | 70   | 77  | 29_        | 87.        | 85    | <u>88</u>       | 23          | 21_       | 89        | 87           | 81              | H         | 73              | 71        | 70 | 69              | 68        |                                                                                                                 |      |
| 9                | 68.                | 6Z         | <u>67</u>        | 68   | 67               | 67        | 67              | 70   | 76  | 84         | <u>86</u>  | 88    | 90              | 21_         | 22        | 89        | 87           | <u></u>         | 76        | 73              | <u>71</u> | 70 | 69_             | 68        | #1 # 10 10 10 10 10 10 10 10 10 10 10 10 10                                                                     |      |
| 10               | 68                 | 67         | 67               | 68   | 67               | 67        | 67              | 70   | 75  | 82         | 85         | 88    | 90              | <u>90</u>   | <u>91</u> | <u>89</u> | 87           | 81              | 76        | <u>73</u>       | 71        | 70 | .69             | 08        |                                                                                                                 |      |
| 11               | 16 <u>8</u>        | 6 <u>7</u> | 67               | 68   | bţ               | <u>67</u> | 61              | 20   | 75  | 80         | R2         | 86    | <u>87</u>       | 88_         | 1/_       | 59        | 87           | <u>B</u> L      | 16        | 13              | 71-       | 70 | 69              | 68        | a series prop, electrical detter                                                                                |      |
| 19-              | 68                 | 6t         | let.             | 68   | 6t               | 10t       | 64              | 70   | 76  | 11         | 26         | 84    | 8t              | 41-         | de.       | 09        | B.t.         | 81              | 16        | 73              | 1         | 70 | 64              | 08        |                                                                                                                 |      |
|                  | 68                 | 6t         | let.             | 00   | -6±              | <u>9</u>  | .b.I.           | 10   | 128 | 27         | 80         | ON    | $\frac{BB}{Gt}$ | 25          | 11_       | 00        | <u>o r</u>   | <u>g</u>        | the       | 13              | 土         | 10 | 01              | 00        |                                                                                                                 |      |
| lt               | <u>60</u>          | lat<br>17  | 6t_<br>11        | 60   | 6 <u>1</u><br>(1 | 6T        | <u>6</u><br>(2) | 10   | 15  | <u>a</u>   | 81         | 10    | 11              | 20          | 13        | 01        | OT<br>Q7     | OT<br>ØT        | 10.<br>71 | $\frac{73}{12}$ | <u></u>   | 20 | <u>67</u><br>:9 | 00        |                                                                                                                 | ð—   |
|                  | 170                | 10+        | 11               | 60   | 17               | 61        | 67              | 10   | 70  | A3         | 05         | 81    | Ra              | 92          | 90        | 07.<br>QQ | 87           | <u>e1</u>       | 10-71     | 12              | 11        | 10 | 69              | 68        |                                                                                                                 |      |
| 19               | 120                | 6.5        | 67               | 60   | 7.1              | 125       | 21              | 10   | 12  | 82         | 100<br>195 | 00    | 90              | 92          | 03        | ACT_      | 87           | RI              | IR.<br>71 | 12              |           | 10 | 69              | 15        |                                                                                                                 | ~    |
| 103              | 169                | 67         | 67               | 60   | 67               | 1.7       | 67              | 70   | 78  | 82         | 85         | AA    | 91              | 93          | 92        | 89        | 27           | 81              | 76        | 43              | 171       | 70 | 69              | 69        | - 1010 - 1774 - 1794 - 1794 - 1794 - 1794 - 1794 - 1794 - 1794 - 1794 - 1794 - 1794 - 1794 - 1794 - 1794 - 1794 |      |
| 14               | 168                | 67         | 67               | 68   | 167              | 147       | 67              | 70   | 78  | 86         | 89         | 91    | 92              | 89          | 92        | 91        | 87           | AT              | 76        | 73              | 71        | 70 | 69              | 68        |                                                                                                                 |      |
| 30               | 68                 | 67         | 67               | 68   | 67               | 67        | 67              | 70   | 74  | 29         | 82         | 84    | 88              | 90          | 89        | 89        | 85           | 80              | 76        | 73              | 71        | 70 | 69              | 68        |                                                                                                                 |      |
| AMBIENT          | -66                | 66         | 66               | 66   | 66               | 66        | 66              | 68   | 75  | 80         | 86         | 84    | 90              | 91          | 88        | 87        | 84           | 78              | 74        | 71              | 69        | 68 | 67              | 65        |                                                                                                                 |      |
| 55               |                    |            |                  |      |                  |           |                 |      |     |            |            |       |                 |             |           |           |              |                 |           |                 |           |    |                 |           |                                                                                                                 |      |
| 56               |                    |            |                  |      |                  |           |                 |      | 1   |            |            |       |                 | -           |           |           |              |                 |           |                 |           |    |                 |           |                                                                                                                 |      |
| 21               | -                  |            |                  |      |                  |           |                 |      |     |            |            | -     |                 |             |           |           |              |                 |           |                 |           |    |                 | -         |                                                                                                                 |      |
| 25               |                    |            |                  |      |                  |           |                 |      |     |            |            |       |                 |             |           |           |              |                 |           |                 |           |    |                 |           |                                                                                                                 |      |
| 36               |                    |            |                  |      | -                |           |                 |      |     |            |            |       |                 |             | -         | -         |              | ersentliget ste |           |                 |           |    |                 |           |                                                                                                                 |      |
| 2:1-             |                    | -          | -                |      |                  |           |                 |      |     |            |            |       | -               |             |           |           |              |                 |           | -               |           |    |                 | . <b></b> |                                                                                                                 |      |
| 23               |                    |            | 4000000 00       |      | -                | -         |                 |      |     | -          |            |       | -               |             | -         |           |              |                 |           |                 |           |    | -               | -         | -                                                                                                               |      |
| 29               | 8 p . 46 Per 200 v |            |                  | -    |                  |           |                 |      |     | -          | -          |       |                 | 10-0 60000  |           |           | -            | -               |           |                 |           | -  | -               |           |                                                                                                                 |      |
| 37               | - fres man         |            |                  |      | -                |           |                 |      |     |            | -          | -     |                 |             |           | -         | . !<br>      | -               |           | -               |           |    | -               |           |                                                                                                                 |      |
| 31               | and participation  | -          |                  |      |                  |           | -               |      | -   |            |            |       |                 |             |           |           |              |                 |           | 1               |           |    |                 |           |                                                                                                                 |      |
| -                |                    | Li         | L                | ]    | 1                |           | -               | 1    |     |            |            | -     | -               |             | L.        | -         |              | -               | Landera   |                 |           |    | ]               |           |                                                                                                                 |      |
|                  | -                  |            |                  |      |                  |           | *               |      |     |            |            |       | τ.              |             |           |           | ,            |                 |           |                 |           |    |                 |           | •                                                                                                               | · •  |

|               | 3 | 37           |         | 29        | »."]        | 46 | ವಿಡ | <u>- 24</u> | 23 | <u>t</u> | MBIENT | 96  | 19  | ତା  | 1              | 16  | 15  | Ļ   | 51 | يد<br>ا |          | 10  | Ą   | 3         | 1          | 6   | דט      | 4   | E   | رو  |          | UNDER | HAMDER |                                                                                                                |              |        |
|---------------|---|--------------|---------|-----------|-------------|----|-----|-------------|----|----------|--------|-----|-----|-----|----------------|-----|-----|-----|----|---------|----------|-----|-----|-----------|------------|-----|---------|-----|-----|-----|----------|-------|--------|----------------------------------------------------------------------------------------------------------------|--------------|--------|
|               | Ì | - 2-51-08000 | İ       | -         |             | 1  |     | -           | 1  |          | 65     | 40  | 5   | 67  | 57             | 49  | 5   | F   | 53 | 49      | 49       | 59  | 19  | モシ        | 53         | 67  | 49      | 49  | 53  | 50  | 67       | G 0   |        |                                                                                                                | Tab 1        | <br>•  |
|               |   | -            | -       |           | -           | 1  | 1   | ]           | ļ  |          | 67     | 66  | 6   | 66  | 66             | 66  | S   | 66  | 3  | 66      | 66       | 66  | 66  | 60        | 66         | 66  | 66      | 66  | 66  | 66  | 9.9      | 0     |        |                                                                                                                | .e 15        | 1      |
|               |   |              |         | Į         |             | [  |     |             |    |          | 63     | 66  | 66  | 66  | 66             | 8   | 56  | 66  | 66 | 66      | 6        | 66  | 66  | 66        | 66         | 66  | 66      | 66  | 66  | 66  | 99.      | 02    |        |                                                                                                                | ۰<br>۲       | ł      |
|               |   | *            |         |           |             |    |     | Ī           |    |          | 63     | 651 | 65  | 65  | 5              | GSi | 65  | 65  | 3  | 65      | 65       | 5   | 5   | 5<br>S    | S          | 65  | 65      | 65  | 5   | es  | 65       | 03    |        |                                                                                                                | 1amb e       |        |
|               |   |              |         |           |             |    | İ   | Ì           | Ì  |          | 29     | 64  | 64  | 64  | 69             | 64  | 64  | 634 | 74 | 64      | 64       | 64  | 64  | 64        | 64         | 64  | 64      | 64  | 64  | 64  | 64       | 07    |        |                                                                                                                | rte          |        |
| Γ             |   | énergi.      |         | Ì         |             |    | ļ   | Ι           |    |          | 61     | 64  | 64  | A   | 64             | 64  | 101 | 64  | 4  | 49      | 64       | 64  | ĥЭ  | 64        | 64         | 64  | 64      | 64  | 64  | 64  | 64       | 05    | :      | 1                                                                                                              | npera        | 1.     |
| Ī             | Ì | Ì            | Ì       | ļ         | 1           | 1  |     | Ì           | Ì  | Ì        | 64     | 65  | 59  | 5   | 5              | 5   | 65  | 65  | 59 | 59      | 59       | Sa  | 65  | 65        | 65         | 651 | 3       | 5   | 65  | S   | 5        | 30    |        |                                                                                                                | iture        | ***    |
| Ē             |   |              | Ì       |           | Ì           | 1  |     | Ì           |    |          | 66     | 68  | 89  | 65  | 63             | 63  | 63  | 89  | 89 | 8.9     | 89       | 89  | 89  | 89        | 89         | 89  | 20      | 68  | 68  | 63  | 88       | 0.1   |        |                                                                                                                | data         | -      |
|               |   | <u>.</u>     | İ       |           | 1           | İ  | İ   | Ī           | Ì  |          | 52     | 73  | 84. | 25  | 75             | 2K  | 2   | 28  | 60 | 55      | 77       | SŁ  | ££  | 73        | 35         | 72  | な       | 74  | 95  | X   | 11       | 9     | 0      |                                                                                                                | for          | •      |
| F             |   |              |         |           |             | 1  | Ì   | -           | 1  |          | 80     | 2   | 55  | 130 | 18             | 28  | 63  | 28  | 23 | 85      | 24       | 1.8 | 82. | 88        | 84         | 56  | 80      | 32  | 52  | 194 | 83       | 20    | o c T  | A CONTRACTOR                                                                                                   | Aug          |        |
|               | 1 |              | 1       |           |             |    | 1   | İ           | Ī  | Ì        | R      | 83  | 121 | 18  | 98             | 85  | 85  | 8.9 | 28 | 82      | 98       | 57  | 87  | 28        | 84         | Z   | 55      | 57  | 84. | 83  | 22       | -0    | <br>0  |                                                                                                                | 1st 2        | -      |
| Ì             |   |              | İ       |           | 1           | İ  | Ì   | 1           | Í  |          | 33     | 28  | R   | 3   | 8              | 28  | 88  | 23  | 19 | જ       | 90       | 191 | 16  | 28.       | 90         | 28  | 28      | 93  | 63  | 58  | 2        |       | UM     |                                                                                                                | - jûa.<br>11 | 5<br>M |
|               | Ì |              | Ī       | Ì         | Ī           | Ī  | Ì   | Ì           | Ì  | Ì        | 93     | 90  | 22  | 23  | 73             | 193 | 19  | 24  | 16 | 58      | 22       | 93  | 94  | 97        | 92         | 16  | 23      | R   | 22  | 90  | 93       | 12    | PST    | Contraction of the                                                                                             | 977.         | i      |
|               | ł | i.           |         | 1         | -           | Ī  | 1   | Ī           | Ī  |          | 93     | 12  | 82  | 36  | 22             | 44  | 26. | 36  | 56 | 11      | 53       | 94  | .95 | 92        | 99         | 93  | 94      | So  | 25  | ď   | 95       | 13    |        |                                                                                                                |              |        |
| İ             |   | 1            | ļ       |           | Ī           | İ. | Ì   | İ           | 1  |          | 93     | 93  | 95  | 96  | 96             | 95  | 93  | 16  | 1ª | 22      | PH<br>PH | 96  | 36  | 94        | 95         | 95  | 25      | .93 | 27  | 63  | 20       | E     |        |                                                                                                                | •            |        |
| Jacoust .     |   |              |         |           | Ī           | 1  | 1   | Ì           | Ì  | Ī        | 2      | 94  | 94  | 94  | FR             | 2   | 293 | 94  | SA | 16      | 24       | 24  | 94  | 94        | 94         | P2- | 94      | 2   | 95  | 91  | <u>B</u> | િત    |        |                                                                                                                | -            |        |
| Ī             |   | 1            | Î       | \$        | <u>.</u>    |    |     | 1           |    |          | 90     | 92  | 26  | 192 | 26             | 26  | 92  | 26  | 26 | 3       | 26       | 26  | 56  | 92        | 92         | 92  | 92      | 63  | 26  | 69  | 52       | 15    |        |                                                                                                                | •            |        |
| İ             |   |              | Î       |           | ļ           | İ  | İ   | Ī           |    | ł        | 38     | 28  | 87  | 4 8 | 28             | 5.2 | 48  | 28  | 48 | 28      | 23       | 57  | 53  | 287       | 23,        | :67 | 48      | 93  | 6.7 | 28  | 23       | 17    | -      |                                                                                                                |              |        |
|               |   | [            | İ       | <u> </u>  |             | -  |     |             |    |          | જુ     | 8   | 12  | 81. | 2              | 18  | 18  | 18  | Þ  | 8       | 13       | 5   | 18  | 81        | 13         | 8   | 18      | 811 | 13  | 8   | 21       | 18    | -      | The second second second second second second second second second second second second second second second s | •<br>. •.    | •      |
|               |   |              |         |           | Ì           | 1  | Ī   | Ì           |    |          | 32     | 七十一 | 44  | TT  | <del>1</del> 2 | 44  | 七月  | 把   | 77 | 托       | 77       | 45  | tŁ  | <i>LL</i> | 77         | 46  | tt      | 57  | 77  | 46  | ちた       | 51    |        |                                                                                                                |              | •      |
|               |   | Ì            | 1       |           | Ì           | İ  | Í   | 1           |    |          | 2      | 24  | 55  | 52  | St             | 54  | 55  | 145 | 57 | 75      | び        | た   | 3   | 25        | <u>5</u> E | 3   | 56      | 55  | 55  | 25  | まい       | 20    |        |                                                                                                                | •            |        |
|               |   | 1            | 5<br>12 |           | Ì           | İ  | Ì   | İ           | Ì  | Ī        | 24     | 5   | E   | 17  | H              | 51  | 55  | EE. | 3  | 73      | 55       | 73  | ٤٢. | £Ł.       | .73        | EE. | れて      | £t: | E   | C F | 3        | 21    |        |                                                                                                                |              |        |
|               |   |              | Ì       |           | 1           | İ  | İ   | 1           | Ì  |          | 70     | 4   | H   | H   | 15             | H   | 4   | 17  | 75 | TT.     | 14       | 14. | 14  | 16        | 14         | 71  | ート      | HF. | 12  | 17  | 14       | 22    |        |                                                                                                                |              | •      |
|               |   |              | 200     | A Careera | Ì           | İ  | İ   | İ           | İ  |          | 89     | 04  | 07  | 07  | <u>0</u> E     | 170 | 170 | 55  | 20 | 20      | 70       | 70  | 10  | 70        | 0£         | 70  | 75<br>0 | 01  | 55  | 96  | 40       | いい    |        |                                                                                                                | •            |        |
|               |   |              |         |           | Marcardowed |    |     |             |    |          |        |     |     |     |                |     |     |     |    |         |          |     |     |           |            |     |         | •   |     |     |          | Temp- | Daily  | Section and the first of                                                                                       | •            |        |
| <u>i</u><br>1 | 1 | v<br>l       | {       | 1         | 8           | 1  | 1   | 1           | 1  | 1        | 1      | 1   | 1   | 1   | ;<br>;<br>;    | 1   | 1   |     | İ  | İ       | İ        | İ   |     |           |            |     |         |     |     |     |          | -     | Pen    |                                                                                                                |              |        |

i

.