### MEASUREMENTS OF DRY DEPOSITION PARAMETERS FOR THE CALIFORNIA ACID DEPOSITION MONITORING PROGRAM

### FINAL REPORT CONTRACT NO. A6-076-32

Prepared for:

Research Division California Air Resources Board 1102 Q Street P.O. Box 2815 Sacramento, CA 95812

Submitted by:

Desert Research Institute P. O. Box 60220 Reno, Nevada 89506

and

AtmAA, Inc. 21354 Nordhoff Street, Suite 113 Chatsworth, CA 91311

### Prepared by:

John G. Watson Judith C. Chow Richard T. Egami John L. Bowen Clifton A. Frazier Alan W. Gertler Douglas H. Lowenthal Kochy K. Fung Co-Principal Investigator Co-Principal Investigator Field Operations Manager Quality Assurance Officer Field Operations Supervisor Project Administrator Data Specialist Technical Advisor

### **JUNE 1991**

ABSTRACT

The concentrations of acidic gases and particles are measured at 10 sites throughout the State of California. Seven of these sampling sites represent urban areas (South Coast Air Basin, San Francisco Bay Area, Bakersfield, Santa Barbara, and Sacramento) and three represent forested areas (Sequoia, Yosemite, and Redwood National Parks). Several of these sampling sites are collocated with sites which are part of other air quality compliance and forest response monitoring networks.

Hourly average values for ozone, wind speed, wind direction, atmospheric stability, temperature, dew point, time of wetness, and solar radiation are obtained from continuous monitors. Daytime and nighttime measurements are taken every sixth day for sulfur dioxide, ammonia, nitrogen dioxide, and nitric acid gases on absorbing substrates. Mass, sulfate, nitrate, chloride, ammonium, sodium, magnesium, potassium, and calcium ion measurements are made on filter samples of particles in the  $PM_{2.5}$  and  $PM_{10}$  size ranges. The substrate-based measurements are taken following the EPA and ARB regulatory sampling schedules for suspended particulate matter. Weekly average wet deposition samples are taken at or near the dry deposition sampling sites.

The first year of the routine monitoring program included installation of the network, training of technicians, acquisition and validation of data, and transfer of the sampling and analysis technology to Air Resources Board (ARB) operating divisions. Data have been validated and catalogued for the period May, 1988 through September, 1989.

## Table of Contents

|      |                   |                                                                                                                                                                                                                                                                                                            | Page                                                             |
|------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| ABST | RACT              |                                                                                                                                                                                                                                                                                                            | i                                                                |
| Tabl | e of Co           | ntents                                                                                                                                                                                                                                                                                                     | ii                                                               |
| List | of Tab            | les                                                                                                                                                                                                                                                                                                        | iv                                                               |
| List | of Fig            | ures                                                                                                                                                                                                                                                                                                       | vi                                                               |
| 1.0  | INTRO             | DUCTION                                                                                                                                                                                                                                                                                                    | 1-1                                                              |
|      | 1.1<br>1.2<br>1.3 | Background<br>Objectives<br>Descriptions of Supporting Documents                                                                                                                                                                                                                                           | 1-1<br>1-1<br>1-2                                                |
|      | 1.4               | Overview of Report                                                                                                                                                                                                                                                                                         | 1-2                                                              |
| 2.0  | NETWO             | RK DESCRIPTION                                                                                                                                                                                                                                                                                             | 2-1                                                              |
|      | 2.1<br>2.2        | Dry Deposition Measurements<br>Field Measurement Systems<br>2.2.1 Gas/Particle Sequential Filter Sampler<br>2.2.2 Ultraviolet Absorption Ozone Analyzer                                                                                                                                                    | 2-1<br>2-9<br>2-9<br>2-9                                         |
|      | 2.3               | 2.2.3 Meteorological Measurements<br>2.2.4 Data Acquisition System<br>Laboratory Operations                                                                                                                                                                                                                | 2-10<br>2-11<br>2-11                                             |
| 3.0  | DATA-             | BASE DESCRIPTION                                                                                                                                                                                                                                                                                           | 3-1                                                              |
| 4.0  | DATA              | PROCESSING AND VALIDATION                                                                                                                                                                                                                                                                                  | 4-1                                                              |
|      | 4.1<br>4.2        | Meteorological and Ozone Data Processing and Validation<br>Chemical Data Processing and Validation                                                                                                                                                                                                         | 4 - 1<br>4 - 3                                                   |
| 5.0  | NETWOR            | K PERFORMANCE                                                                                                                                                                                                                                                                                              | 5-1                                                              |
|      | 5.1<br>5.2        | New Equipment Procurement<br>Network Operations Experience<br>5.2.1 Gas/Particle Sampling System<br>5.2.2 Ozone Measurements<br>5.2.3 Wind-Speed Measurements<br>5.2.4 Wind-Direction Measurements<br>5.2.5 Temperature Measurements<br>5.2.6 Dew Point Measurements<br>5.2.7 Solar Radiation Measurements | 5-1<br>5-3<br>5-8<br>5-8<br>5-15<br>5-15<br>5-15<br>5-15<br>5-20 |
|      |                   | 5.2.8 Time of Wetness Measurements<br>5.2.9 Data Acquisition System                                                                                                                                                                                                                                        | 5-20<br>5-20                                                     |

### Table of Contents (continued)

|     |                                                      | Page  |
|-----|------------------------------------------------------|-------|
| 6.0 | TECHNOLOGY TRANSFER                                  | 6-1   |
|     | 6.1 Network Design                                   | 6-1   |
|     | 6.2 Procedures Development                           | 6-1   |
|     | 6.3 Technology Transfer Workshops                    | 6-1   |
|     | 6.4 Phased Takeover of Operations                    | 6-1   |
|     | 6.5 Long-Term Technical Advisement                   | 6 - 3 |
| 7.0 | SUMMARY OF DRY DEPOSITION DATA                       | 7-1   |
|     | 7.1 Lower Quantifiable Limits                        | 7-1   |
|     | 7.2 Collocated Sampling                              | 7 - 5 |
|     | 7.3 Statistical Summaries of CADMP Gas/Particle Data | 7-11  |
|     | 7.3.1 Particle Size                                  | 7-11  |
|     | 7.3.2 Daytime/Nighttime                              | 7-23  |
|     | 7.3.3 Differences Among Sampling Sites               | 7-24  |
|     | 7.4 Correlations                                     | 7-27  |
| 8.0 | SUMMARY AND RECOMMENDATIONS                          | 8-1   |
|     | 8.1 Summary                                          | 8-1   |
|     | 8.2 Recommendations                                  | 8-1   |
| 9.0 | REFERENCES                                           | 9-1   |

### List of Tables

. . . ....

| Table<br><u>No.</u> | Title                                                                                                                         | Page |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------|------|
| 2-1                 | CADMP Dry Deposition Measurements                                                                                             | 2-2  |
| 2 - 2               | Sampling Site Specifications in the CADMP Network                                                                             | 2-5  |
| 2-3                 | Summary of CADMP Field Measurement Responsibilities                                                                           | 2-6  |
| 3-1                 | Summary of CADMP Data Base Files for Meteorological and Chemical Measurements                                                 | 3-2  |
| 3-2                 | CADMP Data-Base Structure for Continuous Meteorological and Ozone Measurements                                                | 3-4  |
| 3-3                 | CADMP Data-Base Structure for Ambient Chemical<br>Concentrations                                                              | 3-5  |
| 3-4                 | Hourly Data Validation Flags                                                                                                  | 3-8  |
| 3-5                 | CADMP Ambient Field Sampling Data Validation Flags                                                                            | 3-10 |
| 3-6                 | CADMP Chemical Analysis Data Validation Flags                                                                                 | 3-12 |
| 4-1                 | Summary of Computer Software Developed for Hourly<br>Meteorological and Ozone Data Processing and Data<br>Validation in CADMP | 4-4  |
| 4-2                 | Summary of Computer Software Developed for Chemical Data<br>Processing and Data Validation in CADMP                           | 4-6  |
| 5-1                 | Summary of Equipment Acquired for CADMP                                                                                       | 5-2  |
| 5-2                 | Summary of Repairs and Replacement of Hardware at CADMP Field Sites                                                           | 5-4  |
| 5-3                 | Summary of Flow Rate Test Results for Gas/Particle<br>Sampling Performed in April, 1990                                       | 5-9  |
| 5-4                 | Comparison of Total Inlet Flow Rates to Sum of Filter<br>Flow Rates                                                           | 5-11 |
| 5-5                 | CADMP Dry Deposition Sampler Setpoints                                                                                        | 5-12 |
| 5-6                 | Summary of Wind-Speed Tests Performed in April, 1990                                                                          | 5-16 |
| 5-7                 | Summary of Wind-Direction Tests Performed in April, 1990                                                                      | 5-17 |

1

### List of Tables (continued)

| Table<br><u>No.</u> | Title                                                                                                                                                                          | <u>Page</u> |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 5-8                 | Summary of Temperature Tests Performed in April, 1990                                                                                                                          | 5-18        |
| 5-9                 | Summary of Dew Point Tests Performed in April, 1990                                                                                                                            | 5-19        |
| 5-10                | Summary of Solar Radiation Tests Performed in April, 1990                                                                                                                      | 5-21        |
| 6-1                 | Summary of the CADMP Technology Transfer Activities                                                                                                                            | 6-2         |
| 7-1                 | Analytical Specification for Urban and Non-Urban Samples<br>Collected from California Acid Deposition Monitoring<br>Program (CADMP) Between May 3, 1988 and September 25, 1989 | 7-2         |
| 7-2                 | Statistical Summary of Gas/Particle Ambient Concentrations<br>for Samples Taken from the Fourth Quarter of 1988 Through<br>the Third Quarter of 1989                           | 7-12        |
| 7-3                 | Correlation Coefficients Among Gas/Particle Concentrations<br>at Sequoia, Sacramento, and Azusa                                                                                | 7-28        |

# List of Figures

| Figure<br><u>No.</u> | Title                                                                                                                                                          | <u>Page</u>  |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| 2-1                  | Locations of CADMP Dry Deposition Sampling Sites<br>in California                                                                                              | 2 - 4        |
| 2-2                  | Flow Diagram of the CADMP Filter Processing Activities                                                                                                         | 2-12         |
| 4-1                  | Flow Diagram of Hourly Data Processing Steps                                                                                                                   | 4-2          |
| 4-2                  | Flow Diagram for the CADMP Filter Pack Sample Data<br>Processing                                                                                               | 4 - 5        |
| 7-1                  | Comparison of Collocated Measurements of PM <sub>2.5</sub> and PM <sub>10</sub> Mass and Sodium Concentrations at Sacramento                                   | 7-6          |
| 7-2                  | Comparison of Collocated Measurements of $PM_{2.5}$ and $PM_{10}$ Calcium and Magnesium Concentrations at Sacramento                                           | 7 <b>-</b> 7 |
| 7-3                  | Comparison of Collocated Measurements of $PM_{2.5}$ and $PM_{10}$ Teflon Nitrate, $PM_{2.5}$ Particulate Nitrate, and Nitric Acid Concentrations at Sacramento | 7 - 8        |
| 7-4                  | Comparison of Collocated Measurements of PM <sub>2.5</sub> Sulfate,<br>Sulfur Dioxide, Nitrogen Dioxide, and Ammonia Concentrations<br>at Sacramento           | 7-9          |
| 7-5                  | Comparison of June, July, and August Average Concentrations<br>at Different Sampling Locations                                                                 | 7-25         |
| 7-6                  | Comparison of December, January, and February Average<br>Concentrations at Different Sampling Locations                                                        | 7-26         |

#### 1.0 INTRODUCTION

#### 1.1 Background

The Kapiloff Acid Deposition Act of 1982 requires the Air Resources Board (ARB) to determine the regions in California where acid deposition is occurring, or might be expected to occur, in amounts which could be adverse to the environment, the economy, or the public health. The California Acid Deposition Monitoring Program (CADMP) was established to meet this need. This program consists of wet deposition sampling (rain and snow), fogwater sampling (Hoffman et al., 1989), and dry deposition sampling (Watson et al., 1990). This report describes the measurements obtained from the dry deposition component of CADMP.

These measurements are taken as input data for the concentration/deposition velocity model for estimating dry deposition fluxes. Using this method, ambient concentrations of acidic and other reactive species are measured over a period which assures an adequate amount of sample for analysis. These concentrations are multiplied by an assumed deposition velocity to calculate fluxes. The deposition velocities are estimated either theoretically or from micrometeorological measurements made under similar meteorological and surface conditions.

Atmospheric concentrations of reactive species in gaseous and particulate phases have been taken at 10 sites throughout California since the summer of 1988. Seven of these sampling sites represent urban areas (Fremont, Sacramento, Bakersfield, Santa Barbara, Long Beach, Downtown Los Angeles, and Azusa) and three represent forested areas (Gasquet, Yosemite, and Sequoia). Several of these sampling sites are part of other air quality compliance and forest response monitoring networks.

Hourly average values for ozone, wind speed, wind direction, atmospheric stability, temperature, dew point, time of wetness, and solar radiation are obtained from continuous monitors. Daytime (0601 to 1800 PST) and nighttime (1801 to 0600 PST) measurements are taken every sixth day for sulfur dioxide, ammonia, nitrogen dioxide, and nitric acid gases on absorbing substrates. Mass, sulfate, nitrate, chloride, ammonium, sodium, magnesium, potassium, and calcium ion measurements are made on filter samples of particles in the  $PM_{2.5}$  and  $PM_{10}$ The substrate-based measurements are taken on EPA and ARB size ranges. regulatory sampling schedules for suspended particulate matter. Weekly average CADMP wet deposition samples are taken at or near these dry deposition sampling Wherever possible, existing measurements have been identified and sites. integrated into the data base. Where necessary, new measurement equipment was procured or developed and installed at the sampling sites. As methods and procedures were perfected, the network operation was transferred to ARB monitoring staff in phases throughout the project.

#### 1.2 Objectives

The objectives of this measurement report are:

- To document the data bases acquired during the first 1½ years of monitoring.
- To evaluate monitoring hardware and procedures and formulate recommendations for improvements in data quality and efficiency of operation.
- To summarize measurements taken at the monitoring sites.

#### 1.3 Descriptions of Supporting Documents

This final report is one of five documents prepared for this project. The additional documents are:

- Program Plan for the California Acid Deposition Monitoring Program (Watson et al., 1990). This report describes the alternative monitoring methods which were considered in network design, the sampling sites and the reasons for their selection, the sampling and analytical methods, quality control and quality assurance procedures, data-base management, and the technology transfer plan. The plan is a companion to this measurement report.
- Field Operations Manual for the California Acid Deposition Monitoring Program: Meteorology, Ozone, and Dry Deposition (Bowen et al., 1990). This manual describes the operation of ambient air monitors which were installed as part of this project. It is intended as a training guide and reference for ARB site operators.
- Laboratory Operations Manual for the California Acid Deposition Monitoring Program: Dry Deposition Sample Preparation and Analysis (Chow et al., 1990). This manual specifies the preparation and handling of filter packs and the analysis methods to be applied to these samples upon receipt from the field sites. It is intended as a training guide and reference for the ARB laboratory staff.
- <u>Data Processing and Data Validation Operations Manual for the</u> <u>California Acid Deposition Monitoring Program: Meteorology, Ozone,</u> <u>and Dry Deposition Data (Frazier et al., 1990).</u> This manual describes the use of software which combines data from different sources into an integrated data base. Part of this processing includes the application of different validation criteria to define the quality level of the measurements. The manual is accompanied by programs and example data sets on IBM-PC compatible floppy disks. It is intended as a training guide and reference for the ARB data processing staff.

#### 1.4 Overview of Report

This introduction has provided the background for the measurement program, given an overview of the measurements taken, and stated the objectives of the

report. Section 2 describes the measurement network and its intended operation. Section 3 identifies the data available, the formats in which they are presented on IBM-PC compatible floppy disks, and the descriptions of the different field entries. Section 4 summarizes the data validation procedures and identifies their application to the data which accompany this report.

The first 1<sup>1</sup>/<sub>2</sub> years of network operations are evaluated in Section 5. The intention of this evaluation is to identify changes needed in instrument maintenance schedules and the limitations of current measurement methods. The attainment of the technology transfer objectives is evaluated in Section 6. Data from one year of measurements are analyzed in Section 7. A summary of the measurement program and recommendations for future work are given in Section 8.

#### 2.0 NETWORK DESCRIPTION

#### 2.1 Dry Deposition Measurements

The CADMP dry deposition observables are presented in Table 2-1, along with their averaging times, sampling frequencies, and measurement methods. Figure 2-1 shows the general locations of the dry deposition sampling sites throughout the State of California. Table 2-2 presents the street addresses, coordinates, elevations, and primary operators for each site. Sites are described in greater detail by Watson et al. (1990). These sites were selected to represent concentrations of reactive species in the varied emissions, meteorological, topographical, and exposure environments which typify California.

The three sites in the South Coast Air Basin (SoCAB) represent different emissions and aging times in a densely populated urban area. The Long Beach site is affected by fresh marine and industrial (oil refinery and power-plant) emissions which are generally transported inland by on-shore winds. The Downtown Los Angeles site is near the intersection of major freeways and represents a combination of fresh and partially aged emissions. The Azusa site is in the eastern portion of the SoCAB and receives the end-products of photochemical and other reactions, as well as fresh motor vehicle and some agricultural emissions.

The Santa Barbara site represents a coastal environment in the vicinity of light population densities and no major industries, aside from offshore oil operations and ship channel traffic. The Fremont site represents a densely populated coastal area with emissions and meteorology which are substantially different from those in the SoCAB.

The southern part of the Central Valley is represented by the Bakersfield site, which is affected by urban, agricultural, and oilfield emissions. During the summertime, this site lies along transport trajectories which originate in the San Francisco Bay Area and accumulate pollutants from up-valley sources. The northern part of the Central Valley is represented by the Sacramento site, which also experiences transport from the Bay Area as well as local urban emissions.

Forest exposures and non-urban concentrations are represented by the Sequoia, Yosemite, and Gasquet sites. Sequoia and Yosemite National Parks receive pollutants from the San Joaquin Valley transported by upslope flows. Gasquet, located adjacent to Redwoods National Park, is far removed from all emissions sources, and it probably offers the best estimate of reactive species concentrations in the absence of anthropogenic emissions.

The dry deposition portion of the CADMP is a permanent fixture in California's air quality monitoring program. California's air quality networks rely on a variety of agencies to operate monitoring sites, including the Air Resources Board (ARB), local air quality management districts, the National Park Service, and commercial entities, with coordination and data accumulation tasks performed by ARB. Table 2-3 shows responsibilities of the different parties involved in the dry deposition network and the periods of time for which they were responsible for network components. The Desert Research Institute (DRI)

# Table 2-1

## CADMP Dry Deposition Measurements

| Measurement                                                                                               | Sampling<br>     | Averaging<br><u>Time</u>                | Sampling<br>Frequency                         | Measurement Method<br>/Instrument                                                                                                                                                |
|-----------------------------------------------------------------------------------------------------------|------------------|-----------------------------------------|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $PM_{2.5}$<br>particle (0<br>to 2.5 $\mu$ m)<br>chemistry<br>and HNO <sub>3</sub> gas                     | All <sup>a</sup> | 0601 to<br>1800, 1801<br>to 0600<br>PST | Two consecutive<br>samples every<br>sixth day | ATEC/DRI sequential<br>filter sampler with PFA-<br>coated Bendix 240<br>cyclone inlet and<br>denuder difference<br>method                                                        |
| $PM_{10}$ particle<br>(0 to 10 $\mu$ m)<br>chemistry,<br>$SO_2$ , $NO_2$ , and<br>$NH_3$ gases            | All <sup>a</sup> | 0601 to<br>1800, 1801<br>to 0600<br>PST | Two consecutive<br>samples every<br>sixth day | ATEC/DRI sequential<br>filter sampler with<br>SA-254 inlet and<br>impregnated absorbing<br>filters                                                                               |
| PM <sub>2.5</sub> and PM <sub>10</sub><br>Mass                                                            | Allª             | 0601 to<br>1800, 1801<br>to 0600<br>PST | Two consecutive<br>samples every<br>sixth day | Gravimetric analysis<br>with microbalance of<br>Teflon (Zefluor) filters                                                                                                         |
| $PM_{2.5}$ and $PM_{10}$<br>Cl <sup>-</sup> , $NO_3^-$ ,<br>and $SO_4^-$                                  | Allª             | 0601 to<br>1800, 1801<br>to 0600<br>PST | Two consecutive<br>samples every<br>sixth day | Ion chromatography on<br>Teflon filter extracts.<br>Volatilized $NO_3^-$ measured<br>on nylon backup filter<br>from denuded $PM_{2.5}$ air<br>stream by automated<br>colorimetry |
| $PM_{2.5}$ and $PM_{10}$<br>$NH_4^+$                                                                      | All <sup>a</sup> | 0601 to<br>1800, 1801<br>to 0600<br>PST | Two consecutive<br>samples every<br>sixth day | Automated colorimetry on<br>Teflon filter extracts                                                                                                                               |
| $PM_{2.5}$ and $PM_{10}$<br>Na <sup>+</sup> , Mg <sup>++</sup> ,<br>K <sup>+</sup> , and Ca <sup>++</sup> | Allª             | 0601 to<br>1800, 1801<br>to 0600<br>PST | Two consecutive<br>samples every<br>sixth day | Atomic absorption<br>spectrophotometry on<br>Telfon filter extracts                                                                                                              |
| SO <sub>2</sub>                                                                                           | All <sup>a</sup> | 0601 to<br>1800, 1801<br>to 0600<br>PST | Two consecutive<br>samples every<br>sixth day | Ion chromatography for<br>sulfate on particle-free<br>potassium carbonate<br>impregnated cellulose-<br>fiber (ICF) filters                                                       |

### Table 2-1 (continued)

#### CADMP Dry Deposition Measurements

| <u>Measurement</u> | Sampling<br><u>Sites</u> | Averaging<br><u>Time</u>                | Sampling<br>Frequency                         | Measurement Method<br>/Instrument                                                                                                                               |
|--------------------|--------------------------|-----------------------------------------|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NO <sub>2</sub>    | Allª                     | 0601 to<br>1800, 1801<br>to 0600<br>PST | Two consecutive<br>samples every<br>sixth day | Automated colorimetry<br>for nitrate on<br>triethanolamine (TEA)<br>impregnated cellulose-<br>fiber filters                                                     |
| NH <sub>3</sub>    | Allª                     | 0601 to<br>1800, 1801<br>to 0600<br>PST | Two consecutive<br>samples every<br>sixth day | Automated colorimetry<br>for ammonium on citric<br>acid impregnated<br>cellulose-fiber filters                                                                  |
| HNO <sub>3</sub>   | Allª                     | 0601 to<br>1800, 1801<br>to 0600<br>PST | Two consecutive<br>samples every<br>sixth day | Ion chromatography for<br>nitrate on non-denuded<br>PM <sub>2.5</sub> Teflon and nylon<br>filters minus PM <sub>2.5</sub><br>nitrate on denuded nylon<br>filter |
| 0 <sub>3</sub>     | All <sup>a</sup>         | l hour                                  | Daily, 24 hr/day                              | Dasibi 1003 AH<br>ultraviolet absorption<br>monitor                                                                                                             |
| Wind Speed         | All <sup>a</sup>         | 1 hour                                  | Daily, 24 hr/day                              | 3-cup Anemometer                                                                                                                                                |
| Wind<br>Direction  | All <sup>a</sup>         | 1 hour                                  | Daily, 24 hr/day                              | Wind Vane                                                                                                                                                       |
| Sigma Theta        | Allª                     | 1 hour                                  | Daily, 24 hr/day                              | Wind Vane                                                                                                                                                       |
| Temperature        | Allª                     | 1 hour                                  | Daily, 24 hr/day                              | Thermistor                                                                                                                                                      |
| Dew Point          | Allª                     | 1 hour                                  | Daily, 24 hr/day                              | Dew Cell                                                                                                                                                        |
| Solar<br>Radiation | All <sup>a</sup>         | 1 hour                                  | Daily, 24 hr/day                              | Pyranometer                                                                                                                                                     |
| Time of<br>Wetness | Allª                     | 1 hour                                  | Daily, 24 hr/day                              | Electric Cell                                                                                                                                                   |

a "All" includes: 1) Gasquet; 2) Fremont; 3) Sacramento; 3a) Collocated Sacramento;
4) Yosemite; 5) Sequoia; 6) Bakersfield; 7) Santa Barbara; 8) Long Beach; 9) Los Angeles; and 10) Azusa.





#### Table 2-2

#### Sampling Site Specifications in the CADMP Network

|               |                                                    | Coord        | inates      |      | UTM Coordin | nates       | <u> </u>                  | on                                 |                                         |
|---------------|----------------------------------------------------|--------------|-------------|------|-------------|-------------|---------------------------|------------------------------------|-----------------------------------------|
| Sampling<br>  | Site<br>Address                                    | Longitude(W) | Latitude(N) | Zone | <u> </u>    | <u>N(m)</u> | Above<br><u>Ground(m)</u> | Above<br><u>MSL<sup>a</sup>(m)</u> | Primary <sup>b</sup><br><u>Operator</u> |
| Gasquet       | 9800 Highway 199<br>Gasquet, CA 95513              | 123*58'53"   | 41°50'43"   | 10   | 418,478     | 4,632,860   | 5.0                       | 120                                | ARB                                     |
| Fremont       | 40733 Chapel Way<br>Fremont, CA 94538              | 121*57'40"   | 37*32'08"   | 10   | 591,780     | 4,154,573   | 6.5                       | 16                                 | BAAQMD                                  |
| Sacramento    | 1309 T Street<br>Sacramento, CA 95814              | 121 29 32"   | 38'34'07"   | 10   | 631,329     | 4,269,756   | 11.0                      | 3                                  | ARB                                     |
| Yosemite      | Turtleback Dome<br>Yosemite National Park, CA      | 119'42'12"   | 37*42'47"   | 11   | 261,646     | 4,177,220   | 2.0                       | 1,609                              | NPS                                     |
| Sequoia       | Lower Kaweah<br>Sequoia National Park, CA          | 118*46'38"   | 36'34'01"   | 11   | 340,970     | 4,048,085   | 2.0                       | 1,914                              | NPS                                     |
| Bakersfield   | 225 Chester Ave., Rm. 309<br>Bakersfield, CA 93301 | 119.01,06"   | 35°21′27"   | 11   | 316,598     | 3,914,354   | 7.1                       | 120                                | ARB                                     |
| Santa Barbara | 380 N. Fairview Ave.<br>Goleta, CA 93117           | 119*49'30"   | 34*26'44"   | 11   | 240,170     | 3,814,939   | 4.7                       | 20                                 | SBAPCD                                  |
| Long Beach    | 3648 N. Long Beach Ave.<br>Long Beach, CA 90807    | 118°11'18"   | 33*49'23"   | 11   | 390,037     | 3,742,963   | 8.0                       | 27                                 | SCAQMD                                  |
| Los Angeles   | 1630 N. Main Street<br>Los Angeles, CA 90012       | 118*13'32"   | 34*03'59"   | 11   | 386,878     | 3,769,994   | 15.0                      | 90                                 | SCAQMD                                  |
| Azusa         | 803 N. Loren Ave.<br>Azusa, CA 91702               | 117°55'23"   | 34°08'11"   | 11   | 414,878     | 3,777,623   | 6.5                       | 187                                | SCAQMD                                  |

<sup>a</sup> MSL = Mean Sea Level

b ARB = Air Resources Board

BAAQMD = Bay Area Air Quality Management District

NPS = National Park Service

SCAQMD = South Coast Air Quality Management District

SBAPCD = Santa Barbara County Air Pollution Control District

### Table 2-3

# Summary of CADMP Field Measurement Responsibilities

| Agency                                         | <u>Responsibilities</u>                                                                          | <u>Calendar Periods</u>                            |
|------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------|
| Desert Research<br>Institute                   | Program Management<br>Network Design<br>Site Installation<br>Field Operation<br>Supervision      | 12/86-4/90<br>12/86-6/87<br>3/88-4/89<br>6/88-4/90 |
|                                                | Data Processing                                                                                  | 6/88-1/90                                          |
|                                                | Filter Pack Preparation                                                                          | 3/89-12/90                                         |
|                                                | Laboratory Analysis                                                                              | 9/88-9/89                                          |
|                                                | Maintenance and Repair                                                                           | 6/88-4/90                                          |
|                                                | Field Operation of Dry<br>Deposition Sampler at<br>Gasquet                                       | 5/88-4/90                                          |
|                                                | Field Operation of<br>Meteorological<br>Measurements at<br>Gasquet                               | 5/88-4/90                                          |
|                                                | Field Operation of Ozone<br>Analyzer at Gasquet                                                  | 5/88-4/90                                          |
| ENSR Consulting and<br>Engineering             | Filter Pack Preparation<br>Laboratory Analysis                                                   | 3/88-3/89<br>5/88-9/88                             |
| South Coast Air Quality<br>Management District | Field Operation of Dry<br>Deposition Sampler at<br>Long Beach, Los<br>Angeles, and Azusa         | 5/88-current                                       |
|                                                | Field Operation of<br>Meteorological<br>Measurements at Long<br>Beach, Los Angeles,<br>and Azusa | 2/89-current                                       |
|                                                | Field Operation of Ozone<br>Analyzer at Long<br>Beach, Los Angeles,<br>and Azusa                 | 5/88-current                                       |
| Bay Area Air Quality<br>Management District    | Field Operation of Dry<br>Deposition Sampler at<br>Fremont                                       | 6/88-current                                       |

# Table 2-3 (continued)

### Summary of CADMP Field Measurement Responsibilities

| <u>Agency</u>                                              | <u>Responsibilities</u>                                                         | <u>Calendar Periods</u> |  |  |
|------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------|--|--|
| Bay Area Air Quality<br>Management District<br>(continued) | Field Operation of<br>Meteorological<br>Measurements at<br>Fremont              | 9/88-current            |  |  |
|                                                            | Field Operation of Ozone<br>Analyzer at Fremont                                 | 6/88-current            |  |  |
| Santa Barbara Air<br>Pollution Control<br>District         | Field Operation of Dry<br>Deposition Sampler at<br>Santa Barbara                | 2/89-current            |  |  |
|                                                            | Field Operation of<br>Meteorological<br>Measurements at Santa<br>Barbara        | 4/89-current            |  |  |
|                                                            | Field Operation of Ozone<br>Analyzer at Santa<br>Barbara                        | 4/89-current            |  |  |
| National Park Service                                      | Field Operation of Dry<br>Deposition Sampler at<br>Yosemite and Sequoia         | 5/88-current            |  |  |
|                                                            | Field Operation of<br>Meteorological<br>Measurements at<br>Yosemite and Sequoia | 5/88-current            |  |  |
|                                                            | Field Operation of Ozone<br>Analyzer at Yosemite<br>and Sequoia                 | 5/88-current            |  |  |
| California Air<br>Resources Board                          | Field Operation of Dry<br>Deposition Sampler at<br>Sacramento                   | 10/88-current           |  |  |
|                                                            | Field Operation of<br>Meteorological<br>Measurements at<br>Sacramento           | 6/89-current            |  |  |
|                                                            | Field Operation of Ozone<br>Analyzer at Sacramento                              | 4/89-current            |  |  |

# Table 2-3 (continued)

-

# Summary of CADMP Field Measurement Responsibilities

| <u>Agency</u>                                    | <u>Responsibilities</u>                                                | <u>Calendar Periods</u> |
|--------------------------------------------------|------------------------------------------------------------------------|-------------------------|
| California Air<br>Resources Board<br>(continued) | Field Operation of Dry<br>Deposition Sampler at<br>Bakersfield         | 5/88-current            |
|                                                  | Field Operation of<br>Meteorological<br>Measurements at<br>Bakersfield | 9/88-current            |
|                                                  | Field Operation of Ozone<br>Analyzer at<br>Bakersfield                 | 5/88-current            |
|                                                  | Field Operation of Dry<br>Deposition Sampler at<br>Gasquet             | 5/90-current            |
|                                                  | Field Operation of<br>Meteorological<br>Measurements at<br>Gasquet     | 5/90-current            |
|                                                  | Field Operation of Ozone<br>Analyzer at Gasquet                        | 5/90-current            |

of the University of Nevada and the ARB Research Division were charged with the initial responsibility of assembling existing resources into a coherent monitoring network, supplementing these resources with additional monitoring methods needed to meet the needs of dry deposition monitoring, operating the network for a one-year period, and transferring operations to ARB staff. The management of the CADMP dry deposition component is currently under the auspices of ARB's Monitoring and Laboratory Support Divisions.

#### 2.2 Field Measurement Systems

Watson et al. (1990) provide the rationale for the selection of monitoring methods and a summary of operating procedures. Each site is configured with: 1) a gas/particle sequential filter sampling system; 2) an ozone monitor; and 3) a meteorological monitoring system.

#### 2.2.1 Gas/Particle Sequential Filter Sampler

The gas/particle sequential filter sampling system consists of two units, one fitted with a  $PM_{10}$  inlet (for the collection of particles less than 10  $\mu$ m aerodynamic diameters) and another fitted with a  $PM_{2.5}$  inlet (for the collection of particles less than 2.5  $\mu$ m aerodynamic diameter). Air passes through these inlets into a conical plenum, then through filter substrates arranged in parallel and in series which remove the gases and particles specified in Table 2-1. All surfaces in the  $PM_{2.5}$  sampling system are coated with PFA Teflon which has been washed in dilute nitric acid to prevent atmospheric nitric acid from being adsorbed by the sampling system prior to contact with the collection substrates.

Four filter packs containing a total of eight substrates are needed for each sample. The eight filters are submitted to 21 different analysis processes to obtain 12-hour average concentrations of 24 separate species. Solenoid valves are triggered by a timer to switch between the daytime and nighttime samples. Filter packs for one month of sampling are prepared in a central laboratory and shipped to the field where they are loaded into and removed from the sampler by each site operator. Field blanks, through which no air is drawn, accompany each month's set of samples. These field blanks are used to evaluate contamination from sample handling and shipping.

#### 2.2.2 Ultraviolet Absorption Ozone Analyzer

Each sampling site is equipped with ultraviolet absorption spectrophotometers for the measurement of ozone. These units were already in place at all sites except Yosemite and Gasquet, where they were installed as part of CADMP. These instruments measure the amount of ultraviolet (UV) radiation absorbed by molecular ozone in a sample of ambient air. Greatest absorption occurs at a wavelength of 253.7 nm which is provided by a low pressure mercury vapor lamp.

Ambient air entering the monitor separates into two paths. One path leads directly into the absorption chamber, the other first passes through an ozone

filter or "scrubber" which selectively removes the ozone, and then into the chamber. A photodetector measures the amount of light absorbed by the ozone-laden air compared to the ozone-free air. The ozone concentration is then calculated electronically and recorded by a data acquisition system (DAS).

#### 2.2.3 Meteorological Measurements

To the greatest extent possible, use is made of existing measurements at the sampling sites. Several meteorological instruments were installed as part of the CADMP to supplement these existing units. The exact type of instrument varies from site to site. The following measurement principles are applied at most, but not all, of the sampling sites.

Wind speed is measured by a three-cup anemometer coupled to a wind-speed sensor which converts the rotational speed of the cups to a frequency proportional to wind speed. A transducer converts the frequency to direct current voltage (DCV) which is read by the data acquisition system.

Wind direction is measured by a wind vane coupled to a precision low torque potentiometer. Wind exerts pressure on the surface of the vane which rotates about a fulcrum. The angles of wind direction are measured clockwise from true north, which is 0°. Meteorological wind direction is defined as the direction from which the wind is coming. The 0-360° signal from the potentiometer is converted to 0-540° in a translator which is read by the data acquisition system.

The data acquisition system resolves the instantaneous wind-speed and winddirection signals into vector components, averages the components, and determines the average vector wind speed and direction. The data acquisition system computes the standard deviation of the instantaneous values from the winddirection sensor. These values are reported as sigma theta.

Ambient temperature is measured by a thermistor housed in an aspirated radiation shield. Voltage from the thermistor varies directly with temperature and is read by the data acquisition system.

Dew point is measured using a dew cell that consists of a heated wire-wound bobbin that is coated with lithium chloride (LiCl), a hygroscopic material. The bobbin is heated to drive off water vapor until a phase change occurs in the LiCl. This bobbin temperature is related to the dew point by a calibration curve that is built into a translator card, the output of which is recorded by the data acquisition system.

Two types of sensors are used to measure total direct and indirect solar radiation in the hemisphere above the horizon. At some sites, the sensor is a silicon solar cell that generates a voltage in the presence of sunlight. At other sites the sensor is a differential thermopile with black and white surfaces that develop a temperature difference. This difference produces a voltage proportional to the solar radiation. The generated solar radiation is translated into units of energy flux (watts/m<sup>2</sup>) and recorded by the data acquisition system.

Time of wetness is measured using an electrochemical sensor. Resistance across the sensor decreases as moisture collects on the sensor surface, leading to an increase in the current across the sensor. Output from the sensor is recorded by the data acquisition system.

#### 2.2.4 Data Acquisition System

The Dasibi SX444 and SumX SX445 data acquisition systems (SumX was acquired by Dasibi in 1988, and these designations represent the same instrument) are microprocessor-based instruments designed to collect and process air quality and meteorological data. An operating program is contained in read-only-memory (ROM), while data are stored in random-access-memory (RAM) of the data acquisition system and of a removable RAM storage module (RAM pack). Analog signals from sensors are converted to digital signals in an analog-to-digital converter. The digital signals are scaled, averaged over user-specified time scales, and saved in RAM. Calibration functions can be specified and initiated through several control outputs. Communications with the data acquisition system are accomplished via telephone and modem, an onsite Tandy 100 computer for Model SX444, and a front panel keyboard for Model SX445.

#### 2.3 Laboratory Operations

Laboratory operations support the gas/particle sequential filter sampling. Laboratory work consists of filter pack preparation, sample sectioning and extraction, and chemical analysis. Samples are submitted to gravimetric, ion chromatographic, atomic absorption spectrophotometric, and automated colorimetric analysis. Figure 2-2 shows the sequence of laboratory operations applied to these samples. Watson et al. (1990) describe the rationale for selecting the filter media, impregnation solutions, and analysis methods.

Four separate filter packs are assembled for each 12-hour sample. They are identified with an alphabetical prefix followed by an identification number. The prefixes identify the following configurations:

- A TCK prefix designates a filter pack containing a potassium carbonate impregnated cellulose filter on the bottom grid, preceded by a citric acid impregnated cellulose filter on a removable grid, preceded by a Teflon-membrane filter on a removable grid. The TCK filter pack samples particles, ammonia, and sulfur dioxide through the PM<sub>10</sub> inlet at 20 lpm.
- A GT prefix designates a filter pack containing a TEA impregnated cellulose filter on the bottom grid, preceded by a Teflon-coated glass-fiber filter on a removable grid. The GT filter pack samples nitrogen dioxide through the PM<sub>10</sub> inlet at 2 lpm. The Teflon-coated glass-fiber filter removes nitrate particulate matter and is discarded following sampling.



Figure 2-2. Flow Diagram of the CADMP Filter Processing Activities.

of transition energies and therefore absorbs light at different wavelengths. With the application of Beer-Lambert's Law, the amount of absorption is a function of the number of atoms which is proportional to analyte concentration. The light beam passes through a sample chamber (where the sample is heated with a burner) to a monochromator where an appropriate wavelength is focused on a photomultiplier tube. The amount of light absorbed at this wavelength is recorded by a data-acquisition computer and converted to concentration by comparison with the absorption by known standards. A separate analysis is performed for each species using a different light source and monochromator setting. An auto-injection system and computer-controlled data acquisition allow up to 120 samples per day to be analyzed for a single species.

Approximately 25% of all analyses are dedicated to standards, replicates, and blank samples to assure proper calibration and reproducibility. Sample extracts are re-analyzed when these quality control samples do not return values within pre-set limits. Samples with concentrations outside of the calibration range are diluted or are re-standardized using a calibration curve developed over a higher range of concentrations.

Detailed laboratory operations are documented in the standard operating procedures for this program (Chow et al., 1990).

#### 3.0 DATA-BASE DESCRIPTION

Validated data are presented in dBase III+ computer files which can be easily transferred on IBM-PC compatible floppy disks. dBase III+ formats can be read directly by many popular spreadsheet and data management programs, and it is not necessary to own dBase III+ software to access these data. ASCII blank or comma delimited text files can be produced from dBase files with a list command from the dBase III+ data management software.

Table 3-1 identifies the data which are delivered with this report and the file names which contain those data. The largest files are those which contain the hourly data, and these have been divided by site and year to make them more convenient to handle. The naming convention for these files uses a site code followed by the year of data acquisition. All of the gas/particle data are contained in a single file.

Tables 3-2 and 3-3 describe the data-base structures of the hourly and gas/particle files, respectively. Each record contains the sampling site, sample date, and sampling period. These fields can be used to group different records into sub-files for data interpretation purposes. Data validation flags for hourly data are defined in Tables 3-4, while validation flags for the gas/particle data are described in Tables 3-5 and 3-6. Each data record includes its own data validation summary. All missing or invalid data locations are represented by a -99 located in place of the absent measured value.

In Table 3-3, Fields 41 to 76 refer to particulate concentrations which are measured on extracts from the Teflon-membrane pre-filter. A nitric acid denuder which precedes the nylon filter (Field 77) removes nitric acid from the air stream prior to contact with the filter. Field 77 represents the total particulate nitrate which was in the atmosphere. This differs from the particulate nitrate measured on the Teflon filter (Field 69) because some of the particulate ammonium nitrate collected on the Teflon filter dissociates to gaseous nitric acid during sampling. The nylon backup filter (Field 79) absorbs Field 79 represents nitric acid, which is in the this evaporated nitrate. gaseous phase, plus ammonium nitrate which dissociated to nitric acid from particles collected on the Teflon-membrane pre-filter. Nitric acid in the atmosphere, reported in Field 87, results from adding the nitrate on the undenuded PM2 5 Teflon filter (Field 69) to the nitrate measured on the undenuded  $PM_{2,5}$  nylon backup filter (Field 79) and subtracting the nitrate measured on the  $PM_{2,5}$  denuded nylon filter (Field 77). This difference is multiplied by 1.016 to obtain the equivalent amount of nitric acid.

Tables 3-4 through 3-6 contain flags which describe the validation actions taken and the reasons for those actions. Most of these flags are of interest only for evaluating the measurement process, and they can be ignored by the typical data user. The most important flags are those which indicate the validation level of data: 1) valid at Level I or Level II; 2) suspect; or 3) invalid. Suspect data are retained because they may be useful for some situations but not for others. The dBase III+ data management system allows the data base to be sorted on these flags so that data can included or excluded depending on the desires of the investigator.

### Table 3-1

## Summary of CADMP Data-Base Files for Meteorological and Chemical Measurements

| Sampling_Site                 | Descriptions                                              | Start<br><u>Date</u> | End<br><u>Date</u>   | Data-Base<br><u>File Name</u> |
|-------------------------------|-----------------------------------------------------------|----------------------|----------------------|-------------------------------|
| Gasquet                       | Hourly<br>Meteorological<br>Ozone Data                    | 06/19/88<br>01/01/89 | 12/31/88<br>01/22/90 | GA88.DBF<br>GA8990.DBF        |
|                               | Twelve-Hour Chemical<br>(gas/particle <sup>ª</sup> ) Data | 06/20/88             | 09/25/89             | CPCON.DBF                     |
| Fremont                       | Hourly<br>Meteorological and<br>Ozone Data                | 09/23/88<br>01/01/89 | 12/31/88<br>01/31/90 | FR88.DBF<br>FR8990.DBF        |
|                               | Twelve-Hour Chemical<br>(gas/particle <sup>a</sup> ) Data | 06/02/88             | 09/25/89             | CPCON.DBF                     |
| Sacramento<br>(13th & T St.)  | Hourly<br>Meteorological and<br>Ozone Data                | 06/09/89             | 01/22/90             | SA8990.DBF                    |
|                               | Twelve-Hour Chemical<br>(gas/particle <sup>a</sup> ) Data | 10/06/88             | 09/25/89             | CPCON.DBF                     |
| Collocated<br>Sacramento      | Twelve-Hour Chemical<br>(gas/particle <sup>a</sup> ) Data | 04/10/89             | 09/25/89             | CPCON.DBF                     |
| Yosemite<br>(Turtleback Dome) | Hourly<br>Meteorological and<br>Ozone Data                | 05/11/89             | 01/31/90             | Y08990.DBF                    |
|                               | Twelve-Hour Chemical<br>(gas/particle <sup>a</sup> ) Data | 05/09/88             | 09/25/89             | CPCON.DBF                     |
| Sequoia                       | Hourly<br>Meteorological and<br>Ozone Data                | 01/01/89             | 01/31/90             | SB8990.DBF                    |
|                               | Twelve-Hour Chemical<br>(gas/particle <sup>a</sup> ) Data | 05/15/88             | 09/25/89             | CPCON.DBF                     |
| Bakersfield                   | Hourly<br>Meteorological and<br>Ozone Data                | 10/11/88<br>01/01/90 | 12/31/88<br>01/31/90 | BA88.DBF<br>BA8990.DBF        |
|                               | Twelve-Hour Chemical<br>(gas/particleª) Data              | 05/03/88             | 09/25/89             | CPCON.DBF                     |

### Table 3-1 (continued)

### Summary of CADMP Data-Base Files for Meteorological and Chemical Measurements

| Sampling Site             | <u>Descriptions</u>                                       | Start<br><u>Date</u> | End<br><u>Date</u> | Data-Base<br><u>File_Name</u> |
|---------------------------|-----------------------------------------------------------|----------------------|--------------------|-------------------------------|
| Santa Barbara<br>(Goleta) | Hourly<br>Meteorological and<br>Ozone Data                | 06/20/89             | 01/22/90           | <b>SB8990.</b> DBF            |
|                           | Twelve-Hour Chemical<br>(gas/particle <sup>a</sup> ) Data | 04/22/89             | 09/25/89           | CPCON.DBF                     |
| Long Beach                | Hourly<br>Meteorological and<br>Ozone Data                | 02/01/89             | 01/31/90           | LB8990.DBF                    |
|                           | Twelve-Hour Chemical<br>(gas/particle <sup>a</sup> ) Data | 05/03/88             | 09/25/89           | CPCON.DBF                     |
| Los Angeles               | Hourly<br>Meteorological and<br>Ozone Data                | 02/01/89             | 01/31/90           | LA8990.DBF                    |
|                           | Twelve-Hour Chemical<br>(gas/particleª) Data              | 05/03/88             | 09/25/89           | CPCON.DBF                     |
| Azusa                     | Hourly<br>Meteorological and<br>Ozone Data                | 02/01/89             | 01/31/90           | AZ8990.DBF                    |
|                           | Twelve-Hour Chemical<br>(gas/particle <sup>a</sup> ) Data | 05/03/88             | 09/25/89           | CPCON.DBF                     |

<sup>a</sup>  $PM_{2.5}$  and  $PM_{10}$ .

# Table 3-2

### CADMP Data-Base Structure for Continuous Meteorological and Ozone Measurements (File ssmmyyHR.DBF)<sup>a</sup>

| Number of data records       | : | Varies with site       |
|------------------------------|---|------------------------|
| Date of last update          | : | 7/27/90                |
| Missing value code           | : | -99                    |
| Wind direction precision     | : | 1°                     |
| Wind speed precision         | : | 0.2 mps                |
| Temperature precision        | : | 0.2°C                  |
| Insolation precision         | : | 2 watts/m <sup>3</sup> |
| Wetness precision            | : | 2%                     |
| Ozone precision <sup>.</sup> | : | 5ppbv at 100ppbv       |

| <u>Field</u> | <u>Field Name</u> | <u>Data Type</u> | <u>Width</u> | <u>Explanation</u>                     |
|--------------|-------------------|------------------|--------------|----------------------------------------|
| 1            | SITE              | Character        | 2            | Sampling site                          |
| 2            | DATE              | Date             | 8            | Sampling date                          |
| 3            | STRTIM            | Numeric          | 4            | Begin time for average, 0000-2300      |
|              |                   |                  | _            | hours                                  |
| 4            | VWDDEGC           | Numeric          | 3            | Vector average wind direction,         |
| c            | TTINTAT           | <b>01</b>        | 0            | degrees                                |
| C            | VWDVAL            | Character        | 8            | validation flag for vector average     |
| 6            | STODECC           | Numorio          | 3            | Standard deviation of vector average   |
| Ū            | BIODIOO           | Numeric          | 5            | wind direction                         |
| 7            | SIGVAL            | Character        | 8            | Validation flag for standard           |
|              |                   |                  | -            | deviation of vector average wind       |
|              |                   |                  |              | direction                              |
| 8            | VWSMPSC           | Numeric          | 5.1          | Vector average wind speed, m/s         |
| 9            | VWSVAL            | Character        | 8            | Validation flag for vector average     |
|              |                   |                  |              | wind speed                             |
| 10           | SWSMPSC           | Numeric          | 5.1          | Scalar average wind speed, m/s         |
| 11           | SWSVAL            | Character        | 8            | Validation flag for scalar average     |
|              |                   |                  |              | wind speed                             |
| 12           | TMPDGCC           | Numeric          | 5.1          | Temperature, °C                        |
| 13           | TMPVAL            | Character        | 8            | Validation flag for temperature        |
| 14           | DPTDGCC           | Numeric          | 5.1          | Dew point temperature, °C              |
| 15           | DPTVAL            | Character        | 8            | Validation flag for dew point          |
|              |                   |                  |              | temperature                            |
| 16           | SOLWM2C           | Numeric          | 4            | Solar insolation, watts/m <sup>2</sup> |
| 17           | SOLVAL            | Character        | 8            | Validation flag for solar insolation   |
| 18           | WETPHRC           | Numeric          | 3            | Wetness, percent of sampling hour      |
| 19           | WETVAL            | Character        | 8            | Validation flag for wetness            |
| 20           | O3PPBC            | Numeric          | 4            | Ozone concentration, ppbv              |
| 21           | 03VAL             | Character        | 8            | Validation flag for ozone              |
|              |                   |                  |              | concentration                          |

<sup>a</sup> ss = Site Code

mm = Month

yy = Year

### Table 3-3

CADMP Data-Base Structure for Ambient Chemical Concentrations (File CPCON.DBF)

| <u>Field</u> | <u>Name</u> | <u>Data Type</u> | <u>Width</u> | Explanation                                                          |
|--------------|-------------|------------------|--------------|----------------------------------------------------------------------|
| 1            | IDGT        | Character        | 10           | Sample ID, GT filter pack                                            |
| 2            | IDTK        | Character        | 10           | Sample ID. TCK filter pack                                           |
| 3            | IDDN        | Character        | 10           | Sample ID, DN filter pack                                            |
| 4            | IDTN        | Character        | 10           | Sample ID. TN filter pack                                            |
| 5            | SITE        | Character        | 2            | Sampling site, 'AZ'=Azusa.                                           |
|              |             |                  |              | 'BA'-Bakersfield, 'FR'-Fremont,                                      |
|              |             |                  |              | 'GA'=Gasquet, 'LB'=Long Beach,                                       |
|              |             |                  |              | 'LA'=Los Angeles, 'SA'=Sacramento,                                   |
|              |             |                  |              | 'SB'-Santa Barbara, 'SE'-Seguoia,                                    |
|              |             |                  |              | 'YO'=Yosemite                                                        |
| 6            | SAMPID      | Numeric          | 2            | Sampler ID number                                                    |
| 7            | DATE        | Date             | 8            | Sampling date                                                        |
| 8            | STRTIM      | Numeric          | 4            | Sample start time, HH:MM                                             |
| 9            | PERIOD      | Character        | 1            | Sample period, D=Day, N=Night                                        |
| 10           | FGTTFLG     | Character        | 5            | Field flag, GT filter pack                                           |
| 11           | FTKTFLG     | Character        | 5            | Field flag, TCK filter pack                                          |
| 12           | FDNFFLG     | Character        | 5            | Field flag, DN filter pack                                           |
| 13           | FTNFFLG     | Character        | 5            | Field flag, TN filter pack                                           |
| 14           | MAGTFF      | Character        | 5            | Analysis flag, PM <sub>2.5</sub> Teflon filter mass                  |
| 15           | MAGTTF      | Character        | 5            | Analysis flag, PM <sub>10</sub> Teflon filter mass                   |
| 16           | NAATFF      | Character        | 5            | Analysis flag, PM <sub>2.5</sub> Teflon filter Na                    |
| 10           | NAATTF      | Character        | 5            | Analysis flag, PM <sub>10</sub> Teflon filter Na                     |
| 18           | MGATFF      | Character        | 5            | Analysis flag, PM <sub>2.5</sub> Teflon filter Mg                    |
| 19           | MGATTF      | Character        | 5            | Analysis flag, PM <sub>10</sub> Teflon filter Mg                     |
| 20           | KPAIFF      | Character        | 5            | Analysis flag, $PM_{2.5}$ Teflon filter K                            |
| 21           | CAATEE      | Character        | 5            | Analysis flag, PM <sub>10</sub> ferion filter K                      |
| 22           | CAAIFF      | Character        | 5            | Analysis flag, $PM_{2.5}$ ferion filter (a                           |
| 23           | NACTEE      | Character        | 5            | Analysis flag, $PM_{10}$ ferror filter of $M_{10}$                   |
| 24           | NACTTE      | Character        | 5            | Analysis flag, $PM_{2.5}$ ferron filter $NH_4$                       |
| 26           | ANITEE      | Character        | 5            | Analysis flag, $M_{10}$ ferror filter $C_{11}$                       |
| 20           | MULLE.      | Unaracter        | 2            | NO. SO $=$                                                           |
| 27           | ANITTE      | Character        | 5            | Analysis flag PM., Teflon filter Cl                                  |
|              |             | ondradoor        | 3            | No. So. $\mathbb{T}$                                                 |
| 28           | N3CNFF      | Character        | 5            | Analysis flag, nylon filter NO <sub>2</sub>                          |
| 29           | HNCNGF      | Character        | 5            | Analysis flag, nylon filter HNO <sub>2</sub>                         |
| 30           | NHCCGF      | Character        | 5            | Analysis flag, citric acid filter NH <sub>2</sub>                    |
| 31           | SOIKGF      | Character        | 5            | Analysis flag, K <sub>2</sub> CO <sub>2</sub> filter SO <sub>2</sub> |
| 32           | NOCEGF      | Character        | 5            | Analysis flag, TEA filter NO <sub>2</sub>                            |
| 33           | VOLGTC      | Numeric          | 6.2          | Volume, m <sup>3</sup> , GT filter pack                              |
| 34           | VOLGTU      | Numeric          | 6.2          | Volume uncertainty, m <sup>3</sup> , GT filter pack                  |
| 35           | VOLTKC      | Numeric          | 6.2          | Volume, m <sup>3</sup> , TCK filter pack                             |
| 36           | VOLTKU      | Numeric          | 6.2          | Volume uncertainty, m <sup>3</sup> , TCK filter                      |
|              |             |                  |              | pack                                                                 |
| 37           | VOLDNC      | Numeric          | 6.2          | Volume, m <sup>3</sup> , DN filter pack                              |
| 38           | VOLDNU      | Numeric          | 6.2          | Volume uncertainty, m <sup>3</sup> , DN filter pack                  |

,

# Table 3-3 (continued)

CADMP Data-Base Structure for Ambient Chemical Concentrations (File CPCON.DBF)

| <u>Field</u> | <u>Name</u>      | <u>Data Type</u> | <u>Width</u> | Explanation                                                             |
|--------------|------------------|------------------|--------------|-------------------------------------------------------------------------|
| 39           | VOLTNC           | Numeric          | 6.2          | Volume, m <sup>3</sup> , TN filter pack                                 |
| 40           | VOLTNU           | Numeric          | 6.2          | Volume uncertainty, m <sup>3</sup> , TN filter pack                     |
| 41           | MAGTFC           | Numeric          | 10.4         | PM <sub>2</sub> , Teflon filter mass, $\mu g/m^3$                       |
| 42           | MAGTFU           | Numeric          | 10.4         | PM <sub>2.5</sub> Teflon filter mass uncertainty,                       |
| 43           | MAGTTC           | Numeric          | 10.4         | PG/m<br>PM <sub>10</sub> Teflon filter mass, $\mu$ g/m <sup>3</sup>     |
| 44           | MAGTTU           | Numeric          | 10.4         | PM <sub>10</sub> Teflon filter mass uncertainty,<br>µg/m <sup>3</sup>   |
| 45           | NAATFC           | Numeric          | 10.4         | $PM_2$ , Teflon filter Na <sup>+</sup> , $\mu g/m^3$                    |
| 46           | NAATFU           | Numeric          | 10.4         | $PM_{2.5}$ Teflon filter Na <sup>+</sup> uncertainty,<br>$\mu g/m^3$    |
| 47           | NAATTC           | Numeric          | 10.4         | $PM_{10}$ Teflon filter Na <sup>+</sup> , $\mu g/m^3$                   |
| 48           | NAATTU           | Numeric          | 10.4         | $PM_{10}$ Teflon filter Na <sup>+</sup> uncertainty, $\mu g/m^3$        |
| 49           | MGATFC           | Numeric          | 10.4         | $PM_2$ , Teflon filter Mg <sup>++</sup> , $\mu g/m^3$                   |
| 50           | MGATFU           | Numeric          | 10.4         | $PM_{2.5}$ Teflon filter $Mg^{++}$ uncertainty,<br>$\mu g/m^3$          |
| 51           | MGATTC           | Numeric          | 10.4         | $PM_{10}$ Teflon filter Mg <sup>++</sup> , $\mu g/m^3$                  |
| 52           | MGATTU           | Numeric          | 10.4         | $PM_{10}$ Teflon filter $Mg^{++}$ uncertainty, $\mu g/m^3$              |
| 53           | KPATFC           | Numeric          | 10.4         | $PM_{o}$ = Teflon filter K <sup>+</sup> . $\mu g/m^3$                   |
| 54           | KPATFU           | Numeric          | 10.4         | PM <sub>2</sub> f Teflon filter K <sup>+</sup> uncertainty, $\mu g/m^3$ |
| 55           | KPATTC           | Numeric          | 10.4         | PM <sub>10</sub> Teflon filter $K^+$ . $\mu g/m^3$                      |
| 56           | KPATTU           | Numeric          | 10.4         | PM <sub>10</sub> Teflon filter K <sup>+</sup> uncertainty. $\mu g/m^3$  |
| 57           | CAATFC           | Numeric          | 10.4         | $PM_2$ , Teflon filter $Ca^{++}$ , $\mu g/m^3$                          |
| 58           | CAATFU           | Numeric          | 10.4         | $PM_{2.5}$ Teflon filter Ca <sup>++</sup> uncertainty,<br>$\mu g/m^3$   |
| 59           | CAATTC           | Numeric          | 10.4         | $PM_{10}$ Teflon filter $Ca^{++}$ . $\mu g/m^3$                         |
| 60           | CAATTU           | Numeric          | 10.4         | $PM_{10}$ Teflon filter Ca <sup>++</sup> uncertainty,                   |
| 61           | N4CTFC           | Numeric          | 10.4         | $PM_{a}$ , Teflon filter NH <sup>+</sup> , $\mu g/m^3$                  |
| 62           | N4CTFU           | Numeric          | 10.4         | $PM_{2.5}$ Teflon filter $NH_4^+$ uncertainty,                          |
| 63           | N4CTTC           | Numeric          | 10.4         | $PM_{10}$ Teflon filter NH <sup>+</sup> , $\mu g/m^3$                   |
| 64           | N4CTTU           | Numeric          | 10.4         | $PM_{10}$ Teflon filter $NH_4^+$ uncertainty,                           |
| 65           | CLITFC           | Numeric          | 10.4         | $PM_{2}$ , Teflon filter Cl <sup>-</sup> , $\mu g/m^{3}$                |
| 66           | CLITFU           | Numeric          | 10.4         | PMo, Teflon filter Cl uncertainty.                                      |
| <br>(7)      |                  |                  | 10 /         | $\mu g/m^3$                                                             |
| 6/<br>()     | OLITIC<br>OLITIC | Numeric          | 10.4         | $rm_{10}$ Terion filter CL, $\mu g/m^{\circ}$                           |
| 68           | CLITTU           | Numeric          | 10.4         | $PM_{10}$ Terion filter Cl uncertainty, $\mu g/m^{\circ}$               |
| 69<br>70     | NJITFC           | Numeric          | 10.4         | $PM_{2.5}$ Tetlon filter $NO_3$ , $\mu g/m^{\circ}$                     |
| 70           | NJITFU           | Numeric          | 10.4         | $\mu_{2.5}$ Tetion filter NO <sub>3</sub> uncertainty, $\mu_g/m^3$      |
| 71           | N3ITTC           | Numeric          | 10.4         | $PM_{10}$ Teflon filter $NO_3$ , $\mu g/m^3$                            |

.

## Table 3-3 (continued)

CADMP Data-Base Structure for Ambient Chemical Concentrations (File CPCON.DBF)

| <u>Field</u> | <u>Name</u> | <u>Data Type</u> | Width | <u>Explanation</u>                                                                            |
|--------------|-------------|------------------|-------|-----------------------------------------------------------------------------------------------|
| 72           | N3ITTU      | Numeric          | 10.4  | PM <sub>10</sub> Teflon filter NO <sub>3</sub> <sup>-</sup> uncertainty,<br>μg/m <sup>3</sup> |
| 73           | S4ITFC      | Numeric          | 10.4  | $PM_2$ , Teflon filter $SO_4^{\pm}$ , $\mu g/m^3$                                             |
| 74           | S4ITFU      | Numeric          | 10.4  | $PM_{2.5}$ Teflon filter $SO_4^{=}$ uncertainty, $\mu g/m^3$                                  |
| 75           | S4ITTC      | Numeric          | 10.4  | $PM_{10}$ Teflon filter $SO_{\mu}^{\pm}$ , $\mu g/m^3$                                        |
| 76           | S4ITTU      | Numeric          | 10.4  | $PM_{10}$ Teflon filter $SO_4^{=}$ uncertainty, $\mu g/m^3$                                   |
| 77           | N3CNFC      | Numeric          | 10.4  | $PM_{2.5}$ Total particulate nylon filter $NO_{2.5}$ $\mu g/m^3$                              |
| 78           | N3CNFU      | Numeric          | 10.4  | PM <sub>2.5</sub> Total particulate nylon filter                                              |
| 79           | HNCNGC      | Numeric          | 10.4  | $PM_{2.5}$ Non-denuded nylon backup filter<br>HNO <sub>2</sub> $\mu g/m^3$                    |
| 80           | HNCNGU      | Numeric          | 10.4  | $PM_{2.5}$ Non-denuded nylon backup filter                                                    |
| 81           | NHCCGC      | Numeric          | 10.4  | Citric acid filter NH <sub>2</sub> , $\mu g/m^3$                                              |
| 82           | NHCCGU      | Numeric          | 10.4  | Citric acid filter $NH_3$ uncertainty,<br>$\mu g/m^3$                                         |
| 83           | SOIKGC      | Numeric          | 10.4  | $K_{0}CO_{2}$ filter SO <sub>2</sub> , $\mu g/m^{3}$                                          |
| 84           | SOIKGU      | Numeric          | 10.4  | $K_2CO_3$ filter SO <sub>2</sub> uncertainty, $\mu g/m^3$                                     |
| 85           | NOCEGC      | Numeric          | 10.4  | TEA filter NO <sub>2</sub> , $\mu g/m^3$                                                      |
| 86           | NOCEGU      | Numeric          | 10.4  | TEA filter NO <sub>2</sub> uncertainty, $\mu g/m^3$                                           |
| 87           | HNDDGC      | Numeric          | 10.4  | Denuder difference HNO <sub>3</sub> , $\mu g/m^3$                                             |
| 88           | HNDDGU      | Numeric          | 10.4  | Denuder difference $HNO_3$ uncertainty,<br>$\mu g/m^3$                                        |
| 89           | SUMIFC      | Numeric          | 10.4  | Sum of $PM_{2.5}$ chemical concentrations, $\mu g/m^3$                                        |
| 90           | SUMIFU      | Numeric          | 10.4  | Sum uncertainty of $PM_{2.5}$ chemical concentrations $\mu_{3}/m^{3}$                         |
| 91           | SUMITC      | Numeric          | 10.4  | Sum of $PM_{10}$ chemical concentrations,                                                     |
| 92           | SUMITU      | Numeric          | 10.4  | Sum uncertainty of $PM_{10}$ chemical concentrations $ug/m^3$                                 |
| 93           | NOTE        | Character        | 60    | Comments                                                                                      |

# Table 3-4

### Hourly Data Validation Flags

| Validation   | Sub Flag                   | Description                                                                                                                                                                  |
|--------------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u>r_tag</u> | <u>Jub-Flag</u>            |                                                                                                                                                                              |
| <            |                            | Data are missing from the averaging period but not<br>enough to invalidate the average - SumX DAS flag.                                                                      |
| Р            |                            | Power failure. Used to explain invalid data.                                                                                                                                 |
| D            |                            | Parameter marked down - SumX DAS flag. Used to explain invalid data.                                                                                                         |
| В            |                            | Bad status input - SumX DAS flag. Used to explain invalid data.                                                                                                              |
| #            |                            | Insufficient data during averaging period to produce<br>valid data average - SumX DAS flag. Used to explain<br>invalid data.                                                 |
| С            |                            | Calibration - SumX DAS flag. Used to explain invalid data.                                                                                                                   |
| М            |                            | Instrument malfunction. Invalidates data average.                                                                                                                            |
| F            |                            | All data acquisitions failure. Invalidates data average.                                                                                                                     |
| А            |                            | Audit. Invalidates data average.                                                                                                                                             |
| 1 ·          |                            | Valid at Level I Validation. Comparison tests have been made, data have been flagged, and invalid data have been removed.                                                    |
| 2            |                            | Valid at Level II Validation. Performance test data have been examined and corrections have been made where needed.                                                          |
| 3            |                            | Valid at Level III Validation. Data have been used in interpretation projects and anomalous values have been further investigated.                                           |
| S            | S0<br>S1<br>S2<br>S3<br>S4 | Suspect:<br>Suspect due to reason in memo field.<br>Suspect due to wind blown dust.<br>Suspect due to construction activity.<br>Suspect due to rain.<br>Suspect due to fire. |

### Table 3-4 (continued)

# Hourly Data Validation Flags

| Validation |                 |                                                                                                            |
|------------|-----------------|------------------------------------------------------------------------------------------------------------|
| <u> </u>   | <u>Sub-Flag</u> | Description                                                                                                |
| v          |                 | Invalid:                                                                                                   |
|            | VO              | Invalid due to reason in memo field.                                                                       |
|            | V1              | Invalid due to wind blown dust.                                                                            |
|            | V2              | Invalid due to construction activity.                                                                      |
|            | V3              | Invalid due to rain.                                                                                       |
|            | ₩4              | Invalid due to fire.                                                                                       |
|            | V5              | Invalid but reason not needed. Sufficient valid data exist.                                                |
| G          |                 | Data adjusted:                                                                                             |
|            | GO              | Adjustment explained in NOTE field. Data changed due to reason in memo field.                              |
|            | G1              | Data taken from strip chart.                                                                               |
|            | G2              | Changed because data taken from backup recording device other than strip chart. Explanation in memo field. |
|            | G3              | Changed because of slope-intercept calibration correction.                                                 |
|            | G4              | Changed because of change of units. Explanation in memo field.                                             |
| а          |                 | Failure of data lower limit test - produced by program SUMMARY.                                            |
| b          |                 | Failure of data upper limit test - produced by program SUMMARY.                                            |
| с          |                 | Failure of data jump test - produced by program SUMMARY.                                                   |
| đ          |                 | Failure of data standard deviation test - produced by program SUMMARY.                                     |
| m          |                 | Missing data - produced by program SUMMARY.                                                                |
| e          |                 | Dew point temperature > ambient temperature.                                                               |
| f          |                 | Scalar wind speed > vector wind speed.                                                                     |

### Table 3-5

# CADMP Ambient Field Sampling Data Validation Flags

| Validation | Sub        |                                                   |
|------------|------------|---------------------------------------------------|
| Flag       | Flag       | Description                                       |
|            |            |                                                   |
| В          |            | Field blank.                                      |
| D          |            | Sample dropped during loading/unloading.          |
| Е          |            | Filter holder broken after sampling.              |
| F          |            | Filter damaged or ripped.                         |
|            | F1         | Filter damaged in the field.                      |
|            | F2         | Filter damaged in the lab.                        |
|            | F5         | Scratch mark on filter.                           |
|            | F6         | Pinholes in filter.                               |
| G          |            | Finger touched filter.                            |
|            | G1         | Finger touched filter without gloves.             |
|            | G2         | Finger touched filter with gloves.                |
| Н          |            | Heavy sample loadings.                            |
|            | H1         | Deposit appears to have fallen off filter.        |
| I          |            | Inhomogeneous filter deposit.                     |
|            | 11         | Evidence of impaction - spot in center of filter. |
|            | 12         | Deposit density varies across filter surface.     |
|            | 13         | Lightly loaded sample with dark specks.           |
|            | <b>I</b> 4 | Non-uniform appearance of citric acid impregnated |
|            |            | filter.                                           |
|            | 15         | Non-uniform appearance of TEA impregnated filter. |
|            | 16         | Non-uniform appearance of K2CO2 impregnated       |
|            |            | filter.                                           |
| J          |            | Filter pack assembly problems.                    |
|            | J1         | Filter wrinkled prior to sampling.                |
|            | J2         | Filter wrinkled after sampling.                   |
|            | J3         | Filter pack loose in sampler.                     |
|            | J4         | Filter pack fell out of sampler.                  |
|            | J5         | Filter pack not tightened sufficiently - possible |
|            |            | air leak.                                         |
|            | J6         | Filter torn or misaligned, air leak around edge   |
|            |            | of filter.                                        |
| K          |            | Filter ID tag not on Field Data Sheet.            |
| L          |            | Light sample loading.                             |
| М          |            | Sampler malfunction.                              |
| N          |            | Pump not turned on after samples changed.         |
| P          |            | Power failure during sampling.                    |
|            | P1         | Circuit breaker tripped.                          |
|            |            | * *                                               |

.

### Table 3-5 (continued)

# CADMP Ambient Field Sampling Data Validation Flags

| Validation          | Sub         |                                                   |
|---------------------|-------------|---------------------------------------------------|
| <u>    Flag    </u> | <u>Flag</u> | Description                                       |
| Q                   |             | Flow rate deviation from nominal.                 |
|                     | Q1          | Filter pack flow rate error. Magnehelic reading   |
|                     |             | > 0.1 off setpoint (~10% error).                  |
|                     | Q2          | Make-up flow rate error. Magnehelic reading       |
|                     |             | > 0.1 off setpoint (~10% error).                  |
|                     | Q4          | Flow rate was estimated.                          |
| R                   |             | Filter replaced with spare in the field.          |
| S                   |             | Sample validity suspect.                          |
| Т                   |             | Sampling time or duration deviation from nominal. |
|                     | T1          | Elapsed time error > +- $10$ % from nominal.      |
|                     | Т2          | Start time error $> 1$ hr. from nominal.          |
|                     | Т4          | Final elapsed time reading estimated.             |
|                     | т5          | Initial elapsed time reading estimated.           |
|                     | Т7          | Sampling duration estimated.                      |
|                     | Т9          | Sample not taken on network sampling day.         |
| U                   |             | Unusual filaments, ash, or other particles on     |
|                     |             | filter.                                           |
|                     | U1          | Local construction activity.                      |
|                     | U2          | Forest fire or field or slash burning.            |
| v                   |             | Void sample, invalid.                             |
| W                   |             | Wet sample.                                       |
|                     | Wl          | Sample got wet before sampling.                   |
|                     | W2          | Sample got wet after sampling.                    |
|                     | W3          | Sample got wet during sampling.                   |
| Х                   |             | No sample taken this period.                      |
|                     | X1          | Sample taken was not on network sampling day.     |

### Table 3-6

# CADMP Chemical Analysis Data Validation Flags

| Validation | Sub         |                                                              |
|------------|-------------|--------------------------------------------------------------|
| Flag       | <u>Flag</u> | Description                                                  |
| Ъ          |             | Blank.                                                       |
|            | b1          | Field blank.                                                 |
|            | b2          | Laboratory control blank.                                    |
|            | b3          | Distilled water blank.                                       |
|            | b4          | Method blank.                                                |
|            | b5          | Extract/solution blank.                                      |
| f          |             | Filter damaged.                                              |
|            | f1          | Filter damaged, outside of analysis area.                    |
|            | f2          | Filter damaged, within analysis area.                        |
|            | <br>£3      | Teflon membrane separated from the ring.                     |
|            | f5          | Filter dropped during handling.                              |
| i          |             | Abnormal deposit appearance.                                 |
|            | il          | Inhomogeneous filter deposit.                                |
|            | i2          | Deposit smeared or scraped after sampling.                   |
|            | i3          | Deposit fallen off filter.                                   |
|            | i4          | Foreign particles on filter.                                 |
|            | i6          | Large particles on fine fraction filter.                     |
| a          |             | Calibration standard.                                        |
| r          |             | Replicate analysis.                                          |
| _          | rl          | Routine laboratory replicate analysis.                       |
|            | r2          | Second replicate analysis on the same sample.                |
|            | r3          | Third replicate on the same sample.                          |
| S          |             | Results suspect.                                             |
| v          |             | Void sample.                                                 |
|            | <b>v1</b>   | Sample void due to quality control standard check            |
|            |             | exceeded ±10% of specified concentration.                    |
|            | <b>v</b> 2  | Sample void due to replicate analysis exceeded               |
|            |             | ±10% of specified concentration range.                       |
|            | <b>v</b> 3  | Sample void due to apparent contamination.                   |
|            | <b>v</b> 4  | PM <sub>2</sub> concentration statistically greater than the |
|            |             | PM <sub>10</sub> .                                           |
|            | <b>v</b> 5  | Concentration out of expected range.                         |
| w          |             | Ouestionable gravimetric analysis.                           |
|            | w1          | Pre-weight is guestionable.                                  |
|            | w2          | Post-weight is questionable.                                 |
|            |             |                                                              |

#### 4.0 DATA PROCESSING AND VALIDATION

Data processing and validation systems, operating in dBase III+ on IBM-PC based microcomputers, have been implemented to prepare the data bases described in Section 3. There are separate systems for the hourly data and substrate data. Frazier et al. (1990) present the standard operating procedures for applying these systems to CADMP data.

#### 4.1 Meteorological and Ozone Data Processing and Validation

Figure 4-1 shows the process by which continuous hourly data are obtained from field monitoring instruments.

The software is menu driven for ease of operation. The menu contains the following options:

- 1. Download Met and Ozone Data from SumX. This command invokes a telecommunications program which automatically dials the data logger at each of the 10 sampling sites and transfers data to the computer. This feature can also be used in an automated mode to have a host computer interrogate sites at night when phone rates are lower. Data are typically downloaded twice per week.
- 2. Verify Data Transfer. This command presents a visual display of the downloaded file for the identification of recording or transmission errors. Minor corrections can be made to the data file. If phone transmission has been poor from a site, it is sometimes necessary to download the data again. This inspection also allows problems with instruments at the site to be identified and remedial actions to be defined.
- 3. Enter Transferred Data into dBase File. This step converts data from the SumX output formats into dBase III+ data-base files.
- 4. Graph Data. This command creates a time series plot of hourly data which can be scrolled across the computer screen. It is examined for sharp spikes, which may indicate invalid data, and for long-term trends, which may indicate shifts in baselines or spans.
- 5. Print Data. After a month of data have been accumulated, a paper copy for validation is produced by this command. This command executes a validation program entitled SUMMARY.EXE which reads through the data file and calculates averages, standard deviations, highs, and lows for each specified observable. It also flags the following items: 1) missing data; 2) data which are less than a specified lower bound; 3) data which are greater than a specified amount from one hour to the next; 5) data with standard deviations over a specified period which are less than a specified amount, i.e., flat; 6) dew point temperature (DPT) which is greater than ambient temperature (TMP); and 7) scalar wind speed (SWS) which is less than


Figure 4-1: Flow Diagram of Hourly Data Processing Steps.

vector wind speed (VWS). Validation flags are inserted to alert the operator that remedial action may be needed and to qualify the data for future use.

- 6. Edit Data. This allows data to be changed in response to validation flags or quality control tests. The same change (e.g., zero offsets or span drifts) can be made to blocks of data with a single operation.
- 7. Delete a Selected Range of Data. When instruments are found to be defective, or if validation criteria are exceeded by too wide a margin, it is sometimes necessary to remove the invalid data. This command allows a range of hourly averages to be specified for replacement with the missing value parameter (-99).
- 8. Assign Validation Flags. Ranges of data are classified as valid, suspect, or invalid with the appropriate validation flag using this command.
- 9. Help. This command provides instructions on the use of the data processing and validation software.
- 10. Exit. This command terminates the data processing session.

Table 4-1 defines the programs, data files, and specification files which constitute this system. Using this system, it is possible to acquire and validate data for all sites in a few hours per week. The quasi real-time access to on-site instruments allows problems to be rapidly identified and corrected, thereby minimizing data loss.

#### 4.2 Chemical Data Processing and Validation

Data processing and validation of the gas/particle filter data involve the following six steps: 1) transcription of data from field and chemical analysis data sheets into data-base files; 2) calculation of measurement precisions for each chemical species from replicate analysis data; 3) merging of data from the various measurements into a unified data base; 4) calculation of field blank concentrations; 5) calculation of ambient concentrations; and 6) preparation of validation summaries. Figure 4-2 shows a flow diagram of the data processing and validation process and Table 4-2 summarizes the computer programs and files which constitute the system. Operations are described in detail by Frazier et al. (1990).

This system is menu-driven and operates in a manner similar to the hourly data processing system. The menu commands and their functions are as follows:

# Table 4-1

# Summary of Computer Software Developed for Hourly Meteorological and Ozone Data Processing and Data Validation in CADMP

(I) dBase III+ Programs:

| MET.PRG      | Main controlling program - runs all other programs. |
|--------------|-----------------------------------------------------|
| CPMETHLP.PRG | Display help screens.                               |
| CPMETFIL.PRG | Get site, month, and year of data to process.       |
| CPDNLOAD.PRG | Download data from SumX.                            |
| CPVERIFY.PRG | Verify data transfer from SumX.                     |
| CPTXTDB3.PRG | Convert data from text file to dBase III+ file.     |
| CPMETGRA.PRG | Graph met data.                                     |
| CPMETEDT.PRG | Edit data.                                          |
| CPMETDEL.PRG | Delete selected data.                               |
| CPMETFLG.PRG | Assign validation flags.                            |
| CPMETPRT.PRG | Print met data.                                     |
| SAVECOR.PRG  | Determine if OK to save corrected data.             |
| SETPRNT.PRG  | Set up printer.                                     |
| STOPPRNT.PRG | Abort printing.                                     |
| NOFILE.PRG   | Display message if wrong file selected.             |

(II) DOS Programs (Run by dBase III+ program MET.PRG):

| SUMXHR1.EXE | Conver | t Su | mΧ  | format  | text  | : file | e to  | dBase | III+ | format.  |
|-------------|--------|------|-----|---------|-------|--------|-------|-------|------|----------|
| SUMMARY.EXE | Apply  | data | va  | lidatio | on te | sts a  | ind j | print | data | summary. |
| GRAPH.EXE   | Graph  | met  | dat | a.      |       |        | -     |       |      | -        |

(III) SumX Parameter Files:

| SUMXPAR.AZ<br>SUMXPAR.BA<br>SUMXPAR.FR<br>SUMXPAR.GA<br>SUMXPAR.LA<br>SUMXPAR.LB<br>SUMXPAR.SA<br>SUMXPAR.SB<br>SUMXPAR.SB | SumX parameters for Azusa.<br>Bakersfield.<br>Fremont.<br>Gasquet.<br>Los Angeles.<br>Long Beach.<br>Sacramento.<br>Santa Barbara.<br>Sequoia |
|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| SUMXPAR.SB                                                                                                                 | Santa Barbara.                                                                                                                                |
| SUMXPAR, SE                                                                                                                | Yosemite                                                                                                                                      |
|                                                                                                                            | 1000002000                                                                                                                                    |

(IV) Data Validation Parameter Files:

| STATPAR.AZ | Data validation | parameters | for | Azusa. |
|------------|-----------------|------------|-----|--------|
| STATPAR.BA | Bakersfield.    | -          |     |        |
| STATPAR.FR | Fremont.        |            |     |        |
| STATPAR.GA | Gasquet.        |            |     |        |
| STATPAR.LA | Los Angeles.    |            |     |        |
| STATPAR.LB | Long Beach.     |            |     |        |
| STATPAR.SA | Sacramento.     |            |     |        |
| STATPAR.SB | Santa Barbara.  |            |     |        |
| STATPAR.SE | Sequoia.        |            |     |        |
| STATPAR.YO | Yosemite.       |            |     |        |
|            |                 |            |     |        |

# (V) Procomm Plus Files (in PROCOMM directory):

| CADMP.ASP    | Script file for automated SumX data access.   |
|--------------|-----------------------------------------------|
| CPCALL.ASP   | Script file to dial each site in turn.        |
| CPREAD.ASP   | Script file to generate SumX data listings.   |
| CPMKFILE.ASP | Script file to create disk file of SumX data. |
| PCPLUS.KEY   | Keyboard macros.                              |
| PCPLUS.PRM   | Procomm configuration.                        |





4-5

# Table 4-2

Summary of Computer Software Developed for Chemical Data Processing and Data Validation in CADMP

(I) dBase III+ Programs:

| DRYDEP.PRG    | Main controlling program - runs all other programs.  |
|---------------|------------------------------------------------------|
| DEMO, PRG     | Run this program before DRYDEP to use demo data set. |
| CPCON.PRG     | Calculate field blanks, ambient concentrations.      |
| CPHLP.PRG     | Display help screens.                                |
| CPMERGE . PRG | Integrate individual chemical measurement files.     |
| CPFLOW.PRG    | Enter flow calibration data.                         |
| CPCHEM, PRG   | Enter chemical measurement data.                     |
| CPFIELD.PRG   | Enter field data.                                    |
| CPREP.PRG     | Calculate replicate measurement precision.           |

(II) dBase III+ Structure Files:

| CPFLOW00.DBF | Flow calibration.                                         |
|--------------|-----------------------------------------------------------|
| CPFIEL00.DBF | Field data.                                               |
| CPMAGT00.DBF | Mass data.                                                |
| CPANITO0.DBF | Teflon filter Cl <sup>-</sup> , $NO_3^-$ , $SO_4^-$ data. |
| CPN4CT00.DBF | NH <sup>+</sup> <sub>4</sub> data.                        |
| CPNAAT00.DBF | Na <sup>+</sup> data.                                     |
| CPMGAT00.DBF | Mg <sup>++</sup> data.                                    |
| CPKPATO0.DBF | $K^{+}$ data.                                             |
| CPCAATOO.DBF | Ca <sup>++</sup> data.                                    |
| CPNTCN00.DBF | Nylon filter $NO_3^-$ data.                               |
| CPSOIK00.DBF | $SO_2$ data.                                              |
| CPNHCC00.DBF | $NH_3$ data.                                              |
| CPNOCE00.DBF | NO <sub>2</sub> data.                                     |
| RPMAGT00.DBF | Mass replicate data.                                      |
| RPCLITO0.DBF | Teflon filter Cl <sup>-</sup> replicate data.             |
| RPN3ITO0.DBF | Teflon filter $NO_3$ replicate data.                      |
| RPS4IT00.DBF | Teflon filter $SO_4^{=}$ replicate data.                  |
| RPN4CT00.DBF | NH4 <sup>+</sup> replicate data.                          |
| RPNAATOO.DBF | Na <sup>+</sup> replicate data.                           |
| RPMGAT00.DBF | Mg <sup>++</sup> replicate data.                          |
| RPKPATOO.DBF | K <sup>+</sup> replicate data.                            |
| RPCAATOO.DBF | Ca <sup>++</sup> replicate data.                          |
| RPNTCNOO.DBF | Nylon filter $NO_3^-$ replicate data.                     |
| RPSOIK00.DBF | $SO_2$ replicate data.                                    |
| RPNHCCOO.DBF | NH <sub>3</sub> replicate data.                           |
| RPNOCE00.DBF | NO <sub>2</sub> replicate data.                           |
| CPCHM00.DBF  | Integrated data set.                                      |
| CPVAL00.DBF  | Validation ratios.                                        |

# Table 4-2 (continued)

Summary of Computer Software Developed for Chemical Data Processing and Data Validation CADMP

(III) dBase III+ Screen Entry Format Files:

| ry. |
|-----|
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |

(V) dBase III+ Printing Format Files:

| CPFIEL1.FRM | Field data, page 1.                                                   |
|-------------|-----------------------------------------------------------------------|
| CPFIEL2.FRM | Field data, page 2.                                                   |
| CPFLOWM.FRM | Flow calibration, magnehelic setpoints.                               |
| CPFLOWC.FRM | Flow calibration, coefficient 'C'.                                    |
| CPFLOWD.FRM | Flow calibration, exponent 'D'.                                       |
| CPCONF.FRM  | Concentration summary, $PM_{2.5}$ and $HNO_3$ data.                   |
| CPCONT.FRM  | Concentration summary, $PM_{10}$ , $NH_3$ , $SO_2$ , and $NO_2$ data. |

(VI) Installation Batch Files:

| INSTALL.BAT  | To instal | L1 DRYDEP  | software | on | hard | disk. |
|--------------|-----------|------------|----------|----|------|-------|
| INSCADMP.BAT | Called fr | com INSTAI | LL.BAT.  |    |      |       |
| INSEXIT.BAT  | Called fr | com INSCAI | DMP.BAT. |    |      |       |

- 1. Enter Flow Calibration Data. This command establishes the relationship between the pressure gauge readings recorded on the field data sheet and the flow rates through the sampling system. These data are entered only when units are re-calibrated, i.e., once per year or when performance test tolerances are exceeded.
- 2. Enter Field Data. This command presents a screen display which mimics the data sheet filled out by the field technician. The field data are punched into appropriate positions on this display. The data entry program applies limits to the data entered and will not accept data which exceed these limits. This feature is intended to minimize major data transcription errors.
- 3. Enter Mass and Chemical Data. This command allows manual entry of data from chemical analysis systems which do not have automated data acquisition systems. The data entry program also tests entries against ranges established for each observable.
- 4. Calculate Replicate Precision. This interactive command associates original and replicate analyses with each other and calculates the standard deviation of their differences. The program allows the operator to select different concentration ranges and to eliminate outliers from the calculation.
- 5. Merge Field, Mass, and Chemical Data. This command associates data from the individual analysis files with the information in the field file.
- 6. **Calculate Concentrations**. This command calculates concentrations and propagates precisions. The calculations performed are given below.

The following formulae describe the calculation of ambient concentrations and the precision propagation:

 $C_i = (M_i - B_i)/V$  (4-1)

- $V = Fxt \tag{4-2}$
- $B_{i} = -\frac{1}{n} \sum_{\substack{n \\ j=1}}^{n} B_{ij} \qquad \text{for } B_{i} > \sigma_{Bi} \qquad (4-3)$
- $B_i = 0 \qquad \text{for } B_i \le \sigma_{\text{Bi}} \qquad (4-4)$

 $\sigma_{\rm Bi} = {\rm STD}_{\rm Bi} = \left[\frac{1}{n^{-1}} \sum_{j=1}^{n} (B_{ij} - B_{i})^2\right]^{1/2} \text{ for } {\rm STD}_{\rm Bi} > {\rm SIG}_{\rm Bi}$  (4-5)

$$\sigma_{\text{Bi}} = \text{SIG}_{\text{Bi}} = \left[\frac{1}{n^{-1}} \sum_{j=1}^{n} (\sigma_{\text{Bij}})^2\right]^{1/2} \text{ for STD}_{\text{Bi}} \le \text{SIG}_{4\text{Bi}}$$
(4-6)

$$\sigma_{\rm Ci} = \left[\frac{(\sigma_{\rm Mi}^2 + \sigma_{\rm Bi}^2)}{V^2} + \frac{\sigma_{\rm V}^2(M_{\rm i} - B_{\rm i})^2}{V^4}\right]^{1/2}$$
(4-7)

$$D_{Mij} = M_{ijf} - M_{ijr}$$
(4-8)

$$D_{Vj} = (F_{jf} - F_{jr}) \times t$$
(4-9)

$$D_{Mi} = -\sum_{\substack{n \\ j=1}}^{1} D_{Mij}$$
 (4-10)

$$D_{v} = -\sum_{\substack{n \\ n \\ j=1}}^{1} D_{v_{j}}$$
(4-11)

$$\sigma_{\rm Mi} = \left[\frac{1}{n^{-1}} \sum_{j=1}^{n} (D_{\rm Mij} - D_{\rm Mi})^2\right]^{1/2}$$
(4-12)

$$\sigma_{\rm V} = 0.05$$
 (4-13)

,

where

| = average amount of species i on field blanks             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| = the amount of species i found on field blank j          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| = the ambient concentration of species i                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| = flow rate throughout sampling period                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| - flow rate performance test made before sampling         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| = flow rate performance test made after sampling          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| = amount of species i on the substrate                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| = amount of species i on sample j from analysis           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| = amount of species i on sample j from replicate analysis |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| = sample duration                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| - volume of air sampled                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| = blank precision for species i                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| = propagated precision for the concentration of species i |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| = precision of amount of species i on substrate           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| = precision of sample volume                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                           | <pre>= average amount of species i on field blanks<br/>= the amount of species i found on field blank j<br/>= the ambient concentration of species i<br/>= flow rate throughout sampling period<br/>= flow rate performance test made before sampling<br/>= flow rate performance test made after sampling<br/>= amount of species i on the substrate<br/>= amount of species i on sample j from analysis<br/>= amount of species i on sample j from replicate analysis<br/>= sample duration<br/>= volume of air sampled<br/>= blank precision for species i<br/>= propagated precision for the concentration of species i<br/>= precision of amount of species i on substrate<br/>= precision of sample volume</pre> |

Nitrate in nitric acid is determined by subtracting the total particulate nitrate determined by the denuded nylon filter from the total nitrate determined on the non-denuded Teflon/nylon sample. The precision of this measurement is determined by addition in quadrature of the precisions of these two observables as specified in Bevington (1969).

#### 5.0 NETWORK PERFORMANCE

Different parts of the CADMP dry deposition network were functioning for up to two years at the time of this report. The purpose of this section is to evaluate the instrumentation and procedures to determine their effectiveness and efficiency in acquiring the desired measurements.

#### 5.1 New Equipment Procurement

When the dry deposition component of the CADMP was first envisioned, it was assumed that most of the hourly measurements were already being taken at existing sampling sites, and that these would only require supplementation by new instrumentation for a few key variables. An initial survey of the proposed network in 1987 showed that this assumption was incorrect. Table 5-1 compares the anticipated number of units with the number of units which were found necessary for successful attainment of the project objectives.

In the case of meteorological instrumentation, it was found in many cases that existing sites did not take the needed measurements, used antiquated (and unreliable) hardware, or could not interface with modern data acquisition systems. Where appropriate, agreements were made with the site operating agency to upgrade equipment to CADMP specifications, with the operating agency taking ownership in exchange for long-term maintenance of the hardware. This arrangement has worked well, with benefits to both the CADMP and the operating agency.

In the case of ozone monitors, all sites except Yosemite and Gasquet had existing monitors. Since Yosemite and Gasquet are remote sites which are difficult to service, two additional ozone analyzers were located at each site. In normal operating mode, one unit serves as a calibration unit to verify the values returned by the primary unit. When the primary unit needs repair, data acquired by the second unit can be used in place of the primary unit. This arrangement has worked well at these sites. The investment in two units has more than paid for itself by eliminating the need for emergency repair trips to these sites. One of the units can be shipped by the site operator to the repair laboratory for remedial action.

It was anticipated that on-site data loggers would be needed only at the Yosemite and Gasquet sites, with a third unit used by the data processing technician to read solid-state data modules (RAM packs) from those without phone lines. Telephone lines were eventually installed at all sites. The hourly data at other sites were intended to be acquired by the site operating agencies' data acquisition systems for extraction from their data bases and merging with the CADMP data base. This works well for ozone data, which are validated by standard criteria and are eventually reported to ARB in consistent formats. It is a simple matter to obtain these data from ARB's archives and integrate them into the CADMP file structures. This is not the case for meteorological data, which are often used instantaneously for forecasting without validation or archiving for later

# Summary of Equipment Acquired for CADMP

|       | Equipment                                       | Anticipated<br>Units | Number of Units<br><u>Procured and Installed</u> |
|-------|-------------------------------------------------|----------------------|--------------------------------------------------|
| (I)   | Meteorological Instruments                      |                      |                                                  |
|       | Wind-Speed Sensor                               | 3                    | 7                                                |
|       | Wind-Direction Sensor                           | 3                    | 7                                                |
|       | Ambient Temperature Sensor                      | 4                    | 5                                                |
|       | Dew Point Sensor                                | 7                    | 8                                                |
|       | Radiation Sensor                                | 5                    | 8                                                |
|       | Time of Wetness Sensor                          | 10                   | 10                                               |
|       | Translator Box with Cards                       | 3                    | 5                                                |
| (11)  | Air Quality Instruments                         |                      |                                                  |
|       | Dasibi 1003 AH Ozone Analyzer                   | 2                    | 2                                                |
|       | Dasibi 1008 PC Ozone Analyzer                   | 0                    | 2                                                |
| (111) | Data Acquisition<br>and Processors Systems      |                      |                                                  |
|       | SumX Data Acquisition System with Modems        | 3                    | 11                                               |
|       | 286 Desktop Computer<br>with Modem and Software | 1                    | 2                                                |
|       | 386 Desktop Computer<br>with Modem and Software | 0                    | 1                                                |
| (IV)  | Dry Deposition Instruments                      |                      |                                                  |
|       | Gas/Particle Sampling System                    | 10                   | 11                                               |

retrieval. Additional data loggers were procured and installed for the CADMP so that continuous records could be acquired, validated, and included in the data base. The investment in data logging hardware is once again small compared to the cost of labor which would be required to obtain these data by other means.

It was originally anticipated that a single desktop computer would be adequate to handle CADMP dry deposition data processing needs. As the procedures developed, it became clear that dedicated computers were needed for field operations, laboratory operations, and data interpretation. IBM-compatible 286 systems with fast disk drives were procured for the data processing tasks, since these are time limited by disk access rather than processor speed. An IBMcompatible 386 system was procured for data interpretation and display, since several of the models associated with the concentration/velocity measurements require substantial central processor time.

The hourly meteorological, air quality, and data acquisition systems were commercially available and had proven their reliability in previous programs. There was no such commercial instrument capable of acquiring the gas/particle measurements, so one was designed, tested, and installed as part of this project. Watson et al. (1990) and Chow et al. (1991) describe this instrument and its testing. Ten units were constructed and installed, and the prototype unit was upgraded for collocated operation at the Sacramento site. These units have proven to be reliable and practical to operate in a long-term program.

#### 5.2 Network Operations Experience

Most of the equipment has operated reliably throughout the first 1-2 years of monitoring. Table 5-2 lists the new parts which were procured and installed during that period, and this list is no longer than that found in other, less demanding aerometric monitoring networks. Telemetered data retrieval and dedicated site operators have ensured a high rate of data recovery after initial installation problems were solved.

DRI made a final maintenance and calibration visit to each site during the period 4/9/90 through 4/21/90 to identify and correct any network deficiencies as part of the final transfer of responsibilities to ARB. The activities conducted on this visit and a summary of the results are reported in the following sub-sections. A similar visit should be made to each site at least annually, in addition to repair visits which are needed in response to instrument failure.

#### 5.2.1 Gas/Particle Sampling System

Gas/particle samplers were inspected and tubing was replaced when it appeared worn, cracked, or kinked. The inlets, solenoid valves, and flow control lines were cleaned. Pump exhaust filters were replaced. No major operational failures were found.

# Summary of Repairs and Replacement of Hardware at CADMP Field Sites

| Sampling<br>Site | Equipment                 | Date     | Observation          | <u>Action</u>                                                     |  |  |  |  |  |  |
|------------------|---------------------------|----------|----------------------|-------------------------------------------------------------------|--|--|--|--|--|--|
| Gasquet          | Met Equipment             |          |                      |                                                                   |  |  |  |  |  |  |
|                  | Ozone Analyzer<br>Pump    | 10/04/89 | Malfunction          | Installed<br>New Shaft                                            |  |  |  |  |  |  |
|                  | Data Acquisition System   |          |                      |                                                                   |  |  |  |  |  |  |
|                  | SumX                      | 03/30/89 | Malfunction          | Installed<br>New Unit                                             |  |  |  |  |  |  |
| Fremont          | Dry Deposition Samples    | ~        |                      |                                                                   |  |  |  |  |  |  |
|                  | bly beposition Sample     | <b>L</b> |                      |                                                                   |  |  |  |  |  |  |
|                  | PFA Tubing                | 03/10/89 | Line Broken          | Replaced<br>Lines to<br>PM <sub>2.5</sub> and<br>PM <sub>10</sub> |  |  |  |  |  |  |
|                  | Fiber Exhaust<br>Filter   | 04/18/89 | Checked              | Changed                                                           |  |  |  |  |  |  |
|                  | Capsule Exhaust<br>Filter | 05/03/89 | Checked              | Changed                                                           |  |  |  |  |  |  |
|                  | Capsule Exhaust<br>Filter | 10/05/89 | Checked              | Changed                                                           |  |  |  |  |  |  |
|                  | 0-ring                    | 11/21/89 | Loose in<br>TCK Port | Replaced<br>O-ring                                                |  |  |  |  |  |  |
|                  | Data Acquisition Syste    | em       |                      |                                                                   |  |  |  |  |  |  |
|                  | Ram pack                  | 02/16/89 | Malfunction          | Changed to<br>Modem                                               |  |  |  |  |  |  |
| Sacramento       |                           |          |                      |                                                                   |  |  |  |  |  |  |
|                  | Dry Deposition Sampler    | r        |                      |                                                                   |  |  |  |  |  |  |

Polyethylene Tubing 07/17/89 Broken Line Replaced

\_

# Table 5-2 (continued)

# Summary of Repairs and Replacement of Hardware at Field Sites

| Sampling<br> | Equipment                      | Date     | <u>Observation</u>               | Action              |
|--------------|--------------------------------|----------|----------------------------------|---------------------|
| Yosemite     | Dry Deposition Sample          | er       |                                  |                     |
|              | 0-ring                         | 10/17/89 | Filter holders<br>loose in ports | Replaced<br>O-rings |
|              | Met Equipment                  |          |                                  |                     |
|              | Wind-Sensor Cups               | 5/11/89  | Broken                           | Replaced            |
|              | Data Acquisition Syst          | tem      |                                  |                     |
|              | Ram pack                       | 2/13/89  | Malfunction                      | Replaced            |
|              | SumX                           | 5/9/89   | Malfunction                      | Replaced            |
|              | Ram pack                       | 5/11/89  | Malfunction                      | Replaced            |
|              | Ram pack                       | 11/9/89  | Malfunction                      | Replaced            |
| Sequoia      |                                |          |                                  |                     |
|              | Dry Deposition Sample          | er       |                                  |                     |
|              | 0-ring                         | 9/18/89  | Loose on<br>Port #7              | Replaced<br>O-ring  |
|              | 0-ring                         | 7/8/89   | Loose on<br>Port #3              | Replaced<br>O-ring  |
|              | Timer                          | 8/14/89  | Malfunction                      | Replaced            |
|              | Met Equipment                  |          |                                  |                     |
|              | Wet Sensor<br>Control Box      | 6/6/89   | Lack of<br>Sensitivity           | Replaced            |
|              | Wind Direction/<br>Temperature | 8/9/89   | Lightning<br>Hit                 | Repaired            |
|              | Wind Direction                 | 9/5/89   | Bearings Worn                    | Replaced            |
|              | PC Board in<br>Wet Sensor      | 10/3/89  | Malfunction                      | Replaced            |

· --- ---

# Table 5-2 (continued)

# Summary of Repairs and Replacement of Hardware at Field Sites

| Sampling<br><u>Site</u> | Equipment                  | <u>Date</u> | Observation                        | Action   |
|-------------------------|----------------------------|-------------|------------------------------------|----------|
| Bakersfield             | Dry Deposition Sampler     |             |                                    |          |
|                         | PFA Tubing                 | 9/12/88     | Broken                             | Replaced |
|                         | ÝFA Tubing                 | 4/6/89      | Broken                             | Replaced |
|                         | Capsule Exhaust<br>Filters | 3/9/90      | Checked                            | Changed  |
|                         | Fiber Exhaust              | 3/9/90      | Checked                            | Changed  |
| Santa Barbara           | Dry Deposition Sampler     |             |                                    |          |
|                         | PFA Tubing                 | 11/29/89    | Broken Line                        | Repaired |
| Long Beach              | Dry Deposition Sampler     |             |                                    |          |
|                         | Capsule Exhaust<br>Filter  | 12/13/88    | Checked                            | Replaced |
|                         | Fiber Exhaust<br>Filters   | 12/13/88    | Checked                            | Replaced |
|                         | PFA Tubing                 | 5/1/89      | PM <sub>10</sub> GT Line<br>Broken | Replaced |
|                         | Pump Vanes                 | 7/6/89      | Unknown                            | Replaced |
|                         | PFA Tubing                 | 7/6/89      | Broken                             | Replaced |
|                         | PFA Tubing                 | 7/25/89     | PM <sub>2.5</sub> Line<br>Broken   | Replaced |
|                         | PFA Tubing                 | 7/28/89     | PM <sub>2.5</sub> Line<br>Broken   | Replaced |
|                         | PFA Tubing                 | 8/7/89      | Broken                             | Replaced |

- - -- --

# Table 5-2 (continued)

# Summary of Repairs and Replacement of Hardware at Field Sites

| Sampling<br>Site | Equipment               |                            | Date     | <u>Observation</u> | <u>Action</u>        |  |  |
|------------------|-------------------------|----------------------------|----------|--------------------|----------------------|--|--|
| Los Angeles      | Dry                     | Deposition Sampler         |          |                    |                      |  |  |
|                  |                         | Fiber Exhaust<br>Filters   | 12/12/88 | Checked            | Replaced             |  |  |
|                  |                         | Capsule Exhaust<br>Filters | 12/12/88 | Checked            | Replaced             |  |  |
|                  |                         | PFA Tubing                 | 7/21/89  | Broken             | Replaced             |  |  |
| Azusa            | Dry                     | Deposition Sampler         |          |                    |                      |  |  |
|                  |                         | Pump Box                   | 12/12/88 | Blew off<br>Roof   | Replaced,<br>Secured |  |  |
|                  | Data Acquisition System |                            |          |                    |                      |  |  |
|                  |                         | SumX                       | 2/28/89  | Malfunction        | Replaced             |  |  |

,

5-7

- - ----

Flow rates were checked against the original calibration, and on-site flow meters were re-calibrated. The results of these checks are given in Table 5-3. The total inlet flow rates were compared to the sum of the individual flow rates, and these are compared with actual flows in Table 5-4. For most samplers, the total flow rates were 5 to 8% lower than the sums. Several samplers had greater differences caused by leaks in the plena after they were replaced following cleaning. Leaks were found in the Bakersfield  $PM_{2.5}$  and  $PM_{10}$  units and the Azusa  $PM_{10}$  unit. These leaks were located and plugged. The Fremont  $PM_{10}$ , Sequoia  $PM_{2.5}$ , and Los Angeles  $PM_{10}$  units had differences greater than 10% but no leaks were apparent during leak tests after calibration.

New setpoints for the sampler magnehelics were determined. Flow rates are at their specified levels when these setpoints are achieved. The samplers at Gasquet, Sacramento (both primary and collocated), and Yosemite were adjusted to the new setpoints. The other samplers were not adjusted. The new setpoints were generally within  $\pm 0.10$  inches of water of the old ones, which corresponds to less than a 5% deviation from specified flow rates. The old and new setpoints are given in Table 5-5.

The gas/particle samplers have operated reliably and most of them held their calibrations within  $\pm 10$ % for a year or more.

#### 5.2.2 Ozone Measurements

The analyzers at Gasquet and Yosemite were audited with DRI's transfer standard. Maintenance on the Gasquet analyzer had been done by ARB personnel prior to this visit. At Yosemite, sample chamber tubes were cleaned, and the control and sample frequencies were adjusted after the audit. At Gasquet, the average percent deviation after subtracting the zero offset for the 1003 AH was  $0.16 \pm 1.32$ %. At Yosemite, the average percent deviation for the 1003 AH before maintenance was  $5.26 \pm 2.18$ %. Monitors at the other sites were not examined, since their maintenance, operation, and auditing are covered in other air monitoring programs.

The 1008 PC calibration units at Gasquet and Yosemite were verified against DRI's transfer standard. The Gasquet calibration unit had just been returned to the site following certification tests by ARB at Sacramento. At Gasquet, the average percent deviation after subtracting the zero offset was  $0.31 \pm 1.16$ % and at Yosemite it was  $-4.23 \pm 1.06$ %.

The ozone monitors have operated reliably throughout the first years of CADMP operation.

#### 5.2.3 Wind-Speed Measurements

All wind-speed sensors were checked either directly (at Gasquet, Yosemite, Sequoia, and Long Beach) or indirectly (at the remaining sites). During direct checks, synchronous motors with different rotation rates were attached to the sensors and the sensor outputs were compared to the manufacturers' expected

5-8

|                          |      |                             |            | _ <u>PM</u> 10-       | Flow F        | <u>lates</u>              |      |                |            | _ <u>PM</u> 2.5       | <u>Flow R</u>         | ates_       |
|--------------------------|------|-----------------------------|------------|-----------------------|---------------|---------------------------|------|----------------|------------|-----------------------|-----------------------|-------------|
| Site                     | Date | Filter <sup>a</sup><br>Pack | Port<br>Id | Site<br><u>(lpm</u> ) | Test<br>(lpm) | DIFF <sup>c</sup><br>_(%) |      | Filter<br>Pack | Port<br>ID | Site<br>( <u>lpm)</u> | Test<br>( <u>lpm)</u> | DIFF<br>(%) |
| Gasquet                  | 4/13 | GT                          | 1          | 1.60 <sup>b</sup>     | 2.02          | 26.3                      |      | DN             | 1          | 19.6                  | 19.7                  | 0.5         |
|                          |      | Blue                        | 2          | 57.4                  | 55.8          | -2.8                      |      | Blue           | 2          | 38.3                  | 37.8                  | -1.3        |
|                          |      | GT                          | 3          | 2.05                  | 2.02          | -1.5                      |      | DN             | 3          | 20.7                  | 20.3                  | -1.9        |
|                          |      | TCK                         | 5          | 20.4                  | 20.5          | 0.5                       |      | TN             | 5          | 23.4                  | 21.5                  | -8.1        |
|                          |      | Black                       | 6          | 36.6                  | 35.4          | -3.3                      |      | Black          | 6          | 38.0                  | 37.9                  | -0.3        |
|                          |      | TCK                         | 7          | 19.3                  | 20.2          | 5.0                       |      | TN             | 7          | 22.8                  | 20.4                  | -10.5       |
|                          |      | SUM                         |            | 116.5                 | 113.7         | -2.4                      |      | SUM            |            | 119.3                 | 116.9                 | -2.0        |
| Fremont                  | 4/10 | GT                          | 1          | 1.88                  | 2.02          | 7.5                       |      | DN             | 1          | 21.0                  | 19.7                  | -6.4        |
|                          |      | Blue                        | 2          | 51.5                  | 54.6          | 6.0                       |      | Blue           | 2          | 36.8                  | 37.2                  | 1.1         |
|                          |      | GT                          | 3          | 1.88                  | 2.02          | 7.5                       |      | DN             | 3          | 20.8                  | 19.6                  | -5.8        |
|                          |      | TCK                         | 5          | 20.8                  | 20.0          | -3.9                      |      | TN             | 5          | 20.8                  | 20.2                  | -2.9        |
|                          |      | Black                       | 6          | 37.1                  | 37.9          | 2.2                       |      | Black          | 6          | 37.5                  | 37.4                  | -0.3        |
|                          |      | TCK                         | 7          | 20.9                  | 19.5          | -6.7                      |      | TN             | 7          | 20.6                  | 20.2                  | -1.9        |
|                          |      | SUM                         |            | 111.3                 | 114.5         | 2.9                       |      | SUM            |            | 116.1                 | 114.0                 | -1.8        |
| Sacramento               | 4/9  | GT                          | 1          | 2.20                  | 2.15          | -2.3                      |      | DN             | 1          | 20.0                  | 19.6                  | -2.0        |
|                          |      | Blue                        | 2          | 46.9                  | 52.0          | 10.9                      |      | Blue           | 2          | 37.7                  | 36.8                  | -2.4        |
|                          |      | GT                          | 3          | 2.20                  | 2.17          | -1.4                      |      | DN             | 3          | 19.8                  | 19.8                  | 0.0         |
|                          |      | TCK                         | 5          | 21.2                  | 20.3          | -4.3                      |      | $\mathbf{TN}$  | 5          | 21.6                  | 20.7                  | -4.2        |
|                          |      | Black                       | 6          | 39.9                  | 38.6          | -3.3                      |      | Black          | 6          | 37.6                  | 37.4                  | -0.5        |
|                          |      | TCK                         | 7          | 21.0                  | 20.3          | -3.3                      |      | TN             | 7          | 21.8                  | 20.7                  | -5.1        |
|                          |      | SUM                         |            | 110.2                 | 113.1         | 2.6                       |      | SUM            |            | 117.1                 | 114.5                 | -2.2        |
| Collocated<br>Sacramento |      | Flow se                     | tting      | gs char               | nged be       | fore au                   | ıdit |                |            |                       |                       |             |
| Yosemite                 | 4/16 | GT                          | 1          | 1.88                  | 1.82          | -3.2                      |      | DN             | 1          | 18.9                  | 19.8                  | 4.8         |
|                          | ·    | Blue                        | 2          | 53.9                  | 53.8          | -0.2                      |      | Blue           | 2          | 37.1                  | 36.5                  | -1.6        |
|                          |      | GT                          | 3          | 1.94                  | 1.84          | -5.2                      |      | DN             | 3          | 18.9                  | 19.6                  | 3.7         |
|                          |      | TCK                         | 5          | 21.2                  | 20.1          | -5.2                      |      | TN             | 5          | 23.1                  | 19.3                  | -16.5       |
|                          |      | Black                       | 6          | 36.6                  | 36.3          | -0.8                      |      | Black          | 6          | 36.1                  | 37.2                  | 3.1         |
|                          |      | TCK                         | 7          | 21.3                  | 20.1          | -5.6                      |      | TN             | 7          | 23.1                  | 19.0                  | -17.8       |
|                          |      | SUM                         |            | 113.6                 | 112.0         | -1.4                      |      | SUM            |            | 115.2                 | 112.8                 | -2.1        |
| Sequoia                  | 4/19 | GT                          | 1          | 2.28                  | 2.13          | -6.6                      |      | DN             | 1          | 20.3                  | 20.6                  | 1.5         |
|                          |      | Blue                        | 2          | 51.6                  | 50.9          | -1.4                      |      | Blue           | 2          | 36.5                  | 36.0                  | -1.4        |
|                          |      | GT                          | 3          | 2.28                  | 2.13          | -6.6                      |      | DN             | 3          | 20.1                  | 20.6                  | 2.5         |
|                          |      | TCK                         | 5          | 21.5                  | 19.6          | -8.8                      |      | TN             | 5          | 22.0                  | 20.0                  | -9.1        |
|                          |      | Black                       | 6          | 40.7                  | 36.9          | -9.3                      |      | Black          | 6          | 32.3                  | 32.6                  | 0.9         |
|                          |      | TCK                         | 7          | 21.0                  | 19.6          | -6.7                      |      | TN             | 7          | 22.2                  | 19.9                  | -10.4       |
|                          |      | SUM                         |            | 116.1                 | 109.3         | -6.9                      |      | SUM            |            | 111.0                 | 109.3                 | -1.5        |

# Summary of Flow Rate Test Results for Gas/Particle Sampling Performed in April, 1990

5-9

· ----

## Table 5-3 (continued)

## Summary of Flow Rate Test Results for Gas/Particle Sampling Performed in April, 1990

|             |      |                             |            | <u>PM</u> 10_ | Flow F        | <u>lates</u>             |                |            | <u>PM</u> 2.5 | <u>Flow R</u> | <u>ates</u> |
|-------------|------|-----------------------------|------------|---------------|---------------|--------------------------|----------------|------------|---------------|---------------|-------------|
| Site        | Date | Filter <sup>a</sup><br>Pack | Port<br>Id | Site<br>(lpm) | Test<br>(lpm) | DIFF <sup>c</sup><br>(%) | Filter<br>Pack | Port<br>ID | Site<br>(lpm) | Test<br>(1pm) | DIFF<br>(%) |
| <u>.</u>    |      |                             |            | ·             |               |                          |                |            |               |               |             |
| Bakersfield | 4/13 | GT                          | 1          | 1.78          | 2.04          | 14.6                     | DN             | 1          | 19.0          | 20.0          | 5.3         |
|             |      | Blue                        | 2          | 53.8          | 54.3          | 0.9                      | Blue           | 2          | 35.8          | 35.8          | 0.0         |
|             |      | GT                          | <u> </u>   | 1.78          | 2.04          | 14.6                     | DN             | 3          | 20.4          | 20.0          | -2.0        |
|             |      | TCK                         | 5          | 20.8          | 19.7          | -5.3                     | TN             | 5          | 20.6          | 20.2          | -1.9        |
|             |      | Black                       | 6          | 36.4          | 36.1          | -0.8                     | Black          | 6          | 35.5          | 36.2          | 2.0         |
|             |      | TCK                         | 7          | 20.8          | 19.7          | -5.3                     | TN             | 7          | 20.6          | 20.2          | -1.9        |
|             |      | SUM                         |            | 112.8         | 112.0         | -0.7                     | SUM            |            | 110.9         | 112.2         | 1.1         |
| Santa       | 4/13 | GT                          | 1          | 2.17          | 2.02          | -6.9                     | DN             | 1          | 22.7          | 23.6          | 4.0         |
| Barbara     |      | Blue                        | 2          | 51.6          | 53.1          | 2.9                      | Blue           | 2          | 32.7          | 32.7          | 0.0         |
|             |      | GT                          | 3          | 2.17          | 2.02          | -6.9                     | DN             | 3          | 22.7          | 23.6          | 4.0         |
|             |      | TCK                         | 5          | 24.0          | 23.8          | -0.8                     | TN             | 5          | 24.4          | 23.4          | -4.1        |
|             |      | Black                       | 6          | 33.8          | 32.5          | -3.9                     | Black          | 6          | 33.7          | 33.7          | 0.0         |
|             |      | TCK                         | 7          | 24.0          | 23.8          | -0.8                     | TN             | 7          | 24.1          | 23.4          | -2.9        |
|             |      | SUM                         |            | 111.5         | 111.4         | -0.1                     | SUM            |            | 113.4         | 113.3         | -0.1        |
| Long Beach  | 4/13 | GT                          | 1          | 2.06          | 1.96          | -4.9                     | DN             | 1          | 21.2          | 20.5          | -3.3        |
|             |      | Blue                        | 2          | 53.4          | 58.4          | 9.4                      | Blue           | 2          | 36.9          | 36.1          | -2.2        |
|             |      | $\mathbf{GT}$               | 3          | 2.06          | 1.96          | -4.9                     | DN             | 3          | 21.2          | 19.8          | -6.6        |
|             |      | TCK                         | 5          | 21.2          | 20.4          | -3.8                     | TN             | 5          | 20.7          | 19.8          | -4.4        |
|             |      | Black                       | 6          | 37.3          | 35.0          | -6.2                     | Black          | 6          | 38.9          | 38.6          | -0.8        |
|             |      | TCK                         | 7          | 21.2          | 20.4          | -3.8                     | TN             | 7          | 20.7          | 19.8          | -4.4        |
|             |      | SUM                         |            | 114.0         | 115.7         | 1.5                      | SUM            |            | 117.7         | 115.0         | -2.3        |
| Los Angeles | 4/13 | GT                          | 1          | 2.06          | 1.84          | -10.2                    | DN             | 1          | 21.7          | 20.1          | -7.4        |
|             |      | Blue                        | 2          | 49.8          | 52.4          | 5.2                      | Blue           | 2          | 35.0          | 34.8          | -0.6        |
|             |      | GT                          | 3          | 2.06          | 1.84          | -10.7                    | DN             | 3          | 21.5          | 20.0          | -7.0        |
|             |      | TCK                         | 5          | 21.2          | 19.9          | -6.1                     | TN             | 5          | 20.7          | 19.7          | -4.8        |
|             |      | Black                       | 6          | 37.4          | 36.2          | -3.2                     | Black          | 6          | 36.0          | 37.1          | 3.1         |
|             |      | TCK                         | 7          | 21.2          | 19.9          | -6.1                     | TN             | 7          | 20.7          | 19.7          | -4.8        |
|             |      | SUM                         |            | 110.2         | 110.4         | 0.2                      | SUM            |            | 113.4         | 115.8         | 2.1         |
| Azusa       | 4/13 | GT                          | 1          | 2.19          | 2.02          | -7.8                     | DN             | 1          | 21.9          | 20.1          | -8.2        |
|             |      | Blue                        | 2          | 51.3          | 53.7          | 4.7                      | Blue           | 2          | 35.4          | 34.8          | -1.7        |
|             |      | GT                          | 3          | 2.19          | 2.02          | -7.8                     | DN             | 3          | 21.4          | 19.8          | -7.5        |
|             |      | TCK                         | 5          | 20.5          | 19.8          | -3.4                     | TN             | 5          | 21.0          | 19.6          | -6.7        |
|             |      | Black                       | 6          | 35.4          | 36.1          | -2.0                     | Black          | 6          | 35.9          | 35.3          | -1.7        |
|             |      | TCK                         | 7          | 20.5          | 19.8          | -3.4                     | TN             | 7          | 20.5          | 19.8          | -3.4        |
|             |      | SUM                         |            | 109.4         | 111.5         | 1.9                      | SUM            |            | 114.1         | 109.8         | -3.8        |

<sup>a</sup> GT=TEA Filter, TCK=Teflon/citric acid/potassium carbonate, DN=Denuded nylon TN=Non-denuded Teflon/nylon, Blue=Makeup Air, Black=Makeup Air, and SUM=sum of flows through Ports 1,2,5 and 6.

<sup>b</sup> Filter holder leaking.

° Percent difference.

-----

Comparison of Total Inlet Flow Rates to Sum of Filter Flow Rates

|                  | <u>PM<sub>10</sub> Inlet Flow Rate</u> |              |                |              |  | PM <sub>2.5</sub> Inlet Flow Rate |              |                 |              |  |
|------------------|----------------------------------------|--------------|----------------|--------------|--|-----------------------------------|--------------|-----------------|--------------|--|
| Sampling<br>Site | Measured<br>(1pm)                      | Sum<br>(1pm) | Diffe<br>(lpm) | rence<br>(%) |  | Measured<br>(lpm)                 | Sum<br>(1pm) | Diffe:<br>(1pm) | rence<br>(%) |  |
| Gasquet          | 107.7                                  | 116.5        | 8.8            | 7.6          |  | 110.6                             | 119.3        | 8.7             | 7.3          |  |
| Fremont          | 97.8                                   | 111.3        | 13.5           | 12.1         |  | 106.7                             | 116.1        | 9.4             | 8.1          |  |
| Sacramento       | 103.6                                  | 110.1        | 6.5            | 5.9          |  | 112.2                             | 117.1        | 4.9             | 4.2          |  |
| Yosemite         | _a                                     | -            | -              | -            |  | 108.0                             | 115.2        | 7.2             | 6.3          |  |
| Sequoia          | 109.9                                  | 116.1        | 6.2            | 5.3          |  | 97.7                              | 111.1        | 13.4            | 12.1         |  |
| Bakersfield      | 93.7                                   | 112.8        | 19.1           | 16.9         |  | 80.5                              | 110.8        | 30.2            | 27.4         |  |
| Santa<br>Barbara | 104.5                                  | 111.5        | 7.0            | 6.3          |  | 105.7                             | 113.4        | 7.7             | 6.8          |  |
| Long Beach       | 106.1                                  | 114.0        | 7.9            | 6.9          |  | 109.7                             | 117.7        | 8.0             | 6.8          |  |
| Los Angeles      | 97.7                                   | 110.2        | 12.5           | 11.3         |  | 104.2                             | 113.4        | 9.2             | 8.1          |  |
| Azusa            | 79.0                                   | 109.4        | 30.4           | 27.8         |  | 105.3                             | 114.1        | 8.8             | 7.7          |  |

 $^{\rm a}$  Inlet flow rates on  ${\rm PM}_{\rm 10}$  module at Yosemite were not measured.

5-11

\_\_\_\_

| Sampling   |                   | Filter            | Setp             | Setpoints |  |  |
|------------|-------------------|-------------------|------------------|-----------|--|--|
| Site       | Size              | Pack <sup>a</sup> | New <sup>b</sup> | 01d       |  |  |
| Gasquet    | PM <sub>10</sub>  | GT                | 1.10             | 1.10      |  |  |
| -          | 10                | Blue              | 1.50             | 1.45      |  |  |
|            |                   | TCK               | 0.60             | 0.60      |  |  |
|            | `                 | Black             | 1.00             | 1.05      |  |  |
|            | PM <sub>2.5</sub> | DN                | 0.55             | 0.60      |  |  |
|            |                   | Blue              | 1.10             | 1.20      |  |  |
|            |                   | TN                | 0.60             | 0.75      |  |  |
|            |                   | Black             | 1.10             | 1.05      |  |  |
| Fremont    | PM <sub>10</sub>  | GT                | 1.20             | 1.05      |  |  |
|            |                   | Blue              | 1.75             | 1.65      |  |  |
|            |                   | TCK               | 0.55             | 0.55      |  |  |
|            |                   | Black             | 1.25             | 1.25      |  |  |
|            | PM <sub>2.5</sub> | DN                | 0.50             | 0.50      |  |  |
|            |                   | Blue              | 1.25             | 1.20      |  |  |
|            |                   | TN                | 0.55             | 0.60      |  |  |
|            |                   | Black             | 1.30             | 1.30      |  |  |
| Sacromonto | ЪМ                | С <b>Т</b>        | 1 10             | 1 15      |  |  |
| Sacramento | F <sup>H</sup> 10 | Blue              | 1.10             | 1.15      |  |  |
|            |                   | DIUE              | 1.50             | 0.95      |  |  |
|            |                   | Plack             | 1 00             | 0.60      |  |  |
|            |                   | DIACK             | 1.00             | 1.05      |  |  |
|            | PM <sub>2.5</sub> | DN                | 0.65             | 0.65      |  |  |
|            |                   | Blue              | 1.10             | 1.15      |  |  |
|            |                   | TN                | 0.60             | 0.70      |  |  |
|            |                   | Black             | 1.10             | 1.05      |  |  |
| 0-11       | DV                | <b></b>           | 1 10             | 1 10      |  |  |
| Collocated | $PM_{10}$         | Gr                | 1.15             | 1.15      |  |  |
| Sacramento |                   | Blue              | 1.65             | 1.70      |  |  |
|            |                   |                   | 0.50             | 0.55      |  |  |
|            |                   | DIACK             | 1.20             | 1.25      |  |  |
|            | PM <sub>2.5</sub> | DN                | 0.60             | 0.65      |  |  |
|            |                   | Blue              | 1.30             | 1.35      |  |  |
|            |                   | TN                | 0.60             | 0.65      |  |  |
|            |                   | Black             | 1.15             | 1.20      |  |  |

1

# CADMP Dry Deposition Sampler Setpoints

-----

# Table 5-5 (continued)

# CADMP Dry Deposition Sampler Setpoints

| Sampling                      |                   | Filter                     | r Setpoints                  |                              |  |  |
|-------------------------------|-------------------|----------------------------|------------------------------|------------------------------|--|--|
| Site                          | Size              | Pack <sup>a</sup>          | New <sup>b</sup>             | Old                          |  |  |
| Yosemite                      | PM <sub>10</sub>  | GT<br>Blue<br>TCK<br>Black | 1.10<br>0.90<br>0.50<br>0.90 | 1.15<br>1.00<br>0.60<br>0.95 |  |  |
|                               | PM <sub>2.5</sub> | DN<br>Blue<br>TN<br>Black  | 0.50<br>0.85<br>0.50<br>0.90 | 0.50<br>0.90<br>0.75<br>0.90 |  |  |
| Sequoia                       | PM <sub>10</sub>  | GT<br>Blue<br>TCK<br>Black | 1.00<br>0.65<br>0.55<br>0.80 | 1.00<br>0.60<br>0.55<br>0.90 |  |  |
|                               | PM <sub>2.5</sub> | DN<br>Blue<br>TN<br>Black  | 0.60<br>0.75<br>0.60<br>0.95 | 0.55<br>0.75<br>0.65<br>0.95 |  |  |
| Bakersfield                   | PM <sub>10</sub>  | GT<br>Blue<br>TCK<br>Black | 1.40<br>1.60<br>0.45<br>1.15 | 1.10<br>1.70<br>0.50<br>1.20 |  |  |
|                               | PM <sub>2.5</sub> | DN<br>Blue<br>TN<br>Black  | 0.60<br>1.20<br>0.60<br>0.90 | 0.60<br>1.25<br>0.65<br>0.95 |  |  |
| Santa<br>Barbara <sup>c</sup> | PM <sub>10</sub>  | GT<br>Blue<br>TCK<br>Black | 1.15<br>1.85<br>0.90<br>1.70 | 1.25<br>1.75<br>1.00<br>1.75 |  |  |
|                               | PM <sub>2.5</sub> | DN<br>Blue<br>TN<br>Black  | 1.00<br>1.80<br>0.85<br>1.50 | 0.90<br>1.75<br>0.95<br>1.50 |  |  |

.

\_ \_\_\_.

# Table 5-5 (continued)

| Sampling    |                   | Filter            | Setpoints        |      |  |
|-------------|-------------------|-------------------|------------------|------|--|
| Site        | Size              | Pack <sup>a</sup> | New <sup>b</sup> | 01d  |  |
| Long Beach  | PM <sub>10</sub>  | GT                | 1.15             | 1.10 |  |
|             |                   | Blue              | 1.20             | 1.00 |  |
|             |                   | TCK               | 0.50             | 0.60 |  |
|             |                   | Black             | 1.00             | 1.00 |  |
|             | PM <sub>2.5</sub> | DN                | 0.55             | 0.65 |  |
|             |                   | Blue              | 1.10             | 1.15 |  |
|             |                   | TN                | 0.60             | 0.60 |  |
|             |                   | Black             | 1.20             | 1.15 |  |
| Los Angeles | DM                | <b>CT</b>         | 1 20             | 1 10 |  |
|             | PPI <sub>10</sub> | Blue              | 1.20             | 1.10 |  |
|             |                   | TCV               | 1.40             | 1.55 |  |
|             |                   | Plaal             | 0.30             | 0.55 |  |
|             |                   | DIACK             | 0.75             | 0.85 |  |
|             | PM <sub>2.5</sub> | DN                | 0.60             | 0.70 |  |
|             |                   | Blue              | 1.00             | 1.00 |  |
|             |                   | TN                | 0.60             | 0.65 |  |
|             |                   | Black             | 1.20             | 1.15 |  |
| Azusa       | PM <sub>10</sub>  | GT                | 1.00             | 1.10 |  |
|             |                   | Blue              | 1.10             | 1.30 |  |
|             |                   | TCK               | 0.70             | 0.55 |  |
|             |                   | Black             | 1.00             | 0.95 |  |
|             | PM2.5             | DN                | 0.50             | 0.60 |  |
|             |                   | Blue              | 1.00             | 0.90 |  |
|             |                   | TN                | 0.60             | 0.70 |  |
|             |                   | Black             | 1.00             | 1.05 |  |

## CADMP Dry Deposition Sampler Setpoints

<sup>a</sup> GT=TEA filter, TCK=Teflon/citric acid/potassium carbonate, DN=Denuded nylon TN=Non-denuded Teflon/nylon, Blue=Makeup air, Black=Makeup air, and SUM=sum of flows through Ports 1,2,5 and 6.

<sup>b</sup> April, 1990.

<sup>c</sup> Nominal set points for sampler at Santa Barbara are different from those of other sites, because this is the original prototype sampler and has different plumbing from other samplers. The actual flow rates are the same as for the other samplers.

5-14

values. Indirect checks were made at sites where the sensors could not be reached; the wind speed was estimated by the technician from the motion of nearby objects, such as flags or trees, and then categorized as calm (< 0.5 m/sec), light (0.5-2 m/sec), or strong (> 5 m/sec). The sensor output was compared to the estimated value. The sensors were operating well in all cases. The test results for wind-speed measurements are summarized in Table 5-6.

#### 5.2.4 Wind-Direction Measurements

All wind-direction sensors were checked either by aiming the vane at targets having known bearings (Gasquet and Long Beach), sighting the orientation of the crossarm (Fremont, Yosemite, Sequoia, Bakersfield, Los Angeles, and Azusa), or estimating wind direction from vane orientation (Sacramento and Santa Barbara). The sensors at Yosemite and Sequoia malfunctioned and were returned to Reno. A new sensor had been ordered for Sequoia but did not arrive before the site visit. These sensors have since been installed and are operating.

Test results for wind-direction measurements are summarized in Table 5-7. Most sensors were within a few degrees of the correct values. The sensor at Gasquet was reading about 6° higher than the audit value. The crossarm at Bakersfield was along a 165-345° true line instead of north-south. This information was communicated to ARB for remediation.

#### 5.2.5 Temperature Measurements

Temperature sensors were checked with an aspirated thermometer placed as close to the sensor as possible. The audit results are summarized in Table 5-8. Most sensors were within  $\pm 1$  °C of the standard thermometer.

The sensor at Gasquet was found to provide data which corresponded to the standard but the data acquisition system returned readings which were approximately 5 °C higher. After running the internal calibration routine, the deviation decreased to 0.2 °C. This offset has not been observed with this type of data acquisition system at any other site. The output from the sensor should be compared with that acquired by the data acquisition system at this site at regular intervals to verify whether or not this is a long-term problem. The temperature sensor at Fremont was operating improperly and was replaced.

#### 5.2.6 Dew Point Measurements

Dew point sensors were checked with an aspirated psychrometer placed as close to the sensor as possible. Results are reported in Table 5-9. At most sites, the audit dew point was higher than the site dew point by 2 °C or more. Fremont, Sequoia, Bakersfield, and Long Beach had better agreement.

At Gasquet, the sensor measured 5 °C low. The bobbin was found to have a bad solder joint. After replacing the bobbin, the sensor was 2 °C low. The SumX reading was consistently 0.5 °C higher than the sensor value both before and after recalibrating the data acquisition system.

5-15

# Summary of Wind-Speed Tests Performed in April, 1990

|             |              |        | _                | Difference |       |  |
|-------------|--------------|--------|------------------|------------|-------|--|
|             | Audit        | Sensor | DAS <sup>d</sup> | Sensor     | DASd  |  |
| Site        | <u>(m/s)</u> | (m/s)  | <u>(m/s</u> )    | (m/s)      | (m/s) |  |
| Gasquet     | 0            | 0.2    | 0.2              | 0.2        | 0.2   |  |
|             | 8.3          | 8.2    | 8.2              | -0.1       | 0.0   |  |
|             | 16.3         | 16.2   | 16.3             | -0.1       | 0.0   |  |
|             | 48.3         | 48.4   | a                | 0.1        | a     |  |
| Fremont     | 2 est        | b      | 2.0              |            | c     |  |
| Sacramento  | l est        | 1.4    | 1.5              |            |       |  |
| Yosemite    | 0            | 0.2    | 0.5              | 0.2        | 0.5   |  |
|             | 8.3          | 8.5    | 8,6              | 0.2        | 0.3   |  |
|             | 16.3         | 16.2   | 16.4             | -0.1       | 0.1   |  |
|             | 48.3         | 48.2   | a                | -0.1       | а     |  |
| Sequoia     | 0            | b      | 0.5              | b          | 0.5   |  |
|             | 8.3          |        | 8.2              |            | -0.1  |  |
|             | 16.3         |        | 16.2             |            | -0.1  |  |
|             | 48.3         |        | а                |            | a     |  |
| Bakersfield | 0            | b      | 0.6              |            |       |  |
|             | 4 est        |        | 3.7              |            |       |  |
| Santa       | 0            | ь      | 0.6              |            |       |  |
| Barbara     | 5 est        |        | 43               |            |       |  |
| barbara     | 5 656        |        | 4.5              |            |       |  |
| Long Beach  | 0            | b      | 0.5              | b          | 0.5   |  |
|             | 7.3          |        | 7.4              |            | 0.1   |  |
|             | 14.3         |        | 14.4             |            | 0.1   |  |
|             | 42.5         |        | 42.4             |            | -0.1  |  |
| Los Angeles | 0            | ь      | 0.5              |            |       |  |
| -           | 3 est        |        | 2.7              |            |       |  |
|             |              |        |                  |            |       |  |
| Azusa       | 0            | Ъ      | 0.6              |            |       |  |
|             | 2 est        |        | 2.2              | ·          |       |  |

5-16

<sup>&</sup>lt;sup>a</sup> 48 m/s is greater than range of Met One.
<sup>b</sup> Sensor voltage not recorded.
<sup>c</sup> Differences between estimated speed and site values not computed.
<sup>d</sup> Data Acquisition Systems.

# Summary of Wind-Direction Tests Performed in April, 1990

|                       |                                                                              |                                                                                     |                           |                 | Diff                                 | erence                    |
|-----------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------|-----------------|--------------------------------------|---------------------------|
| Sampling<br>Site      | Audit<br>(deg)                                                               | Sensor<br>(deg)                                                                     | DAS <sup>c</sup><br>(deg) |                 | Sensor<br>(deg)                      | DAS <sup>c</sup><br>(deg) |
| Gasquet               | 42<br>222<br>222<br>402                                                      | 48<br>228<br>229<br>408                                                             | 47<br>228<br>228<br>409   |                 | 6<br>6<br>7<br>6                     | 5<br>6<br>7               |
|                       | 156<br>336<br>336<br>515                                                     | 163<br>345<br>344<br>521                                                            | 163<br>346<br>344<br>522  |                 | 7<br>9<br>8<br>6                     | 7<br>10<br>8<br>7         |
| Fremont               | 270 est                                                                      |                                                                                     | 265                       |                 |                                      |                           |
| Sacramento            | Crossarm                                                                     | bearing 360                                                                         | deg true                  | north           |                                      |                           |
| Yosemite <sup>a</sup> | Sensor bu                                                                    | shing set to                                                                        | o due nort                | th <sup>b</sup> |                                      |                           |
| Sequoiaª              | Crossarm                                                                     | bearing 360                                                                         | deg true                  | north           |                                      |                           |
| Bakersfield           | Crossarm                                                                     | bearing 345                                                                         | deg true                  | north           |                                      |                           |
| Santa Barbara         | SE (140)                                                                     |                                                                                     | 137                       |                 |                                      |                           |
| Long Beach            | Crossarm<br>Vane rela<br>360<br>450<br>90<br>180<br>270<br>360<br>450<br>180 | bearing 360<br>ative to cros<br>358<br>447<br>90<br>177<br>266<br>355<br>451<br>181 | deg true<br>ssarm         |                 | -2<br>-3<br>0<br>-3<br>-4<br>-5<br>1 |                           |
| Los Angeles           | Crossarm<br>Sensor al                                                        | bearing 360<br>Ligned along                                                         | deg true<br>crossarm      | north<br>357    |                                      |                           |
| Azusa                 | Crossarm                                                                     | bearing 360                                                                         | deg true                  | north           |                                      |                           |

,

\_ \_ . . . . . . . . . . . . . . . .

<sup>&</sup>lt;sup>a</sup> Sensor not working. <sup>b</sup> Bushing lined up due south after checks. <sup>c</sup> Data Acquisition Systems.

# Summary of Temperature Tests Performed in April, 1990

|                  |               |                  |                          | Difference     |                          |  |  |  |  |
|------------------|---------------|------------------|--------------------------|----------------|--------------------------|--|--|--|--|
| Sampling<br>Site | Audit<br>(°C) | Sensor<br>(°C)   | DAS <sup>f</sup><br>(°C) | Sensor<br>(°C) | DAS <sup>f</sup><br>(°C) |  |  |  |  |
| Gasquet          | 9.5           | 9.7              | <br>14.7ª                | 0.2            | 5.7                      |  |  |  |  |
| Fremont          | 14.5          | 5.4 <sup>b</sup> |                          |                |                          |  |  |  |  |
| Sacramento       | 18.0          | 17.3             | 17.5                     | -0.7           | -0.5                     |  |  |  |  |
| Yosemite         | 4.4           | 4.2              | 5.3°                     | -0.2           | 0.9                      |  |  |  |  |
| Sequoia          | 7.7           | 7.5              | d                        | -0.2           |                          |  |  |  |  |
| Bakersfield      | 28.0          | 27.6             | 27.9                     | -0.4           | -0.1                     |  |  |  |  |
| Santa Barbara    | 16.3          | 15.3             | 15.5                     | -1.0           | -0.8                     |  |  |  |  |
| Long Beach       | 22.8          | e                | 20.8                     |                | -2.0                     |  |  |  |  |
| Los Angeles      | 20.8          | e                | 21.0                     |                | 0.2                      |  |  |  |  |
| Azusa            | 14.5          | e                | 13.4                     |                | -1.1                     |  |  |  |  |

- <sup>a</sup> SumX about 5 °C high before recalibrating.
  <sup>b</sup> Sensor broken.
  <sup>c</sup> SumX about 8 mv (0.8 °C) high before ground loop fixed.
  <sup>d</sup> SumX reading not entered.
  <sup>e</sup> Sensor voltage not entered.
  <sup>f</sup> Data Acquisition Systems.

------

# Summary of Dew Point Tests Performed in April, 1990

|                       |                   |                |                  | Difference     |              |  |  |  |  |
|-----------------------|-------------------|----------------|------------------|----------------|--------------|--|--|--|--|
| Sampling<br>Site      | Audit<br>(°C)<br> | Sensor<br>(°C) | DAS°<br>(°C)<br> | Sensor<br>(°C) | DAS°<br>(°C) |  |  |  |  |
| Gasquet <sup>a</sup>  | 6.1<br>9.7        | -0.9<br>6.8    | -0.3<br>7.5      | -7.0<br>-2.9   | -6.4<br>-2.2 |  |  |  |  |
| Fremont               | 11.3              | 11.0           | 11.1             | -0.3           | -0.2         |  |  |  |  |
| Sacramento            | 10.1<br>9.4       | 1.1<br>3.6     | b                | -9.0<br>-5.8   |              |  |  |  |  |
| Yosemite <sup>c</sup> | 1.8<br>5.8        | -1.1<br>3.5    | -0.5<br>3.9      | -2.9<br>-2.3   | -2.3<br>-1.9 |  |  |  |  |
| Sequoia               | 6.4               | d              | 5.9              | -0.5           |              |  |  |  |  |
| Bakersfield           | 6.8               | 7.9            | 7.5              | 1.1            | 0.7          |  |  |  |  |
| Santa Barbara         | 11.5              | 9.2            | 9.2              | -2.3           | -2.3         |  |  |  |  |
| Long Beach            | 11.9              | đ              | 10.7             |                | -1.2         |  |  |  |  |
| Los Angeles           | 6.6               | đ              | 4.9              |                | -1.7         |  |  |  |  |
| Azusa                 | 11.9              | đ              | 9.4              |                | -2.5         |  |  |  |  |

<sup>a</sup> First reading prior to replacing bobbin. Second with new bobbin. <sup>b</sup> SumX value not entered.

\_\_\_\_\_

<sup>&</sup>lt;sup>c</sup> First reading prior to retreatment. Second after treatment. <sup>d</sup> Sensor value not entered.

<sup>&</sup>lt;sup>e</sup> Data Acquisitions System.

The dew point sensor is the least reliable component in the entire monitoring system. ARB is currently evaluating new instruments to measure relative humidity or dew point. The CADMP units should be replaced with these more reliable units when the evaluation has been completed.

#### 5.2.7 Solar Radiation Measurements

Solar radiation sensors were checked by placing an Eppley Precision Spectral Pyranometer as close to the sensors as possible. Yosemite, Sequoia, Santa Barbara, and Azusa sensors were not checked because of clouds and rain during the visits, or because the test instrument could not be located near the sensor. The test results are summarized in Table 5-10.

#### 5.2.8 Time of Wetness Measurements

The wetness sensors were found to turn on when they became wet either from natural causes or by artificial means. At some sites these units stayed on after the water evaporated. The sensitivity of the sensor to wetness was adjusted but the adjustment is sensitive and needs to be done about every two weeks.

#### 5.2.9 Data Acquisition System

The SumX at Gasquet added an offset to the temperature and dew point channels. The SumX temperature reading was about 5 °C higher than that of the sensor. The dew point reading was about 0.5 °C higher than that of the sensor. After recalibration of the SumX, the temperature reading showed better agreement but the dew point reading was still 0.5 °C high. The other data collected as double-ended inputs (solar, wetness, and ozone calibrator) were also reading 3 to 5 mv higher than their inputs on this data acquisition system, but these offsets are not significant.

All channels of the SumX at Yosemite read ~8 mv higher than their inputs. The modem that had recently been installed had a ground that was not common to the instruments. The resulting ground loop caused the difference in readings. After putting the modem on a common ground, the SumX readings for single-ended inputs were within 1 mv of their inputs, while the readings for double-ended inputs were 2 to 3 mv higher than their inputs.

The data acquisition systems at all other sites were found to perform reliably.

\_\_\_\_\_

# Summary of Solar Radiation Tests Performed in April, 1990

|                  |                           |                            |                                      | Difference                 |                                      |  |  |  |  |
|------------------|---------------------------|----------------------------|--------------------------------------|----------------------------|--------------------------------------|--|--|--|--|
| Sampling<br>Site | Audit<br>w/m <sup>2</sup> | Sensor<br>w/m <sup>2</sup> | DAS <sup>d</sup><br>w/m <sup>2</sup> | Sensor<br>w/m <sup>2</sup> | DAS <sup>d</sup><br>w/m <sup>2</sup> |  |  |  |  |
| Gasquet          | 864                       | 826                        | 835                                  | - 38                       | -29                                  |  |  |  |  |
| Fremont          | 892                       | 818                        | 823                                  | -74                        | -69                                  |  |  |  |  |
| Sacramento       | a                         |                            |                                      |                            |                                      |  |  |  |  |
| Yosemite         | b                         |                            |                                      |                            |                                      |  |  |  |  |
| Sequoia          | b                         |                            |                                      |                            |                                      |  |  |  |  |
| Bakersfield      | 923                       | 728                        | 725                                  | -195°                      | -198°                                |  |  |  |  |
| Santa Barbara    | b                         |                            |                                      |                            |                                      |  |  |  |  |
| Long Beach       | 990                       | с                          | 893                                  |                            | - 97                                 |  |  |  |  |
| Los Angeles      | 1057                      | c                          | 826                                  |                            | -231                                 |  |  |  |  |
| Azusa            | b                         |                            |                                      |                            |                                      |  |  |  |  |

<sup>a</sup> Not done because of sensor location. <sup>b</sup> Not done because of rain and clouds.

\_\_\_\_

 <sup>&</sup>lt;sup>c</sup> Sensor output not recorded.
 <sup>d</sup> Data Acquisition System.
 <sup>e</sup> Cause of the differences is unknown.

## 6.0 TECHNOLOGY TRANSFER

A major goal of the dry deposition component of the CADMP was to transfer the operations of the long-term monitoring network to ARB staff. This was done in phases over a two-year period. Major milestones in this technology transfer are identified in Table 6-1. The major components of technology transfer were: 1) network design; 2) procedures development; 3) technology transfer workshops; 4) phased takeover of network operations; and 5) long-term technical advisement.

#### 6.1 Network Design

As noted in previous sections and explained in detail by Watson et al. (1990), the network was designed with technology transfer in mind. A careful study was undertaken to provide the greatest benefit for the least expenditure of labor. This resulted in the assignment of much initial effort to develop effective data acquisition and processing systems which would allow many manual operations to be performed by computer.

## 6.2 Procedures Development

Procedures were performed by DRI staff, then documented for feedback from field operations and laboratory staff within DRI and at ARB. Several drafts of procedures were prepared and implemented. Incremental improvements were identified and recorded as they became known. Through this process, the operating procedures have evolved into an efficient and integrated system, as documented by Bowen et al. (1990), Chow et al. (1990), and Frazier et al. (1990).

## 6.3 Technology Transfer Workshops

ARB field and laboratory operations staff were already well-versed in the use of most of the instruments and analytical methods used in this study. Major emphasis was placed on the integration of field and laboratory operations and on the processing and validation of data from both program components. These workshops offered an opportunity for feedback to DRI staff on certain practices unique to ARB for which the standard operating procedures required adjustment.

## 6.4 Phased Takeover of Operations

By phasing in ARB's takeover of certain monitoring sites, an orderly transition of responsibility was effected. This phase-in period allowed ARB staff the time needed to become proficient with the individual procedures before being inundated with the responsibility for the entire network. Deficiencies in operating procedures, or in their documentation, were identified and corrected as part of this phased takeover.

بالعرابية الراب بالتنجيب ومتابعهم عمر

#### Table 6-1

Summary of the CADMP Technology Transfer Activities

Technology Transfer Activities <u>Date</u> 11/87 First draft, CADMP Program Plan. 9/1/88 Site operator training at Sacramento. and 9/2/88 2/28/89 Second revision of field, laboratory, and data processing procedures completed. 3/1/89 One-day training of field operations supervisors and assistant in sampler operation and continuous data processing at Sacramento. 3/2/89 and Two-day training of laboratory personnel in filter 3/3/89 impregnation, filter loading, chain of custody, and laboratory data processing at El Monte. 8/1/89 ARB's El Monte laboratory began analysis of dry deposition samples for Teflon filters. Two-day training of field and laboratory personnel in 12/7/89 and 12/8/89 continuous and laboratory data processing procedures at El Monte. 2/1/90 ARB took over continuous data operations of all sampling sites. 2/2/90 ARB's El Monte laboratory began analysis of dry deposition samples for Teflon, nylon, and citric acid impregnated filters. 2/27/90 One-day training of laboratory sample chain of custody at El Monte. 3/5/90 ARB's El Monte laboratory began analysis of all dry deposition samples. 4/9/90 One-day training of field operations and final progress report meeting at Sacramento. 4/10/90 ARB took over operation of all sampling sites. 4/9/90 to Final site inspection and maintenance by DRI at all sites. 4/21/90 5/21/90 One-day training of laboratory sample processing staff at El Monte. 7/31/90 Revised program plan and draft measurement reports completed.

6-2

## 6.5 Long-Term Technical Advisement

The dry deposition component of the CADMP provides data to ARB's research program on acid deposition. Although it is a routine monitoring program, it is expected that changes will be made in its operation as new knowledge is gained. These changes may be made to increase efficiency of operation, to better meet the needs of those using the data for decision-making, or to improve the measurement process. DRI scientists remain on call to answer any questions regarding the methods and procedures.

#### 7.0 SUMMARY OF DRY DEPOSITION DATA

It is not within the scope of work for this project to interpret the acquired measurements with respect to deposition fluxes, chemical and meteorological causes, or relationships to emissions sources. Nevertheless, the data have been thoroughly examined as part of the evaluation and validation process, and some interesting similarities and differences among sampling sites, sampling periods, and chemical concentrations have been observed. This section describes several of those observations and their implications with respect to the dry deposition measurement process.

## 7.1 Lower Quantifiable Limits

Watson et al. (1990) estimated concentration levels for the dry deposition species when designing the gas/particle sampling system. Flow rates and sample durations were selected using these estimates to obtain a sufficient deposit for chemical analysis. The current data base allows the accuracy of those estimates to be evaluated.

Table 7-1 compares the concentration ranges found over more than a year of monitoring with minimum detectable concentrations and lower quantifiable limits for each species measured during daytime and nighttime. The table has stratified samples by urban (Fremont, Sacramento, Bakersfield, Santa Barbara, Long Beach, Los Angeles, and Azusa) and non-urban (Gasquet, Yosemite, and Sequoia) sampling sites.

Minimum detectable concentrations (MDC) are those for which instrument response equals the standard deviations of the response to a known concentration of zero. The MDC in Table 7-1 are always smaller than the lower quantifiable limit (LQL), which is defined as one standard deviation of the field blank concentrations. Field blanks account for contamination acquired during sample handling and passive deposition. The sensitivity of the selected laboratory methods is not the limiting factor for quantifying any of the species in this program. Any needed improvements must be made in the sampling component, not in the laboratory component.

The LQLs are approximately twice the MDCs for the particulate species, but they are typically 10 times the MDCs for the gaseous species (with the exception of  $NH_3$ , for which the LQL/MDC ratio is approximately 4). This difference between particle and gas arises since the impregnated substrates are passive absorbers of their respective gases, and the only way to minimize this passive absorption is to minimize the time period of passive exposure by reducing time in the field and by storage in cold, pollutant-free atmospheres. Both of these methods are applied to the extent practical in the monitoring program as it is currently designed.

For the urban sites, in excess of 90% of all values measured during the first 1½ years of monitoring were detectable above the LQLs for all species except  $PM_{2.5}$  potassium, calcium, and chloride. These species are soil- or seasalt-related and are usually more abundant in the coarse particle size fraction

7-1

• • • • • • • • • • • • • • •

## Table 7-1

# Analytical Specification for Urban and Non-Urban Samples Collected from California Acid Deposition Monitoring Program (CADMP) Between May 3, 1988 and September 25, 1989

~

~

# I. <u>Urban Sites</u>

7-2

í

|                               |                    |                           |                           |                            | Daytime Range of |       | Total                          | Perc           | Nightti | me Ra            | ange of   | Total | Percent             |                |                  |              |
|-------------------------------|--------------------|---------------------------|---------------------------|----------------------------|------------------|-------|--------------------------------|----------------|---------|------------------|-----------|-------|---------------------|----------------|------------------|--------------|
| Chemical                      |                    | Analysis                  | MDC <sup>D</sup>          | LQL <sup>C</sup>           | Urban C          | oncei | nt <u>r</u> ation <sup>d</sup> | No. of         | Samp    | le Exceed        | Urban Con | cent  | ration <sup>d</sup> | No. of         | Samp le          | e Exceed     |
| <u>Species</u>                | <u>Size</u>        | <u>Method<sup>a</sup></u> | <u>(µg/m<sup>3</sup>)</u> | ( <u>µq/m<sup>3</sup>)</u> | ·                | (µq,  | /m <sup>3</sup> )              | <u>Samples</u> | MDCb    | LQL <sup>C</sup> | (         | μg/m  | s <sub>)</sub>      | <u>Samples</u> | MDC <sup>D</sup> | <u>lql</u> ° |
| Particle Mass                 | PM2.5              | Gravimetry                | 0.67                      | 1.70                       | 0.50             | to    | 132.54                         | 479            | 100     | 99               | 0.00      | to    | 187.53              | 474            | 89               | 98           |
| Particle Mass                 | PM10               | Gravimetry                | 0.67                      | 1.70                       | 0.00             | to    | 213.17                         | 479            | 100     | 99               | 0.00      | to    | 196.74              | 478            | 100              | 100          |
| Sodium (Na <sup>+</sup> )     | PM2.5              | AA                        | 0.004                     | 0.040                      | 0.00             | to    | 1.92                           | 478            | 96      | 90               | 0.00      | to    | 2.25                | 475            | 96               | 89           |
| Sodium (Na <sup>+</sup> )     | PM10               | AA                        | 0.004                     | 0.052                      | 0.00             | to    | 6.27                           | 487            | 99      | 97               | 0.00      | to    | 6.49                | 484            | 99               | 97           |
| Magnesium (Mg <sup>++</sup>   | ) PM2.5            | AA                        | 0.0027                    | 0.0083                     | 0.00             | to    | 0.35                           | 485            | 98      | 92               | 0.00      | to    | 0.35                | 477            | 97               | 90           |
| Magnesium (Mg <sup>++</sup> ) | ) PM <sub>10</sub> | AA                        | 0.0027                    | 0.0063                     | 0.002            | to    | 0.85                           | 488            | 100     | 99               | 0.003     | to    | 0.85                | 484            | 100              | 99           |
| Potassium (K+)                | PM2.5              | AA                        | 0.0066                    | 0.024                      | 0.00             | to    | 0.69                           | 485            | 92      | 80               | 0.00      | to    | 1.13                | 476            | 91               | 76           |
| Potassium (K <sup>+</sup> )   | PM10               | AA                        | 0.0066                    | 0.034                      | 0.00             | to    | 1.76                           | 478            | 89      | 96               | 0.00      | to    | 1.51                | 475            | 99               | 96           |
| Calcium (Ca <sup>++</sup> )   | PM2.5              | AA                        | 0.033                     | 0.046                      | 0.00             | to    | 2.00                           | 485            | 72      | 59               | 0.00      | to    | 2.34                | 477            | 51               | 38           |
| Calcium (Ca <sup>++</sup> )   | PM10               | AA                        | 0.033                     | 0.041                      | 0.001            | to    | 2.39                           | 489            | 99      | 99               | 0.00      | to    | 3.50                | 484            | 96               | 95           |
| Ammonium (NH <sub>4</sub> )   | PM2.5              | AC                        | 0.066                     | 0.096                      | 0.00             | to    | 18.46                          | 467            | 95      | 94               | 0.00      | to    | 24.64               | 467            | 87               | 96           |
| Ammonium (NH <sub>4</sub> )   | PM10               | AC                        | 0.066                     | 0.15                       | 0.00             | to    | 26.43                          | 468            | 99      | 96               | 0.00      | to    | 24.09               | 467            | 98               | 96           |
| Chloride (Cl <sup>-</sup> )   | PM2.5              | IC                        | 0.066                     | 0.13                       | 0.00             | to    | 3.24                           | 419            | 28      | 17               | 0.00      | to    | 2.30                | 417            | 37               | 26           |
| Chloride (Cl <sup>-</sup> )   | PM10               | IC                        | 0.066                     | 0.13                       | 0.00             | to    | 4.55                           | 407            | 65      | 51               | 0.00      | to    | 9.74                | 406            | 77               | 67           |
| Sulfate $(SO_4^{=})$          | PM2.5              | IC                        | 0.066                     | 0.36                       | 0.00             | to    | 21.92                          | 467            | 99      | 97               | 0.00      | to    | 21.91               | 472            | 99               | 96           |
| Sulfate (S0 <mark>‡</mark> )  | PM10               | IC                        | 0.066                     | 0.18                       | 0.00             | to    | 29.43                          | 467            | 100     | 100              | 0.00      | to    | 27.44               | 469            | 99               | 99           |
| Sulfur                        |                    |                           |                           |                            |                  |       |                                |                |         |                  |           |       |                     |                |                  |              |
| Dioxide (SO <sub>2</sub> )    | Gas                | IC                        | 0.022                     | 0.29                       | 0.00             | to    | 28.45                          | 441            | 99      | 98               | 0.00      | to    | 41.06               | 443            | 98               | 87           |
| Nitrogen -                    |                    |                           |                           |                            |                  |       |                                |                |         |                  |           |       |                     |                |                  |              |
| Dioxide (NO <sub>2</sub> )    | Gas                | IC                        | 0.025                     | 0.39                       | 0.00             | to    | 370.00                         | 477            | 99      | 98               | 0.00      | to    | 254.98              | 471            | 98               | 98           |
| Ammonia (NH <sub>3</sub> )    | Gas                | AC                        | 0.032                     | 0.14                       | 0.00             | to    | 38.33                          | 497            | 99      | 99               | 0.00      | to    | 30.09               | 490            | 99               | 99           |
| Nitrate (NOz)                 | PM10               | IC                        | 0.066                     | 0.10                       | 0.00             | to    | 37.91                          | 469            | 99      | 98               | 0.00      | to    | 51.23               | 469            | 99               | 99           |
| Nitrate (NOz)                 | PM2.5              | IC                        | 0.066                     | 0.12                       | 0.00             | to    | 27.64                          | 470            | 95      | 94               | 0.00      | to    | 31.28               | 472            | 95               | 94           |
| Nitrate (NO <sub>3</sub> )    | Undend             | luded                     |                           |                            |                  |       |                                |                |         |                  |           |       |                     |                |                  |              |
| Nitrate (NO-)                 | PM2.5<br>Denude    | DI<br>Di                  | 0.034                     | 0.41                       | 0.004            | to    | 54.48                          | 471            | 100     | 95               | 0.00      | to    | 31.64               | 473            | 97               | 66           |
| HILLARE (1103)                | PM2.5              | IC                        | 0.034                     | 0.34                       | 0.00             | to    | 49.27                          | 464            | 100     | 99               | 0.00      | to    | 51.67               | 462            | 100              | 98           |
| Nitric                        |                    |                           |                           |                            |                  |       |                                |                |         |                  |           |       |                     |                |                  |              |
| Acid (HNO <sub>3</sub> )      | Gas                | IC                        | 0.066                     | 0.41                       | 0.00             | to    | 37.28                          | 429            | 82      | 78               | 0.00      | to    | 12.35               | 437            | 39               | 25           |

# Table 7-1 (continued)

# Analytical Specification for Urban and Non-Urban Samples Collected from California Acid Deposition Monitoring Program (CADMP) Between May 3, 1988 and September 25, 1989

#### II. Non-Urban Sites

| Chemical Ana<br>Species Size Me |                     | Analysis<br>Method <sup>a</sup> | Analysis MDC <sup>b</sup> LQL <sup>C</sup><br>Method <sup>a</sup> (µg/m <sup>3</sup> ) (µg/m <sup>3</sup> ) |          | Daytime Range of <sup>e</sup><br>Nonurban Concentration <sup>f</sup><br>(µg/m <sup>3</sup> ) |    | Total<br>No. of<br>Samples | Percent<br>Sample Exceed<br>MDC <sup>b</sup> LOL <sup>C</sup> |    | Nightti<br>Nonurban<br>( | me Ra<br>Conce<br>μg/m <sup>3</sup> | nge of <sup>e</sup><br>ntration <sup>f</sup><br>) | Total<br>No. of<br>Samples | Percen<br>Sample<br>MDC <sup>D</sup> | t<br>Exceed |    |
|---------------------------------|---------------------|---------------------------------|-------------------------------------------------------------------------------------------------------------|----------|----------------------------------------------------------------------------------------------|----|----------------------------|---------------------------------------------------------------|----|--------------------------|-------------------------------------|---------------------------------------------------|----------------------------|--------------------------------------|-------------|----|
| <u></u>                         |                     | <u></u>                         |                                                                                                             | <u> </u> |                                                                                              |    |                            |                                                               |    |                          | . <u> </u>                          |                                                   |                            |                                      |             |    |
| Particle Mass                   | PM2.5               | Gravimetry                      | 0.67                                                                                                        | 1.70     | 0.00                                                                                         | to | 48.82                      | 179                                                           | 87 | 79                       | 0.00                                | to                                                | 177.87                     | 172                                  | 84          | 80 |
| Particle Mass                   | PM10                | Gravimetry                      | 0.67                                                                                                        | 1.70     | 0.00                                                                                         | to | 90.55                      | 172                                                           | 97 | 93                       | 0.00                                | to                                                | 182.30                     | 163                                  | 92          | 87 |
| Sodium (Na <sup>†</sup> )       | PM2.5               | AA                              | 0.004                                                                                                       | 0.040    | 0.00                                                                                         | to | 1.50                       | 183                                                           | 73 | 60                       | 0.00                                | to                                                | 0.96                       | 178                                  | 70          | 52 |
| Sodium (Na <sup>+</sup> )       | <sup>₽М</sup> 10    | AA                              | 0.004                                                                                                       | 0.052    | 0.00                                                                                         | to | 2.93                       | 177                                                           | 87 | 77                       | 0.00                                | to                                                | 2.48                       | 170                                  | 84          | 64 |
| Magnesium (Mg <sup>++</sup>     | ) PM <sub>2.5</sub> | AA                              | 0.0027                                                                                                      | 0.0083   | 0.00                                                                                         | to | 0.16                       | 183                                                           | 87 | 66                       | 0.00                                | to                                                | 0.12                       | 178                                  | 83          | 63 |
| Magnesium (Mg <sup>++</sup>     | ) PM <sub>10</sub>  | AA                              | 0.0027                                                                                                      | 0.0063   | 0.00                                                                                         | to | 0.47                       | 177                                                           | 92 | 85                       | 0.00                                | to                                                | 0.48                       | 170                                  | 88          | 81 |
| Potassium (K+)                  | PM2.5               | AA                              | 0.0066                                                                                                      | 0.24     | 0.00                                                                                         | to | 0.55                       | 182                                                           | 80 | 60                       | 0.00                                | to                                                | 0.91                       | 177                                  | 78          | 60 |
| Potassium (K <sup>+</sup> )     | PM10                | AA                              | 0.0066                                                                                                      | 0.034    | 0.00                                                                                         | to | 2.39                       | 173                                                           | 89 | 68                       | 0.00                                | tp                                                | 1.81                       | 166                                  | 93          | 64 |
| Calcium (Ca <sup>++</sup> )     | PM2.5               | AA                              | 0.033                                                                                                       | 0.046    | 0.00                                                                                         | to | 0.38                       | 183                                                           | 42 | 29                       | 0.00                                | to                                                | 0.75                       | 178                                  | 38          | 28 |
| Calcium (Ca <sup>++</sup> )     | PM <sub>10</sub>    | AA                              | 0.033                                                                                                       | 0.041    | 0.00                                                                                         | to | 0.76                       | 177                                                           | 79 | 75                       | 0.00                                | to                                                | 1.34                       | 170                                  | 71          | 66 |
| Ammonium $(NH_4^+)$             | PM2.5               | AC                              | 0.066                                                                                                       | 0.096    | 0.00                                                                                         | to | 2.33                       | 178                                                           | 78 | 71                       | 0.00                                | to                                                | 1.96                       | 172                                  | 78          | 74 |
| Ammonium $(NH_4^+)$             | PM10                | AC                              | 0.066                                                                                                       | 0.149    | 0.00                                                                                         | to | 7.50                       | 167                                                           | 92 | 78                       | 0.00                                | to                                                | 2.63                       | 159                                  | 90          | 78 |
| Chloride (Cl <sup>°</sup> )     | PM2.5               | IC                              | 0.066                                                                                                       | 0.128    | 0.00                                                                                         | to | 2.59                       | 158                                                           | 23 | 16                       | 0.00                                | to                                                | 1.84                       | 151                                  | 25          | 13 |
| Chloride (Cl <sup>-</sup> )     | PM10                | IC                              | 0.066                                                                                                       | 0.131    | 0.00                                                                                         | to | 3.15                       | 148                                                           | 38 | 26                       | 0.00                                | to                                                | 1.85                       | 134                                  | 36          | 23 |
| Sulfate $(SO_4^{=})$            | PM2.5               | IC                              | 0.066                                                                                                       | 0.36     | 0.00                                                                                         | to | 4.27                       | 178                                                           | 94 | 78                       | 0.00                                | to                                                | 6.12                       | 171                                  | 92          | 78 |
| Sulfate (S0₄)                   | PM10                | IC                              | 0.066                                                                                                       | 0.18     | 0.00                                                                                         | to | 3.60                       | 166                                                           | 97 | 92                       | 0.00                                | to                                                | 4.85                       | 155                                  | 94          | 88 |
| Sulfur                          |                     |                                 |                                                                                                             |          |                                                                                              |    |                            |                                                               |    |                          |                                     |                                                   |                            |                                      |             |    |
| Dioxide (SO <sub>2</sub> )      | Gas                 | IC                              | 0.022                                                                                                       | 0.29     | 0.00                                                                                         | to | 2.96                       | 158                                                           | 73 | 46                       | 0.00                                | to                                                | 3.90                       | 154                                  | 71          | 42 |
| Nitrogen                        |                     |                                 |                                                                                                             |          |                                                                                              |    |                            |                                                               |    |                          |                                     |                                                   |                            |                                      |             |    |
| Dioxide (NO <sub>2</sub> )      | Gas                 | IC                              | 0.025                                                                                                       | 0.39     | 0.00                                                                                         | to | 18.11                      | 170                                                           | 15 | 14                       | 0.00                                | to                                                | 30.91                      | 162                                  | 22          | 20 |
| Ammonia (NH <sub>3</sub> )      | Gas                 | AC                              | 0.032                                                                                                       | 0.14     | 0.00                                                                                         | to | 13.96                      | 179                                                           | 98 | 89                       | 0.00                                | to                                                | 15.69                      | 172                                  | 88          | 80 |
| Nitrate $(NO_{3})$              | PM10                | IC                              | 0.066                                                                                                       | 0.104    | 0.00                                                                                         | to | 6.00                       | 166                                                           | 85 | 80                       | 0.00                                | to                                                | 4.91                       | 155                                  | 79          | 75 |
| Nitrate $(NO_{\overline{3}})$   | PM2.5               | IC                              | 0.066                                                                                                       | 0.116    | 0.00                                                                                         | to | 4.98                       | 178                                                           | 64 | 56                       | 0.00                                | to                                                | 4.47                       | 171                                  | 57          | 52 |
| Nitrate $(NO_{\overline{3}})$   | Undend              | luded                           |                                                                                                             |          |                                                                                              |    |                            |                                                               |    |                          |                                     |                                                   |                            |                                      |             |    |
|                                 | PM2.5               | IC                              | 0.034                                                                                                       | 0.41     | 0.00                                                                                         | to | 7.79                       | 183                                                           | 89 | 58                       | 0.00                                | to                                                | 3.38                       | 177                                  | 80          | 44 |
| Nitrate (NU3)                   | PM <sub>2.5</sub>   | IC                              | 0.034                                                                                                       | 0.34     | 0.00                                                                                         | to | 8.41                       | 180                                                           | 99 | 59                       | 0.00                                | to                                                | 10.63                      | 173                                  | 97          | 55 |
| Nitric                          | 2.0                 |                                 |                                                                                                             |          |                                                                                              |    |                            |                                                               |    |                          |                                     |                                                   |                            |                                      |             |    |
| Acid (HNO <sub>3</sub> )        | Gas                 | IC                              | 0.066                                                                                                       | 0.41     | 0.00                                                                                         | to | 9.80                       | 171                                                           | 63 | 47                       | 0.00                                | to                                                | 2.64                       | 163                                  | 44          | 21 |

÷
# Analytical Specification for Urban and Non-Urban Samples Collected from California Acid Deposition Monitoring Program (CADMP) Between May 3, 1988 and September 25, 1989

<sup>a</sup> IC: Ion Chromatography

AC: Automated Colorimetry

AA: Atomic Absorption Spectrophotometry

<sup>b</sup> Minimum Detectable Concentration (MDC) is the concentration at which instrument response equals the standard deviation of the response to a known concentration of zero.

<sup>c</sup> Lower Quantifiable Limit (LQL) equals the standard deviation of dynamic field blanks as determined from the CADMP sampling program.

<sup>d</sup> Urban sites include: Fresno, Sacramento, Collocated Sacramento, Bakersfield, Santa Barbara, Long Beach, Los Angeles, and Azusa.

e Assumes extractions of half filter in 10 ml for particle samples and extractions of entire filter in 10 ml for impregnated filters with an nominal volume of 15.5 m<sup>3</sup>.

<sup>f</sup>Non-urban sites include: Gasquet, Yosemite, and Sequoia.

between  $PM_{10}$  and  $PM_{2.5}$ . In the  $PM_{10}$  size fraction, only chloride was found to be below LQLs for more than 90% of the measurements. Since the major source of chloride is sea salt, the chloride contribution is usually low at inland sites such as Sacramento, Bakersfield, and Azusa.

Among the gases, urban nitric acid was measured in excess of the LQL for nearly 80% of the samples during daytime, but in only 25% of the samples during nighttime. For the nighttime samples, the measured concentrations exceeded the  $0.07 \ \mu g/m^3$  MDC for only 39% of the samples. Nitric acid is a photochemical endproduct with high deposition and reaction rates. This species appears to be present at very low levels after the sun sets. This is also reflected in the undenuded nylon backup filter data from which the nitric acid concentration is calculated, which exceeds the LQL for only 66% of the analyzed samples.

At the non-urban sites, the concentrations are substantially lower than at the urban sites and LQLs are exceeded for 60 to 90% of the samples for most species. Nitrogen dioxide is rarely detectable at these sites, presumably owing to the paucity of local motor vehicle traffic in the vicinity of the sampling sites. Sulfur dioxide,  $PM_{2.5}$  calcium,  $PM_{2.5}$  chloride, and  $PM_{10}$  chloride concentrations are not found above LQLs in more than 50% of the daytime or nighttime samples taken at these non-urban sites.

The implication of the results presented in Table 7-1 is that the sampling system is living up to expectations for most of the species measured. Nighttime nitric acid, some geologically related species in  $PM_{2.5}$ , and chloride in both  $PM_{2.5}$  and  $PM_{10}$  size fractions are found above the current LQLs in less than 50% of the measurements. The LQLs are still quite low, however, generally much less than 1  $\mu$ g/m<sup>3</sup>, and these species are not detected because their sources are distant from the sampling site, or because the relevant atmospheric chemistry does not produce them during the specified time period. Unless a case is made that lower LQLs are needed to assess adverse effects or to better understand the causes of the higher concentrations, there is no need to change sampling methods.

# 7.2 Collocated Sampling

The Sacramento monitoring site is equipped with an additional gas/particle sampling system which can be used to evaluate the reproducibility of the entire sampling and analysis process. This collocated sampling system is operated in a manner identical to that of the primary system. The two systems are located within 4 m of each other on the roof of the ARB monitoring laboratory at 13th and T Streets. Scatterplots, with linear regression statistics, are presented in Figures 7-1 through 7-4 to show the reproducibility which can be expected for Level II validated data as a function of different chemical species. The four scatterplots in each figure are grouped to facilitate the evaluation of differences between the collocated and primary values.

Reproducibility is considered to be acceptable when the correlation coefficient (r) exceeds 0.9, the slope is within two or three standard errors of unity, and the intercept is within two or three standard errors of zero. When a few points were identifiable as obvious outliers, the regression statistics



Figure 7-1. Comparison of Collocated Measurements of PM<sub>2.5</sub> and PM<sub>10</sub> Mass and Sodium Concentrations at Sacramento. Linear regression coefficients in parentheses were calculated with outliers removed.



Figure 7-2. Comparison of Collocated Measurements of PM<sub>2.5</sub> and PM<sub>10</sub> Calcium and Magnesium Concentrations at Sacramento.



Figure 7-3. Comparison of Collocated Measurements of PM<sub>2.5</sub> and PM<sub>10</sub> Teflon Nitrate, PM<sub>2.5</sub> Particulate Nitrate, and Nitric Acid Concentrations at Sacramento. Linear regression coefficients in parentheses were calculated with outliers removed.



Figure 7-4. Comparison of Collocated Measurements of PM<sub>2.5</sub> Sulfate, Sulfur Dioxide, Nitrogen Dioxide, and Ammonia Concentrations at Sacramento.

were re-calculated without these points, and the re-calculated values are displayed in parentheses. Most of the comparisons in Figures 7-1 through 7-4 meet these criteria for acceptable reproducibility. The exceptions reveal limitations in the measurement process.

All of the  $PM_{10}$  measurements are more reproducible than the  $PM_{2.5}$  measurements, as evidenced by a greater degree of scatter and lower correlation coefficients for  $PM_{2.5}$ . These samples are taken according to identical sampling and analysis procedures; these cannot be the cause of the discrepancy. Potential causes may be one or more of the following: 1) less precise flow rates in the non-denuded  $PM_{2.5}$  air stream of one or both sampling systems; 2) lower concentrations of the measured species; 3) different large particle penetration through the  $PM_{2.5}$  inlet; and/or 4) instability of the sample deposit.

The flow rate tests presented in Section 5 showed no biases on the nondenuded  $PM_{2.5}$  sampling ports for either the primary or the collocated sample. If such a bias did exist, it would affect all concentrations on the corresponding sampler in the same way, and the scatter in Figures 7-1 through 7-4 would exhibit similar patterns, which they do not. While less precise flow rates may be a cause, the evidence does not support this.

The  $PM_{2.5}$  calcium values have already been identified as being close to or less than LQLs, and this is evident in the comparison of data in Figure 7-2. The  $PM_{10}$  calcium values are not present at sufficient levels in the  $PM_{2.5}$  fraction to be reliably reproduced. This may also be a cause of variability at the lower concentrations of  $PM_{2.5}$  magnesium and sodium.

The size-selective inlet on the  $PM_{2.5}$  sampler is Teflon-coated and is not greased. Though it should be cleaned monthly, there were periods when this maintenance was not performed. This could allow some of the coarse particles to become re-entrained into the air stream and sampled on the filter. This may have caused some of the decrease in precision with respect to  $PM_{10}$ , which has an inlet with a much higher loading capacity than the Teflon-coated cyclone.

Stability of the deposit is probably a major cause of discrepancies between the collocated and primary  $PM_{2.5}$  nitrate concentrations, as shown in Figure 7-3. The first three panels in this figure show: 1)  $PM_{10}$  Teflon nitrate, which is nitrate on a Teflon filter through an aluminum  $PM_{10}$  inlet; 2)  $PM_{2.5}$  Teflon nitrate, which is nitrate on a Teflon filter through a Teflon-coated  $PM_{2.5}$  inlet; and 3)  $PM_{2.5}$  particulate nitrate, which is nitrate measured on a nylon filter after having been drawn through a Teflon-coated  $PM_{2.5}$  inlet and an aluminum nitric acid denuder.

The  $PM_{2.5}$  Teflon nitrate comparison shows much more scatter than any of the other comparisons, yet the  $PM_{2.5}$  particulate nitrate and  $PM_{10}$  Teflon nitrate values show good comparisons between primary and collocated measurements. This comparison confirms the suspicion that particulate nitrate dissociates from the Teflon filters in the primary and collocated samplers in different amounts, and that the deposit on the  $PM_{2.5}$  Teflon pre-filter is unstable with respect to nitrate, and possibly with respect to other species (such as ammonium and sodium) which react with nitrate. On the other hand, the  $PM_{10}$  Teflon nitrate appears to be very stable, and is approximately equivalent in concentration to the  $PM_{2.5}$ 

particulate nitrate. The alkaline soil particles present in the coarse particle fraction may serve the same purpose as the  $PM_{2.5}$  nylon filter by reacting with volatilized nitric acid, and the aluminum  $PM_{10}$  inlet may serve the same purpose as the  $PM_{2.5}$  denuder in removing nitric acid.

The nitric acid comparison shown in the last panel of Figure 7-3 shows four major outliers and a large number of samples near zero. As explained in Section 3, the nitric acid concentration is calculated from three separate measurements. If any one of these measurements is incorrect, or if any one of the samples has been mislabeled as day or night, then the nitric acid value will be affected. The nighttime nitric acid values congregate about the origin and are fairly randomly distributed, confirming the observation that many nighttime values are close to LQLs and are therefore inherently imprecise. Aside from the four outliers, the daytime values demonstrate a reasonably good reproducibility between the primary and collocated samplers.

Figure 7-4 presents the sulfate, sulfur dioxide, nitrogen dioxide, and ammonium comparisons. The sulfate scatter is similar to that observed for other measurements made on the  $PM_{2.5}$  Teflon filter. The gaseous data are repeatable, based on these collocated measurements.

These collocated analyses include samples taken between April 16 and September 25, 1989. These samplers are still being operated, and further analysis of new data along the lines presented here should be done at six-month intervals to determine the general applicability of these results. The collocated sampling plots presented in Figures 7-1 through 7-4 are similar to those observed for routine collocated sampling of  $PM_{10}$  using high volume samplers, even though the sampling system is more complex and the filter media are more difficult to handle. These data indicate that, for the most part, CADMP gas/particle data are precise, equivalent, and repeatable.

## 7.3 Statistical Summaries of CADMP Gas/Particle Data

The CADMP gas/particle data base contains over 30,000 individual chemical measurements. Table 7-2 presents annual arithmetic averages, standard deviations, maxima, and minima at each site for the measured species, particle size range, and diurnal sampling periods. The beginning and ending dates for samples included in each average are given since several sites were not on line by October, 1988. The chemical concentrations in these tables can be examined for similarities and differences among particle sizes, daytime and nighttime periods, and sampling sites.

#### 7.3.1 Particle Size

As expected,  $PM_{10}$  averages exceed the  $PM_{2.5}$  averages for those species with 50% or more samples which exceed LQLs. The  $PM_{10}$  maxima do not always exceed the  $PM_{2.5}$  maxima because there are different numbers of samples included in each data

- -- -----

### Table 7-2

# Statistical Summary of Gas/Particle Ambient Concentrations for Samples Taken from the Fourth Quarter of 1988 Through the Third Quarter of 1989

# Site Name: Gasquet (Measurement Period: March 17, 1989 through September 25, 1989)

|                                          |                  |         |     |            |          |              | Conc             | entrations | in μq/m <sup>3</sup> |   |           |          |            |           |         |
|------------------------------------------|------------------|---------|-----|------------|----------|--------------|------------------|------------|----------------------|---|-----------|----------|------------|-----------|---------|
|                                          |                  |         |     | Davtime (( | )601-180 | 0 PST)       | )                |            |                      |   | Niahttii  | me (1801 | -0600      | PST)      |         |
| <u>Species</u>                           | <u>Size</u>      | Average | e ± | Std. Dev.  | Min      | Max          | Number (         | of Samples | Average              | ± | Std. Dev. | Min      | <u>Max</u> | Number of | Samples |
| Particle Mass                            | PM2.5            | 3.84    | ±   | 3.06       | 0.00     | 15.60        | )                | 29         | 4.55                 | ± | 3.73      | 0.00     | 16.82      | 2 30      |         |
| Particle Mass                            | PM <sub>10</sub> | 7.78    | ±   | 3.62       | 2.90     | 16.88        | 3 <sup>-</sup> 3 | 29         | 7.43                 | ± | 4.93      | 0.00     | 22.29      | 9 27      |         |
| Sodium (Na <sup>+</sup> )                | PM2.5            | 0.18    | ±   | 0.21       | 0.00     | 1.03         | 3 ;              | 29         | 0.14                 | ± | 0.20      | 0.00     | 0.96       | 5 30      |         |
| Sodium (Na <sup>+</sup> )                | PM <sub>10</sub> | 0.64    | ±   | 0.56       | 0.056    | 2.93         | 3 1              | 29         | 0.49                 | ± | 0.42      | 0.0043   | 1.47       | 7 28      |         |
| Magnesium (Mg <sup>++</sup> )            | PM2.5            | 0.025   | ±   | 0.028      | 0.0041   | 0.13         | 3 :              | 29         | 0.022                | ± | 0.030     | 0.00     | 0.12       | 2 30      |         |
| Magnesium (Mg <sup>++</sup> )            | PM10             | 0.090   | ±   | 0.086      | 0.013    | 0.47         | ' :              | 29         | 0.069                | ± | 0.058     | 0.00     | 0.21       | l 28      |         |
| Potassium (K <sup>+</sup> )              | PM2 5            | 0.031   | ±   | 0.039      | 0.00     | 0.16         | i 1              | 29         | 0.061                | ± | 0.133     | 0.00     | 0.66       | 5 30      |         |
| Potassium (K <sup>+</sup> )              | PM10             | 0.071   | ±   | 0.072      | 0.00     | 0.38         | 3 1              | 29         | 0.089                | ± | 0.134     | 0.0072   | 0.70       | ) 28      |         |
| Calcium (Ca <sup>++</sup> )              | PM2 5            | 0.027   | ±   | 0.027      | 0.00     | 0.12         | 2 :              | 29         | 0.027                | ± | 0.026     | 0.00     | 0.14       | 4 30      |         |
| Calcium (Ca <sup>++</sup> )              | PM10             | 0.089   | ±   | 0.134      | 0.00     | 0.76         | 5 1              | 29         | 0.057                | ± | 0.045     | 0.00     | 0.16       | 5 28      |         |
| Ammonium (NH <sub>4</sub> <sup>+</sup> ) | PM2 5            | 0.15    | ±   | 0.12       | 0.00     | 0.44         | <b>ب</b> ا       | 28         | 0.16                 | ± | 0.18      | 0.00     | 0.79       | 9 29      |         |
| Ammonium (NH <sub>4</sub> )              | PM10             | 0.21    | ±   | 0.15       | 0.00     | 0.55         | 5 1              | 26         | 0.22                 | ± | 0.19      | 0.00     | 0.83       | 3 27      |         |
| Chloride (Cl <sup>2</sup> )              | PM2 5            | 0.14    | ±   | 0.24       | 0.00     | 0.90         | ) :              | 28         | 0.078                | ± | 0.165     | 0.00     | 0.8        | 29        |         |
| Chloride (Cl <sup>-</sup> )              | PM10             | 0.53    | ±   | 0.46       | 0.00     | 1.75         | 5 :              | 27         | 0.49                 | ± | 0.51      | 0.0006   | 1.78       | 3 25      |         |
| Sulfate $(SO_{4}^{-})$                   | PMos             | 0.84    | ±   | 0.45       | 0.071    | 1.84         | i :              | 28         | 0.80                 | ± | 0.58      | 0.00     | 2.62       | 2 29      |         |
| Sulfate $(SO_{\lambda}^{\pm})$           | PM10             | 0.88    | ±   | 0.46       | 0.14     | 2.08         | 3 3              | 27         | 0.83                 | ± | 0.72      | 0.012    | 2.97       | 7 25      |         |
| Sulfur                                   | 10               |         |     |            |          |              |                  |            |                      |   |           |          |            |           |         |
| Dioxide (SO <sub>2</sub> )               | Gas              | 0.057   | ±   | 0.053      | 0.00     | 0.16         | 5 ;              | 28         | 0.10                 | ± | 0.20      | 0.00     | 0.99       | 9 27      |         |
| Nitrogen                                 |                  |         |     |            |          |              |                  |            |                      |   |           |          |            |           |         |
| Dioxide (NO <sub>2</sub> )               | Gas              | 2.34    | ±   | 3.60       | 0.00     | 18.11        | . :              | 27         | 4.29                 | ± | 5.92      | 0.00     | 30.93      | 27        |         |
| Ammonia (NH <sub>z</sub> )               | Gas              | 0.83    | ±   | 1.45       | 0.0018   | 5.76         | ; ;              | 30         | 0.20                 | ± | 0.30      | 0.00     | 0.99       | 9 29      |         |
| Nitrate (NO <sub>7</sub> )               | PMan             | 0.32    | ±   | 0.20       | 0.0017   | 0.82         | 2                | 27         | 0.23                 | ± | 0.18      | 0.00     | 0.60       | ) 25      |         |
| Nitrate (NO <sub>7</sub> )               | PMa s            | 0.12    | ±   | 0.15       | 0.00     | 0.60         | )                | 27         | 0.11                 | ± | 0.14      | 0.00     | 0.44       | 4 29      |         |
| Nitrate (NO <sub>7</sub> )               | Undenuded        |         |     |            |          |              |                  |            |                      |   |           |          |            |           |         |
|                                          | PMo c            | 0.12    | +   | 0.11       | 0.00     | 0.36         | ; ;              | 28         | 0.055                | ŧ | 0.087     | 0.00     | 0.30       | 5 31      |         |
| Nitrate $(NO_{\overline{2}})$            | Denuded          |         | _   |            |          |              |                  |            |                      | - |           |          |            |           |         |
|                                          | PMa r            | 0.32    | +   | 0 14       | 0 14     | <b>7</b> 3 0 | ۰<br>۲           | 31         | 0 27                 | + | 0.16      | 0.042    | 0.7        | 5 31      |         |
| Nitric                                   |                  | 0102    | -   | 0141       | V· 4 1   | 0.00         |                  | ~ •        |                      | - | 0.10      |          |            |           |         |
| Acid (HNO <sub>3</sub> )                 | Gas              | 0.031   | ±   | 0.052      | 0.00     | 0.16         | 5 3              | 28         | 0.017                | ± | 0.044     | 0.00     | 0.13       | 7 29      |         |

7-12

# Statistical Summary of Gas/Particle Ambient Concentrations for Samples Taken from the Fourth Quarter of 1988 Through the Third Quarter of 1989

#### <u>Site Name:</u> <u>Yosemite (Measurement Period: October 6, 1988 through September 25, 1989)</u>

|                                          |                              |        |     |            |            |                | <u>Concentrations</u> | in µg/m <sup>3</sup> |   |           |            |            |                | _   |
|------------------------------------------|------------------------------|--------|-----|------------|------------|----------------|-----------------------|----------------------|---|-----------|------------|------------|----------------|-----|
|                                          |                              |        |     | Daytime (( | )601-18    | 00 PST)        |                       |                      |   | Nighttime | (1801-06   | 500 PST    | )              |     |
| <u>Species</u>                           | Size                         | Averag | e ± | Std. Dev.  | <u>Min</u> | <u>Max Num</u> | ber of Samples        | Average              | ± | Std. Dev. | <u>Min</u> | <u>Max</u> | Number of Samp | les |
| Particle Mass                            | PM2.5                        | 6.08   | ±   | 7.19       | 0.00       | 40.07          | 51                    | 6.97                 | ± | 13.79     | 0.00       | 90.29      | 51             |     |
| Particle Mass                            | PM <sub>10</sub>             | 10.32  | ±   | 8.54       | 0.00       | 35.77          | 45                    | 10.46                | ± | 15.60     | 0.00       | 99.31      | 45             |     |
| Sodium (Na <sup>+</sup> )                | PM2.5                        | 0.059  | ±   | 0.079      | 0.00       | 0.24           | 52                    | 0.059                | ± | 0.086     | 0.00       | 0.42       | 52             |     |
| Sodium (Na <sup>+</sup> )                | PM10                         | 0.12   | ±   | 0.12       | 0.00       | 0.51           | 46                    | 0.12                 | ± | 0.19      | 0.00       | 0.95       | i 46           |     |
| Magnesium (Mg <sup>++</sup> )            | PM2_5                        | 0.012  | ±   | 0.015      | 0.00       | 0.098          | 52                    | 0.011                | ± | 0.011     | 0.00       | 0.05       | i9 52          |     |
| Magnesium (Mg <sup>++</sup> )            | PM <sub>10</sub>             | 0.025  | ±   | 0.022      | 0.00       | 0.084          | 46                    | 0.024                | ± | 0.023     | 0.00       | 0.12       | 46             |     |
| Potassium (K <sup>+</sup> )              | PM2.5                        | 0.049  | ±   | 0.052      | 0.00       | 0.18           | 51                    | 0.053                | ± | 0.063     | 0.00       | 0.28       | 51             |     |
| Potassium (K <sup>+</sup> )              | PM <sub>10</sub>             | 0.057  | ±   | 0.063      | 0.00       | 0.24           | 43                    | 0.088                | ± | 0.224     | 0.00       | 1.44       | 43             |     |
| Calcium (Ca <sup>++</sup> )              | PM2_5                        | 0.042  | ±   | 0.057      | 0.00       | 0.38           | 52                    | 0.041                | ± | 0.046     | 0.00       | 0.25       | 52             |     |
| Calcium (Ca <sup>++</sup> )              | PM10                         | 0.089  | ±   | 0.084      | 0.00       | 0.37           | 46                    | 0.078                | ± | 0.067     | 0.00       | 0.22       | 46             |     |
| Ammonium (NH <sub>4</sub> <sup>+</sup> ) | PM2 5                        | 0.21   | ±   | 0.18       | 0.00       | 0.66           | 50                    | 0.28                 | ± | 0.22      | 0.00       | 0.76       | 51             |     |
| Ammonium (NH <sup>+</sup> )              | PM10                         | 0.48   | ±   | 1.12       | 0.00       | 7.50           | 43                    | 0.37                 | ± | 0.30      | 0.037      | 1.59       | 44             |     |
| Chloride (Cl <sup>-</sup> )              | PM2.5                        | 0.16   | ±   | 0.41       | 0.00       | 1.77           | 51                    | 0.07                 | ± | 0.20      | 0.00       | 1.34       | 50             |     |
| Chloride (Cl <sup>-</sup> )              | PM10                         | 0.13   | ±   | 0.38       | 0.00       | 1.53           | 43                    | 0.057                | ± | 0.131     | 0.00       | 0.79       | 41             |     |
| Sulfate (SO <sub>4</sub> )               | PM2.5                        | 0.69   | ±   | 0.59       | 0.00       | 2.12           | 50                    | 0.87                 | ± | 0.96      | 0.00       | 6.12       | 51             |     |
| Sulfate (SO <sub>4</sub> <sup>±</sup> )  | PM10                         | 0.72   | ±   | 0.57       | 0.00       | 2.41           | 41                    | 0.82                 | ± | 0.62      | 0.025      | 2.35       | 42             |     |
| Dioxide (SO <sub>2</sub> )               | Gas                          | 0.42   | ±   | 0.59       | 0.00       | 2.76           | 41                    | 0.32                 | ± | 0.34      | 0.00       | 1.08       | 41             |     |
| Nitrogen                                 |                              |        |     |            |            |                |                       |                      |   |           |            |            |                |     |
| Dioxide (NO <sub>2</sub> )               | Gas                          | 0.00   | ±   | 0.00       | 0.00       | 0.00           | 42                    | 0.017                |   | 0.110     | 0.00       | 0.71       | 41             |     |
| Ammonia (NH <sub>3</sub> )               | Gas                          | 1.54   | ±   | 2.26       | 0.09       | 13.96          | 46                    | 0.67                 | ± | 0.80      | 0.037      | 4.70       | 46             |     |
| Nitrate $(NO_{\overline{3}})$            | PM10                         | 0.25   | ±   | 0.24       | 0.00       | 1.11           | 41                    | 0.28                 | ± | 0.36      | 0.00       | 1.90       | 42             |     |
| Nitrate $(NO_{\overline{3}})$            | PM2.5                        | 0.17   | ±   | 0.15       | 0.00       | 0.67           | 50                    | 0.20                 | ± | 0.30      | 0.00       | 1.51       | 51             |     |
| Nitrate $(NO_{\overline{3}})$            | Undenuded                    |        |     |            |            |                |                       |                      |   |           |            |            |                |     |
| Nitrate (NOz)                            | <sup>PM</sup> 2.5<br>Denuded | 0.76   | ±   | 0.71       | 0.00       | 2.56           | 51                    | 0.36                 | ± | 0.31      | 0.00       | 1.23       | 51             |     |
| - بر                                     | PM2.5                        | 0.58   | ±   | 1.18       | 0.00       | 8.41           | 50                    | 0.44                 | ± | 0.37      | 0.00       | 1.62       | 50             |     |
| Nitric                                   |                              |        |     |            |            |                |                       |                      |   |           |            |            |                |     |
| Acid (HNO <sub>3</sub> )                 | Gas                          | 0.58   | ±   | 0.66       | 0.00       | 2.42           | 49                    | 0.18                 | ± | 0.28      | 0.00       | 1.16       | 50             |     |

. . . . .

# Statistical Summary of Gas/Particle Ambient Concentrations for Samples Taken from the Fourth Quarter of 1988 Through the Third Quarter of 1989

# Site Name: Sequoia (Measurement Period: October 6, 1988 through September 25, 1989)

|                                                   |                  |               |     |                   |            |               | Concentrations  | in µg/m <sup>3</sup> |    |           |         |        | <u>.</u>  |         |
|---------------------------------------------------|------------------|---------------|-----|-------------------|------------|---------------|-----------------|----------------------|----|-----------|---------|--------|-----------|---------|
|                                                   |                  |               |     | Daytime ((        | 601-180    | 00 PST)       |                 |                      |    | Nighttir  | ne (180 | 1-0600 | PST)      |         |
| <u>Species</u>                                    | <u>Size</u>      | <u>Averaq</u> | e ± | <u> Std. Dev.</u> | <u>Min</u> | <u>Max Nu</u> | mber of Samples | Average              | ±  | Std. Dev. | Min     | Max    | Number of | Samples |
| Particle Mass                                     | PM2.5            | 9.21          | ±   | 9.17              | 0.00       | 47.29         | 50              | 14.59                | ±  | 29.37     | 0.00    | 157.18 | 49        |         |
| Particle Mass                                     | PM10             | 16.00         | ±   | 14.45             | 0.00       | 72.25         | 52              | 19.56                | ±  | 33.28     | 0.00    | 176.60 | ) 51      |         |
| Sodium (Na <sup>+</sup> )                         | PM2.5            | 0.072         | ±   | 0.12              | 0.00       | 0.65          | 51              | 0.052                | ±  | 0.072     | 0.00    | 0.26   | 5 51      |         |
| Sodium (Na <sup>+</sup> )                         | PM10             | 0.16          | ±   | 0.18              | 0.00       | 0.86          | 52              | 0.10                 | ±  | 0.13      | 0.00    | 0.52   | 2 52      |         |
| Magnesium (Mg <sup>++</sup> )                     | PM2.5            | 0.012         | ±   | 0.012             | 0.00       | 0.048         | 51              | 0.01                 | ±  | 0.01      | 0.00    | 0.03   | 3 51      |         |
| Magnesium (Mg <sup>++</sup> )                     | PM10             | 0.032         | ±   | 0.028             | 0.00       | 0.098         | 52              | 0.025                | ±  | 0.025     | 0.00    | 0.12   | 2 52      |         |
| Potassium (K <sup>+</sup> )                       | PM2.5            | 0.077         | ±   | 0.079             | 0.00       | 0.33          | 51              | 0.12                 | ±  | 0.17      | 0.00    | 0.91   | . 51      |         |
| Potassium (K <sup>+</sup> )                       | PM10             | 0.15          | ±   | 0.34              | 0.00       | 2.39          | 51              | 0.15                 | ±  | 0.22      | 0.00    | 0.99   | 51        |         |
| Calcium (Ca <sup>++</sup> )                       | PM2.5            | 0.048         | ±   | 0.049             | 0.00       | 0.21          | 51              | 0.057                | ±  | 0.11      | 0.00    | 0.75   | 5 51      |         |
| Calcium (Ca <sup>++</sup> )                       | PM <sub>10</sub> | 0.14          | ±   | 0.14              | 0.00       | 0.72          | 52              | 0.12                 | ±  | 0.20      | 0.00    | 1.34   | 52        |         |
| Ammonium (NH <sub>4</sub> <sup>+</sup> )          | PM <sub>25</sub> | 0.52          | ±   | 0.55              | 0.00       | 2.33          | 50              | 0.40                 | ±  | 0.36      | 0.00    | 1.41   | . 47      |         |
| Ammonium (NH <sub>4</sub> )                       | PM10             | 0.60          | ±   | 0.59              | 0.00       | 2.80          | 49              | 0.43                 | ±  | 0.34      | 0.00    | 1.32   | 46        |         |
| Chloride (Cl <sup>T</sup> )                       | PM2.5            | 0.14          | ±   | 0.45              | 0.00       | 2.59          | 48              | 0.097                | ±  | 0.28      | 0.00    | 1.84   | 45        |         |
| Chloride (Cl <sup>°</sup> )                       | PM10             | 0.054         | ±   | 0.077             | 0.00       | 0.46          | 50              | 0.074                | ±  | 0.190     | 0.00    | 1.22   | . 47      |         |
| Sulfate (S0⊈)                                     | PM2.5            | 1.15          | ±   | 1.01              | 0.00       | 4.27          | 50              | 1.03                 | ±  | 0.79      | 0.00    | 3.24   | 46        |         |
| Sulfate (SO <sub>4</sub> <sup>I</sup> )<br>Sulfur | PM10             | 1.24          | ±   | 0.90              | 0.069      | 3.50          | 49              | 1.01                 | ±  | 0.77      | 0.00    | 2.77   | 46        |         |
| Dioxide (SO <sub>2</sub> )<br>Nitrogen            | Gas              | 0.74          | ±   | 0.82              | 0.00       | 2.58          | 49              | 0.47                 | ±  | 0.59      | 0.00    | 2.55   | 5 49      |         |
| Dioxide (NO <sub>2</sub> )                        | Gas              | 0.007         | ±   | 0.051             | 0.00       | 0.36          | 51              | 0.21                 | ±  | 0.70      | 0.00    | 3.87   | 50        |         |
| Ammonia (NH <sub>z</sub> )                        | Gas              | 1.66          | ±   | 1.86              | 0.00       | 8.31          | 54              | 1.18                 | ±  | 2.46      | 0.00    | 15.69  | 53        |         |
| Nitrate (NOz)                                     | PM <sub>10</sub> | 0.54          | ±   | 0.92              | 0.00       | 6.00          | 49              | 0.44                 | ±. | 0.51      | 0.00    | 2.12   | 46        |         |
| Nitrate $(NO_3)$                                  | PM2.5            | 0.47          | ±   | 0.92              | 0.00       | 4.98          | 50              | 0.39                 | ±  | 0.74      | 0.00    | 4.47   | 46        |         |
| Nitrate $(NO_{\overline{x}})$                     | PM2.5<br>Denuded | 0.93          | ±   | 0.86              | 0.00       | 3.28          | 51              | 0.36                 | ±  | 0.35      | 0.00    | 1.27   | 51        |         |
| · J·                                              | PM2.5            | 1.24          | ±   | 1.64              | 0.088      | 8.22          | 50              | 0.87                 | ±  | 1.56      | 0.00    | 10.63  | 49        |         |
| Acid (HNO <sub>3</sub> )                          | Gas              | 0.47          | ±   | 0.61              | 0.00       | 2.04          | 47              | 0.14                 | ±  | 0.27      | 0.00    | 1.35   | 42        |         |

# Statistical Summary of Gas/Particle Ambient Concentrations for Samples Taken from the Fourth Quarter of 1988 Through the Third Quarter of 1989

#### Site Name: Santa Barbara (Measurement Period: April 22, 1989 through September 25, 1989)

|                                          |                  |        |     |            |          |        | Concentrations    | <u>in μg/m<sup>3</sup></u> |   |           |          |       |                   |
|------------------------------------------|------------------|--------|-----|------------|----------|--------|-------------------|----------------------------|---|-----------|----------|-------|-------------------|
|                                          |                  |        |     | Davtime (( | 0601-180 | O PST) | ł                 |                            |   | Nightti   | ne (1801 | -0600 | PST)              |
| <u>Species</u>                           | Size             | Averag | e ± | Std. Dev.  | Min      | Max    | Number of Samples | Average                    | ŧ | Std. Dev. | Min      | Max   | Number of Samples |
| Particle Mass                            | PM2.5            | 9.88   | ±   | 4.36       | 3.35     | 23.59  | 25                | 7.88                       | ± | 5.01      | 0.00     | 18.1  | 6 22              |
| Particle Mass                            | PM10             | 25.17  | ±   | 10.75      | 2.33     | 45.36  | 5 25              | 20.28                      | ± | 7.68      | 6.04     | 35.5  | 1 27              |
| Sodium (Na <sup>+</sup> )                | PM2.5            | 0.48   | ±   | 0.39       | 0.022    | 1.40   | ) 27              | 0.30                       | ± | 0.27      | 0.00     | 0.8   | 1 22              |
| Sodium (Na <sup>+</sup> )                | PM10             | 2.23   | ±   | 1.76       | 0.21     | 6.00   | 26                | 2.14                       | ± | 1.42      | 0.42     | 5.5   | 9 27              |
| Magnesium (Mg <sup>++</sup> )            | PM2.5            | 0.060  | ±   | 0.047      | 0.0074   | 0.17   | 27                | 0.038                      | ± | 0.031     | 0.00     | 0.0   | 96 22             |
| Magnesium (Mg <sup>++</sup> )            | PM10             | 0.27   | ±   | 0.19       | 0.025    | 0.62   | 26                | 0.26                       | ŧ | 0.16      | 0.069    | 0.5   | 6 27              |
| Potassium (K <sup>+</sup> )              | PM2.5            | 0.047  | ±   | 0.026      | 0.011    | 0.10   | ) 27              | 0.035                      | ± | 0.026     | 0.00     | 0.0   | 91 22             |
| Potassium (K <sup>+</sup> )              | PM <sub>10</sub> | 0.13   | ±   | 0.07       | 0.0038   | 0.28   | 26                | 0.13                       | ± | 0.078     | 0.029    | 0.3   | 2 27              |
| Calcium (Ca <sup>++</sup> )              | PM2.5            | 0.045  | ±   | 0.032      | 0.0079   | 0.13   | 27                | 0.031                      | ± | 0.024     | 0.00     | 0.1   | 0 22              |
| Calcium (Ca <sup>++</sup> )              | PM10             | 0.28   | ±   | 0.13       | 0.083    | 0.48   | 26                | 0.18                       | ± | 0.091     | 0.032    | 0.3   | 3 27              |
| Ammonium (NH <sub>4</sub> <sup>+</sup> ) | PM2.5            | 0.97   | ±   | 0.64       | 0.21     | 2.96   | 26                | 0.94                       | ± | 0.74      | 0.00     | 2.3   | 9 21              |
| Ammonium (NH <sub>4</sub> )              | PM10             | 0.90   | ±   | 0.57       | 0.091    | 2.25   | 26                | 0.92                       | ± | 0.70      | 0.15     | 2.9   | 7 27              |
| Chloride (Cl <sup>°</sup> )              | PM2.5            | 0.18   | ±   | 0.63       | 0.00     | 3.24   | 26                | 0.15                       | ± | 0.48      | 0.00     | 2.3   | 0 22              |
| Chloride (Cl <sup>-</sup> )              | PM10             | 1.09   | ±   | 1.21       | 0.00     | 3.72   | 25 <sup>·</sup>   | 1.53                       | ± | 1.52      | 0.019    | 4.4   | 2 27              |
| Sulfate (SO <sub>4</sub> <sup>=</sup> )  | PM2.5            | 2.95   | ±   | 1.62       | 0.60     | 7.85   | 5 26              | 2.33                       | ± | 1.68      | 0.00     | 6.1   | 1 22              |
| Sulfate (SO₄ <sup>±</sup> )              | PM10             | 3.89   | ±   | 1.88       | 0.32     | 9.62   | 25                | 3.16                       | ± | 1.73      | 0.26     | 6.5   | 1 27              |
| Sulfur                                   |                  |        |     |            |          |        |                   |                            |   |           |          |       |                   |
| Dioxide (SO <sub>2</sub> )               | Gas              | 0.74   | ±   | 0.50       | 0.042    | 1.92   | 27                | 0.21                       | ± | 0.20      | 0.00     | 0.8   | 6 27              |
| Nitrogen                                 |                  |        |     |            |          |        |                   |                            |   |           |          |       |                   |
| Dioxide (NO <sub>2</sub> )               | Gas              | 12.46  | ±   | 9.66       | 0.00     | 39.70  | 24                | 14.82                      | ± | 13.31     | 0.00     | 61.4  | 2 24              |
| Ammonia (NH <sub>3</sub> )               | Gas              | 2.59   | ±   | 1.64       | 0.00     | 5.89   | 27                | 1.34                       | ± | 0.97      | 0.19     | 4.7   | 4 27              |
| Nitrate $(NO_{3})$                       | PM10             | 2.78   | ±   | 2.27       | 0.16     | 8.48   | 25                | 2.63                       | ± | 1.71      | 0.49     | 6.4   | 9 27              |
| Nitrate $(NO_{3})$                       | PM2.5            | 0.52   | ±   | 0.61       | 0.00     | 1.87   | 26                | 0.56                       | ± | 0.72      | 0.00     | 3.1   | 7 22              |
| Nitrate $(NO_{3})$                       | Undenude         | d      |     |            |          |        |                   |                            |   |           |          |       |                   |
| -                                        | PM2.5            | 2.35   | ±   | 1.35       | 0.36     | 6.58   | 27                | 0.56                       | ± | 0.62      | 0.00     | 2.8   | 5 27              |
| Nitrate (NO3)                            | Denuded          |        |     |            |          |        |                   |                            |   |           |          |       |                   |
|                                          | PM2.5            | 1.60   | ±   | 0.78       | 0.41     | 3.46   | 27                | 1.51                       | ± | 1.40      | 0.33     | 7.3   | 8 27              |
| Nitric                                   |                  |        |     |            |          |        |                   |                            |   |           |          |       |                   |
| Acid (HNO <sub>3</sub> )                 | Gas              | 1.34   | ±   | 0.70       | 0.00     | 3.18   | 26                | 0.25                       | ± | 0.74      | 0.00     | 2.8   | 6 22              |

÷

•

# Statistical Summary of Gas/Particle Ambient Concentrations for Samples Taken from the Fourth Quarter of 1988 Through the Third Quarter of 1989

~

#### Site Name: Fremont (Measurement Period: October 6, 1988 through September 25, 1989)

|                                          |                  |        |     |             |            |        | Concentrations    | in μg/m <sup>3</sup> |   |                  |          |       |                   |
|------------------------------------------|------------------|--------|-----|-------------|------------|--------|-------------------|----------------------|---|------------------|----------|-------|-------------------|
|                                          |                  |        |     | _Daytime (C | 601-180    | 0 PST  | )                 |                      |   | Nighttime        | (1801-06 | 00 PS | T).               |
| <u>Species</u>                           | Size             | Averag | e ± | Std. Dev.   | <u>Min</u> | Max    | Number of Samples | Average              | ± | <u>Std. Dev.</u> | Min      | Max   | Number of Samples |
| Particle Mass                            | PM2.5            | 16.31  | ±   | 14.54       | 0.55       | 68.62  | 2 53              | 14.20                | ± | 14.04            | 0.49     | 58.8  | 9 55              |
| Particle Mass                            | PM10             | 29.48  | ±   | 17.98       | 4.55       | 82.14  | 4 55              | 26.94                | ± | 18.39            | 3.28     | 89.78 | 8 55              |
| Sodium (Na <sup>+</sup> )                | PM2.5            | 0.30   | ±   | 0.27        | 0.00       | 1.14   | 4 53              | 0.29                 | ± | 0.30             | 0.00     | 1.3   | 7 55              |
| Sodium (Na <sup>+</sup> )                | PM10             | 1.28   | ±   | 1.01        | 0.00       | 3.91   | L 55              | 1.48                 | ± | 1.40             | 0.00     | 5.0   | 56 55             |
| Magnesium (Mg <sup>++</sup> )            | PM2.5            | 0.038  | ±   | 0.032       | 0.00       | 0.13   | 3 53              | 0.036                | ± | 0.037            | 0.00     | 0.1   | 6 55              |
| Magnesium (Mg <sup>++</sup> )            | PM <sub>10</sub> | 0.18   | ±   | 0.13        | 0.0033     | 0.49   | 9 55              | 0.20                 | ± | 0.18             | 0.0051   | 0.78  | 8 55              |
| Potassium (K <sup>+</sup> )              | PM2.5            | 0.067  | ±   | 0.069       | 0.00       | 0.27   | 7 53              | 0.083                | ± | 0.089            | 0.00     | 0.3   | 5 55              |
| Potassium (K <sup>+</sup> )              | PM <sub>10</sub> | 0.14   | ±   | 0.089       | 0.00       | 0.38   | 3 54              | 0.17                 | ± | 0.13             | 0.00     | 0.6   | 4 54              |
| Calcium (Ca <sup>++</sup> )              | PM2.5            | 0.050  | ±   | 0.034       | 0.00       | 0.14   | 53                | 0.034                | ± | 0.030            | 0.00     | 0.1   | 7 55              |
| Calcium (Ca <sup>++</sup> )              | PM10             | 0.31   | ±   | 0.17        | 0.0011     | 0.66   | 5 55              | 0.20                 | ± | 0.13             | 0.019    | 0.5   | 2 55              |
| Ammonium (NH <sub>4</sub> )              | PM2.5            | 0.72   | ±   | 1.10        | 0.014      | 4.38   | 3 53              | 0.88                 | ± | 1.15             | 0.00     | 5.4   | 1 55              |
| Ammonium (NH <sub>4</sub> <sup>+</sup> ) | PM <sub>10</sub> | 1.19   | ±   | 1.60        | 0.074      | 6.58   | 3 53              | 1.11                 | ± | 1.44             | 0.084    | 7.30  | 8 53              |
| Chloride (Cl <sup>-</sup> )              | PM2.5            | 0.16   | ±   | 0.17        | 0.00       | 0.67   | 52                | 0.26                 | ± | 0.32             | 0.00     | 1.4   | 5 54              |
| Chloride (Cl <sup>^</sup> )              | PM <sub>10</sub> | 0.96   | ±   | 1.18        | 0.00       | 4.39   | 53                | 1.98                 | ± | 2.38             | 0.00     | 9.74  | 4 54              |
| Sulfate $(SO_4^{=})$                     | PM2.5            | 1.58   | ±   | 1.21        | 0.00       | 5.02   | 2 53              | 1.43                 | ± | 0.97             | 0.20     | 4.7   | 4 55              |
| Sulfate $(SO_4^{\pm})$                   | PM <sub>10</sub> | 2.10   | ±   | 1.40        | 0.40       | 6.28   | 3 53              | 1.93                 | ± | 1.21             | 0.00     | 6.4   | 2 53              |
| Sulfur                                   |                  |        |     |             |            |        |                   |                      |   |                  |          |       |                   |
| Dioxide (SO <sub>2</sub> )               | Gas              | 1.73   | ±   | 1.30        | 0.24       | 5.58   | 52                | 0.57                 | ± | 0.56             | 0.11     | 2.58  | 8 51              |
| Nitrogen                                 |                  |        |     |             |            |        |                   |                      |   |                  |          |       |                   |
| Dioxide (NO <sub>2</sub> )               | Gas              | 33.33  | ±   | 23.00       | 0.16       | 103.32 | 2 56              | 33.24                | ± | 22.98            | 0.00     | 99.43 | 3 57              |
| Ammonia (NH3)                            | Gas              | 5.14   | ±   | 3.01        | 0.00       | 12.44  | 57                | 2.98                 | ± | 2.68             | 0.77     | 17.93 | 2 57              |
| Nitrate $(NO_3)$                         | PM10             | 3.82   | ±   | 4.48        | 0.00       | 21.52  | 2 53              | 3.30                 | ± | 3.99             | 0.00     | 22.03 | 3 53              |
| Nitrate $(NO_3)$                         | PM2.5            | 2.52   | ±   | 3.64        | 0.00       | 16.48  | 3 53              | 2.07                 | ± | 3.14             | 0.00     | 16.89 | 9 55              |
| Nitrate $(NO_{3})$                       | Undenuded        | 1      |     |             |            |        |                   |                      |   |                  |          |       |                   |
| Nitrate (NO <sup>2</sup> )               | PM2.5<br>Denuded | 2.14   | ±   | 2.39        | 0.15       | 12.86  | 5 55              | 0.40                 | t | 0.65             | 0.00     | 4.8   | 6 57              |
| · • • •                                  | PM2 5            | 3.89   | ±   | 4.18        | 0.00       | 21.65  | 5 53              | 2.77                 | ± | 3.33             | 0.33     | 16.0  | 2 56              |
| Nitric                                   | <b>L</b> .J      |        |     |             |            |        |                   |                      |   |                  |          |       |                   |
| Acid (HNO <sub>3</sub> )                 | Gas              | 1.00   | ±   | 2.36        | 0.00       | 15.55  | 5 50              | 0.15                 | ± | 0.63             | 0.00     | 4.3   | 2 53              |

# Statistical Summary of Gas/Particle Ambient Concentrations for Samples Taken from the Fourth Quarter of 1988 Through the Third Quarter of 1989

#### Site Name: Sacramento (Measurement Period: October 6, 1988 through September 25, 1989)

<u>Concentrations in  $\mu g/m^3$ </u>

|                                          |                  |               |     | Daytime (( | 601-180    | 0 PST)     |                   |         |            | Nighttime (      | 1801-00    | 500 PS1    | r)                |
|------------------------------------------|------------------|---------------|-----|------------|------------|------------|-------------------|---------|------------|------------------|------------|------------|-------------------|
| <u>Species</u>                           | Size             | <u>Averag</u> | e ± | Std. Dev.  | <u>Min</u> | <u>Max</u> | Number of Samples | Average | _ <u>±</u> | <u>Std. Dev.</u> | <u>Min</u> | <u>Max</u> | Number of Samples |
| Particle Mass                            | PM2.5            | 14.96         | ±   | 14.02      | 1.80       | 85.62      | 2 52              | 16.05   | ±          | 19.35            | 0.70       | 87.57      | 7 56              |
| Particle Mass                            | PM10             | 28.04         | ±   | 18.62      | 6.42       | 114.86     | 5 52              | 29.46   | ±          | 27.04            | 2.06       | 119.23     | 3 52              |
| Sodium (Na <sup>+</sup> )                | PM2.5            | 0.21          | ±   | 0.23       | 0.00       | 0.84       | 50                | 0.21    | ±          | 0.25             | 0.00       | 1.06       | 5 54              |
| Sodium (Na <sup>+</sup> )                | PM10             | 0.63          | ±   | 0.79       | 0.00       | 3.63       | 52                | 0.81    | ±          | 0.91             | 0.00       | 3.39       | 50                |
| Magnesium (Mg <sup>++</sup> )            | PM2.5            | 0.028         | ±   | 0.028      | 0.00       | 0.09       | 9 55              | 0.028   | ±          | 0.028            | 0.00       | 0.13       | 3 55              |
| Magnesium (Mg <sup>++</sup> )            | PM10             | 0.10          | ±   | 0.09       | 0.0051     | 0.37       | 52                | 0.12    | ±          | 0.11             | 0.006      | 0.48       | 3 50              |
| Potassium (K <sup>+</sup> )              | PM2.5            | 0.10          | ±   | 0.12       | 0.00       | 0.69       | 55                | 0.11    | ±          | 0.15             | 0.00       | 0.80       | ) 55              |
| Potassium (K <sup>+</sup> )              | PM <sub>10</sub> | 0.16          | ±   | 0.13       | 0.019      | 0.57       | 50                | 0.19    | ±          | 0.15             | 0.014      | 0.70       | ) 48              |
| Calcium (Ca <sup>++</sup> )              | PM2.5            | 0.054         | ±   | 0.052      | 0.00       | 0.28       | 55                | 0.033   | ±          | 0.033            | 0.00       | 0.17       | 54                |
| Calcium (Ca <sup>++</sup> )              | PM10             | 0.20          | ±   | 0.12       | 0.0012     | 0.53       | 52                | 0.16    | ±          | 0.10             | 0.00       | 0.48       | 3 50              |
| Ammonium (NH <sub>4</sub> <sup>+</sup> ) | PM2.5            | 1.12          | ±   | 1.71       | 0.066      | 10.13      | 52                | 1.17    | ±          | 1.58             | 0.069      | 6.60       | ) 54              |
| Ammonium (NH₄)                           | PM10             | 1.33          | ±   | 2.18       | 0.00       | 12.28      | 46                | 1.44    | ±          | 2.39             | 0.00       | 11.88      | 3 44              |
| Chloride (Cl <sup>®</sup> )              | PM2.5            | 0.11          | ±   | 0.28       | 0.00       | 1.48       | 51                | 0.14    | ±          | 0.27             | 0.00       | 1.27       | 51                |
| Chloride (Cl <sup>-</sup> )              | PM10             | 0.28          | ±   | 0.47       | 0.00       | 2.03       | 47                | 0.75    | ±          | 1.09             | 0.00       | 5.67       | 46                |
| Sulfate (SO <sub>4</sub> <sup>=</sup> )  | PM2.5            | 1.39          | ±   | 0.90       | 0.00       | 4.09       | 52                | 1.41    | ±          | 1.00             | 0.00       | 4.53       | 3 54              |
| Sulfate (S0₄)<br>Sulfur                  | <sup>PM</sup> 10 | 1.64          | ±   | 0.94       | 0.44       | 4.38       | 45                | 1.85    | ŧ          | 1.21             | 0.00       | 5.14       | 43                |
| Dioxide (SO <sub>2</sub> )               | Gas              | 2.30          | ±   | 2.05       | 0.24       | 12.39      | 48                | 1.70    | ±          | 1.83             | 0.12       | 7.28       | 5 49              |
| Nitrogen                                 |                  |               |     |            |            |            |                   |         |            |                  |            |            |                   |
| Dioxide (NO <sub>2</sub> )               | Gas              | 29.12         | ±   | 16.00      | 0.59       | 62.11      | 51                | 39.26   | t          | 26.88            | 1.41       | 127.25     | 5 49              |
| Ammonia (NH <sub>3</sub> )               | Gas              | 12.01         | ±   | 5.86       | 4.63       | 32.12      | 54                | 9.61    | ±          | 5.42             | 1.41       | 30.09      | 9 54              |
| Nitrate (NO <sub>3</sub> )               | <sup>PM</sup> 10 | 3.70          | ±   | 6.34       | 0.00       | 37.91      | 46                | 4.29    | ±          | 6.56             | 0.29       | 33.68      | 3 43              |
| Nitrate (NOz)                            | PM2.5            | 2.32          | ±   | 4.73       | 0.00       | 27.64      | 53                | 2.62    | ±          | 4.46             | 0.014      | 18.86      | 5 54              |
| Nitrate $(NO_{\overline{3}})$            | Undenudeo        | ł             |     |            |            |            |                   |         |            |                  |            |            |                   |
| Nitrate (NO <sub>z</sub> )               | PM2.5<br>Denuded | 2.53          | ±   | 2.24       | 0.024      | 9.08       | 54                | 0.48    | ±          | 0.76             | 0.031      | 5.75       | 5 54              |
| · · · ·                                  | PM2.5            | 3.71          | ±.  | 5.06       | 0.27       | 29.02      | 52                | 3.24    | ±          | 5.21             | 0.11       | 30.51      | 51                |
| Nitric                                   |                  |               |     |            |            |            |                   |         |            |                  |            | _          |                   |
| Acid                                     | Gas              | 1.08          | ±   | 1.17       | 0.00       | 4.21       | 49                | 0.45    | ±          | 1.28             | 0.00       | 7.2        | 51                |

# Statistical Summary of Gas/Particle Ambient Concentrations for Samples Taken from the Fourth Quarter of 1988 Through the Third Quarter of 1989

## Site Name: Collocated Sacramento (Measurement Period: April 16, 1989 through September 25, 1989)

|                                          |                  |                |   |                  |            |       | Concentrations    | in µg/m <sup>3</sup> |   |           |            |            |                  |         |
|------------------------------------------|------------------|----------------|---|------------------|------------|-------|-------------------|----------------------|---|-----------|------------|------------|------------------|---------|
|                                          |                  |                |   | Daytime ((       | )601-180   | 0 PST | )                 |                      |   | Nighttime | (1801-06)  | 00 PST     | )                |         |
| <u>Species</u>                           | <u>Size</u>      | <u>Average</u> | ± | <u>Std. Dev.</u> | <u>Min</u> | Max   | Number of Samples | Average              | ţ | Std. Dev. | <u>Min</u> | <u>Max</u> | <u>Number of</u> | Samples |
| Particle Mass                            | PM2.5            | 9.94           | ± | 4.66             | 3.88       | 18.4  | 25                | 8.32                 | ± | 3.92      | 2.01       | 17.22      | 23               |         |
| Particle Mass                            | PM <sub>10</sub> | 24.26          | ± | 12.80            | 8.10       | 57.89 | 27                | 17.88                | ± | 7.53      | 2.44       | 35.36      | 25               |         |
| Sodium (Na <sup>+</sup> )                | PM2.5            | 0.34           | ± | 0.29             | 0.0081     | 0.94  | 22                | 0.40                 | ± | 0.34      | 0.031      | 1.13       | 21               |         |
| Sodium (Na <sup>+</sup> )                | PM10             | 1.00           | ± | 0.82             | 0.00       | 2.8   | 5 25              | 1.42                 | ± | 1.00      | 0.22       | 3.54       | 24               |         |
| Magnesium (Mg <sup>++</sup> )            | PM2.5            | 0.045          | ± | 0.032            | 0.011      | 0.11  | 25                | 0.051                | ± | 0.039     | 0.0087     | 0.14       | 22               |         |
| Magnesium (Mg <sup>++</sup> )            | PM10             | 0.15           | ± | 0.099            | 0.035      | 0.39  | 25                | 0.19                 | ± | 0.12      | 0.049      | 0.43       | 24               |         |
| Potassium (K <sup>+</sup> )              | PM2.5            | 0.083          | ± | 0.072            | 0.00       | 0.26  | 5 25              | 0.075                | ± | 0.092     | 0.00       | 0.41       | 22               |         |
| Potassium (K <sup>+</sup> )              | PM <sub>10</sub> | 0.13           | ± | 0.098            | 0.00       | 0.34  | 25                | 0.13                 | ± | 0.11      | 0.00       | 0.47       | 24               |         |
| Calcium (Ca <sup>++</sup> )              | PM2.5            | 0.077          | ± | 0.052            | 0.021      | 0.29  | 25                | 0.050                | ± | 0.048     | 0.0039     | 0.24       | 22               |         |
| Calcium (Ca <sup>++</sup> )              | PM10             | 0.24           | ± | 0.13             | 0.074      | 0.51  | 26                | 0.17                 | ± | 0.07      | 0.059      | 0.28       | 24               |         |
| Ammonium (NH <sub>4</sub> <sup>+</sup> ) | PM2.5            | 0.59           | ± | 0.44             | 0.00       | 1.59  | 23                | 0.63                 | ± | 0.32      | 0.17       | 1.15       | 20               |         |
| Ammonium (NH <sub>4</sub> )              | PM10             | 0.49           | ± | 0.31             | 0.033      | 1.40  | 26                | 0.51                 | ± | 0.33      | 0.00       | 1.27       | 26               |         |
| Chloride (Cl <sup>2</sup> )              | PM2 5            | 0.064          | ± | 0.084            | 0.00       | 0.30  | ) 23              | 0.15                 | ± | 0.23      | 0.00       | 1.02       | 22               |         |
| Chloride (Cl <sup>-</sup> )              | PM10             | 0.34           | ± | 0.40             | 0.004      | 1.56  | 5 25              | 1.01                 | ± | 0.94      | 0.012      | 3.65       | 24               |         |
| Sulfate (S0₄)                            | PM2 5            | 1.54           | ± | 0.64             | 0.55       | 3.09  | 23                | 1.75                 | ± | 0.83      | 0.66       | 3.17       | 23               |         |
| Sulfate (SO <mark>≟</mark> )<br>Sulfur   | PM10             | 2.02           | ± | 1.21             | 0.51       | 6.33  | 25                | 1.97                 | ± | 0.91      | 0.60       | 3.74       | 25               |         |
| Dioxide (SO <sub>2</sub> )<br>Nitrogen   | Gas              | 2.98           | ± | 1.84             | 0.87       | 8.35  | 5 25              | 2.25                 | ± | 1.76      | 0.34       | 7.16       | 26               |         |
| Dioxide (NO <sub>2</sub> )               | Gas              | 21.28          | ± | 16.64            | 0.00       | 57.99 | 23                | 29.24                | ± | 20.36     | 0.00       | 70.35      | 21               |         |
| Ammonia (NHz)                            | Gas              | 13.39          | ± | 5.85             | 5.16       | 33.05 | 5 27              | 9.74                 | ± | 5.10      | 1.52       | 23.96      | 26               |         |
| Nitrate (NOz)                            | PM10             | 1.58           | ± | 1.25             | 0.39       | 4.77  | 25                | 1.73                 | ± | 1.22      | 0.29       | 4.93       | 25               |         |
| Nitrate (NO <sub>z</sub> )               | PMos             | 0.55           | ± | 0.35             | 0.056      | 1.42  | 25                | 0.63                 | ± | 0.44      | 0.16       | 1.56       | 23               |         |
| Nitrate (NOz)                            | Undenuded        |                |   |                  |            |       |                   |                      |   |           |            |            |                  |         |
| Nitrate (NO <sub>2</sub> )               | PM2.5<br>Denuded | 3.40           | t | 2.41             | 0.55       | 10.56 | 5 25              | 0.44                 | ± | 0.26      | 0.058      | 1.19       | 23               |         |
|                                          | PM2.5            | 1.77           | ± | 1.26             | 0.47       | 5.54  | 24                | 1.23                 | ± | 0.49      | 0.52       | 2.15       | 22               |         |
| Nitric<br>Acid (HNO-)                    | Gas              | 2 23           | + | 1 63             | 0 00       | 5.64  | 25                | 0 16                 | + | 0.32      | 0 00       | 1 56       | 24               |         |
| Acia (moz)                               | uas              | 6.60           | I | 1.05             | v. vv      | 5.04  | - 25              | 0.10                 | T | 0.02      | 0.00       | 1.00       | ۴.4              |         |

....

## Statistical Summary of Gas/Particle Ambient Concentrations for Samples Taken from the Fourth Quarter of 1988 Through the Third Quarter of 1989

#### <u>Site Name:</u> <u>Bakersfield (Measurement Period: October 6, 1988 through September 25, 1989)</u>

|                                          |                  |        |     |            | <u></u> "  |        | Concentrations    | in µg/m <sup>3</sup> |    |           |         |         |              |       |
|------------------------------------------|------------------|--------|-----|------------|------------|--------|-------------------|----------------------|----|-----------|---------|---------|--------------|-------|
|                                          |                  |        |     | Daytime (C | 601-180    | O PST) |                   |                      |    | Nighttime | (1801-0 | 600 PST | )            |       |
| <u>Species</u>                           | <u>Size</u>      | Averag | e ± | Std. Dev.  | <u>Min</u> | Max    | Number of Samples | Average              | ±. | Std. Dev. | Min     | Max     | Number of Sa | mples |
| Particle Mass                            | PM2.5            | 37.50  | ±   | 28.31      | 1.10       | 132.54 | 47                | 40.92                | ±  | 37.97     | 4.27    | 187.53  | 48           |       |
| Particle Mass                            | PM <sub>10</sub> | 56.28  | ±   | 32.97      | 1.32       | 154.92 | 51                | 69.06                | ±  | 44.73     | 7.81    | 196.74  | 50           |       |
| Sodium (Na <sup>+</sup> )                | PM2.5            | 0.25   | ±   | 0.31       | 0.00       | 1.92   | 48                | 0.22                 | ±  | 0.26      | 0.00    | 1.43    | 49           |       |
| Sodium (Na <sup>+</sup> )                | PM10             | 0.44   | ±   | 0.33       | 0.019      | 1.79   | 52                | 0.48                 | ±  | 0.32      | 0.072   | 1.50    | 51           |       |
| Magnesium (Mg <sup>++</sup> )            | PM2.5            | 0.072  | ±   | 0.068      | 0.00       | 0.35   | 48                | 0.073                | ±  | 0.083     | 0.00    | 0.35    | 49           |       |
| Magnesium (Mg <sup>++</sup> )            | PM <sub>10</sub> | 0.13   | ±   | 0.095      | 0.0022     | 0.57   | 52                | 0.17                 | ±  | 0.13      | 0.011   | 0.71    | 51           |       |
| Potassium (K <sup>+</sup> )              | PM2.5            | 0.17   | ±   | 0.12       | 0.00       | 0.48   | 47                | 0.22                 | ±  | 0.22      | 0.00    | 0.99    | 48           |       |
| Potassium (K <sup>+</sup> )              | PM <sub>10</sub> | 0.24   | ±   | 0.16       | 0.011      | 0.74   | 48                | 0.36                 | ±  | 0.29      | 0.00    | 1.51    | 47           |       |
| Calcium (Ca <sup>++</sup> )              | PM2 5            | 0.44   | ±   | 0.45       | 0.00       | 2.00   | 48                | 0.43                 | ±  | 0.57      | 0.00    | 2.34    | 49           |       |
| Calcium (Ca <sup>++</sup> )              | PM <sub>10</sub> | 0.75   | ±   | 0.52       | 0.03       | 2.16   | 52                | 1.02                 | ±  | 0.70      | 0.053   | 3.50    | 51           |       |
| Ammonium (NH <sub>4</sub> <sup>+</sup> ) | PM2 5            | 2.50   | ±   | 3.90       | 0.00       | 18.46  | 46                | 2.62                 | ±  | 4.28      | 0.11    | 24.64   | 48           |       |
| Ammonium (NH <sub>4</sub> )              | PM10             | 3.08   | ±   | 5.24       | 0.039      | 26.43  | 47                | 2.95                 | ±  | 4.63      | 0.26    | 22.47   | 48           |       |
| Chloride (Cl <sup>7</sup> )              | PM2 5            | 0.083  | ±   | 0.13       | 0.00       | 0.63   | 43                | 0.17                 | ±  | 0.38      | 0.00    | 1.88    | 46           |       |
| Chloride (Cl <sup>®</sup> )              | PM10             | 0.16   | ±   | 0.30       | 0.00       | 1.83   | 47                | 0.32                 | ±  | 0.58      | 0.00    | 2.94    | 49           |       |
| Sulfate (SO₄)                            | PM2 5            | 3.00   | ±   | 2.12       | 0.095      | 11.03  | 44                | 2.88                 | ±  | 1.75      | 0.12    | 10.65   | 47           |       |
| Sulfate (SO <sub>4</sub> )<br>Sulfur     | PM10             | 3.39   | ±   | 2.92       | 0.00       | 15.53  | 47                | 3.08                 | ±  | 2.15      | 0.00    | 10.36   | 48           |       |
| Dioxide (SO <sub>2</sub> )               | Gas              | 7.19   | ±   | 3.77       | 0.00       | 16.68  | 46                | 5.54                 | ±  | 3.99      | 1.06    | 18.78   | 46           |       |
| Nitrogen                                 |                  |        |     |            |            |        |                   |                      |    |           |         |         |              |       |
| Dioxide (NO <sub>2</sub> )               | Gas              | 28.09  | ±   | 15.85      | 0.76       | 79.44  | 50                | 52.89                | ±  | 29.22     | 0.83    | 143.04  | 50           |       |
| Ammonia (NHz)                            | Gas              | 16.09  | ±   | 7.58       | 1.80       | 38.33  | 51                | 13.31                | ±  | 6.91      | 1.52    | 25.98   | 51           |       |
| Nitrate (NOz)                            | PM10             | 3.90   | ±   | 6.19       | 0.00       | 31.56  | 47                | 4.91                 | ±  | 7.07      | 0.00    | 39.57   | 48           |       |
| Nitrate (NO <sub>7</sub> )               | PMas             | 3.31   | ±   | 5.10       | 0.00       | 21.83  | 44                | 3.62                 | ±  | 5.22      | 0.00    | 29.95   | 47           |       |
| Nitrate (NO <sub>2</sub> )               | Undenudeo        | 1      |     |            |            |        |                   |                      |    |           |         |         |              |       |
| Nitrate $(NO_{\overline{2}})$            | PM2.5<br>Denuded | 6.48   | ±   | 4.78       | 0.25       | 22.23  | 49                | 2.48                 | ±  | 5.45      | 0.11    | 31.64   | 46           |       |
| ۰. ر.                                    | PM2 5            | 7.85   | ±   | 10.04      | 0.27       | 49.27  | 48                | 6.41                 | ±  | 9.68      | 0.38    | 51.67   | 46           |       |
| Nitric                                   | 2.3              |        |     |            |            |        |                   |                      |    |           |         |         |              |       |
| Acid (HNO <sub>3</sub> )                 | Gas              | 3.37   | ±   | 3.01       | 0.00       | 10.60  | 41                | 0.72                 | t  | 1.13      | 0.00    | 4.21    | 41           |       |

7-19

.....

.

# Statistical Summary of Gas/Particle Ambient Concentrations for Samples Taken from the Fourth Quarter of 1988 Through the Third Quarter of 1989

#### Site Name: Long Beach (Measurement Period: October 6, 1988 through September 25, 1989)

|                                          |                  |               |     |           |            |               | Concentrations    | in $\mu g/m^3$ |   |           |            |                 |                   |
|------------------------------------------|------------------|---------------|-----|-----------|------------|---------------|-------------------|----------------|---|-----------|------------|-----------------|-------------------|
|                                          |                  |               |     | Daytime ( | 0601-18    | <u>00 PST</u> | )                 |                |   | Nighttime | (1801-06   | 500 <u>PS</u> 1 | []                |
| <u>Species</u>                           | Size             | <u>Averaq</u> | e ± | Std. Dev. | <u>Min</u> | Max           | Number of Samples | <u>Average</u> | t | Std. Dev. | <u>Min</u> | Max             | Number of Samples |
| Particle Mass                            | PM2.5            | 24.48         | ±   | 17.25     | 2.60       | 78.11         | L 56              | 22.80          | ± | 19.31     | 3.76       | 93.92           | 2 56              |
| Particle Mass                            | PM <sub>10</sub> | 48.78         | ±   | 23.24     | 10.72      | 115.87        | 7 56              | 42.62          | ± | 26.98     | 0.00       | 137.03          | 3 56              |
| Sodium (Na <sup>+</sup> )                | PM2.5            | 0.28          | ±   | 0.26      | 0.00       | 1.47          | / 55              | 0.24           | ± | 0.21      | 0.00       | 1.10            | ) 55              |
| Sodium (Na <sup>+</sup> )                | PM <sub>10</sub> | 1.71          | ±   | 1.33      | 0.17       | 6.27          | / 56              | 1.65           | ± | 1.29      | 0.10       | 6.49            | 56                |
| Magnesium (Mg <sup>++</sup> )            | PM2.5            | 0.044         | ±   | 0.031     | 0.006      | 2 0.18        | 3 55              | 0.03           | ± | 0.024     | 0.00       | 0.13            | 55                |
| Magnesium (Mg <sup>++</sup> )            | PM <sub>10</sub> | 0.25          | ±   | 0.15      | 0.04       | 0.8           | 5 56              | 0.23           | ± | 0.15      | 0.021      | 0.85            | 5 56              |
| Potassium (K <sup>+</sup> )              | PM2.5            | 0.056         | ±   | 0.040     | 0.00       | 0.17          | / 55              | 0.094          | ± | 0.11      | 0.00       | 0.54            | 55                |
| Potassium (K <sup>+</sup> )              | PM10             | 0.18          | ±   | 0.12      | 0.039      | 0.86          | 5 55              | 0.20           | ± | 0.14      | 0.0097     | 0.75            | 5 55              |
| Calcium (Ca <sup>++</sup> )              | PM2.5            | 0.073         | ±   | 0.085     | 0.00       | 0.51          | 55                | 0.041          | ± | 0.040     | 0.00       | 0.19            | 55                |
| Calcium (Ca <sup>++</sup> )              | PM10             | 0.59          | ±   | 0.38      | 0.10       | 2.39          | 56                | 0.32           | ± | 0.26      | 0.00       | 1.39            | 56                |
| Ammonium (NH <sub>4</sub> <sup>+</sup> ) | PM2.5            | 2.53          | ±   | 2.27      | 0.25       | 10.60         | 54                | 2.17           | ± | 1.85      | 0.17       | 7.38            | 3 54              |
| Ammonium $(NH_4^{4})$                    | PM10             | 2.90          | ±   | 2.83      | 0.00       | 13.00         | ) 55              | 2.61           | ± | 2.38      | 0.17       | 10.41           | 56                |
| Chloride (Cl <sup>2</sup> )              | PM2 5            | 0.077         | ±   | 0.154     | 0.00       | 0.93          | 3 54              | 0.32           | ± | 0.47      | 0.00       | 1.75            | 5 53              |
| Chloride (Cl <sup>-</sup> )              | PM10             | 0.70          | ±   | 0.99      | 0.016      | 4.27          | 52                | 1.40           | ± | 1.26      | 0.00       | 4.87            | 52                |
| Sulfate (SO <sub>4</sub> <sup>=</sup> )  | PM2 5            | 4.32          | ±   | 4.11      | 0.00       | 20.99         | ) 55 <sup>.</sup> | 3.45           | ± | 3.13      | 0.35       | 14.54           | 55                |
| Sulfate (S0₄)                            | PM10             | 6.00          | ±   | 5.22      | 0.98       | 27.63         | 3 55              | 4.94           | ± | 4.14      | 0.76       | 21.80           | ) 56              |
| Sulfur                                   |                  |               |     |           |            |               |                   |                |   |           |            |                 |                   |
| Dioxide (SO <sub>2</sub> )               | Gas              | 8.30          | ±   | 5.78      | 0.60       | 21.78         | 53                | 3.94           | ± | 4.87      | 0.40       | 25.06           | 5 54              |
| Nitrogen                                 |                  |               |     |           |            |               |                   |                |   |           |            |                 |                   |
| Dioxide (NO <sub>2</sub> )               | Gas              | 61.15         | ±   | 35.31     | 2.79       | 170.86        | 5 54              | 54.93          | ± | 33.58     | 2.26       | 150.03          | 53                |
| Ammonia (NH <sub>z</sub> )               | Gas              | 7.97          | ±   | 4.04      | 0.93       | 18.04         | 58                | 4.66           | ± | 2.67      | 0.00       | 11.82           | 2 58              |
| Nitrate (NOz)                            | PM10             | 6.90          | ±   | 5.84      | 0.32       | 23.58         | 55°               | 5.89           | ± | 5.42      | 0.00       | 29.01           | 56                |
| Nitrate (NOz)                            | PM2.5            | 3.40          | ±   | 5.05      | 0.00       | 20.78         | 3 55              | 2.85           | ± | 4.29      | 0.00       | 21.50           | ) 55              |
| Nitrate (NOz)                            | Undenuded        | I             |     |           |            |               |                   |                |   |           |            |                 |                   |
| 5                                        | PM2 5            | 5.59          | ±   | 4.10      | 0.08       | 18.30         | ) 54              | 1.13           | ± | 1.86      | 0.00       | 12.37           | 54                |
| Nitrate (NOz)                            | Denuded          |               |     |           |            |               |                   |                |   |           |            |                 |                   |
| J                                        | PM <sub>25</sub> | 6.48          | ±   | 5.85      | 0.66       | 22.76         | 5 53              | 4.00           | ± | 4.33      | 0.40       | 25.24           | 53                |
| Nitric                                   | L.,              |               |     |           |            |               |                   |                |   |           |            |                 |                   |
| Acid (HNO <sub>3</sub> )                 | Gas              | 2.59          | ±   | 2.17      | 0.00       | 9.59          | 50                | 0.55           | ± | 1.57      | 0.00       | 7.52            | 2 50              |

~

## Statistical Summary of Gas/Particle Ambient Concentrations for Samples Taken from the Fourth Quarter of 1988 Through the Third Quarter of 1989

#### Site Name: Los Angeles (Measurement Period: October 6, 1988 through September 25, 1989)

|                                          |                   |        |     |           | ······     |         | Concentrations    | <u>in μg/m<sup>3</sup></u> |   |           |            |        |                   |
|------------------------------------------|-------------------|--------|-----|-----------|------------|---------|-------------------|----------------------------|---|-----------|------------|--------|-------------------|
|                                          |                   |        |     | Daytime ( | 0601-18    | 00 PST) |                   |                            |   | Nighttime | (1801-06   | 00_PST | )                 |
| <u>Species</u>                           | <u>Size</u>       | Averag | e ± | Std. Dev. | <u>Min</u> | Max     | Number of Samples | Average                    | ± | Std. Dev. | <u>Min</u> | Max    | Number of Samples |
| Particle Mass                            | PM2.5             | 30.25  | ±   | 19.42     | 3.78       | 95.46   | 56                | 28.34                      | ± | 18.62     | 3.57       | 80.54  | 55                |
| Particle Mass                            | PM <sub>10</sub>  | 64.60  | ±   | 30.99     | 19.16      | 166.77  | 56                | 53.34                      | ± | 27.21     | 11.59      | 154.15 | 56                |
| Sodium (Na <sup>+</sup> )                | PM2.5             | 0.24   | ±   | 0.21      | 0.00       | 1.14    | 56                | 0.24                       | ± | 0.33      | 0.00       | 2.25   | 56                |
| Sodium (Na <sup>+</sup> )                | PMto              | 1.50   | t   | 1.12      | 0.098      | 5.56    | 56                | 1.45                       | ± | 1.15      | 0.033      | 6.15   | 56                |
| Magnesium (Mg <sup>++</sup> )            | PM2 5             | 0.037  | ±   | 0.027     | 0.00       | 0.14    | 56                | 0.030                      | ± | 0.023     | 0.0045     | 0.12   | 56                |
| Magnesium (Mg <sup>++</sup> )            | PM10              | 0.25   | ±   | 0.15      | 0.032      | 0.74    | 56                | 0.22                       | ± | 0.15      | 0.0025     | 0.80   | 56                |
| Potassium (K <sup>+</sup> )              | PM2 5             | 0.066  | ±   | 0.044     | 0.00       | 0.19    | 56                | 0.077                      | ± | 0.051     | 0.00       | 0.21   | 56                |
| Potassium (K <sup>+</sup> )              | PM <sub>10</sub>  | 0.19   | ±   | 0.093     | 0.016      | 0.46    | 55                | 0.18                       | ± | 0.12      | 0.00       | 0.79   | 55                |
| Calcium (Ca <sup>++</sup> )              | PM2 5             | 0.083  | ±   | 0.12      | 0.00       | 0.82    | 56                | 0.057                      | ± | 0.089     | 0.00       | 0.65   | 56                |
| Calcium (Ca <sup>++</sup> )              | PM10              | 0.75   | ±   | 0.39      | 0.12       | 1.85    | 56                | 0.37                       | ± | 0.22      | 0.00       | 0.96   | 56                |
| Ammonium (NH <sub>4</sub> <sup>+</sup> ) | PM2 5             | 3.00   | ±   | 2.57      | 0.16       | 12.75   | 56                | 2.75                       | ± | 2.22      | 0.052      | 12.38  | 55                |
| Ammonium $(NH_4^{+})$                    | PM10              | 3.77   | ±   | 3.46      | 0.31       | 19.76   | 55                | 3.46                       | ± | 3.26      | 0.00       | 20.67  | 55                |
| Chloride (Cl <sup>7</sup> )              | PM2 5             | 0.058  | ±   | 0.091     | 0.00       | 0.46    | 54                | 0.11                       | ± | 0.16      | 0.00       | 0.67   | 54                |
| Chloride (Cl <sup>-</sup> )              | PM <sub>10</sub>  | 0.39   | ±   | 0.65      | 0.00       | 4.55    | 53                | 0.98                       | ± | 1.19      | 0.00       | 4.44   | 52                |
| Sulfate $(SO_4^{=})$                     | PM2 5             | 4.37   | ±   | 3.71      | 0.43       | 16.20   | 56                | 3.87                       | ± | 3.41      | 0.36       | 16.56  | 56                |
| Sulfate $(SO_4^{\pm})$                   | PM10              | 6.69   | ±   | 5.38      | 0.85       | 29.43   | 56                | 5.67                       | ± | 5.30      | 0.00       | 26.54  | 56                |
| Dioxide (SO <sub>2</sub> )               | Gas               | 6.00   | ±   | 3.96      | 1.08       | 16.90   | 54                | 3.68                       | ŧ | 4.41      | 0.00       | 20.27  | 52                |
| Dioxide (NO <sub>2</sub> )               | Gas               | 76.30  | ±   | 57.21     | 2.51       | 358.04  | 54                | 70.69                      | ± | 37.95     | 5.90       | 177.81 | 54                |
| Ammonia (NH-)                            | Gas               | 10.42  | ±   | 4.50      | 0.74       | 24.27   | 57                | 5.66                       | ± | 3.77      | 0.19       | 18.86  | 56                |
| Nitrate $(NO_7)$                         | PM10              | 9.46   | ±   | 7.10      | 0.26       | 34.66   | 56                | 8.89                       | ± | 6.76      | 0.10       | 31.37  | 56                |
| Nitrate (NO <sub>7</sub> )               | PMar              | 4.83   | ±   | 5.77      | 0.17       | 25.23   | 56                | 4.78                       | ± | 5.05      | 0.21       | 18.34  | 56                |
| Nitrate (NO <sub>7</sub> )               | Undenude          | d      |     |           |            |         |                   |                            |   |           |            |        |                   |
| ······································   | PM2.5             | 11.59  | ±   | 7.67      | 0.14       | 31.65   | 51                | 1.61                       | ± | 2.05      | 0.02       | 12.84  | 52                |
| Nitrate (NO <sub>3</sub> )               | Denuded           | 10.05  |     | 6 76      | 0 59       | 26 74   | 50                | 6 62                       |   | 5 77      | 1 13       | 30 EV  | 50                |
| Nitric                                   | <sup>rm</sup> 2.5 | 10.90  | İ   | 0./0      | 0.00       | 30.74   | 50                | 0.52                       | I | 5.77      | 1.15       | 30.34  | JU                |
| Acid (HNO <sub>3</sub> )                 | Gas               | 5.68   | ±   | 5.05      | 0.00       | 20.33   | 48                | 0.33                       | ± | 0.86      | 0.00       | 4.04   | 48                |

# Statistical Summary of Gas/Particle Ambient Concentrations for Samples Taken from the Fourth Quarter of 1988 Through the Third Quarter of 1989

#### Site Name: Azusa (Measurement Period: October 6, 1988 through September 25, 1989)

|                                          | ·····                    |                |     |            |            |         | Concentrations    | in µg/m <sup>3</sup> |   |           |            |            |                   |
|------------------------------------------|--------------------------|----------------|-----|------------|------------|---------|-------------------|----------------------|---|-----------|------------|------------|-------------------|
|                                          |                          |                |     | Daytime (( | 0601-18    | 00 PST) |                   |                      |   | Nighttime | (1801-06   | 00 PS1     | r)                |
| <u>Species</u>                           | Size                     | <u>Average</u> | e ± | Std. Dev.  | <u>Min</u> | Max     | Number of Samples | Average              | ± | Std. Dev. | <u>Min</u> | <u>Max</u> | Number of Samples |
| Particle Mass                            | PM2.5                    | 33.48          | t   | 19.50      | 8.46       | 96.46   | 5 56              | 25.57                | ± | 17.52     | 3.23       | 88.72      | 2 54              |
| Particle Mass                            | PM <sub>10</sub>         | 73.82          | ±   | 39.73      | 18.80      | 210.37  | 57                | 51.14                | ± | 31.17     | 8.63       | 167.51     | L 56              |
| Sodium (Na <sup>+</sup> )                | PM2.5                    | 0.24           | t   | 0.20       | 0.00       | 1.02    | 2 56              | 0.21                 | ± | 0.21      | 0.00       | 1.14       | 56                |
| Sodium (Na <sup>+</sup> )                | PM10                     | 1.17           | ±   | 0.92       | 0.045      | 3.93    | 57                | 1.13                 | ± | 1.04      | 0.026      | 5.90       | ) 57              |
| Magnesium (Mg <sup>++</sup> )            | PM2.5                    | 0.041          | ±   | 0.026      | 0.0054     | 4 0.14  | 56                | 0.031                | ± | 0.035     | 0.00       | 0.22       | 2 56              |
| Magnesium (Mg <sup>++</sup> )            | PM <sub>10</sub>         | 0.23           | ±   | 0.14       | 0.041      | 0.61    | 57                | 0.18                 | ± | 0.15      | 0.0037     | 0.76       | 5 57              |
| Potassium (K <sup>+</sup> )              | PM2.5                    | 0.066          | ±   | 0.052      | 0.00       | 0.25    | 5 56              | 0.08                 | ± | 0.15      | 0.00       | 1.13       | 56                |
| Potassium (K <sup>+</sup> )              | PM10                     | 0.21           | ±   | 0.23       | 0.040      | 1.76    | 57                | 0.17                 | ± | 0.16      | 0.038      | 1.21       | 57                |
| Calcium (Ca <sup>++</sup> )              | PM2.5                    | 0.11           | ±   | 0.073      | 0.00       | 0.35    | 5 56              | 0.052                | ± | 0.038     | 0.00       | 0.19       | 56                |
| Calcium (Ca <sup>++</sup> )              | PM <sub>10</sub>         | 0.92           | ±   | 0.53       | 0.055      | 2.16    | 5 57              | 0.40                 | ± | 0.25      | 0.00       | 1.27       | 57                |
| Ammonium (NH <sub>4</sub> <sup>+</sup> ) | PM2.5                    | 2.88           | ±   | 2.47       | 0.23       | 11.92   | 53                | 2.76                 | ± | 2.48      | 0.097      | 14.99      | 55                |
| Ammonium (NH <sub>4</sub> <sup>+</sup> ) | PM10                     | 3.36           | ±   | 2.93       | 0.41       | 11.49   | 55                | 3.60                 | ± | 3.93      | 0.081      | 24.09      | 55                |
| Chloride (Cl <sup>'</sup> )              | PM2.5                    | 0.041          | ±   | 0.075      | 0.00       | 0.49    | 52                | 0.079                | ± | 0.14      | 0.00       | 0.69       | 53                |
| Chloride (Cl <sup>-</sup> )              | PM <sub>10</sub>         | 0.17           | ±   | 0.31       | 0.00       | 1.94    | 53                | 0.50                 | ± | 0.77      | 0.00       | 4.44       | 53                |
| Sulfate (SO <sup>7</sup> )               | PM2 5                    | 4.20           | ±   | 3.48       | 0.43       | 17.80   | 54                | 3.74                 | ± | 3.18      | 0.25       | 14.45      | 5 55              |
| Sulfate (SO₄)                            | PM10                     | 5.45           | ±   | 4.44       | 0.62       | 21.59   | 55                | 4.87                 | ± | 4.83      | 0.34       | 23.94      | 55                |
| Sulfur                                   | 10                       |                |     |            |            |         |                   |                      |   |           |            |            |                   |
| Dioxide (SO <sub>2</sub> )               | Gas                      | 4.77           | ±   | 3.19       | 0.33       | 16.86   | 52                | 1.78                 | ± | 1.26      | 0.00       | 4.88       | 52                |
| Nitrogen                                 |                          |                |     |            |            |         |                   |                      |   |           |            |            |                   |
| Dioxide (NO <sub>2</sub> )               | Gas                      | 66.26          | ±   | 55.12      | 1.40       | 370.00  | 57                | 70.44                | ± | 46.72     | 2.60       | 254.98     | 3 55              |
| Ammonia (NHz)                            | Gas                      | 9.37           | ±   | 5.00       | 0.36       | 22.59   | 58                | 5.26                 | ± | 3.00      | 0.25       | 13.96      | 5 57              |
| Nitrate (NOz)                            | PM <sub>10</sub>         | 8.66           | ±   | 7.33       | 0.79       | 30.72   | 55                | 8.79                 | ± | 8.54      | 0.00       | 51.23      | 3 55              |
| Nitrate $(NO_z)$                         | PM2 5                    | 4.77           | ±   | 5.78       | 0.22       | 22.41   | 54                | 5.18                 | ± | 5.49      | 0.44       | 31.28      | 55                |
| Nitrate (NOz)                            | Undenuded                |                |     |            |            |         |                   |                      |   |           |            |            |                   |
| Nitrate (NO <sub>2</sub> )               | PM <b>2.5</b><br>Denuded | 13.74          | ±   | 10.64      | 0.0037     | 7 54.48 | 51                | 1.82                 | ± | 1.44      | 0.00       | 7.34       | 53                |
| ·                                        | PM2 5                    | 13.32          | ±   | 7.38       | 1.89       | 40.20   | 52                | 7.12                 | ± | 5.94      | 1.02       | 30.55      | 5 51              |
| Nitric                                   | 2.5                      |                |     |            |            |         |                   |                      |   |           |            |            |                   |
| Acid (HNO <sub>3</sub> )                 | Gas                      | 5.54           | ±   | 6.99       | 0.00       | 37.28   | 3 47              | 0.50                 | ± | 1.42      | 0.00       | 9.00       | ) 49              |

set, and the maximum values in Table 7-2 do not necessarily correspond to the same sample. The amount by which a  $PM_{10}$  concentration exceeds the  $PM_{2.5}$  concentration for a species provides some insight into the potential origins of those species.

For geologically related materials such as magnesium, potassium, and calcium, more than 50% of the concentration is in the size range between 2.5 and 10  $\mu$ m (coarse particles). Exceptions to this generalization can be seen for potassium on nighttime samples from Gasquet, Yosemite, and Sequoia and on daytime and nighttime samples taken in Sacramento and Bakersfield, where the PM<sub>2.5</sub> potassium is as high as 80% of the PM<sub>10</sub>. Each of these areas is known to be affected by very small particles from campfires, forest fires, residential wood combustion, or agricultural burning, especially during winter months. Vegetative burning is a major source of water-soluble PM<sub>2.5</sub> potassium. At sites near the Pacific Coast, such as Gasquet, Fremont, Santa Barbara, and Long Beach, the PM<sub>10</sub> sodium and chlorine averages are two to four times the corresponding PM<sub>2.5</sub> values. This observation is consistent with particle size measurements of sea salt, which show it to be in the coarse particle size range.

From 60 to 100% of the  $PM_{10}$  sulfate, nitrate, and ammonium particles are found in the  $PM_{2.5}$  size fraction. The majority of these particles are expected to come from chemical reactions of  $SO_2$ ,  $NO_x$ , and  $NH_3$ , and these reactions produce fine rather than coarse particles. At Santa Barbara, the nitrate  $PM_{2.5}/PM_{10}$  ratio is 0.58, which is consistent with the hypothesis of gaseous nitric acid reacting with coarse particle sodium chloride in sea salt. At Bakersfield, the  $PM_{2.5}$ particulate nitrate is double the  $PM_{10}$  nitrate, which implies a substantial dissociation of ammonium nitrate on the  $PM_{10}$  Teflon filter. At most of the other sites, the average  $PM_{10}$  nitrate measured on a Teflon filter appears to be much less volatile than the  $PM_{2.5}$  nitrate measured on a Teflon filter.

#### 7.3.2 Daytime/Nighttime

The daytime average concentrations are similar to the nighttime averages for all of the particulate species. The gaseous species, however, show substantial variability between daytime and nighttime samples. The most notable of these is nitric acid, which decreases by a factor of 10 from day to night. Nitric acid is an end-product of daytime photochemical reactions, and its deposition and reactivity rates are large.

The daytime average sulfur dioxide concentration is larger than the nighttime average at most sites, and it is more than twice the nighttime average at Fremont, Santa Barbara, Long Beach, Los Angeles, and Azusa. This may be related to transport from  $SO_2$  emitters or larger  $SO_2$  emission rates during daytime hours in the vicinity of these sites. Ammonia concentrations are also higher during daytime than at night. Ammonia emissions from many sources are larger at higher temperatures.

Average nitrogen dioxide concentrations are higher at night, by almost a factor of two, at Gasquet and Bakersfield, but they are nearly equal at Fremont, Long Beach, Los Angeles, and Azusa. There is no obvious explanation for this observation.

#### 7.3.3 Differences Among Sampling Sites

The largest differences in the averages are observed among the different sampling sites. Average and maximum concentrations of most species at Gasquet, Yosemite, and Sequoia are much lower than those found at the urban sites.  $NO_2$  was not found at Yosemite or Sequoia, while Gasquet averaged 2 to 4  $\mu$ g/m<sup>3</sup> of  $NO_2$ . This is consistent with the location of Gasquet near a major state highway, while the Yosemite and Sequoia sites are quite a distance from heavily travelled roadways. Sulfate, nitrate, and nitric acid averages are highest at Sequoia, which is known to experience a greater amount of pollutant transport from the San Joaquin Valley than does Yosemite. The concentrations for these species at Gasquet are several times less than those found at the Sierra Nevada sites.

The coastal sites of Fremont, Santa Barbara, and Long Beach show sodium concentrations which are two to three times higher than sodium measured at inland sites such as Bakersfield and Sacramento. Particulate nitrate and nitric acid are at their highest average concentrations at Bakersfield, Los Angeles, and Azusa. The geologically related species of magnesium, potassium, and calcium are similar among most sites, except for the fine particle potassium which was noted above as possibly originating from vegetative burning.

A better picture of inter-site similarities and differences is given by Figures 7-5 and 7-6. Figure 7-5 shows the summertime averages of reactive species for the daytime and nighttime samples, while Figure 7-6 shows similar results for wintertime averages.

These figures show that  $SO_2$  is highest at Bakersfield during the summer, with Long Beach and Azusa exhibiting the highest levels during winter. The daytime and nighttime distributions of  $SO_2$  are fairly constant across the South Coast Air Basin during summertime, but a west-to-east gradient develops at night during the winter when the onshore transport patterns are not as dominant as they are during the summertime. These observations are consistent with known emissions in these areas. Bakersfield is affected by oil-extraction activities during which heavy crude oil containing large amounts of sulfur is burned. The Long Beach site is near oil refineries, oil- or gas-burning power plants, and ship traffic.

The sulfate concentrations roughly follow the  $SO_2$  concentrations, but the differences among sites are not as great as those for  $SO_2$ . The South Coast Air Basin sites have the highest sulfate levels during summertime, both day and night, while Bakersfield has the highest sulfate during the wintertime. Summertime sulfate at Santa Barbara is of the same magnitude as that measured at Bakersfield, but greater than the sulfate found at Sacramento and Fremont. This difference may be caused by offshore oil exploration and ship traffic located several miles off the Pacific Coast. The higher sulfate during daytime with respect to nighttime might correspond to the onshore winds which transport pollutants emitted over the ocean to the sampling site.

Nitric acid concentrations are significant only during the summer on daytime samples, and only at urban sites (Bakersfield, Long Beach, Los Angeles, and Azusa).



Comparison of sites Summer 1989 nighttime averages



Figure 7-5. Comparison of June, July, and August Average Concentrations at Different Sampling Locations.



Comparison of sites Winter 1988-89 nighttime averages



Figure 7-6. Comparison of December, January, and February Average Concentrations at Different Sampling Locations. (Sufficient data were not available from Santa Barbara and Gasquet for this period.)

Particulate nitrate is highest at Azusa during summer daylight hours and shows a steady increase in concentration across the South Coast Air Basin (from Long Beach to Los Angeles to Azusa). At night, the average summertime nitrate levels in the South Coast Air Basin drops to about half the daytime values, and the west-to-east gradient becomes less pronounced. Average summertime nitrate levels at the other urban sites are less than half those found in the South Coast Air Basin, with Bakersfield having slightly higher average nitrate than Fremont, Sacramento, and Santa Barbara.

The particulate nitrate distribution is markedly different in the wintertime, when nitrate levels are more than twice their summer averages at Fremont, Sacramento, and Bakersfield. Bakersfield has the largest particulate nitrate concentration during winter, and the west-to-east gradient in the South Coast Air Basin disappears. The cooler temperatures during wintertime favor particulate ammonium nitrate over gaseous nitric acid. Figures 7-5 and 7-6 show that there is sufficient ammonia gas present to allow neutralization of the nitric acid. The high wintertime nitrate at Bakersfield may also be enhanced by aqueous-phase reactions of nitric acid in persistent tule fogs, which are common occurrences in the San Joaquin Valley during winter months.

Figures 7-5 and 7-6 show that there is always excess ammonia at the urban sampling sites, with especially high levels at Sacramento and Bakersfield during the summer. These high ammonia concentrations are consistent with expectations of substantial emissions from agricultural operations in the San Joaquin and Sacramento Valleys.

# 7.4 Correlations

Table 7-3 shows time series correlation coefficients among the measured variables for three selected sites: Sacramento, Sequoia, and Azusa. These coefficients show which concentrations change in the same way over time. Coefficients which exceed 0.75 show a fairly strong covariation, coefficients between 0.5 and 0.75 show a moderate covariation, and coefficients which are less than 0.50 are not considered to be physically significant (though they may be statistically significant). High correlation coefficients are observed when pairs of variables originate from the same source, are equally affected by transport and dispersion, or undergo related chemical transformations.

In most cases, the  $PM_{2.5}$  and  $PM_{10}$  measurements of the same species are moderately to highly correlated. This is reasonable because, as noted above,  $PM_{2.5}$  is a major fraction of  $PM_{10}$  for many species.

At Sacramento and Azusa, ammonium is very strongly correlated with nitrate, which is consistent with particulate nitrate being in the form of nitric acid. Nitrate correlations with sodium are not significant. This correlation would be higher if significant quantities of nitrate were present as sodium nitrate. Sulfate is moderately correlated with ammonium, consistent with its presumed compounds of ammonium sulfate and ammonium bisulfate.

#### Table 7-3

## Correlation Coefficients Among Gas/Particle Concentrations at Sequoia, Sacramento, and Azusa

Site Name: Sacramento

 $\overline{}$ 

28

<u>Variable<sup>a</sup></u>

FMass TMass FNa<sup>+</sup> TNa<sup>+</sup> FMg<sup>++</sup> TMg<sup>++</sup> FK<sup>+</sup> TK<sup>+</sup> FCa<sup>++</sup> TCa<sup>++</sup> FNH<sub>4</sub><sup>+</sup> TNH<sub>4</sub><sup>+</sup> FC1<sup>-</sup> TC1<sup>-</sup> FS0<sup>-</sup><sub>4</sub> TS0<sup>-</sup><sub>4</sub> SO<sub>2</sub>(g) NO<sub>2</sub>(g) NH<sub>3</sub>(g) TNO<sub>3</sub><sup>-</sup> FNO<sub>3</sub><sup>-</sup> NO<sub>3</sub><sup>-</sup> BU<sup>b</sup> PNO<sub>3</sub><sup>-</sup> C HNO<sub>3</sub>(g)

FMass 1.00 0.95 1.00 TMass FNa<sup>†</sup> -0.20 -0.11 1.00 TNa<sup>+</sup> -0.24 -0.140.92 1.00 FMg<sup>++</sup> 0.86 -0.11-0.02 0.94 1.00 TMg<sup>++</sup> -0.14-0.02 0.91 0.97 0.90 1.00 FK<sup>+</sup> 0.74 -0.02 -0.08 1.00 0.72 0.03 0.01 TK<sup>+</sup> 0.11 0.20 0.22 0.88 1.00 0.65 0.74 0.17 FCa<sup>++</sup> -0.03 0.37 0.21 0.29 0.02 0.02 0.03 0.53 1.00 TCa<sup>++</sup> 0.14 0.31 0.38 0.30 0.48 0.47 0.25 0.39 1.00 0.51 FNH4 0.90 0.85 -0.26 -0.28 -0.25 -0.23 0.57 0.49 -0.20 -0.08 1.00 TNH 0.86 -0.24 -0.28 -0.24 -0.25 0.55 0.52 -0.18 -0.14 0.97 1.00 0.86 0.14 FC1 0.07 0.15 -0.00 -0.02 0.00 0.04 0.20 0.29 -0.12 0.07 0.05 1.00 TC1 -0.12 -0.07 0.52 0.60 0.46 0.60 0.14 0.34 -0.06 0.05 -0.11 -0.19 0.10 1.00 FS04 0.19 0.56 0.55 0.19 0.20 0.24 0.55 0.40 0.05 0.29 0.59 0.52 -0.170.14 1.00 TSO2 0.56 0.24 0.25 0.25 0.27 0.42 0.41 0.02 0.21 0.62 0.61 0.03 0.09 0.95 1.00 0.54 S0<sub>2</sub>(g) 0.27 0.23 0.39 0.30 0.07 0.09 0.43 0.56 -0.16 -0.20 -0.13 0.07 0.28 0.21 -0.01 0.06 1.00 0.66 -0.08 -0.09 -0.06 -0.01 0.52 -0.08 0.22 N02(g) 0.62 0.49 0.49 0.48 0.09 -0.01 0.30 0.22 0.06 1.00 0.02 0.09 0.02 -0.05 -0.06 0.23 -0.17 -0.19 -0.18 -0.07 0.01-0.03 0.35 -0.07 1.00 NH<sub>3</sub>(g) -0.06 -0.03 0.01 0.27 0.95 0.98 -0.22 1.00 TNO3 0.84 0.85 -0.17 -0.19 -0.18 -0.17 0.56 0.56 -0.18 -0.14 0.21 -0.12 0.46 0.57 -0.21 0.52 0.84 -0.25 -0.27 -0.24 -0.24 0.53 0.49 -0.21 -0.15 0.98 0.95 0.08 -0.10 0.47 0.52 -0.23 0.49 -0.190.96 1.00 FNO<sub>3</sub> 0.89 N0380<sup>b</sup> 0.18 0.25 0.08 -0.05 0.09 0.00 0.27 0.21 0.31 0.43 0.12 0.15 0.09 -0.16 0.34 0.19 0.45 0.06 0.21 0.12 0.03 1.00 PNO3 -0.25 0.52 0.50 0.95 0.97 0.16 -0.14 0.44 0.51 -0.15 0.54 0.97 0.94 0.84 0.84 -0.24 -0.28 -0.24 -0.15 -0.09 -0.140.23 1.00 0.25 0.15 0.06 0.21 0.14 0.24 0.20 0.25 0.34 0.12 0.09 0.18 0.06 0.29 0.16 0.41 0.01 0.23 0.07 0.09 0.51 0.08 1.00 HNO<sub>2</sub>(g) 0.23

## Correlation Coefficients Among Gas/Particle Concentrations at Sequoia, Sacramento, and Azusa

Site Name: Sequoia

1.00

1.00

<u>Variable</u><sup>a</sup>

FMass TMass FNa<sup>+</sup> TNa<sup>+</sup> FMg<sup>++</sup> TMg<sup>++</sup> FK<sup>+</sup> TK<sup>+</sup> FCa<sup>++</sup> TCa<sup>++</sup> FNH<sup>+</sup><sub>4</sub> TNH<sup>+</sup><sub>4</sub> FC1<sup>-</sup> TC1<sup>-</sup> FS0<sup>+</sup><sub>4</sub> TS0<sup>+</sup><sub>4</sub> SO<sub>2</sub>(g) NO<sub>2</sub>(g) NH<sub>3</sub>(g) TNO<sup>+</sup><sub>3</sub> FNO<sup>+</sup><sub>3</sub> NO<sup>+</sup><sub>3</sub>BU<sup>b</sup> PNO<sup>+</sup><sub>3</sub><sup>-</sup> HNO<sub>3</sub>(g)

TMass 0.96

FMass

| 0.26 | 0.30                                                                                                                                                                         | 1.00                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                      |                                                      |                                                      |                                                      |                                                      |                                                      |                                                      |                                                      |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.13 | 0.24                                                                                                                                                                         | 0.51                                                                                                                                                                                                                                                                  | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                      |                                                      |                                                      |                                                      |                                                      |                                                      |                                                      |                                                      |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.29 | 0.40                                                                                                                                                                         | 0.68                                                                                                                                                                                                                                                                  | 0.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.00                                                 |                                                      |                                                      |                                                      |                                                      |                                                      |                                                      |                                                      |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.18 | 0.31                                                                                                                                                                         | 0.42                                                                                                                                                                                                                                                                  | 0.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.64                                                 | 1.00                                                 |                                                      |                                                      |                                                      |                                                      |                                                      |                                                      |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.46 | 0.55                                                                                                                                                                         | 0.33                                                                                                                                                                                                                                                                  | 0.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.41                                                 | 0.32                                                 | 1.00                                                 |                                                      |                                                      |                                                      |                                                      |                                                      |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.15 | 0.19                                                                                                                                                                         | 0.12                                                                                                                                                                                                                                                                  | 0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.18                                                 | 0.42                                                 | 0.37                                                 | 1.00                                                 |                                                      |                                                      |                                                      |                                                      |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.11 | 0.15                                                                                                                                                                         | 0.23                                                                                                                                                                                                                                                                  | 0.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.33                                                 | 0.22                                                 | 0.30                                                 | 0.14                                                 | 1.00                                                 |                                                      |                                                      |                                                      |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.27 | 0.41                                                                                                                                                                         | 0.33                                                                                                                                                                                                                                                                  | 0.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.52                                                 | 0.67                                                 | 0.43                                                 | 0.40                                                 | 0.31                                                 | 1.00                                                 |                                                      |                                                      |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.22 | 0.26                                                                                                                                                                         | 0.20                                                                                                                                                                                                                                                                  | 0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.20                                                 | 0.18                                                 | 0.23                                                 | 0.03                                                 | 0.06                                                 | 0.05                                                 | 1.00                                                 |                                                      |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.18 | 0.26                                                                                                                                                                         | 0.20                                                                                                                                                                                                                                                                  | 0.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.30                                                 | 0.48                                                 | 0.26                                                 | 0.11                                                 | 0.17                                                 | 0.22                                                 | 0.80                                                 | 1.00                                                 |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.01 | 0.00                                                                                                                                                                         | 0.16                                                                                                                                                                                                                                                                  | -0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.07                                                | -0.08                                                | -0.02                                                | 0.08                                                 | 0.20                                                 | -0.05                                                | 0.02                                                 | -0.04                                                | 1.00                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.03 | 0.03                                                                                                                                                                         | 0.11                                                                                                                                                                                                                                                                  | 0.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.42                                                 | 0.28                                                 | -0.01                                                | 0.02                                                 | 0.08                                                 | 0.11                                                 | -0.06                                                | 0.03                                                 | 0.07                                                 | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.33 | 0.38                                                                                                                                                                         | 0.32                                                                                                                                                                                                                                                                  | 0.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.44                                                 | 0.38                                                 | 0.23                                                 | 0.14                                                 | -0.04                                                | 0.23                                                 | 0.72                                                 | 0.59                                                 | -0.11                                                | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.31 | 0.40                                                                                                                                                                         | 0.41                                                                                                                                                                                                                                                                  | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.56                                                 | 0.63                                                 | 0.42                                                 | 0.23                                                 | 0.18                                                 | 0.38                                                 | 0.66                                                 | 0.74                                                 | 0.04                                                 | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.24 | 0.36                                                                                                                                                                         | 0.46                                                                                                                                                                                                                                                                  | 0.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.51                                                 | 0.49                                                 | 0.33                                                 | 0.21                                                 | 0.03                                                 | 0.43                                                 | 0.33                                                 | 0.35                                                 | 0.09                                                 | -0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.68 | 0.67                                                                                                                                                                         | 0.02                                                                                                                                                                                                                                                                  | -0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.09                                                 | 0.03                                                 | 0.56                                                 | 0.24                                                 | 0.07                                                 | 0.19                                                 | 0.08                                                 | 0.02                                                 | 0.01                                                 | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.00                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.40 | 0.51                                                                                                                                                                         | 0.25                                                                                                                                                                                                                                                                  | 0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.33                                                 | 0.29                                                 | 0.54                                                 | 0.25                                                 | 0.08                                                 | 0.31                                                 | 0.29                                                 | 0.36                                                 | 0.04                                                 | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.45                                                  | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.26 | 0.35                                                                                                                                                                         | 0.27                                                                                                                                                                                                                                                                  | 0.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.39                                                 | 0.62                                                 | 0.35                                                 | 0.21                                                 | 0.24                                                 | 0.29                                                 | 0.36                                                 | 0.63                                                 | -0.07                                                | 0.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.09                                                  | 0.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.29 | 0.29                                                                                                                                                                         | -0.01                                                                                                                                                                                                                                                                 | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.01                                                | -0.00                                                | 0.36                                                 | 0.17                                                 | 0.07                                                 | -0.03                                                | 0.49                                                 | 0.54                                                 | -0.01                                                | -0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.42                                                  | 0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.12 | 0.22                                                                                                                                                                         | 0.39                                                                                                                                                                                                                                                                  | 0.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.41                                                 | 0.31                                                 | 0.22                                                 | 0.07                                                 | 0.02                                                 | 0.25                                                 | 0.47                                                 | 0.42                                                 | 0.10                                                 | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.02                                                  | 0.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.17 | 0.21                                                                                                                                                                         | 0.23                                                                                                                                                                                                                                                                  | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.18                                                 | 0.17                                                 | 0.18                                                 | 0.02                                                 | 0.18                                                 | 0.17                                                 | 0.49                                                 | 0.53                                                 | -0.00                                                | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.03                                                  | 0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.13 | 0.18                                                                                                                                                                         | 0.20                                                                                                                                                                                                                                                                  | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.20                                                 | 0.12                                                 | 0.10                                                 | 0.06                                                 | -0.06                                                | 0.12                                                 | 0.23                                                 | 0.12                                                 | 0.04                                                 | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.04                                                  | 0.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|      | 0.26<br>0.13<br>0.29<br>0.18<br>0.46<br>0.15<br>0.11<br>0.27<br>0.22<br>0.18<br>0.01<br>0.03<br>0.33<br>0.31<br>0.24<br>0.68<br>0.40<br>0.26<br>0.29<br>0.12<br>0.17<br>0.13 | 0.26 0.30   0.13 0.24   0.29 0.40   0.18 0.31   0.46 0.55   0.15 0.19   0.11 0.15   0.27 0.41   0.22 0.26   0.18 0.26   0.01 0.00   0.03 0.33   0.33 0.38   0.31 0.40   0.24 0.36   0.68 0.67   0.40 0.51   0.26 0.35   0.29 0.29   0.12 0.22   0.17 0.21   0.13 0.18 | 0.26   0.30   1.00     0.13   0.24   0.51     0.29   0.40   0.68     0.18   0.31   0.42     0.46   0.55   0.33     0.15   0.19   0.12     0.11   0.15   0.23     0.27   0.41   0.33     0.22   0.26   0.20     0.18   0.26   0.20     0.18   0.26   0.20     0.18   0.26   0.20     0.18   0.26   0.20     0.18   0.26   0.20     0.18   0.26   0.20     0.11   0.00   0.16     0.03   0.03   0.11     0.33   0.38   0.32     0.31   0.40   0.41     0.24   0.36   0.46     0.68   0.67   0.02     0.40   0.51   0.25     0.26   0.35   0.27     0.29   -0.01   0.12 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 0.26 0.30 1.00   0.13 0.24 0.51 1.00   0.29 0.40 0.68 0.65 1.00   0.18 0.31 0.42 0.82 0.64 1.00   0.46 0.55 0.33 0.29 0.41 0.32 1.00   0.15 0.19 0.12 0.19 0.18 0.42 0.37 1.00   0.27 0.41 0.33 0.42 0.52 0.67 0.43 0.40 0.31 1.00   0.22 0.26 0.20 0.14 0.20 0.18 0.23 0.03 0.06 0.05 1.00   0.18 0.26 0.20 0.14 0.20 0.18 0.23 0.03 0.06 0.05 1.00   0.18 0.26 0.20 0.45 0.30 0.48 0.26 0.11 0.17 0.22 0.80 1.00   0.03 0.30 0.11 0.41 0.42 0.28 -0.01 0.02 0.08 0.11 -0.06 0.33 0.72 0.59 -0. | 0.26 0.30 1.00   0.13 0.24 0.51 1.00   0.29 0.40 0.68 0.65 1.00   0.18 0.31 0.42 0.82 0.64 1.00   0.46 0.55 0.33 0.29 0.41 0.32 1.00   0.15 0.19 0.12 0.19 0.18 0.42 0.37 1.00   0.27 0.41 0.33 0.42 0.52 0.67 0.43 0.40 0.31 1.00   0.22 0.26 0.20 0.14 0.20 0.18 0.23 0.03 0.06 0.05 1.00   0.18 0.26 0.20 0.14 0.20 0.18 0.23 0.03 0.06 0.05 1.00   0.01 0.00 0.16 -0.07 -0.08 -0.22 0.08 0.21 -0.04 1.00   0.33 0.34 0.32 0.29 0.44 0.38 0.23 0.14 -0.04 0.23 0.72 0.59 -0.11 0.05   0.31 | 0.26 0.30 1.00   0.13 0.24 0.51 1.00   0.29 0.40 0.68 0.65 1.00   0.18 0.31 0.42 0.82 0.64 1.00   0.46 0.55 0.33 0.29 0.41 0.32 1.00   0.15 0.19 0.12 0.19 0.18 0.42 0.37 1.00   0.11 0.15 0.23 0.28 0.33 0.22 0.30 0.14 1.00   0.27 0.41 0.33 0.42 0.52 0.67 0.43 0.40 0.31 1.00   0.22 0.26 0.20 0.14 0.20 0.18 0.23 0.03 0.06 0.05 1.00   0.18 0.26 0.20 0.45 0.30 0.48 0.26 0.11 0.17 0.22 0.80 1.00   0.01 0.00 0.16 -0.10 -0.07 -0.08 -0.02 0.08 0.21 -0.04 1.00   0.33 0.33 0.31 0.44 0 | 0.26 0.30 1.00   0.13 0.24 0.51 1.00   0.29 0.40 0.68 0.65 1.00   0.18 0.31 0.42 0.82 0.64 1.00   0.46 0.55 0.33 0.29 0.41 0.32 1.00   0.15 0.19 0.12 0.19 0.18 0.42 0.37 1.00   0.11 0.15 0.23 0.28 0.33 0.22 0.30 0.14 1.00   0.27 0.41 0.33 0.42 0.52 0.67 0.43 0.40 0.31 1.00   0.22 0.26 0.20 0.14 0.20 0.18 0.23 0.03 1.00   0.18 0.26 0.20 0.44 0.28 0.01 0.17 0.22 0.80 1.00   0.33 0.33 0.41 0.42 0.28 -0.01 0.02 0.08 0.11 -0.06 0.03 0.07 1.00   0.33 0.33 0.32 0.29 0.44 0.38 0.23 | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | 0.26 0.30 1.00   0.13 0.24 0.51 1.00   0.29 0.40 0.68 0.65 1.00   0.18 0.31 0.42 0.82 0.64 1.00   0.46 0.55 0.33 0.29 0.41 0.32 1.00   0.15 0.19 0.12 0.19 0.18 0.42 0.37 1.00   0.11 0.15 0.23 0.28 0.33 0.22 0.30 0.14 1.00   0.27 0.41 0.33 0.42 0.52 0.67 0.43 0.40 0.31 1.00   0.22 0.26 0.20 0.14 0.20 0.18 0.22 0.30 1.06 0.05 1.00   0.30 0.16 -0.10 -0.07 -0.08 -0.20 0.08 0.20 -0.04 1.00   0.33 0.38 0.32 0.29 0.44 0.38 0.23 0.11 -0.06 0.03 0.07 1.00   0.33 0.34 0.44 0.38 0.23 | 0.26 0.30 1.00   0.13 0.24 0.51 1.00   0.29 0.40 0.68 0.65 1.00   0.18 0.31 0.42 0.82 0.64 1.00   0.46 0.55 0.33 0.29 0.41 0.32 1.00   0.11 0.15 0.19 0.12 0.19 0.18 0.42 0.37 1.00   0.11 0.15 0.23 0.28 0.33 0.22 0.30 0.14 1.00   0.27 0.41 0.33 0.42 0.52 0.67 0.43 0.40 0.31 1.00   0.22 0.26 0.20 0.14 0.20 0.18 0.23 0.03 1.07 0.22 0.60 1.00 0.01 0.00 0.16 -0.10 -0.02 0.08 0.20 -0.80 1.00 0.02 0.08 0.21 0.05 0.02 0.04 1.00   0.30 0.11 0.41 0.42 0.28 0.01 0.02 0.08 0.11 -0.06 0.33 | 0.26 0.30 1.00   0.13 0.24 0.51 1.00   0.29 0.40 0.68 0.65 1.00   0.18 0.31 0.42 0.82 0.64 1.00   0.46 0.55 0.33 0.29 0.41 0.32 1.00   0.15 0.19 0.12 0.19 0.18 0.42 0.37 1.00   0.11 0.15 0.23 0.28 0.33 0.22 0.30 0.14 1.00   0.27 0.41 0.33 0.42 0.52 0.67 0.43 0.40 0.31 1.00   0.22 0.26 0.20 0.44 0.20 0.18 0.23 0.06 0.05 1.00   0.18 0.26 0.20 0.44 0.20 0.18 0.22 0.08 0.21 0.05 1.00   0.33 0.34 0.44 0.28 -0.11 0.17 0.22 0.80 1.00 0.02 0.81 1.00   0.33 0.34 0.44 0.28 0.11 0.10< | 0.26 0.30 1.00   0.13 0.24 0.51 1.00   0.29 0.40 0.68 0.65 1.00   0.18 0.31 0.42 0.82 0.64 1.00   0.46 0.55 0.33 0.29 0.41 0.32 1.00   0.11 0.15 0.19 0.12 0.19 0.18 0.42 0.37 1.00   0.11 0.15 0.23 0.28 0.67 0.43 0.40 0.31 1.00   0.27 0.41 0.33 0.42 0.52 0.67 0.43 0.40 0.31 1.00   0.22 0.26 0.20 0.14 0.20 0.18 0.22 0.66 0.10 1.00   0.18 0.26 0.20 0.44 0.38 0.22 0.08 1.00 0.05 1.00   0.33 0.33 0.32 0.29 0.44 0.28 -0.01 0.02 -0.08 0.11 -0.16 0.3 0.07 1.00   0.33 0.33 0.32 0.29 | 0.26 0.30 1.00   0.13 0.24 0.51 1.00   0.29 0.40 0.68 0.65 1.00   0.18 0.31 0.42 0.82 0.64 1.00   0.46 0.55 0.33 0.29 0.41 0.32 1.00   0.15 0.19 0.12 0.19 0.18 0.42 0.37 1.00   0.27 0.41 0.33 0.42 0.52 0.67 0.43 0.40 0.31 1.00   0.28 0.20 0.14 0.20 0.18 0.22 0.30 0.14 1.00   0.27 0.41 0.33 0.42 0.52 0.67 0.43 0.40 0.31 1.00   0.28 0.20 0.44 0.20 0.18 0.23 0.05 1.00 0.00 0.00 0.01 0.00 0.02 0.03 0.07 1.00 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.01 0.00 | 0.26 0.30 1.00   0.13 0.24 0.51 1.00   0.29 0.40 0.68 0.65 1.00   0.18 0.31 0.42 0.82 0.64 1.00   0.46 0.55 0.33 0.29 0.41 0.32 1.00   0.15 0.19 0.12 0.19 0.18 0.42 0.37 1.00   0.27 0.41 0.33 0.42 0.52 0.67 0.43 0.40 0.31 1.00   0.22 0.26 0.20 0.14 0.22 0.30 0.14 1.00 0.17 0.22 0.80 0.44 0.40 0.31 1.00   0.22 0.26 0.20 0.14 0.20 0.18 0.23 0.03 0.06 0.05 1.00   0.33 0.42 0.52 0.67 0.43 0.40 0.31 1.00 0.00 0.02 0.04 1.00   0.33 0.34 0.32 0.34 0.20 0.05 0.22 0.04 1.00 0.00 0.01< |

#### Correlation Coefficients Among Gas/Particle Concentrations at Sequoia, Sacramento, and Azusa

<u>Variable<sup>a</sup></u>

Site Name: Azusa

TMass FNa<sup>+</sup> TNa<sup>+</sup> FMg<sup>++</sup> TMg<sup>++</sup>  $TK^{+}$  FCa<sup>++</sup> TCa<sup>++</sup> FNH<sub>4</sub><sup>+</sup> TNH<sub>4</sub><sup>+</sup> FC1<sup>-</sup> TC1<sup>-</sup> FS0<sup>-</sup><sub>4</sub> TS0<sup>-</sup><sub>4</sub> SO<sub>2</sub>(g) NO<sub>2</sub>(g) NH<sub>3</sub>(g) TNO<sub>3</sub> FNO<sub>3</sub><sup>-</sup> NOZBU<sup>b</sup> PNOZ<sup>C</sup> HNOz(g) FK<sup>+</sup> FMass 1.00 FMass 0.88 1.00 TMass FNa<sup>+</sup> 0.08 0.20 1.00 TNa<sup>+</sup> -0.01 0.78 0.21 1.00 FMg<sup>++</sup> 0.14 0.25 0.79 0.58 1.00 TMg<sup>++</sup> FK<sup>+</sup> 0.18 0.44 0.76 0.86 0.70 1.00 0.14 0.05 0.59 0.24 1.00 0.10 0.24 тк\* 0.21 0.35 0.34 0.33 0.55 0.45 0.55 1.00 FCa<sup>++</sup> 0.25 0.29 0.02 0.33 0.50 0.18 0.16 0.24 1.00 TCa<sup>++</sup> 0.49 0.73 0.30 0.24 0.43 0.53 0.14 0.38 0.59 1.00 FNH4 0.81 0.62 -0.07 -0.09 -0.01 -0.01 -0.06 1.00 -0.10 0.01 0.06 TNH4 0.75 -0.01 -0.04 -0.01 -0.10 0.03 0.90 0.63 -0.11 -0.04 -0.16 1.00 FC1 -0.07 -0.12 -0.18 0.03 -0.12 -0.06 -0.09 -0.11 -0.06 0.03 0.10 0.03 1.00 TC1 -0.13 0.39 0.49 0.37 0.05 0.04 -0.00 0.13 1.00 -0.04 0.30 0.01 -0.13 -0.07 FS04 0.63 0.56 0.24 0.22 0.17 0.38 0.06 0.10 -0.03 0.18 0.74 0.57 0.10 -0.10 1.00 TSO4 0.18 0.25 0.07 -0.03 0.18 0.64 0.62 0.10 0.30 0.03 0.69 0.76 -0.06 -0.03 0.83 1.00 (g)رSO 0.29 0.27 0.34 0.40 0.38 0.35 0.57 -0.06 -0.11 0.14 0.18 0.32 0.50 0.02 0.07 0.14 1.00 0.25 N02(g) 0.54 0.55 0.11 0.06 0.10 0.17 0.17 0.09 0.40 0.31 0.34 0.00 0.04 0.17 0.22 0.14 1.00 0.52 0.19 0.23 0.19 0.39 0.10 0.09 0.26 0.60 0.07 0.16 -0.10 0.00 0.18 0.30 0.28 0.28 1.00  $NH_3(g)$ 0.35 1.00 TNO 0.68 0.61 -0.04 0.06 -0.09 0.07 -0.00 0.03 -0.06 0.11 0.78 0.88 0.02 -0.00 0.34 0.50 0.15 0.43 0.20 0.47 -0.26 -0.29 -0.24 -0.23 -0.02 -0.04 -0.07 -0.01 0.82 0.79 0.11 -0.11 0.27 0.29 0.02 0.35 -0.03 0.85 1.00 FNO 0.67 NO3BU<sup>b</sup> 0.54 0.29 0.25 0.01 -0.11 0.41 0.32 0.46 0.06 0.24 0.36 0.66 0.15 0.03 -0.10 -0.26 0.42 0.32 0.46 0.18 0.55 1.00 PNOZ 0.73 -0.02 -0.05 0.01 0.11 0.48 0.64 -0.05 -0.26 0.34 0.45 0.32 0.46 0.55 0.52 0.77 0.04 0.10 0.24 0.63 0.67 0.64 1.00 0.23 0.16 0.18 0.23 0.43 0.20 0.01 -0.00 -0.19 0.44 0.23 0.02 0.26 -0.04 -0.04 0.84 0.19 HNO<sub>3</sub>(g) 0.28 0.36 0.29 0.37 0.04 0.40 1.00

 $^{a}$  An "F" prefix designates PM<sub>2.5</sub>fraction and a "T" prefix designates PM<sub>10</sub> fraction.

<sup>b</sup> NO<sub>3</sub>BU = Nitrate measured on Nylon Backup filter in non-denuded airstream.

<sup>c</sup>  $PNO_3^- = PM_{2,5}particulate nitrate (sum of FNO_3^- and NO_3^-BU).$ 

#### 8.0 SUMMARY AND RECOMMENDATIONS

#### 8.1 Summary

A dry deposition monitoring component of the California Acid Deposition Monitoring Program has been implemented to allow the estimation of fluxes of reactive species at representative locations throughout the State. Sampling-site installation began in May, 1988 and was completed in April, 1989. The resulting data base contains nearly one million hourly average values for ozone, wind speed, wind direction, atmospheric stability, temperature, dew point, time of wetness, and solar radiation. It also contains over 30,000 12-hour average values for daytime and nighttime measurements of sulfur dioxide, ammonia, nitrogen dioxide, nitric acid, mass, chloride, nitrate, sulfate, ammonium, sodium, magnesium, potassium, and calcium concentrations. The data base is fully documented, includes data validation flags, and is available on IBM-PC compatible floppy disks in dBase III+ formats.

Collocated measurements taken with the gas/particle samplers showed high precision for most of the species measured. Lower quantifiable limits were adequate to quantify most species at urban sites on over 90% of the samples. The lower concentrations encountered at non-urban sites were quantified on 60 to 90% of the samples for most species. Maintenance and performance tests of the gas/particle sampling system showed that calibrations were stable for more than one year of every-sixth-day operation.

The continuous monitoring systems for ozone and meteorological variables performed well with the exception of the dew point sensor. The lithium chloride sensor installed at most sites generally reports dew point temperatures which are several degrees lower than the real dew point. This is a consistent problem at several sites.

Standard operating procedures and computer software were created to document the network operations and to facilitate data processing. These were revised in collaboration with ARB staff. Network operations have been fully transferred to ARB staff.

# 8.2 Recommendations

An evaluation of the first  $1\frac{1}{2}$  years of monitoring yields the following recommendations:

- An annual inspection and maintenance visit should be made to each site. Sampling inlets should be cleaned and flow rates should be recalibrated on these visits. These visits are in addition to emergency repair visits.
- A more accurate dew point sensor should be identified and installed at each site. The sensor in current use has been found to be inaccurate.

- High laboratory throughput can be obtained using automated injection and data acquisition systems. The labor savings more than pay for the hardware and software expenses. The ARB laboratory should procure an ion chromatographic auto-injection system and interface it to its existing equipment.
- Several of the forms used for recording data and chain of custody can and should be simplified.
- The dry deposition data base should be integrated with the wet and occult deposition data bases. Data interpretation projects should be defined and sponsored to use these data for the estimation of deposition fluxes, improving understanding of pollutant transport and chemical transformation, and to identify the sources of pollutants.
- Communications with forest response researchers need to be established to determine the extent to which the current measurement program is applicable to the assessment of tree damage.

#### 9.0 REFERENCES

- Bevington, P.R. (1969). Data Reduction and Error Analysis for the Physical Sciences. McGraw Hill, New York, NY.
- Bowen, J.L., J.G. Watson, J.C. Chow, R.T. Egami, C.A. Frazier, and A.W. Gertler (1990). "Field Operations Manual for the California Acid Deposition Monitoring Program: Meteorology, Ozone, and Dry Deposition. Final Report." DRI Document No. 8068.1F3, prepared for California Air Resources Board, Sacramento, CA, by Desert Research Institute, Reno, NV.
- Chow, J.C., J.G. Watson, J.L. Bowen, C.A. Frazier, A.W. Gertler, B. Hinsvark, and K.K. Fung (1990). "Laboratory Operations Manual for the California Acid Deposition Monitoring Program: Sample Pretreatment, Sample Preparation, and Chemical Analysis. Final Report." DRI Document No. 8068.1F4, prepared for California Air Resources Board, Sacramento, CA, by Desert Research Institute, Reno, NV.
- Chow, J.C., J.G. Watson, J.L. Bowen, A.W. Gertler, C.F. Frazier, K.K. Fung, and L. Ashbaugh (1991). "A Sampling System for Reactive Species in the Western U.S." Submitted to ACS Symposium Series, E. Winegar, ed. American Chemical Society, Washington, DC.
- Frazier, C.A., J.G. Watson, J.C. Chow, N. Robinson, J.L. Bowen, A.W. Gertler, D.H. Lowenthal, and K.K. Fung (1990). "Data Processing and Data Validation Operations Manual for the California Acid Deposition Monitoring Program: Meteorology, Ozone, and Dry Deposition Data. Final Report." DRI Document No. 8068.1F5, prepared for California Air Resources Board, Sacramento, CA, by Desert Research Institute, Reno, NV.
- Hoffman, M.R., J.L. Collett, Jr., B.C. Daube, Jr. (1989). "Characterization of Cloud Chemistry and Frequency of Canopy Exposure to Clouds in the Sierra Nevada. Final Report." Prepared under Contract No. A6-185-32 for California Air Resources Board, Sacramento, CA, by Environmental Engineering Science, W.M. Keck Laboratories, California Institute of Technology, Pasadena, CA.
- Watson, J.G., J.C. Chow, R.T. Egami, J.L. Bowen, C.A. Frazier, A.W. Gertler, and K.K. Fung (1990). "Program Plan for the California Dry Deposition Monitoring Program. Final Report." DRI Document No. 8068.1F1, prepared for California Air Resources Board, Sacramento, CA, by Desert Research Institute, Reno, NV.