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CHAPTER 6 

SURFACE DEPOSITION OF POLLUTANT MATERIAL 

6.1 Introduction 

A significant process that influences the concentration predictions 

of the airshed model is the interaction of the pollutants with the 

ground. Roberts (1975), for example, estimated that in the Los Angeles 

Basin almost half of the sulfur oxides are removed at the ground before 

air parcels leave the airshed. The objective of this section is to 

develop an upper limit expression for the rate at which gaseous material 

is removed at the surface. In most models the deposition rate is 

described by a single quantity, the pollutant deposition velocity vg. 

The flux of material, F, directed towards the lower boundary surface is 

defined by 

F = v c(z) (6.1)g r 

where c(z) is the concentration of the material at some reference r 

height z . A basic problem with (6.1) is that it does not explicitlyr 

represent the fact that dry deposition involves a complex linkage 

between turbulent diffusion in the surface boundary layer, molecular 

scale motion at the air-ground interface and chemical interaction of 

the material with the surface. Various physical processes are 

involved including gravitational settling, turbulent and molecular 

diffusion, inertial impaction, phoretic and electrical effects. In 
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addition to these removal phenomena, deposited material can be desorbed 

or mechanically resuspended. Reviews of the general subject of dry 

deposition are included in the works of Chamberlain (1966), Hill and 

Chamberlain (1974), Kneen and Strauss (1969), Liu and Ilori (1974), 

Sehmel and Hodgson (1974), Slinn (1974), Davidson (1977), National Academy 

of Sciences (1978), McMahon and Denison (1979), and Sehmel (1980). 

As a first step towards improving upon the model (6.1) it is 

necessary to recognize that there are two basic components associated 

with pollutant removal: one is the transport of material to the ground 

and the other is the interaction of the pollutants with the surface. 

Unless extensive field experiments have been made in the airshed, it 

is not possible to accurately characterize the second component of the 

dry deposition process. An alternative approach, and the focus of 

this chapter, is to develop an upper limit for v in terms of the g 

transport processes and the concentration at a reference point above 

the surface. (Typically the height of the lowest computational grid 

point in the airshed model.) A secondary goal is to identify the 

significant meteorological variables and surface properties needed to 

either correlate different measurements of v or to modify the results g 

for different experimental conditions. 

6.2 Deposition in the Constant Flux Layer 

Consider the idealized representation of the airshed surface shown 

in Figure 6.1. Within the layer O ::_ z < z the deposition is assumed 
r 

to be a one-dimensional, steady-state, constant flux process occurring 
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without re-entrainment and, in the case of aerosols, without particle 

agglomeration. With these asslll!lptions the deposition flux is described 

by 

F = [K (z) + D] de+ c(z) (6.2)p dz vt 

where K (z) is the pollutant eddy diffusion coefficient, D the molecular 
p 

diffusion coefficient of the material in air and vt the terminal settling 

velocity for particulate material. Equating the fluxes in expressions 

(6.1) and (6.2) gives 

z c(z) 

J 
r r 

dz =J---a---d_c_ (6. 3)[K (z)+D] [v c(z) - vtc(z)]p g r 
c(zd) 

The lower limits of integration zd and c(zd) refer to the elevation 

and concentration of material at the effective pollutant sink height. 

It is important to note that zd is not in general equal to the surface 

roughness z , a height associated with the momentum sink (Brutsaert,
0 

1975). If the terminal settling velocity is set to zero for the case 

of gaseous materials th~n (6.3) can be written in the simpler form 

c(zd) 
[ 1 c(z7- ]r 

V = (6. 4)
g Jrz 

dz 
[K (z) + D]

pzd 
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6.3 Eddy Diffusion of Momentum and Scalar Contaminants in the 
Surface Layer 

Since the model is intended to be used primarily in the surface 

layer of the atmosphere, an expression for K (z) can be developed using
p 

Monin-Obukhov similarity theory. The velocity shear and the pollutant 

eddy diffusion coefficient, K (z), are given by
p 

' (~) (6.5)
<lz kz <pm L 

and 

(6.6) 

where k is the von Karman constant, u* the friction velocity, L the 

Monin-Obukhov length and ¢p, ¢mare universal functions which must be 

determined by experiment (Monin and Yaglom, 1971). The¢ functions are 

basically correct for the effects of buoyancy on turbulence. Businger 

et al. (1971) have constructed expressions for momentum ¢m and heat ¢H 

from an analysis of field data taken under a wide variety of stability 

conditions. A survey of the results of some experiments directed 

at developing these functions is shown in Table 6.1. For the present 

model the expressions adopted for momentum are 

z
[ 1 + 4. 1 cf) J Stable; - > 0

L 

z¢ (~) = 1 
.L Neutral; - = 0 (6. 7)

m L L 
1 

z 4 z(1- 15 (-)] Unstable: - < 0
L L 
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TABLE 6.1 

Estimates of Turbulence Constants from Surface-Layer Measurements 
(Source: Busch, 1973) 

z z z zs - - > 0 - > 0 m L L SH L Lr+<pm = 1 ¢H = 1z-- . z z - - z a. -) 4 , - < 0 (1 (lH L) 2 - < 0cl~ 
mL L L 

MOMENTUM HEAT 
REFERENCE Cl <p H(O) </JM(O)m Sm aH SH 

Businger et al. (1971) 15 4.7 9 6.4 0.74 

Paulson (1970) 
Badgley et al. (1972)} 

16 7 16 7 1 1 

Webb (1970) 18 5.2 9 5.2 1 1 

Dyer and Hicks (1970) 16 16 1 1 
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In addition to the transport relations for momentum there are some 

data for¢ functions associated with water vapor ¢wand heat ¢H. 

Unfortunately, there are few direct experimental measurements of 

pollutant fluxes in the atmospheric surface layer. 

A decision must be made as to the form of the¢ function for a 

generalized passive scalar contaminant. For unstable conditions 

(z/L < 0) the experimental evidence of Dyer and Hicks (1970) indicates 

2
that ¢H, ¢w = ¢m . Galbally (1971) measured ozone profiles and fluxes 

in the surface layer and concluded that the eddy transport mechanism 

for o is similar to that for heat rather than momentum. On the basis
3 

of these two studies and the data of Businger et al. (1971) the following 

¢ functions have been adopted for pollutant transport. 

z( n 74-1-1, 7r'!:..., C:f---:,h1 a•- . . . ~ .. 'L' ~"-o;..l,V..L'-' - > 0
L 

zz = 0.74 Neutral; -
L = 0 (6. 8)¢P Cr:-) 

1 
2 z -0.74[1-9(i")] Unstable; < 0

L 

6.4 Upper Limit Deposition Model 

Within the surface layer defined by zd .:_ z < z the bulk contribu­
r 

tion to the diffusive transport from molecular diffusion is negligible. 

Applying this assumption to equation (6.4) and in addition substituting 

the flux gradient relation (6.6) for K (z) gives the following upper
p 

limit to the deposition velocity. 
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c(zd) 
k [ 1 - c(z

r 
) ]

V (6.9)
0-
0 z 

f 
r 

1 z 
¢p(L)dz

zu* 
zd 

Since u* is approximately constant with height in the surface layer 

(Busch, 1973) and¢ ~1 for zd<z<z, the denominator of (6.9) can be ex-
p --o 

panded to give 

c(zd)
k2 u(zr) [1 

c(z) ]r 
V = 

i 
r z 

0 z ·dz (6.10)
9..n(-) 

g 

lz /:mcf) ~z] [ +J ]zd ¢P Ci) z z 
0 0 

Evaluation of the term 9..n(z /zd) in the denominator of equation
0 

(6.10) requires a knowledge of zd and of the transfer processes at the 

surface. Based on a survey of the heat transfer literature and in 

particular the work of Brutsaert (1975), Wesely and Hicks (1977) assumed 

that 

(6.11) 

where Sc and Pr are the Schmidt and Prandtl numbers associated with the 

pollutant material in air. The complete model is then 
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2 [1- c(zd)]k u(z )r c(z)r 
(6.12)

V 
g = 2 z 

r z ] dzlz! \m(f) ~' [ 2(~,} + 
z 
f 
0 

\ 
p 

<{) ]Pr z 

The integrals required to evaluate v are shown in Table 6.2. 
g 

6.5 Application of Deposition Model 

The final result exposes a number of the limitations of the basic 

model (6.1), in particular, the fact that v is directly influenced byg 

the prevailing meteorology and atmospheric stability. The effect of 

stability is particularly apparent; consider for example, the conditions 

shown in Table 6.3 for a range of Sc/Pr ratios. With z/L in the range 

-1.5 to +1.5, the deposition velocities vary by almost a factor of five. 

This result indicates that under typical conditions there could be a 

significant diurnal variation in the surface removal of pollutant 

material. The functional dependence of v on the elevation above the 
g 

surface highlights the need for reporting the reference height z in r 

field or laboratory studies. If v, z , z and u(z) are measured, then 
g r o r 

it is possible to evaluate c(zd)/c(zr) and,in turn, vg for elevations 

other than the reference height. This is a useful approach for 

developing the deposition velocities for air quality models in which 

z may be of 0(10-50 m). The variation of v as a function of z/Lr g 

is shown in Figure 6.2. 



TABLE 6.2 

Momentum and Pollutant Integrals for Different Stability Conditions 

STABILITY CONDITION 

INTEGRAL STABLE NEUTRAL UNSTABLE 

z - > 0 ~ = 0 ~ < 0
L L L 

MOMENTUM 
z 1 

z r -

J
r z z (1-1~)4 - 1 
¢ (~) dz ln(_!'_) + 4 · 7(z - z ) ln(__I_) ln I L 
m L z z L r o z 1 

0 0 z -
z 4 

0 (1-1~) + 1
L 

z r+ 2 arctan (1-15---f) - 2 arctan (1-15---f) 

POLLUTANT 

z 
z 4 zJr ¢ (~) ~ 0. 7 4 ln (_I_) + . 7( z - z ) 0. 74 ln(__I_)

p L z z L r o z 0. 741 ln 
0 0 

z 
0 

- ln 

1 
-4 

1 
z -4(1-1~) - 1
L 

1 z -
4(1-1~) + 1

L 
I-' 
<-0 
CJ:) 

1 
z o -4 

1 1 
z -2

(1-~) - 1
L 

1 
i r(l-9ii2

1 
-- ln 1 

z - z -
2

(1-9 {) + 1 (1-9 Lo)2 + 1 
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TABLE 6.3 

Deposition Velocity as a Function of Stability and Ratio of Sc/Pr* 

Deposition velocity v 
g 

as a function of stability (z/L) 

Sc -1.5 -1.0 -0.5 0 0.5 1.0Pr 

0.6 1. 36 1.26 1.13 0.51 0.49 0.31 0.21 

0.8 1.28 1.20 1.07 0.50 0.47 0.30 0.21 

1.0 1. 22 1.14 1.02 0.48 0.46 0.29 0.20 

1.2 1.17 1.09 0.98 0.47 0.44 0.29 0.20 

1.4 1.12 1.05 0.95 0.46 0.43 0.28 0.19 

1.6 1.09 0.01 0.92 0.44 0.42 0.27 0.19 

1.8 1.05 0.98 0.89 0.43 0.41 0.27 0.19 

2.0 1.02 0.95 0.86 0.42 0.41 0.27 0.19 

2.2 0.99 0.92 0.84 0.42 0.40 0.26 0.18 

2.4 0.96 0,90 0,82 0,41 0.39 0.26 0.18 

2.6 0.93 0.87 0.80 0.40 0.38 0.25 0.18 

2.8 0.91 0.85 0.78 0.39 0.38 0.25 0.18 

3.0 0.89 0.84 0.76 0.39 0.37 0.25 0.17 

*Conditions for calculations 

u = 2.5 m/sec, z 
0 

= O.Olm z r 
= 10m, c(zd) = 0 

1.5 



200 

1.4 

Sc = 
Pr 

u= 2.5 m/s 

-u 
1.2 

zr= 10 m 
Cl} 0.5 
(/') z = 0.01 m 

........ 

E 
u 1.0-
>-
1--
u 0.8 
0 
_j 

w 
> 

0.6z 
0 
1--
(/) 

0 0.4
0... 
w 
0 

0.2 

0 

-1.5 -1.0 -0.5 0 0.5 1.0 1.5 

z 
L 

STABILITY 

FIGURE 6.2 

Variation of Surface Deposition Velocity v 0 as a 
Function of Atmospheric Stability and PollutantbSc/Pr Ratio 



201 

Once the pollutant deposition velocity has been established, either 

by direct measurement or estimated using the proposed model, the next 

step is to develop a formal procedure for calculating the amount of 

material removed at the ground. At the lower surface of the airshed the 

pollutant removal is typically described by the boundary condition: 

F - - K (z) ~, = - v (z ) c (z ) (6.13) 
p dZ I g r r 

z z 
r 

Where z is a reference elevation, v (z) and c(z) are the pollutant
r g r r 

deposition velocity and concentration at that height. Because of the 

nonlinear nature of K (z), most mathematical descriptions of pollutant
p 

transport require numerical solution. This can pose a problem in that 

the elevation of the lowest computational grid point is typically much 

higher than the reference height, zr, used to establish the pollutant 

deposition velocities. The situation is illustrated in Figure 6.3 

where 6z is the height of the bottom cell and 6z>>z . Because of the r 

need to approximate the vertical concentration profile in discrete 

increments c(z) is not readily available. When coupled with the 
r 

observation that v varies with height there is a need to develop an 
g 

equivalent deposition velocity v that, when applied to the cell average
g 

concentration, c
1 

, correctly predicts the flux at the lower boundary. 

One way to develop such a model is to assume that most of the lowest 

cell is within the surface or constant flux layer. If this is the case 

then the cell deposition velocity is given by 
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v (z )c(z )
g r r 

(6.14)
cl 

If c is to represent the average value of the actual vertical concen­
1 

tration distribution in the range z < z < 6z then it must be equivalentr -

to 

6z 

1 (6.15)J c(z)dz6z-z 
r 

z 
r 

Within the constant flux layer c(z) is given by 

z 

c(z) c(z) (6.16)
r v g (zr) JKP ~z) 

z 
r 

The equivalent cell deposition velocity can now be determined by combining 

(6.16), (6.15), (6.14) and (6.6) to give 

V (z)
g r 

V (6 .17) 
g 

dx dz1 + 
X 

The integrals needed to evaluate the denominator of (6.17) are shown in 

Table 6.3. An example of the variation of vg with cell size and atmo­

spheric stability is shown in Figure 6.4, and, as can be expected, the 

equivalent deposition velocity becomes smaller as 6z increases. The 



TABLE 6.4 

Integrals Required to Calculate the Cell Average Deposition Velocity 

6z z 
dx dzSTABILITY CONDITION INTEGRALrpp <{) I = J J qip (i) X 

z z 
r r 

z 6z 2.35 2Stable (1 > 0) rpp <{) = 0.74 + 4.7({) I= 0.74(6.z £n - - 6z + z) + -L- (6z - z)z r r r 

Neutral z = O) rpp(i) = 0.74 I= 0.74(6.z £n -
6z 

- 6z + z) N(1 z r 0 
r -I> 

1 L - 1\(✓1 -9 zz + 1)
zUnstable (1 < 0) rpp <{) = 0. 74 [l - 9 ~] 2 I = 0. 74 6z £n

L 
9 { - - 9 6z + 1G: 

-

_ 
9~ 

1)\)1 
L 

z 
- 9 ~+ 0 .104 L [ ✓1 - 9 ~ ✓ 1 ]L 
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variation is most pronounced under stable conditions because of the 

reduced vertical mixing. One implication of this result is that if 

v (z ), rather than v, were to be used in a practical calculation then 
g r g 

the surface removal flux would be considerably overestimated. 

In order to illustrate how diurnal variations in atmospheric 

stability influence the surface removal processes consider a column of 

air of height H containing an initial distribution, c(z,O), of a non-

reacting species. If there are no other competing processes the 

fraction of material remaining in the column at time tis given by 

hJ c(z,t)dz 

0 (6.18) 
h 

j c(z,O)dz 

By neglecting both vertical wind shear and advection the pollutant 

transport can be described by 

3c (6.19)
3t 

with the boundary conditions at the surface and at the column top given 

by 

3cK (z) = 0 z = H (6.20) 
p 3z 

and 

3cK (z) = V C z = z (6.21) 
p 3z g r 
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Once the initial conditions v (z) and K (z) have been specified the 
g r P 

numerical procedures described in Chapter 8 can be used to predict the 

evolution of the vertical concentration distribution. As an illustration, 

Figures 6.5 and 6.6 depict the variations of c(z,t) and Mf(t) within 

an air parcel as it traverses a typical urban airshed. There is quite 

a pronounced variation in both the vertical diffusion and surface 

deposition rate during the diurnal cycle. The surface depletion rate, 

expressed in terms of the deposition velocity, and the total material 

loss show a complex dependence on the time of day, the extent of 

vertical mixing and surface conditions. The point of this calculation 

is to illustrate that the use of a single diurnal average v could lead g 

to a significant over-prediction of the amount of material removed during 

the nighttime. This conclusion further reinforces the need for careful 

reporting of atmospheric conditions during field studies directed at 

establishing surface removal fluxes. 

6.6 Experimental Methods for Determining Deposition Velocities 

In the previous section primary attention was directed at developing 

an upper limit estimate of the rate at which pollutants can be transported 

to the ground. Whether this flux corresponds to the actual removal rate 

depends to a large extent on the conditions and type of the underlying 

surface. Garland (1974), for example, has observed an order of magnitude 

difference in the ozone (o ) deposition velocity over different soil
3 

types. If c(zd) is the pollutant concentration at the effective sink 

height, z0 , then the upper and lower limits on v 
g 

correspond to 
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If a lower bound on v is 
g 

required then it is important to be able to estimate the concentration 

difference c(zr) - c(zd). At present the only satisfactory means for 

establishing the surface condition is by experimental measurement. 

This section presents a brief survey of field and laboratory techniques 

for determining deposition velocities for gaseous species which partici-

pate in photochemical reaction processes. 

Whether pollutant deposition velocities are measured in the field 

or under laboratory conditions usually one of three basic techniques 

is employed. These methods include: the use of radioactive tracers, free 

stream concentration decay measurements and gradient or profile 

determinations. The most common laboratory procedure is called the flux 

method which equates free stream concentration decay rates to the 

surface removal fluxes. Garland and Penkett (1976) measured the 

concentration decay of peroxy acetyl nitrate (PAN) as it passed over 

different surfaces in a wind tunnel. Given the concentration difference, 

the travel time over the surface and the wind tunnel dimensions, it is a 

simple task to infer the net deposition flux and in turn determine the 

deposition velocity. A similar technique was used by Hill and 

Chamberlain (1974) to establish the pollutant influx required to maintain 

a constant concentration over different plant canopies. More recently 

the emergence of fast response pollutant detectors has enabled a 

direct measurement of the vertical turbulent flux. Wesely et al. (1977) 

recorded the velocity, w' and concentration, c' fluctuations at a
' ' 
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reference height of z 5 m and evaluated v directly using
r g 

V (z) (6. 23)
g r C 

z = z r 

where w'c' is the time averaged vertical turbulent flux and c the 

average concentration. The averaging time for the results reported in 

Wesely et al. (1977) was 0(10 minutes). 

Another means for determining deposition velocities is to employ 

isotopic labelling techniques. If isotopes, with low natural abundances, 

are used then the task of differentiating between material previously 

present at the surface and the amount deposited during the experiment 

is considerably simplified. Owens and Powell (1974) released sulfur 

35dioxide (so2), labelled with the sulfur isotope s , and measured
16 

the accumulation of 
35so2 at the ground. Given the exposure time, T, 

35
and the so concentration at the reference elevation the deposition

2 

velocity is given by 

35so Activity at the Ground
2 

V (z ) = (6.24)g r 

212
Chamberlain (1966) used thorium - B ( Pb ), in a wind tunnel, to

82 

measure the vertical flux of pollutant materials towards grass and 

similar surfaces as a function of the concentration difference between 

the reference height and the surface. 
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The most common technique used in field studies is the gradient 

or profile method. This procedure utilizes measurements at two or more 

elevations to establish the vertical concentration gradient 3c/3z. If 

the momentum, heat, water vapor, and pollutant fluxes are constant 

within the surface layer then the Monin-Obukhov similarity hypothesis, 

coupled with the measured vertical gradient, gives the pollutant 

deposition velocity 

K (z) 
p dC 

V (z) = (6.25)
g r c(z) dZ 

z = z 
r 

The turbulent eddy diffusivity K (z) can be estimated using the methods 
p 

presented in Chapter 4 or determined from energy budget measurements 

using a mass transfer analogy. An alternative approach is to assume that 

the pollutant transport is similar to that of water vapor and employ 

a stability dependent bulk transfer coefficient to approximate the 

surface flux. Given the measured concentration profile the deposition 

velocity is simply 

V (z)
g r 

(6.26) 

where C is the aerodynamic transfer coefficient and u(zh) is the mean 

wind speed at an elevation zh above the ground. Whelpdale and Shaw 

(1974) used (6.26) to evaluate so2 deposition velocities over different 

surfaces for a range of stability conditions. Further, more detailed 

discussions of the profile and other methods are given in Garland (1974) 

and Drappo and Hales (1974). 
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6.7 Literature Survey of Deposition Velocity Measurements 

A major goal of developing the upper limit deposition model was to 

establish the surface removal rates for those species which participate 

in photochemical reactions. A partial list of these species includes 

nitric oxide (NO), nitrogen dioxide (N02), ozone (0 ), peroxy acetyl3 

nitrate (PAN), hydrogen peroxide (~2o2), nitrous acid (HONO), nitric 

acid (HN0 ), carbon monoxide (CO), reactive hydrocarbons, organic and
3 

inorganic radicals. An extensive literature search was carried out to 

identify experimental determinations of ground level deposition velocities 

for each of these species. The results, presented in Table 6.5, include 

additional values excerpted from the comprehensive surveys conducted by 

Drappo (1976), Slinn et al. (1978) and McMahon and Denison (1979). In 

constructing the table an attempt has been made to summarize those 

factors which influence the estimates,namely the experimental technique, 

reference height, type of surface, moisture conditions and the atmo­

spheric conditions. 

Considering the important role of deposition in establishing 

ambient concentration levels the most striking feature of Table 6.5 is 

the paucity of reported results. The problem is further compounded by 

inadequate documentation of the atmospheric conditions prevailing during 

each of the experiments. Unless sufficient meteorological data are 

reported it is difficult to separate whether the turbulent transport or 

chemical nature of the underlying surface is controlling the deposition. 

The limited data reported in the table are, unfortunately, insufficient 

to adequately verify the quantative performance of the upper limit model. 
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TABLE 6. 5 

Literature Survey of Deposition Velocity Data for Species 
Involved in Photochemical Reaction Processes 

DEPOSITION 
SPECIES VELOCITY 

v (cm/s) 
_g_ 

1.67 

0.10-2.10 

0.47-0.55 

0.20-0.80 

0. 60-6. 30 

0 .02-1. 80 
0.29-0.P.4 

SURFACE MEASUREMENT METEOROLOGICAL 
REFERENCECONDITIONS METHOD DATA REPORTED 

Alfalfa Flux u Hill and Chamberlain (1974) 

Soil, Short Grass Profile z/L,Rib,u*,zr=4m,T,RH,z Galbally (1971)
0 

Grass, Soil, Water Flux u,u*,z ,z =10cm Garland and Penkett (1976)o r 
Maize Flux u,u*,z ,w,T,z =4-5m Wesely et al. (1978)o r 
--- --- --- Drappo (1976) 

N --- --- --- McMahon and Denison (1979) f---J 

Soybean field Eddy-correlation u, z =5.2m,L Wesley et al. (1982) 
-P-

r . 

-NO 0.10 Alfalfa Flux u Hill and Chamberlain (1974) 

N0
2 

1. 90 

0.50-2.00 

0.05-0.56 

Alfalfa 

---
Soybean field 

Flux u 

--- ---
Eddy-correlation u, z =5.2m,r L 

Hill and Chamberlain (1974) 

McMahon and Denison (1979) 
Wesley et al. (1982) 

co 0.00-0.002 Vegetation --- --- McMahon and Denison (1979) 

PAN 0.14-0.30 Grass, Soil Flux u,u*,z ,z =10cm Garland and Penkett (1976)o r 
0.63 Alfalfa Flux u Hill and Chamberlain (1974) 

https://0.14-0.30
https://0.20-0.80
https://0.47-0.55
https://0.10-2.10
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A qualitative indication can, however, be gained by examining the study 

of sulfur dioxide (so2) deposition carried out by Whelpdale and Shaw 

(1974). Their results, presented in Table 6.6, clearly demonstrate that 

the influence of atmospheric stability is consistent with the calculated 

variation shown in Figure 6.2. During stable conditions the deposition 

flux is primarily controlled by the rate at which material can be 

transported to the surface. Such circumstances are likely to occur 

at night. During the daytime the deposition rate is much more likely to 

be influenced by the chemical interaction at the surface. 

Table 6.7 summarizes the deposition velocities derived from the 

literature survey. The accompanying concentration ratios, based on a 

reference elevation z r = 1 m, are for use in the airshed model. The data 

should only be considered as estimates. 

6.8 Conclusions 

In this chapter a simple upper limit model for pollutant deposition 

velocities has been presented. The principal features of the formulation 

are: an explicit treatment of atmospheric stability and a formal 

procedure for determining equivalent cell average deposition velocities 

for use in numerical calculations. The fact that atmospheric stability 

has such a pronounced effect on the surface fluxes points to the need 

for careful reporting of meteorological conditions during field studies. 

This would enable an independent assessment of whether the limits on v g 

are set by the eddy diffusion or by the ability of the underlying surface 

to assimilate the material. In terms of future work considerably more 
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TABLE 6.6 

Average Deposition Velocity of S02 for 
Different Surface and Stability Conditionsa 

SURFACE STABILITY 
NUMBER OF 

EXPERIMENTS 
DEPOSITION VELOCITY 

v (cm/s)g 

Grass 

-0.02 < 

Rib 

Rib 

Rib 

< 

< 

> 

-0.02 

0.02 

0.02 

10 

3 

2 

2.4 

2.6 

0.5 

Snow 

-0.02 < 

R\ 

Rib 

Rib 

< 

< 

> 

-0.02 

0.02 

0.02 

1 

3 

8 

1. 6 

0.52 

0.05 

Water 

-0.02 < 

R\ 

Rib 

R\ 

< 

< 

> 

-0.02 

0.02 

0.02 

7 

7 

4 

4.0 

2.2 

0.16 

a. Source: Whelpdale and Shaw (1974) 

b. Stability is defined in terms of the bulk Richardson Number Rib 

where Tis the ambient temperature, ~z difference in sampling 
heights, ~e the potential temperature difference and ~u the wind 
speed. 
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TABLE 6.7 

Swnmary of Deposition Velocity Data 
and Concentration Ratios 

CONCENTRATION RATIO
DEPOSITION VELOCITY RANGE 

SPECIES v 
g 

(cm/s) 1 -

0.025 - 6.3 0.8 

0.5 - 2.0 0.6 

0.14 - 0.63 0.25 

co 0.0 - 0.03 0.0 

NO 0.0 - 0.10 0.1 
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attention needs to be given to characterizing the physical and chemical 

processes occuring in the layer zd ..:_ z < z • At present there are no 
0 

satisfactory theoretical treatments of the mass transfer close to the 

surface. Even more serious is the limited amount of field data on 

pollutant uptake at the surface. 

A basic limitation of the model is the reliance on Monin-Obukhov 

similarity theory to characterize the material fluxes. While this 

formally restricts applications to steady conditions and values 

lz/LI < 1, the model is, nevertheless, capable of producing useful limits 

for surface deposition fluxes for a range of the species encountered in 

photochemical applications. 
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CHAPTER 7 

TREATMENT OF POINT AND AREA SOURCE EMISSIONS 

7.1 Introduction 

A pn.mary determinant of pollutant concentration levels within an 

urban environment is the emission of contaminant materials into the 

atmosphere. These emissions, which can be produced from a variety of 

different activities, enter the airshed model either through the boun­

dary conditions or as source terms in the conservation equations. This 

chapter describes the procedures used to allocate emissions into the 

appropriate computational cells. Particular attention is given to: the 

mode of material injection, effective release height, near source chem­

istry and the influence of turbulent diffusion. The issues which need 

to be considered when compiling a comprehensive emission inventory for 

a specific region are discussed in Chapter 13. 

7.2 Point and Area Source Emissions 

Despite the diversity of different source types, pollutants and 

modes of material discharge,most emissions can be considered to be 

released from either point locations or areal regions. Point sources, 

by definition, need to be treated as direct inputs to the species con­

tinuity equations in much the same manner as the chemical reaction 

terms. If a point source emits a typical species at the rate E (x ,t) 
p 7> 

from the discharge point x, then the contribution to the rate of con-
7> 

centration change at xis given by 

S(~, t) (7 .1) 
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1 X = X 
-p 

a(x,x)--p = (7. 2) 

0 X = X - -p 

Area sources are typically located at the ground and as a result they 

enter the airshed model through the boundary conditions. For the prob­

lem under consideration the flux balance at the surface results in an 

expression of the form 

where v is the deposition velocity of species c, K the turbulent 
g zz 

diffusivity and Ea(2f_,t) is the emission flux at the ground. In a typi-

cal urban airshed there are often a very large number of point sources 

within an area defined by a typical computational cell. Rather than 

considering each source separately, a common practice is to aggregate 

all the ground level point sources within each cell and develop a com­

parable source term. If there are n ground level point sources located 

within an area, A, then the equivalent, uniformly distributed flux is 

given by 

n 

= l ~E (x.,t) X. E A (7 .4)
nL.,p-:i. J. 

i=l 

Most airshed models cannot resolve spatial scales smaller than 

the size of an individual computational cell. Because of this, point 

and area emissions are often treated as volume source terms. In order 
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to determine the incremental contribution from emissions into a partic-

ular cell consider the one shown in Figure 7.1, which is of arbitrary 

base area A and uniform height h(t). Given the mass emission rate from 

either a point source E (x ,t) or an area source E (x,t), the
P---P a-

corresponding cell mass concentrations Q (t) and Q (t) are of the form 
p a 

E (x ,t)p ---p
Q (t) = (7. 5) 

p 
h(t) A 

and 

JLE(x,t) dx 
A a ---p 

Q (t) = (7 .6) 
a 

h(t) 

To be useful in comparisons against ambient air quality standards the 

expressions (7.5 - 7.6) need to be converted to a system of concentra­

tion units expressed in terms of parts per million by volume. This is 

accomplished by assuming that all species can be described by the ideal 

gas laws. Under these conditions the volume occupied by one mole of an 

ideal gas is given by RT/P where R is the Universal gas constant, T the 

absolute temperature in °K, and P the pressure in standard atmospheres. 

If Mis the molecular weight of species k then the conversion is given 

by 

RTConcentration (ppmv) = Concentration (µgm/m3) (7. 7)
MP 

-1
The source conversion factor, S, expressed in units of ppm sec is 

then given by 

RT 9 3
S = MP 10 Q(Kgm/m -s) (7 .8) 
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u 

z 

Lx.y 
(a) 

A 

( b) 

FIGURE 7.1 

Point and Area Source Representation 
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For the most connnon case of a regular cell of volume V and source 

emissions Ep and Ea the above expressions reduce to: 

RT .!.Q.9 
E (x ,t)s (t) (7. 9)

p MP V p 7> 

RT 109 E (x, t)s (t) (7 .10) 
a MP h(t) a -

In order to illustrate an application of the above formulae consider an 

2 area source with an emission flux density of Ea(t) = 1 Kgm/m -s and a 

point release of E (t) = 1 Kgm/s. If the ambient conditions are T = 25 
p 

0 c = 298 °K, P = 1 atm and R = 8.314 Joule/gm-mole-°K (RT/P = 0.02450), 

then the source conversion factors for a unit cell volume and height 

can be readily calculated from (7.9) and (7.10). Some typical results 

for a range of different species are shown in Table 7.1. 

Both concentration conversion formulae require a knowledge of the 

molecular weights. This does not pose a problem for most species; how­

ever,a difficulty arises when treating hydrocarbons because there are 

hundreds of them present in a typical urban atmosphere. Since it is 

not practical to consider the reactions of each individual hydrocarbon, 

the most common approach is to treat the chemistry of a series of 

lumped classes. A typical grouping could be aldehydes, olefins, aromat-

ics, alkanes and other non-reactive species. 
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TABLE 7.1 

Conversion Factors for Point and Area Sources(a) 

MOLECULAR SOURCE EMISSION(c) 
SPECIES WEIGHT CONVERSION FACTORS(b) FACTORS 

(k) (gm) (~/ppm) 
m 

(s¾, sk h)
P a 

co 
NO 

N02 
so2 
so3 
CH4 

C3H8 
HCHO 

NH 3 

28 

30 

46 

64 

80 

16 

44 

30 

17 

1143 

1224 

1878 

2612 

3625 

653 

1796 

1224 

694 

58.75 X 10 
5

8.17 X 10 
5

5.33 X 10 
5

3.83 X 10 
53.06 X 10 
515.31 X 10 
5

5.57 X 10 
58.17 X 10 
514.41 X 10 

(a) Ambient conditions p = 1 atm and T = 298°K 

(b) Example calculation,1.5 ppmV of nitric oxide (NO)= 1.5 x 1224 = 
31836 µgm/m 

2(c) The conversion factors are based on E = 1 Kgm/m -sec and 
a 

E = 1 Kgm/sec. As an example consider a large point source 
p 

emitting 0.1 Kgm/sec ( ~ 10 tons/day) of nitric oxide (NO) into 

a grid cell of dimension 5000 x 5000 x 30 m, then 

RT 10 8.17xl0 xO.l
S (NO) = - --

9 
E (NO) = 

5 
= l.14xl0-4 ppm~ 7 ppb 

p MP V p 5000x5000x30 sec min 
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In the present study the i-th hydrocarbon class average molecular 

weight, MW., is determined from 
l. 

n 

MW. (7.11)
l. 

where Ek and~ are the emissions and molecular weight of species k 1.n 

the i-th class. 

7.3 Effective Release Height for Emissions 

In the previous section no consideration was given to either the 

physical stack height or the buoyant rise of hot exhaust gases when 

locating the effective discharge point, x. Within the airshed model 
-p 

the actual height, H, for emission release is considered to be the sum 

of the stack elevation, h, and the plume rise, h. Depending upon the 
s p 

value of Hand the size of the first computational cell, 6z, the emis-

sions can be treated as either ground level or elevated releases. 

Clearly when h > 6z the emissions need to be considered as elevated 
s 

point sources. When h < 6z the distinction between ground level and 
s 

elevated sources, and their mode of numerical treatment, is no longer 

clear cut. As a result it is necessary to establish selection criteria 

which can be used to distinguish between the two cases. One approach 

for creating such a division is shown in Figure 7.2 and illustrates the 

need to address two basic issues: the computational cost and the magni­

tude of the concentration increment. 
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-. ELEVATED POINT SOURCE 

SOURCE 
h5 +hp~ AZ_ ELEVATED POINT 

- SOURCE
F ~ Fmin 

GROUND LEVEL 
SOURCE-

h5 +hp < llZ 

h5 < 62 

~ - GROUND LEVEL SOURCE 
F < Fmin 

FIGURE 7.2 

Selection Criteria for Ground Level and Elevated Sources 
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The critical problem, in either case) is to determine if the plume 

rise above the stack top is greater than 6z. Since most of the 

exhaust plumes encountered in an urban environment are dominated by 

buoyancy rather than momentum, an initial selection can be made on the 

basis of the magnitude of the buoyancy flux, F) emitted by the source, 

This flux is defined as 

F = ---- (7.12) 
TT C PT p s 

where QR is the heat output from the source, Ts the stack gas tempera­

ture, C and p the specific heat and density of the exhaust gases. In 
p 

the present model the source emissions are treated as ground level 

releases if the effluent buoyancy is below a minimum value, F .•min 

Assigning a lower value effectively reduces the the number of sources 

treated as individual point releases. This latter factor is quite 

important as an extensive set of calculations must be performed in 

order to correctly account for the material dispersion from each 

source. In practice the exact value of the cutoff depends on the 

number of sources and the magnitude of their emissions. Chapter 13 

discusses the choice of F . for an urban airshed.min 

When the source buoyancy exceeds F . the next step is to deter-min 

mine if the equilibrium height of the effluent plume is above the top 

of the first computational cell. If the plume rise plus the stack 

height exceeds 6z then the source is treated as an elevated point 

source. When h + h < 6z the point source is added to the ground
s p 

level flux term in (7.3). Clearly a crucial element of the selection 
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process is the determination of h and this is the subject of the next p 

section. 

7.4 Plume Rise and Effective Stack Height 

Characterization of the plume rise above the stack top in terms 

of the exhaust gas properties and the ambient atmospheric state is a 

complex problem. A recent review by Briggs (1975) indicates that no 

single formula adequately predicts plume rise for the range of commonly 

encountered meteorological conditions; indeed, the predictions of dif­

ferent formulations can vary by factors of 2 to 10. Given such a large 

range of uncertainty it is natural to ask the question: what procedures 

can be used in the airshed model to predict the plume rise from indi-

vidual point sources? The objective of this section is to present the 

formulae embedded in the airshed model. 

As might be expected, there is an extensive literature on plume 

rise modeling; however, it is beyond the scope of this study to con­

sider the details of the different formulations. This background infor­

mation is comprehensively reviewed in the works of Briggs (1969,1975), 

Fischer et al. (1979), Fabrick et al. (1977) and Tesche et al. (1976). 

An examination of this literature indicates that the approaches can be 

broadly classified into three basic categories. The most detailed 

involves solving the coupled conservation equations of mass, momentum, 

energy and species. This method is generally not used in airshed 

models because of the prohibitive cost of the numerical solution. An 

alternative approach, introduced by Morton et al. (1956), is to con­

sider the integrated form of the conservation equations. This method 
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involves integrating the equations across a section normal to the plume 

trajectory and assuming that all turbulent transport terms vanish at 

the plume boundary. Several variations of the general equations for 

the integral method are available for different flow geometries and 

the ambient conditions. A thorough discussion of the development of 

the general equations for a buoyant jet in a density- stratified cross 

flow are given by Hirst (1972), Omms (1972), Wright (1977), Schatzmann 

(1979), Koh and Brooks (1975), Csanady (1973), Hoult et al. (1969) and 

Fischer et al. (1979). 

Although there are many plume rise formulae, the ones proposed by 

Briggs (1969, 1975) are the most widely employed in practice (CRSTER, 

1977). Extensive sets of field observations, dimensional analyses and 

theoretical formulations were used by Briggs in developing the plume 

models. Near the source h p is adequately predicted using the momentum 

conservation equations and a simple entrainment assumption. 

For neutral and unstable conditions Briggs developed the following 

expression: 

(7.13: 
p 

u 

where xis downwind distance from source (m), and u 1s the horizontal 

h 

wind speed (mis). The buoyancy flux, is defined by 

gd 2
V (T - T) (7.14)

F s s a 

4T 
s 

where g is the gravitational acceleration (9.8 1.s the stack 
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inside diameter (m), Vs the exhaust gas velocity (m/s), Ta is the 

ambient air temperature (°K), and T the stack exhaust gas temperature.
s 

Based on early experimental evidence, Briggs concluded that the final 

plume rise, h occurred at a downwind distance of ten stack heights.
P' 

Later results indicated that the the downwind distance at which the 

final plume rise occurred was a function of buoyancy. The distances are 

as follows 

5/ 314 F F < 55 (7 .15) 

34 F 215 F 2 55 (7.16) 

The limiting plume rise predictions as a function of the buoyancy flux 

parameter F are shown in Figure 7.3. 

Under stable ambient stratification Briggs (1975) indicates that 

the plume rise can be described by 

for windy conditions (7 .17) 

for near calm conditions (7 .18) 

In these expressions sis stability parameter defined in terms of the 

vertical potential temperature gradient. 

h 
p 

(7 .19) 

When calculating the plume rise h, the smaller of the values 
p 

estimated by (7.17) and (7.18) should be used. The downwind distance 
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FIGURE 7 .3 

Limiting Plume Rise as a Function of the 
Buoyancy Flux Parameter F. 
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to the final plume rise is given by 

(7. 20) 

In some circumstances the appropriate field data will not be available 

for direct determination of the stratification parameter; for these 

situations scan be approximated using the information presented in 

Table 7.2. 

7.5 Plume Penetration Into Elevated Stable Layers 

In urban environments the surface layer is often capped by an 

elevated stable layer. Since the formulae presented in the previous 

sections are only valid for conditions of uniform stratification they 

provide little guidance in assessing the ability of buoyant plumes to 

penetrate into the inversion. This section presents a simple model that 

enables the study of plume penetration in an environment composed of a 

surface neutral layer below a stable, elevated temperature inversion. 

A schematic representation of the problem is shown in Figure 7.4. Note 

that for the purposes of the following analysis the inversion is con­

sidered to be deeper than the final plume rise. 

As a first approximation consider the classic Morton et al. (1956) 

approach to plume rise ~n which there is no cross flow. If the Bous­

sinesq approximation is invoked then the conservation equations for 

mass, momentum and buoyancy can be written in the form 

(7. 21) 
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TABLE 7.2 

Relationship Between Pasquill-Gifford Stability 
Classes and Temperature Stratification 

STABILITY 
CLASS 

A (extremely unstable) 

B (moderately unstable) 

C (slightly unstable) 

D (neutral) 

E (slightly stable) 

F (moderately stable) 

AMBIENT TEMPERATURE 
GRADIENT 

oT/oz (°C/100m) 

<-1. 9 

-1.9 to -1. 7 

-1. 7 to -1.5 

-1.5 to -0.5 

-0.5 to 1.5 

>1.5 

POTENTIAL TEMPERATURE* 
GRADIENT 

ae/az (°C/100m) 

<-0.9 

-0.9 to -0.7 

-0. 7 to -0.5 

-0.5 to 0.5 

0.5 to 2.5 

>2.5 

;s r, , , ., b . de ~ d T ' T' ,_ T' • -:>ri; ":) l-,,, -::I t--i ,...
U\.J...1...UUU~...a..'--, .a ,.." ;:it-p" y assuming ~ - dz ,- . wnere . is the 

lapse rate (0.986 °c/100m). 
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CONCENTRATION 
PROFILE 

WIND 
SPEED u 

HEIGHT(z} 

[ 
ELEVATED TEMPERATURE 

INVERSION 
------

STACK 

f!.H 

i MIXING 
HEIGHT 

z. 
I 

d 8 <O 
ds 

d0 >O 
ds 

d 0 < 0 
ds 

VERTICAL 
TEMPERATURE X 
STRUCTURE 

FIGURE 7.4 

Nomenclature for Plume Rise Calculations 
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(7. 22) 

2
b w-A dTa (7. 23) 

T dz 
a 

where a is the entrainment coefficient, w(z) the vertical velocity 

component, b(z) the plume radius as a function of elevation z, T and 

T1 are the temperatures inside and outside the plume. ( Ta is a refer­

ence temperature, typically the ambient value at the same elevation as 

the top of the stack.) In the above formulation the vertical velocity 

and temperature have been assumed to be constant across the plume at 

any height. This formulation can be easily extended to the more conven-

tional approaches of Csanady 0973) <inn llnh <inn Rrnnlrs 0975) 1.n which 

the profiles are assumed to be Gaussian. 

The buoyancy flux in (7.23) is given by 

F 
z 

2
b wg 

T - Tl 

T 
(7. 24) 

a 

Under neutral conditions d(F )/dz is constant and so F is equal to F,
z z 

the buoyancy flux at the stack exit. Equations (7.21) and (7.22) can be 

solved to give an expression for the change in buoyancy flux as a func­

tion of elevation and the temperature stratification parameters, i.e. 

5/3 (7.25)z 
dF 

z 
dz 



236 

Starting at the stack top, where F = F, (7.25) can be integrated to 
z 

find the elevation at which F = 0. This height defines the vertical 
z 

extent of the plume rise. Since s=O for O < z -< Z. 
]. 

the integral can be 

written in the form 

z 
e 

6; (i~//3s Fl/3 J zS/3 dz (7. 26) 

zi 

Where z is the height of final plume rise. Evaluating the integral
e 

F 

z 
e 

= z. 
]. 

+ 20 
9cx (7. 27) 

Which for a typical value of the entrainment coefficient, a= 0.124, 

(Briggs, 1975) gives the following approximate expression for z 
e 

e zi [ 1 + lZ. 
s 

(_I_) 2/3 r/8z (7. 28)
z_4 

l 

Considering the finite size of the plume, complete penetration is 

likely to occur when z = l.3Z .• A similar analysis can be performed
e l 

for the uniform cross flow case which results in an equilibrium plume 

rise of the form 

3
19F ] l/z z . [ 1.8 + 4 . (7.29)

e l usZ. 
l 

A surprising feature of (7.29), also noted by Briggs (1975), is that 
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50% penetration (ze = Zi) requires only 1/28 of the buoyancy required 

for 100% penetration (z > 2z.). Within the airshed model the plume is 
e 1 

considered to have penetrated the inversion base if 

3F > 0.3 usz. (7.30)
l 

Because of the finite depth of the plume, partial penetration of 

elevated inversions probably occurs more often than total penetration. 

In either case it is important to have some estimate of the amount of 

material injected into the inversion. Manins (1979) presents labora­

tory results and a theoretical model of the conditions under which 

plumes can penetrate sharp, elevated temperature inversions. Of partic­

ular interest is the fact that his model can be used to predict the 

fraction of material trapped in the inversion layer and which will be 

available for subsequent fumigation. One of the more interesting find­

ings of Manins' work was that so long as the plume remains in the 

inversion layer the amount of material trapped per unit downwind dis­

tance is approximately independent of wind speed. 

In many situations the boundary layer temperature structure is 

more complicated than the simple two layer system described above. 

There are a number of integral plume models which can be used to 

predict plume dispersion in arbitrarily stratified environments. Some 

examples are described in the works of Schatzmann (1979), Omms (1972), 

Briggs (1975) and Hirst (1972). Unfortunately none of these models 

result in simple analytic expressions and as a result they must be 

solved numerically. 
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7.6 Treatment of Elevated Point Sources 

Most previous models have either ignored the dispersion of pollu­

tant material from elevated point sources (MacCracken et al., 1978) or 

treated them in a highly simplified manner (Reynolds et al, 1973). 

This is unfortunate since the contribution to both local and more dis­

tant pollutant levels can be quite significant. For example when the 

effective stack height is below the top of the mixed layer, the 

effluents can be rapidly downmixed within a short distance of the 

source. If the emissions are injected into the inversion the plume 

material can remain aloft for many hours, effectively isolated from the 

ground, until convective mixing erodes the stable layer. The point at 

which the fumigation occurs may be a considerable distance downwind 

from the source. This phenomenon was discussed in Chapter 5. 

The most common allocation scheme for elevated point sources is 

to add the emissions from the source into the grid cell at the effec­

tive stack height. If all the material is injected into one cell the 

near source air quality impact can be overestimated. An even more 

serious drawback with this approach is that an isolated source can 

induce numerical dispersion errors that in turn can produce severe 

instabilities during numerical solution of the chemical kinetics. 

These errors can become even more severe when multiple sources are con­

sidered because the dispersive waves from each release can interact 

and be amplified (Figure 7.5). Some of these computational difficul­

ties can be overcome by using the solution procedures described in 

Chapter 10. 
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(a) 

(b) 

FIGURE 7.5 

Concentration Distributions Resulting from 
Direct Point Source Injection into the 

Computational Cells indicated by Dots 
2

(u=v=2.2 m/s, t = 1.6 hrs, 6t = 6x = ~y = 3o2 Km, K =K = 100m /sec)xx yy 
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In an earlier effort to avoid some of these problems, Reynolds et 

al. (1973) allocated the emissions to downwind computational cells on 

the basis of some Gaussian plume dispersion estimates. During the day­

time the plume was considered to be well mixed in the vertical direc­

tion within a horizontal distance of two grid cells downwind from the 

source. Perhaps the most critical limitation of their procedure was 

that emissions injected above the top of the mixed layer were ignored. 

The approach adopted in this study is to disperse the emissions 

downwind, taking into account the actual vertical and lateral spread of 

the plume as well as whether the effective stack height is above or 

below the top of the mixed layer. Lateral and vertical dimensions of 

the plume are obtained by assuming a Gaussian profile in each direc­

tion. In each direction the plume halfwidth is assumed to be 20 

which includes 95% of the plume mass. The dispersion coefficients 0y 

and 0 are functions of solar radiation, cloud cover, wind speed and 
z 

surface roughness. The plume is assumed to extend downwind for a dis-

tance u6t where6t is the averaging time of the wind data. If the vert­

ical thickness of the plume, 40 , exceeds the mixed layer depth, the 
z 

vertical thickness is taken to be the mixing height. Over the averag-

ing time of the wind data, the plume is assumed to be uniformly mixed 

and to be essentially conical (Figure 7.6). With this assumption the 

fraction, F. "k' of the elliptical cone volume that is within a given
iJ 

downwind grid cell, (i,j,k), can be used to calculate the magnitude of 

the source contribution 

(7.31) 



7. 6 

CornPllt,at . 

.i.ollct] G-i:-j_d 



242 

Figure 7.7(a) displays the concentration distribution resulting 

from a single source using this dispersion procedure. The upwind nega­

tive concentrations are much smaller than those resulting from the sin­

gle cell source injection. Figure 7.7(b) shows the concentration dis­

tribution resulting from the same computational procedure but with two 

sources. The upwind dispersion errors, in both cases, are substan-

tially less than those shown in Figure 7.5. 
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(a) 

(b) 

FIGURE 7.7 

Same as Figure 7.6 except that the source injection 
is performed using the algorithm described in the text 
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7.7 Plume Dispersion Parameters 

A key element of the source allocation procedure introduced in the 

previous section was the characterization of the plume growth in terms 

of the dispersion parameters 0 and 0 • While there is an extensive 
y z 

literature on procedures for estimating the coefficients, most of the 

commonly adopted schemes utilize the formulation presented in Turner 

(1970). Unfortunately the Turner Workbook is based on a limited set of 

field data and, more importantly, it does not accurately describe 

dispersion under unstable conditions. (Hanna et al., 1977; Gifford, 

1976;and Pasquill, 1975, 1976). The recent work of Willis and Dear­

dorff (1976, 1978), Lewellen and Teske (1975) and Lamb (1978, 1979) 

indicates that under convectively driven conditions both the mixed 

layer depth and the convective velocity scale have a significant impact 

on pollutant diffusion from elevated sources. Neither of these vari­

ables are included in typical Gaussian plume calculations. The objec­

tive of this section is to present an algorithm for predicting the 

plume growth in terms of readily available or estimated meteorological 

information. The procedure supplements the material presented in 

Chapter 4 and is partly based on the measurements and literature 

results assembled by Irwin (1979). 

When describing the plume geometry it is important to ensure that 

the averaging times of the turbulence statistics and requirements for 

the concentration predictions are consistent. The basic problem is 

illustrated in Figure 7.8. As seen by a stationary observer, the mean 

concentration is influenced by meandering of the plume during the 
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experiment. Taylor (1921) addressed this issue and proposed a model 

for the average plume dimensions expressed in terms of the motion of 

single particles released from the point source. At a particular 

instant, however, the plume outline is defined by the trajectories of 

two particles released simultaneously by the source. The instantaneous 

plume width is described by the particle separation and the meander by 

the position of their center of mass. The need for distinguishing 

between the two cases becomes apparent when it is recognized that the 

plume chemistry is controlled by the instantaneous values and the 

observed ground level concentration by the average profile. Some ini­

tial ideas on the relationship between averaging times and particle 

statistics for different observed wind velocity spectra are presented 

in Sheih (1980). Further,more definitive work will require field data 

from a wider range of conditions. For the purposes of the present study 

it has been assumed that the averaging times for the dispersion coeffi­

cients are comparable with those of the meteorological data. 

In the atmosphere o and o reflect the influence of the different 
y z 

physical phenomena acting on the plume. If the assumption is made that 

the various processes are additive (Pasquill, 1975) then the total 

dispersion in each direction can be represented by 

2 2 2 2 (7.32)0 
y oa(y) + ob(y) + os(y) 

2 2 2 
0 0 (7.33)

z a(z) + 0 b(z) 

where the subscript a refers to the contribution from atmospheric 
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turbulence, b the fraction induced by the inherent buoyancy of the 

plume ands the additional cross wind spread arising from vertical 

wind shear. Since the primary purpose of the source allocation pro­

cedure is to maintain the plume integrity only until it has grown to 

the size of a typical computational cell,the effect on lateral disper­

sion from changes in the wind direction and speed with elevation can be 

ignored. Most of the research work and field investigations have been 

directed at formulating the contribution from atmospheric turbulence. 

Under suitable assumptions on atmospheric stationarity and homo­

geneity Taylor (1921) showed that the diffusion parameters can be 

written in the general form 

T t 

2 (7 .34)02 2 v• rr RT ( 0 d~dt 
- I •• \ 
a. \YI rJ rJ y 

a 
2 (0 d~dt (7. 35)2 ~2JJ

Tt 

R
a(z) z 

0 0 

where Tis the diffusion time and R are the Lagrangian auto-
y,z 

correlations associated with the wind fluctuations v', w' in they and 

z directions. Close to the source R(~) = 1. In the limits of long dif­

fusion times it is highly likely that the velocity fluctuations are 

uncorrelated and as a result R(~) = 0. For intermediate times measure­

ment difficulties complicate characterization of the functional form 

of R(~). In an effort to overcome some of the practical difficulties, 

Pasquill (1971) suggested an alternative definition that retained the 
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essential features of the Taylor formulation but which was more amen­

able to parameterization in terms of readily determined Eulerian quan-

tities. In its most general form, as adopted by Draxler (1976), Hanna 

et al. (1977), and Irwin (1979), the Pasquill representation results in 

dispersion coefficients of the form 

(7.36) 

(7.37) 

where the standard deviation of the wind fluctuations o and o and 
V W 

F are universal functions of a set of parameters.!'._ which specify the 
y,z 

characteristics of the atmospheric boundary layer over a range of sta-

bility conditions. 

The variables which comprise.!'._ were introduced in Chapter 4 and 

include the friction velocity u*' the Monin-Obukhov length L, the 

Coriolis parameter f, the mixed layer depth Z., the convective velocity
l 

scale w*' the surface roughness z and the height of the pollutant
0 

release above the ground z,i.e., I_= { z, Z., u~, w*' z0 , L, f}.
l ~ 

Details of the procedures used to determine these variables are dis­

cussed in Chapter 4. 
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For lateral dispersion, the standard deviation of the horizontal wind 

fluctuations can be written in the form 

z. 
l < Q (7 .38)l.78u*[ 1 + 0.059 (- :i)] ½ L 

0 
V 

z. 
l (7.39)

1. 78u,~ L 2_ 0 

Irwin (1979) developed (7.38) by combining the results of Nieuwstadt and 

van Duuren (1979), Deardorff and Willis (1975), and Draxler (1976). For 

neutral and stable condition~o is based on the calculations described 
V 

in Binkowski (1979). 

Normally Monin-Obukhov similarity is valid only for z/1 < -2; how­

eve~ for convective conditions mixed-layer scaling can be applied 

throughout the whole boundary layer (Panofsky et al.,1977; Nieuwstadt, 

1980). Using these results Irwin (1979) proposed the following forms 

for F • 
y 

1 

1 1 2. Su,., l[1 + 0 _0013 (-
7~i)r Z. 

< 0 (7 .40)
1 T. z. L -

l l 

1 + (Tti)2 

F = 
y 

(7. 41)1 z.
1 l1 1.001 > 0 

LTO1 + 0. 9~;0 )2 
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An examination of (7.38-7.41) indicates that they have the same limit-

ing behaviour predicted by the Taylor theory 1.. e. a a t for t ➔ 0 and 
V 

00a a -rt" for t ➔ • Another interesting feature of the model is that 

there is no functional dependence on release height. 

In contras½ the standard deviation of the vertical velocity fluc­

tuations are closely related to the height of the pollutant release 

above the surface. The reason for this is that under unstable condi-

tions the appropriate similarity variables are the convective velocity 

w* and the mixed layer height Zi (Willis and Deardorff, 1976). Using 

these variables a wide range of field and laboratory measurements can 

be described by a universal function of the form 

a (7 .42) 
w 

Irwin (1979) has assembled a number of different data sets which 

characterize G(z/Z.). His results, shown in Figure 7.9, have been 
1. 

incorporated into the airshed model. 

During neutral and stably stratified conditions the formulation 

developed by Binkowski (1979) can be used 

a ~ > 0 · (7 .43) 
w L-

In (7.43) k is the von Karman constant and ¢m(z/L) is given by 

(7 .44) 

https://7.38-7.41
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FIGURE 7. 9 

Vertical Profile of 0w/w* for Fully Convective Conditions 
(After Irwin, 1979) 
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The reduced frequency fm (Busch, 1973) at which the vertical velocity 

spectrum has its peak is given by 

z < 2 (7. 45)
L-

f = 
m 

0.4 [6.78 + 2.39 <t - 2)] z > 2 (7 .46)
L 

Once the standard deviations of the wind velocity fluctuations 

have been established the next step is to complete parameterization of 

the vertical dispersion coefficients by specifying F • Some field and 
z 

laboratory results for unstable conditions are shown in Figure 7.10, 

where the datahavebeen plotted as a normalized function of the convec­

tive time scale Z./w~. From an inspection of these graphs it is
l. fl 

apparent that there are two different dispersion regimes, one for 

discharges above O.lZ. 
]_ 

and the other for surface releases. Lamb (1979) 

has shown that locus of maximum concentration of a non-buoyant elevated 

plume (z > O.lZ.) follows a descending path that intercepts the ground
s ]_ 

at a downwind distance x ~ 2z u/w*. For a surface source the locus of s-

the maximum concentration ascends beginning at a distance of approxi-

mately x = Z.u/w*. The important features of the concentration field
1.-

can be reproduced by the Gaussian plume model if the actual source 

elevation is replaced by a "virtual source height" H (Lamb, 1979). At 
e 

present there are, unfortunately, no simple analytic expressions which 

describe the variation in F or H as a function of release height and 
z e 

stability. For t.he present study the data shown in Figure 7 .10 are 
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FIGURE 7.10 

Values of F 
2 

for Elevated Releases and 
Near-Surface Releases during Convectively Unstable Conditions 

(After Irwin, 1979) 



254 

employed directly in combination with (7.42). Between neutral condi­

tions and -Zi/1 less 

(1979) is used. 

than 10 an interpolation formula due to Irwin 

Draxler (1976) developed 

stable conditions. 

the following results for neutral and 

1 
z < SOm 

(7 .47)1 + 0.9 ( TtO )½ 
F = z 

1 
0.8 z > SOm (7.48) 

1 + 0. 945 ( TtO ) 

The field data which formed the basis of (7.47-7.48) are shown in Fig-

ure 7.11. Both expressions require specification of the characte~istic 

time T • While an initial estimate of 50 seconds was given by Draxler,0 

Irwin (1979) proposed the following functions after an analysis of 

additional field experiments and laboratory studies 

50 z < 50m 

1.52 - 25 50 < z < 150m (7. 49) 

200 z > 150m 

Even though most of the data examined by Irwin were for near neutral 

conditions the results are likely to have wider applicability because 

turbulence levels during stable conditions are relatively low. 

So far in the discussion the plumes have been considered to be at 

the same temperature as the environment. If the source effluent is hot 

then the dispersion is influenced by both the ambient turbulence and 
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the buoyancy induced entrainmento Unfortunately there are few published 

studies which assess the relative importance of each process. As a 

result most descriptions of the source induced dispersion are based 

on theoretical formulations. Close to the stack the Taylor entrainment 

hypothesis predicts a linear relationship between the plume radius and 

the height of ascent. This is partially supported by the data reported 

in Briggs (1969) which indicate that the vertical spread is comparable 

to plume rise hp. Pasquill (1975,1976) used this result to develop an 

estimate of the dispersion caused by the plume buoyancy. The Pasquill 

model assumes that the concentration distribution, across any cross 

section, is uniform. When modified for equivalent Gaussian profiles, 

the thermal dispersion coefficients utilized in the airshed model are 

given by 

h 
_p - 0.3 h0 (7.50)b(y,z) 2V3 p 

As in all the previous formulations there is a clear need for addi-

tional field and laboratory data which can be used to test different 

models over a wide range of atmospheric conditions. This lack of suit­

able verification information considerably hampers the development of 

more refined descriptions of the dispersion of buoyant and passive 

exhaust gases. 
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7.8 Near Source Plume Chemistry 

The combustion products from large point sources are rich in 

nitrogen oxides and typically have low concentrations of reactive 

hydrocarbons. As a result the near source plume chemistry is dominated 

by the following reactions. 

kl 
N0 + hv -> NO + o( 3P) (7. 51)

2 

k2 
0(3p) + 02 + M -> 03 + M (7. 52) 

k3 
+ NO -> N0 + o (7. 53)03 2 2 

Once the plume has grown to the size of a typical computational cell 

the full airshed model reaction mechanism, with its hydrocarbon and 

radical interactions, is more appropriate. The purpose of this section 

is to present a simple model which can be used to estimate the fraction of 

nitric oxide (NO) which is converted to nitrogen dioxide (N0 ) during
2 

the initial phase of plume dispersion. 

Given a background ozone concentration of 0.04 ppm a simple calcu­

lation, using the rate constant data published in Hampson and Garvin 

(1977), predicts a typical NO half life of a few seconds. This calcu-

lation assumes that every available NO molecule in the plume encounters 

an ozone molecule. In reality the background ozone must diffuse into 

the NO rich plume. Because the chemical kinetics are so fast, relative 

to the characteristic mixing times, the overall conversion rates are 
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limited by the entrainment processes. There have been a number of 

theoretical studies (Kewley, 1978; Shct et al., 1978; White, 

1979) as well as field measurements (White, 1977 and Hegg et al., 1977) 

which support this hypothesis for the reaction system (7.51 - 7.53). 

At night the dominant reaction is (7.53); however, during daylight 

hours when k > 0, an equilibrium is established amongst NO, N02 , and
1 

o which depends on the sunlight intensity. The N0 concentration lev­
3 2 

els are given by the photostationary approximation 

(7.54) 

An additional source of N0 is the thermal conversion process
2 

NO+ NO+ o (7.55)
2 

2In this reaction the N0 formation is proportional to (NO) and, as a
2 

result, (7.55) is only significant when the NO concentration levels are 

high. This is the rationale for omitting the step in most photochemi-

cal reaction mechanisms. There are some circumstances,however, where 

the thermal oxidation can be important and these conditions are dis­

cussed in Section 7.9. 

Ignoring, for the present, the N0 conversion from reaction (7.55),2 

additional constraints are imposed on the NO-N0 -o system because of
2 3 

3the fact that N0 + o + O( P) and NO+ N0 are stoichiometric invari-2 3 2 

ants. If surface removal processes are unimportant and the plume is 

considered to be well mixed across a transverse section, then the 

nitrogen and excess oxygen balances require that 
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Nitrogen: 

NO (t) = NO (t) + NO(t) = D(t)NO (0) + [l - D(t)]NO b (7.56)
X 2 X X 

3Excess Oxygen (Ignoring 0( P) ): 

Ox(t) = N02 (t) + o (t) = D(t)[N0 (0) + o (0)] + [l - D(t)](N02b + o b)
3 2 3 3 

(7. 57) 

In these expressions D(t) refers to the plume dilution at time t, and 

NO (0) to the stack concentrations and the superscript "b" to the back­
x 

ground values. The dilution can be defined in terms of the change in 

the plume cross sectioned area as a function of time. If the initial 

transverse area is A and is A(t) at some later time t, then D(t) = 
0 

A /A(t). There is a simple relation between the dilution and the growth
0 

of a cross sectional segment of unit thickness; this expression is 

1 dA(t) dD(t) (7.58)
A(t) dt dt 

In addition to the dilution D(t), the change in cross section can be 

expressed in terms of the dispersion coefficients, oy and o , 
2 

dCJ CJ
1 dA(t) 1 y z (7.59)

A(t) dt 0 CJ dt 
y z 

If the functional forms given by (7.36 - 7.37) are substituted into 

(7.59) then the dilution is given by 

1 dA(t) = CJw IF (__!_) + t dF z] (7. 60)
A( t) dt CJ L z T. dt 

Z l 
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When using expressions of the form (7.59 - 7.60) it is important to 

ensure that the dispersion parameters describe the instantaneous plume 

profile and not the time averaged envelope (White, 1977). The reason 

for this is that the meandering has no effect on the plume chemistry. 

The large scale fluctuations in wind direction do, however, influence 

the time averaged concentrations. 

Since the ozone concentration in the stack exhaust gases is usu-

ally negligibl~ (7.57) can be written in the form 

(7.61) 

where 

(7.62) 

and the NO concentration is given by (7.56) 

(7.63) 

where 

a= D(t)NO (0)
X 

+ [l - D(t)]NO b 
X 

(7.64) 

Combining (7.54, 7.61-7.64) produces a quadratic expression for N0 (t),
2 

the only physically realistic solution of which is given by 

4ab ] (7.65) 

The variables a and b can be calculated from measurements of 

NO/NO in the stack exhaust, the dilution and the background concentra­x 

tions of NO, N0
2 

and o •
3 

Given the rate constant ratio k /k
1 3 

the 

downwind N0
2 

concentration within the plume can be readily evaluated. 
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Some of the necessary corrections for the effects of turbulent fluctu­

ations and concentration inhomogeneities are discussed in Shu et al. 

(1978) and White (1979). A variety of other methods for estimating 

short-term N0 impacts are reviewed in Cole and Summerhays (1979) and
2 

Peters and Richards (1977). One advantage of the formulation presented 

in this section is that it can be used in conjunction with conventional 

Gaussian plume models. 
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7.9 An Examination of the Contribution of Thermal NO Oxidation 

to the Formation of N0 •
2 

When nitrogen oxides (NO) are reported in source inventories they
X 

are frequently expressed in terms of equivalent emissions of nitrogen 

dioxide (N0 ) even though the exhaust NOx is composed primarily of
2 

nitric oxide (NO). Unless the initial N0 /NOx ratio is specified from
2 

instack measurements it is necessary to establish appropriate fractions 

for reconstructing the actual emission levels of NO and N0 • Depending
2 

on the source, and the characteristics of its combustion process, the 

fraction can vary from approximately 1 to 10%. In addition to the N0 2 

formed during combustion, some small quantities can be formed in the 

exhaust gases by the third order reaction 

(7.66) 

This reaction step is normally ignored in photochemical reaction 

mechanisms because of the low ambient levels of nitric oxide. The 

objective of this section is to present a very simple model which can 

be used to estimate the fraction of NO which is converted to N0 in the
2 

vicinity of the source. The intent is not to add an additional reac­

tion step to the airshed model chemistry but rather to develop a simple 

approach for augmenting the emission inventory N0 /NOx ratio.
2 

If the plume is considered to be well mixed across each transverse 

section then the nitric oxide (NO) decay rate is given by 

1 dD(t) b_Q_(NO) 2= -2 k (T)(NO) (0 ) + - (NO - NO) (7 .67)4 2dt D(t) dt 
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where D(t) is the plume dilution as defined in Section 7.8 and NOb is 

the background concentration of nitric oxide. The nitrogen mass con­

straint enables the direct calculation of N0 from
2 

(7. 68) 

' -2 . -1In (7.67) the second order reaction rate constant, in ppm -min 

units, is of the form (Baulch et al. ,1978) 

= l.066xl0-S 
exp(530/T) (7 .69)

T2 

Even though the above expressions are straightforward, the NO 

concentration dynamics downwind from the stack are not immediately 

obvious. While entrainment of cool ambient air into the plume causes an 

increase in the magnitude of k (T) (Figure 7.12), the plume dilution4 

also results in a reduction of NO. This interplay between cooling and 

dilution can be described by integrating the species rate equation. If 

the background contribution in (7.67) is ignored then the NO concentra­

tion decay is given by 

NO(O) D(t) 
(7.70)NO(t) = 

1 + 2NO(O)ftk (T){D(t)0 + [1 - D(t)]o b}D(t) dt
4 2 2

0 
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Within the plume, the oxygen and temperature distributions are given by 

(7.71) 

T ( t) (7. 72) 

While details of near source dilution characteristics can be found in 

Fischer et al. (1979), an approximate form was adopted in this study 

D(t) = exp[-0.lSt] t < 30 s (7. 73) 

Given the initial and background conditions for NOx' T and o the sys­
2 

tem of equations (7.67 - 7.73) can be solved to give the conversion 

fractions for short travel times. Figure 7.13 presents the results of 

one such calculation where the initial N0 (0)/NOx ratio was 5.0%,2 

o 2 (o) = 3% = JOOOOppmV, and the instack NO was varied from 200 to 2000 

T"'\T"\'m·u 
,t-' t'Ul V • A comparison between the pure dilution cases and those in which 

the chemistry was included indicates that between 2 and 12% of the 

increase in N0 concentration at any travel time can be explained by2 

thermal oxidation. Two conclusions are apparent from this investigation. 

The first is that,close to the source, the reaction step can be sig-

nificant,which in turn implies that more attention needs to be given to 

characterizing the stack exhaust gas concentration and temperature 

distributions when assembling emission inventory information. Since the 

effects of thermal oxidation are minimal when the dilution is high,there 

is no need to include the reaction step (7.66) in the airshed model. 

The incremental conversion can be incorporated by simply increasing the 

initial N0 2/NOx emission inventory ratio. 
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7.10 Conclusions 

This chapter has described how both point and area source emis­

sions are treated in the airshed model. Of particular interest is an 

improved method for allocating elevated emissions discharges into a 

three-dimensional computational grid. When coupled with suitable 

selection criteria that identify whether a particular source should be 

treated as an elevated release, the procedure significantly reduces the 

numerical dispersion errors associated with conventional allocation 

schemes. Some preliminary work on the treatment of plume rise in a non-­

uniformly stratified environment resulted 1n a simple criterion that 

establishes whether a plume can penetrate an elevated temperature 

inversion. In addition to formulating the plume rise models some con-

sideration was given to the characteristics of the near source chemis­

try and, in particular, the role of thermal oxidation of nitric oxide 

to N0 •
2 

There is a critical need for more field measurements which can be 

used to verify different models of plume dispersion, trapping and subse-

quent fumigation. 
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CHAPTER 8 

PRACTICAL IMPLEMENTATION OF A PHOTOCHEMICAL 
REACTION MECHANISM WITHIN AN AIRSHED MODEL 

8.1 Introduction 

"Photochemical air pollution is fanned as a result of a complex 

interaction between sunlight, meteorology and primary emissions of 

nitrogen oxides and reactive hydrocarbons. The development of a 

reaction mechanism that accurately describes the atmospheric chemistry 

and which, at the same time, is computationally tractable is a complex 

undertaking. The task is complicated by the need to maintain a balance 

between the level of chemical detail and minimizing, for numerical 

reasons, the number of species and reaction pathways. This dilemma is 

particularly apparent when considering hydrocarbon chemistry. In a 

typical urban atmosphere literally hundreds of different hydrocarbons 

are present. Under most circumstances it is simply not feasible to 

incorporate the reaction steps for each species. As a result two basic 

approaches have been developed to characterize the hydrocarbon chemistry: 

surrogate and lumped reaction mechanisms. 

Surrogate mechanisms are those in which the organic species in a 

particular class, e.g. olefins, are represented by one or more members 

of that class, e.g. propylene. In general these mechanisms, typified 

by Graedel et al. (1976) and Dodge (1977), tend to have a large number 

of reaction steps and are not practical in situations where the 

meteorological transport model involves more than a few computational 
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cells. The second approach to the problem is to use chemical lumping 

in which one or more reactants, of similar structure and reactivity, 

are grouped together into a single class. A basic objective is to take 

advantage of the common features of the hydrocarbons and free radicals 

in order to minimize the number of species while at the same time 

maintaining a high degree of detail for the inorganic reactions. In 

the present study the lumped mechanism, developed by Falls and Seinfeld 

(1978), has been used. Their mechanism represents the atmospheric 

hydrocarbon mixture by six classes: ethylene, other olefins, alkanes, 

aromatics, formaldehyde and higher aldehydes. Other examples of lumped 

mechanisms are described in Eschenroeder and Martinez (1972), Gelinas 

and Skewes-Cox (1975), Hecht and Seinfeld (1972), Hecht et al. (1974), 

MacCracken and Sauter (1975) and Whitten et al. (1979). 

The basic objective of this chapter is to prnuirlP 51,ffirian~ 

information regarding initial conditions, rate constants and stoichio­

metry to allow an independent verification of the Falls and Seinfeld 

(1978) mechanism. Their mechanism was selected, for the airshed model, 

because it incorporates recent information on rate constants, mechanistic 

structure and, in addition, has been successfully validated against 

a wide range of smog chamber experiments. Since an extensive analysis 

of the chemical basis of the reaction scheme is available in the 

cited reference it will not be repeated here. Subsequent sections 

of this chapter present the results of a series of tests designed to 

examine the numerical properties of the kinetics, the adequacy of some 
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psuedo steady state approximations and the mechanism consistency as 

evidenced by mass balance checks. While primary emphasis is given to 

the Falls and Seinfeld (1978) formulation, much of the discussion in 

subsequent sections can be easily applied to other mechanisms. 

8.2 Chemical Reaction Source Term and Mechanism Definition 

Within the airshed model the ambient chemistry is represented by 

the presence of reaction terms, R.; i = 1,2, ... ,n, in the atmospheric
l 

diffusion equation. This section presents the detailed formulation of 

the mathematical form and structure of these terms. Consider a homogen-

eous, isothermal, isobaric system in which n single phase species, ci, 

i = 1,2, .•. ,n, simultaneously participate in m elementary reaction steps. 

Formally, the reaction set can be written in terms of linear combinations 

of species called complexes (Horn and Jackson, 1972). 

c. ➔ j = 1,2, ... ,m (8.1)
l 

The reactant and product stoichiometry in reaction step j is defined by 

the coefficients r .. ,p ... In general, these coefficients are such that 
Jl Jl 

mass is conserved in each elementary reaction; however, there are cir-

cumstances, to be discussed later, in which this condition must be 

relaxed. Note that the sum in (8.1) extends over all n species to allow 

for the possibility that a given species can participate in a reaction 

step as both a product and a reactant. Equation (8.1) can be written 
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in a more compact matrix notation in which {c} is interpreted as a 

T
concentration vector c [c ,c

2
, ... ,cn] and where the reactant and

1 

product stoichiometric matrices [RJ, [PJ are of dimension m x n~ 

[R] {c} -+- [P] {c} (8.2) 

If the rates f. of them individual reactions are given, the 
J 

following set of ordinary differential equations, together with appro-

priate initial conditions, is a basis for describing the kinetics of the 

reaction set embedded in the airshed model (Gavalas, 1968; Aris, 1965). 

d{c} 
g (c) (8. 3)

dt 

where [SJ is them x n stoichiometric matrix defined by [P] - [R], {F} 

is an m x 1 vector of rate functions f., and g (c) can be interpreted as 
J ~ ~ 

a non-linear transformation which maps points from JR m into IR n. In 

general the matrix [S] has no special properties, such as symmetry, 

band or block structure, except that the number of differential equations 

clearly has the upper bound: rank (S) ~ min (m,n). 

For definitional purposes the chemical mechanism embedded in the 

airshed model is reproduced in Table 8.1. Each species and its symbolic 

representation is shown in Table 8.2. In this latter table the last 

column indicates whether the species is described by one of the 

following mathematical types: a differential equation (D), a pseudo 

steady state approximation (PSSA), a constant (C) or as an uncoupled 
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TABLE 8.1 

CHEMICAL MECHANISM USED WITHIN AIRSHED MODEL 

Photolysis of N0 2 and basic NO-NO 2-03 photolytic cycle 

1 3N0 + hv -+ NO + 0( P)2 
20( 3P) + 02 + (M) + 03 + (M) 

03 + NO +-
3 

N0 2 + 02 

N0 2 + 0(
3

P) i_ NO + 02 

5NO + o( 3P) + N0 2 

Chemistry of N03 (nitrogen trioxide) 

N0 2 + o( 
3
P) + 

6 
N0 3 

03 + N0 2 + 
7 

N03 + 02 

8N0 + NO + 2N023 

Nitrous acid and peroxy nitrous acid chemistry 

9NO + OH HONO+ 

Photolysis of HONO 

10HONO + hv ... OH + NO 

Nitrous acid chemistry 

11H0 2 + N0 2 -+ HONO + 02 
12

HONO + OH + N0 2 + H2o 

13N0 2 + H0 + H0 N02 2 2 

2 2 
14 

H0 2H0 No + + N0 2 

l>'< 

2 

3 

4 

6 

5 

7 

8 

22 

24 

18 

26 

19 

20 

*These numbers correspond to reactions presented in Tables I-III 
of Falls and Seinfeld (1978) 
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TABLE 8.1 (Continued) 

Conversion of NO to N0 2 

H0 2 + NO + 
15 

N0 2 + OH 21 

16R0 2 + NO -+ N0 2 + RO 52 

RC0 3 + NO -+ 
17 

N0 2 + R0 2 + CO 2 53 

Nitric acid (HON0 2) formation 

N0 2 ' OH + 
18 

HON0 2 23T 

Hydroperoxyl radical formation 

19co + OH -+ H0 2 + CO 2 25 

Photolysis of ozone 

20 
03 + hv + o( 3P) + 02 15 

Photolysis of formaldehyde 

2i
HCHO + hv + 2H0 2 + co 31 

22
HCHO + hv + co 32-+ Hz 

Formaldehyde chemistry 

HCHO 23 + H2o+ OH -+- H0 2 + co 33 

Photolysis of higher aldehydes 

RCHO + hv 
24 + H0 2 + co 35-► R0 2 

Higher aldehyde chemistry 

RCHO + OH + 
25 

RC0 3 36 
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TABLE 8.1 (Continued) 

Olefin chemistry (OLE) 

C2H4 + OH + 
26 

R0 2 42 

C2H4 + 0 + 
27 

R0 2 + H0 2 43 

OLE + OH +-
28 

R0 2 37 

OLE + 0 + 
29 

R0 2 + RC0 383 
30

OLE + 03 +- (al) RCHO + (a2) HCHO + 39 

(a3) H0 2 + (a4) R0 2 + 

(as) OH + (a6) RO 

Alkane chemistry (ALK) 

ALK + OH +-
31 

R02 40 

ALK + 0 
32 

R0 2 + OH 41+ 

Aromatic chemistry (ARO) 

+ 
33 R0 2ARO + OH + RCHO 

Alkoxyl radical chemistry 

RO ~ 

34 
(bl) H0 2 + (l-b

1
) R0 2 + 44 

(b2) HCHO + (b) RCHO 

Photolysis and chemistry of RONO 

35RONG + hv ~ NO + RO 46 

36RO + NO ➔ RONO 

RO + N0 2 +-
37 RON0 2 47 

RO + N0 2 
38 
~ RCHO + HONO 48 
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TABLE 8.1 (Continued) 

Peroxy nitrate chemistry 

N0 2 + R0 2 

N0 2 + R0 2 

ROlT02 

39 
-+-
40 
+ 
41 
~ 

R0 No2 2 

RCHO 

N0 2 

+ HON0 2 

+ R0 2 

49 

so 

51 

Peroxyacyl nitrate (PAN) chemistry 

RC0 3 + N0 2 

PAN 

42 
-+ 
43 
-+-

PAN 

RC0 3 + N0 2 

54 

55 

Dinitrogen pentoxide (N205) 

+ N0N0 2 3 

N205 

H2o + N205 

chemistry 

44 
-+- N205 

45 
+ N0 2 
46 
4-- 2 HON0 2 

+ N03 

9 

10 

11 

Ozone removal steps 

03 

03 

+ OH 

+ H0 2 

47 
-+-

48 
-+-

H0 2 

OH 

+ 02 

+ 202 

29 

30 

Ozone wall loss term for smog chamber experiments 

03 
49 
-+ wall loss 

Hydrogen peroxide production and photolysis 

H0 2 

H202 

+ Ho 2 

+ hv 

50 .,,.. 
51 
-,-

H202 

20H 

+ 02 27 

Recombination Reaction for peroxalkyl radicals 

R0 2 + R0 2 
52 
-+- 2RO 
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TABLE 8.2 

Chemical Species Participating in Photochemical Reaction Mechanism 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

TREATMENT INSPECIESa NAME AIRSHED MODELb 

NO Nitric Oxide D 

N0 2 Nitrogen Dioxide D 

03 Ozone D 

HCHO Formaldehyde D 

RCHO Higher Aldehydes D 

OLE Lumped Olefins D 

ALK Lumped Alkanes D 

ARO Lumped Aromatics D 

C2H4 Ethylene D 

co Carbon Monoxide D 

H202 Hydrogen Peroxide D 

PAN Peroxyactyl nitrate D 

HONO Nitrous Acid D 

RONO Alkyl Nitrite D 

RN0 4 Peroxyalkyl Nitrate D 

N205 Dinitrogen Pentoxide PSSA 

HN0 4 Peroxynitric Acid (H0 No )
2 2

PSSA 

RC0 3 Peroxyacyl Radical PSSA 

H0 2 Hydroperoxyl Radical PSSA 

N0 3 Nitrogen Trioxide PSSA 

R0 2 Alkylperoxy Radical PSSA 
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TABLE 8.2 (Continued) 

SPECIESa NAME 
TREATMENT IN 
AIRSHED MODELb 

-------------------------

22 OH Hydroxyl Radical PSSA 

23 RO Alkoxyl Radical PSSA 

24 0 Atomic Oxygen PSSA 

25 CO 2 Carbon Dioxide p 

26 RN0 3 Alkyl Nitrate (RON0 2) p 

27 HN0 3 Nitric Acid (HON0 )
2

p 

28 H2 Hydrogen p 

29 LOSS Ozone loss term for smog chamber 
experiments p 

30 H 02 Water C 

31 02 Oxygen C 

32 M Third Body C 

Notes: 

a. Species name is restricted to four characters for computational 
reasons. 

b. Treatment of species within the airshed model chemistry 

D - Differential Equation 

PSSA - Pseudo Steady State Approximation 

C - Constant species during one integration step 

P - Product species ignored in some applications. 
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differential form (P). The structure and interrelation among all 

elements of the mechanism are shown in Figure 8 .1. 

The Jacobian matrix of the system of differential equations is 

frequently required as a component of numerical solution procedures and 

for sensitivity analyses. For the set of equations defined by (8.3) and 

(8.4) the Jacobian is given by 

a{c} 3{F}
J (8.4)

a{c} 3{c} 

A number of species in the mechanism appear only as products and 

as a result can be treated as uncoupled differential equations. Parti­

tioning the concentration vector to reflect this division, (8.3) can be 

written as 

(8.5) 

where the subscripts refer to the coupled (c) and product (p) species. 

Since the {c }can be expressed as functions of {c }, their concentrations 
p C 

are readily determined for any interval [to,T] by standard numerical 

quadrature procedures by evaluating integrals of the form 

T 

{c (T)} {g (c )} dt (8.6)
p + J p C 

t 
0 
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FIGURE 8.1 

Structure of the Falls and Seinfeld (1978) Photochemical Reaction Mechanism 
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8.3 Stoichiometric Coefficients for the Lumped Reactions 

Two reactions in the Falls and Seinfeld (1978) mechanism require 

specification of stoichiometric coefficients. The first is the lumped 

ozone-olefin chemistry which is shown schematically in Figure 8.2 and 

can be expressed in the form 

30-
+ 

+ (8.7) 

where the stoichiometric coefficients are given by 

(1 - O.5o)al 

= 0.56a2 

0.5 € (E,; + 11) (1-0.50) + poa3 

a4 0.5 € (2E,; + 11) (1-0.56) (8.8) 

= 0.5 EE',; (1-0.56)as 
= 0.5 €11 (1-0.56)a6 

= 0.5 €11 (1-0.56)a7 

where c5 equals the fraction of olefins with terminal double bonds, 

1-E the fraction of RCHOO reactions that proceed by collisional 

stabilization, E,; and 11 the fractions of RCHOO to [RCHOO]* and [HOCOR]* 

respectively. All other splits are assumed to be 50/50 except for the 

step 
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... --?> RCHO + [HOCOR] 70% >HO+ CO 
2 

20% > H + CO2 2 

_P_> 2H + CO 2 

L> 2HO,., 
L 

where pis 10% (Dodge, 1978). For the purposes of calculating the 

stoichiometric coefficient for H0 production, r has been assumed to be
2 

0.1. From a computational point of view, it is desirable to minimize 

the number of species. Since the formyl radical (HCO) reacts very 

rapidly with oxygen to form hydroperoxyl (Ho ), HCO can be eliminated
2 

with the reaction step 

(8.9) 

Applying this result, together with the interpretation by Dodge (1978) 

of the Herron and Huie (1977) ozone-olefin experiments, the stoichio­

metric coefficients can be calculated from s = 0.8, ~ = 0.68, n = 0.17, 

o = 1, and p = 0.1. Substituting these values into the expressions for 

OLE+ 0
3 

30> 0.5 RCHO + 0.5 HCHO + 0.30 H0
2 

+ 0.31 R0
2 

+ 0.14 OH + 0.03 RO (8.10) 

where the H0
2 

coefficient is derived from a 
3 

+ a7, i.e. 
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FIGURE 8.2 

General Ozone-Olefin Reaction Mechanism 
with Reaction Products as Proposed by Dodge (1978) 
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a 3 + a = [O.Ss(~+n)(l-0.56) + p6] + [O.Ssn(l-0.56) = 0.304 (8.11)7 

The decomposition, reaction with o2 , and isomerization of the alkoxyl 

and hydro-alkoxyl classes in the airshed mechanism have been concentrated 

in the reaction step 

(8.12) 

Since the RO lumped species represents a large class of different-sized 

radicals and because splits between reaction paths even for specific 

radicals are unknown, b can have a value in the range Oto 1. For the1 

present model, the coefficients have been assigned the following values: 

b = 1, t = 0.5, and b = 0.5, so that (8.12) can be written in the1 2 3 

simpler form 

34
RO --3> HO + 0. 5 HCHO + 0. 5 RCHO (8.13)2 

8.4 Specification of the Reaction Rate Constants 

Three basic types of reaction rate data are needed to complete the 

mechanism kinetics: inorganic, lumped hydrocarbon and photolysis rates. 

The determination of individual species reaction rates {F} is a major 

area of experimental and theoretical investigation. For dilute chemical 

systems, a frequently employed model for correlating experimental data 

is the so-called vmass action law' which is based on an analogy to 

https://O.Ssn(l-0.56
https://O.Ss(~+n)(l-0.56
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molecular collision (Pratt, 1969). In its simplest statement this model 

results in a polynomial expression for the rate, f. of the form 
J 

n 

f. 
J 

k. fl 
J 

(8.14) 

i=l 

where k. is a temperature dependent rate constant given by,
J 

k.(T) =A.exp [-B./T] (8.15)
J J J 

Expression (8.15) is the Arrhenius equation, the coefficients of which 

are derived from measurements of individual reaction rates as a function 

of temperature and pressure. The rate data for the inorganic reactions 

in the Falls and Seinfeld (1978) are presented in Table 8.3 together with 

appropriate literature citations. Baulch et al. (1980) have recently 

published an evaluated review of kinetic data for atmospheric chemistry. 

In some cases there are differences between their recommendation and the 

values used in the model evaluation studies described in subsequent 

chapters of this study. While future work with the mechanism will 

incorporate the new information, Table 8.3 serves as documentation of 

the rate constants employed in calculations to date. A discussion of 

procedures for developing the rate data for the lumped hydrocarbon 

reaction is presented in the next section. For more detailed analyses 

of the kinetic model (8.14) the reader is referred to Krambeck (1970), 

Horn and Jackson (1972) and Bowen (1976). 
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TABLE 8.3 

Summary of Rate Constants Excluding Photolysis and Lumped Hydrocarbon 
Steps 

RATE CO:~c;T.\\"TS (nnm-rnin units) 

REACTION 

2 o. 345 exp(510/T) [ 1 I+M ~ o + M
3 T2 

5
3 9. 24xl0+ NO +- T 

exp(-1450/T) [ l l 

6 I3. 99x10 1. '34xl0-+ 111
T 

5
l.67xl0 J 

'T' exp(584/T) '3.98:-d0 [ l l 
.L 

6
l.07xl0 

[ 1 l 

4 

T 

')5 .19xl0 4. 68x10-.:.. [ l lexp(-2450/T)
T 

8 8.05xl06 
-+ 2N0 2 

[ 2 l 
T 

6 _ ir5.07xl0
NO + OH 4 HONO l. !0xl0 [ l]

T 

11 
-+- HONO + o2 k = 0.001 k L 70 [ J l 

11 13 

62. 9lxl0 3
9. 77xl0 [ 1 lHONO + OH T 

4
1. 73xl0 3 

exp (1006/T) l.70xl0 [ 4] 
T 

NO 

3 .58xl06 

T 
4

1. 20xl0 

[ 4] 

[l] 

416 3 .58xl0
6 

J .20xl0 [ 5]-+- N0 + RO2 T 
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TABLE 8.3 (Continued) 

"R.ATE C0~S'.LA~TS (ppm-min units) 
a 

REACTION VALLE ,\T 298°K REfERE::-JCE 

RC0 3 + NO 

N0 2 + OH 

co + OH 

RO 

RO + NO 

RO + N0 2 

RO + N0 2 

+N0 2 R0 2 

N0 2 + R0
2 

R0 No2 

RC0 + N0
3 2 

PAN 

N0 + N02 3 

N205 

+17 
N0 2+R0 2+co2 

18 
+ HON0 2 

19 HO + CO+ 2 2 

34 
1Ho 2-+· b 

+b HCHO2 
+b RCHO3 
+(l-b )R0

1 2 
36 

RONO+ 

+ 
37 

RON0 2 

+ 
38 RCHo+HONOb 

39 
+ R0 2N0 2 

~ RCHo+HON0 2 

41 
2 -+- N0 2 + R0 2 

~ PAN 

+43 
RC0 3 + N0 2 

44 
+ N205 

~ + N0N0 2 3 

61.13xl0 
3. 79xl0 3 [ 6 lT 

6e 
4.53xJ.O !..i. 

T l.52x10· [ 1 l 

5
1. 3lxl0 7 

T 4.iiOxiO~ [ 1 l 

2.0xlO5 
2. OxlO 5 

[ 7 l 

64.38xl0 4l.47xl.O [ 8]T 

6
2.19xl0 

T 
7.35xl0_) 

') 

[SJ 

k =0.087 k37 6. 39xl0-
? 

[9]38 

6
l.64xl0 3 

T 5. 50:d0 [10] 

3
1. 64xl0 

5.50 [10]T 

same as k 5.68 [5]145
6.17xl0 

T 2.07xl03 [ 6] 

4. 77xl016 exp(-12516/T) 2.74xl0-2 
[ 6] 

62.20xl0 37.39xl0 [13]
T 

16 1
3.44xl0 exp (-10600/r) 1. 22xl0 [ 13] 
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TABLE 8.3 (Continued) 

RATE CONSTANTS (ppm-min units) 
aREACTION VALUE AT 298°K REFERENCE 

-3 -546 4.47xl0
H20 2H0N0 l. 50xl0 [l]+ N205 +- 2 T 

5
6.62xl0 

03 + OH 1:l,._ H0 + 02 exp(-1000/T) 7. 75xl0
1 

[ l]
2 T 

3
4.85xl0 2.32 [11)03 + H02 ~ OH +202 exp(-580/T)

T 

Li.9C+ wall loss 0.0 Depends on the 
4 equipment

50 3.4xl0 
_. H + o T exp(llOO/T)+2o2 2 

5.SxlO-S f 3 
---~xp(5800/T)[H20] 8.28xl0 [ 11] 

T2
52 4 

2+-- 2R0 2.04xl0 xp( 223 /T) l. 45xl0 [12]
T 

a [ 1] Hampson and Garvin (1978) 
[ 2 l Graham and Johnston (1978) 
[ 3] Graham, Winer and Pitts (1977) 
[ 4] Grah~m, Winer and Pitts (1973)
[sl Estimate 
[ 6 l Cox and Roffey (1977) 
[ 7] Baldwin, Barker, Golden and Hendry (1977) 
[8) Batt and Rattray (1979) 
[ 9 l Baker and Shaw (1965) 

[10] Simonaitis and Heicklcn (1974) 
[ 11] :lASA (1981) 
[ 12 l Sander and Watson 
[13) Baulch et al. (1980) 

b) 
k +kJS = 0.92 for CH 3 , = 0.087 

37 
k 38 k 37 

c) Wall loss term for modeling smog chamber experiments, k49 depends 
on experimental conditions. 

d) Rate constants for reactions 39 and 40 are based on the assumption 
that k1s/Ck39 + k40) = 2.2. 11.6T 

. d f , , ~- l"l5 -(17 .4+T) j280TOe ) Determine ·rom L.~,, x 1 x 10 ~T 

f) Water concentration in porn, value at 298°K based on 20,000 ppm. 
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8.5 Lumped Hydrocarbon Reaction Rate Constants 

Most lumped photochemical mechanisms represent atmospheric 

hydrocarbon chemistry by reactions of the form 

k.m 
J 

HC. 
J 

+ X 
m 

--;::, Products (8.16) 

The step (8.16) involves a reaction between X, typically atomic 
m 

oxygen (O), hydroxyl radical (OH) or ozone (0 ), and the jth hydro-3 

carbon class. In the case of the Falls and Seinfeld (1978) mechanism 

the organics, present in ambient air, are divided into one o~ four 

classes: alkanes, olefins, aromatics and oxygenated compounds like 

aldehydes. Since each class is composed of many different species the 

- m
lumped reaction rate constant, k. , is composition dependent. This 

J 

section describes the procedures used to generate the rate constants 

for reactions of the type 

{Olefins + 0 ➔ 

Olefins + OH ➔ 

Olefins + 03 ➔ 

Aromatics + 0 ->-

{ Aromatics + OH ➔ (8.17) 

Alkanes + 0 ➔ 

{ Alkanes + OH ➔ 

{ Aldehydes + OH ➔ 
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The basis for calculating the lumped rates are the kinetic data 

and concentrations of individual species in each class. Consider a 

typical class, j, which is composed of p. individual species. The mole 
J 

-m 
weighted lumped rate constant k. is given by 

J 

n. 
l 

- Ill 
k. (8.18)

J p.
J 

k n. 
l 

where n. is the number of moles of species c. in class j and k_m is the 
l l l 

rate constant for the reaction between c. and X. The expression (8.18)
l m 

is the form adopted for use in calculating the lumped rate constants 

either from emissions data or concentration measurements. In order to 

evaluate (8.18) an extensive literature search was carried out to 

identify the basic kinetic data for individual organic species and their 

reaction with o
3 

, OH and 0. The results of this survey are too 

voluminous to be presented however. for additional details, the reader is 

referred to the rate data contained in Hampson and Garvin (1978), 

Atkinson et al. (1978) and Lloyd et al. (1976). 

As an illustration of the procedure consider the calculation of 

the lumped rates for a typical smog chamber experiment. The composition 

of the hydrocarbon mixture for the smog chamber experiment SUR-119J 

(Pitts et al., 1976) is shown in Table 8.4. Individual species 

concentrations were chosen so that the overall mixture was representative 
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TABLE 8. 4 

Hydrocarbon Composition of Smog Chamber Experiment SUR-119J 
Excluding Methane, Acetylene, and Acetone 

LUMPED CONCENTRATION 
HYDROCARBON 

CLASS SPECIES ppbV ppbC 

ALKANES Ethane (C2H6) 

Propane (C H )
3 8

Isobutane (C H )4 10
N-butane 

76.8 

17.0 

0.2 

166 

154 

51.0 

0.8 

664 

2,3-Dimethyl Butane (C H -(cH ) )
4 8 3 2 97.6 586 

357.6 1455.8 

OLEFINS Ethene (C2H )4 43.2 86.4 

43.2 86.4 

Propene (C H )3 6
Trans-2-Butene (C4H3) 

Cis-2-Butene (C4H3) 

2-methyl Butene-2 (C H -cH )
4 7 3

10.6 

0.7 

13.0 

14.8 

39.1 

31.8 

2.8 

52.0 

74.0 

160.6 

AROMATICS Benzene (C H )6 6
Toluene (C H -cH )

6 5 3
Ethyl Benzene (C6HS-C2H5) 

Meta-xylene (C H -(cH ) )6 4 3 2
Isopropyl Benzene (C6H5-C3H7) 

n-Propyl Benzene ((C6H4-C3H7)n) 

Meta-Ethyl Toluene (c H -cH
3
-c H )6 4 2 5

1,2,3 Trimethyl Benzene (C H -(cH ) )
6 3 3 3

1.6 

16.8 

6.4 

42.4 

0.4 

0.1 

1.0 

1.6 

9.6 

118 

51. 2 

339 

3.6 

0.9 

9.0 

14.4 

70.3 545.7 
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TABLE 8.4 (Continued) 

LUPJ>ED CONCENTRATION 
HYDROCARBON 

CLASS SPECIES ppbV ppbC 

ALDEHYDES Formaldehyde (HCHO) 38.0 38.0 

Acetaldehyde (CH CHO) 20.0 40.0
3 

Propionaldehyde (C H CHO) 3.2 9.6
2 5 

23.2 49.6 

TOTALS FOR MIXTURE 571.4 2336.0 
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of the 6-9 AM ambient pollutant burden in the Los Angeles atmosphere. 

Species have been grouped into each of the lumped classes with the con­

centration, c., expressed both in terms of volume as ppbV and by carbon 
l 

atom as ppbC. Tables 8.5-8.7 present the individual species rate data 

for reactions with OH, 0, and o derived from the literature survey. Given
3 

this information and (8.18) the rate constants for the lumped reaction 

in the Falls and Seinfeld (1978) mechanism are shown in Table 8.8. For 

comparison purposes the lumped rate constants based on species emission 

data are also presented in the same table. Details of the emissions 

inventory and its composition are described in Chapter 13. As a 

caution it is important to note that in a smog chamber experiment the more 

reactive components in each class are consumed first. Applying a mole 

weighted scheme under these circumstances has the effect of underestimat-

ing the reaction rates at the beginning of the experiment and over-

estimating the~ at the end of a run. This is not a particularly 

serious problem in urban modeling application because there is a con­

tinued injection of source material. 

As can be seen from the previous exercise, detailed composition 

data are required to develop the lumped rate constants. Since most moni-

taring agencies only report total (THC) and non-methane (NMHC) hydro-

carbon concentration levels it is necessary to develop a procedure to 

partition the broad groupings into the appropriate lumped class for 

establishing initial conditions. One way to do this is to develop 

splitting factors from detailed compositional studies and then apply 



TABLE 8.5 

Rate Constant Data for Reaction with OH 

RATE CONSTANT (298°K) LUMPED RATE CONSTANTCL/\SS SPECIES 
(cm 3 /molecule-sec) ppbV.k. (cm3/molecule-sec)

l l -

ALKANES Ethane (C H )
2 6

2.Bxl0-13 2.15xl0-ll 

Propane (C H )
3 8

l.47xl0-12 2.SxlO-ll 

Isobutane (C H )
4 10

2. 4xl0·-12 4.8xl0-l3 

N-butane 2.7xl0-12 4.48xlO-lO 

2,3 Dimethylbutane (C H -(CH ) )
4 8 3 2

6.54xl0-12 6.38xlO-lO 

-9l.14xl0 k 12= 3.lSxl0-
N 
\D 
Cu 

12
OLEFINS Ethene (C

2
H

4
) 7.9xl0-12 3.4lxlO-lO k = 7.89xl0-

Propene (C H )
3 6

2.Sxl0-11 2.65xlO-lO 

Trans-2-Butene (C H )
4 8

7xl0-ll 4.9xl0-ll 

Cis-2-Butene (C H )
4 8

5. 4xl0·-11 7. 02xlO-lO 

(2-·methyl butene-2) (C H -cH )4 7 3
8. 7xl0·-ll -9

1. 28xl0 

-92. 296xl0 k = 5.87xl0-ll 



TABLE 8.5 (Continued) 

RATE CONSTANT (298°K) LUMPED RATE CONSTANT
CLASS SPECil~S 

(cm3/molecule-sec) ppbV.k, (cm 3/molecule-sec)
l l 

AROMATICS Benzene (C H )
6 6

1. 2xl0-12 1. 92xl0-l2 

Toluene (C H -cH )
6 5 3

6.lxl0-12 l.02xl0-10 

EthylBenzene (C H -c H )6 5 2 5

Meta-xylene (C H -(cH ) )6 4 3 2

8xl0-l2 

2.4xl0-ll 

5.12xl0-ll 

1.0lxl0-9 

Isopropyl Benzene (C H -c H )
6 5 3 7

6. 2xl0-12 2.48xl0-12 

n-Propyl Benzene (C H -c H )n6 4 3 7

meta-Ethyl Toluene (C I\-CH -c H )6 3 2 5

6.2xl0-12 

1. 95xl0-ll 

6.2xl0-13 

l.95xl0-11 

N 

"° -1:' 

1,2,3 Trimethylbenzene (C H -(CH ) )
6 3 3 3

2. 64xl0-ll 4.22xl0-11 

1. 23xl0-9 k = 1. 75xl0-ll 

ALDEHYDES Formaldehyde 9.4x1 0-12 3.57xl0-10 k = 9.4xlo-12 

Acetaldehyde (CH
3 

CHO) l.6x10-ll 3.2xl0-10 

Propionaldehyde (C H CHO) 3. 06xl0-ll 9. 79x10-11
2 5 

4.18x10-10 k = 1.8x10-ll 



TABLE 8.6 

Rate Constant Data for Reactions with 0 

CLASS SPECIES 
RATE CONSTANT (2 98 °K) 

(crn3/molecule-sec) ppbV.k.
l l 

[.UMPED Rt\T!( CONSTJ\NT 
(crn 3 /rnolecule-sec) 

--

ALKANES Ethane (C H )
2 6

Propane (C H )
3 8

Isobutane (C H )
4 10

N-butane 

168. 9xl0-

8.6 xlo-14 

1. 07xl0-l3 

4.9lxl0-14 

6.84xl0-14 

4.42xl0-l3 

2.14xl0-14 

8.lSxl0-12 

2,3 Dimethylbutane (C H -(CH ) )4 8 3 2
2. llxl0-13 2. 06xl0-ll 

2.93xl0-ll k = 148.19xl0-
N 
'-0 
V, 

OLEFINS Ethylene (C H ) 8 , 25xl0-l3 3. 56x10-ll k = 8 . 2 Sxl O- l3 
2 4 

Propene (C H )3 6
3. 6xl0-12 3.82xl0-ll 

Trans-2-Butene (C H )
4 8

2 · 3xl0-ll 1.6lx10-ll 

Cis-2-Butene (C H )4 8
1. 7xl0-ll 2.2lxlO-lO 

2-methyl butene-2 (C H -CH)
4 7 3 

5.17xl0-ll 7.65x10-lO 

-9l.04x10 k = 2.66xl0-ll 



TABLE 8.6 (Continued) 

·CLASS SPECIES RATE CONSTANT (298°K) ppbV.k. LUMPED RATE CONSTANT 
(cm3/molecule-sec) l l (cm3/molecule-sec) 

AROMATICS Benzene (C H ) 2.2xl0-14 3.52xlo-14 
6 6 

Toluene (C6H5-cH
3

) 7.3xl0-14 1. 23x10- 12 

12Ethyl Benzene (C H -C H ) 5.3xl0-l3 3.39xl0-
6 5 2 5 

10Meta-xylene (C H -(cH ) ) 3.4x10-13 1.44xl0-ll
6 4 3 2 '°a-

Isopropyl Benzene (C H5-c H ) 6.0xl0-13 2.40xlo-13 
6 3 7 

n-Propyl Benzene (C6H4-c H )n 6.0xl0-13 6.0 xlo-14 
3 7 

meta-Ethyl Toluene (C 6H -cH3-c2H ) 4.0xl0-13 4.0 xlO-U
4 5 

-12
1,2,3 Trimethylbenzene (C 6H -(CH ) ) 1. lSxl0-12 1. 84xl03 3 3 

2 .16xl0-ll 3.07xl0- 13 



TABLE 8. 7 

Rate Constant Data for React ions with o 
3 

RATE CONSTAl-lT (298°K) UHIPED RATE CONSTM.JT 
CLASS SPECIES ppbV.k(cm3/molecule-sec) l i (cm 3 /molecule-sec) 

OLEFINS Ethylene (C H ) 1. 67xl0-l8 7.21xl0-17 k = 1. 67x10
-18 

2 4 

Propene (C H )
3 6

1. 04xlo-17 l.lxl0-16 

Trans-2-butene (C H )
4 8

1. 76xlo-16 l. 23xl0-16 

Cis-2-butene (C H )
4 8

1. 25xlo-16 l.63xlO-lS 10 

'° ---J 

2-methyl butene-2 (C H -cH )
4 7 3

4.4xl0-16 6.5lx10-lS 

8.37xlO-lS k = 162. 1Sxlo-

https://CONSTM.JT
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TABLE 8.8 

Rate Constants for Lumped Hydrocarbon Reaction Steps 

-----·----------------------------

-1 -1
RATE CONSTANTS (ppm - min ) 

Smog Chamber Atmospheric 
REACTION STEP Surrogate Conditions in 

Hydrocarbon Los Angeles 
Mixture SUR-119J 27 June 1974 

HCHO + OH 23 
~ H0 2 + H20 + co 13890.0 13890.0 

RCHO + OH 25 
+- RC0 3 

26600.0 25680.0 

C2H4 + OH 26 
+ R0 2 11660.0 11660.0 

C2H4 + 0 
27 
+- R0 2 + H0 2 1219.0 1219. 0 

OLE + OH 
28 
+ R0 2 86800.0 89142.0 

OLE + 0 29 
~ R0 2 + RC0 3 39300.0 22118.0 

OLE + O 30 
3 ~ (a )RCHO

1
+ (a )HCHO+(a )H022 3 0.317 0.136 

(a4)Ro 2 + (a )0H5 +(a )RO6

ALK 31+ OH +- R0 2 4700.0 4700.0 

ALK + 0 
32 
+- R0 2 + OH 121.0 99.8 

ARO +OH 33 
~ R0 2 + RCHO 25900.0 16112.0 

Variable Stoichiometric Coefficients for OLE+ 03 reactions 

= 0.5 0.5 0.30al a2 a3 

= 0.31 0.14 = 0.03a4 as a6 
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these values to the routine non-methane hydrocarbon measurements. As an 

example consider the surrogate mixture in Table 8.4. Given the average 

a
carbon numbers for each class, Cj, and the carbon fraction, fj, in each 

class then it is a straightforward task to develop the volume splitting 

factors from 

f. 
V. 

_J__ (8.19),.,aJ 
\.,. 

J 

where the average carbon number of class j is given by 

p.
J 

2 c. (ppbC)
l

i=l c~ = (8.20). J p.
J 

2 c. (ppbV)
l 

i=l 

The process is illustrated in Figure 8.3. 

8.6 Photolytic Rate Constants 

A key process in the formation of photochemical air pollution is 

the photolysis of such species as nitrogen dioxide (N0 ), formaldehyde
2 

(HCHO) and nitrous acid (HONO). In an urban atmosphere it is difficult 

either to measure the rates directly or to use routine monitoring data 

as a basis for indirect calculations. This section is devoted to 

a discussion of a priori methods for determining the diurnal variation 

of the photolysis rate constants. 
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LUMPED CARBON 
CLASS FRACTION MOLE% 

CARBON 
NUMBER 

ALK 0.623 0.153x(ppbV) 62.3
4.07 

C2H4 0.037 
0.020x(ppbV) 8.1

2.0 

OLE 0.069 0.0168x(ppbV) 6.8
4.11 

x(ppbC) ► 

ARO 0.234 0.030x(ppbV) 12.2
7.76 

HCHO 0.016 0.016x(ppbV) 6.5
1.0 

RCHO 0.021 0.0098x(ppbV) 4.0
2.14 

FIGURE 8.3 

Conversion of Total Reactive Hydrocarbon Measurements, Expressed 
in ppbC, to an Equivalent Volumetric Concentration (ppbV) of 
Lumped Hydrocarbon Species - The Specific Example is for the 

Atmospheric Surrogate Smog Chamber Experiment SUR-119J 
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For a typical species, A, the photodissociation step is commonly 

written in the form 

k 
A+ h~ ➔ Products (8.21) 

with the forward reaction rate, R, given by 

dA 
R - k[A] (8.22)

dt 

The photolysis rate constant, k, of any pollutant, present in the 

atmosphere in small concentrations, is given by 

00 

k = f CT[A,T(h)] ¢[A,T(h)] I[A,N(t),~] dA (8.23) 

0 

2
where CT[A,T(h)] (cm ) is the wavelength, A, dependent absorption cross 

section for the species at temperature, T, in most applications the 

atmospheric temperature is a function of the elevation, h. ¢[A,T(h)] is 

the quantum yield for the reaction and I is the actinic irradiance 

2 
(photons/cm -sec) corresponding to an atmospheric state, N, at spatial 

location,~, and time, t. N specifies the temporal variation of those 

variables which affect the transmission and absorption of solar 

radiation in the atmosphere. A typical example is the seasonal varia­

tion of turbidity. 

Since the wavelength dependent absorption coefficients and quantum 

yields are fixed, the variation of the species rate constant in space 

and time depends primarily on the variation of the actinic flux. 
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Actinic irradiance is the radiometric energy incident on single 

molecules and, as conventionally defined, applies to ultraviolet (uv) 

wavelengths. This parameter is very difficult to estimate from 

customary solar radiation measurements; in particular those made with 

broad band 180° pyroheliometers. As a result most photolysis rate 

constants are based on theoretical calculations of the solar flux in the 

spectral band of interest. Many previous modeling studies employed the 

tabulation, by Leighton (1961), of photolysis rates as a function of 

zenith angle. His results were based on a radiative transfer calcula­

tion which, by necessity, employed many simplifying assumptions. The 

availability of more sophisticated radiative transfer models and more 

recent measurements of the upper atmospheric properties has led to 

considerable refinement in the calculation of solar fluxes. 

Duewer et al. (1978) used the model of Luther and Gelinas (1976) 

as a basis for determining the photodissociation rate constants of the 

species N0 2 , HN0 2 , H2o2 , Aldehydes, RN02 , N0
3

, o
3

. For the present 

study the actinic irradiance, as a function of zenith angle, was 

obtained from the report by Peterson (1976). The actinic flux at ground 

level is shown in Table 8.9 for zenith angles in the range 0°-86° as a 

function of wavelength in the spectral band 290-800 nm. Extrapolation 

of these values beyond 700 nm were obtained from Schere and Demerjian 

(1977). The calculations by Peterson were performed with a modified 

version of the program developed by Braslau and Dave (1973 a, b). It is 

beyond the scope of this chapter to discuss the details of the 
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TABLE 8.9 

Ground Level Actinic lrradiance as a Function of 
Zenith Angle and ~avelength (Photons/cm2-secxl0- 15 ) 

.AWE L::fr'IG TH -Zl!t<IT~ ..,C.L~S IOEI.I 
IU,-,G,::( ...NJ c.o lv.oo 20.00 3C.OO 40.00 50.00 f:.0.00 70.00 n.oo 86.00 

HS - 29> 0.000 0.000 o.o c.o o.o 0.0 o.o o.o o.o o.o 
2'i5 - 3C5 o.o ... o 0.038 0. 0~3 c.czs O.Olb 0.007 0.002 o.ouo o.o o.o 
JC5 
31S 
;i;, 

- 315 
- 325 
- :,3 5 

0.439 
c. ~55 
1.613 

O.'ii31 
o.c;-."' 
1. 5~4 

Q. 4Ul 
0.901 
1-538 

c. 35 l 
C.826 
1 ...... 0 

O.Hl 
o. 717 
1.2n 

O. !SB 
0.571 
1.083 

0.110 
0.)89 
0.803 

0.039 
0.19" 
0.4b3 

0.009 
0.06'. 
Q.203 

0.001 
0.009 
0.039 

3~5 
3•5 

- HS - 3 S 5 
1.713 
l.892 

1 .~c.e 
1.B75 

l.b4,-
l .. B~4 

1. 555 
1.ni 

l.4lb 
l .591 

1.215 
1.383 

0.93b 
l.243 

~-573 
0.084 

0.269 
0.328 

0.061 
Q.077 

355 - 365 1.951 l.S33 l.8b5 1. 79e l.662 1.459 1.11>• 0.149 0.3b3 0.083 
)<5 - 37 5 2.307 2°37d 2-323 2.22, 2.007 l .831 l.480 0.972 0.,11 Oolv7 
..) '75, - 3d5 2.318 2.301 2.2:H ~. 16 l 2.019 !.803 l .47 5 0.988 O... lt-91 0.100 
: es - 395 2.Hl 2. 32 5 2-279 , .. 1G1 ~ 2.059 1.852 l.534 1.047 o. 529 0.111 
3c;::, - '-CS 3.lH 3.153 3.093 2.98', 2,810 2.541 2 .125 1.4H o. 758 o.156 
HS - ,1s 3.S9 3 3.9b8 3.B~b ?. 7Ci 5 3.556 3.232 2. 7 25 1.919 1.003 0.202 
41> 
425 
• )5 
HS 

- ,: 5 
- ,J, 
- ,,s 
- •55 

"· 119
,.2 22 
4. 6 I 7 
5.20S 

4. 09:; 
•-118 
4. S12 
5.182 

,.025 
•-051 

"'·"''-2
5.101 

?. 81i.E 
2.930 
•• 317 
•• 958 

3-690 
3.735 
... 113 
... na 

3.378 
3.-.2e 
3.793 
4.}61, 

Z.B75 
Z.938 
3.274 
3. 793 

2.059 
2. 129 
2.•02 
2.auo 

1.097 
1.151 
1-321 
1.559 

0.215 
0.223 
0.251 
0.292 

-~5 - •65 5.6 I 5 5.sas 5.',98 5.3.. 5.099 ,.715 ,.oss l.055 1. 721 0.319 
4t.:> - 4/5, 5.750 5. 721 s. 630 !:. 413 5 5.242 4.8'48 4.2'B 3.193 1. 82 l 0.333 
4 7;,, 
465 

-
-

485 
49 5 

5. 799 
5.7B4 

s. 771 
5. 756 

5-68d 
5.676 

s. 541 
5 .. 533 

s.30, 
5.305 

•-•ta 
..... 94'-4t 

... 327 
•• 352 

3.277 
3. 317 

1. 887 
1.926 

0 • 3"0 
0.342 

•s5 - 505 
scs - 5!5 
515 - 525 
5~ 5 - 535 
5~5 - 545 

5. 8B 7 
5.935 
~- 932 
5. 980 
5. 92 7 

5.857 
5.905 
s. 9u3 
5.950 
5 _i,99 

5. 773 
5.Bld· 
5.81d 
S-806 
~ .. 810 

5. 625 
5.6oe 
s. 609 
~- 717 
s.oc 

5.390 
s.,25 
s.,n 
s.,az 
5.439 

5.022 
5.053 
5-067 
5.116 
5-080 

4.422 
••,.so 
•••,2 
•-521 
•• 49 5 

3.377 
3.405'J.,l• 
) ••76 
3.',1,2 

1.970 
l,.fi4 
2.ozo 
2,.0.,..s 
2.040 

0.342 
0.339 
0.338 
o.331 
0.322 

~ -1.S - 555 
5 55 - 565 

S.910 
5.969 

S. 6d l 
5. 9-.0 

5.797 
5 .. B:l3 

s. 6',C 
~- 703 

5.,.20 
5.•67 

5.061 
5.103 

4.4'79 
4.514 

3. 45 2 
3.',79 

2.037 
2.052 

0.315 
0.309 

5<5 - 575 
5 75 - 5es 
50 - 5,<;5 
5~5 - t:.::3 
6CS - o l 5 

6. 058 
6.174 
b. 226,.u, 
o.312 

6,02d 
o.14-«t 
6.19 7 
b .. 2 .. 0 
6. 202 

5.94-l 
6 .. 058 
o.!ll 
t • .1. 52 
e;. l S.2 

5. 789 
~- 90~ 
!: • GIS 8 
5. i;iQ 7 
6.0.H: 

~-551 
5.606 
s.122 
5.75B 
5.793 

S.18;1 
5. 296 
5.354 
5.)8 7 
S.42I 

",.SB j 
,.111, 
•• 754 
4. 78 5 
•• 815 

3.5)4 
3.629 
l.66 6 
3. 714 
3.742 

2. 061 
2:148 
2.1•• 
2.2!8 
2.242 

0.303 
O.:Hl 
0.320 
o. 32• 
o. 32 7 

clS - c2 S 
6 25 - 6]5 

t .. 32 l 
t:. 330 

0. 2<22 
6.3i)l 

6.205 
s.217 

.. C."1"1' 

~- B3 e 
IC', .c.-:; Q 

5.492 
S.4S2 
s.,82 

4.ID:,o 
4.900 

3. 7~a 
3.BS. 

2 .. 30;. 
2. 363 

C.3;~9 
0.372 

t; 5 - o,; 
,-; - os 
t:55 - bc5 

6.421 
t.. 513 
e. 594 

b. 3'72 
t: • .C.8 3 
6.51:d 

6.306 
b. 39~ 
6. 4 72 

t.o:;9 
t.. 2.;.o 
t.. 314 

5.7•3 
t.:,.OO4 
6.07" 

S.562 
5.t.41 
5.708 

At.979 
5.058 
5. 122 

3.93 5 

"· 015 
4.079 

2.438 
2- 512 
2.574 

0.400 
0.429 
0.455 

6,, - 015 
t 7'J - ., ; 

- t.; ~"' t ,;~ - ) '~ 
7i.:, 1.-;, 

6 .. 6 7-. 
t..cSt; 
t:. 64 3 
o • .:.t C 
l • .:.CJU· 

6 .0 .. 3 
(:. 6.2b 
6 .. 61U 
o • .,'.).; 
b. ;.::,J 

t,. S49 
e;. ~::. 7 
t,. 5Li.o 
c .. 350 
6-2 c;...:, 

t. 3t:IB 
t: .. 3 7 <; 
t:. ;>oc; 
f.,. 2DC 
<. 1,0 

b. l""4 
b. l 3<; 
6. l 3"' 
5 .lii8C 
S.910 

5. 77 5 
5. 777 
5.779 
5. 7 l C 
5.oS~ 

5. 18 7 
5. 199 
S .211 
5 .. l '::iO 
s.110 

4.142 
4.168 
4. lSl 3 
... 090 
4. U70 

2.635 
2. 671 
2. 706 
2. 7.:..-u 
2.750 

0 .. 4al 
0.499 
o.. Si.8 
o. ~~o 
(,. 5,i) 

71\ - /,o 
7 2 ~ L, 
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algorithms, it suffices to say however, that their model includes 

aerosol scattering and absorption, Rayleigh scattering, and ozone 

absorption. The atmospheric state, N, assumed in the model corresponds 

to annual average U.S. urban conditions, Flowers et al. (1969). This 

condition corresponds to a cloud-free atmosphere over a typical urban 

environment. 

The photolysis rate constant for a particular species can be 

determined by evaluating (8.23) and in practice the integral can be 

approximated, with minimal error, by a finite interval summation of the 

form 

2
n 

o [;\_,6:\.] ¢[A.6A.] I [A.,M.N(t),h,z] (8.24)k" l l l l l l 

i=l 

where the overbar represents an average over a wavelength interval 6A. 
l 

centered at;\ .. The actinic irradiance at a particular time and 
l 

elevation his specified as a function of the zenith angle z. Compared 

to the total solar spectrum, the summation interval is quite small 

(290 ::_A::_ 800 nm). The photochemistry of the lower atmosphere is 

dominated by the fact that virtually no solar radiation of wavelengths 

less than 290 nm reaches the troposphere Essentially all the incident 

solar radiation at wavelengths below 290 nm is absorbed by gases in the 

upper atmosphere, principally the Hartley band of 220-295 nm and by 

oxygen in the Schumann continuum 175-145 nm (Coulson, 1975). The upper 

limit for A is set by either the reduction of the species absorption 

cross section or reaction quantum yield as a function of increasing 

wavelength. 
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Data for the species absorption class sections and quantum yields 

as a function of wavelength are required in order to evaluate (8.24). 

Tables 8.10 and 8.11 contain the appropriate information, compiled 

from Schere and Demerjian (1977), Demerjian (1977) and Demerjian et al. 

(1980), for the following reactions 

N0 + hv ->- NO
2 

HONO + hv ➔ NO + OH 

+ hv ->- OH + N0 
2 
3+ hv ➔ o + 0( P)

2 
1+ hv ➔ o + 0( D)

2 

+ hv ->- 0 + 02(16) (8.25) 

+ hv ->- 2H0 + co2 

HCHO + hv ➔ H + co2 

HCHO + hv->- 20H + 20H 

CH CHO + hv->- CH + H0 + CO
3 3 2 

CH CHO + hv->- CH + co3 4 

The tables represent a collation of experimental information and have 

been assembled to enable an independent verification of the photolysis 

rate calculations. The species rate constants, as a function of the 

cosine of the zenith angle, are shown in Figures 8.4-8.14. The diurnal 

variation of the rate constants for any date or location can be easily 

evaluated using these figures and a knowledge of the solar declination 

angle o. The local zenith angle, Z, can be determined from the 

expression (Sellers, 1969) 

https://8.4-8.14


TABLE 8.10 

Quantum Yield Data Averaged over 10 nm Wavelength Interval 

Quantum yir>lds for photolytic processes, 10 nm integral averaged, 
centered about A for the reactions (8.25) 

oa HCHO), (nm) N0 2 HONO HON0 2 3 03 03 HCHO CH3CHO CH
3

CHO H202 

290 1.0 1.0 l.O 0.0 1.0 1.0 .73 .28 .46 . 31 1.0 

300 1.0 1.0 1.0 0.0 1.0 1.0 . 77 .23 .60 .19 1.0 

310 1.0 1.0 1.0 1.0 .52 1.0 .75 .25 • 72 .09 1.0 

320 1.0 1.0 1.0 1.0 .01 1.0 . 61 . 39 .86 1.0 

330 1.0 1.0 1.0 1.0 . 31 .59 .98 1.0 
w 

340 1.0 1.0 1.0 1.0 .01 .42 1.00 1.0 0 
CJ'> 

350 1.0 1.0 1.0 1.0 1.0 

360 1.0 1.0 

370 .99 1.0 

380 .97 1.0 

390 .91 1.0 

400 .65 

410 .22 

420 .02 

430 
-

ao 3 quantum yield in the 450-750 nm region equal 1.0. 
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TABLE 8.11 
2Absorption Cross Section o(l0-20cm molecule-1) 

10 nm integral averaged, centered about A 

A 
(nm) 

N02 HONO HON0 2 03 HCHO CH CHO3 H202 

290 8.52 0.634 162. 3.18 4.66 1.23 
300 12.83 0.276 44.4 3.25 4.09 0. 71 
310 18.26 0.3 0.095 11. 9 3.15 2.96 0.41 
320 24.74 3.4 0.018 3.36 2. 34 1.69 0.24 
330 30.95 6.6 0.88 2.37 0.69 0.14 
340 37.39 13. 3 0.19 1.98 0.13 0.08 
350 44.90 17.0 0.04 0.84 0.05 
360 50.11 9.6 0.18 
370 54.05 17.2 
380 56.99 10. 9 
390 58.22 2.3 
400 59.52 
410 58.03 
420 54.52 
430 51.46 
440 48.50 
450 45.50 .020 
460 .036 
470 .054 
480 .075 
490 .096 
500 .131 
510 . l 7!1 

520 .220 
530 .276 
540 .331 
550 .378 
560 .454 
570 .509 
580 .493 
590 .515 
600 .552 
610 .498 
620 .417 
630 .361 
640 .318 
650 .269 
660 . 217 
670 .179 
680 .152 
690 .126 
700 .098 
710 .081 
720 .068 
730 .056 
740 .048 
750 .041 
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cos z sin~ sin~+ cos¢ cos 6 cos h (8.26) 

where¢ is the latitude and h the hour angle. The relationship between 

these angles is shown in Figure 8.15. At solar noon the hour angle is 

zero and as a result it is related to the local standard time and 

the longitude 1 
· The declination angle is a function only of the day 

of the year and it varies from 23°27' on June 21 to -23°27' on December 

22nd. Values for each day and hour can be obtained from a nautical 

almanac or calculated using the algorithm of Woolf (1967). This latter 

approach, together with a simple interpolation scheme, and Figures 8.4-

8.14 is used to evaluate the photolysis rates in the airshed model. The 

expression (8.26) can also be employed to calculate the day length and 

in turn the sunrise and sunset times. A knowledge of these times is 

very useful for controlling the numerical procedures during the rapid 

chemical changes which take place during initiation or termination of the 

mechanism photolysis steps. 

A typical diurnal variation in the N0 photolysis rate and a2 

comparison against the experimental observations of Zafonte (1977), 

is shown in Figure 8.16. The predicted and measured values agree quite 

closely over most of the day. Scatter in the experimental measurements 

was primarily due to the presence of broken high cloud conditions 

(Zafonte, 1977). Schere and Demerjian (1977) attempted a similar 

correlation; however, most of the measurements available to them were 

for non clear sky conditions and, as a result, scaling of the calculated 
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results was required. Table 8.12 presents a summary of the photo­

dissociation rates for the photolysis steps in the Falls and Seinfeld 

(1978) mechanism. Some preliminary results for ozone and the appro­

priate experimental techniques for formaldehyde (HCH0), nitrous acid 

(H0XO), hydrogen peroxide (H 2o ), and nitric acid (HN0 ) have been2 3 

described by Stedman et al. (1977). An additional point to note about 

the results is that the rates have been calculated using ground level 

actinic irradiance data. Within the lowest 5-10 km of the atmosphere 

the actinic flux increases with elevation leading to higher photolysis 

rates. The results of Peterson et al. (1977) for N0 and HCH0 show a2 

significant increase with height. For example, at an elevation of 

0.98 km the photolysis rate for N0 2 , depending on the zenith angle, 

is between 21 and 70% higher than the corresponding ground level value. 

The photolysis rates should be recalculated if the modeling region is 

at a high elevation. 

Most theoretical calculations of the photolysis rate constants 

assume 'clear sky' conditions. A critical problem in practice is how 

to modify the calculated results when there is a perturbation to the 

basic atmospheric state employed in the radiative transfer calculations. 

Increased aerosol loadings or the presence of clouds would require 

scaling of the photodissociation rates. 
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When only broad band measurements of solar radiation are available 

correction of the calculated values can be based on the ratio of 

pyranometer observations to the theoretical clear sky transmission. 

Because pyranometer data reported by air pollution agencies typically 

only apply to total solar fluxes and the reaction rates depend on 

the ultraviolet (uv) flux densities, the scaling ratio may not be a 

good representation. Scattering is wavelength dependent and as a 

result the uv flux is more strongly affected than the total solar flux. 

Offsetting this to some extent, the flux density is much less sensitive 

to scattering them than is the flux (Duewer et al., 1978). 

In situations where uv pyranometer data are available another 

approach is possible. Zafonte et al. (1977) and Stedman et al. (1977) 

correlated their N0 photodissociation rate measurements with solar2 

radiation in the uv portion of the spectrum. Radiometric data were 

obtained with Eppley uv pyranometers that have a full bandwidth sensiti­

vity of 295-385 nm, a wavelength interval relevant to many photochemical 

reactions. The results of the correlations are shown in Figure 8.17. 

This graph provides a direct means of determining either the photolysis 

rate from the radiation measurements or the scaling ratios for the 

calculated values. Schere and Demerjian (1977) used uv measurements 

and the calculated clear sky solar flux to scale the rate constants. 

They reported substantial differences in some cases between theoretical 

clear sky and observed rate constants, however, the uv scaled calculated 

rates match the observations quite closely as in Figure 8.18. 
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TABLE 8.12 

Photolysis Steps in Photochemical Reaction Mechanisma 

REACTION 
Photolysis Rate (min-1) 

7:24 AMb Average C Peak 

N0 2 

HONO 

+ hv 

+ hv 

1 
+-
10 
+ 

NO 

OH 

3+ 0( P) 

+ NO 

0.320 

0.0585 

0.339 

0.0631 

0.508 

0. 0963 

03 

HCHO 

HCHO 

RCHO 

RONO 

+ hv 

+ hv 

+ hv 

+ hv 

+ hv 

3~ 0( P) 

21 
➔ 2H0 2 
22 
--+- HL 

24 
+ R0 2 
35 

NO+ 

+ 02 

+ co 

+ co 

+ H0 2 

+ RO 

+ co 

0.0229 

0.00121 

0.00258 

0.00103 

0.0704d 

0.0232 

0.00163 

0.00296 

0.00145 

0.0746d 

0.0328 

0.00284 

0. 00473 

0.00260 

d0 .1118 

Hi2 + hv ~ 20H 0.00082 0.00098 0.00161 

_, _,o - -
a) All values are for Los Angeles California (latitude .:54.Ut> , longi-

tude 118.25°, time zone= 8.0) 

b) Photolysis rates at 7:24 Pacific Standard Time, 26 June 1974. 

c) Average of daylight hours. 

d) Photolysis rate set to 0.22 of ~o2 
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8.7 Calculation of Atmospheric Water Vapor Concentration 

Most photochemical reaction mechanisms require that the water vapor 

3
be expressed in terms of concentration units like ppmV or µg/m . While 

it is a straightforward task to determine the concentration given 

ambient measurements of temperature, pressure, and relative humidity, 

the need to employ psychrometric charts or tables considerably 

complicates automation of the process. This section presents a simple 

algebraic procedure, based on McRae (1980), which enables the water 

concentration to be determined to within 0.5% over the range of commonly 

encountered meteorological conditions. 

For a given temperature, T, relative humidity, RH, is defined as 

the rate of the observed vapor pressure to the saturation vapor pressure 

at the same conditions. An alternative approach is to define RH in 

terms of the mole fraction of water vapor in the moist atmosphere, y, 

to the mole fraction at saturation y. In either case the relative 
s 

humidity is often expressed in percent so that 

RH (8. 27) 

Since the mole fraction is equivalent to the volume fraction the water 

concentration in ppmv is given by 

(8.28) 

By using the perfect gas laws (8.28) can be written in terms of the 

saturation vapor pressure P (T) and the atmospheric pressure P . The 
s a 
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error involved in using Dalton's Law over a temperature range of -50 to 

50°c is less than 0.5% (Threlkeld, 1970). With this approximation (8.28) 

can be written in the form: 

p (T) 
s 

(8.29)p 
a 

In order to evaluate this expression, the saturation vapor pressure 

must be known. While many tabulations and graphical forms exist in 

the literature relatively few are suitable for direct inclusion in the 

airshed model; what is required is an explicit algebraic expression. 

One of the first attempts to describe P (T) - T experimental data in 
s 

a functional form was the work of Goff and Gratch (1945). Their 

function, while quite accurate (~ 0.001%), involves a large number of 

constants and contains highly non-linear terms. An approximate 

expression for P (T) in mb, applicable to a limited temperature range,
s 

is given by (Iribarne and Godson, 1973). 

2 37 4 
~ · - 4.9283 log10Ta + 23.5518 (8.30) 

a 

This form is sometimes called the Magnus formula and corresponds to 

the inclusion of second and third terms in the viral equation of state. 

For the purpose of this study the simple, but relatively unknown, 

polynomial expression of Richards (1971) was adopted. The functional 

form is given by: 
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2 3 4 p (T) PA exp[l3.3185t - l.9760t - 0.6445t - 0.1299t ] (8.31)
s 

where PA is the standard atmospheric pressure of 1013.25 mb, the 

parameter tis defined in terms of the ambient temperature T (°K) and 
a 

the steam temperature T ~ 373.15°K at pressure P • 
s a 

T 
l _ 373.15

t 1 - ~ (8.32)
T T 

a a 

Equation (8.31) is more accurate than (8.30) and is valid to±_ 0.1% 

over a temperature range of -50 to 1400 C. The variation of P (T) over 
s 

the range T = -50 to 40°c is shown in Figure 8.19. Table 8.13 
a 

illustrates the application of the procedure to some typical atmospheric 

conditions. 
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TABLE 8.13 

APPLICATION OF PROCEDURE FOR CALCULATING 

ATMOSPHERIC WATER VAPOR CONCENTRATION a 

H 0(ppm) H 0 at 50% RH
T p (T) 2 2 

a s a RH(%)(OC) (mb) (ppm) 

-20 

-15 

-10 

-5 

0 

5 

10 

15 

20 

25 

30 

35 

40 

45 

1. 25 

1. 91 

2 .86 

4.22 

6.11 

8. 72 

12.28 

17.05 

23.39 

31.69 

42.45 

56.26 

73 .80 

95.89 

12.34 

18.85 

28.23 

41. 65 

60.30 

86.06 

121.19 

168. 27 

230.84 

312.76 

418.95 

555.24 

728. 35 

946.36 

617 

942 

1411 

2082 

3015 

4303 

6060 

8413 

11542 

15638 

20947 

27762 

36417 

47318 

aAmbient conditions assumed for calculation P 1013.25 mb 
a 

Steam temperature TS= 373.15°K. 
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8.8 A Simple Box Model for Testing Photochemical Reaction Mechanisms 

Before a photochemical reaction scheme is used in an airshed model 

it is necessary to carry out a series of tests to evaluate the perfor­

mance of the mechanism under a variety of conditions. A common approach 

is to compare the prediction of the mechanism against observational data 

from smog chamber experiments. While valuable, these comparisons 

do not adequately test the kinetics over the range of conditions likely 

to be encountered in the atmosphere. Specifically, few smog chamber 

experiments include the effects of continuous injection of source 

material or diurnal variations of solar radiation. This section 

presents the formulation of a simple box model in which the effects of 

different meteorological and surface removal processes can be isolated. 

When interpreted as a well mixed chemical reactor, the mathematical 

system can be used to model a wide variety of smog chamber experiments. 

The range of valid atmospheric applications, however, is restricted by 

the nature of the assumptions used in the model derivation. 

The most elementary form of a box model is a well mixed, variable 

volume, chemical reactor. A variable volume formulation is needed in 

atmospheric applications because the vertical extent of pollutant 

dispersion is controlled by diurnal variations in the depth of the mixed 

layer. The effects of a capping inversion over an urban area can be 

best studied if the mixing height is included as an explicit variable. 

In order to account for these effects consider a single cell 

located over a large, horizontally homogeneous, urban area (Figure 8.20). 
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The source strength per unit area for species c.,i=l,2, ... ,n is represent­
l 

ed by E.. The box is of dimension LWZ. (t) where !, is the lengt-h
l l 

parallel to the spatially uniform wind field u(t). W is the box width 

and Z.(t) the current mixed layer depth. The ventilation cross section 
l 

is wz. and the pollutant flux out of the box is simply WZ.uc., where C. 
l l l l 

b
is the average pollutant concentration in the well mixed box. If C. is 

l 

the backgroW1d concentration, then the material flux into the box from 

. d h . . T.rz boutsi et e region is w .uc .. Generation or removal of species by
l l 

model, surface interactions are parameterized in terms of simple 

deposition velocity v. 
g 

If pollutants, left at elevated levels from the previous day, are 

advected out of the box before sunrise on the current day then the mixed 

layer will grow into air containing ambient or background conditions. 

e
Denoting c. as the concentration left above the current mixed layer,

l 

then if c: > 0 the entrainment flux into the box is LWc:dZ./dt. A 
l l l 

collapsing mixed layer, however, does not act as an impenetrable lid. 

Ignoring the contribution from surface sources, the concentration within 

the box is not affected by the volume change. When the ventilation is 

weak, then c: should be replaced by c. so that the current concentration 
l l 

is entrained the next day. In this present study, chemical reactions 

amongst the species above the mixed layer are not considered. 

Given the above assumptions and ignoring the effects of horizontal 

diffusion, the conservation equations for pollutant material within the 

box can be written as a set of ordinary differential equations. 



330 

d (LWZ. c.) LWZ . R. ( c) + Lh'E. + h"Z . u ( c ~ C.)d t l l l l l l l l 

;,z
0 

+ LW , i c~ - LWv c. (8.33)
:·t l g l 

i=l,2, ... ,n 

Dividing through by the box volume and taking into account the temporal 

variations in Z., (8.33) can be written in the form 
l 

de E b (ce-c)dZi V 
a 

C 
- _Q_R(c) + - + ~ (c -c) + (8.34)

dt 2 . L Z. dt z. 
l l l 

where the species index i has been dropped for convenience. For 

numerical solution purposes it is convenient to have the Jacobian of 

(8.34) which is given by (8.35) where [I] is the identity matrix. 

3R(c) 1 dZ. V 

J --'----'- - ~[I) - - __l[I) _g_[ I] (8.35)
k L Z. dt z. 

l l 

In the above expression the terms involving dZ./dt are set to zero 
l 

if dZ./dt < 0. The form (8.35) is quite similar to the expression
l 

originally proposed by Lettau (1970). The principal differences are: 

the parameterization of the turbulent flux caused by entrainment, the 

chemical reactions and surface deposition terms. If the box moves with 

mean wind then (8.35) represents a one-dimensional trajectory model. 

In view of the simplicity of the model, it is worthwhile to 

reiterate the basic assumptions used in its formulation. The most 

critical simplification is that the pollutants are well mixed up to the 
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capping inversion. Unless the characteristic turbulent mixing time is 

fast in comparison to the chemical reaction rates, then the box model 

is not representative of atmospheric conditions. 

8.9 Numerical Solution Procedures 

The algebraic forms of the ordinary differential equations which 

describe the kinetics of the mechanism shown in Table 8.1 are presented 

in Appendix A. This system, subject to the appropriate rate constants 

and initial conditions, was solved with the variable step, variable 

order, backward difference scheme of Hindmarsh and Byrne (1975). This 

method was chosen because it represents one of the best general purpose 

approaches to numerical integration of stiff ordinary differential 

equations. Selection of a method that was both robust and highly 

accurate was important because in a number of cases the numerical results 

of this appendix were used as standards for comparative evaluation of 

solution schemes described in Chapter 11. 

Except for cases in which steady state approximations were used, 

the kinetics of each species were described by differential equations. 

Because of their high concentration, constant values were assigned to 

5 6 
oxygen (2.lxl0 ppmV) and the third body M(l.Ox10 ppmV) which appears 

in the ozone formation step. In each case the starting and maximum 

-S 
step sizes were set to 10 - and 10 minutes, respectively. Semi-relative 

error control, with a convergence tolerance of s = 0.0001, was selected 

because some species have an initial concentration of zero. From a 



332 

practical point of view there is little to be gained by using smaller 

values of s. In fact, settings to be less than 10-4 in most cases 

gave no useful additional information and at the same time drastically 

increased the consumption of computer time. 

8.10 Smog Chamber Experiments 

A direct way of evaluating photochemical reaction mechanisms is 

to compare the predictions against carefully controlled laboratory 

studies. Falls and Seinfeld (1978), for example, tested their model 

against smog chamber experiments conducted at the Statewide Air Pollution 

Research Center (SAPRAC) of the University of California at Riverside. 

Extensive documentation of the experimental protocols, sampling procedures 

and measurement techniques used at that research center are given in 

Pitts et al. (1976), Pitts and Winer (1978) and Winer et al. (1980). 

The initial evaluation of the airshed mechanism employed propylene and 

n-butane as well as different combinations of the two compounds. Further 

experiments have been carried out using hydrocarbon mixtures which more 

closely correspond to atmospheric conditions. A representative sample of 

these results is presented in this section. 

The initial conditions for one smog chamber experiment, SUR-119J 

(Pitts et al., 1976), are reproduced in Table 8.14. This information 

together with the photolysis and lumped hydrocarbon rate constants from 

Tables 8.8 and 8.12 is sufficient to enable an independent duplication 

of the mechanism performance. Table 8.15 and Figures 8.21 - 8.27 
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TABLE 8 .14 

Initial Conditions for Smog Chamber Experiment SUR-119J 

SPECIES CONCENTRATION (ppmv) 

NO 0.301 

N0 2 0.041 

HN02 0.012 

co 7.45 

HCHO 0.038 

RCHO 0.023 

ALK 0.358 

OLE 0.039 

C2H4 0.043 

ARO 0.07 

H20 15500.0 

02 210000.0 

M 1000000.0 

Total Nitrogen 0.354 

RHC(ppmV) 0.548 

NO /RHC
X 

(ppmv/ppmV) 0.642 

Relative Humidity (%) 58.5-53.0 

Temperature (OC) 30.5-33.1 



TABLE 8. 15 

Initial Conditions for Smog Chamber Experiments 

Initial Conditions (ppmV) 
-1

Experimenta 
NO N0 2 

OLE ALK ARO ETH HCHO RCHO HON0° k
1

(min ) 

119J 0.301 0.041 0 .039 0.358 0.070 0.043 0.038 0.023 0.0 0.32 

121J 0.044 0.012 0.040 0.370 0.066 0.042 0.06 0 .011 0.0 0.32 

126J 0.302 0.040 0.039 0. 372 0.075 0.046 0.043 0.007 0.0 0.32 
w 

132J 0.144 0.018 0.024 0.224 0.045 0.029 -- 0.014 0.012 0.32 w 
-1> 

133J 0.084 0.013 0.023 0.227 0.046 0.032 0.005 0.011 0.012 0.32 

134J 0.030 0.008 0.041 0.368 0.067 0.043 0.031 0.013 0.0 0.32 

EC-237c 0. 377 0.106 0.15 1.488 0.177 0.875 0.0 0. 0012 0.08 0.30 

a Pitts et al. (1976) 

b 

c 

Assumed (see Text) 

Evacuable chamber o3 wall loss rate 
-3

2.3xl0 
-1

min dilution 2.9x!0- 4 -1
min (Pitts 

and Winer, 1978). 
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document these results as well as a number of other experiments. The 

model predictions closely match most of the observed data. 

There is some evidence that nitrous acid is formed during the 

loading of smog chambers (Chan et al., 1976). Nitrous acid is produced 

in the dark by the reactions 

2HONO 

and an equilibrium can be reached given sufficient time. The concen­

tration of nitrous acid achieved in the dark is governed by 

d[HONO] 
dt 

(8.36) 

[HONO] 
eq 

Solution of this rate equation subject to [HONO] = 0 yields the 
0 

00concentration of nitrous acid as a function of time. Ast ➔ , the 

equilibrium concentration, 

(8.37) 

is reached. Assuming that [NO], [N0 ] and [H o] are constant, (8.36)
2 2 

can be integrated to yield 

I .-----l[HONO] 
[HONO] 

tan l2t ✓ kf kr [NO] [No 2 ] [H 2o] J (8.38) 
eq 

Table 8.16 shows the approach of HONO to the equilibrium value as 

a function of time for representative values of the rate of reaction. 

The quantity of nitrous acid that forms in a chamber or atmosphere prior 
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to irradiation can be estimated from equation (8.36). In their 

simulation of the SAPRC experiments, Whitten and Hogo (1976) found 

that about one-third of the equilibrium concentration of nitrous acid 

was required as an initial concentration. The results in Table 8.16, 

however, indicate that the time required to reach a substantial 

fraction of the equilibrium concentration is long compared to that 

characteristic of the loading and initial mixing in a smog chamber. 

The predicted values shown in Table 8.16 and 8.17 are also consistent 

with the recent atmospheric measurements of Platt et al. (1980). In 

some of the smog chamber experiments increasing the initial HONO 

concentration tends to decrease the time at which the N0 maximum2 

occurs but does not influence the maximum concentration of N0 or o
3

.2 

In atmospheric simulations it is usually unnecessary to assume an 

initial concentration of HONO since there is normally sufficient 

aldehydes present at sunrise to provide an initial radical flux. 
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TABLE 8 .16 

Approach to the Equilibrium Nitrous Acid (HONO) Concentration(a) 

Case 1 Case 2 Case 3(b) 

(NO) 0. 1 (NO) 1 (NO) 0.301 

(N0 ) = 0.1 (N0 ) = 1 (N0 ) 0.0412 2 2 
(H20) 10000 (H 0) = 10000 (H20) = 15000

2 
(HONO)eq = 0.0125 (HONO)eq = 0.125 (HONO)eq 0.0171 

Time 
(min) 

Case 1 

100 

300 

1000 

10000 

0.00004 

0.00013 

0.00044 

0.00423 

Case 2 Case 3 

0.0044 0.00008 

0.0132 0.00024 

0.0423 0.00082 

0.125 0.00758 

-9 -2 -1 
k kf = 2.2xl0 ppm min 

(a) NO+No +H2o ~ 2HONO2 k = l.4xl0-J ppm-1min-l 
k r 

r 

(b) Initial conditions correspond to smog chamber experiment SUR-119J. 
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TABLE 8. 17 

Predicted Concentration of Nitrogen Containing Species for Smog 
Chamber Experiment SUR-119J 

SPECIES CONCENTRATION (ppm) 

O(min) 60(min) 120(min) 180(min) 240(min) 300(min) 

N0
2 

HN0
4 

NO 

HN0
2 

PAN 

RONO 

N0
3 

RN0
4 

2N o
2 5 

RN0
3 

HN0
3 

-24.lxlO 

0 

-1
3.0lxlO 

-2l.2xl0 

0 

0 

0 

0 

0 

0 

0 

-11. 6x10 

-52.2xl0 

-1
1. 7xl0 

-36.9xl0 

-4
8.8xl0 

-31.0xlO 

-82.3xl0 

-46.6xl0 

2.3xl0-6 

2.4xl0-4 

-2l.2xl0 

-12.3xl0 

-5
4.6xl0 

-2
8.7xl0 

-32.8xl0 

-33.lxlO 

-4
8.0xlO 

-7l.7xl0 

l.4x10-3 

-5
2.4xl0 

-45.7xl0 

-2
2.8xl0 

-1
2.5xl0 

_c; 
8.4xl0 J 

-24.4xl0 

-3
l.lxlO 

-36.2xl0 

-4
4.6xl0 

-77.8xl0 

-32.4xl0 

-41. 2xl0 

-48.9xl0 

-24.5xl0 

-1
2.5xl0 

-1
2.3xl0 

-4
1. 3xl0 

-4
1. 8xl0 

-2
2.6xl0 

-2
1. 6xl0 

-4
5.4xl0 

-4
3.3xl0 

-2
l.OxlO 

-2
l.4x10 

-42.5xl0 
-4

l.3xl0 

-62.2xl0 
-6

4.6xl0 

-3
3.6xl0 

-3
4.9xl0 

-4
3.4xl0 

-4
6.6xl0 

-3
1. 2xl0 

-3
1. 4xl0 

-26.2xl0 
-2

8.0xlO 

M 0.3540 0.3539 0.3539 0.3539 0.3539 0.3539 
[Nitrogen 
Balance] 
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8.11 Species Conservation Constraints 

If a physical system satisfies one or more conservation laws, then 

a computational scheme which preserves the same constraint should be 

used to eliminate at least one source of potential numerical error. The 

use of numerical methods which do not preserve linear conservation laws 

can often lead to highly inaccurate solutions. For an initial value 

problem the basic constraint on conservation of mass can be expressed 

in the form 

(8.39) 

or 

T dC
W - = 0 (8.40)

dt 

where W = [w ,w
2

, ... ,wn]T is a vector of weights associated with each
1 

T
of the species, C = [c

1
,c

2
, ... cn] and Mis a constant depending on the 

initial conditions. Constraints can be applied to the total mass within 

the system or to individual atomic components. In the airshed mechanism 

the presence of lumped reaction steps, unfortunately, precludes the use 

of total mass balance checks. The conservation constraint does however 

apply to atomic species such as nitrogen. For the mechanism shown 

in Table 8.1, Mis given by 

M NO+ N0 + N0 + HN0 + HN0 + HN0 + RN0 + RN0 + RN0 + 2N o + PAN
2 3 2 3 4 2 3 4 2 5 

(8.41) 

The numerical method developed by Hindmarsh and Byrne (1975) and 

used in this chapter employs a variable step, variable order, backward 
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difference, multistep method of the form 

k 
m-j

m m-j de 
ak . C h (8.42)

-J m dtj=O 
I 

where h = t - t is the step size for the mth step, {a} and {S}m m m-1 

are the coefficients for the mth step in the variable step method. 

Rosenbaum (1977) has shown that such methods are conservative so 

that, M, defined by (8.41) should be constant. This is indeed the case 

as shown in Table 8.17 and Figure 8.19. While the use of linear 

constraints to check on numerical accuracy is often very useful, it is 

important to be aware of the limitations. In general, while a constant 

value for M implies that the roundoff errors are small, it gives little 

information about the magnitude of the truncation errors. Stated 

another way, it is possible to devise extremely poor numerical solution 

schemes that conserve mass. 

8.12 Steady State Approximations for Ozone 

The three principal reaction steps involved in the NO-No 2-o
3 

photolytic cycle are given by: 

. -1N0
2 

+ hv .....!__r NO+ o(3_!'._) min (8.43) 

3 2 -5 -2 -10( _!'._) + o + M -,- o + M = 2xl0 ppm -min (8.44)
2 3 

3 -1 . -1 o + NO -:.- N0 + o ; k = 25,8 ppm -min (8,45)
3 2 2 3 

Under most conditions these three reactions proceed at a rate nearly 

two orders of magnitude faster than the kinetics of any of the other 

steps involving ozone. A sample calculation of the forward reaction 
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rates is shown in Table 8.18. The main oxidizing reaction (8.45), for 

typical atmospheric concentrations, has a half life of approximately 

30 seconds. Under these conditions many investigators have made the 

assumption that the ozone production and decay rates are in equilibrium 

and derived the photostationary state approximation (PSSA) 

k (N0 2)1 
1 (8.46)

k (N0)(0 )
3 3 

Since there is a recurring debate in the literature about the validity 

of the simple expression (8.46) this section presents a brief evaluation 

of its validity for smog chamber simulations. 

Eschenroeder et al. (1972) and Calvert (1976) have examined 

experimental data collected in Los Angeles and concluded that time­

averaged atmospheric measurements often do not obey the photostationary 

state approximation. Stedman and Jackson (1975) tested the hypothesis 

that k (N02)/k (NO)(o )=1 in a set of carefully controlled measurements1 3 3 

of ambient air quality. Using 400 data sets they found that the left­

hand side was equal to 1.01 with a standard deviation of 0.2 and a 

standard error of the mean equal to 0.01. A variety of different 

explanations have been offered to explain the discrepancies. 

Eschenroeder et al. (1972), Seinfeld (1977) and Bilger (1977) 

postulated that inhomogeneities in atmospheric concentrations of 

NO and o could reduce the effective reaction rates of the system
3 

(8.43-8.45). The basic problem is that when using time-averaged data 

in the photo stationary state equation the product of average concen­

trations is not equal to the average of the products. In general, 

https://8.43-8.45
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TABLE 8.18 

Forward Reaction Rates for Smog Chamber Experiment SUR-119J(a) 

Mechanism 
Component t 

Reaction Rate 

60 min 

(ppm/min) 

t = 300 min 

dO/dt 

R2=k (0)(0 )(M)2 2

R =k (N0)(0 )
3 3 3

R7=k7(N02)C03) 

R2o=k20(03) 

R3o=k3o(OLE)(03) 

R =k (0H)(0 )47 47 3

R48=k48(H02)(03) 

-43.070xl0 

-25.43xl0 

-25.36xl0 

-41. 24xl0 

-43.14xl0 

-53. 77xl0 

-7
1. 34xl0 

-81. 67x10 

8. 732xl0-4 

-26.78xl0 

-26.02xl0 

2.12xl0-3 

-34.6lxl0 

-62.63xl0 

-6l.03x10 

-6l.63xl0 

R =k (N0 )1 1 2
-25.4lxl0 

-26.33xl0 

(a) 
03 

NO 

0.01364 

0.1541 

0.2005 

0.01178 

N0 2 

N0 /NO2

0.1690 

1.096 

0.1978 

16.79 
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unless the atmosphere is well mixed or the averaging times are 

sufficiently short 

(8.47) 

The basic problem with testing this explanation is that it is 

extremely difficult to perform the necessary experiments. Confirmation 

requires very accurate and rapid determinations of k
1

, temperature, 

Part of the variation can be readily explained by considering 

the kinetics of ozone formation. In the airshed model the balance 

between ozone formation and decay rates is given by 

dO-:i _, 

where 

R2 k2 (o)(02)(M) 

k (NO)(o )R3 3 3 

R7 = k7(N02)(0 )3 

=R20 k20C03) 
(8.49) 

k (0LE)(0 )R30 30 3 

k (0H)(0 )R47 47 3 

R48 k48(H02)(03) 

=R49 k49C03) 

dt (8.48) 
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So that the correct expression for the quasi steady state approximation 

(QSSA) is given by 

k (0)(02)(M)
2 

---------------------------:--- = 1 (8.50)
[k3(NO)+k7(N02)+k2o+k3o(OLE)+k47(0H)+k43(H02)+k49l(03) 

Both (8.46) and (8.50) were tested using the concentrations predicted 

in a numerical solution of the smog chamber experiment SUR-119J (Pitts 

et al., 1976). At the end of a 400 minute simulation the error in the 

photo stationary state (PSSA) was approximately 5% whereas (8.50) was 

correct to within 1%. As shown in Table 8.18, early in the run, the 

ozone kinetics is dominated by the photolytic cycle (8.43-8.45) and as 

a result both (8.46) and (8.50) are of comparable accuracy. Later in 

the solution, when N0 >> NO, the contributions from the terms R and2 7 

R20 become more apparent. These results indicate that in atmospheric 

applications there could be significant departures from the photo 

stationary state simply as a result of the chemistry. Future field 

measurements should be directed at separating the influences of turbulent 

inhomogeneities and chemistry when evaluating the validity of steady 

state approximations. 

8.13 Conclusions 

In this chapter the basic airshed mechanism has been presented 

together with sufficient information regarding initial conditions, rate 

constants and stoichiometry to allow an independent duplication of its 

performance. The mechanism incorporates recent information on rate 

https://8.43-8.45
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constants, mechanistic structure and, in addition, has been successfully 

validated against a wide range of smog chamber experiments. Further 

discussion of the sensitivity of model predictions to changes in the 

various inputs is given in Chapter 12. 

Note: Subsequent to the publication of the kinetic mechanisms in 
Falls and Seinfeld (1978) and McRae et al. (1981) a number of 
modifications were made to some of the reaction rate constants. 
These changes are documented in Tables 8.3, 8.8 and 8.12 and were 
made to reflect more recent determinations of the basic kinetic 
data. In section 8.10 Figures 8.21 and 8.27 show a comparison 
between observed and predicted concentration profiles for the two 
sets of rate constants. 
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CHAPTER 9 

NUMERICAL SOLUTION OF THE ATMOSPHERIC DIFFUSION 
EQUATION FOR CHEMICALLY REACTING FLOWS 

(Reprinted from J. Computational Physics,~, 1-42) 
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A comprehensive study of numerical techniques for solving the atmospheric diffusion 
equation is reported. Operator splitting methods are examined in which the three-dimensional 
problem is converted into a sequence of one-dimensional problems. A Galerkin, linear finite 
element scheme with a nonlinear filter is found to be computationally superior to the other 
methods tested for the advection-diffusion components. The chemical reaction dynamics 
component, treated within the splitting scheme, is generally highly stiff. A second-order 
predictor. iterated corrector technique, in combination with an asymptotic treatment of the 
stiff components, is found to be computationally superior for the chemical kinetics. The 
validity of the pseudo steady state approximation for certain reactive species is also 
investigated. 

1. INTRODUCTION 

Many disciplines in engineering and science depend on the availability of predictive 
models of chemically reacting fluid flows. One area of considerable practical interest 
and a source of many challenging problems in numerical analysis is the construction 
of mathematical descriptions of the formation and transport of urban-scale air 
pollution. A complete treatment of atmospheric concentration dynamics and chemical 
interactions involves the full, three-dimensional turbulent planetary boundary layer 
equations for conservation of mass, momentum and energy. Unfortunately the routine 
solution of such a system is an enormous undertaking and not feasible on the present 
generation of computers since a typical calculation might involve 0( 10 4

) grid points, 
20-50 chemical species and 0( 106

) computer storage locations. A somewhat more 
limited approach, and the focus of this work, is based on decoupling the mass conser­
vation equations from the equations of motion of the air. This simplification results in 
a set of coupled parabolic partial differential equations that describe the combined 
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influences of advection, turbulent diffusion and chemistry within a prescribed flow 
field. The presence of nonlinearities and the existence of widely disparate temporal 
and spatial scales considerably complicate the selection and implementation of 
suitable solution techniques. In addition the availability and utilization of 
computational resources are practical considerations equally as important as the 
requirement for numerical accuracy. 

This paper begins with a general statement of the atmospheric diffusion equation 
and proceeds to describe the use of coordinate transformations and operator splitting 
techniques for numerical solution. Once the equations have been decomposed into 
component parts by operator splitting, specially suited procedures for the components 
(advection, diffusion, and chemical reaction) can be applied. We then describe the 
choice and testing of appropriate techniques for solving the transport or advection­
diffusion components of the equation. The final element involves numerical solution 
of the chemical kinetics. Although the numerical techniques described in this work 
have been specifically developed to solve the atmospheric diffusion equation, much of 
the material is applicable to other problems, particularly those that involve 
chemically reacting fluid flows. 

2. GOVERNING DIFFERENTIAL EQUATIONS 

Consider an arbitrary, time-varying, spatial domain .Qt located in the Euclidean 
£ 3space and bounded by 8.0 1 • In this region, a spatial point is denoted X = 

{X, Y, Z} E .Qt. Within .01 the conservation of mass fOi each of p chemical species 
c;(X, t); i = 1,... ,p, can be expressed by the following set of coupled, nonlinear, 
paraboiic, partial differential equations, 

(I) 

with (X, t) E .01 X [O, T]. For this system u is the prescribed advective velocity field 
u(X, t) = (u, v, w), K is a second-order, diagonal, eddy diffusivity tensor and J; a 
temperature dependent chemical formation (or depletion) rate of species i. In 
meteorological applications (1) is frequently called the atmospheric diffusion 
equation [ 1 ]. 

To complete the problem formulation both the initial and boundary conditions 
need to be specified. For the system (1) the initial conditions c;(X, 0), are given by 

c;(X, 0) = c~(X); i = l,...,p; (2) 

The measured concentration data, from which the initial conditions are normally 
specified, are sparse, irregularly spaced, and generally limited to ground level values. 
Under these conditions, a representative initial field can be obtained by interpolation 
using the techniques described in Goodin et al. [2-4 ]. Boundary conditions simply 
represent statements of mass continuity across the enclosing surface 8.Qt· For this 
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system most practical cases are described by the inhomogeneous mixed Neumann 
and Dirichlet boundary conditions 

ac. 
a(X, t) C; + b(X, t) a; = g;(X, t); (X, t) E ant X [O, T]. (3) 

In this equation a indicates the normal direction to ann and the functions a(X, t), 
b(X, t) and g;(X, t) describe particular cases, the explicit forms of which are 
presented in Reynolds et al. [5]. 

The difficulties that arise during numerical solution of ( 1 }-(3) stem from the 
radically different character of the advection, v' - (uc;), turbulent diffusion, 
v' - (K - v'c;), and chemical reaction, J;, operators. Even though (1) is formally 
parabolic in most atmospheric flows, transport in the horizontal plane is dominated 
by advection, leading to hyperbolic like characteristics. One of the major sources of 
difficulty arises during numerical solution of the chemical reaction terms J;. While 
complicating the numerical solution, the presence of the nonlinearities in J; is not as 
much a problem as the potential for eigenvalues that span a wide range of time 
scales. In typical photochemical reaction mechanisms of the type described by Falls 
and Seinfeld [ 6 ], it is possible to encounter situations in which individual reaction 
times differ by 0( 108 seconds). That, in turn, virtually dictates an implicit solution 
procedure for the chemical kinetics. 

3. COORDINATE TRANSFORMATIONS 

In typical applications the airshed domain n I is defined by three bounding 
surfaces; the topography Z = h(X, Y), vertical sides at the horizontal extremes, and a 
time varying upper boundary, Z = H(X, Y, t). The presence of topographic relief can 
considerably complicate the numerical implementation of boundary conditions of the 
form (3 ). The problem can be avoided to a certain extent by transforming the spatial 
domain into one of simpler geometry. This can be accomplished by a mapping 
F: n 1 --+ nc, that transforms points in the physical domain into the moren 1 

convenient computational domain nc· Points in nc are denoted by x = (x, y, z, t). 
A variety of functional forms for F are used in practice; a common one in 

atmospheric modeling application is the terrain-following coordinate transformation 
[5, 7, 8], 

(4) 

that scales the vertical extent of the modeling region into the new domain z E [O, 1]. 
So long as the time varying upper boundary H, does not intersect the terrain defined 
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by h, then a unique inverse for (4) exists. The general requirement for a nonzero 
Jacobian usually precludes the simultaneous use of these transformations in all three 
coordinate directions. 

Once the form of the transformation has been established, the next step is to apply 
it to the atmospheric diffusion equation. An important characteristic of this equation 
is that it represents a differential statement of the conservation of mass for each 
species c;. Roache [ 9] indicates that, with few exceptions, the most accurate 
numerical results are obtained using numerical approximations that are based on the 
flux or conservative form of the governing equations. With this in mind, it is desirable 
to preserve the conservative structure of (I) during the coordinate transformation. If 
this is done, then it is possible to consider each computational cell as a control 
volume and develop difference expressions that satisfy the physical conservation laws 
on a macroscopic level, not at the limit of small time steps and spatial dimensions. 
Methods for manipulating first and second-order partial differential equations that 
preserve the conservative properties are described in Anderson et al. [IO], Oberkampf 
[11 ], and Vinokur [ 12 ]. Lapidus [13 ], in particular, has shown that with a 
nonsingular space transformation, the conservative form of the governing differentiai 
equations can be maintained. Using these procedures it is possible to develop the 
following conservative form of the atmospheric diffusion equation, 

oL1Hc; 
~ + V • (V,1Hc;) = V • (L1HKc ·Ve;)+ L1HJ;, (x, t) E De X [O, T], (5) 

where nc is now the transformed domain and L1H = H(x,y, t) - h(x,y). The 
components of the transformed velocity field are now V = (u, v, W), where the new 
vertical velocity W, is given by 

W = _I_ [w _u (oh+ z oL1H )- v (oh+ z oL1H) _ z o,1H] . (6)
L1H ox ox oy oy ot 

One problem arises as a result of the transformation. Initially the eddy diffusivity 
tensor K was diagonal, however, the transformed form is given by 

---------r--------,----------
- Kxx (oh+ z oLJH) : _ Kyy (oh+ z oLJH) : (ch+ z oLJH) 

2 

Kxx (7)K = C LJH ox ox LJH oy oy I JH2 ox ox 
I 
I + K,.., (oh+ z oLJH) 2 

LJH' o_v o_v 
I. 
I+ K"

LJH' 
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While the presence of off-diagonal terms can complicate the numerical solution, their 
contribution to turbulent transport in most urban scale flows is negligible since it is 
possible to show, that for all but the most rugged terrain, 

1 [ch oJJH] 1 [oh oJJH]- -+z-- ~ l· - -+z-- ·~ 1. (8)JJH OX ex ' JJH cy cy 

4. GENERAL APPROACH TO THE NUMERICAL SOLUTION OF THE PROBLEM 

Once the equations have been transformed, the next step is to formulate an 
approach for obtaining numerical solutions of the model system. Although the focus 
of the present work is the atmospheric diffusion equation, the problem can be stated 
in the more general form, 

OC·a/ = L(x, t) c;(x, t) +J;(c 1 , ••• , cp); (x, t) E De X [0, T], (9) 

B(x, t) c;(x, t) = g;(x, t); (x, t) E oDc X [0, T], ( 10) 

c;(x, 0) = c?(x); (x) E !20 , ( 11) 

where L is a multi-dimensional, semi-linear, elliptic differential operator containing 
first and second-order derivatives, with respect to x, y, and z, but no mixed 
derivatives, and B is a linear operator. 

While there is an extensive literature relevant to obtaining solutions of the 
homogeneous system there are relatively few numerical treatments of problems that 
involve both chemical reactions and transport in three dimensions. Even though much 
of what is available is confined to one- and two-dimensional systems, many different 
techniques have been applied in practice. For example, Margolis [ 14] used the 
method of lines to examine the multi-component chemical dynamics of a premixed 
laminar flame. Chin and Braum [ 15] employed a discrete analog of the invariant 
embedding algorithm to solve the two-point boundary value problem associated with 
a model of oil shale retorting. A variety of schemes were used by Engquist et al. [16 j 
to predict the performance of a catalytic converter; a fourth-order dissipative leap­
frog difference method for the hyperbolic components, a Dufort-Frankel procedure 
for the parabolic elements and Newton iteration for the remaining nonlinear 
equations. Douglas et al. [ 17] utilized an extrapolated Crank-Nicholson-Galerkin 
procedure when solving a quasilinear parabolic problem. Kansa [ 18] used a block 
implicit scheme, modified to include the basic strategies of stiff ordinary differential 
equation solution algorithms, to model the combustion process in an axisymmetric 
wick. 

There are two basic steps that must be undertaken as part of most approaches to 
obtaining numerical solutions of systems of the form (9 )---( 11 ). One is to identify the 
means for approximating the spatial derivatives and the other is to select the 
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procedure for time integration. Spatial discretization techniques are used to convert 
the system of time-varying partial differential equations into a set of ordinary 
differential equations. In most cases this can be accomplished by using either 
classical finite difference or finite element techniques to produce semi-discrete 
systems of the form 

( 12) 

where the matrices M and S are typically large and sparse, especially for multi­
dimensional problems, and C; is a vector-valued function representing the concen­
tration distribution at r points in the computational domain. If M is the identity 
matrix, as is often the case when finite difference techniques are used, then the system 
(12) can be solved using the method of lines. Further details of different 
parameterizations of the elements of M and S are discuss~d subsequently. 

One of the major difficulties associated with a solution of (12) is that the set of 
equations is usually quite stiff. Consider for example, the case of f = f(t) only and 
constant M. Then the analytic solution of ( 12) is given by 

If O is the discretization parameter, either the computational cell size or finite 
element, then the condition number of M- 1s is O(J- 2

) [19, 20]. In fact, because of 
the unboundedness of the eigenvalue spectrum as J---+ 0, increasing demands for 
accuracy simply exacerbate the stiffness problem. What is not often recognized is that 
the stiffness of the ordinary differential equations may be an artifact of the spatial 
discretization and, apart from the character of f, is not a property of the governing 
differential equations. Because the equations are stiff this usually dictates that an 
implicit solution procedure must be used for the time integration. While not a major 
restriction for one-dimensional systems, this can create major computational and 
operational problems when extended to higher dimensions. 

In many situations the practical aspects of implementing the computational 
procedures can impose another set of limitations. Often the number of previous 
results that can be held in fast core storage, during one solution step, constrains the 
choice of a time integration procedure. In addition, careful consideration must be 
given to the way in which arrays are indexed on computers that employ virtual 
memory systems otherwise the paging overheads can become very large. These issues, 
and the theoretical considerations discussed above, are some of the major motivations 
for the use of operator splitting techniques. 
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5. OPERATOR SPLITTING AND THE METHOD OF FRACTIONAL STEPS 

If the spatial discretization procedures are directly applied to the three-dimensional 
operator L, the resulting matrices, while sparse, usually cannot be economically 
decomposed or inverted. One way to reduce the magnitude of the computational task 
is to employ operator splitting and reduce the multidimensional problem to a 
sequence of one-dimensional equations. If this is done then successive solutions to 
each component part can be combined to produce a "weak'' approximation to the 
original operator. There are a number of significant advantages to be gained from this 
approach. Because the matrices ansmg from the one-dimensional spatial 
discretizations are usually tridiagonal, the cost of using stable implicit procedures is 
small. Perhaps the most important benefit is that the numerical solution techniques 
can be tailored to the physical behavior of each element, a feature that is particularly 
attractive in applications involving chemically reacting flows. For example, Rizzi and 
Bailey [ 21] used the space-marching procedure of Rizzi and Inouye [ 22 J. in 
combination with operator splitting, to examine the chemical dynamics occurring in 
supersonic flows over complex geometric shapes. Similar approaches were adopted by 
Kee and Miller [ 23] in a study of laminar diffusion flames and by Thomas and 
Wilson [ 24] for chemically reacting turbulent jets. In each case isolating the reaction 
kinetics removed the numerical time step restrictions on the transport operators 
imposed by the chemistry. 

The initial step in operator splitting is to decompose L into a sum of simpler terms 

3 

L = L Lj. ( 14) 
j;l 

Although it is not strictly necessary, each L j is usually associated with a particular 
coordinate direction. As an example (9) can be written in the form (L 1 = L x; 
L 2 =Ly; L 3 =L,) 

( 15) 

Once the elementa.l components L j have been identified, the next step is to determine 
their equivalent discrete representation in the computational domain. First, the 
continuously varying concentration field must be approximated at the r 
computational points by the values c; = (c;(xj, t); j = 1, 2,... , r). At each of the grid 
points, the spatial derivative Lj must be replaced by its discrete approximation. The 
net result is the replacement of the scalar operation, Ljc;, distributed over the 
physical domain, by the. matrix product Ajc;. In this formulation the elements of Aj 
depend on the particular discretization scheme and its coupling of adjacent grid point 
values. Given the numerical equivalents of each Lj, they then must be combined in a 
sequence that approximates the system as a whole. There are two common ways to 
accomplish this; one is to use Alternating Direction Implicit (ADI) schemes and the 



8 

363 

MC RAE, GOODIN, AND SEINFELD 

other employs Locally One-Dimensional (LOD) or fractional step methods. The most 
widely known splitting procedure is the ADI algorithm which advances the concen­
tration field a single time step ,1t from the level n to time level n + I using the 
sequence [25-27 ], 

,1t
cf* - c7 = 2 [Axe;*+ Aye;**]+ L1t[½(Ax + Ay) + A:] c7, (! 7) 

,1t ,1t
c;*** - c7 = 2 [Axe;*+ Aye;**+ A:c;***] + 2 [A-"+ AY + A:] c?, (18) 

where c;*, c;* * are the intermediate results and c;* ** is an O(dt 3
) approximation to 

c7+ 1
• An alternate, but equivalent representation, that is more suited to practical 

problems, especially those involving steady state applications, is to solve for the 
concentration increment using 

( I 9) 

(20) 

l_.atA ~,(c***-c'.')=c**-cn (21)2 Z I I I I"r 
By eliminating the intermediate results from ( 19)--(21) the ADI solution sequence can 
be written in the factored form [26] 

,1( ] [ .1! ] [ ,1( ] n + 1 nI - - A I - - A I - - A (c. - c.)
[ 2x 2Y 2z' ' 

(22) 

Briley and McDonald [27] discuss the computational implementation of these 
techniques and in particular the use of linearization procedures for solving nonlinear 
partial differential equations. Apart from accuracy considerations, implicit 
discretization procedures usually allow arbitrarily large integration steps. When 
splitting techniques are used to solve transient problems, the maximum allowable 
time step is often constrained by the treatment of intermediate level boundary 
conditions. Weare [28] and Briley and McDonald [27] present analyses of the errors 
arising from different formulations of the boundary conditions. Unfortunately, ADI 
procedures are not ideally suited to solving the atmospheric diffusion equation 
because the coupling between the chemistry and tr;msport in (16) imposes 
unreasonable time step limitations. In addition, since each term of the governing 
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differential equation is represented in each fractional step the memory paging 
overheads can become excessive. 

An alternative approach is to use the method of fractional steps introduced by 
Yanenko [29] and described in Marchuk [30,31] and Yanenko et al. [32]. Only the 
homogeneous Cauchy problem will be considered here. We discuss how nonlinear 
reactions can be included later. For the transport alone, the locally one-dimensional 
approximations, using Crank-Nicholson time integration, are given by 

J- 1 
3 [ L1t [ ,dt ] 3cn+l= n I--A. l+-A. C~= nTnC~=Tncn (23) 

I j=l 2 J 2 J I j=l J I 1· 

The principal difference between this formulation and the ADI scheme (20)--(22) is 
that the solution is advanced only in one coordinate direction at a time. Detailed 
discussions of the relationships between the two approaches are presented in Morris 
[33], Gourlay and Mitchell [34], Gourlay [35], and Gottlieb [36]. One important 
observation that can be made is that there are two sources of error in the fully 
discrete fractional step algorithm-the intrinsic error involved with operator splitting 
and the discretization errors associated with the operator approximations. In general 
these errors interact in a complex fashion. Crandall and Majda [37] have analyzed 
the stability, accuracy, and convergence of the basic fractional step algorithm when 
used to obtain discontinuous solutions of scalar conservation equations. 

The formal order of the temporal approximation (23) can be developed by 
expanding the operators T_7 in powers of L1t to give [31] 

p = I - L1t An + L1t2 (A n)2 - At3 (A n)3 + ... (24)
' ' 2! ' 3! 1 

• 

If An= A;+ A;+ A; then r is given by 

(25) 

Thus the split operator difference scheme will be second order accurate only if the 
split operators A: and A; commute; otherwise, it is only of first order. To obtain 
second order accuracy, it is necessary to reverse the order of the operators each 
alternate step to cancel the two noncommuting terms. The consecutive cycles are then 

en= n3 

Tncn-1 (26)
I J I 

j=l 

and 

I 

c7+1 = n T_7c7. (27) 
j=3 
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The proof of the stability of these approximations is considerably simplified using the 
following lemmas [31 ] . 

LEMMA 1. Consider a positive semi-definite matrix A, i.e., (Ac;, c;) >0, on the 
Euciidean space, then for any value of the parameter A> 0, 

(28) 

where I is the identity matrix and II· II is the appropriate norm. 

LEMMA 2. For any positive semi-definite matrix A and).> 0 then 

(29) 

Using (28) and (29) it is possible to show that 

(30) 

These results ensure absolute stability and boundness of the solution provided that the 
discrete operator approximation A is also positive semi-definite. 

Implementation of operator splitting for the atmospheric diffusion equation 
(neglecting chemistry) can be accomplished by further separation of the material 
transport into advection (T)., and diffusive components (T)d. If this is done, then a 
second-order accurate solution is given by 

Depending on the numerical scheme chosen, it is possible to combine the advection 
and diffusion into one transport step in each direction. For the remainder of this 
section and Sections 6 and 7 we focus on the atmospheric diffusion equation in the 
absence of chemistry to develop the solution procedure for the advection and 
diffusion components. Equation (31) indicates that the atmospheric diffusion equation 
can be decomposed, by operator splitting, into a series of simpler one-dimensional 
problems. Consequently, primary attention wiil be given to the one-dimensional 
transport problem (the subscript i denoting species i is dropped for convenience), 

oc =Le=!_ (K oc - uc) (32)
ot ox xx ox 

and its component parts over the same domain 

oc ouc 
Advection: -=L c=-­ (33)

ot a ox 
and 

Diffusion: (34) 
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The basic objective of the remainder of this work is to identify numerical solution 
techniques that are compatible with the characteristics of the physical problem, 
computationally efficient, stable, and accurate. In addition it is important. from a 
practical point of view, that the methods can be easily implemented and minimize 
core storage requirements. 

6. FORMULATION OF THE NUMERICAL SOLUTION 

A wide class of numerical approximations to the spatial derivatives in (32) can be 
expressed in the form H(ov/ox) = Bv, where v is the material flux at the r 
computational grid points. The matrices H and B are of dimensions r X r with 
elements set by the particular discretization scheme. For example, the standard 
second-order, centered difference formula would have H = I and B the tridiagonal 
form [-1 0 11. Given the material flux 

oc 
V= Kxx-;;---Uc (35) 

ox 

then (32) can be written as an equivalent set of first-order problems 

oc
H-=BcOX ' 

(36) 
oc

P-=Qvot ' 

where B, H, P, Q are large sparse matrices resulting from the particular discretization 
formulation and Kxx and U are diagonal matrices corresponding to the turbulent 
diffusion coefficients and advective velocity components at each grid point. 
Eliminating v the system can be expressed in the partitioned matrix form, 

oc 
Be 

ox 
(37) ·= 

oc 
QUcot 

The relationship between this formulation and the operator splitting approach 
introduced in Section 5 can be seen in the explicit representations 

Advection: (38) 

Diffusion: (39) 



12 

367 

MC RAE, GOODIN, AND SEINFELD 

These two results can be combined to give the complete numerical approximation for 
oc/ot, 

(40) 

While easy to implement, a direct solution of (40) has a number of drawbacks, the 
most serious of which is the need to evaluate H- 1 anq p- 1

• Normally both H and B 
are tridiagonal, unfortunately there is no guarantee that this property is preserved 
under the inverse transformation. If H - 1 and P - 1 are full matrices, then the 
operation count for evaluating the matrix products becomes quite large. The choice of 
whether to use a direct solution or a block tridiagonal LU decomposition depends to 
a large extent on the number of right-hand sides. A single evaluation of Tx followed 
by many products of the form Txc;, i = 1, 2, ... , p, may be more economical. The 
decision as to which is the more appropriate approach depends on the number of grid 
points, chemical species and a detailed operation count for each procedure. For the 
tests to be described in this paper block tridiagonal solution procedures were applied 
to the system (37). The resulting set of equations, subject to the appropriate boundary 
conditions, can be solved by standard methods. In subsequent sections the vector 
notation for c, indicating the numerical approximations to c(x, t) at the r grid points, 
will be omitted for clarity. 

7. SOLUTION OF THE ADVECTIVE TRANSPORT STEP Ta 

There is an extensive literature that describes techniques suitable for solving the 
hyperbolic problem (33) [9, 38-41 ]. Most of the approaches fall into five basic 
categories: finite difference, variational, particle-in-cell, spectral and special purpose 
procedures. On the basis of a preliminary survey, seven methods were identified for 
detailed evaluation. These schemes were: the flux corrected transport algorithm 
(SHASTA) [42-44 ], compact differencing methods [45-50 ], finite element methods 
[51-53], the zero-average phase-error technique [54], upwind differencing [9], the 
Crowley [55] technique and finally the scheme of Price et al. [56 ]. These methods 
were used as described in the literature except for the finite element scheme that was 
applied to the conservative formulation of the advection equation. 

The particular finite element model used in this study employs a Galerkin 
formulation and linear basis functions. With this technique, approximations to the 
concentration and velocity fields are expressed in terms of time-varying coefficients 
ai(t), /Jit) and piecewise continuous basis function Q)/x), 

c(x, t) = ~ a/t) ¢/x), (4 I) 
j=I 

u(x, t) = ~ /J/t) 1P/x), (42) 
i= I 
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where 

Xj+I -X 
(43) 

Xj+ I -Xj 

Equation (43) describes a set of linear basis function that vanish outside the 
interval [xj_ 1, xH 1 ]. Using these functions, the Galerkin method requires that for all 
¢j, 

(44) 

By expanding the inner product ( 44 ), the following set of ordinary differential 
equations in the dependent variable aq(t) can be derived* 

(45) 

where 

(46) 

(4 7) 

To compare the solution schemes, some idealized test problems with known 
solutions were selected. Particular attention was given to the harmonic content of 
each test case. A concentration distribution containing components with wavelengths 
shorter than the characteristic grid spacing represents a difficult test for any 
advection scheme. If little numerical or physical diffusion is present, an initial profile 
with sharp corners and steep sides should remain intact as it is transported by the 
velocity field. Test problems were also chosen to allow simultaneous and individual 
solutions of both transport components. In addition to the accuracy considerations 
judged by the important attributes of mass conservation, minimal dispersion and 
minimal pseudo-diffusion, additional constraints in choosing a numerical method 
arise as a result of the availability of computational resources. Execution time, 
storage requirements, ease of understanding, and implementation must also be 
considered since the most accurate scheme may also be the least efficient. 

A series of test problems, listed in Table I was used to evaluate the schemes. The 
velocity was constant at 5 km/hr, the time step at 0.1 hours. The Courant number, C, 

* The algebraic details are contained in Appendix B. 
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TABLE I 

Test Problems for Advection Equation 

Wave form Function Fourier spectrum 

w0 
sin-

2 
Square c(x, 0) = ll 

w0 
\ 0 

2 

8 
0 sin ( ~ )

!1-lxi/B !xi,;; B
Triangle c(x, 0) = /

0 lxl > 0 

2 

Gaussian c(x, 0) = exp [ -II ( ; ) ] 

0----Volume/unit width ratio for the wave form. 

was 0.25, which is less than the stability limit for all schemes. These parameters were 
chosen to be representative of meteorological conditions over a typical urban airshed. 
The results of the tests are summarized in Table II and shown in Figs. 1-3. Further 
detailed testing with a range of sample problems narrowed the solution methods to 
the SHASTA technique and a class of techniques that use linear finite elements or 
compact differences together with Crank-Nicholson time integration. 

7.1. Preservation of Positive Quantities and Filtering Schemes 

During the course of the testing it became obvious that in order to develop a 
scheme that preserves peaks, retains positive quantities, and does not severely diffuse 
sharp gradients, an additional step must be performed to minimize the effect of 
dispersive waves. As noted by Kreiss and Oliger [57], the basic problem with 
conventional Galerkin formulations is that they result in nondissipative, discrete 
approximations when applied to hyperbolic equations. What is required is a 
procedure for damping out the small scale perturbations before they can corrupt the 
basic solution. There are several different filtering procedures that can be applied: (I) 
adding diffusions terms to the basic equation [58 j, (2) expansion of the concentration 
field in orthogonal functions with a recombination that omits high wave numbers 
I59 ], (3) numerical filtering where the grid point value is replaced by an average 
formed from surrounding values, (4) inclusion of a dissipative term in the problem 
formulation [ 60, 61 ]. 

At the simplest level, one approach is to set any negative concentration to zero or 
a very small positive number following each advection step. This prnceduie is 
demonstrated using the finite element method with a square wave in Fig. 4a. While 
trivial to implement, this correction scheme can induce· violations of mass conser-
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TABLE II 

Summary of Results of Advection Tests for Different Initial Distributions* 

Test 
Square (S) Extreme value Change Relative 

Numerical Gaussian (G) in mass computational 
scheme Triangle (T) Maximum Minimum (%) time 

Upwind [9j s 0.755 
T 0.693 
G 0.635 

0.0 
0.0 
0.0 

0.0 
-0.03 
-0.01 

1.0 

Price [56] s 1.463 
T 0.971 
G 1.108 

-0.390 
-0.086 
-0.216 

-0.93 
-0.50 

0.26 

1.2 

Fromm [54j s 1.084 
T 0.918 
G 0.964 

-0.067 
-0.015 
-0.006 

-0.05 
0.28 
0.07 

1.8 

Crowley [55j s 1.219 
T 0.932 
G 0.990 

-0.222 
-0.017 
-0.001 

-2.02 
0.28 
0.07 

2.0 

Finite element s 1.218 
[Text! T 0.953 

G 0.999 

-0.382 
-0.025 
-0.001 

-10.27 
0.17 
0.16 

2.0 

SHASTA [ 42-44] s 0.997 
T 0.875 
G 0.900 

0.0 
0.0 
0.0 

0.0 
0.20 
0.04 

5.2 

* Results are at the end of 80 time steps. 

vation. Mahlman and Sinclair [ 62] attempted to correct this problem by using a 
method called "downstream borrowing." In this scheme, implemented at the end of 
each time step, negative values are reset to zero by borrowing material from the 
downstream grid cell so that mass is conserved. In the event that the downstream cell 
does not contain an adequate amount of material to prevent both cell concentrations 
from becoming negative, the deficit is borrowed from the upstream cell. With higher­
order schemes it is occasionally necessary to borrow mass from the second cells 
away from the one containing negative c. Although this filling procedure always acts 
to preserve the total mass in the system, it systematically acts to reduce the mean 
square concentration. Filling is thus equivalent to adding a nonlinear diffusion term. 
An example of the application of this procedure is shown in Fig. 4b again using the 
finite element method with a square wave initial condition. 

Boris and Book [ 42, 43] and van Leer [ 63] have introduced different approaches 
to the design of filtered second-order schemes. Their algorithms substantially inhibit 
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FIG. I. Results of advection tests using square wave form. 

or eliminate computational noise in regions of sharp gradients by using nonlinear 
smoothing techniques. The principal disadvantage of both methods is that there are 
substantial amplitude penalties associated with sharply peaked waves. When the 
SHASTA scheme of Boris and Book is used to advect a triangle, after a few steps the 
apex is typically severely truncated. However, once this has occurred, the distribution 
is transported with little change. 

Recently Forester [ 64] introduced a very simple nonlinear filter designed to be 
used in conjunction with second and higher-order methods. Computational noise is 
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minimized without incurring the amplitude penalty of either the SHASTA or van 
Leer techniques. When coupled with high-order schemes, the Forester method 
requires less than one-third of the mesh points of the SHASTA scheme to treat the 
extremes of sharply peaked waves. Positive concentrations are also preserved. The 
noise generated by the finite difference approximations of (33) is suppressed in the 
Forester method by a nonlinear filter that locally transforms (33) into 

oc ouc o oc
-+-=-K -, (48)ot ox OX n OX 
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FIG. 3. Results of advection tests using Gaussian wave form. 

where Kn is the diffusion coefficient associated with the filtering process. After the 
solution is advanced a time step, a set of empirically based criteria is used to decide if 
the term should remain or be removed. The filter for (33) is given by 

where cJ + i is the value of cj after k applications of the filter and K1 is the weighting 
coefficient associated with the filtering process. The 1/f/s can only assume a value of 0 
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or 1 and determine the points at which smoothing occurs. Clearly if all are zero, no 
filtering takes place. For the condition I/Ii= I, (51) takes a form that is analogous to 
the three-point difference expression for the diffusion term, 

(50) 

A key element of the filter application is the selection of the points in the grid mesh 
at which to set 1/1 = I. Initially, all 1/1 are set to zero. Consider a point j and an 
interval [J - m,j + m + I]. On this interval the function S, is evaluated using 

Se= sgn[c, - c, __ 1 ]; e =j - m,j - m - 1,... ,j,j + 1 .... ,j + m + 1. (51) 

where 

sgn(c) = +I, 

(52) 
C 

~<0. 

At mesh point j there is an extremum of cj if Sj and Sj + 1 are of opposite sign. The 
distribution of c on the interval [J - m,j + m + l] is considered to be smooth if 
sj+1,-·-, sj+m+l have the same sign and all sj-i,••·· sj-m are of opposite sign to sj+I· 

If this occurs, the values of 1/1 are left unchanged and no smoothing is applied to cj. 

No tests for sign continuity of sj,•··• sj-m-1 are performed unless C_; is an extremum. 
These cases are illustrated in Fig. 5. If the slope or sign continuity does not hold for 
the m values of Son each side of the extremum in cj, 1/1 is reset to I for the range of i 
from i - I to i + I. To ensure that the mesh points at which 1/1 is nonzero in fact 
denote regions that contain computational noise, it is necessary to select the proper 
magnitudes for I and m. The value of m is chosen to be representative of one-half the 
wavelength of the lowest-frequency noise waves; I simply must be large enough to 
permit nonzero c values to be continuous. 

For many high-order advective schemes nonlinear effects tend to drive the 
wavelength of the computational noise toward the limit of two mesh intervals, this 
can be seen in the results shown in Figs. 1--4. In general, the structure of the 
dispersive waves depends on the advection algorithm, its performance for different 
Courant numbers, and the nature of the concentration gradients. Values of m, I, K1 
and the number of iterations required to satisfy the error tolerance must be deter­
mined empirically. For the above fourth-order schemes the values chosen were m = 4, 
I= 2, K1 = 0.2, and the number of iterations set to 2 and 3 for local Courant numbers 
less than 0.5 and greater than 0.5, respectively. An application of the filter, together 
with the finite element scheme, to the square-wave propagation prnblem is shown in 
Fig. 4d. There is clearly a significant improvement over the results displayed in 
Fig. 1. 
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(d) 

FIG. 5. Steps in the application of the discrete noise filter. (a) Initial distribution c0
• (b) Evaluation 

of the normalized derivatives. (c) Establishment of 'I' function. (d) Resulting distribution after one filter 
application c '. 

7.2. Conservation Properties of Different Advection Methods 

With the addition of the nonlinear filter, the performance of the finite element 
scheme improved to the point where it was useful to perform a quantitative 
comparison between it and the SHASTA method. In particular, it was important to 
assess the ability of each scheme to preserve mass, concentration gradients etc. A 
variety of initial distribution and velocity fields were used to test the techniques. The 
triangle test problem used in previous sections of this work has the property that 

:t f cdx = 0, (53) 

-af 2C dx=0,at (54) 

~ fc4 dx=0,ai (55) 

~f (oc f dx = 0,ot ax (56) 

-a -(a2cf dx-0at f ax2 - • 
(57) 

Each of these integrals was evaluated numerically using, in the case of (56) and (57), 
standard finite difference approximations to the derivatives. While a numerical 
scheme should ideally conserve both mass (53) and mean square mass (54), diffusive 



22 

377 

MC RAE, GOODIN. AND SEINFELD 

TABLE III 

Results of Advection of Triangular Wave Form after 80 Time Steps 

ERROR(%)= 100 (calculated/exact - l) 

Numerical 
scheme 

I cdx 1· c1 dx 1· c' dx I ( ~c), dx 
. ox 

( c'c ' 
-) dxex' 

Founh order 0.20 0.00 -0.44 -3.15 -28.17 
SHASTA 0.20 -0.92 -5.5! -12.40 -97.75 

effects tend to damp the latter quantity. The ability of a numerical scheme to 
maintain peak values is measured by (55 ), growth or decay of local gradients by (56) 
and change of profile curvature by ( 5 7 ). In a more general context, it should be noted 
that integrals (53) and (54) are analytically conserved in more complex source-free 
and nondiffusive flows. If gradient reducing diffusion terms are not included in 
calculations with more complicated flows, (56) and (57) tend to increase with time 
from either numerical distortion or from a physically real cascade to smaller spatial 
scales [ 62 ]. In practice, it is often difficult to establish which of these two effects is 
dominant. Since (56) and (57) are conserved in the test problem, any increase in their 
magnitude with time must be attributed to numerical errors. If this occurs, extra 
damping would be required to suppress the growth of the errors. 

Errors in preserving the conservation properties for the SHASTA and fourth-order 
schemes are displayed in Table III. The SHASTA scheme performs poorly at main­
taining peak values and, in addition, has the most diffusive effect on the profile. By 
comparison, the finite element method exhibits little diffusion. 

A test of the capability of each scheme to handle variable velocity fields was also 
devised for the system 

oc ouc _ 0· xE [0, 100], (58)ar + ax - ' 

where the velocity field u(x) is given by 

u(x) = x + 1 (59)20 . 

The exact solution, c,(x, t) of this system is 

ce(x,t)=O.l(x+ l)exp [- / ]. (60)
0 

Initial and boundary condition for the problem are c(x, 0) = c/x, 0) and c(O, t) = 
ce(O, t). Each numerical scheme used a grid size Jx = 2 km, and a time step 
LJt = 0.2 hours. Under these conditions, the maximum Courant number is 0.5. After 
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TABLE IV 

Errors in Concentration Predictions after 120 Time Steps 
for a Spatially Varying Velocity Field 

Numerical 
scheme X= 24 

Error (%) at 

X= 50 X= 76 X= 100 

Fourth order 
SHASTA 

0.87 
1.18 

-0.08 
1.20 

0.01 
1.20 

0.03 
1.87 

Exact solution 0.0338 0.0690 0.1042 0.1367 

120 time steps (24 hours), the errors were calculated and the results are shown in 
Table IV. While each scheme performed reasonably well, the finite element method 
produced better predictions at all spatial locations. 

A rather difficult advection calculation, in two dimensions, is the rotating cone 
problem introduced by Crowley [ 55] and Molenkamp [65 ]. The test consists of 
solving the axisymmetric advection problem 

oc oc _ O (61)or+ w ae- ' 

where 0 is the angular coordinate, and w the angular velocity around the axis of 
rotation. The exact solution of (61) is given by c(r, 0, t) = c0 (r, 0 - wt), where c0 is 
the initial distribution of c. Since there is no physical diffusion, the shape c0 should 
remain unchanged upon rotation. The Crowley problem consists of solving (61) in 
rectangular coordinates where the rotation is anticlockwise about the origin. 

TABLE V 

Summary of Results of Two-Dimensional Cone in a Circular 
Wind Field (Cx = C, = 0.5) 

1/4 Revolution 1 Revolution 

Numerical Maximum Minimum Maximum Minimum 
scheme value value value value 

Fromm 0.7400 -0.0218 0.5466 -0.0288 
Crowley 0.8478 -0.0586 0.7283 -0.1279 
Finite element 0.8731 -0.0335 0.8645 -0.0545 
SHASTA 0.6670 0.0 0.5118 0.0 

Exact solution 1.0000 0.0 1.000 0.0 



24 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 



25 

380 

ATMOSPHERIC DIFFUSION EQUATION 

Under these conditions, the velocity components are given by u = -yw, v = xw 
and 

oc _ owyc + OWXC = 0. (62)ai ox cy 

The method of fractional steps was used to solve the problem on a 32 X 32 grid with 
L1x = L1y = I km, L1t = 0.5 hrs and w = 0.0626 rad/hr. A conical distribution, centered 
initially at (-8, 0), of base radius 4 and with cmax = I, cmin = 0 was used to describe 
c0

• The results of the experiment, summarized in Table V, are displayed in Fig. 6; the 
conclusion~ are similar to the last test case. The peak truncation problem, charac­
teristic of SHASTA, is particularly apparent. From a practical point of view, it is 
encouraging to note that the amplitudes of the dispersive waves associated with 
unfiltered finite element scheme are quite small. 

8. SOLUTION OF THE DIFFUSIVE TRANSPORT STEP Td 
AND BOUNDARY CONDITION TREATMENT 

Previous sections were devoted to the implementation and testing of a suitable 
scheme for the advection equation. The contribution to species transport from 
turbulent diffusion depends on the coordinate direction. In the horizontal plane, 
transport is dominated by advection and so a simple, explicit three-point finite 
difference form [91 can be adopted for (Tx)d and (Ty)d. A linear finite element 
scheme, with Crank-Nicholson time differencing, was used for (TJd. This removed 
the time step limitation of an explicit method and enabled the use of variable mesh 
spacing to resolve vertical concentration gradients. 

The boundary of the grid is usually placed at the limits of the available data or far 
from the main calculation area. Boundary conditions are termed either inflow or 
outflow, depending on the direction of flow relative to the grid region. Often in fluid 
flow problems, the concentration at the inflow boundary is known and can be 
specified as a function of time. The outflow boundary is generally not known and 
therefore must be calculated. This boundary condition is sometimes called a 
"computational boundary condition" for this reason. Some helpful discussions of 
boundary conditions exist in the literature [66-73 ]. The boundary conditions used 
with (32) are 

oc
inflow: uc-Kxx-= ucin• (63) 

ox 

outflow: (64) 

where cin is the known concentration just outside of the inflow boundary. If it is 
assumed that advection is the dominant transport mechanism at the outflow 
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boundary, then diffusive transport can be neglected. If the left end of the grid is an 
inflow boundary, then (63) can be represented as 

(65) 

which, in turn, can be solved explicitly for c7+ 1 since all other quantities are known. 
When using a multiple-step, advection---diffusion algorithm, (65) is used following the 
second (diffusion) step. A boundary value must also be set following the first 
(advection) step. The single condition u1 c1 = u 1 c;0 is used for this step in conjunction 
with a smoothing procedure at the point adjacent to the boundary point. This 
smoothing damps any waves that may be generated by the inflow boundary point. 
The simplest smoothing algorithm is 

(66) 

1where ct is the smoothed value of en+ at j = 2. A procedure analogous to the above 
can be applied to the right boundary. The concentration at an outflow boundary is 
influenced by information from the interior of the grid. Concentration gradients that 
are advected to the boundary must be preserved as they pass out of the grid. The 
simpfe choice of representing (64) by a zero gradient, i.e., c1 =c2 or c,=c,_i, where 
r is the right boundary point, was discarded due to its inability to preserve gradients. 
The approach adopted was to solve the advection equation (with zero diffusion) using 
a one-sided difference at the boundary: 

(67) 

This procedure preserves concentration gradients as they move out of the grid system 
as can be seen in the previous figures for the one dimensional test problems. 

Figure 7 shows a flow diagram of the numerical solution of the advection and 
diffusion components of the atmospheric diffusion equation. 

9. NUMERICAL SOLUTION OF THE CHEMICAL KINETICS 

In the previous two sections primary emphasis was placed on the transport 
components of the atmospheric diffusion equation. Equation ( 1) contains terms, J;, 
i = 1, 2,... , p, that describe the contributions to the rates of change of the p chemical 
species concentrations, c i, c2 , ••• , cP, due to chemical reactions. At any one spatial 
point the rate of change of each species concentration resulting only from the 
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chemical kinetics can be described by a set of coupled, nonlinear ordinary differential 
equations, 

i = 1, 2, ... ,p, (68) 

and associated initial conditions c;(O) = cf, i = 1, 2,...,p. 
There are two sources of difficulty that arise during the numerical solution of (68). 

One is minor and caused by the nonlinearities resulting from the polynomial form of 
the mass action rate laws. The more serious problem, however, arises as a result of 
the fact that in atmospheric systems there are reactions whose characteristic time 
scales differ by orders of magnitude. Such systems are often referred to as being 
"stiff." There are various definitions of what constitutes stiffness, the most common is 
of the form: 

DEFINITION. The system (68) is said to be stiff if 

(a) Re(J;) < O; i = l, 2,...,p, 

and 

(b) (max IRel;l)/(min IRel;I) =R ► 1, 
I I 

where R is the stiffness ratio and A; are the eigenvalues of the Jacobian matrix J = 
of/oc. A way to view the problem of stiffness is to write (68) in the form 

(69) 

where a; is the production rate for species C; and b;C; is the loss rate. The reciprocal 
of b; can be interpreted as the characteristic time for decay of species i. If a; and b; 
are constants then (69) can be solved to give 

(70) 

Expressed in this way, it can be seen that 1/b; describes how quickly species c; 

reaches its equilibrium value. Figure 8 presents a typical eigenvalue spectrum for 
atmospheric reaction mechanisms together with the characteristic reaction times 1/b;. 
Two features are readily apparent: one is the close correspondence, for many species, 
between the eigenvalues and the characteristic reaction times and the other is the 
extreme range 0( 10 12 min) of the spectrum. 

In passing it is worthwhile to comment on the ieason why some of the eigenvalues 
are so closely matched to the corresponding reaction times. Consider atomic oxygen 
(0 ), which has the fastest reaction time of any species in the system. An examination 
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FIG. 8. Typical eigenvalue spectrum and characteristic reaction times for the photochemical 
mechanism of McRae el al. [89]. 

of O atom production and decay rates under typical conditions indicates that the 
predominant removal step (by four orders of magnitude) is reaction with molecular 
oxygen 

(71) 

Since the concentration of both molecular oxygen (0 2 ) and the third body (M), are 
fixed, the kinetics of O are described to a very good approximation by (69) with a; 
and b; constant. Under these conditions the eigenvalues and characteristic reaction 
times can be expected to be similar. This behavior was also observed for most of the 
free radicals: RO, OH, RO2 , NO 3 , RCO 3 , and HO 2 • When there is coupling between 
species, and the rate terms are of comparable magnitude, the a/s and b/s are no 
longer constant and the analytic solution (70) is inappropriate. 

9.1. Selection of a Suitable Solution Scheme 

In the last few years considerable effort has been devoted to developing general 
purpose algorithms for solving stiff ordinary differential equations [74-79]. 

In applications involving simultaneous transport and chemistry such as that of 
interest here, ·the reaction rate equations must be integrated at a large number of grid 
points for relatively short periods of time between transport steps. As a consequence. 
self starting methods with low overheads are highly desirable. As mentioned earlier. 
the large size of the computational grid usually precludes storing more than the 
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results of the previous time step. From a pragmatic point of view it is important to 
recognize that errors associated with the transport steps are rarely smaller than a few 
percent so in general there is little to be gained by requiring highly accurate solutions 
of the kinetics. Summarizing, the desirable requirements of a solution scheme for the 
chemical kinetics are low start up costs, minimal computer memory requirements, 
and extreme computational speed. 

Given the above considerations, two different solution schemes were sought; one 
capable of providing highly accurate benchmark standards of predictions and the 
other, an extremely fast algorithm for use in the airshed model. Since the factors 
influencing the choice of the method use in the model are discussed in Section 9.3 
they will not be discussed here. The method chosen to establish the standard of 
accuracy for judging other methods was the implementation of the Gear technique by 
Hindmarsh and Byrne [80] and Byrne et al. [81 ]. Their program, called EPISODE, 
is extremely well documented and has been subjected to extensive testing by a 
number of different investigators [ 79, 81 ]. Unlike the original Gear method, the 
program employs a true variable step, variable order approximation that is ideally 
suited to problems with time varying parameters. Another reason for choosing this 
particular code was the ease with which different treatments of the Jacobian could be 
tested. In the version of EPISODE used in this study the Jacobian could be evaluated 
in either of four ways: functional iteration, analytic evaluation, finite differences, or 
diagonal approximations. The ability to exercise easily these options considerably 
simplified the task of identifying the most efficient means for solving the chemical 
kinetics. 

9.2. Pseudo Steady State Approximation 

Even with fast integration schemes the computational cost of solving the 
atmospheric diffusion equation is extremely high. There is a need to reduce both the 
number of active chemical species, to minimize storage requirements, and the 
stiffness, to lower the computational cost. One approach, commonly used in chemical 
kinetics, is to alleviate some of these difficulties by employing the pseudo steady state 
approximation [82, 83 ]. The basic idea behind this approximation is that the tran­
sients associated with the stiff variables decay very rapidly to their equilibrium 
values. If the concentrations are partitioned into two components, one associated with 
the nonstiff components cd and the other comprising the stiff species, c

5 
, then if the 

pseudo steady state approximation is used, (68) is replaced by the systems 

(72) 

and 

(73) 

The two main difficulties associated with the valid use of pseudo steady state approx­
imations are the identification of those species that can be treated in this way and the 
determination of the time after which the approximation is valid. For simple systems 
there is an extensive literature that utilizes singular perturbation theory to establish 



TABLE VI 

Comparison between the Exact Calculation and the Pseudo Steady 
State Approximation for Different Chemical Species 

►--1s: 
0 

% Error (fl 
'tl 

Time 
:r: 
trl 
:,:, 

(min) OH 0 RC0 3 R02 RO H02 HNO, N01 N 2 0 5 n 

60 -2.5 X 10- 3 -4.3 X 10-• +8.3 X 10- 1 -3.4 X 10- 3 -1.2 X 10- 2 +8.6 X 10- 3 +8.5 X 10- 2 -3.5 X 10- 2 -3.7 X 10-• 

tJ 
:;; 
'T1 
c:: 
(fl 

w 
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+1.2x10· 1 

+4.7 X 10-• 

+3.2x10-• 

-2.8 X 10- 1 

2-2.0 X 10 

-1.5 X 10- 2 

+2.2 X 10- 1 

+1.8 X 10-• 

+4.3 X 10-• 

-4.5 X 10- 2 

-7.3 X 10- 2 
+3.0 X 10- 1 
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-2.1 X 10-• 
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►--1 
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* Percentage Error= 100 IPSSA/EXACT - 11, 
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the appropriate bounds [78, 82-84 ]. Unfortunately, there is as yet no well-developed 
theory for systems as complex as the photochemical reaction mechanism utilized in 
this study. Thus, an approximate way to identify candidate species was developed. 

The particular approach adopted in this study was to analyze the behavior of the 
kinetic equations by performing an eigenvalue-eigenvector analysis of the mechanism 
Jacobian under a wide variety of test conditions. The reason for doing this is that the 
eigenvalues all have negative real parts that can be ranked into two distinct subsets. 
The first set of largest negative eigenvalues generally have eigenvectors containing 
only one or two components. These elements as noted above usually correspond to 
those species that have very fast reaction times. These .l.'s typically have magnitudes 
as large as 107, corresponding to species half-lives as short as 10- 6 seconds. The 
second set of eigenvalues has corresponding eigenvectors that each involve many, if 
not most, of the species in the reaction set. These represent the relatively slowly 
reacting species. 

Using the eigenvalue analysis procedure, nine species were identified as candidates 
for the steady state approximation: 0, RO, OH, R0 2 , N03 , RC0 3 , H0 2 , HN04 , 

and N 2 0 5 • The solutions using the steady state approximation and one where all 
species were treated by differential equations were compared over a wide range of 
conditions. Typical examples of the results of these tests are shown in Tables VI and 
VII. Table VI is an assessment of the validity of each approximation. An inspection 

TABLE VII 

Comparison between Predictions of Complete System 
and Kinetics Using Pseudo Steady State Approximations 

Concentration 
(parts-per-million by volume) 

Time 
(min) Species 

Complete 
system 

Kinetics with 
9 PSSA species % Difference* 

30 NO 
NO, 
03 

0.0566 
0.4034 
0.0830 

0.0567 
0.4070 
0.0834 

0.18 
0.89 
0.48 

60 NO 
NO, 
03 

0.0202 
0.3869 
0.2189 

0.0202 
0.3889 
0.2191 

0.00 
0.51 
0.09 

90 NO 
NO, 
03 

0.0110 
0.3338 
0.3379 

0.0110 
0.3329 
0.3383 

0.00 
-0.27 

0.12 

120 NO 
NO, 
03 

0.0066 
0.2628 
0.4358 

0.0066 
0.2652 
0.4391 

0.00 
0.91 
0.75 

* Percentage difference= 100 [PSSA/complete - I]. 
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of the results indicates that there are negligible differences between the species being 
treated by differential or algebraic equations. The most important comparison, 
however, is the influence of the use of the approximation on the predicted concen­
trations, Cr1· Even after 120 minutes the maximum error shown in Table VII is less 
than 0.5 %. The conclusion reached from an analysis of these and other test cases was 
that the species identified from the eigenvalue analysis could be treated in steady state 
with minimal effects on the predicted concentrations of the primary species, Cr1. 

Once the concentration vector has been partitioned into stiff and nonstiff 
components, there are a variety of algorithms that can take advantage of the problem 
structure. For example, Robertson [85] utilized the division in the iterations involved 
with the use of implicit multistep formulas. During any single step, by fixing the part 
of the iteration matrix corresponding to the nonstiff components and only updating 
the elements arising from the transients, significant computational economies were 
achieved. Techniques that achieve these efficiencies without prior knowledge about 
the problem structure are relatively rare. Enright and Kamel [ 86] have developed a 
general purpose computer code for systems where the stiffness is due to a few 
components of a large system. 

One other approach for minimizing the influence of stiffness is to choose the initial 
conditions for c

5 
so that the complete system does not have the initial transient 

behavior. While it is extremely difficult to develop a general theory some initial steps 
in this direction have been made by Watkins [87] and Lambert [88]. The approach 
of Watkins [87] is particularly relevant because his algorithm has been developed to 
set initial conditions for transport problems. Unfortunately the cost of the proposed 
iteration scheme, when applied to systems of the size encountered in this study, is 
likely to be prohibitive. Kreiss [ 78] has addressed a similar situation in an attempt to 
set the initial conditions in a way that would eliminate the rapidly oscillating terms 
associated with large, purely imaginary eigenvalues. At this time there is no 
satisfactory means for a priori specification of the initial values for c

5 
that will 

remove or reduce the stiffness of systems of the type considered here. 

9.3. Asymptotic Integration Scheme 

In the previous section the size and stiffness of the reaction mechanism was 
reduced by employing the pseudo steady state approximation. Even with these 
changes it was still not feasible to economically use the EPISODE program in the 
solution of the full atmospheric diffusion equation. A variety of other alternatives 
were investigated in an attempt to significantly lower the computational cost but 
without substantially compromising the solution accuracy. The trapezoidal rule was 
rejected because of the overheads associated with the matrix decompositions. Even 
with the use of sparse matrix packages and infrequent Jacobian updating, the cost of 
Newton-type schemes was still excessive. The particular approach finally decided 
upon with the asymptotic integration method of Young and Boris [89. 90]. Designed 
to solve the reaction kinetics embedded in very large hydrodynamic problems. the 
method is self starting, extremely fast and requires minimal storage; as such. it 
satisfies most of the selection criteria discussed above. 
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A particularly attractive feature of the method is that it has a very low start up 
overhead because all that is required to begin a new integration step are the current 
values of the variables and the derivatives. A second-order predictor-corrector 
scheme that takes special notice of those equations determined at the beginning of the 
step to be stiff is employed to continue the integration process. When applied to stiff 
equations, the method is suited to situations where the solution is slowly changing or 
nearly asymptotic yet the time constants are prohibitively small. This occurs when 
the formation and loss rates are large, nearly equal, and there is strong coupling 
among the equations. Thus, the stiff equations are treated with a very stable method 
that damps out the small oscillations caused by the very small time constants. 

The predictor-corrector algorithm provides enough information to choose the 
subsequent timestep size once convergence has been achieved. For efficiency, an 
initial timestep is chosen that approximates the timestep that will be determined after 
convergence of the predictor-corrector scheme. This initial trial timestep is chosen 
independently of the stiffness criterion and is determined such that none of the 
variables will change by more than a prescribed amount. If the formation rate is 
much larger than the loss rate, it is reasonable to assume that a; and b; will remain 
relatively constant for large changes in C;- Often the initial change in C; may be large 
enough to equilibrate the formation and loss rates. Thus the initial trial timestep Llr, 
is chosen in two ways: 

(74) 

or if a; P- b;c; then 

Llr = cmin [_!_] (75)
I .b; 

The second criterion is needed when the initial conditions, for some species, are 
unknown or set to zero. Here c is a scale factor, the selection of which is discussed 
shortly. The timestep dictated by (74) may be larger than some or all of the 
equilibrium times, in which case the corresponding equations would be classified as 
stiff. Nevertheless, when solved by the asymptotic method, this timestep ensures that 
accuracy can be maintained. When a stiff equation is close to equilibrium, the 
changes in the functional values over the timestep will be small even though the 
adjustment rate toward equilibrium can be very much shorter than the timestep. 
When the stiff equation is far from a dynamic equilibrium, the timestep should be 
scaled down proportionally to the equilibrium time to ensure that the transition to 
equilibrium will be followed accurately. This readjustment, because of the very fast 
rate, generally takes place rapidly after which much longer timesteps may be taken. 

After a timestep has been chosen, all of the equations are separated into two 
classes, stiff and nonstiff, according to the values of the b,. The two types of 
equations are then integrated by separate predictor-corrector schemes. A simple 
asymptotic formula is used for those equations determined to be stiff. 
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The predictor part of the step is performed as follows: 

Nonstiff: c;( 1) = c;(0) + Llef;(0), (76) 

Llef;(0)
Stiff: (77)c;(l) =c;(O) + l +Llef;(0), 

where J;(0) = J;[t(0), c;(0)] and c;(k) is the kth iterated value of c;, or an approx­
imation to c;[t(0) +Llr]. The zeroth iteration, c;(0), is the initial value at t(0) and 
c;(l) is the result of the predictor step. Also note thatf;(k) =J;[t(0) +Llr, c;(k)]. The 
corrector formulas are: 

Nonstiff: C;(k + 1) = C;(O) +2
Llr 

[J;(O) +J;(k)], (78) 

c (k + l) _ c (0) + 2Llr[a;(k) - b;(0) c;(0) + J;(0)]Stiff: (79)
; - ; 4+Llr[b;(k)+b;(0)] . 

By comparing c;(k + 1) with c;(k) on successive iterations using the relative error 
criterion e to satisfy 

lc;(k + 1)- C;(k)I] 
max ( ) ~ e (80) 

i [ C; k + I 

the convergence of each of the individual equations can be determined. As applied in 
the present application, e is typically 0(10 - 3 

) and if the formation and loss rates are 
nearly equal e is scaled down slightly, to allow quicker convergence for equations 
that are nearly in equilibrium. 

In practice, c; is constrained by a minimum value when C; is decaying exponen­
tially toward zero. This lower bound must be selected to insure that its value in no 
way affects the physics but yet decouples the equation from accurate integration. 
Decoupling is accomplished by avoiding applying (80) to all equations that have 
decayed to values corresponding to their lower bounds. Convergence for these 
equations is then trivial and the function no longer affects the size of the timestep. 
For equations that are decaying exponentially to zero, with time constants that are 
smaJI enough to control the timestep, it is important for efficiency reasons to 
decouple these equations at the largest lower bound possible. 

In practical application the maximum solution speed is realized by keeping the 
allowed number of corrector iterations small, typically one or two. If satisfactory 
convergence of all equations has not been obtained before or during the last iteration, 
the step is started over with a smaller timestep. By keeping the maximum number of 
iterations small, a minimum amount of time is wasted on an unstable or noncon­
vergent step. When nonconvergence is encountered, it is more efficient to reduce the 
timestep sharply ( a factor of 2 or 3). On the other hand, when increasing the 
timestep, as, for example, when convergence is achieved on the first or second 
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iteration, it is best to increase only by 5-10% each step. The asymptotic integration 
scheme was compared against the program EPISODE [80, 81 j to evaluate the 
characteristics of the algorithm when applied to the photochemical reaction 
mechanism. For all EPISODE calculations semi-relative error control was used with 
a convergence tolerance of 0.000 l. The starting and maxim um step sizes were set to 
10- 5 and 10 minutes, respectively. 

Both programs were exercised over a wide range of initial conditions, pseudo 
steady state approximations, photolysis rates and diurnal cycles. Two features were 
apparent in all the tests, and they are illustrated in Table VIII. First, and perhaps 
most important, is that there were negligible differences in the predictions of both 
schemes over solution steps comparable to the maximum expected transport times. 
For example, after 30 minutes the maximum discrepancy between the two schemes 
for the species NO, N0 2 , and 0 3 was 0(0.2 % ). 

The most striking difference between the two schemes is the high start up costs 
associated with the EPISODE algorithm. During the initial 30 minutes there is a 
factor of 7 difference in the computation time. Once started. however, the incremental 
cost, per time interval, of using EPISODE becomes successively smaller. From a 

TABLE VIII 

Comparison of Start Up Times for EPISODE and Hybrid Solution 
Scheme for Typical Smog Chamber Experiment 

Concentration Computer time (ms) 
(parts-per-million by volume) per 30 minute step 

Time Species Episode Hybrid Episode Hybrid 
(min) solver 

30 

60 

90 

120 

NO 
NO, 
03 

NO 
NO, 
03 

NO 
NO, 
03 

NO 
NO 2 

o, 

0.0567 
0.4070 
0.0834 

0.0202 
0.3889 
0.2191 

0.0110 
0.3329 
0.3383 

0.0066 
0.2652 
0.4391 

0.0567 (0.00)* 
0.4077 (0.17) 
0.0832 (-0.24) 

0.0203 (0.50) 
0.3914 (0.64) 
0.2194 (0.14) 

0.0107 (-2.73) 
0.3290 (-1.17) 
0.3450 (1.98) 

0.0062 (-6.06) 
0.2557 (-3.58) 
0.4497 (2.41) 

1014 152 

175 104 

79 81 

47 70 

1315 ms 407 ms 

* Percentage difference between EPISODE and Hybrid solution technique = 100 
[Hybrid/EPISODE - I]. 
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practical point of view, considering the short integration intervals in an operator 
splitting solution, the asymptotic scheme is clearly preferable to the EPISODE 
algorithm for the present application. 

9.4. Implementation of Asymptotic Integration Scheme 

Using the operator splitting procedures described earlier, (9) can be written in the 
form 

Transport (81) 

Chemistry (82) 

If T x, TY, T=and Cc are the numerical approximations to the transport and chemistry 
operators then a complete solution can be obtained from the sequence 

(83) 

where Cc symbolically denotes the means of solving (82) at each of the grid points 
given a set of initial conditions. Most of the computer time required for each cycle 
(83) is consumed by the chemical solution Cc. Two advantages of operator splitting 
are apparent, the chemistry is decoupled from the transport and it can be solved for a 
period 2Llt. This latter feature is particularly important because most of the overhead 
associated with solving (82) occurs at the start of each initial value problem; subse­
quent time increments can be obtained at minimal expense. 

The actual sequence of operations used to obtain a solution of (83) is as follows. 
Solve 

(84) 

(85) 

(86) 

on the interval tn - 1 ~ t ~ tn, 

(87) 

on the interval tn - 1 ~ t ~ tn + 1, and then solve the system (84)-(86) in the reverse 
order, i.e., in z, y, and x directions. The initial conditions for each of the problems 
(84)-(86) are: ct(tn- l) = C;(tn- l ), ct *(tn- i) = ct (tn), c;** *(tn- i) = ct *(tn) and for 
(87) c;(tn- l) = c;***(tn). 
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Unfortunately, there is little guidance in the literature relevant to establishing a 
priori bounds on the maximum value of Lit. Within the airshed model it has been 
observed that the convergence of the sequence (83 ), during the photochemically 
active daylight hours, is controlled more by the rate of vertical turbulent mixing than 
by the Courant limit of the horizontal advection schemes. As a result of considerable 
experimentation with successively smaller time steps it was found that if 2.Llt was 
limited to be less than 10 minutes, the predicted results were comparable to cases in 
which the two-dimensional coupled problem (9) was solved directly. At night when 
there is little or no chemical activity, the chemical time steps are controlled by the 
stability limits of the advection schemes. The total computer time required to 
simulate the concentration dynamics of 15 species at 3000 grid points for a 24-hour 
period is 0(50 minutes) on an IBM 370/168. The interested reader is referred to 
McRae et al. [9 I] for a description of the air pollution model. 

10. CONCLUSIONS 

In this paper, a variety of numerical methods were studied in order to identify a 
solution scheme for the atmospheric diffusion equation. As a result of this 
investigation, a composite technique was developed in which operator-splitting was 
first used to segment the three-dimensional system of equations into a sequence of 
one-dimensional problems.- Each transport step was further simplified to three basic 
components: an advection step, application of a nonlinear filter and finally a diffusion 
step. A Galerkin, linear finite element scheme was adopted for the critical advection 
step. The results of numerous numedcal experiments indicate that this algorithm, 
together with the filter step, preserves extreme values, gradients, total mass and mean 
square concentration. The solution of the chemical kinetics component is carried out 
by a second-order predictor, iterated corrector technique, in combination with an 
asymptotic treatment of the stiff components of the problem [ 90, 91 ] . Computational 
economies are achieved by implementation of the pseudo steady state approximation. 

APPENDIX: NOTATION 

a(X, t), b(X, t) Coefficients associated with boundary conditions (3) 
a; Production rate for species i, i = I, 2, ... ,p 
A An r X r matrix representing the discrete approximation to L at r 

computational grid points. (Aj is the discrete representation of L) 
b; First-order coefficient for removal rate of species i, i = l, 2, ... , p 
B Linear boundary operator 
B, H, M, P, Q, S Matrices of dimension r X r associated with different spatial 

discretization techniques 
Concentration vector of nonstiff components 
kth iterate of c; 
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C;(X, t), C;(x, t) Concentrations of species i in the physical and computational 
domains; i = I, 2,...,p 

C;(X, t) Concentration vector of species i at r computational points c;(x, t) = 
(c;(xj, t);j = I, 2, ... , r) 
Concentration vector of stiff components 
Courant number 
Symbol representing solution of the chemical kinetics 
Chemical formation (or depletion) rate of species f; = 
(/;(C 1(xj, !),..., cP(xj, t)); j = I, 2,... , r) 

F Mapping function that transforms points from X into x 
g;(X, t) Species specific boundary condition coefficient 
h(X, Y) Topographic surface (lower boundary of region) 
H(X, Y, t) Time varying upper surface of region 
I Unit matrix of dimension r X r 
J Jacobian matrix with elements ofjocj, i,j= I, 2,...,p 

k, Rate constant for reaction l 

Kt Coefficient in noise filter 
Kn Diffusion coefficient associated with noise filter 
K Second-order turbulent eddy diffusion tensor (usually a diagonal 

matrix with elements Kxx' KYY' K.J. In the computational domain 
Kxx are the values of Kxx at each of the r grid points. 

L Three-dimensional, semi-linear, elliptic differential operator 
(Lx, Ly, L. are the components in x, y and z directions). 

R Stiffness ratio 
r Radial coordinate for Crowley problem 
t Time 
T Extent of time interval for solution 
T Composite transport operator (Tj is the transport operator for the 

jth direction) 
u(X, t) Velocity field in physical domain u = (u, u, w) 
u Velocity field in computational domain U = (uj; j = I, 2, ... , r) 
V(x, t) Velocity field in transformed domain V = (u, u, W) 
X Point in computational domain x = (x,y, z) E Qc 

X Point in physical domain X = (X, Y, Z) E Q 1 

Greek Symbols 

a, fJ Time varying coefficients associated with the concentration and velocity 
distributions employed in the Galerkin formulation 

6 Discretization unit ( either finite element or grid size) 
e Relative error criterion 
,dt Basic time step of atmospheric diffusion equation 
L1r Time step for solution of the chemical kinetics 
-dx Size of computational grid element 
L1H = H(X, Y, t) - h(X, Y) 
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0 Volume to width ratio for test wave forms or angular coordinate 
,1. An arbitrary parameter with ,1. ;;;, 0 
A; Eigenvalue of Jacobian matrix J, i= !, 2,...,p 
a Normal direction to an 
v Material flux = Kxx(ac/ax) - Uc 
¢>j Basis functions for Galerkin formulation 
Vlj Filter function variable (0, 1) 
w Fourier frequency for test wave forms and angular velocity for Crowley 

problem 
Qc Time invariant computational domain 

Time varying physical domain (!2 0 initial extent)Q 1 

an Domain boundary 

Sub- and Superscripts 

a Advective transport step 
c Indicates computational domain 
d Diffusive transport step or nonstifT component of concentration vector 
e Grid point subscript for testing sign changes during filter application 

Species index 
j Index to denote coordinate direction (x = 1, y = 2, z = 3) or computational grid 

point (j = 1, 2, ... , r) 
k Iteration counter during one time step 
l Domain of final filter application (number of grid points) 
m Half width of enveloping interval for testing slope change in filtering scheme 
n Time level 
a Initial conditions 
p Number of chemical species 
q Spatial integration index for Galerkin formulation 
r Number of computational grid points 
s Spatial integration index for Galerkin formulation or stiff component of concen­

tration vector 
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CHAPTER 10 

SENSITIVITY AND UNCERTAINTY ANALYSIS OF 
URBAN SCALE AIR POLLUTION MODELS 

10.1 Introduction 

When complex systems are described by mathematical models a 

natural question arises what are the influences of uncertainties in 

the characterization of ph:rsical processes? While a variety of means 

can be employed to answer the question considerable insight can often 

be gained from formal studies of the effects of parameter variations. 

Such sensitivity analyses can provide a direct means for revealing how 

the predictions vary as a result of changes in model or input variables. 

Infonnation derived from these investigations is useful for defining 

limits of valid applications and identifying those areas which might 

require additional development work. 

This chapter presents a technique, the Fourier Amplitude Sensitivity 

Test (FAST), which can be used to assess the relative influence of 

parameter variations on the model predictions. A major advantage of this 

procedure is that, unlike conventional methods, it readily accommodates 

arbitrarily large variations in the parameters. This feature is exploited 

in two practical applications. One example involves a combined sensi­

tivity/uncertainty analysis of a photochemical reaction mechanism for 

the polluted troposphere and the other, a study of a simplified form of 

the atmospheric diffusion equation. Both cases, and a description of the 

computational procedure, have been previously published as Koda et al. 

(1979b), Falls et al. (1979) and McRae and Tilden (1980); these articles 

form sections of this chapter. 
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10.2 Methods for Sensitivity Analysis of Mathematical Models 

An inevitable consequence of using mathematical models to describe 

complex systems is that some approximations are involved. These 

uncertainties arise either from the characterization of the physical 

processes or from the measurement errors inherent in model input variables. 

Leaving aside the conceptual question of model validity,the essential 

problem in sensitivity analysis is to examine the changes in system 

outputs which result from variations in either the input or structural 

parameters. This section presents a brief literature survey of different 

sensitivity analysis methods. While some of the techniques are well 

known in control theory (Cruz, 1973; Tomovic, 1963; Tomovic and 

Vucobratovic, 1972; and Frank, 1978) they have not, as yet, been ex­

tensively employed in atmospheric modeling. Gelinas and Vajk (1978) 

have, however, examined the suitability of some methods for air quality 

applications. 

In order to provide a framework for the survey consider a general 

system of the form 

0 (10. 1) 

where Fis a general algebraic or differential operator,~ is a vector 

of n output variables and la set of m parameters. Given such a model 

there are four basic factors which need to be considered when selecting 

a method or an approach for performing a sensitivity analysis of a model 

system. The issues are: the extent of the parameter domain, the 

sensitivity measure or criterion, the combined roles of parameter sen­

sitivity and uncertainty, and finally, the computational cost. 
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From a practical point of view a dominant consideration in 

selecting a sensitivity analysis method is the computational cost. When 

comparing different techniques it is important to keep in mind two basic 

considerations: one is simply the number of times that the model must be 

solved to obtain the desired sensitivity information. The second factor 

is the amount of time required to implement the particular technique. In 

many situations it is this latter factor which has a major influence on 

the selection process. For example some techniques do not require ex-

tensive programming beyond that needed to solve the basic model while 

others can require considerable additional effort on the part of the 

investigator. While the cost of each method can be expressed in terms 

of the number of required solutions the final choice will often be dic­

tated by the complexity of the basic system being analysed. Gelinas and 

Vajk (1978) have carried out an extensive study of the expected cost of 

applying different sensitivity analysis methods to some different mathe-

matical models of environmental processes. 

Perhaps the most fundamental constraint which dictates the choice 

of a sensitivity analysis method is the extent of parameter variations 

to be considered. All the feasible values of the parameter vector k 

define the parameter space. Varying the parameters over their full domain 

produces them-dimensional surface~(~). A typical example is depicted 

in Figure 10.1 where the response of one model output, u.(t), to varia-
l 

tions in l, is shown. In this case the extent of parameter space is 

defined by the upper and lower limits for each of the variables k and
1 

k 2 . The point Q on the solution surface represents the magnitude of ui 
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FIGURE 10.1 

Schematic Representation of the Parameter Spacek 
and the Response Surface for State Variable u.(t;k)

l ~ 
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resulting from the parameter combination (k ,k ). These nominal values1 2 

typically represent the best a priori estimates of the parameters. 

The ultimate goal of any sensitivity analysis is to determine the 

form of the system output resulting from the parameter variations. Since 

most models will require numerical solution, the outputs needed to define 

the response surface will only be available for a finite set of para­

meter combinations. Given this situation the basic problem then becomes 

how to sample the parameter space with sufficient regularity to adequately 

characterize ~Cl). An analysis which accounts for simultaneous varia­

tions in all the parameters over their full range of uncertainties is 

called a global method. Conversely, local analyses attempt to infer the 

shape or value of the response surface at a particular point. The 

limitations of local approaches are readily apparent, particularly if the 

model is highly nonlinear or the range of parameter variations is large. 

A typical case is shown in Figure 10.2. For small variations ink the 

tangent plane approximation differs from the actual surface by only a 

small amount. Unfortunately this simplification does not contain useful 

information on the behavior of au away from l· This example highlights 

a critical limitation of local methods when they are applied to problems 

which involve large uncertainties in the parameters. For example, a 

variable to which the model predictions are not especially sensitive at 

say l, may have such a large range of uncertainty that, when all possible 

variations are considered, its influence on the results may be quite 

large. Information of this type is very useful in the design of ex­

perimental programs because more effort can be devoted to elucidating 
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the important phenomena and eliminating potentially unproductive measure-

ments. 

So far in the discussion all values of k have been considered to 

be equally likely; however, in practice, the parameters often have non­

uniform probability distributions. While the response surface, u(k), is 

independent of all assumptions about the likely parameter combinations, 

the expected value or mean sensitivity, <~(1)>, depends on both the 

probability distribution for .!s:_ and the form of the model. A sensitivity 

analysis then refers to the influence of parameter variations on the 

model predictions whereas a combined sensitivity/uncertainty analysis 

considers the additional factor of the parameter distributions. Regard­

less of refinements in knowledge of parameter accuracy the global 

sensitivity of the model remains the same. In Figure 10.1 the probability 

distributions associated with k and k are independent and denoted by1 2 

p(k )1 and p(k ).
2

By considering k to be a random vector with probability 

density P(5) the ensemble mean sensitivity can be expressed in the form 

<ui (k)> =f ·.. f ui (k1 , ... ,km) P(k1 , ... ,km) dk1 , ... ,dkm (10. 2) 

k 

In general (12.2) does not correspond to the solution obtained when the 

parameters are set to their nominal values k. A variety of other sensi-

tivity measures are available for assessing the system performance. Some 

of the more common criteria are listed below and in Table 10.1; further 

details can be found in Frank (1978). Perhaps the most elementary criter-

ion is the change in system output, 6~, which results from an arbitrary 

variation, 6.!s:_, in the parameters away from some nominal value k i.e. 
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TABLE 10.1 

Summary of Sensitivity Measures 

SENSITIVITY MEASURE DEFINITION 

Response fro.!'.! arbitrary parameter 
variation k 

Normalized Response 

Local Gradient Approximation 

Normalized Gradient 

Average Response 

Expected Value 

Variance 

Extrema 

u == ~Ci + 6i) - ~Cl) 

ou.
lD. == i=l,2, ... ,n

l u. (k)
1-

au. 
- l ou - [sJoi s .. = 

lJ 3k. 
J 

k. 3u. 
s~ .= _ _,,J,.._ l 

3k.lJ u. (k) Jl -

(. •• { u_, (k) dk 
--_- J kl -.1. -

u. (k) == 

l - f ·f dk 
k 

<u.(k)>
l -

2 2
<u. (k) > <u. (k) > 

l - 1-

max [u.(k)], min[(u.(k)]
1- 1-
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OU (10. 3) 

This difference measure is often expressed in the normalized form 

ou. ui Cl + ol)
l 

- 1 (10. 4)
u. (k) u. (K)
i- i-

If the parameters are varied one at a time then (10.4) is given by 

u. (k + 6k.) 
l - J - 1D.. = D. (ok.) (10. 5)

lJ l J u. (K)
i-

Both of these criteria are essentially point estimates. If a sufficient­

ly large number of l combinations are considered then it is possible 

to develop estimates of some of the important response statistics, 

namely: the mean, variance and extrema of ~(l). The extreme values are 

often of critical importance in environmental applications. In the 

interests of computational economy it is desirable to obtain as much 

information as possible from each parameter combination. One means is 

to extrapolate the results away from the nominal solution ~(l). A 

wide class of methods can be represented by the form 

6u .:: [ S] ok (10.6) 

The most simple case corresponds to the well known Taylor series 

expansion for which the elements of the matrix [S] are given by 

8u. 
S .. = l 

i=l,2, ... ,n j=l,2, ... ,m (10.7)
lJ 3k. 

J 



Equation (10.7) is often written in the normalized form 

3 £n (u.) k. 3u. n l ls .. = = (10.8)
l] 3 £n(k.) elk. 

J u. (k) Jl-

Methods which neglect the higher order terms in the expansion are 

referred to as first order or linear techniques. In space and time 

dependent models the linear sensitivities are more appropriately defined 

in terms of operator or Frechet derivatives. These derivatives 

are linear continuous and have the usual properties of the classical 

differentials of functions of one or more variables. In particular 

the chain rule holds (Nashed, 1971). This latter result is extremely 

useful in practical applications. 

Once the basic model has been formulated and an appropriate 

sensitivity measure identified the next step is to actually solve the 

sensitivity problem. As noted previously there are two basic approaches: 

local or global techniques. In order to illustrate how local methods 

*Consider a mapping F:X ➔ Y where both X and Y are complete, normed 
linear spaces. Given that x s X, then if a bounded linear map, F', 
exists such that 

\ \F(x+h) - F(x) - F' (x)h\ JLim - -- y 

I lhl \+o = 0 

then Fis said to be Frechet differentiable at~ and F 1 
(~) is the Frechet 

derivative of Fat x. Under certain conditions the continuous, linear 
operator F'(~) is r;presented by the Jacobian matrix at x (Dieudonne, 
1960; Tapia, 1971). 
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are applied, consider the following set of ordinary differential equations 

and initial conditions. 

du 
F (~,l) - dt i C~,l) 0 (10.9) 

~(o) = u 
0 (10.10) 

A very wide class of practical problems can be described by systems of the 

form (10.9-10). The change in~ away from some nominal parameter values 

k can be expressed, using operator derivatives in the form 

d c)U elf c)U c)f 
(10.11)dt (312 dU ( elk) - elk = O 

or more compactly as the matrix differential equation 

[Z] [J] [Z] + [B] (10.12) 

where 

clu. i=l,2, ... ,n
l (10.13)z

lJ
.. elk. j=l,2, ... ,m

J 

elf. i=l,2, ... ,n (10.14)
J ..
lJ = clu; I j=l,2, ... ,n

f. [u(k) ,k]
]._ -- -

i=l,2, ... ,nelf. I (10.15)
B.. j=l,2, •.. ,mlJ elk; f. [u(k) ,k]

l - - -

A typical column of [Z], defined by clu./ak.; i=l,2, ... ,n, denotes the 
]._ J 

sensitivity of u with respect to the jth parameter. The initial conditions 

for (10.12) are given by [Z(o)] = [o] unless any u.(o) are included ink 
l 
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in which case the appropriate elements of (Z] are set to one. Because 

there is no direct coupling in (10.12) each of them vector differential 

equations can be solved independently. 

There is a variety of ways to obtain the desired sensitivity 

information. The simplest involves a direct solution of the coupled 

systems of n(rrr+l) ordinary differential equations (10.9-10 and lJ.12). 

This method was used by Dickinson and Gelinas (1976) and Atherton et al. 

(1975). Operationally it is sometimes more convenient to consider the 

parameters one at a time; if this is done then the number of required 

solutions increases to 2nm. This number can be reduced, at some loss 

of numerical accuracy, to n(m+l) if the nominal solution u(k,t ),
~ - p 

p=l,2, ... are retained and used for constructing interpolated approxi-

mations to the ~(1,t) needed in the evaluation of (10.14 and 10.15). 

While the three approaches produce similar results they can involve 

considerably different 

3 3 
system, O[m(2n) ] for the one parameter at a time case and O[(rrr+l)n ] 

for the interpolated solution. Since the equations of interest are 

usually stiff, and m(>n) is in general quite large, the above procedures 

can be quite expensive. Another approach, which is the focus of work by 

Hwang et al. (1978), Dougherty et al. (1979) and Hwang and Rabitz (1979), 

is to make use of the associated Green's function matrix. 

An nxn Green's function matrix [K(t,T)] can be constructed which 

satisfies 

d [K(t,T)] - [J][K(t,T)] = [O] t > T (10 .16) 
dt 

with 
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[K(t,t)] = I (10.17) 

The sensitivity infonnation is then given by the following set of inte-

grals (Hwang et al., 1978) 

t 

[Z(t)] = [K(t,O)][Z(O)] + J[K(t,T)][B(-r)]dT (10.18) 

0 

In practice [K] is determined by first solving (10.9-10) to obtain 

u(k,t) p=l,2, ... , at an adequate number of grid points so that [J(t)]
~ - p 

can be determined by interpolation. Operationally it is more convenient to 

solve the adjoint system (10.19-20) backwards in time. 

d[K*(T,t)] + [K*(T,t)][J(T)] = [O] T < t (10.19)
dt 

[K*(T,T)] = I (10. 20) 

with 

[K(t,T)] ( 10. 21) 

The major advantage of the adjoint formulation is that the sensitivity 

integrals (10.18) can be more easily evaluated row by row as functions of 

Tat a fixed time t. Another good feature of the Green's function 

approach is that the calculations needed to evaluate u(k,t) and [K*(T,t)]-- p 

are independent of the number of parameters m. If m > n this can result 

in a very large savings in computational time over the direct methods. 



In passing it is important to emphasize that the procedure produceP a 

local approximation to the system sensitivity ~(l). Section 10.3 presents 

a procedure valid for global analyses. 

The remaining class of methods are global sensitivity analysis 

techniques in which the major concern is to characterize the response 

surface ~(l) over the full range of parameter variations. In carrying 

out such analyses, the basic consideration to keep in mind is to minimize 

the number of model solutions. Conceptually the simplest approach is 

to solve the system repeatedly, varying one parameter at a time. Without 

careful prescreening this "brute force" approach can become prohibitively 

expensive. For example consider a model system of m parameters and r 

different values for each k .. The systematic evaluation would require
J 

O(mr) solutions and even relatively small values of m could render the 

procedure impractical. The key to a successful global sensitivity method 

is then to devise an economical means for sampling the parameter space. 

Similar problems arise in locating starting points for optimization 

algorithms or in the evaluation of multi-dimensional integrals. 

Perhaps the most well known sampling procedure is the Monte-Carlo 

method. In this procedure the parameter combinations are selected at 

random. A random number generator is used to select values of the 

parameters from the k space which are then used to evaluate~(~). What 

is often not realized is that the value of Monte-Carlo methods is not the 

randomness of the sampling but the resulting equidistribution properties 

of the sets of points in the parameter space. Once it is recognized that 

the main goal of a Monte-Carlo procedure is to produce a uniform distri­

bution of points in the parameter space, then pattern search methods 
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become a viable global sensitivity method. The brute force method for 

distributing points is far from optimal. Consider the two-dimensional 

cases shown in Figure 10.3 which correspond to N=l6, r=4, and m=2. If 

u(k ,k ) depends strongly on one of the variables the first distribution1 2 

(Figure 10.3a) yields only 4 essentially different values each repeated 

four times while the second set produces 16 values of either ui(k ) or
1 

ui(k ). An algorithm which generates sequences of points that uniformly2 

fill the parameter space is described in Sobol (1979). Aird and Rice 

(1977) compared two systematic search procedures with the standard random 

assignment technique and found that the pattern methods consistently per­

formed better than the Monte-Carlo procedure. Unfortunately pattern and 

Monte-Carlo methods are not well suited to non-rectangular parameter spaces 

because of difficulties associated with locating points inside the boundaries. 

One major advantage of the Monte-Carlo procedure is that it can be 

readily adapted to situations in which one or more of the parameters have 

known distributions. Stolarski et al. (1978) used a Monte-Carlo procedure 

to study the propagation of reaction rate uncertainties in the 

strospheric ozone depletion model of Rundel et al. (1978). The uncertain 

rate constants were assumed to be lognormally distributed about the mean 

measured values. The computational procedure adopted in their work was 

to continue to sample from the parameter space until the model output 

statistics stabilized. For the criteria established by Stolarski et al. 

(1978) 2000 separate combinations were required to assess the effects 

of fifty-five parameters. Freeze (1975) used a similar approach in a 

study of two ground water flow problems and in addition considered the 
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Systematic Search Patterns of Parameter Space 
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effects of parameter coupling by using multivariate distributions. Both 

studies encountered the problem of developing a priori estimates of the 

number of trials required to produce stable results. 

An alternative method for global sensitivity analyses, and the 

focus of Section 10.3, is the Fourier Amplitude Sensitivity Test (FAST) 

introduced by Cukier et al. (1973). The essence of this procedure is to 

assign periodic functions of a new variable, s, to each of the parameters. 

Under certain conditions each new value of s defines a unique parameter 

combination l(s), along a search curve which can be made to pass arbit­

rarily close to any point in the l space (Weyl, 1938). By sampling ~Ci) 

along the search curve and performing a discrete Fourier analysis it is 

possible to determine the contribution of individual parameters to the 

global sensitivity of the model (Beauchamp and Yuen, 1979). 

In this section the basic issues involved in selecting sensitivity 

analysis methods have been discussed. Since for some of the techniques 

there is an extensive literature Figures 10.4 and 10.5 summarize the 

results of a survey directed at identifying representative treatments of 

local and global methods. For details of particular applications the 

reader is referred to the original papers. Subsequent sections of this 

chapter are directed at developing and applying global methods to 

components of the atmospheric diffusion equation. 
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GLOBAL SENSITIVITY ANALYSIS METHODS 

PATTERN METHODS 

Aird and Rice (1977) 
Sobol (1979) 
Stroud (19 71) 
Dodge and Hecht (1975) 

Sensitivity Measures 

Mean 
Variance 
Extrema 

MONTE CARLO METHODS 

Freeze (1975) 
Stolarski et al. (1978) 

Leith (1975) 

Mean 
Variance 
Extrema 

FIGURE 10 .4 

FAST METHODS 

Boni and Penner (1976) 
Cukier et al. (1973) 
Schaibly et al. (1973) 
Cukier et al. (1975) 
Cukier et al. (1978) 
Levine (1975) 
Falls et al. (1979) 
Koda et al. (1979a, b) 
McRae and Tilden (1980) 

Fourier Amplitudes 
Partial Variances 
Mean 
Variance 
Extrema 
Parameter Ranking 

Survey of Global Sensitivity Analysis Methods 
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LOCAL SENSITIVITY ANALYSIS METHODS 

TAYLOR SERIES EXPANSION SENSITIVITY EQUATION 

Atherton et al. (1975) 
Keller (1964) 
Tang and Pinder (1977, 1979) 
Dunker (1980) 

Coupled Solution of Adjoint (Green's Function) 
System and Sensitivity Solution of 

Equations Sensitivity Equation 

Frank (1978) Hwang et al. (1978) 
Tomovic (1963) Dougherty et al. (1979) 
Dickinson and Gelinas (1976) Hwang and Rabitz (1979) 
Eno and Rabitz (1979) 
Tang and Pinder (1977, 1979) 
Tomovic and Vucobratovic (1972) 

Sensitivity Measures 

Mean Local Perturbation Local Perturbation 
Variance 
Local Perturbation 

FIGURE 10.S 

Survey of Local Sensitivity Analysis Methods 



417 

10.3 Automatic Sensitivity Analysis of Kinetic Mechanisms 

(Reprinted from Int. Journal of Chemical Kinetics, 11_, 427-444.) 
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MASATO KODA, GREGORY J. MCRAE, and JOHN H. 
SEINFELD 

Department of Chemical Engineering, California Institute of Technology, Pasadena, 
California 91125 

Abstract 

An algorithm for the automatic sensitivity analysis of kinetic mechanisms based on the 
Fourier amplitude sensitivity test (FAST) method of Shuler and co-workers is reported. The 
algorithm computes a measure of the relative sensitivity of each concentration to each pa­
rameter of interest, such as rate constants, Arrhenius parameters, stoichiometric coefficients, 
and initial. concentrations. Arbitrary variations in the magnitude of the parameters are al­
lowable. The algorithm is illustrated for the simple example of computing the sensitivity 
of the concentration of species A to variation of the two Arrhenius parameters for the hypo­
thetical reaction A + A -+. 

Introduction 

A variety of chemical phenomena are described by lengthy and complex 
reaction mechanisms. It is often desirable to determine the effect of 
uncertainties in rate constants and other parameters on the predictions 
of the mechanism and to ascertain which parameters are most influential. 
When a measure of the sensitivity of the concentrations to variations of a 
parameter is combined in an appropriate manner with a measure of the 
degree of uncertainty in the parameter's value, one may then determine 
which parameters, through both their sensitivity and uncertainty, have the 
most influence on the predicted concentrations. 

Conceptually the simplest approach to a sensitivity analysis is to solve 
the system repeatedly while varying one parameter at a time and holding 
the others fixed. This type of analysis soon becomes impractical as the 
number of parameters subject to variation increases. Most of the theories 
for sensitivity analysis of sets of differential equations containing param­
eters are linearized ones, valid strictly only for small variations of the pa­
rameter value [1]. Recently a new sensitivity analysis method has been 
developed by Shuler and co-workers [2-5] that is not restricted to small 
parameter variations. The method is particularly attractive for chemical 
kinetics applications because order of magnitude uncertainties in rate 
constant values are not uncommon. 

International ,Journal of Chemical Kinetics, Vol. XI, 427-444 ( 1979) 
© 1979 John Wiley & Sons, Inc. 0538-8066/79/0011-0427$01.00 
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The object of this paper is to report a computational method for the 
automatic sensitivity analysis of systems of differential equations based 
on the Fourier amplitude sensitivity test (FAST) method of Shuler and 
co-workers [2-5]. The computational method processes the concentra­
tion-time histories from integration of the system to produce a measure 
of the sensitivity of each concentration to each parameter. An arbitrary 
choice of the range of variation of each parameter is possible. The math­
ematical foundation of the FAST method has been described in detail 
previously [5]. Thus we present here only a concise discussion of those 
elements of the method necessary for the understanding and implemen­
tation of the computational algorithm. We have extended the basis of the 
FAST method in one respect; that is, we have developed a way to treat 
parameters that are constrained by a relationship of the form H(k 1, k2, ···, 

km) ::5 0. Such a constraint is important in chemical kinetics applications. 
Parameters in a chemical reaction mechanism are frequently related to each 
other. For example, the ratio of two rate constants kJkj may be fixed with 
ki or kj subject to indiv_idual uncertainty. Also, if a species may decompose 
by two paths, the fractional occurrences of which are k 1 and k 2, one may 
wish to examine the sensitivity of the mechanism's predictions to k 1 and 
k2, subject to the constraint that k1 + k2 = 1. 

In the next section we summarize the key elements of the FAST method. 
The computation of the partial variances, the basic sensitivity measure, 
is then outlined, followed by a description of the practical implementation 
of the method. Finally, we illustrate its application in the case of a single 
reaction. 

Mathematical Basis of the FAST Method 

We consider a system described by the set of ordinary differential 
equations 

(1) du(t) = F(u k) 
dt ' 

(2) u(O) = uo 

where u(t) is then-dimensional vector of state variables (concentrations) 
and k is them-dimensional vector of parameters (rate constants, Arrhenius 
parameters, stoichiometric coefficients, etc.) We assume that eq. (1) can 
be solved numerically subject to the initial condition of eq. (2) to give u(t) 
for any choice of k. 

We are interested in determining the sensitivity of each concentration 
Ui, i = 1, 2, ···, n, to variation of each parameter kj, j = l, 2, •··, m. We con­
sider the parameter vector k to be a random vector with probability density 
function P(k). In reality the ki are not, of course, random variables. 
However, their precise values are uncertain and it is advantageous to treat 
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them as if they were random variables with a presumed distribution for the 
purpose of computing the sensitivities. If the kj are random variables, then 
the ui resulting from the solution of eq. (1) are also random variables. The 
(ensemble) mean value of the concentration of species i at any time tis then 
given by 

(3) (ui(t)) = f ... f Ui(t; k1, ... ' km)P(k1, ... ' km) dk1 ... dkm 

where uJt; k1, ···, km) denotes the solution of eq. (1). The key concept of 
the FAST method is to convert them-dimensional integral of eq. (3) into 
an equivalent one-dimensional integral. 

The method uses the transformations 

(4) l = 1, 2, · · ·, m 

where G1, l = 1, 2, ···, m, are a set of known functions, w1, l = 1, 2, •··, m, are 
a set of frequencies, ands is a scalar variable. By means of this transfor­
mation variations of the m parameters are transformed into variations of 
the single scalar variables. By variation of s over the range - ~ s , 00 ~ 00 

eq. (4) traces out a space-filling curve in the m-dimensional parameter 
space. For a suitable choice of the G1, which transforms the probability 
density P(k) into s space, Weyl [6] demonstrated that 

1 IT(5) Ui(t) = lim - ui(t; k1(s), · · ·, km(s)) ds 
T-ao 2T -T 

is identically equal to (ui (t)) from eq. (3). Equation (5) is the fundamental 
expression in the FAST method for computing the mean value, variance, 
and other properties of the concentration ui. 

The set of frequencies lw1 l should be incommensurate, in that 
m 

(6) L "flWl = 0 
l=l 

for an integer set hd if and only if 'YI= 0, l = 1, 2, •··, m. If the frequencies 
lwd are, in fact, incommensurate, the search curve ins space is space-filling 
in that it passes arbitrarily close to any point in the m-dimensional pa­
rameter space of k. Unfortunately the set of lwil used in actual computa­
tion cannot be truly incommensurate. As discussed by Shuler and co­
workers [3-5], we select lwd as an appropriate set of integer frequencies. 
The use of integer frequencies in eq. (4) implies that the parameters k1, l 
= 1, 2, •··, m, are periodic ins on the finite interval (-1r, 1r), in which case 
eq. (5) becomes 

f ,r(7) ui(t) = -1 u;(t; k 1(s), · · ·, km(s)) ds 
21r -,r 

The variance of concentration i 1s then 

(8) 
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Henceforth we will replace ui(t) by (ui (t) ), representing the s-space av­
erage. Then ui = (ui) and <lf = (u;) - (uj) 2• In addition, for conve­
nience, we will denote ui(t; k 1(s), · · ·, km(s)) by Ui(t; s). 

The evaluation of <lf can be carried out by using the s-space Fourier 
coefficients of ui. From Parseval's theorem we have 

(9) 

where the Fourier coefficients Ajil and Bf> are defined as 

1
(10) Aji>(t) = f-rr uJt; s) cosjs ds 

27f" -;r 

1 f(11) Bji>(t) = - ui(t; s) sinjs ds1r 

27f" -;r 

Thus, from eqs. (10) and (11), 

(12) (ui(t)) 2 = Ag>2 + Bg>2 = Ag>2 

Using eqs. (9)-(12) we can express the variance <l[(t) in terms of the Fourier 
coefficients as 

"' 
(13) <lf(t) = 2 I: (A}i>(t)2 +BJil(t)2) 

j=l 

If the Fourier coefficients (10) and (11) are evaluated for the fundamental 
frequencies of the transformation (4) or its harmonics, that is, j = pw1, p 
= 1, 2, •··, the variance 

"' (14) erw1(t)2 = 2 L (AiL/t)2 + BiL1(t)2) 
p=l 

is the part of the total variance er; that corresponds to the variance of ui 
arising from the uncertainty in the lth parameter. The ratio S~/ = er~/er; 
is the so-called partial variance, which serves as the basic measure of sen­
sitivity for the FAST method. We note that S~/ is a normalized sensitivity 
measure, so that the S~/ may be ordered with respect to l to indicate to 
which parameters concentration ui is most sensitive. 

We can now summarize the essential elements of the FAST method. The 
sensitivity measures are the partial variances S~/, i = 1, 2, •··, n, l = 1, 2, •··, 
m. The relative magnitudes of them partial variances for each concen­
tration reflect the relative influence of each of the m parameters on that 
concentration. The partial variances are calculated from the ratio of eqs. 
(14) and (13), the main computation involved being the evaluation of the 
integrals (10) and (11). To evaluate the Fourier coefficients from eqs. (10) 
and (11) requires that the solution of the system of eq. (1) be obtained for 
enough values of s so that the integrals in eqs. (10) and (11) can be calcu­
lated with sufficient accuracy. Thus, with the parameter values being 
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determined by eq. (4), the system of differential equations, eq. (1), is solved 
repeatedly for each value of s needed to calculate the Fourier coefficients 
in eqs. (10) and (11). Therefore the FAST method only requires that the 
set of eq. (1) be solved numerically a certain number of times to produce 
the concentrations Ui (t; s) needed to determine the Fourier coefficients 
and subsequently the partial variances. By contrast, the common linear­
ized methods frequently require that eqs. (1) be differentiated with respect 
to the kt to produce an auxiliary set of nm differential equations for the 
sensitivity coefficients ouJok1, i = 1, 2, •··, n, l = 1, 2, •··, m. Thus whereas 
the linearized methods require the one-time solution of nm differential 
equations (in addition to the original n differential equations), the FAST 
method requires a certain number, Ns, solutions of the original set of n 
differential equations. The relative solution times depend, of course, on 
the values of n, m, and N 5 • The choice of Ns for the FAST method will be 
discussed shortly. 

The basic sensitivity measure in the FAST method is the partial variance 
SJ/, whereas in the direct, linearized methods the measure is the sensitivity 
coefficient ouJok1. The relation between these two measures is developed 
in Appendix A. Appendix B indicates how the case of correlated param­
eters can be treated. 

Exploitation of Symmetry Properties 

Before describing the practical implementation of the FAST method it 
is worthwhile to reexamine the search curves and the Fourier integrals, eqs. 
(10) and (11). As discussed in the previous section, the FAST method re­
quires the repeated evaluation of the model system for each parameter 
combination. As this generally represents the major component of the 
computational cost, it is clearly desirable to minimize the required number 
of model solutions. One way to do this is to exploit the symmetry properties 
of the search curves. As defined by eq. ( 4) the search curves have a period 
of 21r. By choosing the frequency set lwzl so that it is composed entirely 
of odd integers, the functions G1(sin w1s ), l = 1, 2, •··, m, become symmetric 
about ±1r/2. Consequently the following symmetry properties hold: 

u(t;1r-s) = u(t;s) 

u(t; -1r + s) = u(t; - s) 

u(t; 1r/2 + s) = u(t; 1r/2 - s) 
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Thus eqs. (10) and (11) become 

j odd
(15) A (i)(t) =l 

; J: 
0, 

J 1 ,r/2 

[ui(t; s) + ui(t; - s)] cosjs ds, ; even 

; even
(16) BU\t) =l 0, 

J 1 or/2; J: [ui(t;s)-u;(t; -s)] sinjs ds, j odd 

Exploitation of the symmetry properties has therefore reduced the range 
of integration and, more importantly, the required number of solutions of 
the differential equations by one half. 

Computation of the Partial Variances 

The key sensitivity measure in the FAST method is the partial variance 
which, suppressing the dependence on t, can be written in the form 

2 
(17) S~l= f. [IA½~1l 2 +IB½~11 2

2 ] 
<Ti p= 1 

where the amplitudes A½~i' B½~1 are now determined by the integrals, eqs. 
(15) and (16). The principal idea behind the partial variance concept of 
sensitivity is to examine the output udt; s) and isolate the effects of vari­
ations in parameter kz from the influence of changes in all the other pa­
rameters. When evaluating eq. (17) it is important to recognize, however, 
the limitations imposed by the use of integers to define the frequency set 
lwzl. In the summation, interferences from the effects of parameters oth'er 
than w1 can lead to meaningless situations in which S~/ > 1. The inter­
ference problem is readily illustrated by selecting two arbitrary parameters 
kz, kj and their associated frequencies w1, Wj- In evaluating the terms 
contributing to S~J two or more values, say r and q, of the harmonic index 
p will be encountered such that rw1 = qwj, which in turn implies that 

(18) IA(i)12+ IB(il12= IA(i).12+ IB(il.12
rw/ rw/ qw1 qw1 

This result indicates that the calculation of S~l is being influenced by terms 
arising from variations in the other parameter, Wj. A similar problem arises 
when the FAST method is applied numerically. In most circumstances 
algebraic complexities or computational costs restrict the availability of 
the output ui(t; s) to discrete values of s in the range ±1T/2. Unless the 
integration points are chosen carefully, aliasing errors can cause interfer­
ences similar to eq. (18). Ordinarily the Fourier amplitudes decrease as 
p increases. We expect, therefore, that most of the contributions to the 

https://IB(il.12
https://IA(i).12
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summation in eq. (17) should occur with the first few values of p. At this 
point the key question to address is simply: how many harmonics can be 
included in the summation without causing interference problems. 

To answer this question we start by considering the choice of the fre­
quency set lwd and the number Ns of sample points in the s domain used 
to approximate the integrals, eqs. (15) and (16). We note first of all that 
if we select w1 = 1, eq. (17) yields Sl~i = 1, which yields no information. The 
frequency set lwil used in this paper is developed recursively using 

WI= Qn
(19) 

Wi = Wi-1 + dn+l-i, i = 2, 3, ... ' n 

The Qn and dn, tabulated in Cukier and co-workers [4] for n varying from 
3 to 50, have been augmented for the two-parameter case with !wd = 3, 5 
U.12 = 3, d 1 = 2), and for n = 6, w 1 has been reset to 13. The maximum 
frequency wmax is given by Wm if eq. (19) is used to generate the set lwi\. 

Also, then the minimum frequency Wmin is w 1. If the amplitudes A, B could 
be determined exactly, the maximum number of terms that can be included 
in the summation without the possibility of interferences is simply Wmin 

- 1. This is another reason for avoiding the choice w1 = 1. The simplest 
numerical integration procedure for evaluating the amplitudes, which ex­
ploits the symmetry properties of Ui (t; s ), requires Ns = N Wmax + 1 (N ~ 
2) uniformly spaced points in the interval ±1r/2. Several factors influence 
the choice of N. The lower limit, N = 2, is imposed by the Nyquist criterion 
[7, 5], which indicates that the output ui(s) needs to be sampled at least 
twice as often as the highest frequency wmax· For convenience, it is useful 
to choose N to be divisible by 2, and so the minimum number of integration 
points is 2wmax + 1. The numerical approximation of the Fourier integrals 
can be improved by using N > 2 at the expense of increasing the compu­
tational cost. As mentioned above, the numerical approximation of the 
Fourier integrals leads to another type of interference problem commonly 
called aliasing. These interferences occur when 

(20) 

This generally imposes a lower limit to the number of terms that can be 
included before interferences occur. The aliasing problem in the compu­
tation of S~/ can be minimized if, using the previous example, we restrict 
the higher harmonics to satisfy the conditions rw1 < N Wmax + 1. The 
natural choice for r is N, in which case eq. (17) can be rewritten as 

(21) S(i) = ~ 2 ~ L.., 
[IA

pw[
(i) I2 + IB(i) 12]

w[ pw[ 
<Yi p=l 

If N is chosen to be 2, then, since B~~1 = 0, eq. (21), with eq. (12), can be 
written as 

(22) 
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The variance o-f is given by eq. (13). 

Practical Implementation of the FAST Method 

While applicable to any problems that are described by a set of differ­
ential equations, the FAST method is particularly useful in the analysis 
of chemical kinetics. The parameters k; may include rate constants, 
Arrhenius parameters, stoichiometric coefficients, branching ratios, and 
initial conditions u0. Application of the FAST method to the sensitivity 
analysis of reaction mechanisms is illustrated in Figure 1. 

Several steps are involved. First the rate laws must be specified. Having 
established the basic set of differential equations, the next step is to select 
the parameters to be varied. For each parameter that is to be studied a 
range of uncertainty must be established and a search curve selected from 
the options presented in Table I. Given this information and the times 

USER iNPUTS 

•Parameters to be varied: • Specification of rate laws 
initial conditions 
rate data du. 
stoichiometric coefficients -

1 =Fi(~;~) i=l,2, ... ,n 
branching ratios dt 

• Selection of parameter ranges 
and search curves (see Table 1). 

' FOURIER AMPLITUDE SENSITIVITY TEST PROGRAM 
I 

Frequency assignment to parameters 

Loop s -,; to-i- I 
I 

Set search variable sj 

I 
Calculate parameter combination 

k tG £(sinw1:5j) 
NUMERICAL SOLUTION PROGRAM 

LParameter combination Solve set of differential 
equations to determineI ui(t), i=l,2, ... ,n

!Output concentrations 

Store outputs for each 
analysis time 

Loop over each 
output variable 

Calculate mean, standard 
deviation, variance, coefficient 

of variation 
I

Calculate partial variance 
for each parameter and 

rank order 
I 
T 

I 
SENSITIVITY ANALYSIS OF MECHANISM 

Figure L Application of the FAST method to chemical kinetics. 
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TABLE I. Search curves for different parameter variations. 

a 
Application Mean Value kJ Nominal Value V.1 

A-idi"tive variation 

,~:::Xr,cnential variation r AJ ~J 

?roportional va:=-iation ln{a) 

ku = e.k 1/ = ( ~)
j J, J a 

3keved variation "=![_i'._•__:C__]b
J 2 ru - 1 rl - l- k) + k~)

(kj> 2 

a {ru+ rl - 2) 
6 

(ru - rl)J 
3 

llu 

"J ~ - kJ [ ru + rl - 2 
-r+r-2rrl u 

a kJ-upper limit for parameter; k;-lower limit for parameter. 
b ru = kJ/kj, r1 = k;/kj. 

for the analysis of the concentrations, the FAST program automatically 
evaluates the model system for each parameter combination. The con­
centration outputs at each time are then processed to determine the partial 
variances and sensitivity ranking for each of the parameters. The detailed 
computational procedure is as follows: 

(a) Assign to each of them parameters a different frequency w1, l = 1, 
2, •··, m. 

(b) Based on some knowledge of the expected range of variation for each 
parameter, select appropriate search curves from Table I. 

(c) Select the number of parameter combinations to be evaluated. For 
Ns points, a symmetric and uniform spacing ins, including s = 0, is given 
by -

S _ = 7r [2j - Ns - ll(23) 1 j = 1, 2, • · ·, Ns 
2 Ns ' 

(d) Solve the set ofdifferential equations, eq. (1), for each parameter 
combination Sj defined by k = k1G1(sin wtSj), j = 1, 2, • • •, N 5 • In many 
applications, particularly in chemical kinetics, where stiffness is a problem, 
the computation time per solution can be minimized by using a variable­
order method, such as the well-known Gear algorithm [8]. 

Once the model system has been evaluated for each parameter combi-
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nation, the influence of the lth parameter k 1 on the ith concentration at 
time t can be examined by calculating the partial variance S~/(t), 

N 

2 L [IAt~,(t)l 2 + IBt~/t)l 2] 
S~}(t) =-----'-p_=_I_________(24) 

o}(t) 

The variance uf (t) can be approximated numerically by 

(25) 

and the mean value (ui(t)) by 

1 N, 
(26) (ui(t)) = - I:udt; s1)

Ns j=I 

Simple quadrature formulas can be used to evaluate the amplitudes 
AgL(t) and Bgl1(t). The following expressions were derived directly from 
eqs. (15) and (16): 

(27) A~l1(t) 

o, pw1 even 

- [ Nl Ir [ui(t; No+ q) - Uj(t; No - q)] sin PW/Q1r), pw1 odd 
s q=l Ns 

where Nq = (Ns - 1)/2 and N 0 = Nq + l. (The index notation in eqs. (26) 
and (27) has been chosen to simplify the computer implementation using 
programming languages such as FORTRAN that do not allow negative or 
zero indices.) 

Figure 2 with lwtl = [3, 5] and Figure 3 with lwtl = [11, 13] illustrate the 
two basic approximations involved in the FAST method. The first is that 
the frequency sets lwtl are commensurate, that is, the search curves do not 
completely cover the parameter space. The second approximation involves 
the use of a finite number of points in the numerical quadrature. Both of 
these considerations have been quantitatively examined by Cukier and 
co-workers [4] and for this reason will not be repeated here. 
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--~----------------_.___-. kl 
10 

Figure 2. Space-filling search curve for case \wil = [3,5] where k 1 = k1exp(v1 sin 
w1s) and k2 = k2[l + v2 sin w2s ]. +-integration points for Ns = 2wmax + l; 
EB-nominal value of k 1 and k 2. 

Example-Application to a Single Reaction 

In this section we wish to present an example of the use of the FAST 
method. We have purposely chosen a very simple system so that the in­
terpretation of the results can be easily discussed; an application involving 
a larger number of parameters is described in Boni and Penner [9]. Con­
sider a hypothetical recombination reaction 

A+A--► 

with rate constant K = k 1 exp(-k2/T). We wish to examine the sensitivity 
of the concentration of A to variations in the Arrhenius parameters k 1 and 
k2 at T = 298°K. We let u = [A]/[A0], the normalized concentration. The 
nominal values of k1 and k2 are chosen as 1.79X1010 1/mol-sec and 500°K, 
respectively. The (arbitrary) ranges of uncertainty and initial concen­
tration were chosen as 8.97 X 109 .$ k 1 .:5 3.59 X 1010, 0 .$ k 2 .$ 1000, [A0] 

= 1 mol/1. 
We use the transformations (see Table I) k 1 = k 1 exp v1 and k 2 = k2 (1 

+ v2), where v1 = (ln 2) sin w1s and v2 = sin wzS. For this particular problem 
the sensitivity coefficients can be calculated analytically, ou/ok 1 = 
-2[A0]Ktu 2/k1 and ou/ok2 = 2[A0]Ktu 2/T. The FAST method essentially 
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Figure 3. Space-filling search curve for case lwd = [11,13] where k 1 = k1 exp(v1 

sin w1s) and k2 = k2[l + 112 sin w2s]. +--integration points for Ns = 2wmax + 1; 
EB-nominai value of k 1 and kz. 

calculates the Fourier amplitude Bw1 which is proportional to ( ou/ov1), 

which is the relative sensitivity with respect to the nondimensional vz for 
the transformations exp v1 = kz/k1 or 1 + vz = kz/k1 (see Appendix A). 

In Figure 4 the concentration u, partial variances Sw1 and Sw2, funda­
mental Fourier coefficients Bw1 and Bw2 , and the relative sensitivity coef­
ficients k1 ou/ok1 and k2 ou/okz are plotted for lw1, w2l = (3, 5) and Ns = 
21. · (The results were found to be insensitive to the choice of the frequency 
set and number of dividing points.) The fundamental Fourier coefficients 
Bw1 and Bw2 follow quite well the general trends of the relative sensitivity 
coefficients k1 ou/ok 1 and k2 ou/ok2, demonstrating the fundamental 
relationship in the FAST method, Bw1 a: ( ou/ov1). The partial variance 
Sw2 follows the trends of Bw2 and k2 ou/ok2• On the other hand, the partial 
variance Sw1 does not follow the trends of Bw1 or k1 ou/ok 1. It decreases 
when the absolute values of Bw1and k1 ou/ok 1 increase and increases when 
the absolute values of Bw1 and k1 ou/ok1 decrease. We observe the fol­
lowing relationship between the partial variances; 

(29) 

This implies that if the relative importance of the effects of the parameter 
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Figure 4. Comparison of the analytical sensitivity coefficients ki ou/ok; and the 
fundamental Fourier coefficients Bw, and partial variance Sw, as calculated by the 
FAST method (i =1, 2). Plots are based on the normalized concentration, that 
is, u = [A]/[Ao]. The parameters used are w1 = 3, w2 = 5, and Ns = 4wmax + 1 = 
21. 

uncertainty in k1, that is, the partial variance Sw1 increases, then Sw2 , the 
measure of relative importance for k 2, automatically decreases. For the 
more general multiparameter examples studied by Cukier and co-workers 
[5], we can observe the same relationship, namely, ~~ 1 Sw1 !::::,,' constant when 
the coupling terms like Sw;+wj are small. For the parameter range we have 
studied, all the sensitivity measures including the analytical sensitivity 
coefficients agreed and gave consistent results, indicating that the con­
centration of A is more sensitive to changes in k 2 than to chapges in k 1. 

To test the FAST method further, we increased the range of uncertainty 
for the parameter k 1 as follows: 0 s k 1 s 3.59 X 1010.1 To take account 
of this range of uncertainty we use the transformation (see Table I) k1 = 
k1 (1 + sin w 1s). The range of uncertainty of k2 is held fixed. 

The results of calculations are plotted in Figure 5. Since the parameter 
uncertainty for k 1 is increased, we observe that the relative importance of 
the parameter uncertainty in k 1 is increased and Swi > Sw2 for t > 0.08. 
This fact, is also reflected in the fundamental Fourier coefficients Bw1 and 
Bw2- The fundamental Fourier coefficient Bw1 does not agree with the trend 

1 Such a range of variation is, of course, physically implausible. We have chosen it only 
to illustrate the ability·of the method to handle extreme limits of variation. 
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Figure 5. Fundamental Fourier coefficients B..,, and partial variances S..,, (i = 1, 
2) for the case of increased range of uncertainties in the parameter k 1. The pa­
rameters used in the FAST method are w1 = 3, w2 = 5, and Ns = 4wmax + 1 = 21. 

of the analytical sensitivity solution of k1 ou/ok 1. This behavior is due 
to the characteristics of the Fourier amplitude sensitivity test and the 
sensitivity coefficient. The FAST method takes account of the very large 
variations about the nominal values, while the sensitivity coefficient k1 

ou/ok 1 is computed at the nominal values for infinitesimal variations. 
Thus for the case of the increased range of uncertainty of k 1, we conclude 
that the concentrations of A is more sensitive to k 1 than to k 2. We observe 
from this example that the partial variances essentially propagate the 
uncertainties in the parameters. 

Summary 

An algorithm for the automatic sensitivity analysis of kinetic mechanisms 
based on the FAST method of Shuler and co-workers [2-5] has been de­
scribed, and a simple example iliustrating its use has been given. With this 
method assessment of the relative influence of kinetic parameters on the 
predicted concentrations from a chemical mechanism becomes a relatively 
routine undertaking. A complete code for the sensiti_vity analysis of 
mechanisms includes three routines: 1) one that forms the kinetic rate 
equations based on the set of chemical reactions, 2) one that integrates the 
ordinary differential (ODE) rate equations, and 3) one that processes the 
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concentrations to produce the partial variances of the FAST method. This 
paper has focused on the third routine. The authors have prepared a 
complete code consisting of an algebraic manipulation routine to form the 
rate equations for any set of chemical reactions, the ODE solver EPISODE 
[10, 11], and the FAST method described here. Interested readers may 
contact the authors to obtain a copy of the code. 
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Appendix A 

Relation of the FAST Method to Sensitivity Coefficients 

In this appendix we summarize the relationship of the FAST method 
to the generalized sensitivity coefficients <ouJok1)and to the customary 
linear sensitivity measures ouJok1 IT., i = l, 2, •··, n and 1 = 1, 2, •··, m. 
Cukier and co-workers [4, 5] have considered the problem in somewhat more 
detail. Here we illustrate the results, using as an example the parameter 
representation. 

(30) k1 = G1(sin w1s) = k1 exp v1 

(31) v1 = g1(sin w1s) 

where k1 is the nominal value for the parameter k 1. The function g1 is de­
termined to satisfy 

90 og1(sin 01) 1
(32) cos- / = -

o sin 01 a, 
where 01 = w1s (mod 27r) and a1 is a constant parameter. From eq. (3) anq 
Weyl's theorem, we can write 

(33) B~/(t) = (ui(t; s) sin 01) 

= J: 2 
,r ••• J: 2 

,r Ui(t; 01, ... ' Om) sine, P(01, ... ' Om) d01 ... d0m 

where P(01, ···,Om)= (27r)-m. Then using eqs. (30)-(33) and integrating 
by parts, we obtain the desired relationship between B~'./ and <ouJov1), 

(34) B~/ = l_ /oui)
a1 \ov1 

where 

(35) 
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and where p(vj, aj) = aj/cosh ajVj. The function 

m 
(36) P(v1, • · ·, vm) = II p(vj, aj) 

j=I 

can be interpreted as a probability density in v space. Thus the Fourier 
coefficient B~) is related to a generalized average of the sensitivity ( ouj 
ov1). (For an alternative transformation, G1(sin wzs) = kz(l + v1), the same 
result is obtained.) The relationship of eq. (34) to the linear sensitivity 
measure can be seen by expanding ou)ov1 in a MacLaurin series about v 
= 0 and substituting the results into eq. (35) to give 

37
( ) (:~;) = :~:lu=O 

"' f"' m vr[or (ou·)]· · · II p(vj, a1) L 
00 

- -, l_i dv1 · • • dvm 
00 00f - - j=l r=l r! OV1 OV/ 11=0+-----------------------

From eq. (37) it is clear that unless the ui(t; s) are linear functions of the 
parameters k 1, •··, km, the generalized form eq. (34) is not equivalent to 
oujov1 I11=o- If the second and higher order terms can be neglected, then 
the following approximate relationship holds: 

' :,.,. I 

(38) B(i)~.!:..."!!:!:i..lw/ -
a1 ov1 11=0 

Appendix B 

Extension to Correlated Parameters 

In the preceding development the parameters k1, l = 1, 2, •··, m, have been 
assumed to be uncorrelated. Thus a range of uncertainty can be assigned 
to each parameter independent of the uncertainty range assigned to the 
other parameters. Relationships may exist, however, among two or more 
parameters. For example, if k 1 and k 2 represent fractional paths for a 
single reaction, then k 1 + k 2 = 1. 

We assume that the parameters are subject to the following con­
straint: 

(39) 

To employ the FAST method it is necessary to find a set of transformations 
k1 = h1 (a1, a2, ···, am) such that eq. (39) is satisfied for a set of independent 
a1. The fundamental Fourier coefficient for a can be called Bwa· We need 
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to relate Bw,, to the Fourier coefficients Ba1 and Bw2- This can be done by 
considering the sensitivity coefficients 

OU· m Oat OU·
(40) _i = I:--i 

okj t=l okj Oat 

where oatfokj is evaluated at the nominal values kj. The material in 
Appendix A is now needed. By using the v-space average, eq. (35), we can 
approximate eq. (40) by 

(41) · 

Then, from eq. (41), 

B(i) ::,: ~ Oat B(i)(42) 
w1 - L., ;,,.k w,,[

t=l V j 

To illustrate the approach consider, for example, the case of the con­
straint 

k2 k1
(43) -+-= 1 

a b 

where O < k 1 < b, 0 < k 2 < a, and k1 = b/2 and k2 = a/2. To apply the 
FAST method to k1and k2we represent k1and k2by 

(44) 

a
(45) k = --:=====a z -va2 + b2 

Thus for 0 <a< -va 2+ b 2 , the constraint eq. (43) is satisfied. The search 
for a is chosen as 

va2 + b2 
(46) a=---- (1 + sin was)

2 . 

and the FAST method is applied to a rather than to k 1 and k 2. For ex­
ample, the constraint (44) becomes 

B ~ oa ( OU ) ~ -Va 2 + b2 B 
wr ok1 ok1 b We, 

(47) B ~ oa ( OU ) ~ -Va 2 + b2 
B 

w 
2 ok2 ok2 a w,, 

We note that -bBw 1 ~ aBw2, which is consistent with the relationship be­
tween the sensitivity coefficients ou/ok 1 and ou/ok2. 
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Abstract-This paper describes a computational implementation of the Fourier Amplitude Sensitivity 
Test (FAST) and illustrates its use with a sample problem. The FAST procedure is ideally suited to 
the task of determinating the global sensitivity of nonlinear mathematical models subjected to 
variations of arbitrary size in either the system parameters or initial conditions. A FORTRAN 
computer program, capable of performing sensitivity analyses of either algebraic or differential 
equation systems is described. 

Scope-In virtually all branches of science and engineering, descriptions of phenomena lead to 
differeRtial equations of substantial complexity. The complexity of such models makes it difficult to 
determine the effect uncertainties in physical parameters have on their solutions. Traditionally, the 
analysis of the sensitivity of models to small perturbations in parameters is called local sensitivity 
analysis. When a measure of the sensitivity of the solution to variations of a parameter is combined 
in an appropriate manner with a measure of the actual degree of uncertainty in the parameter's value, 
it may then be determined which parameters, through both their sensitivity and uncertainty, have the 
most influence on the solution. Such a procedure can be called a global sensitivity analysis. 

Conventional global sensitivity analysis techniques have generally been based on either a pattern 
search or Monte Carlo technique. Pattern search and Monte Carlo approaches can become extremely 
time consuming and expensive as the number of parameters become large. 

The Fourier Amplitude Sensitivity Test (FAST) technique associates each uncertain parameter 
with a specific frequency in the Fourier transform space of the system. The system sensitivities are 
then determined by solving the system equations for discrete values of the Fourier transform 
variable and then computing the Fourier coefficients associated with each parameter frequency. This 
approach allows nonlinear global sensitivities of systems subjected to large parameter variations to 
be determined in a practical and efficient manner. 

Conclusions and Significance-Because of the complex nature of many physical and chemical 
systems, an integral element of any modeling study should be a formal assessment of the effects of 
uncertainties in the parameterization of the physical processes. In this paper particular attention is 
given to the Fourier Amplitude Sensitivity Test (FAST) for examining the global sensitivity of 
nonlinear mathematical models. The FAST technique allows arbitrarily large variations in either 
system parameters or initial conditions. 

The computer program presented here provides a general framework for implementation of the 
FAST method. When combined with a user supplied subroutine for the specific system of interest, 
the FAST program computes the sensitivities of the system outputs to the parameter variations 
specified by the user. The method is illustrated on an example involving a simple autocatalytic 
reaction mechanism. 

I. INTRODUCTION 

A variety of chemical engineering phenomena are des­
cribed by lengthy and complex mathematical models. It 
is often desirable to determine the effect of uncertainties 
in system parameters on the system behavior and to 
determine which oarameters are most influential. The 
complexity of ma~y models makes it difficult to deter­
mine the effect uncertainties in physical and chemical 
parameters have on solutions. When a measure of the 
sensitivity of the solution to variations of a parameter is 
combined in an appropriate manner with a measure of 
the degree of uncertainty in the parameter's value, one 
may then determine which parameters, through both 
their sensitivity and uncertainty, have the most influence 

•Author whom correspondence should be addressed. 

on predicted system behavior. Such a study can be 
termed a sensitivity/uncertainty analysis or a global 
sensitivity analysis. 

Consider a system that is described by a _set of n 
coupled ordinary differential equations containing m 
parameters, k1, k2, ... , km, 

dxdt = f(x; k) (I) 

where x is the n-dimensional vector of the system state 
and k is the m-dimensional parameter vector. A basic 
measure of the effect of uncertainties in k on x(t) is the 
deviation in x caused by a variation in k, L\.x(t; k) = 
x(t; k+~k)-x(t; k), where x(t; k) denotes the solution of 
(I) at time t with k =k. Taylor's theorem can be invoked 

15 
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to express the deviation in state variable i as 

- - m Jx-
x,(t; k+ l1k) = x,(t; k) + ~ ak' l1k; 

1-l l 

+O((max l1k;)2). (2) 

The partial derivatives ax,(t)/Jk;, i = I, 2, ... , n, j = 
1, 2, ... , m are the so-called sensitivity coefficients. Much 
of the work on sensitivity analysis has been concerned 
with calculation of these sensitivity coefficients. Sen­
sitivity analysis techniques that rely on calculation of the 
sensitivity coefficients are strictly applicable only to 
small parameter variations since the higher order terms 
in (2) are neglected. 

Although the sensitivity coefficients JxJ ak; provide 
direct information on the effect of a small variation in 
each parameter about its nominal value f; on each state 
variable, they do not indicate the effect of simultaneous, 
large variations in all parameters on the state variables. 
An analysis that accounts for simultaneous parameter 
variations of arbitrary magnitude can be termed a global 
sensitivity analysis. The sensitivity coefficients are local 
gradients in the multidimensional parameter space at the 
nominal value k. A technique that considers the effect of 
simultaneous parameter variations over their actual 
expected ranges of uncertainty produces an average 
measure of sensitivity over the entire admissible region 
of variation and thus provides an essentially different 
measure of sensitivity than that of the sensitivity 
coefficients. Therefore, both types of analysis are useful 
in studying the behavior of a system. 

Figure I shows schematically a hypothetical solution 
surface x,(t; k) over the domain of uncertainty of two 
Q_aramet~rs, k, and k2• The nominal parameter values are 
k1 and k2, and the assumed upper and lower limits of 
variation are indicated producing the domain of un­
certainty in the k, - k2 plane. The resulting range of 
uncertainty in x, is also indicated. The surface shown in 
Fig. 1 is that at a certain time t. Generally the variations 
in the solutions x,(t), i = 1, 2, ... , n must be considered 
as a function of time. The point Q on the solution 
surface represents the magnitude of the solution x, at 
time t with both parameters at their nominal, or best 
guess, values. Varying both parameters over the full 
domain of uncertainty generates the two-dimensional 
solution surface that changes as t changes. The sen­
sitivit_y coefficients, axJ ak I and axJ ak2 , evaluated at f, 
and k2 represent the slopes of the surface in the two 

/2,, / 

Range of Uncertainty 
1n x1( 1) 

Doma,n of Uncertainly 
1n the Porometers {kl 

Fig. I. Hypothetical solution surface over the domain of un­
certainty of two parameters (after Gelinas and Vajlc[8]). 

coordinate directions at point Q. A local sens1t1v1ty 
analysis would focus on calculation of these two deriva­
tives and their time variation. For small displacements 
about the nominal values, the tangent plane at Q differs 
from the actual solution surface only by a small amount. 
In this regime the sensitivity coefficients indicate to 
which parameter the solution is most sensitive. The 
sensitivity coefficients at point Q do not contain in­
formation on the behavior of the surface away from Q 
nor do they indicate the full range of variation of x, in 
the domain of uncertainty of the parameters. The global 
sensitivity analysis is concerned with assessing the 
behavior of the entire solution surface of x, over the 
domain of uncertainty of the two parameters. 

If we have some knowledge of the probability dis­
tributions of the two parameters, p,(k,) and pik2), the 
probability disribution for x, can in principle be com­
puted. From the probability distribution of x,, certain 
statistical properties such as the expected value, 

and the variance, 

(4) 

where 

can be computed. 
In Fig. 2 given assumed probability distributions for 

each parameter, a hypothetical probability distribution 
for the solution is shown. Note that the best value of 
each parameter, the nominal value, may differ in general 
from either the most likely value or the mean value. 
Likewise, the mean value of the solution, (x,-(t)) may not 
correspond to the value at the nominal parameter values, 
i.e. point Q. 

Whether or not the probability distributions for k, and 
k2 are given, the solution surface for x, can be deter­
mined by systematically selecting points in the domain of 
uncertainty of k, and k2 and solving the system to 

Dcmc1n of 
1n the Poromelen 

Unccr10,nt:, 

[II.I 

---:;..- ,,/' ,,,,.,, 
11 

1 /' l;_:./ i</ ,;o• 
~/ 

Fig. 2. Hypothetical probability distribution of solution surface 
corresponding to the probability distributions of the two 

parameters (after Gelinas and Vajlc [8]). 
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determine X;(/; k,. k2), This approach is indicated in Fig. 
3. A sensitivity/uncertainty analysis necessitates some 
form of sampling over the domain of uncertainty of the 
parameters. 

Figure 3 is a schematic illustration of the Monte Carlo 
method of sensitivity analysis. A random number 
generator is used to select values of the uncertain 
parameters within the domain of uncertainty. The system 
is then solved for each of the parameter combinations 
randomly selected. The values of x;(t; kl thus computed 
are analyzed by standard statistical methods. The dis­
tribution of values obtained is shown in Fig. 3 as a 
histogram with mean value (x;). The randomly selected 
points in the domain of uncertainty of the parameters 
can be chosen according to any prescribed probability 
density functions for the parameters. No special pro­
gramming is required, only that needed to select the 
parameter values and analyze the solutions statistically. 

This paper is devoted to a pattern search procedure for 
global sensitivity analysis that is an alternative to the 
Monte Carlo method illustrated in Fig. 3. The method is 
called the Fourier Amplitude sensitivity Test (FAST) and 
was originally developed by Shuler et al. [1-4). 

In the next section the mathematical basis of the 
FAST method is outlined. Then in Section 3 its com­
putational implementation is described. Section 4 con­
tains the description of the computer program and its 
operation. An example drawn from chemical kinetics is 
given in Section 5 to illustrate the use of the program. 

2. MATHEMATICAL BASIS OF THE FAST METIIOD 

The basic problem is to determine the sensitivity of 
each x, to simultaneous variations in all the parameters 
{k;}. This is done by considering that the {k;) have a 
distribution of values resulting from either imprecision or 
uncertainty in their definition. Under these_ conditions, 
the ensemble mean for x, is given by the generalization 
of (3), 

(x,) =I ..·. Ix,(k,, k2, ... , km)p(k,, k2, ... , km) 

dk, dk2, .•. , dkm (6) 

where p is the m-dimensional probability density for k. 
The central idea of the FAST method is to convert the 

m-dimensional integral (6) into a one dimensional form 

:~~;=.1,·. - s---- ~,(t.~)> 

~m,n_ 
, P(\,!_l 

Domain of Uncertainty 

,o!hoPo,ometm>----_--.:__- ,;~ 

/--=;; ,~~•,,•• -,,~ ,,/ I I p( ~) 

k m,n - krno~ 
I /k2/k2/ 2 . 

-
/ 

Fig. 3. Monte Carlo approach to generating the solution surface 
(after Gelinas and Vajk[S]). 
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by using the transformation, 

k, = G,[sin (w,s)]; I= 1, 2, ... , m. (7) 

For an appropriate set of functions {G,}. it can be shown 
that[5] 

1
.i; = (x;) = lim T r x;[k,(s), k2(s), .... km(s)] ds. (8)

T- 2 J-T 

This relationship will hold only if the frequency set. {w,}, 
is incommensurate. i.e. 

rm 

y,w; =O. (9) 
j-.,1 

for an integer set of {y;} if and only if 'Y; =0 for every i. 
The functions {G,) need to be chosen so that the arc 
length, ds, is proportional to p(k,, k2, ..• , km) dk, for all 
/. The transformation then results in a search curve that 
samples the parameter space in a manner consistent with 
the statistics described by p(k,, k2, ...• k.,, ). 

The parametric curve defined by (7) is termed a search 
curve, ands is termed the search variable. Ass is varied, 
(7) traces out a space filling curve in the parameter space. 
If it were possible to use an incommensurate frequency 
set, the curve would never close upon itself and would 
pass arbitrarily close to every point in the parameter 
space. This result is a consequence of Weyl's theorem. 
When integer frequencies are used, it is not possible to 
obtain a truly incommensurate frequency set and the 
search curves take on the appearance of multi-dimen­
sional Lissajous curves. The use of higher frequencies 
results in successively longer search curves. Two exam­
ples are shown in Fig. 4 and 5. The length of the search 
curve and the density of sample points is consideiably 
greater in the second case. 

Practical considerations dictate that an integer rather 
than an incommensurate frequency set must be used. 
This introduces two types of error. First, the search 
curve is no longer space-filling, i.e. it does not pass 

l___j____j__________-:'::-_ ,, 

I, 
= k e:ir.p(-; sin{w s)) 

k2 :: k2 (I + v2 sin(w2 s) 1 
k 1 1 1 1 

Fig. 4. Search curve with frequencies w1 = 3, w2 = 5. 
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,ok, 

k1 ; k1 exp [ ;- sin(1.1.1 1 >]
1 1 

= k [ 1 • Y sin (w s)}k2 2 2 2 

w • [ 11 ,13] N • !13 

Fig. 5. Search curve with frequencies w1 = 11, w-z = 13. 

arbitrarily close to any point in the k-space; secondly, 
the fundamental frequencies used to describe the set {k,} 
will have harmonics that interfere with one another. 
However, the differences between i and (x) for a well 
chosen integer frequency set can be made arbitrarily 
sma11[2,3]. 

An integer frequency set results in a periodic search 
curve that becomes a closed path in the s-space. When s 
is varied between - 1r and + 1r, the entire search curve is 
traversed. The periodicity of the {k,} then implies that the 
Fourier coefficients 

A~~,=-2
1 Irr <,[k,(s), ... ,km(s)]cos(pw,s)ds 
1T -rr 

p =0, 1,2, ... (10) 

B~~, = -
1 Jrr x;[k,(s), .... km(s)] sin (pw,s) ds

21T -rr 

p = 1,2,... (JI) 

are a measure of the sensitivity of the x,- output function 
to the kth uncertain parameter. For instance, in the case 
where x, is totally insensitive to a given parameter, the 
coefficients corresponding to that parameter would be 
zero. 

The ensemble average, 

(12) 

can be expressed in terms of the Fourier coefficients as 

(13) 

The variance of x, is then 

O';2 _- - J Irr X;2 dS - (X; )2 . (14)
21T -rr 

Parseval's theorem can then be used to determine the 

variance of x,, i.e. 

The variance and harmonics due to w, are expressed by 

(16) 

The normalized sensitivity measure, the partial variance, 
s~;. is then defined by the ratio of the variance due to 
frequency w, to the total variance, 

(17) 

Thus the {s~;} represent an ordered measure of the 
sensitivity of the system to each of the {k1} parameters. 

The FAST method requires that the system be solved 
to produce the output state variable values, the Fourier 
coefficients and subsequently the partial variances. 

3. COMPUTATIONAL IMPLEMENTATION OF THE FAST ALGORITHM 

Application of the FAST method requires the numeri­
cal evaluation of the Fourier coefficients, A~~, and B~~,­
This in turn requires the x, be evaluated as s ranges over 
[ - 1r, 1r]. Restricting the frequency set to odd integers 
reduces the range of s to [ - 1r/2, 1r/2]. In this case 

x(r.- s) =x(s) 
x(-1r+s)= x(-s) 

xG+s)=x(f-s) 
x(-f+s)=x(-f-s) (18) 

and the Fourier coefficients can be expressed as: 

l
O ; j odd 

A<'>_ (19); - I rr12 
-:;: { [x,(s) + x;( - s)] cos js ds; j even 

and 

lO ; j even (20) 
s<'>-; - I frr12 . 

-:;: Jo [x,(s)- x,( - s)] sin js ds ; j odd. 

The actual number of points at which the system must be 
evaluated can be derived from the Nyquist criterion[6], 
and is found to be · 

(21) 

Where r is the number of solution points and N an even 
integer. For convenience in calculating the Fourier 
coefficients, the additional condition 

2r = 4q +2 (22) 

where q is an integer is also imposed. The values of s are 
taken to be equally spaced throughout the range [ - 1r/2, 
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1r/2], and the discrete points at which x, is calculated 
in the Fourier space are given by 

_ 1r [2j - r -s-- ---I] j = I, 2, __ ., r. (23)/ 2 r 

The following difference expressions for Fourier 
coefficients can be derived by a simple numerical 
quadrature technique [4, 7], 

A/= 0 Uodd) (24) 
B,' =0 Ueven) (25) 

A/ = 2/+ 1 [xo' + .t (x.' + x ~.) cos (2;j! 1) l (j even) 

(26) 
B' _ l f ~ , , . ( 1rjk )l . 

; - 2q+l l.":', (x. -x_.)sm 2q+I J Uodd) 

(27) 

where x' replaces x, for notational purposes. 
Interference between the frequencies will occur as a 

result of this numerical evaluation when 

QW; =pw,[Mod (Nwm,x + I)] (28) 

which results in 

(29) 

since 

sin [ 1rqw; ] = + sin [ 1rpw, ] (30)
Nwmax + J - Nwmax +1 

and 

COS [ 1TQW; ] = + COS [ 1rpw, ] (31)
Nwmax +1 - Nwmax + I · 

This interference, called aliasing, is eliminating when 

rw, :5 Nwmax + I . (32) 

N is therefore the maximum number of Fourier 
coefficients that may be retained in calculating the partial 
variances without interferences between the assigned 
frequencies. The expression for s~: then becomes 

Interference will also result from the use of an integer 
frequency set if the number of Fourier coefficients N 
used in the summation (33) is greater than or equal to the 
smallest frequency. To illustrate this consider (33) for the 
frequencies w, and w1,, 

If N;;:: w,, terms in the series for S<;/ and S~l- become 
identical. For example, if N = w., and if w1- > w1, there 
will be a term in the s~:- series for which 

In such a case, the effect of the variation of parameter / 
enters spuriously into the partial variance for the varia­
tion of parameter /'. 

In general, the interference between the higher har­
monics will be eliminated when 

(37) 

N is also related to the number of function evaluations 
required by (21), so it is desirable to use the minimum 
possible value, which is N = 2. Then a minimum 
frequency of at least three is sufficient to remove any 
harmonic interference effects from the partial variances. 
The final expression for the partial variances then 
becomes 

(38) 

The choice of N = 2 restricts the number of terms in the 
series to two. This is generally sufficient because the 
magnitude of the higher order terms in the Fourier series 
tend to decrease rapidly. 

Implementation of the FAST technique also requires 
the selection of a frequency set, which can be done 
recursively using 

w, =O. (39) 
Wi =Wi-1 +dn+l-i (40) 

as described in Cukier et al. [4]. The n. and d. we have 
used are tabulated in Table 1. 

The final step in the FAST implementation is the 
determination of the transformation function {G,} that 
determine the actual search curve traversed in s-space. 
If the probabilities of occurrence for the parameters {k,} 
are independent, the probability density describing their 
effects has the form, 

In this case it can be shown that the transformation 
functions must obey the relation[5] 

1r(I - x2)112p,(G,) dG,(x) = I (42)
dx 

with the initial conditions G,(0) = 0. A tabulation of four 
different search curve formulations and their transfor­
mation functions is given in Table 2. 

The parameter probability distributions used to derive 
these curves are described in Cukier et al. [3]: The first 
search curve is suitable for cases with small variations in 
the uncertain parameters while the second and third are 
applicable to cases with large variations. 

4. PROGRAM DESCRIPTION AND OPERATION 
A flowchart of the FAST program is shown in Fig. 6. 

There are two user interfaces with the program. One is 
the input data set which contains the following in­
formation; program description cards, control cards, 
analysis times (optional), and parameter cards. The 
second interface is a user supplied subroutine, called F, 
that calculates the state variable values for a given 
parameter combination. When the state variables must 
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Table I. Parameters used in calculating frequency sets free of interferences to fourth order 

g 
n n n n 

N {l d !, d 

l 0 4 26 385" 416 
2 8 27 157 106 
3 l 6 28 215 208 
4 5 10 29 449 328 
5 11 20 30 163 196 
6 l 22 31 337 382 
7 17 32 32 253 88 
8 23 40 33 375 348 
9 19 38 34 441 186 

JO 25 26 35 673 140 
11 41 56 36 773 170 
12 31 62 37 875 284 
13 23 46 38 873 St8 
14 87 76 39 587 302 
15 67 96 40 849 438 
16 73 60 41 623 410 
17 85 86 42 637 248 
15 14 3 126 43 891 448 
19 149 134 44 9~3 388 
20 99 112 45 1171 596 
2l 119 92 46 1225 216 
22 237 128 4 7 1335 100 
23 267 154 48 1725 488 
2:. 283 196 49 1663 166 
25 151 34 so 2019 0 

Table 2. Search curves for Fourier Amplitude Sensitivity Test computer program 

APPLICATION •· ( •ll 

•-MEAN V.,LUE .. 
J 

NCMtNAI.. VALUE -;-
J 

AOOITl\.'i: VA.Rlt.TION l'&i(") • rJr + ;J sin ·1 a] 

• J 

~ 
2 

1 
~ 
l + i/

J J 

(XPON::NTIAL VARIATION t 1(ss)sk1 up[; s1n.-Js]1 ~ 
l J t In(f) 

PROPO~TIONA'... VAR!ATION 

. -it: Oil )it" ('·)__,.
I J I j Q 

k /s> • i exp [,.J 11n .,.J 1]
1 •, Jr, <ol 

SKEWC:::: \/ARIATIQ~ 

•, > (~; <) 
k Csl • • 
l l •·) t [,•~ I ~ +.r 

a j ( ru + r 1 - 2 ) 

c,u _,1 > 

be calculated numerically, the user must also provide a 
subroutine to perform this function. For chemical kinetic 
applications several existing differential equation solvers 
can be easily adopted. 

The input information is stored in an array called P. 
Subroutine F must access P in the same sequence that 
the parameters were specified on the input cards. The 
state variables calculated in the F subroutine are retur­
ned in an array named C. The structure of this array is 
shown in Fig. 7. An example of subroutine F for the 
sample problem in Section 5 is given in Fig. 8. The 
detailed fields and formats for the input file are shown in 
Table 3. 

The default for the number of analysis times is one, 
and the default for the number of terms in the partial 
variance series is two. If this latter default is to be 
changed, care must be exercised to be sure that the 

number of points at which x and the Fourier coefficients 
are evaluated is also modified so that interferences be­
tween the parameters will not occur. 

Five files can be accessed during execut(on of the 
program. These are described in Table 4. Whenever the 
option to save the results is used, both file IDOUT and 
file !DISC must be allocated. IDOUT must be allocated 
when the reanalysis option is specified, and IDPLT must 
be allocated when the option to plot the partial variances 
is used. ICARD and IPRIN must be allocated at all 
times. 

Several of the arrays used in the FAST program can 
become quite large for problems involving several 
parameters, output state variables and/or analysis times. 
The default sizes for the program arrays are given in 
Table 5. The program tests the input requests to deter­
mine if the fault storage is sufficient, if not, the program 
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'itl~ER OF .:.'iAJ..YSIS Tr"IES ;'.1iEGEll 
A.:1:.:1:AY OF A"IA!.YSJS TIMES li[ti._ :.='RAY 
CL:P.RENT ::>A~A.~TER l~:'£G~::? 
CO~rNAT!O~ NU~ER 

'iPARM %"!BER OF ;:i~R~T[RS !'iTEGER 
p ArlRAY OF PAlt~ETER VALUES -l[AL ARRAY 
NS TAT ~l.11'1'BER OF OUTPUT y;i_RJABLES I~':'£GEi:! 

OUTPUT VARTABLE DESCRIPTION ·;,:,::i;ABLE TYPE 

ARRAY OF STATE VA~:~BLE 
VALVES FOR E"CH ANAUSJS Tl~E 

DIMl:•SIOI< Tlllf(,T). P(SPASM), C(NSTAT) 

F FOR TEST PROBLEM A + X ~ ZX 

XO•P( I) 
I • ~•v: ... ••1 ·..: ""'""" ~·•..a.,.. AO~P ( 2) ! :•::;: • .;:.. ....CC AOIQ ,;.:;(""=(•T 

A •P( J) 
I -:•,:1A.•'C •'<I·~ .....T'-'IL B ·>(4)........::,~ TA 0 P{5) 

SOLVE THE SYSTEM 

DO 10 J"l ,rH 

T•T!ME(J) 

<\ATE • <•EXP(-BJT,) 

S - i.O I 
(l,O + (l.O - .(Q )•OP( .::;.n • ~o ":' ',\0)

Fig. 6. Fourier Amplitude Sensitivity Test program. 
STORE THC. SOLUTION nJ 'HE 0..:IPUT :.~;:i,;y 

INT:(J- l )•NS TAT 
C ( l :;O+ l) ~ S 

10 C0N'.1'UE 
C 

Fig. 8. Description of subroutine F. 

1st analysis tirre 

j_th analysis 

mth analysis 

Output Array Array Index 

N+! 

N+2 

N +N 

i N+l"1 

iN+2"2 

u iN+N 
n 

"1 

"2 

NxM 

time 

time 

Fig. 7. Structure of the output array C 

will terminate and write an error message describing 
which arrays rquire enlargement. 

5. SAMPLE PROBLEM 

To illustrate the use of the FAST program, a simple 
example consisting of a single, autocatalytic reaction, 

is considered. The concentration of X is governed by 

d~~] = k1[A][X]- k,[X]2 

[X(O)] = [X]o, 

If we assume that [A] is constant, the dimensionless 
concentration 

can be defined, and the differential equation solved to 
yield 

For the purposes of sensitivity analysis, we express k1 in 
the Arrhenius form, 
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Table 3. Input fields and formats 

Problem Description Cards 

72Al 

72 

Col 1-72. Descriptive text. Nllliler of cards is optional. The end 
of the text is indicated by a • in c;ol 1 of the last description card. 

Control Card 

I I I I I I I I I I I I I I 
75 

Col. Description 

1-5 number of analysis tiITES 
6-10 nunber of input parameters 
11-15 nunber of output state variables 
16-20 nunt>er of terms in the partial variance s..ii (default 2) 
21-25 option to print amplitudes 
26-30 option to print parameter cont,inations 
31-35 option to print state variable outputs 
36-40 multiplier Nin ll=Nlooin x+l (default 2) 
41-45 option to print unsoried partial variances 
46-50 option to save state variable outputs on disc file 
51-55 option to reanalyze state variable outputs 
56-60 option to plot partial variances 
61-65 option to renormalize partial variances for plotting 
66-70 option to print partial variances during reanalysis 
71-75 option to print sorted partial variances during plotting 

Analysis Times (Optional) 

B 
1 10 

Descri tion~ 

1-10 Analysis time. Nunber of cards required is determined by 
the nurroer of analysis times entered in the control card. 
(These cards may be omitted if the number of analysis 
times entered on the control card is zero.) 

Parameter Card 

FlO.O SOAl15 115 IF!O.O 

11 80 

Descri tion~ 

1-5 Parameter nllliler. This numer is the array index used for 
the P array in Subroutine F. The frequency assignment is 
done in the order in which the parameter cards are input. 
If an alternative frequency assignment is desired, the order 
in which the parameter cards are input should be changed, 
but not the parameter nurroer. 

6-10 Search curve type 
0 = Fixed Parameter 
1 = Small Parameter Variation 
2 = Large Parameter Variation 
3 = Parameter Variation Expressed as Fractional Change 

11-20 Lower parameter limit or fixed parameter value 
21-30 Upper parameter limit (type 1) or scale factor (types 2 and 3). 
31-80 Parameter Description. 
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Table 4. Files used by FAST program 

Name Unit Nunt>er Description 

IOOUT 

!DISC 

IDPL T 3 

ICARD 

IPR!N 

Reanalysis file. When the option to save 
the results is used, the output values are 
stored on this file. When the reanalysis 
option is used, the state values from this 
file are read as input. 

Save file. When the save option is on, all 
other program information including the par­
tial variances is written to this file for 
1ater use. 

Plot file. All information required for 
plotting is stored on this file during pro­
gram execution and read back during the 
execution of the plot routine. 

User's input file. 

Output print file. 

Table 5. FAST program array default sizes 

Defaui t Size 

Array Description Size Variable 

!VARB 

!TYPE 

UBAR 

PBAR 

PV 

INDEX 

PARM 

DESC 

IW 

TIME 

OUTPT 

FI 

NVMAX 

NPMAX 

NTMAX 

NOMAX 

NSMAX 

NEQN 

NSTAT 

Variable Numbers JOO 

Variable Types JOO 

Nominal Values 100 

Mean Values 100 

Variances JOO 

Sert ,1'1,rray 100 

Parameter Corrilinations 100 

Parameter Descriptions (48,JOO) 

Frequency Set 50 

Analysis Times 50 

Parameter Output 200 

Outpst for A11 2000 

Parameter Cambi nations 

Max Number of Input Parameters 

Max Number of Variable Parameters 

Max Number of Analysis Times 

Max Storage for Each Parameter Combination 

Max Storage for A11 Parameter Cont>inations 

Number of Solutions for Each Cont>ination 

Nuniler of State Variable Outputs 

NVMAX 

NVMAX 

NVMAX 

NVMAX 

NVMAX 

i'i~MAX 

NVMAX 

NVMAX 

NPMAX 

NTMAX 

NOMAX 

NSMAX 

JOO 

so 

50 

200 

2000 

no limit 

no limit 

We wish to examine the sensitivity of [X) to [X)0, [A], Iai I_ ak;t,.k,
B1, C1, and T from t = 0 to t = 2. The nominal values and 
ranges of variation of these five parameters are given in p.(t}-mlai 1· 
Table 6. L ak Ilk; 

1=1 J 

Figure 9 shows the first-order normalized sensitivity 
coefficients as a function of time evaluated at the Figure IO presents the partial variances for the 5 
nominal values of Table 6. These are defined by parameters as determined by the FAST method with the 
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Table 6. Parameter variations for autocatalytic system 

Parameter Nominal Value Range of Uncertainty 
(_:5:) 

[X]o 0.15 0.1425 - 0.1575 

[Al 1. 73 l. 644 - 1.817 

sf 1.0 0. 95 - 0.105 

cf 165. 0 156 .8 - 173.3 

T 300.0 285. 0 - 315.0 

(/) 

1-­z 
w 
Q 
LL 
LL 
w 0.75
0 
(.) 

>-
I-

~ 0.5 
!:: 
(/) 

z 
w 
(/) 

o 0.25 
w 
N ~ CrondT 
~ ~---------.:..!:..-=_:_--1 
er 0'------'------...L.______..,______.,_________, 

0 2 0.4 0.6 0.8~ 0 

Fig. 9. First-order sensitivity coefficients for the reaction A+ X:;:::!2X. 

(/) 

w 0.75 
u 
z 
<!: 
Ei:: 
§ 0.5 

l;al_J 

~ 
I-
er 
<!: 

0.25a.. 

0 
0 0 2 0.4 0.6 0.8 

Fig. 10. Partial variances from the FAST method for the reaction A + X :;:::!2X. 

± 5% variations of Table 6 using search curve 1 of Table are the same, the partial variances of (A] and B1 and C, 
2. We note first that the first-order sensitivities of [X] to and T are identical, as seen in Fig. 10. The qualitative 
variations in [A] and B1 are identical bec~use these two results of both the first-order sensitivity coefficients and 
parameters appear as a product in [X]. The same the FAST partial variances are the same, although the 
behavior is noted for C, and T. As long as the un­ relative magnitudes differ somewhat. A difference in 
certainty ranges chosen for these two sets of parameters relative magnitudes is expected since the first-order sen-
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sitivity coefficients are computed at the nominal values, 
whereas the FAST partial variances involve simul­
taneous variation of all five parameters over their range 
of uncertainty, in this case ± 5%. Both sets of cal­
culations show that [X] is most sensitive to [A] and B1. 

Note that the FAST method shows that the sensitivity of 
[X] to [Xlo close to t =0 is larger than indicated by the 
first order sensitivity coefficient. 

Acknowledgement-This work was supported by U.S. Environ­
mental Protection Agency grant R805537. 

NOMENCLATURE 

A constant chemical species 
A)'l jth Fourier cosine coefficient for the ilh state variable 
B, pre-Arrhenius rate term 

B\'l jth Fourier sine coefficient for the ith state variable 
c, activation energy term 
d. frequency set generation parameter 

/(x; k) general system function 
01 transformation function 

forward rate constant 
k, ith uncertain parameter
k/ lower limit of ith uncertain parameter 
k," upper limit of ith uncertain parameter 
k, reverse rate constam 
m number of uncertain parameters 
n number of state variables 

N number of Fourier coefficients 
p(k) probability distribution of the uncertain parameters k 

q quadrature index 
r number of numerical solution points 
r ratio of parameter lower limit and mean value 
r" ratio of parameter upper limit and mean value 
s Fourier space variable 

k1 

s- discrete Fourier' space variable 
S\'1 partial sensitivity of the ith state variabie to the jth 

uncertain parameter 
T temperature 
x state variable 

x/ the value of the ith state variable at the kth numerical 
solution point 

X chemical species
X normalized chemical species 

search curve parameter 
{31 search curve parameter 

a-,2 partial variance of the ith state variable 
p; normalized linear sensitivity coefficient for the ith state 

variable 

a1 

Fourier frequency assigned to the jth parameter 
,;1 nominal value of the jth uncertain parameter 

w1 

n. frequency set generation parameter 
() ensemble average quantity 
- time average quantity 
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10.5 Application of the Fourier Amplitude Sensitivity Test to 
Atmospheric Dispersion Problems 

A major advantage of the Fourier Amplitude Sensitivity Test (FAST), 

introduced in the previous section, is that it enables a formal study 

of the relative influences of large parameter variations in nonlinear 

systems. As such the method is ideally suited for examining the effects 

of parameter uncertainties on the predictions of atmospheric dispersion 

models. In this research the system of most interest is the atmospheric 

diffusion equation. 

l£.
3t 

+ 'v• (_uc) 'v•(_!'vc) + R(c) (10.22) 

This equation describes the formation and transport of photochemical 

air pollution. The parameters and processes of most importance are: 

advective transport by the flow field,~, turbulent diffusion charac­

terized by the eddy diffusivities, _!, and the chemical reactions R(c). 

In addition the source emissions, which enter the system (10.22) through 

the boundary conditions, have a major impact on the calculated results. 

This section discusses the application of two sensitivity analysis 

methods to a simplified representation of the full, three-dimensional 

airshed model. 

While a complete sensitivity analysis of (10.22) has not as yet 

been undertaken, some preliminary steps have been made by studying 

individual elements of the basic model. For example, Falls et al. (1979) 
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investigated the influence of parameter variations on the predictions 

of a photochemical reaction mechanism. The results of that study are 

presented in Section 10.6. Koda et al. (1979a) used the FAST method to 

examine the effects of uncertainties in specification of the vertical 

turbulent transport, The system considered in their work was the one-

dimensional form of (10.22) 

dC a dC
K (10.23)

clt dZ zz dZ 

with the boundary and initial conditions given by 

K = Q (10.24)~,zz dZ 
z = 0 ~, 
z z. 

0 (10. 25)
dZ 

l 

c(z,O) = 0 (10. 26) 

The principal finding from their study was that the concentration predic­

tions were most sensitive to variations of the turbulent diffusivity, 

K(z), close to the surface, In passing it is worthwhile to mention that 

this physically realistic result was also found when the direct and 

variational sensitivity analysis methods were applied to the problem. 

Perhaps the most commonly employed form of (10.22) is the simple 

Gaussian plume approximation introduced by Pasquill (1961) and implemen­

ted in the well known workbook of Turner (1970). This formulation 
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is a good example to illustrate an application of the FAST method 

because the model can be solved analytically, it is widely used in 

practice and has not been subjected to extensive sensitivity analyses. 

The model can be derived from (10.22) by invoking the following 

assumptions: steady conditions, a uniform wind speed, u, in the x-

direction, constant diffusivities, no chemical reaction and that 

transport in the flow direction is dominated by advection. Under these 

restrictions (10.22) can be written in the form 

2
3c 

u- = K ~+ K (10.27)3x zzyy 3y2 

A suitable set of boundary conditions for an initially pollutant free, 

unbounded atmosphere with no absorption at the ground is given by 

K 3c I = 0 (10.28)
zz 3z z = 0 

c(x,y,z)=O; x,y ➔ ±_ co (10.29) 

If a single source of strength Q is located at an elevation H above 

the surface then the solution of the system (l0.27- 10.29) is given by 

2 2
Q uy

c(x,y,z) u(z-H) } { u(z+H/}]exp - 4xK + exp - 4xK4xK } [ {4nx-VK K yy zz zz
YY zz 

( 10. 30) 

https://l0.27-10.29
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In most applications the plume spreading is characterized in terms of 

the distance downwind from the source and as a result the diffusivities 

employed in (10.30) are often replaced by expressions of the form 

2 
0 = 2K t (10.31)

y yy 

2 
0 = 2K t (10.32)

z zz 

The basic Gaussian plume model for the ground level concentration is 

then given by 

(10.33)
C (x,y) = _ _,_Q_ 

TTUO CT 
y z 

The dispersion coefficients o and o are determined from field experi-
y z 

ments and are typically expressed in the form (Gifford, 1976) 

b 
o = ax (10.34) 

where a and bare constants which depend on the atmospheric stability. 

The coefficients used in the Turner Workbook are based on the initial 

work of Pasquill (1961) and Gifford (1961). While the values are often 

applied to a large range of stability and wind speed conditions, they 

were originally intended for use only under rather limited conditions: 

wind speeds greater than 2 m/s, nonbuoyant plumes, flow over open 

country and downwind distances of only a few kilometers (Gifford, 1976; 

Pasquill, 1976). In a study of the Gaussian model, Weber (1976) has 
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shown that the dispersion coefficients and the release height are some 

of the most critical parameters. Miller et al. (1979) reached a 

similar conclusion after an examination of field measurements. In an 

attempt to improve the predictions Lamb (1979) used Lagrangian similarity 

theory to describe the dispersion under unstable conditions. So far 

relatively few systematic studies have been made of the influence of 

parameter uncertainties on the predictions of the Gaussian model. 

Because of the simple form of (10.33) it allows a straightforward 

evaluation of the partial derivatives of the concentration with respect 

to the different model parameters. These expressions are given by: 

3c C (10.35)
3Q Q 

3c C (10. 36)
dU u 

k cH (10.37)
3H z2 

JC C - [cl/ - l] (10.38)
,'""C -:: -: 0 

y y y 

:,c C [ ( ~ ) 2 - l] (10.39) 
v• a zz 

~ 

z 

b 
ax then 

(10.40) 



453 

dC (10.41)
clb 

where CT can be either CT or CT. Given the system (10.35 - 10.41) it is 
y z 

possible to define a set of normalized sensitivities at each downwind 

distance. 

I clc (x) 
I elk. 

l 

P. (x) i=l,2, ... ,m (l0.42) 
l 

The expressions, Pix), are analogous to the partial variances associated 

with the FAST method, however it is important to note that the partial 

derivatives are a local representation of the model sensitivity. The 

conditions chosen for the study are shown ;n 'T',::,1'1a 1n.?. 

Figures 10.6-10.8 depict the results of three calculations, two 

involve small perturbations and the other large variations in the model 

parameters. The first two cases were chosen to provide a means of 

comparing the FAST method with the linearized approximation (10.35 -

10.41). As expected both approaches produced similar results. Close 

to the source the major influence on the ground level concentration 

is from the vertical dispersion and in particular the coefficient b(CT ).
z 

Further downwind; at the location of maximum impact, the model predictions 

are most influenced by the horizontal dispersion and the source height. 
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TABLE 10.2 

Parameters Studied in Gaussian Plume Model 

PARAMETER (k) NOMINAL VALUE k(O) LARGE PARAMETER RANGE 

Source Strength (g/s) 100 50 - 200 

Wind Speed (m/s) 5 2.5 - 10 

Release Height (m) 10 5 20 

32.0 16 64 
0 (m) = ax z 

b {: 0.84 0.42- 1. 68 

67.9 34 - 136 
0 (m) ax 

b 
y {: 0.93 0.47- 1.86 

Note: the 0 and 0 values correspond to Pasquill-Gifford stability 
class

2 
D and have been extrapolated from Turner (1970). 

https://0.47-1.86
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In the far field,dispersion still dominates the concentration levels 

however the effects of wind speed and source strength are more apparent. 

The oscillation in the sensitivity coefficients associated with 0 
z 

arise from the sign change which occurs in (10.42) when the downwind 

distance, x, exceeds the value (H/a)l/b_ The only major difference 

between the small and large variation cases is that the relative roles 

of 0 and 0 are reversed. 
y z 

The results of the sensitivity analyses have important practical 

consequences. For the chosen condition both the effective release 

height and the dispersion coefficients have a major impact on the 

grotmd level concentration. Each of these parameters i? strongly 

influenced by the vertical temperature structure. As a result the 

parameters, and in turn the model prediction,are quite dependent on 

the accuracy of the procedures adopted to characterize the atmospheric 

stability. Considering the known limitations of the Pasquill-Gifford 

stability classification scheme the findings of this study suggest that 

more attention needs to be given to developing better estimates of the 

plume rise and turbulent dispersion coefficients. Additional work 

is required to analyze the sensitivity of the complete atmospheric dif­

fusion equation. The following section presents a detailed evaluation 

of the chemical reactions embedded in the airshed model. 
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10.6 Sensitivity and Uncertainty of Reaction Mechanism for 
Photochemical Air Pollution 

(Reprinted from Int. Journal of Chemical Kinetics, 11_, 1137-11620) 
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Sensitivity and Uncertainty of Reaction 
Mechanisms for Photochemical Air 

Pollution 

ANDREW H. FALLS, GREGORY J. McRAE, and JOHN H. 
SEINFELD 

' Department of Chemical Engineering, California Institute of Technology, Pasadena, 
California 91125 

Abstract 

A sensitivity/uncertainty analysis is performed on a mechanism describing the chemistry 
of the polluted troposphere. General features of the photochemical ·reaction system are 
outlined together with an assessment of the uncertainties associated with the formulations 
of mechanistic details and rate data. The combined effects of sensitivity and uncertainty 
are determined using the Fourier amplitude sensitivity test (FAST) method. The results 
of this analysis identify the key parameters influencing the chemistry of N02, 0 3, and PAN. 
Based on these findings, a series of recommendations are made for future experimental kinetic 
studies. 

Introduction 

A key problem underlying the development and evaluation of kinetic 
mechanisms for atmospheric chemistry is determining the sensitivity of 
the concentration predictions to those uncertain aspects of the reaction 
scheme. Such a determination can serve as a valuable guide for future 
experimental studies and for identifying those parameters that, when varied 
within accepted bounds, will be most influential on the predictions of the 
mechanism. 

Although the qualitative aspects of the chemistry of the polluted tro­
posphere appear to be reasonably well understood, ther~ are many im­
portant details that still need to be investigated before a complete quan­
titative understanding of the photochemical -smog system is possible. 
Several groups [1-7] have formulated chemical reaction mechanisms for 
polluted tropospheric chemistry. Some of these are based on specific 
surrogate hydrocarbon chemistries [1-4]. In others, attempts have been 
made to simulate the complex ambient atmospheric system by representing 
the general features of the hydrocarbon chemistry [2,5-7]. All mechanisms 
contain aspects of uncertainty, whether in unknown rate constants, in the 
importance of competing reaction paths, or in the manner ofrepresenting 

International J.ournal of Chemical Kinetics, Vol. XI, 1137-1162 (1979) 
© 1979 John Wiley & Sons, Inc. · · 0538-8066/79/0011-1137$01.00 
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the reaction of a generalized species. The measure of the accuracy of a 
mechanism is usually based on the extent of agreement between predicted 
concentration profiles and those generated experimentally in smog 
chambers. 

Even though the mechanisms [1-7] currently under study differ in de­
tails, the basic structure and qualitative behavior of each is similar. Thus, 
a separate study of the sensitivity of each of the mechanisms is unneces­
sary. 

The object of this work is to examine closely the sensitivity of mecha­
nisms for photochemical smog to those aspects of the chemistry that are 
currently uncertain. In doing so, it is hoped that certain general features 
of the photochemical system will emerge; features that are common to all 
mechanisms and for which estimates of the effect of uncertain parameters 
will be valuable. A similar study was carried out by Dodge and Hecht [8] 
in 1975 using the Hecht-Seinfeld-Dodge mechanism [9]. The mechanism 
of Falls and Seinfeld [7], which includes the latest available information 
on rate constants, reactions, and has all of the major features present in the 
lumped mechanisms of Whitten and Hogo [2], Gelinas and Skewes-Cox 
[5], and Martinez et al. [6] is used in this work. Sensitivity analyses are 
carried out using the Fourier amplitude sensitivity test (FAST) method 
of Shuler et al. [10], as described by Koda et al. [11]. Only a brief discussion 
of the method is given- here; extensive details are available in the cited 
references. 

This work begins with a brief discussion of the chemistry of photo­
chemical smog, aimed at elucidating the general structure of the system 
within which mechanistic and kinetic uncertainties will be evaluated. Next, 
based on published reports of measured rate constants and product dis­
tributions for individual reactions, the uncertainty associated with each 
element of the Falls and Seinfeld mechanism [7] is estimated. The sensi­
tivity analysis method is then described briefly, with emphasis on the im­
plementation of the parameter uncertainty bounds and interpretation of 
the results. Finally, the results of the sensitivity analysis are presented 
and discussed in detail, leading to a ranking of the most influential elements 
of the mechanism based on the combined effects of uncertainty and sen­
sitivity. 

Photochemical Smog Chemistry 

N02, NO, and 03 participate in the well-known cyclic set of reactions 
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In the absence of significant competing reactions, a photostationary state 
is reached among reactions (1)-(3) in which the steady-state ozone con­
centration is given by [03] 5s = k1[N02]/k 3[NO]. However, if a process other 
than that in reaction (3) can convert NO to N02 without consuming a 
molecule of 03, the ozone concentration will increase due to the increase 
in the N02/NO concentration ratio. 

The two main processes by which NO is converted to N02, without the 
loss of ozone, involve the hydroperoxy radical H02and peroxyalkyl radicals 
R02 via 

H02 + ,NO _,. OH + N02 

R02 + NO - RO + N02 

Hydroperoxy and peroxyalkyl radicals arise in the photochemical smog 
system from the photolysis and oxidation of hydrocarbon species. 

One source of peroxy radicals is from the photolysis of aldehydes that 
originate in the atmosphere both from emissions and as the products of 
chemical reactions. Formaldehyde photolysis, at wavelengths less than 
370 nm, proceeds by either a molecular or a radical path: 

HCHO + hv - H2+ CO 

-H+HCO 

Both hydrogen atoms and formyl radicals react rapidly with 0 2to produce 
H02 and H02 + CO, respectively. (There is still some disagreement con­
cerning the HC0-02 reaction products; however, most evidence indicates 
that the products are H02and CO.) Higher aldehydes also photodissociate 
to give alkyl and formyl radicals: 

RCHO + hv-R + HCO 

In addition to their photolysis, the reaction of aldehydes with OH serves 
as an important radical source and chain carrier. Hydroxyl radicals are 
generally thought to abstract the aldehydic H atom from aldehydes: 

OH + RCHO - RCO + H20 

Oxidation of hydrocarbon species provides another source ofhydroperoxy 
and peroxyalkyl radicals in the atmospheric system. The key species in 
the initial oxidation of hydrocarbons is the hydroxyl radical, the major 
sources of which are indirect chain-related processes such as the photolysis. 
of aldehydes and the reaction of 0 3with olefins which lead to OH radicals 
through the reaction of H02 with NO. Minor sources of the hydroxyl 
radical include the photolysis of nitrous acid, the photolysis of hydrogen 
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peroxide, and the reaction of water with singlet oxygen atoms (0(1D)) which 
originate from the photolysis of ozone: 

HONO + hv-OH + NO 

H202 + hv - 20i-I 

03 + hv _,. 0(1D) + 02(11.lg) 

O(lD) + H 20- 20H 

Hydroxyl radical attack on hydrocarbons leads eventually to a variety 
of peroxy radicals, such as peroxyalkyl, peroxyacyl, and hydroxy-peroxy­
alkyl radicals. These radical species convert NO to N02, thereby producing 
ozone, and also serve as sources of alkoxyl, acyl, hydroxy-alkoxyl, and hy­
droperoxy radicals. 

Major Uncertainties in Photochemical Smog Chemistry 

With the recent elucidation of the chemistry of the reactions of OH and 
H02 with NO and N02 [12,14,15], the inorganic portion of the photo­
chemical smog mechanism is now, by and large, well understood. Table 
I lists the mechanism under study along with its associated uncertainties. 
Figure 1 shows the structure and species interaction within the reaction 
mechanism. Uncertainties to be discussed here include: 

(a) Photolysis rates 
(b) Alkane-OH product distributions 
(c) Olefin-OH and olefin-03 product distributions 
(d) Aromatic chemistry 
(e) Alkoxyl radical reactions 
(f) ROx/NOx reactions 
A major uncertainty in the mechanism lies in the values of the photolysis 

rate constants. For analyzing smog chamber data, photolysis rate constants 
relative to the reported value for N02 are frequently used. Photolysis rate 
constants as a function of wavelength can be calculated from 

where 

k j = photolysis rate constant for species j 
o-1(A) = absorption cross section of species j 
<f,1(A) = quantum yield for the photolysis of species j 
I (A) = actinic irradiance 

Data applicable to some atmospheric systems have been compiled by 
Schere and Demerjian [26). For species such as N02, HONO, and 03, for 
which extensive experimental determinations of absorption cross sections 

https://02(11.lg
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Figure 1. Flow diagram of Falls and Seinfeld reaction mechanism. 

and quantum yields have been accomplished, photolysis rate constants are 
thought to be fairly reliable. However, since cross section and quantum 
yield data for formaldehyde, higher aldehydes, and alkyl nitrites are much 
less well characterized, many photolysis rate constants are subjected to large 
uncertainty. Of course, even if absorption cross sections and quantum 
yields could be determined accurately for all photosensitive species, 
uncertainties in atmospheric photolysis rate constants would still exist, 
as meteorological conditions, clouds, dust, and aerosols cause unknown 
variances in actinic irradiance. 

Whereas rate constants in the inorganic portion of the mechanism are 
known fairly well, many more uncertainties, both in reaction rate constants 
and products, are associated with the organic reaction steps. Still to be 
determined are product distributions and reaction rate constants for the 
initial steps of the reactions of OH and hydrocarbon species, the largest 
uncertainties lying in the routes of the various radical species produced. 
For example, although rate constants for alkane-OH reactions are well 
established, the ratio of internal to external abstraction for all alkanes is 
not known. Addition to 0 2 to form peroxyalkyl (R02) radicals can be 
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considered as the sole fate of the alkyl radicals first produced in alkahe-OH 
reactions, but after the formation of alkoxyl radicals through the conversion 
of NO to N02, the reaction mechanism becomes uncertain. Alkoxyl rad­
icals can decompose, react with 0 2, isomerize, or react with NO or N02, with 
the importance and rate of each reaction path depending on the nature of 
the alkoxyl group. Even for the most studied of the alkane-OH reactions, 
the relative rates between decomposition, isomerization, and reaction with 
02, NO, and N02 for alkoxyl radicals have not been measured, but must 
be estimated [3]. Then-butane-OH reaction mechanism, for which the 
ratio of internal to external abstraction is known to be about 86-14 [3], gives 
rise to sec- butoxy and n-butoxy radicals. Various possible reaction 
pathways for these two radicals are: 

r 
CH3CH20 2· + CH3CHO 

CR02) (RCHO) 

0 
II

/ o, H02 + CH3CCH2CH3 

Y OH 

Iisom. 
CH0CHCH,CH,02 • 

'\\ (O,) (R02) 

ONO 

INO 
• CH1CH2CHCH1 

(RONO) 

ONO. 

N0 2 

I -
CH,CH,CHCH, 

(RON00 J 

and 
decomp 
~-- HCHO + CH:iCH1CH20:.1·

(0,) 

<RO,> 
o, -Ir-- HO, + CH1CH,CH,CHO 

. 

0 

1/ isom. (RCHO) 
HOCH,CH,CH,CH,O,· 

(RO,> 

CH,CH,CH,CH,ONO 

<RON0> 

CH.1CH,CH,CH20NO1 

(RON02 > 

\ 
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Less well understood than alkane reaction mechanisms are olefin oxi­
dation processes. Whereas reactions of alkanes with 0 3 could be neglected, 
both olefin-OH and olefin-03 reactions occur to a significant extent. 
Olefin-OH reactions may proceed by addition or abstraction [35]. For 
smaller olefins, the addition path predominates. However, the abstraction 
fraction increases with the size of the olefin.. Along the addition path for 
terminally bonded olefins, there is uncertainty as to the ratio of internal­
to-external addition. Similar to alkyl radicals, the hydroxy-alkyl radicals 
formed in the initial OH addition to olefins are thought to immediately add 
0 2 to form hydroxy-peroxyalkyl radicals and thereafter react with NO to 
give N02 and hydroxy-alkoxyl species. The fate of the hydroxy-alkoxyl 
radicals is subject to speculation, although the analogous alkoxyl reaction 
paths of decomposition, isomerization, and reaction with NO, N02, and 
0 2 are the most likely possibilities: 

decomp 
HCHO + RO, 

OH OH 

I Idecomp 
~--- RCHO + HC· HCO,

I I -
R R 

OH 0 

02 IOH O· II 
~ HO, + RCH--CRI I H 

RCH-C/ . R'O;
'----R 

OH ONO 
<ROl 

R~H-JH 

\ 
R 

<RONO) 

OH ONO, 

N02 I I..___ RCH-CH 

\ 
R 

(RONOJ 

Of some importance in the photochemical smog system is the oxidation 
of olefins by ozone. The initial rate-determining step in the attack of ozone 
on the double bond of olefins is the formation of a molozonide, which, as 
the ring opens, results in a rapid equilibrium between the two possible forms 
of the oxy-peroxy biradical. The primary uncertainty in the olefin-ozone 
reaction mechanism lies in the fate of the oxy-peroxy biradical. Currently 
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it is thought that for lower olefins the biradical decomposes according to 
the Criegee mechanism of solution phase ozonolosis. However, a- and 
,6-hydrogen abstraction mechanisms have also been proposed [27]. Figure 
2 depicts the Criegee mechanism for the gas-phase ozonolosis of a general 
olefin, with reaction products analogous to those proposed by Dodge [28] 
for the propylene-03 mechanism. 

Although much work has been devoted to the understanding of alkane 
and olefin systems, comparatively little research has been devoted to the 
study of atmospheric aromatic mechanisms. Recently, absolute rate 
constants have been determined for the reaction of OH with a series of ar­
omatic hydrocarbons over a range of temperatures [29]. The initial aro­
matic-OH reaction step can be either abstraction or addition to the ring. 
At room temperature, the percentage of reaction proceeding by abstraction 
is on the order of 2-20%, depending on the individual hydrocarbon [29]. 
The aromatic-OH adduct presumably reacts with other atmospheric 
species such as 0 2, NO, or N02. In addition, opening of the aromatic ring 
presumably occurs at some point in the atmospheric chemistry. Hendry 
[30] has postulated an aromatic mechanism that accounts for ring cleavage 
as well as for the formation of oxygenated species such as glyoxal, H2C202, 
seen in smog chambers. 

The aromatic-OH reaction products in Table I have been represented 
simply as R02 and an oxygenated species that is lumped with the aldehydes. 
Because the atmospheric chemistry of aromatics is poorly understood, little 
can be accomplished by speculating on reaction products and mechanisms 
at this point. For this reason, a sensitivity/uncertainty analysis associated 
with aromatic species has not been incorporated into this study. 

The inherent uncertainty of the decomposition, reaction with 02, and 
isomerization of the alkoxyl and hydroxy-alkoxyl radical class in the present 
mechanism [7] has been concentrated into one reaction step: 

RO--+ aH02 + (1 - a)R02 + $HCHO + ,RCHO 

As seen from the earlier discussions of alkoxyl radical behavior, RO always 
gives rise to either H02 or R02 in any of the decomposition, isomerization, 
or 02 reaction pathways. Hence, the stoichiometric coefficients repre­
senting the fraction of H02 and R02 found in the lumped RO reaction 
should add to 1. Since the RO lumped species represents a large class of 
different-sized radicals and because splits between reaction paths for even 
specific radicals are unknown, a can have a value in the range Oto 1. Many 
RO reaction routes produce aldehydes with some yielding two, as the one 
suggested by Martinez et al. [6]. Thus, 0 :$ /3 :$ 1 and O :$ 'Y :$ 1. Since the 
composition of the RO radical pool is continually changing during the course 
of a photooxidation, the actual values of a,$, and 'Y are functions of time. 
Thus, the selection of constant values of these coefficients introduces un­
certainty. 
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TABLE I. Uncertainties associated with reaction rate constants in the Falls and Seinfeld 
mechanism [7]. 

Sensi­
Nominal tivity 

rate constant Refer­ Uncer­
Reaction ppm-min units Uncertainty ence tainty 

(3C°C) Rangea Analys 

1. N02+hv .. N0+0( 3P) variable k1 = ±20% (est.) * 
~ " -5 b2. 0{ 3P)+02+M ~ o3~M ~. v3xl0 l.72xl0-S< k

2 2 2.38xl0-S 12 

3. o3+NO + N02+o2 2.55x101 l.80xl01 
< k < 3.60xl01 12 
- 3 -

4 44. N02+0('P) + N0+0 2 1. 32xl04 l.15x10 2 k4 2 l.52xl0 12 

2 35. N02+0( 3 P) + N03 3.52x103 c 2.22xl0 2 ks 2 5.SBxlO 12 
3 3

6. N0+0{ 3P) + N02 3.87xl03 2.45xl0 2 k6 2 6. 13xl0 12 

-2 -27. N02+o3 + N0 3+o2 
5. 37x10-Z 4.26x10 2 k7 2 6.76xl0 12 

4 48. N0 3+NO + 2N02 2.72xl04 2.12xl0 2 ks 2 3.3lxl0 13 

9. N03+N02 + N20 3. 69x103C 1.06xl03 
2 kg 2 l.2lx104 13

5 

10. N205 + N0 +N02 1. 2lxl01 133 
11. N2o +H 0 + 2HON02 

<l. 45x10-S 125 2 
-9 b

12. NO+N02+H20 + 2HONO 2.llxlO 12 

13. HONO+HONO + NO+N02+HzO 1.38xl0-3 12 

14. 03+hv + 02+0{ 1 D) variable k
14 

= ± 3o:· (est.) 

15. o3+hv + o2+0{ 3 P) variable = ± 30' (est.) *k15 
416. 0( 1D)+M + 0( 3 P)+M 4.14x104 3.29xl04 < k16 2 5.2lxl0 12 

C 

17. 0( 1D)+H 20 + 20H 3.34xlOJ 2.65xl05 
< k17 2 4.2lxl05 12 

18. H02+N02 + HON0+02 <10-3 k19 
14 

19. H02+N02 + H02N02 1. 58x103 15 

20: H02N0z .. H02+N02 7.5 3.3 2 k20 2 17.1 15 

3 421. H02+NO .. N02+0H l .18x104 9.59x10 2 k21 2 l.39xl0 12 
4C

22. OH+NO .. HONO 1. 74x 10 12 
4 k23 

423. OH+N02 + HON02 
1. 5x 104 

C l.3lxl0 ~ ~ 2.07x10 12 * 

24. HONO+hv + OH+NO variable = ±30:; (est.)k24 
2 k25 

225. CO+OH .. C02+H02 4. 36xl02 3.46x10 ~ ~ 5.49xl0 12 
2 426. OH+HONO .. H20+N02 9.59xl0 3 9.15xl0 ~ ~ 1.00xlO 12k26 
3 k27 

3
27. H02+H02 + H20z+02 3.63xl03 l.82xl0 ~ ~ 7.26xl0 12 

28. Hiz+hv + 20H variable k
28 

= ±30:; (est.) 

29. OH+03 + H02+02 8.04xl01 '.03•10 .. 
1 

.::_ - r..,_ 2g ~ ' 
i. 

6X,AZ.Lu:-. 12 

30. H02+o3 + OH+202 3.04 1.52 ~ ~ 6.08k30 12 

31. HCHO+hv + 2H02+CO variable k31 ±30,; (est.) * 

32. HCHO+hv + H +CO variable k ±30\; (est.) *2 32 

33. HCHO+OH + H02+CO 2.03x104 l.62xl04 ~ 2.56xl04< k33 12 
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TABLE I. (Continued) 
Sensi­

Nominal tivity/ 
rate constant Uncer-
ppm-mig units Uncertainty Refer- tainty 

Reaction (30 C) Rangea ence Analysis 

34. RCHO+hv + R02+H0z+CO variable k
34 

;:50\ (est.) * 

35. RCHO+OH + RC0 3 2. lxl04 16 

36. OLE+OH + variabled 17R0 2 

37. OLE+O + R02+RC03 
variabled 17 

38. OLE+0 0.55RCHC variabled O<c<l,0<[<1, 17 * 
3 

+ 
o7n71 - -

+[0.5E(l-0.5[)(~+27)+p6]H02 0 < o ~ 1 
+0.5E(2[+~l(l-0.55)Ro 2 Nominal values 
+0.5E((l-0.55)0H E = 0.8,[ 0.68,n 0.17 
+0.5En(l-0.5c)RO 6 = 1.0,c = 0.1 

39. ALK+OH + R0 2 variabled 17 

40. ALK+O + R0 2+0H variabled 17 

+(1-0. 5/;)HCHO 

41. C2H4+0H + R02 l.14xl04 7.06xl0 3 ~ k41 ~ l.87xl0
4 

12 

42. CzH4+0 + R02+HCO l. 24xl0 3 l.03xl0 3 
~ ~ l.49xl03 12k42 

43. ARO+OH + R0 2+RCHO variabled 
Nominal Values 

44. RO+ aH02+(1-a)R0 2 3.6xl05 0 <a< 1 a=l 3 * 
o 7 e < 1 s= 1+sHCHO+yRCHO 
0 ~ y ~ 1 y=O 

445. NO+RO + RONO 4.9xl04 k (3.lxl0 -l.55xl05) 18-20 * 45 

46. RCNO+hv + RO+NO variable k :30'. (est.) * 46 

47. NC2+RO + RONOz 1. 55xl04 
k45~k47+k43l = (1.2-2. 7l 21-23 

48. N0 2+RO + RCHO+HONO 1. 35xl03 k47 ;k = (0.08-0.23) 21-23 * 48 

49. NOz+R02 + ROzNOz 5.5x10 3 
= (1600-5500) (est.) *k49 

50. N02+R02 _,. RCHO+H0~02 5.5 (est.) 

51. ROzNOz - N0 2+R02. 0.5 (est.) 37 * 

52. NO+R0 2 + N0 2+RO l.18xl04 (est.) 3000 ~ ~ 12000 (est.) *k52 

53. NO+RC03 ~ NOz+R02 3. 77xl0 3 
= 0.54c0. 17 25k54 ;k53 

54. N0 2+RC0 3 + PA~ 2.03xl0 3 25 

55. PAN+ N0 2+RC0 3 0.055 0.0039 ~ 0. 78 25< k55 

56. o3 + wall loss variablee 

57. R02+R02 + 2R0+02 196. 0 50.0 .:_ ~ 600.0 38k57 

a Uncertainties determined from reliabilities in rate constant measurements given in original 
references. Where no uncertainty was reported, either an estimate was made or the uncer­
tainty neglected. 

b Units of rate constant are ppm-2min- 1. 

c Pseudo-second-order rate constant for 1 atm air. 
d Rate constants for the reactions of lumped olefins, alkanes, and aromatics with OH, 0, 

and 0 3 were taken to be average mole-weighted ratio, based on initial compositions of each 
hydrocarbon class. Thus k1 = L;k;nJL;n; where k1 is the lumped hydrocarbon rate constant, 
k; the individual rate constant for hydrocarbon i, and n; the number of moles of hydrocarbon 
i in the initial lumped mix. 

• Depends on smog chamber experiment, Winer [36]. 

https://0.08-0.23
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TABLE II. Reactions in the ROx-NOx system. 

ND NO 2 

RO RO+ NO ➔ RONOa RO+ NO ➔ RONO b2 2 
➔ RCHO + HONOhv 

➔ RCHO + HNO 

dRO2 +NO ➔ NDz + ROc ROz + NOz; RO2NO2 

➔ RONO ➔ RCHO + HONO22 

"The primary pathway for the alkoxyl-NO reaction is RO+ NO-• RONO. Rate constants 
for this series of reactions have not been measured directly, but have been calculated from 
measured rates of the reverse reaction and thermodynamic estimates. Batt and co-workers 
[18] obtained rate constants for several of the above reactions that fall in the range of '.U-6.2 
X i04 ppm- 1min- 1. Both Mendenhall and co-workers [19] and Batt and Milne [20] deter­
mined the rate constant for t-butoxyl + NO, obtaining 1.55 X 10~ and 6.2 X 104 ppm- 1min- 1, 

respectively. Thus the probable uncertainty in an estimated value of a particular RO-NO 
rate constant is a factor of 2-4. In addition to the path shown above there is an abstraction 
reaction, the fractional occurrence of which depends on the alkyl group. The abstraction 
fraction can be estimated based on the data of Batt and co-workers [18]. 

6 Two reaction paths for alkoxyl-N02 reactions exist, addition and abstraction. For 
methoxyl + N02the abstraction fraction has been estimated by Weibe and co-workers [21] 
to be 0.08 and by Barker and co-workers [23] to be 0.23. Rate constants for alkoxyl-N02 
reactions have been inferred from measured values of the ratio of the rate constants of al­
koxyl-NO to akoxyl-N02 reactions. Wiebe and co-workers [21] reported that for methoxyl 
radicals this ratio is 1.2, whereas Baker and Shaw [22] obtained 2.7 for the same ratio. Baker 
and Shaw [22] determined a ratio of 1.7 for t-butoxyl radicals. Absolute rate constants for 
RO-N02 reactions are then obtained on the basis of RO-NO rate constants. 

c The peroxyalkyl radical-NO reaction may proceed as shown. Conversion to NO to N02 
occurs primarily by the first reaction. It has been postulated that the second reaction will 
occur a fraction of the time for longer chain peroxyalkyl radicals [n > 4]. Darnall and co­
workers [32] estimated the ratio k 2/k 1 to be 0.09 and 0.16 for n = 4 and 5, respectively. Aside 
from the H02-NO reaction, rate constant values have.not been measured for R02-NO reac­
tions. A lower limit for the rate constants for these reactions can be estimated as 3 X 103 

ppm- 1min- 1 based on theoretical considerations. 
d Rate constants for the R02-N02 reaction and the R02N02 decomposition must be esti­

mated. 
e Hendry and Kenley [31] report a value of 4900 ppm-1min-1 for CH3C(0)02+ NO, whereas 

Cox and Roffey [25] found 3800 ppm- 1min- 1. 

f The rate constant for the PAN formation step is determined by Hendry and Kenley [31] 
to be 1500 ppm-1min- 1 and by Cox and Roffey [25] to he 2070 ppm-1min- 1. PAN thermal 
decomposition rates are also reported by the two investigators. 

Reactions in the ROxlNOx subsystem (Table II) are subject to degrees 
of uncertainty for two reasons. First, the rate constants reported for spe-
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cific reactions in each lumped group differ among investigators. For in­
stance, different PAN formation and decomposition rates have been de­
termined by Cox and Roffey [25] and Hendry and Kenley [31]. Second, 
since the composition of the lumped radical classes changes throughout 
the degradation process of the different atmospheric hydrocarbon species, 
it is difficult to select accurate rate constants for reactions of the ROx/NOx 
system. The uncertainties associated with each reaction in the ROx!NOx 
network are summarized in Table IL 

Sensitivity/Uncertainty Analysis 

A sensitivity/uncertainty analysis can provide two different but related 
types of information. By individually perturbing parameters a small 
amount from their nominal values, say ±5%, the absolute sensitivity of the 
predictions of the mechanism can be ascertained. A sensitivity/uncertainty 
analysis incorporates the same information and, in addition, takes into 
account the degree of uncertainty associated with each parameter, thereby 
generating a combined measure of sensitivity and uncertainty. Both types 
of analyses are important. For example, a parameter to which the pre­
dictions of the mechanism are not especially sensitive may have such a large 
range of uncertainty that, when all possible variations are considered, its 
influence on the predictions is rather substantial. On the other hand, a 
very sensitive parameter may have a small range of uncertainty, and 
therefore its overall influence on the mechanism, considering both sensi­
tivity and uncertainty, may be lower than that of other parameters. 

In many problems the uncertainties are such that linearized methods 
are no longer applicable. The FAST method, which overcomes this re­
striction, has been developed by Shuler et al. [10]. The particular advan­
tage of this approach is that order of magnitude changes in parameter values 
can be easily accommodated. Basically the procedure involves a simul­
taneous variation of all the parameters over their individual ranges of es­
timated uncertainty. Formally the parameters are ranked in the order of 
importance by using normalized statistical measures called partial vari­
ances. These variances indicate the relative contribution of individual 
parameters to uncertainties in model predictions. The FAST analysis 
identifies the contribution of individual parameters to the total variance 
in each predicted species concentration. To determine the sensitivity of 
the mechanism, the method can be used with each parameter varied a small 
amount from its nominal value. Detailed descriptions of the technique 
are available elsewhere [10,11] and will not be repeated here. 
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Discussion of Results 

Two types of the sensitivity/uncertainty analysis were performed on 
simulations of three different surrogate hydrocarbon smog chamber ex­
periments carried out at the Statewide Air Pollution Research Center at 
the University of California, Riverside [33,34]. First, in order to ascertain 
the absolute sensitivity of the predictions of the mechanism to each of the 
reaction parameters being studied, runs were made in which all parameters 
of interest were perturbed from their nominal values by ±5%. In a second 
set of cases, the parameters were permitted to vary over their entire un­
certainty range, thus providing combined sensitivity and uncertainty in­
formation. The parameter values for these two cases are shown in columns 
2 and 3 of Table I. Many of the reactions have been shown to have rela­
tively little influence on concentration behavior [8]. Thus, only those rate 
constants of reactions for which an asterisk(*) exists in column 4 of Table 
I were subject to variation in the studies to be described. 

Effects of the parameter variations on predictions of N02, 0 3, and PAN 
were monitored. These output variables were chosen because air quality 
standards exist for N02 and 0 3, and because N02and 0 3 reflect the major 
features of the chemistry. To explore the effects of varying initial hydro­
carbon-N0x mixtures on the results of the study, smog chamber simula­
tions with a wide range of initial conditions were examined. Tables III-VIII 
list the parameters and their partial variances, ranked according to their 
effect on each of the output variables, for each of the analyses per­
formed. 

TABLE III. Parameter rankings for case 1,• small parameter variations. 
Time 60 min. 120 m1n. 180 min. 240 min. 300 min. 

Rank Parameter Partial Parameter Partial Parameter P.!!rtial Parameter Partial Parameter Partial 
Variance Vc1riance Variance Variance Variance 

OUTPUT VARIABLE: N0
2 

I o. 310 '23 0.472 
'13 0.583 'i1 0.354 0. 310 

k23 0. 309 0.310 '1 0. 310 0.133 'i1 0.186 

'1, o. 193 '31 0.080 0.073 0. ?00 ' 0.103 

'ii 0. 111 0.051 'ii 0.026 '1 0.077 '21 0.074 

0.030 '1 0.021 '34 
0.017 k34 0.056 '34 0.011 

OUTPUT VARIABLE: 03 

'1 0.363 '23 0. 317 0. 328 0. 340 0.345 

0. 196 0.197 k13 0.305 '11 0.278 '11 0.254 

'21 0.181 '11 0.130 '11 0. 148 k31 o. 159 '31 0. 163 

'24 0.120 '1 0.101 0. 106 ' o. 131 ' 0. 110 

k31 0.083 0.071 '1 0.038 '14 0.032 '14 0.031 

OUTPUT VARIABLE: PAN 

'11 0. 391 '13 
0.481 

'23 0.431 
'21 0.386 k23 0.310 

'14 0.211 0.187 0.213 0.130 0.145 

k31 0. 113 '11 0.161 'i1 o. 171 k31 0.181 '31 0. 183 

0. 118 R 0.078 ' o. 110 ' 0. 135 B o. 113 

0.035 0.026 0.011 k34 0.019 kl4 0.020 

a Simulation: UCR 119J [32]. Initial conditions: [N02] = 0.041; [NO] = 0.301; [OLE] 
= 0.039; [ALK] = 0.358; [ARO] == 0.070; [ETH]== 0.043; [HCHO] == 0.038; [RCHO] = 0.023; 
[HONO] (assumed)= 0.0; k1 = 0.32; simulated N02 peak time= 200 min; [HC/NOx]o = 1.7 
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TABLE IV. Parameter rankings for case 2,8 small parameter variations. 

Th,e 

Rank 

60 111tn. 

P.arameter Partial 
Variance 

120 min. 

Parameter Partial 
Variance 

180 min. 

Parameter Partial 
Var1Mce 

240 m1n. 

Parameter Partial 
Variance 

300 min. 

Parameter Partial 
Variance 

OUTPUT VARIABLE: N()2 

l '31 0.264 '31 0.378 '11 0.377 0.459 0.575 

'1 0.191 0.194 o. 321 '31 0.338 '31 0.265 

' 0.139 '1 0. 112 B 0.104 0.105 
' 0.095 

'23 0. 128 ' 0.091 '1 0.054 0. 023 '3• 0.015 

0.086 '23 0.066 0.039 '23 0.020 0.013 

OUTPUT VARIABLE: 03 

'1 0.473 '1 0.584 '1 0.696 '1 0. 778 '1 0.839 

0.274 0.243 o. 187 0. J 34 0.086 

'23 0.086 '23 0.072 '23 0.071 '23 0.069 '21 0.068 

'11 0.056 >31 0.043 0.021 0.009 '12 0.003 

OUTPUT VARIABLE: PAN 
0.032 o. 035 '31 0.016 

'31 0.003 0.002 

'23 0.270 '31 0.290 '2i 0.334 '23 0. 380 "23 0.404 

'1 0.216 ,23 0.284 'i1 0. 306 'i1 0. 320 'ii 
0.)44 

'ii 0. 186 '1 0.219 '1 0. 199 '1 0. 145 '1 0.082 

o. 184 o. 112 0.091 0.084 0.082 

0.062 0.043 0.043 0.046 0.018 

a Simulation: UCR-121J [32]. Initial conditions: [NO2] = 0.012; [NO] = 0.044; [OLE] 
= 0.04; [ALK] = 0.37; [ARO] = 0.066; [ETH] = 0.042; [RCHO] = 0.06; [HCHO] = 0.011; 
[HONO] (assumed) = 0.0; k 1 = 0.32; simulated NO2 peak time= 30 min; [HC/NOx ]0 = 10.5. 

TABLE V. Parameter rankings for case 3,8 small parameter variations. 

Time 60 min. 120 min. 180 min. 240 min. 300 min. 

Rank. Parameter Parti<'ll Parameter Partial Parameter Partial Parameter Pal'"tial Parameter Partial 
Variance Variance Variance Variance Variance 

OUTPUT VARIABLE: N0
2 

0.289 0.423 0.433 0.441 0.445 

_'31 0.167 ' 0.226 B 0.238 ' 
0.240 0.232 

0.164 'i1 0.197 >31 0.198 'i1 0.198 '31 0.200 

0.112 '23 0.035 '23 0.051 '23 0.048 '23 
0.040 

0.084 0.031 0.015 V.096 0.009 

OUTPUT VARIABLE: OJ 
l 0.464 0.463 0.458 0.448 0.401 

2 '23 0.295 '23 0.210 0.190 6 0.189 '1 0.205 

0.083 0.155 ,23 0.165 '23 0.136 ' 0.149 

'31 0.041 '31 0.094 'i1 0.120 '31 0.120 '23 0.117 

OUTPUT VARIABLE: PAN 
0.027 '1 0.025 '1 0.034 '1 0.075 '31 0.088 

'23 
0.521 '23 0.348 0.287 0.297 0.284 

0.169 0.249 '23 0.263 '23 0.227 '31 0.225 

0.084 0.160 ' 0.203 0.214 '23 
0.224 

0.074 'ii 0.148 '31 0.188 '31 0.209 0.207 

0.070 0.042 0.026 0.021 0.021 

a Simulation: EC-237s [32]. Initial conditions: [NO2] = 0.021; [NO] = 0.075; [OLE] 
0.030; [ALK] = 0.298; [ARO] = 0.035; [ETH] = 0.175; [HCHO] = 0.0; [RCHO] = 0.001; 
[HONO] (assumed)= 0.020; k1 = 0.30; simulated NO2 peak time= 30 min; [HC/NOx]o = 5.57. 
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TABLE VI. Parameter rankings for case 4,8 large parameter variations. 

Time 60 1111n. 120 m1n. 180 11111'!. 240 11in. 300 111n. 

Rani,:; Parameter Partial Parameter PHtial Parameter Partial Parall'le~er Partial Paralll'ltter Partial 
Varhnce Variance Variance Variance Variance 

OUTPUT VARIABLE: N02 
0.933 0.831 0.854 0.846 0.826 

'n 0.018 0.011 0.091 0.101 0.121 

OUTPUT VARIABLE: DJ 

'1, 

'31 

0.011 

O.D10 

0.00~ 

'11 

>23 

0.031 

0.019 

0.010 

'11 

'31 

0.018 

0.008 

0.D06 

'11 

'31 
1

31 

D.0D9 

0.009 

0.008 

'n 
'31 

' 

0.013 

0.010 

0.007 

l 0.861 0.861 D.811 0.849 D.834 
0.033 0.061 0.086 0.097 0.106 

l,:;51 0.019 

0,015 
'11 0.073 

0.011 
'11 

' 
0.015 

0.008 
'11 

l,:;2) 

0.010 

0.008 
'n 
k23 

D.013 

0.009 

OUTPUT VARIABLE: PAN 

0.009 '31 0.007 '13 0.007 0.006 '11 0.006 

0.643 0.614 0.6)4 0,633 0.618 

0.111 O 103 0.14) 0.161 0.186 

0.061 0.048 0.031 
'ii 0.017 

'i1 0.027 

'11 

'13 

0.031 

0.018 
'i1 

'n 
0.030 

0.017 
'i1 

'n 
0.028 

O.D12 '13 

0.013 

D.D10 
'13 0.010 

O.D18 

a Simulation: UCR 119J [32]. Initial conditions: [NO2] = 0.041; (NO] = 0.301; [OLE] 
= 0.039; [ALK] = 0.358; [ARO] = 0.070; [ETH] = 0.043; [HCHO] = 0.038; [RCHO] = 0.023; 
[HONO] (assumed)= 0.0; k1 = 0.32; simulated NO2 real time= 200 min; [HC/NOx]o = 1.7. 

TABLE VII. Parameter rankings for case 5,8 large parameter variations. 

Time 60 min. 120 min. 180 min. 240 min. 300 min. 

Rank Parameter Part1cil Par.,,meter Part1i,1,l Parameter Partial Parameter Partial Parameter Partial 
Variance Varhrnce Variance Variance Variance 

OUTPUT VARIABLE: N0 
2 

l 0.131 0.677 0.695 0.685 0.665 

0.113 0. 139 0. 118 D.169 D. 173 

0.081 D.081 D.D51 kl! D.D37 •51 D.OJU 

0.046 'i1 0.038 'i1 D.036 0.0)) 
'i1 

D.030 

0.041 0.015 '11 
O.D19 'i1 0.033 0.018 

OUTPUT VARIABLE: OJ 

1 D.413 D.113 0.466 0. 394 0.417 

'51 0.198 '11 D.219 '51 
0. 198 '1 0.256 '1 0.269 

kl2 0.066 '1 D.097 '1 
0.169 '51 D.110 '52 0.142 

kl 0.064 '11 D.078 k51 o. 112 '12 D.149 kll 0.073 

O.D31 0.037 D.Dl I '13 D.Dl 7 O.D31 

OUTPUT VARIABLE: PAN 

l 0.4S4 0.1D1 D.168 0.644 D.699 

D.219 D.161 0.123 o. 116 0 .111 

k51 0. 144 '11 D. 101 U.122 D.097 D.084 

' O.D31 " D.104 '51 D.083 '11 0.05) '31 0.031 

0.0)1 'i1 O.D40 '31 
0.041 'ii D.038 '11 

0.01) 

a Simulation: UCR-121J [32]. Initial conditions: [NO2] = 0.012; [NO] = 0.044; [OLE] 
= 0.04; [ALK] = 0.37; [ARO] = 0.066; [ETH] = 0.042; (HCHO] = 0.06; [RCHO] = 0.011; 
[HONO] (assumed)= 0.0; k 1 = 0.32; simulated NO2 peak time= 30 min; [HC/NOx]o = 10.5. 
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TABLE VIII. Parameter rankings for case 6,8 large parameter variations. 

T1me 60 min. 120 min. 180 min. 240 min. 300 ir.1n. 

Parameter Partial Parameter Partial Parameter Partial Parameter Partial Parameter Partilsl 
Variance 'r'ar1anct- Var1ance Var1ancl! Variance 

OUTPUT VARIABLE: "°z 
1 0.697 0.691 0.649 0.137 0.140 
1 0. 161 0.107 0.167 's1 0.101 

'11 0.100 
0.07d 'st 0.047 's1 0.031 'n 0, 119 

'1i 0.110 

'11 0.041 0.018 'i1 0.021 
'ii o. 109 'i1 0.110 

'i1 0. 111 
'i1 0.016 0.010 0.098 , 0.090 

OUTPUT VARIABLE: OJ 
1 0. 7Hl 0. 742 o. 716 0.650 0.589 

's1 0. 161 0.098 0. 149 0. 227 0.181 
0.043 's1 0.092 '11 0.061 '11 0.044 '1 0.040 

'11 0.031 

0.018 
'11 

'1 

0.011 

0.013 
'1, ,, 

a.on 
0.016 

,, 
'11 

0.018 

0.019 
'11 

'11 

0.034 

0.010 

OUTPUT VARIABLE, PAN 

'11 0.280 0.417 0. 4Q'i 0.239 0.230 
0.219 0.111 0.230 's1 0. ?04 's1 0.119 
0,2:?<'I 

'11 0. lll4 
'11 0. 101 'n 0. 121 '23 0, 118 

0.107 0. 130 O.OP.1 'i1 0. 105 '11 
I)_ l()O 

'n O.ORO 'n 0.046 'it 0, O'il n nq1 0 QQQ 

a Simulation: EC-237s [32]. Initial conditions: [NO2] = 0.021; [NO] = 0.075; [OLE] = 
0.030; [ALK] = 0.298; [ARO] = 0.035; [ETH] = 0.175; [HCHO] = 0.0; [RCHO] = 0.001; 
[HONO] (assumed)= 0.020; k1 = 0.30; simulated NO2 peak time= 30 min; [HC/NOx]o = 5.57. 

N02 Behavior 

The results of the FAST sensitivity/uncertainty analyses help to point 
out and affirm observations about the qualitative aspects of the chemical 
mechanism and also provide some new insight into the essential features 
of the system. The ranking of those parameters to which the predictions 
of NO2 behavior are most sensitive highlights the most important of the 
many mechanisms by which NO2 is produced. In all the small parameter 
variation cases, the parameters dominating NO2 behavior around the time 
of the NO2 peak are the photolysis rate, k 1, and the nitric acid formation 
step. Before and after the predicted peak time, variations in the rates of 
those reactions forming peroxy radicals, especially the aldehyde photolysis 
rates, have the most marked effect. In the simulation with the high hy­
drocarbon to NOx ratio (case 2), the production of R02 and H02 from the 
ozone-olefin reaction is also important. 

As discussed earlier, peroxy radicals act to convert NO to N02 by 

52 
R02 + NO-+RO + N02 

21 

H02 + NO~ OH + N02 
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Hence, the rate constants associated with the above reactions, as well as 
the quantities of R02 and H02 available, should have a distinct effect on 
N02 concentration levels, The fact that aldehyde photolysis, alkoxyl 
radical decomposition, and ozone-olefin reactions all produce peroxy 
radicals explains the large partial variances associated with these param­
eters, Relative to competing reactions, small variations in k.s2, the R02-NO 
rate constant, do not produce a large effect on N02predictions. The reason 
for this is that the R02-NO rate constant is so large that other reactions 
cannot effectively compete for R02. 

The differences in chemistry brought about by changes in initial condi­
tions are evident from a close examination of the outcome of the larger 
parameter variation studies, cases 4-6. When the initial hydrocarbon to 
NOx ratio is low (case 4), a, the fraction of times that H02is produced from 
RO, makes the largest contribution to variations in N02 predictions. 
Where initial HC!NOx levels were higher (case 5), uncertainties in 
ozone-olefin product distribution and in the production of aldehydes from 
alkoxyl radicals also contributed significant variances. In systems where 
initial HC!NOx ratios are small, or in which fairly unreactive species 
comprise the hydrocarbon mix, there are not enough radicals present to 
convert all the available NO to N02. As a result, in smog chamber exper­
iments of these systems N02 peaks are broad and occur later in the test. 
For those initial mixtures which are richer in hydrocarbons, or contain very 
reactive species, there are a larger number of peroxy radicals for the NOx 
in the chamber. As the fraction of time that R02is produced from aikoxyl 
radical reactions is increased (represented by decreasing a), the number 
of peroxy radicals in the simulation increases. This occurs as a result of 
the cyclic effect of producing R02from alkoxyl radical reactions and sub­
sequent reconversion to RO through reaction with NO: 

44 
RO--+ (1 - a)R02 + aH02 + /3HCHO + "(RCHO 

,52 

R02 + NO--+ RO + N02 

Since simulations with low initial HC!NOx levels can be thought to be 
radical deficient, a varied over its entire range of uncertainty has a large 
influence on NOx predictions. However, a has much less •effect on cases 
in which the initial HC/NOx ratio is large than when it is small, as other 
modes of radical production besides RO reactions occur to a significant 
extent in the high HC!NOx situation. 

O:~ Behavior 

Much of the interest in mechanisms for photochemical smog is focused 
on understanding the avenues for the production of ozone. The results 
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of the sensitivity analyses are extremely pertinent to this under­
standing. 

Time-varying plots of the partial variances of the major parameters af­
fecting the production of ozone are given in Figures 3-8. As was the case 
for N02 behavior, the results are substantially different for the various 
initial conditions. For the higher [HC]/[NOx]o simulations of cases 2 and 
3, small variations in the N02 photolysis rate have the biggest impact on 
ozone formation. On the other hand, at times in the analysis of the low 
[HC]/[NOx]o run (case 1), ozone concentrations are more influenced by 
peroxy radical production routes. In the large parameter variation cases 
a dominates the ranked list for low initial HC/NOx ratios, whereas the other 
parameters in the alkoxyl radical reaction and the decomposition of the 
peroxynitrates are also important for high initial HC/NOx ratios. 

The effects of the parameter variations on ozone behavior can be ex-
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Figure 3. Time-varying partial variances of the major parameters affecting 
ozone for case 1 (small parameter variation). 
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Figure 4. Time-varying partial variances of the major parameters affecting 
ozone for case 2 (small parameter variation). 

plained in much the same fashion as the NO2 discussion earlier. As can 
be seen from Figure 1, the ozone level at any time is the result of the complex 
interplay between NO and NO2, peroxy radicals, and ozone. Ozone builds 
up as NO is converted to NO2 without consuming 0 3. When concentration 
levels of peroxy radicals are low, as in simulations with a lean initial hy­
drocarbon mix, reactions (1)-(3) exist in a photostationary state. As peroxy 
radical levels rise, however, the rates of reactions that convert NO to NO2 
without consuming 03 become comparable to or surpass the rate of reaction 
(3), modifying the equilibrium set up by reactions (1)-(3). Simuiations 
with low peroxy radical levels will therefore show a much larger sensitivity 
to those parameters, such as a, which substantially affect the concentrations 
of the peroxy radicals. When RO2 levels are higher, as in simulations of 
high initial HC/NOx mixtures, there already exists an adequate number 
of free radicals present to convert NO to NO2. Hence, the sensitivity of 
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the system lies in N02 photolysis rates. Moreover, in these systems, the 
effects of the large variation cases are divided between other parameters 
which affect the levels of both peroxy radicals and N02. 

PAN Behavior 

PAN predictions are influenced by both N02and RC03 concentration 
levels. Results of the sensitivity/uncertainty analysis can be explained 
in this light. For case 1, the parameters which highly influence the rate 
of PAN formation are the nitric acid formation rate constant k 23 which 
directly affects the N02level, and the two coefficients a and, associated 
with RO decomposition which influences the concentration of RCHO. 
PAN is affected by RCHO levels because peroxyacyl radicals RC03 are 
formed primarily through the reaction of OH with aldehydes. RC03 then 
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Figure 6. Time-varying partial variances of the major parameters affecting 
ozone for case 4 (large parameter variation). 

reacts with NO2 to form PAN through a competing reaction with NO. 
Thus, those parameters that affect RCO3 production and the availability 
of OH radicals in the mechanism will subsequently influence PAN levels. 
For the small parameter variation cases 2 and 3, in which the initial HC/ 
NOx ratios are higher, parameters perturbing NO2 levels are much more 
important in PAN production. 

These results are seen even more clearly in the combined sensitivity/ 
uncertainty analyses in cases 4-6. For the low HC/NOx simulation, the 
parameters k23 and a have large partial variances. The same results are 
observed in the higher HC/NOx cases. 

Conclusions and Recommendations 

Sensitivity and sensitivity/uncertainty analyses have been performed 
on a representative photochemical smog reaction mechanism. These 
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Figure 7. Time-varying partial variances of the major parameters affecting 
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studies have shown that the major sensitivity of the N02, 0:3, and PAN 
concentrations lies in photolysis rates for N02 and aldehydes. On the other 
hand, when all parameters studied are allowed to vary over their entire 
ranges of uncertainty, generalized stoichiometric coefficients and certain 
rate constants have been shown to exert the most influence on the predic­
tions of the mechanism. 

Within present experimental uncertainties, the current mechanism for 
photochemical smog provides a good representation of the chemistry of 
the major species in the polluted troposphere as evidenced by comparisons 
of predicted and observed concentrations in smog chamber studies [7]. 
Based on the sensitivity studies presented here, the level of detail in the 
treatment of free radical and hydrocarbon chemistry in the mechanism 
seems to be consistent with the current level of understanding of these 
processes. However, as additional fundamental studies of alkoxyl radical 
chemistry, shown by the sensitivity/uncertainty portion of this study to 
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be highly important in the reaction network, are carried out, a more highly 
resolved radical lumping procedure than is used here may be necessary to 
improve the accuracy of the mechanism. In addition, when a detailed re­
action mechanism for aromatic compounds becomes available, lumped 
aromatic reaction steps will undoubtedly need to be refined. Because no 
investigation into the role of aromatics has been attempted in this work, 
little can be said about the effects such improvements would have on the 
overall _predictions. 

In summary, based on these findings, we recommend that experimental 
work in atmospheric chemistry be concentrated in the following areas: 

(a) Studies of decomposition, isomerization, and 0 2 reaction pathways 
of alkoxyl and hydroxyalkoxyl radicals 

(b) Improvements in knowledge of the spectral distribution and level 
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of actinic irradiance for both atmospheric studies and smog chamber ex­
periments 

(c) Better measurements of quantum yields and absorption cross sec­
tions for aldehydes 
and, less importantly, that work be done on: 

(d) Olefin-ozone product distributions, needed for accurately modeling 
systems in which olefins comprise a large fraction of the hydrocarbon 
mix 

(e) Determination of rate parameters associated with the formation 
and decomposition of peroxynitrates 

(f) Determination of emission levels and routine atmospheric mea­
surements of aldehydes, because of their pronounced influence on radical 
concentrations. 
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10.7 Conclusions 

Because of the complex nature of the planetary boundary layer 

an integral element of any air quality modeling study should be a 

formal assessment of the effects of uncertainties in the parameteri­

zation of the physical processes. In this chapter a variety of methods 

for performing such sensitivity analyses have been discussed. Parti­

cular attention was given to Fourier Amplitude Sensitivity Test (FAST). 

Unlike conventional methods the FAST procedure is ideally suited to 

the task of examining the global sensitivity of nonlinear mathematical 

models. The reason for this is that the technique allows arbitrarily 

large variations in either system parameters or input variables. This 

characteristic was exploited in two practical applications involving 

components of the atmospheric diffusion equation. 
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CHAPTER 11 

EVALUATION OF MODEL PERFORMANCE 

11.l Introduction 

Previous Chapters of this study described the formulation and 

testing of the individual components of the atmospheric diffusion equa­

tion. The most critical test however, is the ability of the system as 

a whole to satisfactorily describe the concentration dynamics occurring 

in an airshed. This Chapter presents an assessment of the model per­

formance when applied to one urban region, the South Coast Air Basin of 

Southern California. The particular period to be studied, for which 

detailed emissions and meteorological information have been assembled, 

is 26-27 June 1974. 

11.2 Performance Evaluation of the Airshed Model 

There are three steps that need to be undertaken when evaluating 

the performance of a model: (1) A basic assessment of model validity; 

(2) comparison of predictions and observations for past events; and (3) 

analysis of the sensitivities of the predictions to uncertainties in 

model components. 

Model validity refers to the essential correctness of the model in 

terms of its representation of the basic chemistry and physics as well 

as to its accuracy of numerical implementation as measured by adherence 

to certain necessary conditions such as conservation of mass. 
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Discrepancies in validity arise as a consequence of the need to employ 

simplifying assumptions during the mathematical formulation. As the 

model described in previous chapters was developed, each component, 

advection and turbulent diffusion, chemical kinetics, emissions and 

surface removal, was formulated taking into account the latest relevant 

data and information (Table 11.1). In each section of the report an 

attempt has been made to test individual model components in a manner 

that would assess the validity of the basic representation of the 

atmospheric physics and chemistry. Every effort has been made to 

include as much state-of-the-art information as possible, and, given 

the present generation of computing capabilities, the model represents 

the most valid practical one for an accurate description of urban air 

pollution. 

Most emphasis in model performance evaluation has traditionally 

been given to step (2), comparison of predictions and observations for 

past events. Usually it is impossible to ascertain whether discrepan­

cies between predictions and observations are due to errors in input 

data, such as emissions inventories, or in the representation of the 

basic physical and chemical processes. While it is imperative to 

separate the influences of these uncertainties, the practical problems 

associated with obtaining the necessary emissions and meteorological 

information virtually precludes a definitive assessment of the formal 

validity of a model using field data. Nevertheless, comparisons of 

predictions and observations for past events is probably the crucial 

component of the model evaluation. If the test conditions are to be 



TABLE 11.1 

Summary of Model Components, Their Input Data Requirements and Testing Procedures 

DETAILED ELEMENTS TESTING PROCEDURES
MODEL COMPONENT AND INPUT DATA (REFERENCES REPORTING DETAILED RESULTS) 

Chemical Kinetics 

Meteorology 

Numerical Integra­
tion Procedures 

Reaction mechanism 
Photolytic rate constants 
Thermochemical rate constants 
Hydrocarbon lumping procedures 

Deposition velocities 
Mixing height 
Relative humidity 
Three-dimensional wind field 
Temperature 
Topography 
Turbulent diffusivities 
Solar insolation 
Surface roughness 
Ultraviolet flux 

Solution of advection­
diffusion equation for 
chemically reactive flows 
Initial and boundary 
conditions 

The chemical mechanism was evaluated by comparing 
its predictions against data obtained from care­
fully controlled smog chamber studies. In addition, 
the mechanism was subjected to a detailed sensitivity 
analysis that examined the effects of uncertainties 
in rate constants and stoichiometric coefficients 
(Falls et al,, 1979). The procedures for generating 
photolytic rate constants were tested against field 
measurements of NO 2 dissociation rates (McRae et al., 
(1982a). 

Much of the basic data used in the model is derived 
./0-­

from sparse and discrete ground level observations. CP 

The objective analysis procedures that are used to '° 
interpolate the data were tested against analytic 
problems and observed concentration distributions 
of tracer gases (Goodin et al., 1979a,b, 1981; McRae 
et al., 1981 and McRae, 1981). Predicted turbulent 
mixing rates, under convective conditions, were com­
pared against field experiments (McRae et al., 1981). 
Estimates of surface removal rates, derived from the 
deposition module, were compared against field and 
laboratory data. 

Problems with known solutions and properties similar 
to conditions encountered in the atmosphere were used 
to test the basic numerical technique. In addition, 
simplified numerical schemes were compared against 
more detailed approaches (McRae et al., 1982h). The 
computational procedures were tested for numerical 
stability, convergence, and mass conservation. 
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representative of those occuring in an actual airshed then it is impor­

tant to recognize that the data collection requirements can involve an 

enormous expenditure of time and resources. Some of the needed infor­

mation is summarized in Table 11.2. The present chapter is devoted, in 

large part, to an assessment of the application of the model in repro­

ducing the important features of a two-day smog episode in the South 

Coast Air Basin (SCAB) of Southern California. This basin, in many 

respects, is the ideal one for evaluating the performance of an urban 

model since it has considerable variations in meteorology and emission 

flux densities and has the most persistently severe photochemical air 

pollution in the world. 

One way to attempt to understand the causes of discrepancies 

between predictions and observations is to analyze the model to deter­

mine to what input parameters and variables the model is most sensi­

tive. When combined with estimates of the levels of uncertainty asso­

ciated with each input parameter and variable, this analysis, a so­

called sensitivity analysis, will indicate how much of the overall 

uncertainty of the model output is associated with the individual 

uncertainty in each model input. Then the overall estimated uncer­

tainty in the model predictions can be compared with the differences 

between predictions and observations in specific applications. Chapter 

10, for example, presents the results from a sensitivity analysis of 

the kinetic mechanism. There have recently been several studies of the 

sensitivity of photochemical air quality models to input parameter 

variations or uncertainties (Falls et al., 1979; Dunker, 1980, 1981; 



491 

TABLE 11. 2 

Surmnary of Input Data Needed to Carry Out 
A Model Performance Evaluation Study 

BASIC INPUT DETAILED COMPONENTS RELEVANT 
CHAPTERS 

Meteorology Three dimensional wind field 3,4,6 
Mixing depth 
Topography and surface roughness 
Turbulent diffusion coefficients 
Solar insolation 
Ultraviolet radiation 
Temperature 
Relative humidity 

Chemical Kinetics Reaction mechanism 6,8 
Reaction rate constants 
Reaction stoichiometry 
Surface deposition velocities 
Hydrocarbon lumping procedure 

Air Quality Data Initial and boundary conditions 3 
Verification data 

Emission Inventory Mobile sources 7 
Stationary sources 
Area sources 
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Seigneur et al., 1981; Tilden and Seinfeld, 1982). These studies, 

although carried out on models somewhat different from that under 

analysis here, do indicate the variables to which large photochemical 

models are most sensitive. Rather than repeating these calculations in 

this chapter, relevant results from these earlier studies will be cited 

where appropriate. One aspect of the input uncertainty question did, 

however, appear to warrant consideration, that of assessing the accu­

racy of the emissions inventory. For this reason a new technique for 

evaluating the influence of errors in individual source categories on 

the overall inventory is presented. 

11.3 Definition of the Region of Interest 

The SCAB boundaries are shown in Figure 11.1. The grid system 

origin can be defined accurately on the Universal Transverse Merator 

(UTM) system. For the present study the origin is located in UTM zone 

11 at E 560 km and N 3680 km. The region extends 400 km in a westerly 

(x) direction and 160 km north (y). The lower right hand corner was 

chosen for the origin because of the UTM zone change 60 km inside the 

western border of the modeling region. For the purposes of locating 

sources, the region has been further subdivided into SxS km cells. 

Once the grid system has been established then it is possible to pro­

cess much of the model input data. for example, Figure 11.2 is a per­

spective view of the topography of the South Coast Air Basin. This 

information is needed for the wind field generation procedures. Exten­

sive use was made of these three-dimensional displays to check data 

consistency and orientation. 
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FIGURE 11.1 

Definition of Computational Grid System Over the South Coast Air Basin 
The shaded portion corresponds to the area used 

in the model performance evaluation. 
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FIGURE 11.2 

Perspective View of the Topography of the 
South Coast Air Basin. (Vertical Scale 1:10) 
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11.4 The Episode of 26-l§._ June 1974 in the South Coast Air Basin 

During the week of 26-28 June 1974, a severe air pollution episode 

was experienced in the South Coast Air Basin of California (CARB, 

1974a). Hourly averaged ozone concentrations reached 0.50 ppm in the 

Upland-Fontana area, and values above 0.35 ppm were reported at 10 

other stations. During the period 23-28 June, 1974 wind speeds were 

considerably lower than normal. (Radiosonde data from Pt. Mugu indi-

-1cated that the wind speeds averaged about 1.6 ms between the surface 

and 750 mb height; the normal June averaged is about 4.2 m s-i.) At El 

Monte, the maximum depth of the mixed layer was approximately 750 m on 

each of the days 26-27 June. This value is unseasonably low. Tempera­

tures between the 300 and 900 m levels reached 30°c during 27 and 28 

June, while the surface temperatures dropped as low as 15°c during the 

night. The intense nocturnal inversion was caused partly by subsidence 

and partly by radiation from the surface since the dry air aloft kept 

the sky cloudless (CARB, 1974b). In summary, the low wind speeds, high 

temperatures and low inversion base produced conditions conducive to 

the accumulation of precursor emissions, and in turn, to the production 

of high ozone levels. These high ozone levels provide a stringent test 

of the ability of the model to reproduce extreme events. Another 

important reason for choosing the 1974 period was that detailed emis­

sions inventories, commissioned by the State of California Air 

Resources Board, were available for that year. 


