LIBRARY-AIR RESOURCES BOARD

AIR QUALITY GROUP CROCKER NUCLEAR LABORATORY

UNIVERSITY OF CALIFORNIA, DAVIS

Final Report to the California Air Resources Board on Contract No. A4-124-32

PARTICULATE MONITORING FOR ACID DEPOSITION RESEARCH AT SEQUOIA NATIONAL PARK CALIFORNIA

Thomas A. Cahill, Harold J. Annegarn Diane Ewell and Patrick J. Feeney

MAY, 1986

TD 884.5 C34 1995 **1**4 · . · . ă ,

FINAL REPORT TO THE CALIFORNIA AIR RESOURCES BOARD ON CONTRACT NO. A4-124-32

PARTICULATE MONITORING FOR ACID DEPOSITION RESEARCH AT SEQUOIA NATIONAL PARK CALIFORNIA

Principal Investigator

Thomas A. Cahill

Project Managers

Harold Annegarn, Diane Ewell, Patrick J. Feeney

Research Staff

Harold Annegarn Peter Beveridge

Robert A. Eldred

Brian Pedersen Patrick J. Feeney Diane Ewell Data Interpretation Sampling Instrumentation, Solar Powered Analytical Operations and Quality Assurance Ecological Aspects of Data Instrumentation Field Programs

Air Quality Group, Crocker Nuclear Laboratory University of California, Davis, CA 95616 May 1986

"The statements and conclusions in this report are those of the contractor and not necessarily those of the California Air Resources Board. The mention of commercial products, their source or their use in connection with material reported herein is not to be construed as either an actual or implied endorsement of such products."

PARTICULATE MONITORING FOR ACID DEPOSITION RESEARCH AT SEQUOIA NATIONAL PARK, CALIFORNIA

ABSTRACT:

In support of the acid deposition effects programs at Sequoia National Park, we have made extensive measurements of particulate matter during the summer of 1985. The objectives of this project were: (1) to characterize the particulate composition of fine particles by determining the concentration of all elements from hydrogen through lead; (2) to determine what material is available for wet and dry deposition by measuring particulate concentrations by element with detailed size and time resolution; (3) to determine how particulate concentrations vary with time as the meteorology changes; (4) to determine the extent of transport of particulate pollutants from the San Joaquin Valley by comparing elemental concentrations measured at three elevations with sufficient time resolution to look at transport; and (5) to provide convenient time plots and other visual representations of particulate concentrations to concurrent projects on the effects of wet and dry deposition and to studies dealing with meteorology and gasses. Samples were taken continuously at three elevations (2000 ft, 6400 ft, 10000 ft) in up to nine size ranges. Almost 4000 analyses were done for mass, carbon soot, hydrogen, and elemental species up through lead. The data were correlated with local and synoptic meteorology, known elemental source signatures, and wet deposition measurements made in the four major rain events during the summer of 1985. The results show that particulate matter at Sequoia NP is similar to that measured at other, non-urban sites in the Sierra Nevada range and California desert. Particles were carried into the study sites by both local, terrain effect winds coming from the central San Joaquin Valley, and by upper level synoptic flows south and east of Sequoia NP. Rainfall associated with the latter flows contributed most of the wet deposition acidic flux (H, SO_A^- , NO_3) in the study period.

ACKNOWLEDGEMENTS:

A large number of individuals and institutions assisted the Air Quality Group, University of California, Davis in the execution of this project, both in the line of official duties, and in many cases, by giving additional voluntary assistance. We warmly thank these persons, including amongst others: Staff members of Sacramento office of the California Air Resources Board, Research Division; Lowell Ashbaugh, Kathy Tonnessen, Eric Fujita, Chuck Unger; Sequoia and Kings Canyon National Park, Resource Management Division; Tom Nichols, Linda Mazzu; Sequoia and Kings Canyon National Park, Research Division; Dave Parsons, Tom Stohlgren, Joann Tribble, Annie Esperanza; Guest Services Inc.; Bob Seeney, Debbie Lawrence; University of California, Santa Barbara; Rick Kattelmann, David Clow; University of South Florida; Bob Braman, Bob Sutton, George Cobb, Steve Hendriks; Land, Air and Water Resources, University of California, Davis; Bob Flocchini, Leonard Myrup.

TABLE OF CONTENTS

Disc	
ADSU	act
Table	
LIST	of Figures and Tables
Proje	ect Summary
1 0	•
1.0	
2.0	Data collection, sample Analysis, and Quality Assurance 4
	2.2 Operations
3.0	Results and Interpretation
	3.1 Characterization of Particles
	3.1.1 Regional Patterns
	Spatial
	Seasonal
	Summary of regional information
	3.1.2 Local Patterns
	Spatial and Temporal: Weekly averages versus elevation
	Spatial and Temporal: Daily variations; Giant Forest
	3.2 Sources of Particulate Matter
	Diurnal particulate concentration: Giant Forest
	Diurnal particulate cycles: Emerald Lake
	Particulate size data: Giant Forest
	3.2.1 Meteorology
•	Synoptic
	Meteorological Analyses of elevated sulfur
	episodes: Meteorology of June 22-28.
	$3.2.2$ Local meteorology \sim \sim \sim \sim \sim \sim \sim 18
4 0	Interpretive and Statistical Procedures
5 0	Correlation of Particulate Values with Wet Deposition 37
J.U.	Moteorology of September 1-11 (Pairy period)
	High time recolution study of September 11th rain event
6 0	Estimation of Dry Deposition from Daticulate Data
0.0	Escimation of Dry Deposition from Particulate Data
01	and an and and and and a
GLOS	sary of ferms, Abdreviations, and Symbols
Keie	
Appe	$\mathbf{MUCes} \dots \dots \dots \dots \dots \dots \dots \dots \dots $
	A. Sampling activities, summer, 1985
	B. YOSEMITE NF COMPARISION Data-aerosols 1985
	C. Aerosol Data: Ash Mountain, Giant Forest, Emerald Lake
	D. Analysis of rainfall events, Summer, 1985.
	E. DRUM data, Giant Forest, summer, 1985

This report was submitted in fulfillment of Contract #A4-124-32, Particulate Monitoring for Acid Deposition Research at Sequoia National Park, California by Air Quality Group, Crocker Nuclear Laboratory, University of California, Davis, CA 95616, under the sponsorship of the California Air Resources Board. Work was completed as of August 1, 1986.

List of Figures

2

1.1	Acid deposition monitoring sites in California
1.2	Mass removal mechanisms as a function of particle size 3
3.1	Fine mass concentrations and percent of fine mass as ammonium
	sulfate, soil, soot and remaining mass at NPS sites,
	averaged over a two year period
3.2	Concentration of fine sulfur at NPS sites averaged by season 8
3.3	Comparison of fine sulfur at Sequoia and Yosemite
3.4	Sulfur comparison at two Sierra sites, summer 1985
3.5	SFU fine sulfur at 3 elevations in Sequoia NP
3.6	Daily coarse mass at Giant Forest
3.7	Daily fine mass at Giant Forest
3.8	Daily fine sulfur at Giant Forest
3.9	Hourly wind direction at Fresno Airport, June 1985
3.10	Relative humidity at Elk Creek, Sequoia NP, June 1985
3.11	Fine sulfur at Ash Mountain, June 1985
3.12	Fine potassium at Ash Mountain, June 1985
3.13	Fine sulfur at Giant Forest and Ash Mountain, June 1985
3.14	Synoptic chart for the USA. June 23-24, 1985
3.15	Mean diurnal wind speed at Mid-Elevation Station. Sequoia NP
3.16	Hourly wind speeds at Elk Creek, Sequoia NP, August 1985
3 17	Diurnal wind directions at Flk Creek Semicia NP July 1985 25
3 18	Diurnal wind directions at Elk Creek Sequoia NP August 1985 25
3 10	Sulfur concentrations DELM stage 6 at Ciant Forest August 1985 27
3 20	Three-bourly temperature and cloud cover at Freene Nirport
5.20	August 1096
² 7 71	August 1900
3.41	Concentration of sulfur from DRUM afterfilters, three sites 20
3.22	Sulfur and potassium concentrations over a three-day period,
	Giant Forest
3.23	Fine particulate sulfur (SPASI) at Emerald Lake,
	July and August, 1985
3.24	Fine potassium (SPASI) at Emerald Lake, July and August 1985 30
3.25	Hourly relative humidity at Elk Creek, Sequoia NP, August 1985 31
3.26	Giant Forest sulfur data; Concentration vs time and size vs time,
Augus	t 1985
4.1	SFU fine silicon at Giant Forest, as an indicator of a
	CRUSTAL Factor
4.2	SFU fine potassium at Giant Forest, as an indicator of the
	POTASSIUM factor
5.1	Synoptic charts for the USA, September 1 & 10, 1985
5.2	Sulfur concentrations, DRUM stage 6, at Giant Forest,
	10-24 September 1985
List	of Tables
2200	
2.1	Results of DRI Intercomparison of Aerosol Samplers 4
2 2	Samplers and measured variables by site
21	Darticulate matter at California National Darks
л.т. А 1	Correlation matrix of elemental concentrations of Ciant Berger 22
*•⊥ ∕	Contraction matrix of elemental concentrations at Glant Forest
4.2	Equimax located factor scores for Glant Forest fine SFU
A 7	
4.1	Soli aerosol elemental profiles, Sequola NP
5.1	Giant Forest Rain Events - 1985 \ldots 38

PROJECT SUMMARY

A study was made of particulate matter and meteorology at Sequoia National Park at three sites varying in elevation from the foothills to high elevations. Particles were collected by size and time continuously from mid-June to early October, and analyzed for a variety of parameters, including mass, hydrogen, carbon (soot), and all elements sodium and heavier. These data were compared to other National Park Service data taken with similar equipment at nearby regionally representative sites. A summary of the most important results and our interpretation of them includes:

1. Particulate matter concentrations are somewhat higher at Giant Forest than at the Yosemite NPS air monitoring site, which is similar in elevation, exposure, and vegetation. Both are much higher, by a factor of two or more, than Lassen NP, Lava Beds NM, and Crater Lake NP, which are all similar to each other.

2. Summer sulfur values at Sequoia NP Giant Forest site show considerable correlation with those at Yosemite over the entire summer.

Our interpretation of these data is that the factors that establish particulate sulfur values at Sequoia are relevant to large areas of the western slope of the Sierra Nevada range, and are not local in character or source.

3. Particulate matter concentrations are more highly variable in time than local (surface) meteorology.

Our interpretation of this fact is that fine particulate matter is dominated by transport and transformation factors associated with synoptic meteorology, not by local effects.

4. The fall-off of concentrations from Ash Mountain to Giant Forest is approximately 25%. Significant correlations exist in time between two sites at 2000 and 6400 ft, respectively.

5. Further reductions in concentrations occur going from Giant Forest to Emerald Lake at 9260 ft elevation, and in addition, time correlations appear to decrease by late summer.

Our interpretation is that the strong boundary layer winds that transport material from the San Joaquin Valley each afternoon result in significant dilution at the elevation of Emerald Lake.

6. Night time downflow wind usually contains more sulfur than daytime upslope winds. Night time peaks in sulfur occur at Emerald Lake and Giant Forest.

7. Statistical analysis of the Giant Forest data indicate that both urban and industrial sources exist for sulfur at the Giant Forest site.

Our interpretation of the particulate data and meteorology seem to indicate a second source of sulfur carried on the nighttime, downslope winds.

-v -

Trace element differences show elements characteristic of fuel oil combustion and, occasionally, copper smelting.

8. Potassium, a smoke tracer, reaches maxima when the wind changes direction. The short duration peaks indicate a local source.

9. Interesting patterns are seen in rainfall/ particulate comparisons, separating summer storms into catagories that vary according to synoptic meteorology. Specifically, the largest excess hydrogen ion and sulfur values in rainfall were associated with inland low pressure systems bringing air from the south and east.

The three summer storm types observed were: western synoptic, inland low pressure and northern synoptic. The first storm type, Western synoptic, is a frontal passage across the San Joaquin Valley which is high in N, Cl, Na and low in H, S. The second type, <u>Inland low pressure</u>, is characterized by wind from the south, east (from Bakersfield and the California/ Arizona desert) with moderate N and high S, H, Ni. The third storm type, <u>Northern synoptic</u>, originates from the north Pacific carrying mostly clean air with a little salt. In this type of storm the pH rises; the storm is lowest in N, S and high in H, particulate Na and Cl.

Our interpretation is that the majority of all SO_4^+ , NO_3^- , and H ion flux in summer wet deposition events at Sequoia comes from thunderstorms from the Gulf of California. These air masses had heavy pollutant burdens carried with the storm from copper smelter, oil combustion, and perhaps coal combustion sources south and east of Sequoia NP including the southern San Joaquin Valley.

-vi -

1.0 INTRODUCTION

Sequoia National Park is an area of unique and worldwide biological interest, spanning the full range of Sierra flora from around 2,000 ft elevation to 14,450 ft elevation. It lies to the east of the San Joaquin Valley, and is suffering from documented ozone impacts* and potential acidity problems associated with pollutants from local and regional sources. It has the most extensive acid deposition program of any site in the western United States. The 28 research projects deal primarily with wet and dry deposition effects on vegetation, soil, lakes and streams. For these reasons Sequoia is an important acid deposition monitoring site in California (Figure 1.1).

Particulate concentration data are essential for two reasons. First, they indicate the potential for dry deposition of particles. Dry deposition is a major mechanism for particle removal at Sequoia, accounting for perhaps 70 to 90% of the total deposition during the summer.

The hot dry California summers are characteristically a time of heavy atmospheric pollutant buildup. With the absence of periodic precipitation events it is suspected that dry deposition of anthropogenic pollutants may actually form a greater precentage of total acidic deposition than that contributed by rain and snow ... State of the art studies are needed on atmospheric concentrations of particulates and gasses, deposition velocities, and, where possible, actual deposition levels. (USNPS Acid Precipitation/ Integrated Ecosystem Studies, SNP, Overview 1984).

Secondly, particulate data with sufficiently high time and size resolution can provide valuable information on wet deposition scavenging processes. What happens to the particulate levels when a front approaches? Is the air cleaned out so that the rain has little particulate material to deposit, or do the levels remain at the average value? What happens to the particles (around 0.5μ m) in the region that tend to be incorporated into cloud water droplets?

The objectives formally stated in the proposal were as follows:

1. To characterize the particulate composition of fine particles by determining the concentration of all elements from hydrogen through lead.

2. To determine what material is available for wet and dry deposition by measuring particulate concentrations by element and size.

3. To determine how particulate concentrations vary with time as the meteorology changes. This will be viewed by elemental species and particle size.

4. To determine the extent of transport of particulate pollutants from the San Joaquin Valley by comparing elemental concentrations measured at three elevations with sufficient time resolution to look at transport.

*J. Bennett, NPS, contractors workshop, Sequoia NP, 1/86.

-1-

ACID DEPOSITION MONITORING SITES IN CALIFORNIA

Note: California Air Basins denoted by heavy solid lines.

Figure 1.1 Acid deposition monitoring sites in California. (From 1948 Annual Report of ARB Acid Deposition Research and Monitoring Programs.)

5. To provide convenient time plots and other visual representations of particulate concentrations to concurrent projects on the effects of wet and dry deposition and to studies dealing with meteorology and gasses.

The present program was designed to support the concurrent studies of effects of acid deposition by providing detailed particulate data with high size and time resolution at several elevations over the entire summer. The deposition depends on the mechanism for particle removal, which is a function of particle size. Dry deposition is caused by settling of large particles and diffusion of small particles, as shown by Figure 1.2. Wet deposition is via the incorporation of intermediate sized particles into cloud water droplets. Samplers with excellent particle size resolution were used to determine the extent of each mechanism.

A high time resolution was used to measure concentration variations as weather fronts passed the sites. It was important to determine the change of the size profile with time, and to identify sources. During the study, strong diurnal patterns in aerosol chemistry were discovered.

Measurements were made at high, intermediate and low elevations in order to determine how far the valley pollutants rise into the mountains.

-3-

2.0 DATA COLLECTION, SAMPLE ANALYSIS, and QUALITY ASSURANCE

A summary of study activities and their full results are grouped in the Appendices, under the appropriate headings. Details of aerosol sampling, sample analysis, and quality assurance can be found in the Appendices and the relevant Air Quality Group publications listed in the bibliography.

2.1 Instrumentation

Particulate matter was collected by size and analyzed for mass and elemental composition at three sites: Ash Mountain, Giant Forest, and Emerald Lake, despite the lack of power at the latter site. Fortunately, the development of solar-powered instrumentation for our prior California Air Resources Board project, "STUDY OF PARTICLE EPISODES AT MONO LAKE" (A1-144-32) allowed us to immediately deploy a solar powered filter sampler (7-day Stacked Filter Units, or SFU) and a continuous reading sizing impactor with 8-hour time resolution (Solar Powered Aerosol Sampling Impaction, or SPASI) at both Emerald Lake and Ash Mountain.

A standard Environmental Protection Agency (EPA) — National Park Service (NPS) SFU sampler was borrowed from the NPS for service at Giant Forest. This type of sampler has been operated at 31 parks and monuments since 1979, under formal third party quality assurance protocols. This insures direct comparability of Sequoia Giant Forest data to all NPS and California sites operated by the Air Quality Group. These latter sites include Lava Beds National Monument, Lassen National Park, Yosemite National Park, Death Valley National Monument, and Joshua Tree National Monument. For quality assurance purposes, an Air Resources Board virtual impactor (VI) was also located at the Giant Forest site. Average fine mass agreed to ±10% between the VI and the SFU. A comparison of fine particulate mass collected by the SFU and other samplers in a formal study (1984) at Desert Research Institute, Reno NV in 1984 is shown in Table 2.1.

Table 2.1:	Results of	of DRI	Interd	compari	ison o	f Ae	rosol	Sampler	s: averages,
	standard	deviat	ions,	and me	edians	of	fine	partiçle	concentrations
	over the	test p	period.	Cond	centra	tion	s in	(μg/m ³)	

	No. of		Standard	
Sampler	Samples	Average	Deviation	Median
Cyclone (Std	1) 23	5.9	2.5	5.5
low volume				
SFU	22	6.1	2.6	5.5
Dichotomous(VI)21	5.7	2.4	5.4
2x4 (RESOLVE	:) 23	5.6	2.1	4.9
high volume				
SCISAS-I	23	5.1	2.2	4.5
SCISAS-II	22	4.9	2.1	4.3
WRAQS-11	23	4.9	2.0	4.3
WRAQS-2	23	4.8	2.0	4.3

All measurements taken with a given type of sampler were averaged to obtain the most representative measurement of that type of sampler. These within-sampler averages were used to calculate the statistics in Table 2.1.

-4-

In order to obtain high resolution data on particulate size and short time (4 hour) resolution on particulate matter vs time, a Davis Rotating-drum Universal-size-cut Monitoring (DRUM) sampler was built and deployed at Sequoia National Park. This unit has provided dramatic new insights into aerosol physics and chemistry as part of the RESOLVE and SCENES studies of the California-Arizonia deserts, and the NPS--Grand Canyon Study, delivering sensitivity to a few nanograms/m₃, accurate to better than ± 10 %, in 4-hour size increments and 8 analyzable size cuts, (~15 μ m to 8.5; 8.5 to 4.4; 4.4 to 2.1; 2.1 to 1.15; 1.15 to 0.56; 0.56 to 0.34. The lower pressure stages had modified cut points due to the altitude, but were estimated to be 0.34 to 0.18; 0.18 to 0.10; filter. The unit operates continuously for two weeks at a time. Data from this unit were the key to unlocking the remarkable diurnal size/composition variations at Giant Forest. The DRUM unit also participated in the DRI study, with excellent agreement for elemental species such as sulfur.

2.2 Operations

Table 2.2 summarizes sample collection and analysis in this program for the period June -- October 1985.

	Table	2.2: SAM	PLERS AND ME	ASURED	VARIABL	ES BY	SITE		
Site	Size	Time	Analyzable	Sam	oles Ana	lvzed	ov Metho	bd	
Sampler	Range	Resolution	Samples	PIXE	Mass	LIPM	PESA	FAST	
-	-		• .						
Giant Forest (6400 ft)									
DRUM	9.6–15µm	4 hour	672	84	0	0	0	0	
	4:8-9.6µm	1 4 hour	672	84	0	. 0	0	0	
	2.4-4.8µm	1 4 hour	672	. 84	0	0	0	. . 0 .	
	1.2-2.4µm	1 4 hour	672	84	0	0	0	O	
	0.6-1.2µm	1 4 hour	672	336	0	0	0	0	
().10-0.6µm	1 4 hour	672	660	0	0	0	0	
0.0	0.10μπ	a 4 hour	672	336	0	0	· 0	0	
SFU	0-2.5µm	n 24 hour	110	110	110	110	110	24	
	2.5-15µm	a 24 hour	110	110	110	0	0	0	
VI	0-2.5µm	n 24 hour	81	81	81	110	0	0	
	2.5-15µm	a 24 hour	81	81	81	0	0	0	
_									
Ash Mou	ntain (20	00 ft)							
SPASI	.25–3µn	n 8 hour	336	336	0	0	0	0	
SFU	0-2.5μm	a 3 day	32	32	32	32	32	20	
	2.5–15µn	n 3 day	32	32	32	0	0	0	
Emerald	Tako (93	260 f+)							
CDACT	<u></u>	$\frac{1}{2}$	270	270	^	٥	٥	0	
SEMOL	· ωσ-σμ		2/0	2/U 16	16	16	0	U A	
310	2 = 15 a	n 7 daar	16	16	10	0 T0	. 0	0	
	2.J-13//1	u /udy	T0	10	70	U U	U	U	

-5-

3.0 RESULTS AND INTERPRETATION

The results from this project, including 5,700 samples and over 61,000 analyses and elemental values, will be studied for years. At this early stage, we can report a summary of the data and the most obvious interpretations, especially as they bear upon design of future investigations of deposition and ecological impact. For, while we feel we met the objectives of the particulate study, the value of this work will increase as the results of other, concurrent studies become available. We will try to put Sequoia National Park in the context of the extensive forested western slope of the Sierra Nevada range, so that the results of the Sequoia study can have relevance to the entire region. We will do this by first attempting to characterize the particulate matter by size and composition, regionally and locally, identify probable particulate sources, and to begin to associate particles with potential impacts on wet and dry deposition.

3.1 Characterization of Particles

3.1.1 Regional Patterns

Spatial. The Giant Forest (Lower Kaweah) site at Sequoia National Park can be directly compared to existing NPS sites in the western United States (Figure 3.1, 3.2), especially for those sites with similar vegetation and elevation.

These sites include:

		Eleva	cion	SI	ummer Su	utur ₂ (lonc.
Crater Lake NP		6500	ft		194	ng/m	
Lava Beds NM		4800	ft		191	ng/m_2	
Lassen NP		5900	ft	•	221	ng/m_2	•
Yosemite NP	· · ·	5300	ft*		.454	ng/m	
Sequoia NP		6400	ft		535	nq/m_2	
Death Valley NM		400	ft		496	nq/m_2	
Joshua Tree NM		4600	ft		563	ng/m ³	
	* Ridge site						

(NP - National Park; NM - National Monument)

Sulfur is used as a comparison element since it is a major component in fine particulate mass, and a significant factor in acidity. It is largely generated by man's activities.

Sequoia NP does not appear dramatically different from other California sites from Yosemite southward. These sites show, however, about 2 1/2 times the sulfur of the northern three sites, which are among the cleanest in the United States. It is also clear that Sequoia sulfur levels are only about 20% of those in the eastern United States.

Further insight into particles at Sequoia can be gained by a closer look at the full elemental record of Lassen (1983) and Yosemite (1983, 1984, 1985) National Parks (Table 3.1). In all parameters, Sequoia NP has higher particulate levels than Yosemite or Lassen NP. Comparing the 1985 data for fine components (Mass, soils, sulfate, smoke, and salts), Sequoia has levels $35 \pm 10\%$ higher than Yosemite. However, for nickel, the increase is 240%, while copper is only 25% as high at Sequoia as Yosemite. A 150% rise in lead

Figure 3.1 Fine mass (Dp <2.5 μ m), concentrations and percent of fine mass as ammonium sulfate, soil, soot and remaining mass at NPS sites, averaged over a two year period, 1983 to 1985. These data represent samples taken over more than 80% of all hours.

Figure 3.2

Concentration of fine sulfur at NPS sites averaged by season. Note that the value at Sequoia, summer, 1985 of 535 ng/m², is similar to other California Sites, supporting a regional interpretation of sulfur concentrations. for 1985 is caused by a decline at Yosemite from prior years; a 3-year average has Yosemite 13% greater than Sequoia. For nickel, however, the 1984 value at Yosemite agreed well with the 1985 value, as in fact do all pollutants except copper, bromine, and lead. Since Ni is a major tracer of fuel oil combustion, this consistent enhancement at Sequoia leads to the interpretation that Sequoia NP receives a greater impact from fuel oil combustion than does Yosemite NP. It is not certain, however, whether this source is local. In fact, a local source was found for Ni at Lassen N.P. in 1983, due to use of fuel oil for heating near the sampling site. (Table 3.1)

Seasonal. Comparisons of particulate matter between Yosemite NP and Sequoia can be made as a function of time. Figure 3.3 shows fine sulfur values at Yosemite NP for all of 1984, with Sequoia NP 1985 data superimposed for June through October. The very low particulate sulfur levels for winter, spring, and fall may well be reflected in wet and dry deposition data, once these become available. This pattern also gives information on sulfur sources and transport. For example, photochemical conversion of SO₂ to SO₄ is far more rapid in summer than winter (as is NO₂ to NO₃), and weather patterns also are characteristic of each season.

TAE	BLE 3.1:	PARTI	CULATE I	MATTER	AT	CALIFORNIA	NATIONA	L PA	ARKS 2
(all	values	μg/m ³ ,	except	those	in	parenthesis	which	are	ng/m ³)
June, July, August									

	SEQUOIA (1985)	YOSEMITE (1985)	YOSEMITE (83/84)	LASSEN (1983)						
MASS										
Coarse	12	8.9	8.6	6.1;>2.5µm						
Fine	13	9.7	7.3	3.8;<2.5µm						
TOTAL	25	18.6	15.9	9.9						
FINE COMPONENTS										
SOILS(*)	1.2	1.0	0.8	0.5						
SULFATE(**)	2.4	1.7	1.9	1.0						
Sulfur	(576)	(418)	(456)	(253)						
v	(1)	(<1)	(~1)	(2.4) ***						
Ni	(2.1)	(0.5)	(0.6)	(1.5)						
H/S			25:1, molar	•						
SMOKE	3.4	2.3	1.5	0.9						
K	(169)	(116)	(77)	(44)						
AUTOMOTIVE										
Pb	(10)	(4)	(15)	(9)						
Br	(4.6)	(2)	(3.2)	(2.5)						
SALTS										
Na	(119)	(89)	(68)	(30)						
Cl	(2)	(<2)	(2)	(2)						
MISC.METALS										
Cu	(1)	(4.1)	(1.3)	(4.2)						
Zn	(5)	(5.0)	(2.6)	(3.1)						
* Al, Si, Ca, Ti, Fe + oxides ** assumes (NH4)2.SO4, (H/S 8:1)										
Lassen site.		Lassen site.								

-9--

Figure 3.3 Comparison of fine sulfur at Sequoia and Yosemite

Sulfur comparison at two Sierra sites, summer 1985

A more relevant comparison of particulate sulfur at both sites in 1985 is shown in Figure 3.4. The higher levels at Sequoia are clearly evident, as is a strong correlation between the sites, at a level of 0.6 for a correlation coefficent. Clearly, whatever conditions are acting to elevate sulfur levels at Sequoia are also operating at Yosemite, but with less intensity. The levels at Sequoia average 1.3 times those at Yosemite, possibly indicating sulfur sources closer to Sequoia and most probably south of Sequoia. The slope of the sulfur regression line gives Sequoia values 1.6 times Yosemite values, showing that the highest sulfur values are expecially enhanced at Sequoia N.P.

Summary of regional information. The regional information generally supports the hypothesis that Sequoia NP is representative of large areas of the western slope of the Sierra Nevada range. Concentrations at the site reflect patterns seen over large portions of the western United States. The pollutant gradients favor dominant sulfur pollutant sources that lie south of Sequoia NP, perhaps with significant but not dominant contributions from oil combustion due to higher Ni levels. The southern San Joaquin Valley has elevated Ni values.

3.1.2 Local Patterns

Spatial and Temporal: Weekly averages versus elevation. One important method for determining particulate sources at Sequoia NP is to look at the patterns of particulate concentrations in space and time. The dramatic effect of elevation is shown in Figure 3.5, in which weekly values for fine sulfur are compared at Ash Mountain (2000 ft), Giant Forest (6400 ft) and Emerald Lake (9260 ft). Ash Mountain values are higher than or equal to Giant Forest values by about 20% and they clearly are highly correlated in time, (corr. coeff. = 0.72). Emerald Lake values are sharply lower, 44% of the Giant forest values and the high correlation in time that is present in June and July, (corr. coeff. = 0.78), has weakened by August to 0.53. Thus, while Ash Mountain and Giant Forest are closely coupled despite a 4400 ft difference in elevation, Giant Forest and Emerald Lake are partially decoupled despite a close proximity in distance and only 2860 ft elevation difference. It is remarkable that Yosemite National Park, over 90 miles distant, is better correlated with the Sequoia NP Giant Forest site than the Giant Forest site is with the Emerald Lake site, only a few miles. The key role of elevation on particulate concentrations is clear. The data also indicate that there may be more than one source for sulfur at Sequoia NP -- one of which is not associated with the San Joaquin Valley as represented by the Ash Mountain site.

Spatial and Temporal: Daily variations at Giant Forest. Figures 3.6 and 3.7 show the daily values for coarse and fine mass measured at Giant Forest. Figure 3.8 shows the daily variation for fine sulfur, also at Giant Forest. While some of the major peaks and valleys seen in the sulfur distribution are also evident in the fine mass, the correlations are not strong. The sense of synoptic patterns, the strong maxima and minima correlated with weather, seen in sulfur are not as evident in fine mass. This is not totally unexpected since sulfates are only about 18% of the fine mass at Sequoia (Figure 3.8). This lack of correlation between mass and sulfur is also evident in a high hydrogen to sulfur ratio, seen at Yosemite as well as Giant Forest.

Figure 3.5 SFU fine sulfur at 3 elevations in Sequoia NP

-13-

At Yosemite, the molar ratio is 25:1. Since ammonium sulfate (the most likely chemical form) has a ratio 8:1, then a great deal of the hydrogen is not sulfur-associated but resides in nitrates and hydrocarbons, natural and anthropogenic. At Davis, a high correlation exists in NO_3 to SO_4 , with about a 3:1 ratio. If such exists at Sequoia NP, and assuming a H/N molar ratio of 4:1, one could obtain the types of molar ratios measured at Yosemite with mostly anthropogenic sulfates and nitrates and relatively little natural mass. One could not have as strong a S to N correlation as at Davis, however, or fine mass would correlate more strongly with sulfur. Again, one is lead to the conclusion that either two or more different sulfur sources or two or more different nitrate sources are operational at Sequoia NP.

A listing of all particulate data for the three major sites is included in this report as Appendix C.

3.2 Sources of Particulate Matter

3.2.1 The role of meteorology

The characterization of particulate matter at Sequoia NP by source must take into consideration the meteorological conditions that bring materials to the area. Two sources of data were available for our analysis:

- 1. Department of Commerce Airport data (especially Fresno)
- 2. Sequoia NP sites operated for this study
 - (Elk Creek(June through Sept); Giant Forest(Sept))

More data are being developed by other research teams cooperating with the project, especially Prof. Myrup and Flocchini of UC Davis.

Synoptic. The Department of Commerce national data maps and the data from Fresno are most useful in terms of identifying synoptic weather patterns that influence Sequoia NP. An example is given below in Figure 3.9 thru 3.12. In Figure 3.9, one can see a shift to southerly winds on 6/23 from a stable westerly flow for the preceeding six days. In Figure 3.10, the effect on relative humidity can be seen at Elk Creek. In Figure 3.11, one can see a dramatic increase in sulfur at Ash Mountain, corresponding to southerly winds in the cold front. No such enhancement is seen in potassium in Figure 3.12, or in fine silicon. This is probably because potassium, as a smoke and fine soil tracer, and silicon, a fine soil tracer, have sources all over the San Joaquin Valley, while sulfur sources are more localized in the southern San Joaquin Valley. The effects on Giant Forest (all particles <2.5 μ m) and Ash Mountain (only particles <0.25 μ m Dp <2.5 μ m) are shown in Figure 3.13. While these results are not directly comparable in total concentration, the effect of the cold front in first raising, then reducing sulfur concentrations is dramatic. In this and other examples, it is evident that sulfur responds most strongly to synoptic patterns, since almost all sulfur at Sequoia NP has to be transported considerable distances from major potential source areas in the Bay Area, Bakersfield area, Los Angeles area, the Mojave desert power stations, or even Arizona copper smelters.

Figure 3.6 Daily coarse mass at Giant Forest

Figure 3.7 Daily fine mass at Giant Forest

-16-

Figure 3.8 Daily fine sulfur at Giant Forest

Meteorological analyses of elevated sulfur episodes: Meteorology of June 22-28. Meteorological maps from June 22 through June 28 have been used for analyses. The charts include surface maps, 500 mb charts, the highest and lowest temperature charts, and precipitation areas. On 23 June 1985 the synoptic pattern over North America was relatively weak. On the surface, the major feature consisted of a cold front extending from Montana into northern California, and a trough from eastern Utah into southern Colorado. The trough was an extension of the surface low pressure center. There was little temperature and moisture contrast across the front in northern California. At 500 mb a mid-level jet was located in northern Oregon, Idaho and Wyoming along the northern side of the surface front. There was a well-developed northwesterly flow which induced a southward swing of the surface front. On 24 June 1985, the surface chart showed a well developed strong trough on the western part of the United States (Figure 3.14).

The advection of cool, dry air associated with strong northerly winds in the middle troposphere and the northward movement of a warm, moist air mass in the low troposphere (surface low pressure) could create favorable condition for convection thunderstorms over California. During the next few days, the previous trough moved eastward, and the strong trough over the Pacific Ocean caused vigorous southwesterly flow over the western part of California.

The effect of the passage of the cold front can be easily seen at the Ash Mountain site, since the high time resolution SPASI sampler was already installed by June 18. The cold front led to large sulfur peaks on both 6/24 and 6/25 (Figure 3.11), at midnight, clearing up during daytime hours. Since the front generated southerly winds, this indicates that relatively high sulfur concentrations can be associated with sources south of Sequoia NP, such as in the southern San Joaquin valley.

3.2.2 Local meteorology

The local meteorology is dominated by very strong and regular terrain effect winds, generated by intense summer heating and a rapid increase in elevation, west to east. The regularity of the upslope-downslope pattern is remarkable. Figure 3.15 shows the wind velocity at Giant Forest projected along an axis, the average wind direction was $289^\circ - 109^\circ$, roughly a WNW - ESE line. This axis was the direction of average wind direction, presumably determined by local topography. The wind velocities are roughly equal at this elevation — at the lower elevation of Elk Creek, 4500 ft, the upslope winds are several times faster than downslope winds (Figure 3.16). More detail on the directions are shown in Figure 3.17 and 3.18. Here, the actual wind directions are plotted, showing that the nighttime downslope winds are somewhat more regular in direction, due to terrain dominance, than the daytime upslope winds. It is the contrast between the regular local meteorology and the variable particulate sulfur concentrations that reinforces the conclusion that some of sulfur at Sequoia NP must come from far away, beyond the local San Joaquin valley floor. Previous studies have shown very predictable summer transport of sulfur-containing air from the Bay Area into the northern and central San Joaquin Valley, and since this air is transported efficiently by terrain effect winds into Sequoia NP at least to the 6400 ft elevation of Giant Forest, then sulfur content at Giant Forest due to this source should

-19-

Figure 3.11 Fine sulfur at Ash Mountain, June 1985

-20-

Figure 3.12 Fine potassium at Ash Mountain, June 1985 and fine silicon at Ash Mountain, June 1985.

Figure 3.13 Fine sulfur at Giant Forest and Ash Mountain, June 1985. Spasi sampler results represent the sum of the DRUM stage (0.25 <d <3.0 μ m) and the afterfilter (d <0.25 μ m). The SFU results are for the fine filter (d<2.5 μ m).

Figure 3.14 Synoptic chart for the USA, June 23-24, 1985

-24-

Figure 3.17 Diurnal wind directions at Elk Creek, Sequoia NP, July 1985

-25-

also be relatively constant in concentration and peak on the upslope, daytime winds.

<u>Diurnal particulate concentration:</u> Giant Forest. Figure 3.19 shows the diurnal sulfur concentration at Giant Forest during August—a period characterized by highly predictable local wind patterns and no precipitation. A weak cold front came through on August 16 & 17, as shown by temperature and cloud cover at Fresno (Figure 3.20). This resulted in a sharp increase in sulfur at Giant Forest in the dominant 0.15 to 0.6 μ m accumulation mode (from gas to particle conversion) but not in the ultrafine particles (below 0.09 μ m) often present at hot, dry sites (Figure 3.19, Figure 3.21). Ultrafine sulfur showed a sharp increase in the morning.

This sulfur episode, also seen at Yosemite NP, gave the highest sulfur values between 8 PM and 4 AM, times when the surface wind was blowing from east to west, and minimum values during daylight hours (Figure 3.19). This pattern of nighttime maxima was typical over the entire summer, and only during some rain events was the pattern reversed. Figure 3.22 shows fine sulfur and potassium for one 3 day period in late-July, early-August. This leads to the conclusion that the easterly nighttime winds were sulfur-rich in accumulation mode particles that differed in size from sulfur particles from the northern San Joaquin Valley. This pattern also brought with it the highest Ni value seen all summer (6.9 ng/m^3). The evidence thus links the second sulfur source to easterly-southerly winds with a likely fuel oil component.

Diurnal particulate cycles: Emerald Lake. The diurnal patterns of the two largest fine particle components at Emerald Lake are shown in Figure 3.23 and Figure 3.24. From the earlier diagram, Figure 3.5, it is clear that the synoptic variability at Ash Mountain and Giant Forest is weakened at Emerald Lake. The detailed record confirms this, for although a sulfur peak is seen on July 23, it only lasts for 8 hours at Emerald Lake (0000 to 0800 hours), whereas it lingered longer at Giant Forest (Figure 3.8). What takes its place is a very regular diurnal pattern, with peak sulfur values in nighttime hours, as at Giant Forest. There is a high correlation between S and K. (K is generally a smoke tracer, also occurs in soils.)

Particulate size data: Giant Forest. The data from the Giant Forest DRUM sampler provides not only high time resolution, but also 8 size cuts. Over 1,500 PIXE analyses were made, each recording the 30 most common elements heavier than sodium. A summary of this very large data set includes:

- 1. Coarse soil derived particles, including high potassium levels, exist in the largest size mode, 9.6 to 15 μ m.
- 2. Sulfur was almost always the most important element heavier than sodium in size ranges less than 1.2 µm diameter. We must note that, based upon the filter data in Central Valley studies, we presume that nitrogen and other lighter elements (H, C, O) are also important, but these elements can not be seen by PIXE on the mylar DRUM substrates.

Figure 3.19 Sulfur concentrations, DRUM stage 6 (0.55 to 0.10 μm), at Giant Forest, August 1985

Figure 3.20 Three-hourly temperature and cloud cover at Fresno Airport, August 1986

Figure 3.22 Sulfur and potassium concentrations over a three-day period, Giant Forest

Figure 3.23 Fine particulate sulfur (SPASI) at Emerald Lake, July and August, 1985

Figure 3.24 Fine potassium (SPASI) at Emerald Lake, July and August 1985

3. The sulfur size distribution was quite complex:

During storm events or the passage of moisture-laden cold fronts, particles grew in size until the mode from 0.6 to 1.15 μ m dominated the mass present. The patterns of size and temporal behavior were not regular (i.e. August 1-3; August 13-20, Figure 3.25).

During stable periods characterized by the regular diurnal patterns shown in Figure 3.17 (i.e. August 3-11, in Figure 3.22 and 3.25),

- i) Sulfur in the 0.56 to 1.15 μ m mode tended to peak in the late afternoon and evening, 9PM (±4 hrs) over 70% of all days, although the pattern was not very regular and this component was occasionally absent.
- ii) Sulfur in the main accumulation mode, 0.34 to 0.56 μ m, peaked at 7AM (±2 hrs) over 90% of all days, on the nightime downslope winds (Figure 3.26a&b).
- iii) Sulfur in the very fine mode, 0.10 to 0.18 μ m mode, peaked very regularly at 5PM (\pm 2 hrs) on the hot, upslope daytime winds.

Thus, there are three separate size patterns for sulfur: a bimodal very coarse plus very fine daytime, low humidity, upslope San Joaquin Valley source, and a fine monomodal accumulation mode peak, with much high concentrations, on the nightime downslope winds. These complex size and temporal patterns strengthen our conclusion that the nightime, downslope sulfur transport has a different immediate source than the daytime upslope contribution from the San Joaquin Valley. We hypothesize that the nightime accumulation mode peak arises from SO₂ emission plumes from the Bay Area. This transported each night from higher elevation on the cooled, subsiding downslope winds. Such a hypothesis also explains particulate profile data taken from the San Joaquin Valley floor to Mineral King and from the Sacramento Valley floor to Lake Tahoe, each of which showed a transition from mixed boundary layer aerosol at lower elevations to a rather pure sulfate aerosol above 5,000 ft. (Final Report to the California Air Resources Board on Contract No. A6-219-30 "Further Investigation of Air Quality in the Lake Tahoe Basin" March 1979).

Figure 3.26a and 3.26b Giant Forest sulfur data; concentration vs time and size vs time, August 1985.

4.0 INTERPRETIVE AND STATISICAL PROCEDURES

Primary data reduction of PIXE spectra and data tabulations were performed on a PDP 15/40 computer using the code RACE. Further tabulations and graphics were performed on either an IBM PC or an AT&T 6300 using LOTUS 123. Statistical analyses of data presented in the discussion section were performed using a library of routines STATGRAPHICS on the AT&T 6300.

Factor analyses were performed using the R-factor method, with either a VARIMAX or EQUIMAX factor rotation. Normalized linear variables were calculated as inputs. The Statgraphics procedures automatically take account of missing values. Specifically, in multivariate analyses any samples with even one missing concentration (below detection limit) are omitted from the analysis. The choice of elements for various procedures must balance the need to include many varibles (elements) against the reduced number of cases available. For example, for the stacked filter unit data set at Giant Forest, 103 valid samples were obtained. On only 48 of the fine stage filters was Cu above detection limit; copper was omitted from the factor analysis.

In factor analysis, Varimax is the rotation method most regularly applied to the extracted principal components. This rotation has the effect of simplifying the column structure of the rotated factor matrix, pushing values of the factor scores towards unity or zero. The VARIMAX derived factors tend to be stable with respect to the number of factors chosen. The EQUIMAX rotation procedure takes a middle course between the Varimax and the QUARTIMAX rotation. The latter tends to optimise the ROWS of the factor matrix, tending to create single factors containing all the variance. Equimax tends to distribute the variation between the number of factors chosen. This property has been exploited in analysis of the present data set to explore the decomposition of the derived factors. By starting with two factors, one derives the major components of the aerosol. By incrementing the number of factors stepwise, the first two factors are divided into contributing components. The initial factors can be interpreted in terms of processes, in this case meteorologically dominated transport of aerosol from diverse sources into the sampling region. Subsequent factorization enables individual source

Table 4.1 Correlation matrix of elemental concentrations at Giant Forest (6-25-85 through 11-7-85). Sampler: SFU (fine stage; 0.1-2.5um); 24-hr samples

ELEMENTS	Al	Si	S	K	Ca	Ti	Mn	Fe	Ni.	Zn	Br	Pb
Al	1.00	0.89	0.13	0.36	0.92	0.81	0.66	0.91	0.15	0.38	0.64	0.48
Si	0.89	1.00	0.07	0.33	0.90	0.88	0.69	0.99	0.17	0.42	0.65	0.47
S			1.00	-0.18	-0.01	-0.13	0.05	0.10	0.38	-0.02	0.34	0.47
K				1.00	0.54	0.31	0.19	0.32	0.21	0.13	0.15	0.11
Ca	0.92	0.90		0.54	1.00	0.81	0.60	0.89	0.12	0.34	0.56	0.31
Ti	0.81	0.88			0.81	1.00	0.65	0.87	0.03	0.30	0.51	0.28
Mn	0.66	-0.69			0.60	0.65	1.00	0.69	-0.07	0.51	0.42	0.46
Fe	0.91	0.99			0.89	0.87	0.69	1.00	0.20	0.41	0.65	0.48
Ni						ς.			1.00	0.13	0.19	0.40
Zn						```	0.51			1.00	0.42	0.49
Br	0.64	0.65	0.34		0.56	0.51	0.42	0.65		0.42	1.00	0.61
Pb	0.48	0.47	0.47				0.46	0.48	0.40	0.49	0.61	1.00

-33-

Correlations between fine elemental species at Giant Forest are shown in Table 4.1. Very high correlations (>0.89) exist between silicon and other soil-derived elements (Al, Ca, Ti, and Fe). High correlations exist between Si and Mn(0.69) as expected, but a low correlation exists for K (0.33). We interpret this as evidence of fine smoke at this site, as K occurs also as a smoke tracer. The correlation of Si with Br is based on few observations, and can probably be discounted. Sulfur correlates well with nothing at all, as might be expected at a site dominated by secondary, not primary, aerosols, but the modest correlations of sulfur with Ni (0.38), Br (0.34) and Pb (0.47) are suggestive of its anthropogenic origins, including fuel oil.

Initially five factors were selected and rotated using the EQUIMAX rotation. In addition, two, three, four and six factors have been extracted to investigate how the variation separates as one examines the correlations in finer detail. The final Equimax rotated factor matrix for 5 factors is displayed in Table 4.2.

Table 4.2 Equimax rotated factor scores for Giant Forest fine SFU data

EL	ement fi Al	ACTOR 1 0.59	FACTOR 2 0.60	FACTOR 3	FACTOR 4	FACTOR 5
	Si	0.79				
	S					0.67
	K				0.77	
	Ca	0.60	0.47		0.60	
	Ti	0.75				
•	Mn		0.48	0.56		
	Fe	0.79				
	Ni					0.65
÷.	Zn			0.68	•	
- '	Br			0.39	•. •	0.38
	Pb			0.58		0.58
most	cimificant	factor c	coroc have	been retain	d in each	column

The most significant factor scores have been retained in each column.

FACTOR 1: Al, Si, Ca, Ti, Fe is derived from CRUSTAL material. Samples of local soil were collected at each of the sites, then resuspended and sampled in the laboratory. Results are presented in Table 4.3.

- FACTOR 2: Al, Ca, and Mn. May be a local soil high in aluminum. FACTOR 3: Zn, Mn, Pb and Br. Pb and Br indicate source associated with automobile traffic, and hence either a valley source or local traffic. The source of Zn and Mn is not known, although the
- FACTOR 4: correlation coefficients put most Mn in soil. FACTOR 4: K and Ca. This K may be derived from wood burning, or alternatively from biogenic emissions from the forest. The association with Ca is unexpected.
- FACTOR 5: S, Ni, Pb and Br. This signature is an unambiguous indicator of valley pollution, either local or in the southern San Joaquin, carrying evidence of oil burning and automotive exhaust fumes.

Silicon and potassium time plots are presented in Figures 4.1 and 4.2, as key indicator elements for Factor 1 (CRUSTAL) and Factor 4 (POTASSIUM). A similar time plot of S, as an indicator for Factor 5 (VALLEY POLLUTION) was shown earlier as Figure 3.8.

TABLE 4.3	: SEQUOIA	ELEMEN	CAL PRO	FILES*	SFU	FINE	STAGE	SOIL	AEROSOL	PROFILE	Å
	SITE	Mg J	Al s	Si K		Ca	Ti	Mn	Fe		
·	AM1	- 27	7.8 47	7.6 3	.6	2.4	1.4	0.24	16.6		
	AM2	23	3.8 46	5.7 4	.0	2.9	1.3	0.37	20.1		
	GF1	4.1 20).3 57	7.1 3	.9	1.5	1.1	0.05	11.6		
	GF2	4.8 2	7.0 49). 7 3	.3	3.4	1.0	0.27	10.3		
	EL1	7.0 20).4 54	4.2 4	.2	1.0	0.9	0.20	11.8		
	EL2	4.5 24	4.8 54	4.7 3	.6	0.8	0.8	0.24	10.4		
SFU COARS	SE STAGE (2.5 - 1	5μm),	SOIL A	EROS	OL PRO	FILE 9	s			
	AM1	28	3.9 47	7.5 4	.0	2.5	1.1		15.6		
	AM2	20	5.6 47	7.5 4	.5	3.1	1.3	0.19	16.4		
	GF1	2:	L.2 59	9.2 4	.2	2.8	1.2		11.4		
	GF2	20	5.3 52	2.7 4	.2	4.3	0.9	0.22	9.0		
	EL1	22	2.8 59	9.1 5	.0	1.8	0.9		10.4		
	EL2	20	5.8 58	3.1 4	.0	1.5	0.7	0.18	8.7		
* Soil sa	mples sie Mountain:	ved and GF=Gia	then in the state of the state	cesuspe	nded =Eme	in th cald I	ne labo Jake	orato	ry as aei	cosols	

Figure 4.1 SFU fine silicon at Giant Forest, as an indicator of a CRUSTAL Factor

Figure 4.2 SFU fine potassium at Giant Forest, as an indicator of the POTAS-SIUM factor

5.0 CORRELATION OF PARTICULATE VALUES WITH WET DEPOSITION

Preliminary wet deposition data from the Sequoia study were compared to particle concentrations. While the values contained in Table 5.1 may require some modification, they give broad indications that are unlikely to change significantly. They are included in this summary since they bear directly upon the relevance of particulate data to wet deposition, and may guide future studies.

Four major rain periods occurred during the summer of 1985: July 25/26; September 4/5; September 10/11; and October 8/9; during which the pH values ranged from 4.27 to 5.44. The behavior of fine particles was highly variable, but three different patterns emerged:

1. Frontal synoptic storm: from the west (July 25,26). Generally, low fluxes of SO_4 , NO_3 , and hydrogen ion. Sulfur particulate values decreased in the storm, and NO_3 values were highest relative to SO_4 in the rain. The source appears to be the central San Joaquin Valley.

2. Southerly storms, often thunderstorms: associated with a low pressure in Nevada (September 4/5 and September 10/11; also see Appendix D for July 1984). In these storms, one has high fluxes of SO_4 , NO_3 , and H ion, and sulfur particles increased as the storm arrived (along with Ni). Clearly, the storm was carrying along within itself a considerable burden of pollutants, some as aerosol and some incorporated into rainfall. Arsenic, a virtually unique tracer of copper smelters, was seen in particles during one storm. A Gulf of California air mass appears responsible, with pollutants from Arizona, the California desert, and perhaps the southern San Joaquin Valley as shown by the Ni tracer.

3. Northerly frontal storms: (October 8/9). This was a north Pacific storm bearing mostly clean air (and a little salt). It had some intermediate level of SO₄ and NO₃, picked up perhaps across the Bay Area and northern California. The pH was the highest of all storms, 5.44 (essentially CO₂ - buffered value, thus clean). Very high hydrogen/sulfur values occurred² in the rainfall, and this storm had a low NO₃ level relative to SO₄ in the rain.

Thus, should these classifications gain statistical weight as more events are studied, it is clear that the dominant SO_4 , NO_3 , and H fluxes in wet deposition come from sources south and east of Sequoia. Although the storm cells move in from the south and east, they can also entrain air from the west, too that has been transported at low elevation. This may mix sources in a single storm.

Meteorology of September 1-11 (Rainy period). During September, the western part of the United States experienced a monsoonal change in weather patterns. During this period, warm and moist air of tropical origin moved northward, and brought extensive thunderstorm activity. The precipitation charts show an increase in precipitation over California. On 1 September 1985 the synoptic pattern over California was weak. On the surface, the major feature consisted of a cold front, extending from southern Oregon into northern Kansas, and a weak trough over the eastern part of California. At 500 mb the flow was southwesterly over the northwestern part of the U.S.,

Table 5.1: GIANT FOREST RAIN EVENTS - 1985 (rain values preliminary)

	July 25/26	Sept 4/5	Sept 11	Oct 8/9
Rain(cm)	0.20(0.11)	1.29(0.09)	3.94	0.93(1.16)
pH/litre	4.85(4.27)	4.65(4.45)	4.85	4.81(5.44)
Fluxes H	28(59)	288(18)	556	144(42)
so ₄ , NO ₃	6.8/5.0	36.1/19.9	96.1/55/2	38.7/18.3
S(part)	decreased 800/486/712	increased 288/358/530	increased 425/623/420	decreased 566/308/290
H/S(p)	1.1/.9/1.1	-9/-7/.8	.6/1.2/.8	1.5/1.8/2.0
RAIN (ratio to SO ₄)				
H NO3 NH4 Cl Na K Ca Mg	0.4% 74% 28% 10% 10% 20% 1% 1%	0.8% 55% 20% 4% 4% 3% 4% 4%	0.6% 57% 22% 9% 9% 1% 26% 26%	3.7% 47% 16% 7% 7% 5% 6% 6%
PARTICLES				
Increases	Br,Cu	S,Ni	S,Ni,Zn, Br,Pb,Na Soil,(H)	Cl,(H)
Reduces	S,K,Pb	Na,soil, Zn,K,(H)	none	Na,K,soil
METEOROLOGY	Frontal, from west	Nevada Low pressure	Nevada Low pressure	Frontal, from north

() Figures in paranthesis refer to the second day of rainfall. * Fluxes, μ equiv./m per event ** ng/m aerosol

-38-

Figure 5.1 Synoptic charts for the USA, September 1 and 10, 1985

and a relatively strong trough was over the northern part of the Pacific Ocean. During the next few days, the 500 mb charts showed a strong mid-level jet stream over California. The velocity distribution about the mid-level jet had significant effects that favored vertical motion. On the surface a cold front extended from southern California into Nevada. Convective activity was expected because a low level convergence area lay underneath a region of upper divergence. The strong circulation around the 500 mb low induced a southward surge of the surface front over California. Baroclinic 500 mb flow was confined very well to the pacific southwest over the U.S. Generally, the 500 mb charts on this period provide evidence of a warm, moist airmass over California. The 500 mb winds were very strong, and directional transport was from the south-southwest. On 10 September 1985, 500 mb low was over California, and winds were southerly over the eastern part of California (Figure 5.1). Surface charts also showed a southerly flow over most of the southwest. Under these conditions, emissions from pollutant sources in Arizona, Mexico, and southern California could be transported northward within a moist airmass to the Sierra Nevada range of California.

High time resolution study of September 10th rain event. The particulate and wet deposition sulfur species during the rain event which began September 10th were associated, as seen by a sharp increase in particulate sulfur at precisely the beginning of rainfall at the Giant Forest site (Figure 5.2). This is all the more unusual because during non-rainy periods during the rest of the month, sulfur particles peaked during their usual 10 PM to 4 AM nightime pattern, on downslope (east to west) winds. The conclusion is inescapable that this type of rain event, unlike the frontal systems, brings high particulate sulfur concentrations to Giant Forest. It must also be noted that thunderstorm rain events are much more common east of Giant Forest, even at Emerald Lake, since the Giant Forest site lies west of the "Great Western Divide" and is separated by the upper Kern River valley from the main ridge of the Sierra Nevada. Thus, we may hypothesize higher sulfur fluxes at more easterly sites, sites that possess less buffering capacity than the well forested Giant Forest area.

Figure 5.2

Sulfur concentrations, DRUM stage 6, at Giant Forest, 10-24 September 1985

6.0 ESTIMATION OF DRY DEPOSITION FROM PARTICULATE DATA

During the 130 days of the study period, rainfall occurred on less than 10% of all days, and often its duration was only a few hours. During one period (July 26-September 4), 38 days passed with no rainfall at Giant Forest. Thus, dry deposition was the major source of potentially acidic deposition during most of the summer. There are inherent difficulties in evaluation of dry deposition fluxes, but knowledge of particulate concentrations by size and composition are extremely helpful in firming up flux estimates.

It is also important to recall that, although particles may be depositied by dry deposition on needle and leaf surfaces, rapid cooling during evening hours may bring the foliage to the dew point. This could allow droplets of water to form on needle and leaf surfaces already coated with particles deposited over many days and even weeks, with at least the potential of extremely high acidic concentrations for hours every night. Our observations of heavy upper surface damage on Jeffery pine needles at the Giant Forest (Lower Kaweah) site, with no damage on lower surfaces despite equal numbers of stomata, could support such an interpretation, although winter needle damage due to ice also mostly affects the upper needle surface. Since essentially 100% of all Jeffery pines at this elevation show heavy damage (needle loss, tip bunching), it is essential to clarify these mechanisms as they may well modify potential damage limiting strategies of regulatory agencies. We recommend that leaf wetness probes be added to meteorological stations for future studies of acid deposition in forested areas. This will help evaluate the interaction between dry deposition and dew formation.

Table 3.1 shows that coarse $(2.5 \ \mu m$ to $15 \ \mu m)$ and fine (less than $_2.5 \ um)$ mass at Sequoia are approximately equal in magnitude, totaling $25 \ ug/m^3$. Detailed analysis of the fine components gave an estimate of about 18% anonium sulfate, and probably twice as much ammonium nitrate—based on ratios seen in Sacramento Valley and Lake Tahoe summer studies. Thus, we estimate that over 50% of all fine particulate mass is in acidic particles derived from secondary processes (SO₂ to sulfate, NO₂ to nitrate). Only 9% occurs as fine soils, a potentially buffering component, while the role of the 26% smoke in acidity is unknown.

Coarse particulate mass has much larger soil components, and sulfur is only a very small fraction of the mass. Thus, one would not predict major fluxes of acidity associated with these coarser particles of largely local origins and natural sources, although the concentrations are probably enhanced by man's activities via resuspension processes.

More detailed calculations of dry deposition are being made using DRUM data, and measurements of particulate mitrogen are being made by particle size. With these data, we anticipate firmer estimates of dry deposition at the Giant Forest site.

-41-

GLOSSARY OF TERMS, ABBREVIATIONS, AND SYMBOLS

	Analytical Techniques
FAST	= Forward Alpha Scattering Techniques (H to F)
LIPM	= Laser Integrating Plate Method (C soot)
DIVE	# Particle Induced X-ray Emission (Na to II)
TIME	$= V Par Electorence (C_2 to U)$
XRP	= x - Ray Fibblescence (La LO U)
	Sampler Systems
DRUM	= Davis Rotating Universal-size-cut Monitoring Sampler
SFU	= Stack Filter Unit
SPASI	= Solar Powered Air Sampling Impactor
	Other
200	- Air Ouality Crown
AQG	= All Quality Group
ARB	= Air Resources Board
CNL	= Crocker Nuclear Laboratory
UCD	= University of California, Davis
UCSB	= University of California, Santa Barbara
	- University of California Riverside
	- outsergrel of fattering, inverging

REFERENCES

- 1. Feeney, P.J., R. Dixon, T.A. Cahill, Field reliability of the SFU for long-term remote aerosol sampling. (in preparaton) 1986.
- Cahill, T.A., Physical methods in air pollution research: The second decade. <u>Physics in Environmental and Biomedical Research</u>, pp 55-61, ed. S. Onori & E. Tabet, 1986.
- Eldred, R.A., T.A. Cahill, P.J. Feeney, Particulate monitoring at U.S. national parks using PIXE. Presented at 4th Int. PIXE Conf., Tallahassee FL 9-13, June 1986.
- Cahill, T.A., R.A. Eldred, D. Wallace and B.H. Kusko. The hydrogen-sulfur correlation, by PIXE plus PESA, and aerosol source identification. Presented at 4th Int. PIXE Conf., Tallahassee FL 9-13, June 1986.
- 5. Cahill, T.A., R.A. Eldred, P.J. Feeney, Atmospheric particles at U.S. national parks. Submitted to: Symposium on Chemistry of the Atmosphere; Amer.Chem.Soc., June 8-12, 1986.
- Annegarn, H.J., T.A. Cahill, R. Dixon, P. Beveridge, Solar-powered aerosol samplers for use with PIXE analysis. Presented at 4th Int. PIXE Conf., Tallahassee FL 9-13, June 1986. Nucl. Inst. & Meth. B6: 1987.

-42-

APPENDICES

- A. Sampling activities, summer, 1985
- B. Yosemite NP; Comparison Data -- aerosols 1985
- C. Aerosol Data -- Ash Mountain -- Giant Forest -- Emerald Lake
- D. Analysis of rainfall events, summer, 1985
- E. DRUM data, Giant Forest, summer, 1985

$\begin{array}{c c c c c c c c c c c c c c c c c c c $		AS	H MOUN	ITAIN		L	OWER	KAWEA	Н	EMERAI	LD LAKE
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					Τ						Σ
Image: How is the second system is the s		-	R	Å Fer				ER		•	ER, DRU ILTER -
L B L D L D L D L D			LTI	UM UL				LT		_	L L
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			بط بط	D R F D				FI		SFU	F I RSE
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			S I A L	S I R S I				M A L	MS	4	5 I A L 0 A
DATE O J I		ΕU	PA VI V	8 P A 2 O A		FU	1/	0 R U 7 I N) R U	N 1 F	S P A
6/18 x x a x a x k </td <td>DATE</td> <td></td> <td>03 HL</td> <td>0.0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	DATE		03 HL	0.0							
6/19 x </td <td>6/18</td> <td>x</td> <td>x</td> <td>x</td> <td>_</td> <td>x</td> <td>a</td> <td>х</td> <td>x</td> <td>x</td> <td>k</td>	6/18	x	x	x	_	x	a	х	x	x	k
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	6/20	X	X	<u>X</u>			a	<u>x</u>	<u>x</u>	<u> </u>	<u>k</u>
6/22 x	6/21			<u>×</u>			a	<u> </u>	<u> </u>	<u>X</u>	<u> </u>
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	6/22	×	x	^X			a	b	 X	 X	k
-6/24 x x x a b x i x <td>6/23</td> <td>X</td> <td>x</td> <td>X</td> <td></td> <td>x</td> <td>a</td> <td>b</td> <td>x</td> <td>X</td> <td>k</td>	6/23	X	x	X		x	a	b	x	X	k
b x <	6/24	X	<u>x</u>	X		<u>L_x_</u>	a	Ъ	<u>X</u>	<u> </u>	k
0/20 x </td <td>6/25</td> <td>┵┹╸┇</td> <td>x</td> <td><u>x</u></td> <td></td> <td></td> <td>a</td> <td><u>b</u></td> <td><u> </u></td> <td>x,i</td> <td>x,i</td>	6/25	┵┹╸┇	x	<u>x</u>			a	<u>b</u>	<u> </u>	x,i	x,i
3/2 x <t< td=""><td>$\frac{6/20}{6/27}$</td><td>X</td><td>X</td><td>X</td><td></td><td></td><td>a</td><td>D b</td><td>X</td><td><u></u></td><td><u> </u></td></t<>	$\frac{6/20}{6/27}$	X	X	X			a	D b	X	<u></u>	<u> </u>
6/29xxxxxx $6/30$ xxxxxxx $7/1$ xxxxxxx $7/1$ xxxxxxx $7/1$ xxxxxxx $7/2$ xxxxxxx $7/2$ xxxxxxx $7/4$ xxxxxxx $7/4$ xxxxxxx $7/6$ xxxxxxx $7/6$ xxxxxxx $7/8$ xxxxxxx $7/10$ xxxxxxx $7/12$ xxxxxxx $7/13$ xxxxxxx $7/14$ xxxxxxx $7/16$ xxxxxxx $7/16$ xxxxxxx $7/18$ xxxxxxx $7/20$ xxxxxxx $7/21$ xxxxxxx $7/24$ xxxxxx	6/28	<u> </u>	$\frac{x}{1 + x}$	X			а	x	X	<u>x</u>	X
6/30 x </td <td>6/29</td> <td>x</td> <td>x</td> <td>X</td> <td></td> <td></td> <td>a</td> <td>x</td> <td>x</td> <td>x</td> <td>X</td>	6/29	x	x	X			a	x	x	x	X
7/1 x x x a x x x x $7/2$ x	6/30	x	x	x		x	a	x	x	x	X
1/2 x <td>$\frac{7/1}{-7/2}$</td> <td><u>x</u></td> <td><u>x</u></td> <td><u>x</u></td> <td></td> <td>X.</td> <td>a</td> <td><u>x</u></td> <td>X</td> <td><u></u></td> <td>x</td>	$\frac{7/1}{-7/2}$	<u>x</u>	<u>x</u>	<u>x</u>		X.	a	<u>x</u>	X	<u></u>	x
7/3 x <td></td> <td>x</td> <td>x</td> <td>x</td> <td></td> <td>Lx_</td> <td>a</td> <td>x</td> <td><u>x</u></td> <td>x</td> <td>X</td>		x	x	x		Lx_	a	x	<u>x</u>	x	X
7/7 x <td>7/4</td> <td><u> </u></td> <td><u> </u></td> <td>X</td> <td></td> <td></td> <td>a</td> <td></td> <td><u> </u></td> <td><u>x</u></td> <td>X</td>	7/4	<u> </u>	<u> </u>	X			a		<u> </u>	<u>x</u>	X
7/6 x x x x a x <td>7/5</td> <td></td> <td></td> <td>x</td> <td></td> <td></td> <td>a</td> <td></td> <td><u> </u></td> <td> x</td> <td><u> </u></td>	7/5			x			a		<u> </u>	 x	<u> </u>
7/7 x <td>7/6</td> <td>x</td> <td>X</td> <td>x</td> <td></td> <td>x</td> <td>а</td> <td>x</td> <td>x</td> <td>x</td> <td>X</td>	7/6	x	X	x		x	а	x	x	x	X
7/8 x <td>7/7</td> <td>х</td> <td>x</td> <td>x</td> <td></td> <td>x</td> <td>а</td> <td><u>x</u></td> <td>x</td> <td><u>x</u></td> <td>x</td>	7/7	х	x	x		x	а	<u>x</u>	x	<u>x</u>	x
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	7/8	<u> </u>	<u> </u>	<u>x</u>			a	x	<u>x</u>	<u> </u>	x
7/10 x </td <td>7/9</td> <td>x</td> <td></td> <td>X</td> <td></td> <td>X</td> <td>X</td> <td></td> <td><u> </u></td> <td><u> </u></td> <td><u> </u></td>	7/9	x		X		X	X		<u> </u>	<u> </u>	<u> </u>
7/12 x x x x x x x x 7/13 x x x x x x x x 7/13 x x x x x x x x 7/14 x x x x x x x x 7/14 x x x x x x x x 7/15 x x x x x x x x 7/16 x x x x x x x 7/17 x x x x x x x 7/17 x x x x x x 7/18 x x x x x x 7/20 x x x x x x 7/21 x x x x x x 7/21 x x x x x x 7/22 x x x x x x 7/24 x x x x x x <td>7/11</td> <td>X</td> <td><u> </u></td> <td>X</td> <td></td> <td></td> <td>x x</td> <td></td> <td>X</td> <td></td> <td>X</td>	7/11	X	<u> </u>	X			x x		X		X
7/13 x </td <td>7/12</td> <td></td> <td></td> <td> x</td> <td></td> <td></td> <td>x</td> <td>x</td> <td><u>A</u></td> <td>x</td> <td>X</td>	7/12			 x			x	x	<u>A</u>	x	X
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	7/13	x	x	x		x	x	x	X	x	X
7/15 x </td <td>7/14</td> <td>X</td> <td>X</td> <td><u>x</u></td> <td></td> <td>x</td> <td>x</td> <td>x</td> <td><u> </u></td> <td><u></u>x</td> <td>X</td>	7/14	X	X	<u>x</u>		x	x	x	<u> </u>	<u></u> x	X
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	7/15	<u>x</u>	X	X		×	x	x	X	<u>x</u>	<u> </u>
7/17 x </td <td>7/17</td> <td><u> </u></td> <td></td> <td>X</td> <td></td> <td></td> <td>x</td> <td>X</td> <td>X</td> <td><u> </u></td> <td></td>	7/17	<u> </u>		X			x	X	X	<u> </u>	
7/19 x x x x x x $7/20$ x x x x x x x $7/21$ x x x x x x x $7/22$ x x x x x x x $7/23$ x x x x x x x $7/24$ x x x x x x x $7/25$ c c c c c x x $7/26$ x x x x x x x $7/27$ x x x x x x x $7/28$ x x x x x x x	$\frac{7/17}{7/18}$	<u> </u>	<u> </u>	<u> </u>			x		X Y	<u></u> x	X ×
7/20xxxxxx $7/21$ xxxxxxx $7/22$ xxxxxxx $7/23$ xxxxxxx $7/23$ xxxxxxx $7/24$ xxxxxxx $7/25$ cccccxx $7/26$ xxxxxxx $7/27$ xxxxxxx $7/28$ xxxxxxx	7/19	x		X			x	x	x	x	X
7/21 x </td <td>7/20</td> <td>X</td> <td>x</td> <td>X</td> <td></td> <td>Lx_</td> <td>x</td> <td>x</td> <td>X.</td> <td>x</td> <td>X</td>	7/20	X	x	X		Lx_	x	x	X.	x	X
7/22 x x x x x x x 7/23 x x x x x x x x 7/23 x x x x x x x x 7/24 x x x x x x x x 7/25 c c c c c x x 7/26 x x x x x x x 7/27 x x x x x x x 7/28 x x x x x x x	7/21	X	X	<u> </u>		Lx_	x	x	x	<u>X</u>	X
1/23 x x x x x x x 7/24 x x x x x x x 7/25 c c c c c x x 7/26 x x x x x x x 7/27 x x x x x x 7/28 x x x x x x 7/28 x x x x x x	7/22	<u> </u>	X	<u> </u>		<u> </u>	X	x	x	×	X
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	7/23	X	↓×_	X			<u>x</u>	X	<u>x</u>	L <u>×</u>	××
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	7/25	X C	<u>x</u> c	<u>x</u>					c x	<u></u> X	^ x
7/27 x x x x x x 7/28 x x x x x x	7/26	x	x	<u>X</u>		x	x	x	x	X	x
7/28 x x x x x x x x x x	7/27	<u>x</u>	x	X		x	x	x	x	x	x
	7/28	<u>x</u> -	x	x		x	x	x	x	x	x

(Legend at end) Table 1: Detailed schedule of events for Sequoia field sampling(6/18/85 to 10/10/85).

	AS	H MOUN	TAIN		L	OWER	KAWEA	Н	EMER	ALD LAKE
		ASI NAL FILTER	ASI DRUM & ARSE FILTER		c		UM NAL FILTER	NMS	N I – S F U	ASI NAL FILTER, DRUM COARSE FILTER
DATE	SF	5 P F 1	s P CO		SF	١٨	DR FI	DR	1 M	SP SP
7/29				-			· v			
$\frac{7}{29}$	<u> </u>	<u> </u>		2	X		^ X			^
$\frac{7/30}{7/31}$	- <u>-</u>	↓ <u> </u>	×	i	v	x	x	x	x	<u> </u>
8/1	x	X	X	•	x	x	x	x	X	<u>x</u>
8/2	x	x	x		x	x	x	x	x	X
8/3	x	x	x			x	х	x	X	X
8/4	х	x	x			x	x	x	x	X
8/5	_x_	X	x			x	x	x	X	X
8/6	x	x	x		x	x	x	<u>x</u>	X	x
8/7	X	X	x		x	x	x	x	<u>x</u>	X
8/8	<u>x</u>	X	X		x	X	x	x	<u>x</u>	X
<u> 8/9 </u>	×	x	<u>x</u>		x	X	x	x	<u> </u>	X
8/10	<u>x</u>	<u>x</u>	<u>x</u>		<u>x</u>	x	X	x	<u>x</u>	X
	X	<u> </u>	<u> </u>		<u> </u>	<u> </u>	x	x	<u>x</u>	<u> </u>
<u>_8/12</u>	<u>x</u>	<u> </u>	<u> </u>		<u>x</u>	<u>x</u>	x	x	<u> </u>	×
	<u> </u>	<u> </u>	<u> </u>	۰.	<u>x</u>	<u>x</u>	×	x	x	<u> </u>
8/14	x	X	<u>x</u>		X	x	x	x	X	X
8/15	<u> </u>	<u> </u>	<u>x</u>		<u> </u>	x	X	x	X	X
<u> </u>	<u>x</u>	<u> </u>	x		X	X	<u> </u>	x	<u> </u>	X
8/17	<u>x</u>	X	<u> </u>		x	X	X	<u> </u>	<u> </u>	X
<u>_8/18</u>	<u>x</u>	X	<u> </u>		<u> </u>	X	<u> </u>	x	<u>x</u>	X
8/19	<u> </u>	<u> </u>	<u> </u>		<u> </u>	X	X	X	X	<u> </u>
8/20	<u> </u>	<u> </u>	<u> </u>			<u>x</u>	<u> </u>			X
0/41	<u>~</u>	<u> </u>	<u>×</u> _			<u> </u>			<u>x</u>	<u> </u>
<u> </u>		<u>x</u>				<u> </u>			<u>~</u>	X
8/24	<u>~</u>	×					<u>^</u>		^ 	~^ V
8/25	x	<u> </u>	<u>x</u>		x	x	x x	x	^ 	^ X
8/26	x	x	X		x	f	x	x	<u> </u>	x
8/27	x	- x	x		x	f f	x	x		
8/28	x	x	x		x	x	g	x	x	x
8/29	x	x	x		x	x	g	x	x	x
8/30	x	x	x		x	x	x	x	x	x
8/31	_x	X	X		x	x	x	x	X	x
_9/1	X	X	<u> </u>		X	<u>x</u>	x	x	X	x
9/2	X	X	X		x	<u> </u>	<u> </u>	x	X	x
9/3	x	<u> </u>	<u> </u>		<u>x</u>	<u>h</u>	<u> </u>	x	X	x
9/4	x	X	X		x	<u>h_</u>	x	<u> </u>	X	x
9/5	<u> </u>	<u>x</u>	<u> </u>		×	<u>h</u>	<u> </u>	<u> </u>	X	X
9/6	X	<u>x</u>	<u> </u>	·	x	<u>h</u>	x	x	X	X
(Leg	end a	t end)								

=

э

ير ماريخ ماريخ

· · .

۰.

Table 1: (continued)

	ASH MOUNTAIN	LOWER KAWEAH	EMERALD LAKE
			Σ
			. Ru
			E D
	名 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	2	Г.
	L E L	E H	
	FI L	다 	
•	드 프	í	K S F K S F
	S I S I S I S I S I	MS M MS	1 - 1 - 1 S I 0 A L
	PA FU DA NA U	FU IN RU	I N C C C
	O a la a a a a a a a a a a a a a a a a a	D FD < S	X N Y X
,	<u> </u>	x b x x	y x
	$\frac{-\frac{2}{7}}{\frac{9}{8}} \times \times \times \times$	x h x x	<u> </u>
	<u>9/9 x x x</u>	x h x x	<u>x x</u>
	<u>9/10 x x x</u>		x x
	$\frac{9/11}{x}$ x x	x x x x	<u>x x</u>
	$\frac{9/12}{9/13}$		<u> </u>
	$\frac{-9/15}{9/14} \times \times \times$		<u> </u>
	9/15 x x x	x x x x	<u>x x</u>
	<u>9/16 x x x</u>		<u>x x</u>
	9/17 x x x		x x
	$\frac{9/10}{9/19} \times \times \times$		<u> </u>
	9/20 x x x		<u> </u>
	<u>9/21 x x x</u>	x x x x	<u>x x</u>
,	<u>9/22 x x x</u>		<u>x x</u>
	9/23 x x x		
	$\frac{9/24}{25}$ x x x		
	$9/26 \times \times \times$		<u> </u>
	9/27 x x x	x x x x	<u>x x</u>
	<u>9/28 x x x</u>	x x x x	<u>x x</u>
	$\frac{9/29}{2} \times \times \times$		
	$\frac{9750}{10/1}$ x x x		
	10/2 x x x		x x
	10/3 x x x	x x x x	<u>x x</u>
	10/4 x x x		<u>x x</u>
	$\frac{10/5}{10/6}$ x x x		<u> </u>
	$\frac{10/0}{10/7} \times \times \times$		x x
	10/8 x x x	x x x x	x x
	10/9		<u> </u>
	_10/10		x x
	a lack of available e	lectricity	
	b double sample due t	o lack of personnel	
	c power outage-Ash Mc	buntain; 0.0 hours, Lo	ower Kawean; 7.4 nours
	e mail delay: 9.5 hou	irs	
	f double sample due t	o mail delay	
	g double sample due t	o operator error	
	h mail delay-lost ent	ire week	_
	i elevated samplers t	to avoid marmot damage	2
	k drum not rotating .		
	filter or drum char	nge by field operator	
	x sample received at	UCD	
	Table 1: (continued)		

.

UNIVERSITY OF CALIFORNIA, DAVIS

BERKELEY . DAVIS . IRVINE . LOS ANGELES . RIVERSIDE . SAN DIEGO . SAN FRANCISCO

SANTA BARBARA • SANTA CRUZ

(916) 752-1120 CROCKER NUCLEAR LABORATORY

DAVIS, CALIFORNIA 95616

DATE: May 1, 1986

T0: Lowell Ashbaugh Chuck Unger Eric Fujita

FROM: Tom Cahill

> RE: Aerosols, Summer 1984

At your request, I have examined aerosols measured at NPS California sites at Joshua Tree NM (JT), Death Valley NM (DV), Yosemite NP (Y), and Lava Beds NM (LB). The results, shown in Table 1, appear to follow the pattern of the 9/4/85 and 9/11/85 rain events at Sequoia, in that sulfur rose during the event by $(207 \pm 17)\%$ at Joshua Tree, Death Valley, and Yosemite, but only by 33% at Lava Beds, far to the north. A similar use is seen in lead (although a Pb/As mixture can not be excluded), but not in Ni, Ču, Zn. Mass shows some enhancement, and potassium rises at Yosemite but not elsewhere.

Table 1

			<u> </u>	013 101	<u> </u>	convirk,	Jumier	504	
			Sulf	ur			Potas	sium	
		JT	DV	Y	LB	JJT	DV	Υ	LΒ
	7/7	394	76	319	177	159	64	61	31
	7/10	537	*	277	160	117	*	85	55
	7/14	423	486	287	167	45	58	60	47
RUD	7717	956	619	633	222	65	64	115	62
	7/21	538	128	*	167	45		×	38
R(2)	7/24	*	*	*	273	*	*	×	54 1
	7/28	529	460	514	239	18	45	62	65
			Pb (As)	?)		1	Mass		
		JT	DV	Ϋ́	LB	j jt	VD	Y	LB
	7/7	<4	<2	<4	<4	6200	2900	500	4300
	7/10	9	*	14	8	7600	*	6400	4700
	7/14	11	<4	<4	<4	3700	4600	6000	5000
RIT	7717	26	11	24	<4	111900	6500	8100	63001
	7/21	16	<2	*	<3	5400	1900	*	4700
R(2)	7/24	*	*	*	11	*	*	*	T0300 T
-	7/28	<3	6	12	11	5500	4900	7400	6600

R(1) 7/17 through 7/19 , ~1.4" rain, Lodgepole, Sequoia NP R(2) 7/24, 7/25 ~0.6" rain, Lodgepole, Seguoia NP

Aerosols for NPS Network Summer 1984

Day

* MINIMUM DETECTABLE LIMIT OF ANALYSIS; ACTUAL CONCENTRATION IS LESS THAN THIS AMOUNT.

1

n Lo

						•															
YOSE	ITE N	IP		ງທ	NE - AU	JG 1985	i	NF	S PAR	TICULA	TE NETW	ORK			DAT	E IS STA	RT OF	STAND	ARD NE	IMORK	PERIOD
SFU B	TINE S	TAGE	(SMALL	er thai	N 2.5 M	11 CRONS	;)			3-	DAY AVE	RAGE C	ONCENTI	RATION	S IN	NANOGRAM	IS/M···	J 7111	88	D B	MAGG
DATE	HOURS	н	ABS	NA	MG	AL	SI	s	K	CA	TI	V	CR	MIN	FE	NI	CU	211	24	PD 	3400
601	72	74	259	39	5*	42	107	235	25	14	2	25	27	2.	23	1.	1.	1.	1.	4	2300
604	72	111	326	20	4*	34	91	180	17	14	3	11	1.	1-	20	1+	1.4	2	1.	4	4200
608	72	170	490	39	4*	89	205	193	48	53	2	1.	1	7.	176	1 *	1.	1	1.	Å	9500
611	72	295	974	112	5*	295	425	394	127	121	9	1.	1	1	107	1 *	1.	1	3		9000
615	72	335	611	113	4*	210	350	421	145	78		1-	1.0	1	104	1	1.	1	4		9900
618	72	420	817	110	4.	196	3/2	750	205	/1		1.	1.4	1.	71	1	1.	2	4	3+	8400
622	72	326	724	98	5"	131	309	/85	120	44	5	1.1	1.4	1	105	1.	5	6	1*	6	6700
625	72	222	629	2/3	5.	124	400	410	1/1	47	4.	1.	1.	1+	58	1.	2	3	2	2*	4600
629	12	162	965	80	4-	120	191	303	108	34		3.0	3*	3+	51	2+	2*	3	4	6*	7800
702	20	325	1123	57	10~	143	101	487	142	19	ĩ	1+	1.	1+	56	1*	1*	2	1*	3+	8100
706	72	433	870	57	5.4	134	234	425	299	46	6	2+	2.	2+	67	1	1*	4	2*	4*	10500
709	72	433	670	67	5+	83	194	452	167	32	3.	- ī•	1+	1*	54	1*	1*	5	3	10	10000
713	72	445	736	148	64	194	388	825	204	56	7	2.	2*	2*	94	1*	1*	4	2 •	7	10300
710	72	255	598	17	4+	84	186	405	91	17	4	1*	1+	1	47	1*	3	5	2	4	5700
720	62	233	715	32	4.	68.	177	328	101	23	4	1*	1*	1*	47	1*	16	11	1*	4	5800
727	72	167	543	47	4 •	51	116	303	46	17	3	1*	1 *	1*	31	1*	1*	1 1	1*	2*	4500
730	72	175	513	82	6+	61	177	354	63	22	2	2*	2*	2*	46	1	3	4	2*	4*	5200
803	72	359	763	49	4 *	83	146	285	145	24	3	1*	1 *	1*	43	1*	5	6	2	6	7400
806	72	285	708	127	5*	117	147	257	64	26	3	11	1.	1•	46	1*	1*	1	3	3*	7900
810	72	408	857	154	5*	141	216	412	77	37	4.	1*	2*	2	61	1*	1.	1.	4	3.	10300
813	144	429	514	157	3*	72	162	540	70	23	2	1.	1*	1	45	1	2	3	3	3	10100
817	144	429	514	157	3*	72	162	540	70	23	.2	1*	1*	1	45	1	2	3	3	3.	13000
824	72	750	1128	51	5*	89	92	296	86	18	· 2	1.	1*	. 1	30.	1	1	10	20		10300
827	72	2311	2701	13*	10*	116	231	520	165	32	• 4	5 "		J-	20	2-	11	10	3	, v	37300
									4.75			3.4	2.6	2.4	63	3 *	40	41	3 •	9	28500
831	70	1306	1498	90	8*	212	270	376	125	37	6	2*	3*	3* 107700	83 C 1N	2*	49	43	3.	9	28500
831 SFU (70 COARSE	1306 Stag	1498 E (2.5	90 TO 15	8* MICRON	212 15)	270	376	125	37 3-1	6 Day ave	2* RAGE C	3 * ONCENTI	3* RATION	83 S IN FF	2* NANOGRAM	49 IS/N**	43 3 2N	3• BR	9 PB	28500 MASS
831 SFU C DATE	70 COARSE HOURS	1306 STAG NA	1498 E (2.5 Mg	90 TO 15 AL	8* MICRON SI	212 (5) P	270 S	376 CL	125 K	37 3-1 CA 75	6 DAY AVE TI 12	2* RAGE C V	3 * ONCENTI CR 7	3* RATION MN 9*	83 S IN FE 117	2* NANOGRAM NI 7*	49 IS/N** CU 6*	43 3 ZN 7	3• BR 5*	9 PB 10+	28500 MASS 4100
831 SFU C DATE 601	70 COARSE HOURS 72	1306 STAG NA 56*	1498 E (2.5 MG 595	90 TO 15 AL 40*	8* MICRON 51 797	212 IS) P 34*	270 S 38	376 CL 25*	125 K 73	37 3-1 CA 75	6 Day ave TI 12 10*	2* RAGE C V 9* 9*	3* ONCENTI CR 7 9*	3* RATION MN 9* 9*	63 S IN FE 117 92	2* NANOGRAM NI 7* 7*	49 IS/N** CU 6* 6*	43 3 2N 7 10	3* BR 5* 5*	9 PB 10* 11*	28500 MASS 4100 5600
831 SFU C DATE 601 604	70 COARSE HOURS 72 72	1306 STAG NA 56* 56*	1498 E (2.5 MG 595 460	90 TO 15 AL 40* 162	8* MICRON SI 797 528	212 IS) P 34* 34*	270 S 38 44	376 CL 25* 25*	125 K 73 100 59	37 3-1 CA 75 66 54	6 DAY AVE 12 10*	2* RAGE C 9* 9* 7*	3* ONCENTI CR 7 9* 7*	3* RATION MN 9* 9* 7*	83 S IN FE 117 92 131	2* NANOGRAM NI 7* 7* 5*	49 IS/N** CU 6* 6* S*	43 3 ZN 7 10 9	3* BR 5* 5* 3*	9 PB 10+ 11+ 7+	28500 MASS 4100 5600 5400
831 SFU C DATE 601 604 608	70 COARSE HOURS 72 72 72 72	1306 STAG NA 56* 43*	1498 E (2.5 MG 595 460 38*	90 TO 15 AL 40* 162 105 628	8* MICRON 51 797 528 452 1971	212 IS) 9 34* 34* 26* 32*	270 S 38 44 19* 38	376 CL 25* 25* 19* 24*	125 K 73 100 59 188	37 3 CA 75 66 54 259	6 DAY AVE 12 10* 10 23	2* RAGE C V 9* 9* 7* 9*	3* ONCENTI CR 7 9* 7* 9*	3* RATION MN 9* 9* 7* 20	63 5 IN FE 117 92 131 442	2* NANOGRAM NI 7* 7* 5* 6*	49 IS/N+** CU 6* 6* 5* 6*	43 3 2N 7 10 9 9	3* BR 5* 5* 3* 15	9 PB 10* 11* 7* 10*	28500 MASS 4100 5600 5400 9600
831 SFU C DATE 601 604 608 611	70 COARSE HOURS 72 72 72 72 72 72	1306 STAG NA 56* 56* 43* 54*	1498 E {2.5 MG 595 460 38* 670	90 TO 15 AL 40* 162 105 628 456	8* MICRON 51 797 528 452 1971 1317	212 IS) 9 34* 34* 26* 32* 27*	270 S 38 44 19* 38 21*	376 CL 25* 25* 19* 24* 20*	125 K 73 100 59 188 146	37 3- CA 75 66 54 259 173	6 DAY AVE 12 10* 10 23 32	2* RAGE C 9* 9* 7* 9* 7*	3* ONCENTI CR 7 9* 7* 9* 8*	3* RATION 9* 9* 7* 20 12	63 S IN FE 117 92 131 442 325	2* NANOGRAM NI 7* 7* 5* 6* 5*	49 CU 6* 6* 5* 6* 5*	43 3 7 10 9 9 8	3* BR 5* 5* 3* 15 5*	9 PB 10* 11* 7* 10* 8*	28500 MASS 4100 5600 5400 9600 12700
831 SFU C DATE 601 604 608 611 615 618	70 COARSE HOURS 72 72 72 72 72 72 72	1306 STAG NA 56* 56* 43* 54* 60	1498 E {2.5 MG 595 460 38* 670 40* 640	90 TO 15 AL 40* 162 105 628 456 943	8* MICRON 51 797 528 452 1971 1317 2593	212 IS) P 34* 34* 26* 32* 27* 40*	270 S 38 44 19* 38 21* 82	376 CL 25* 25* 19* 24* 20* 30*	125 K 73 100 59 188 146 310	37 3- CA 75 66 54 259 173 288	6 DAY AVE TI 12 10* 10 23 32 32 32	2* RAGE C 9* 9* 7* 9* 7* 11*	3* ONCENTI CR 7 9* 7* 9* 8* 12*	3* RATION 9* 9* 7* 20 12 12	63 S IN FE 117 92 131 442 325 514	2* NANOGRAM 7* 7* 5* 6* 5* 8*	49 CU 6* 6* 5* 6* 5* 7*	43 3 2N 7 10 9 9 8 12	3* BR 5* 3* 15 5* 6*	9 10* 11* 7* 10* 8* 13*	28500 MASS 4100 5600 5400 9600 12700 12300
831 SFU C DATE 601 604 608 611 615 618 622	70 COARSE HOURS 72 72 72 72 72 72 72 72 72	1306 STAG NA 56* 56* 43* 54* 60 510 57	1498 E (2.5 MG 595 460 38* 670 40* 640 38*	90 TO 15 AL 40* 162 105 628 456 943 378	8* MICRON 51 797 528 452 1971 1317 2593 1233	212 IS) P 34* 26* 32* 27* 40* 25*	270 S 38 44 19* 38 21* 82 30	376 CL 25+ 25+ 19+ 24+ 20+ 30+ 18+	125 K 73 100 59 188 146 310 144	37 3- CA 75 66 54 259 173 288 151	6 DAY AVE TI 12 10* 10 23 32 32 32 15	2* RAGE C 9* 9* 7* 9* 7* 11* 7*	3* ONCENTI CR 7 9* 7* 9* 8* 12* 6	3* RATION 9* 9* 7* 20 12 12 12 7*	63 S IN FE 117 92 131 442 325 514 305	2* NANOGRAM NI 7* 5* 6* 5* 8* 5*	49 CU 6* 6* 5* 6* 5* 7* 4*	43 3 2N 7 10 9 9 8 12 8	3* BR 5* 5* 3* 15 5* 6* 4*	9 10+ 11+ 7+ 10+ 8+ 13+ 7+	28500 MASS 4100 5600 5400 9600 12700 12300 12300 10400
831 SFU C DATE 601 604 608 611 615 618 622 625	70 COARSE HOURS 72 72 72 72 72 72 72 72 72 72	1306 STAG NA 56* 56* 43* 54* 60 510 57 50*	1498 E (2.5 MG 595 460 38* 670 40* 640 38* 391	90 TO 15 AL 40* 162 105 628 456 943 378 577	8* MICRON 51 797 528 452 1971 1317 2593 1233 1849	212 P 34* 34* 26* 32* 27* 40* 25* 31*	270 S 38 44 19* 38 21* 82 30 24*	376 CL 25+ 25+ 24+ 20+ 30+ 18+ 23+	125 K 73 100 59 188 146 310 144 185	37 3 CA 75 66 54 259 173 288 151 245	6 DAY AVE 12 10* 10 23 32 32 32 15 28	2* RAGE C 9* 9* 7* 9* 7* 11* 7* 8*	3* ONCENTT CR 7 9* 7* 9* 8* 12* 6 9*	3* RATION 9* 9* 7* 20 12 12 7* 8*	83 S IN FE 117 92 131 442 325 514 305 395	2* NANOGRAM NI 7* 5* 6* 5* 8* 5* 6*	49 CU 6* 5* 6* 5* 7* 4* 5*	43 3 7 10 9 8 12 8 8	3* BR 5* 3* 15 5* 6* 4*	9 PB 10* 11* 7* 10* 8* 13* 7* 9*	28500 MASS 4100 5600 5400 9600 12700 12300 12400 12800
831 SFU C DATE 601 604 608 611 615 618 622 625 629	70 COARSE HOURS 72 72 72 72 72 72 72 72 72 72 72 72 72	1306 STAG 56* 56* 43* 54* 60 510 57 50* 48*	1498 E (2.5 MG 595 460 38* 670 40* 640 38* 391 39	90 TO 15 AL 40* 162 105 628 456 943 378 577 283	8* MICRON 51 797 528 452 1971 1317 2593 1233 1849 1043	212 IS) P 34* 26* 32* 27* 40* 25* 31* 29*	270 S 38 44 19* 38 21* 82 30 24* 22*	376 CL 25* 25* 19* 24* 20* 30* 18* 23* 21*	125 K 73 100 59 188 146 310 144 185 119	37 3 CA 75 66 54 259 173 288 151 245 159	6 DAY AVE 12 10* 10 23 32 32 32 15 28 8*	2* RAGE C 9* 9* 7* 9* 7* 11* 7* 6*	3* ONCENTI CR 7 9* 7* 9* 8* 12* 6 9* 8*	3* RATION. 9* 9* 7* 20 12 12 12 7* 8* 7	63 S IN FE 117 92 131 442 325 514 305 395 252	2* NANOGRAM 7* 5* 6* 5* 8* 5* 6* 5*	49 5/N*** 6* 6* 5* 7* 4* 5* 4	43 3 7 10 9 8 12 8 8 7	3* BR 5* 5* 15 5* 6* 4* 4*	9 PB 10+ 11* 7* 10* 8+ 13+ 7+ 9+ 9+	28500 MASS 4100 5600 5400 9600 12700 12300 12300 12800 7800 7800
831 SFU C DATE 601 604 608 611 615 618 622 625 629 702	70 COARSE HOURS 72 72 72 72 72 72 72 72 72 72 72 72 72	1306 STAG NA 56* 56* 43* 54* 60 510 57 50* 48* 182*	1498 E (2.5 MG 595 460 38* 670 40* 640 38* 391 39 2578	90 TO 15 AL 40* 162 105 628 456 943 378 577 283 1073	8* MICRON 51 797 528 452 1971 1317 2593 1233 1849 1043 2388	212 is) P 34* 26* 32* 27* 40* 25* 31* 29* 116*	270 S 38 44 19* 38 21* 82 30 24* 22* 95	376 CL 25* 25* 19* 24* 20* 30* 18* 23* 21* 85*	125 K 73 100 59 188 146 310 144 185 119 237	37 3 CA 75 66 54 259 173 288 151 245 159 251	6 DAY AVE TI 12 10* 10 23 32 32 32 15 28 8* 33*	2* RAGE C 9* 9* 7* 9* 7* 11* 7* 8* 8* 8* 31*	3* ONCENTI CR 7 9* 8* 12* 6 9* 8* 33*	3* RATION 9* 9* 7* 20 12 12 12 7* 8* 7 32*	63 S IN FE 117 92 131 442 325 514 305 395 252 390	2* NANOGRAM 7* 5* 6* 5* 8* 5* 6* -5* 22*	49 5/N+** CU 6* 6* 5* 6* 5* 7* 4* 5* 4 20*	43 3 7 10 9 8 12 8 8 7 19	3* BR 5* 5* 3* 15 5* 6* 4* 4* 4* 18*	9 PB 10* 11* 7* 10* 8* 13* 7* 9* 9* 33*	28500 MASS 4100 5600 5400 9600 12700 12300 10400 12800 7800 8800
831 SFU C DATE 601 604 608 611 615 618 622 625 629 702 706	70 COARSE HOURS 72 72 72 72 72 72 72 72 72 72 72 72 72	1306 STAG NA 56* 43* 54* 60 510 57 50* 48* 182* 71*	1498 E (2.5 MG 595 460 38* 670 40* 640 38* 391 39 2578 64*	90 TO 15 AL 40* 162 105 628 456 943 378 577 283 1073 1021	8* MICRON SI 797 528 452 1971 1317 2593 1233 1849 1043 2388 2270	212 IS) P 34* 26* 32* 27* 40* 25* 31* 29* 116* 45*	270 S 38 44 19* 38 21* 82 30 24* 22* 95 69	376 CL 25* 25* 19* 24* 20* 30* 18* 23* 21* 85* 33*	125 K 73 100 59 188 146 310 144 185 119 237 263	37 3 CA 75 66 54 259 173 288 151 245 159 251 372	6 DAY AVE: TI 12 10* 10 23 32 32 15 28 8* 33* 44	2* RAGE C 9* 9* 7* 9* 7* 11* 7* 6* 6* 31* 12*	3* ONCENTT CR 7 9* 8* 12* 6 9* 8* 33* 13*	3* RATION 9* 9* 7* 20 12 12 12 7* 8* 7 32* 26	63 S IN FE 117 92 131 442 325 514 305 395 252 390 456	2* NANOGRAM NI 7* 5* 6* 5* 6* 5* 6* .5* 22* 9*	49 CU 6* 6* 5* 6* 5* 7* 4* 5* 4 20* 8*	43 3 7 10 9 8 12 8 8 7 19 16	3* BR 5* 3* 15 5* 6* 4* 4* 18* 22	9 PB 10+ 11* 7* 10* 8* 13* 7* 9* 9* 33* 13*	28500 MASS 4100 5600 5400 9600 12700 12300 10400 12800 7800 8800 8500
831 SFU C DATE 601 604 608 611 615 618 622 625 629 702 706 709	70 COARSE HOURS 72 72 72 72 72 72 72 72 72 72 72 72 72	1306 STAG NA 56* 53* 60 510 57 50* 48* 182* 71*	1498 E (2.5 MG 595 460 38* 670 40* 640 38* 391 39 2578 64* ,64*	90 TO 15 AL 40* 162 105 628 456 943 378 577 283 1073 1021 1208	8* MICRON 51 797 528 452 1971 1317 2593 1233 1849 1043 2388 2270 2273	212 is) P 34* 26* 32* 27* 25* 31* 29* 116* 45* 46*	270 S 38 44 19* 38 21* 82 30 24* 22* 95 69 103	376 CL 25* 25* 24* 20* 30* 18* 23* 21* 85* 33* 33*	125 K 73 100 59 188 146 310 144 185 119 237 263 246	37 3-(CA 75 66 54 259 173 288 151 245 159 251 372 318	6 DAY AVE: TI 12 10* 10 23 32 32 32 32 32 32 32 33* 44 30	2* RAGE C 9* 9* 7* 9* 7* 11* 7* 6* 6* 31* 12* 12*	3* ONCENTT CR 7 9* 8* 12* 6 9* 8* 33* 13* 13*	3+ CATION. MN 9+ 9+ 7+ 20 12 12 12 12 12 12 12 12 12 12 12 12 12	63 S IN FE 117 92 131 442 325 514 305 395 252 390 456 473	2* NANOGRAM NI 7* 5* 6* 5* 6* 5* 6* 5* 6* 5* 22* 9* 9*	49 CU 6* 6* 5* 6* 5* 7* 4* 5* 4 20* 8* 8* 8* 8* 8* 8* 8* 8* 8* 8	43 3 7 10 9 8 12 8 8 7 19 16 14	3* BR 5* 3* 15 5* 6* 4* 4* 18* 22 7*	9 PB 10+ 11* 7* 10* 8* 13* 7* 9* 9* 33* 13*	28500 MASS 4100 5600 5400 9600 12700 12300 10400 12800 7800 8800 8500 9800 6700
831 SFU C DATE 601 604 608 611 615 618 622 625 629 702 706 709 713	70 COARSE HOURS 72 72 72 72 72 72 72 72 72 72 72 72 72	1306 STAG NA 56* 43* 54* 60 510 57 50* 48* 182* 71* 47	1498 E (2.5 MG 595 460 38* 670 40* 640 38* 39 2578 64* ,64*	90 TO 15 AL 40* 162 105 628 456 943 378 577 283 1073 1021 1208 331	8* MICRON 51 797 528 452 1971 1317 2593 1233 1849 1043 2388 2270 2273 891	212 is) P 34* 34* 26* 27* 40* 25* 31* 29* 116* 45* 46* 29*	270 S 38 44 19* 38 21* 82 30 24* 22* 95 69 103 24	376 CL 25+ 25+ 19+ 24+ 20+ 30+ 18+ 23+ 21+ 85+ 33+ 33+ 21+	125 K 73 100 59 188 146 310 144 185 119 237 263 246 101	37 3- CA 75 66 54 259 173 288 151 245 159 251 372 318 115	6 DAY AVE: TI 12 10* 10 23 32 32 32 32 32 32 33* 44 30 12	2* RAGE C 9* 9* 7* 9* 7* 9* 7* 8* 8* 31* 12* 12* 0*	3* ONCENTI CR 7 9* 7* 9* 8* 12* 6 9* 8* 12* 6 9* 8* 12* 6 9* 12* 6 9* 12* 6 9* 12* 6 9* 12* 6 9* 12* 6 9* 12* 6 9* 12* 6 9* 12* 6 9* 12* 6 9* 12* 6 9* 12* 6 9* 12* 6 9* 12* 6 9* 12* 6 9* 12* 6 9* 12* 6 9* 12* 12* 13* 13* 13* 13* 13* 13* 13* 13* 13* 13	3+ CATION. 9* 9* 7* 20 12 12 12 12 12 12 12 12 12 12 12 12 12	63 S IN FE 117 92 131 442 325 514 305 395 252 390 456 473 227	2* NANOGRAM NI 7* 5* 6* 5* 8* 5* 6* .5* 22* 9* 9* 6*	49 CU 6* 6* 5* 7* 4* 5* 4 20* 8* 8* 8* 5* 5* 5* 5* 5* 5* 5* 5* 5* 5	43 2N 7 10 9 8 12 8 8 7 19 16 14 6	3* BR 5* 3* 15 5* 6* 4* 4* 18* 22 7* 5*	9 PB 10+ 11+ 7+ 10* 8+ 13* 7+ 9+ 33+ 13+ 13+ 13+ 8+ 13+ 13+ 13+ 13+ 13+ 13+ 13+ 13	28500 MASS 4100 5600 5400 9600 12700 12300 12300 12800 12800 7800 8800 8500 9800 6700
831 SFU C DATE 601 604 608 611 615 618 622 625 629 702 706 709 713 716	70 COARSE HOURS 72 72 72 72 72 72 72 72 72 72 72 72 72	1306 STAG NA 56* 43* 54* 60 510 57 50* 48* 71* 71* 47 75*	1498 E (2.5 MG 595 460 38* 670 40* 640 38* 391 39 2578 64* 64* 64*	90 TO 15 AL 40* 162 105 628 456 943 378 577 283 1073 1021 1208 331 1274	8* MICRON 51 797 528 452 1971 1317 2593 1233 1849 1043 2388 2270 2273 891 2937	212 is) P 34* 34* 26* 27* 40* 25* 31* 29* 116* 45* 46* 29* 48*	270 S 38 44 19* 38 21* 82 30 24* 22* 95 69 103 24 161	376 CL 25* 25* 19* 24* 20* 30* 18* 23* 21* 33* 33* 33* 21* 35*	125 K 73 100 59 188 146 310 144 185 119 237 263 246 101 261	37 3- CA 75 66 54 259 173 288 151 245 159 251 372 318 115 339	6 DAY AVE: TI 12 10* 10 23 32 15 28 6* 33* 44 30 12 34	2* RAGE C 9* 9* 7* 11* 7* 8* 31* 12* 12* 13*	3* ONCENTI CR 7 9* 8* 12* 6 9* 8* 12* 6 9* 8* 13* 13* 13* 13*	3+ RATION. 9+ 9+ 7+ 20 12 12 12 7+ 8+ 7 32+ 26 16 11 13+	63 S IN FE 117 92 131 442 325 514 305 395 252 390 456 473 227 546	2* NANOGRAM NI 7* 5* 6* 5* 8* 5* 6* 5* 22* 9* 9* 6* 9*	49 CU 6* 6* 5* 7* 4* 5* 4 20* 8* 8* 8* 8* 8* 8* 8* 8* 8* 8	43 3 2N 7 10 9 9 8 12 8 8 7 19 16 14 6 4	3* BR 5* 3* 15 5* 6* 4* 4* 4* 18* 22 7* 5* 5*	9 PB 10+ 11+ 7+ 10+ 8+ 13+ 7+ 9+ 33+ 13+ 13+ 13+ 14+ 13+	28500 MASS 4100 5600 5400 9600 12700 12300 12300 12400 12800 7800 8800 8500 9800 6700 10100 5000
831 SFU C DATE 601 604 608 611 615 618 622 625 629 702 706 709 713 716 720	70 COARSE HOURS 72 72 72 72 72 72 72 72 72 72 72 72 72	1306 STAG 56* 43* 56* 43* 60 510 57 50* 48* 182* 71* 71* 47 75* 69*	1498 E (2.5 MG 595 460 38* 670 40* 640 38* 391 39 2578 64* ,64* 64* 67* 62*	90 TO 15 AL 40* 162 105 628 456 943 378 577 283 1073 1021 1208 331 1274 891	8* MICRON 528 452 1971 1317 2593 1233 1233 1249 1043 2388 2270 2273 891 2937 1279	212 IS) P 34* 34* 26* 32* 27* 40* 27* 40* 29* 116* 45* 45* 45* 29* 48* 43*	270 S 38 44 19* 38 21* 82 30 24* 22* 95 69 103 24 161 67	376 CL 25+ 25+ 19+ 24+ 20+ 30+ 23+ 21+ 33+ 21+ 35+ 32+ 32+	125 K 73 100 59 188 146 310 144 185 119 237 263 246 101 261 120	37 3- CA 75 66 54 259 173 288 151 245 159 251 372 318 115 339 117	6 DAY AVE: 11 10* 10 23 32 32 32 32 32 32 32 32 32 32 32 32	2* RAGE C 9* 9* 7* 9* 7* 8* 8* 8* 31* 12* 12*	3+ ONCENTT 7 9+ 7+ 9+ 8+ 12+ 6 9- 8+ 33+ 13+ 13+ 8+ 14+ 13+	3+ RATION. 9+ 7+ 20 12 12 7* 8+ 7 32+ 26 16 11 13+ 12+	63 S IN FE 117 92 131 422 325 514 305 252 390 456 473 227 546 244	2* NANOGRAM NI 7* 5* 6* 5* 6* 5* 22* 9* 9* 6* 9* 8*	49 5* 6* 5* 5* 7* 4* 5* 4* 20* 8* 8* 8* 8* 8* 8* 8* 8* 8* 8	43 2N 7 10 9 9 8 12 8 7 19 16 14 6 6* 6*	3* BR 5* 3* 15 6* 4* 4* 4* 18* 22 7* 5* 7* 6*	9 PB 10+ 11* 7* 10* 8+ 13* 7* 9* 9* 33* 13* 13* 13* 13* 14* 14*	28500 MASS 4100 5600 5400 9600 12700 12300 12400 12800 7800 8800 8500 9800 6700 10100 5000 13000
831 SFU C DATE 601 604 615 618 622 625 629 702 706 709 713 716 720 723	70 COARSE HOURS 72 72 72 72 72 72 72 72 72 72 72 72 72	1306 STAG 56* 43* 56* 43* 50* 510 57 50* 48* 182* 71* 47 75* 69* 76*	1498 E (2.5 MG 595 460 38* 670 40* 640 38* 391 39 2578 64* ,64* 64* 62* 68*	90 TO 15 AL 40* 162 105 628 456 943 378 577 283 1073 1021 1208 331 1274 891 734	8* MICRON 528 452 1971 1317 2593 1233 1849 1043 2388 2270 2273 891 2937 1279 1631	212 IS) P 34* 26* 32* 27* 40* 25* 31* 29* 116* 45* 46* 29* 48* 43*	270 S 38 44 19* 38 21* 82 30 24* 22* 95 69 103 24 161 67 87	376 CL 25* 25* 19* 24* 20* 30* 23* 21* 85* 33* 33* 33* 35* 35*	125 K 73 100 59 188 146 310 144 185 119 237 263 246 101 261 120 129	37 3- CA 75 66 54 259 173 288 151 245 159 251 372 318 115 339 117 129	6 DAY AVE: TI 12 10* 10 23 32 32 32 15 28 8* 33* 44 30 12 34 23 29	2* RAGE C 9* 9* 7* 9* 7* 11* 8* 8* 31* 12* 13* 12* 13*	3* ONCENTT 7 9* 8* 12* 6 9* 8* 33* 13* 6* 13* 13* 13* 13*	3* RATION. MN 9* 7* 20 12 12 7* 8* 7 32* 26 16 11 13* 12* 13*	63 S IN FE 117 92 131 422 325 514 395 252 390 456 473 227 546 244 325	2* NANOGRAM NI 7* 5* 6* 5* 6* 5* 22* 9* 9* 6* 9* 8* 9*	49 IS/N** CU 6* 5* 6* 5* 7* 4* 5* 4* 20* 8* 8* 8* 8* 8* 8* 8* 8* 8* 8	43 2N 7 10 9 8 12 8 8 7 19 16 14 6 6 6 13	3* BR 5* 3* 15 5* 4* 4* 4* 18* 22 7* 5* 7* 6* 8*	9 PB 10+ 11* 7* 10* 13* 7* 9* 33* 13* 13* 13* 14* 13* 14*	28500 MASS 4100 5600 5400 9600 12700 12300 12300 12400 12800 7800 8800 8500 9800 6700 10100 5000 12000 7700
831 SFU C DATE 601 608 611 615 625 629 702 706 709 713 716 720 723 727	70 COARSE HOURS 72 72 72 72 72 72 72 72 72 72 72 72 72	1306 STAG STAG 56* 56* 43* 54* 60 510 57 50* 48* 182* 71* 47 75* 69* 76* 68*	1498 E (2.5 MG 595 460 38* 670 40* 640 38* 39 2578 64* 64* 64* 64* 64* 64* 64* 64* 64* 64*	90 TO 15 AL 40* 165 628 456 943 378 577 283 1073 1021 1208 331 1274 891 734 702	8* MICRON 528 452 1971 1317 2593 1233 1849 1043 2388 2270 2273 891 2937 1279 1631 1711	212 is) P 34* 26* 32* 27* 40* 25* 29* 116* 45* 46* 29* 48* 43* 43*	270 S 38 44 19* 38 21* 82 30 24* 22* 95 69 103 24 161 67 87 54	376 CL 25* 25* 19* 24* 20* 30* 18* 23* 21* 85* 33* 33* 31* 35* 32* 32*	125 K 73 100 59 188 146 310 144 185 119 237 263 246 101 261 261 120 129 167	37 3- 66 54 259 173 288 151 245 159 251 372 318 115 339 117 129 157	6 DAY AVE: TI 12 10* 10 23 32 32 32 32 32 32 32 33* 44 30 12 34 23 29 22	2* RAGE C 9* 9* 7* 11* 6* 8* 31* 12* 13* 12* 13* 12* 13*	3* ONCENTT 7 9* 7* 9* 8* 12* 6 9* 8* 33* 13* 13* 13* 13* 13* 14* 14* 12*	3* RATION. MN 9* 7* 20 12 12 12 7* 8* 7 32* 26 16 11 13* 12* 13* 9	63 S IN FE 117 92 131 142 325 514 305 395 252 390 456 473 227 546 244 324 324 324	2* NANOGRAM NI 7* 5* 6* 5* 6* 5* 22* 9* 6* 9* 8* 9* 8* 9* 8*	49 50 6* 5* 6* 5* 6* 5* 4 20* 8* 8* 8* 8* 8* 8* 8* 8* 8* 8	43 2N 7 10 9 8 12 8 8 7 19 16 14 6 6 4 7 19 16 14 6 6 4 5 7 19 16 10 10 10 10 10 10 10 10 10 10	3* BR 5* 3* 15 5* 4* 4* 18* 22 7* 5* 7* 6* 8* 5*	9 PB 10+ 11+ 7+ 10+ 8+ 13+ 7+ 9+ 33+ 13+ 13+ 13+ 14+ 13+ 14+ 13+	28500 MASS 4100 5600 5400 9600 12700 12300 12400 12800 7800 8800 8500 9800 6700 10100 5000 12000 7700 6800
831 SFU C DATE 601 608 611 615 618 622 625 629 702 706 709 713 716 720 723 727 730	70 COARSE HOURS 72 72 72 72 72 72 72 72 72 72 72 72 72	1306 STAG 56* 56* 54* 60 510 57* 48* 71* 47* 75* 68* 59*	1498 E (2.5 MG 595 460 38* 670 40* 640* 391 39 2578 64* 64* 64* 64* 64* 64* 64* 64* 64* 64*	90 TO 15 AL 40* 162 105 628 456 943 378 577 263 1073 1021 1208 331 1274 891 1274 891 734 702 452	8* MICRON 51 797 528 452 1971 1317 2593 1233 1849 1043 2388 2270 2273 891 2937 1279 1631 1711 1569	212 is) P 34* 34* 26* 32* 27* 40* 25* 31* 29* 116* 46* 29* 48* 48* 43* 37*	270 S 38 44 19* 38 21* 82 30 24* 22* 95 69 103 24 161 67 87 54 24	376 CL 25* 19* 24* 20* 18* 23* 21* 33* 33* 31* 35* 32* 32* 27*	125 K 73 100 59 188 146 310 144 185 119 237 263 246 101 261 120 129 167 114	37 3	6 DAY AVE: 12 10* 10 23 32 32 32 32 32 32 32 33* 44 30 12 34 23 29 22 17	2* RAGE C 9* 9* 7* 9* 7* 11* 7* 8* 8* 31* 12* 13* 12* 12* 13* 12* 12* 13* 12* 12* 12* 12* 12* 12* 12* 12	3* ONCENTT CR 7 9* 8* 12* 6 9* 8* 13* 13* 13* 13* 13* 13* 13* 14* 13* 14* 12* 12* 7*	3* RATION. MN 9* 9* 7* 20 12 12 12 12 12 7* 8* 7 32* 26 16 11 13* 12* 13* 9 10*	63 S IN FE 117 92 131 142 325 514 305 395 252 390 456 473 227 546 244 322 289 244 322 289 244 324 324 324 324 324 324 324	2* NANOGRAM NI 7* 5* 6* 5* 8* 5* 6* 5* 22* 9* 9* 6* 9* 8* 9* 8* 9* 8* 5*	49 5. M.** CU 6* 5* 5* 7* 5* 4 20* 8* 8* 8* 8* 8* 8* 8* 8* 8* 6* 5* 4	43 3 ZN 7 10 9 8 12 8 8 7 19 16 14 6 6 4 6 4 6 4 3 4	3* BR 5* 3* 15 6* 4* 4* 18* 22 7* 5* 6* 8* 6* 5*	9 PB 10* 11* 7* 8* 13* 7* 9* 33* 13* 13* 13* 13* 13* 14* 13* 14*	28500 MASS 4100 5600 5400 9600 12700 12300 12400 12800 12800 8800 8500 9800 6700 10100 5000 12000 7700 6800 6900
831 SFU C DATE 601 604 608 611 615 622 625 629 702 706 709 713 716 720 723 730 803	70 COARSE HOURS 72 72 72 72 72 72 72 72 72 72 72 72 72	1306 STAG NA 56* 43* 54* 60 57 50* 48* 71* 47 75* 69* 76* 59* 41*	1498 E (2.5 MG 595 460 40° 40° 40° 38* 391 39 2578 64* 64* 64* 64* 64* 64* 64* 64* 64* 64*	90 TO 15 AL 40* 162 105 628 456 943 378 577 283 1073 1021 1208 331 1274 891 734 891 732 452 113	8* MICRON 528 452 1971 1317 2593 1233 1849 1043 2388 2270 2273 891 2937 1279 1631 1711 1569 573	212 is) P 34* 34* 26* 32* 27* 40* 25* 31* 29* 116* 46* 29* 48* 43* 43* 43* 37* 24*	270 S 38 44 19* 38 21* 82 30 24* 22* 95 69 103 24 161 67 67 54 24 19*	376 CL 25+ 19+ 24+ 20+ 18+ 23+ 21+ 35+ 32+ 35+ 32+ 27+ 18+ 21+ 35+ 32+ 27+ 18+ 35+ 32+ 21+ 35+ 32+ 21+ 35+ 32+ 21+ 21+ 21+ 21+ 21+ 21+ 21+ 2	125 K 73 100 59 188 146 310 144 185 119 237 263 246 101 261 120 129 167 114 60	37 3- CA 75 66 54 259 173 285 159 251 372 318 115 339 117 129 157 128 60 20	6 DAY AVE: TI 12 10* 10 23 32 15 28 6* 33* 44 30 12 34 23 29 22 17 10	2* RAGE C 9* 9* 7* 9* 7* 9* 7* 8* 8* 8* 12* 12* 13* 12* 13* 12* 10* 6*	3+ ONCENTT CR 9+ 7+ 9* 8* 12* 6 9* 8* 13* 13* 13* 13* 13* 14* 14* 14* 14* 14* 14* 14* 14* 14* 14	3* RATION. MN 9* 9* 7* 20 12 12 7* 8* 7 32* 26 16 11 13* 9 10* 7*	63 S IN FE 1117 92 131 422 325 514 305 252 390 456 473 227 395 254 514 325 252 252 254 324 322 244 322 244 322 244 322 244 322 244 324 32	2* NANOGRAM NI 7* 5* 6* 5* 8* 5* 22* 9* 6* 9* 8* 9* 8* 7* 5* 6* 5* 6* 5* 6* 5* 5* 6* 5* 5* 6* 5* 5* 5* 6* 5* 5* 5* 5* 5* 5* 5* 5* 5* 5* 5* 5* 5*	49 57 50 6 5 5 6 5 5 4 5 4 20 8 8 5 8 8 5 8 8 5 8 8 5 8 8 5 8 8 5 8 8 5 8 5 8 5 8 5 8 5 8 5 8 5 8 5 8 5 8 5 8 5 8 5 8 5 7 8 5 7 1 8 5 7 1 8 5 7 1 8 5 7 1 8 5 7 1 8 5 7 1 8 5 7 1 8 5 7 1 8 5 7 1 8 5 7 1 8 5 7 7 1 8 5 7 7 1 8 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7	43 3 ZN 7 10 9 9 8 12 8 8 7 19 16 14 6 * 6 * 12 5 * 3 *	3* BR 5* 3* 15 6* 4* 4* 18* 22 7* 5* 6* 8* 6* 5* 5* 5* 5* 5* 5*	9 PB 10* 11* 7* 13* 3* 13* 13* 13* 13* 13* 14* 13* 14* 13* 14* 13*	28500 MASS 4100 5600 5400 9600 12700 12300 12400 12800 12800 8800 8500 9800 6700 10100 5000 12000 7700 6800 6900 8200
831 SFU C DATE 601 604 608 611 615 622 625 629 702 706 709 713 716 720 723 727 730 803 806	70 COARSE HOURS 72 72 72 72 72 72 72 72 72 72 72 72 72	1306 STAG NA 56* 43* 54* 60 510 57 50* 48* 71* 47 75* 69* 76* 69* 76* 59* 41*	1498 E (2.5 MG 595 460 40* 670 40* 640 38* 391 39 2578 64* 64* 64* 64* 64* 64* 64* 64* 64* 64*	90 TO 15 AL 40+ 162 105 628 456 943 378 577 283 1073 1073 1021 1208 331 1274 891 734 702 452 113 260	8* MICRON 51 797 528 452 1971 1317 2593 1233 1849 1043 2388 2270 2273 891 2937 1279 1631 1711 1569 573 1047	212 is) P 34* 26* 32* 27* 40* 25* 31* 29* 116* 45* 46* 29* 48* 43* 43* 37* 24* 37* 24* 31* 29* 48* 43* 43* 43* 43* 43* 43* 43* 43	270 S 38 44 19* 38 21* 82 30 24* 22* 95 69 103 24 161 67 87 54 24 19* 23*	376 CL 25+ 19+ 24+ 20+ 18+ 23+ 21+ 35+ 32+ 35+ 32+ 32+ 32+ 32+ 32+ 32+ 32+ 32	125 K 73 100 59 188 146 310 144 185 119 237 261 120 1261 120 167 114 60 99 99	37 3- CA 75 66 54 259 173 288 151 245 159 251 372 318 115 339 117 129 157 128 60 103	6 DAY AVE: TI 12 10* 10 23 32 15 28 6* 33* 44 30 12 34 23 34 29 22 17 10 13	2* RAGE C 9 9 7 9 7 11 7 8 8 8 31 12* 13* 13* 12* 13* 13* 12* 12* 13* 12* 13* 12* 13* 12* 13* 13* 12* 13* 12* 13* 12* 13* 12* 13* 12* 10* 10* 10* 10* 10* 10* 10* 10	3+ ONCENTT CR 9+ 7+ 9* 8* 12* 6 9* 8* 33* 13* 13* 13* 14* 14* 14* 14* 12* 10* 7* 9*	3* CATION. MN 9* 9* 7* 20 12 12 7* 8* 7 32* 26 16 11 13* 12* 13* 10* 7* 8 4 9	63 S IN FE 117 92 131 422 514 305 514 305 252 390 456 473 227 546 473 227 244 324 324 324 324 324 324 324	2* NANOGRAM NI 7* 5* 6* 5* 6* 5* 22* 9* 6* 9* 6* 8* 9* 6* 5* 6* 5* 6* 5* 6* 5* 6* 5* 6* 5* 6* 5* 6* 5* 6* 5* 5* 6* 5* 5* 5* 5* 5* 5* 5* 5* 5* 5* 5* 5* 5*	49 57 6* 6* 5* 6* 5* 4* 5* 4 20* 8* 5* 8* 5* 8* 5* 8* 5* 4* 5* 6* 5* 4* 5* 6* 5* 4* 5* 5* 5* 5* 5* 5* 5* 5* 5* 5* 5* 5* 5*	43 3 ZN 7 10 9 9 8 12 8 8 7 19 16 14 6 4 6 4 12 5 4 7 8 7 8	3* BR 5* 3* 15 6* 4* 4* 4* 22 7* 5* 7* 6* 5* 5* 5* 5* 5* 5* 5* 5* 5* 5* 5* 5* 5*	9 PB 10* 11* 7* 10* 13* 7* 9* 9* 9* 33* 13* 13* 13* 13* 13* 13* 13* 13* 13	28500 MASS 4100 5600 5400 9600 12700 12300 12400 12800 7800 8800 8500 9800 6700 10100 5000 12000 7700 6800 6900 8200 9400
831 SFU C DATE 601 604 608 611 615 618 622 625 629 702 706 709 713 716 720 723 727 730 803 806 610	70 COARSE HOURS 72 72 72 72 72 72 72 72 72 72 72 72 72	1306 STAG NA 56* 43* 54* 60 510 57 50* 48* 71* 47 75* 69* 76* 68* 41* 52* 71	1498 E (2.5 MG 595 460 40* 670 40* 640 38* 640 38* 64* 64* 64* 64* 64* 64* 64* 64* 64* 64	90 TO 15 AL 40* 162 105 628 456 943 378 577 283 1073 1021 1208 331 1274 891 734 702 452 113 260 280	8* MICRON 51 797 528 452 1971 1317 2593 1233 1233 1249 1043 2270 2273 891 2937 1279 1631 1711 1569 573 1047 1143	212 is) P 34* 34* 26* 32* 27* 40* 25* 29* 116* 45* 45* 45* 45* 45* 45* 45* 45	270 S 38 44 19* 38 21* 82 30 24* 22* 95 69 103 24 161 67 87 54 24 19* 23* 24* 25* 24* 25* 24* 25* 24* 25* 24* 25* 25* 24* 25* 25* 25* 25* 25* 25* 25* 25	376 CL 25+ 19+ 24+ 20+ 18+ 23+ 21+ 33+ 21+ 35+ 32+ 35+ 32+ 35+ 32+ 35+ 27+ 18+ 21+ 35+ 21+ 35+ 21+ 35+ 21+ 21+ 21+ 21+ 21+ 21+ 21+ 21	125 K 73 100 59 188 146 144 185 119 237 261 120 129 167 114 60 99 108	37 3- CA 75 66 54 259 173 285 151 245 159 251 372 318 115 339 117 129 157 128 60 103 153 53	6 DAY AVE: TI 12 10* 10 23 32 32 32 15 28 8* 33* 44 30 12 34 23 29 22 17 10 13 12	2* RAGE C 9 9 7 7 7 8 8 8 31 12* 13* 12* 13* 12* 13* 12* 13* 12* 13* 12* 13* 4 5 8 9 4 4 4 5 6 8 9 4 5 7 6 6 6 7 6 7 7 7 7 8 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7	3+ ONCENTI CR 9+ 7+ 9+ 8+ 12+ 6 9+ 8+ 33+ 13+ 13+ 13+ 14+ 13+ 14+ 12+ 10+ 7+ 9+ 9+ 9+ 9+ 4+	3+ CATION. MN 9+ 9+ 7+ 20 12 12 7+ 8+ 7 32+ 16 11 13+ 12+ 9 10+ 7+ 8 9+ 4	63 S IN FE 117 92 131 442 325 514 305 252 395 252 395 252 247 546 247 324 247 325 249 134 242 289 134 241 327 546 244 342 249 134 247 347 546 247 347 546 247 347 546 247 347 546 247 347 546 247 347 546 247 347 546 247 347 546 247 347 546 247 347 546 247 347 546 247 347 546 247 347 546 247 347 347 546 247 347 347 347 347 347 347 347 3	2* NANOGRAM NI 7* 5* 6* 5* 22* 9* 6* 9* 6* 9* 8* 7* 5* 6* 5* 6* 9* 6* 9* 8* 5* 6* 5* 6* 5* 6* 5* 6* 5* 6* 5* 6* 5* 5* 6* 5* 5* 6* 5* 5* 5* 5* 5* 5* 5* 5* 5* 5* 5* 5* 5*	49 49 CU 6* 6* 5* 6* 5* 4* 20* 8* 8* 8* 8* 8* 6* 5* 4 20* 8* 8* 6* 5* 4 20* 8* 8* 8* 8* 8* 8* 8* 8* 5* 6* 5* 5* 6* 5* 5* 5* 5* 5* 5* 5* 5* 5* 5	43 3 ZN 7 10 9 9 8 12 8 8 7 19 16 14 6 4 6 4 12 5 5 7 8 3 7 8 3	3* BR 5* 3* 15 5* 4* 4* 4* 18* 22 7* 5* 5* 5* 5* 3* 5* 3* 5* 2*	9 PB 10+ 11+ 7+ 10+ 13+ 7+ 9+ 9+ 9+ 33+ 13+ 13+ 13+ 13+ 14+ 13+ 14+ 13+ 11+ 7+ 10+	28500 MASS 4100 5600 5400 9600 12700 12300 12400 12800 7800 8500 9800 6700 10100 5000 12000 7700 6800 6900 8200 9400 6200
831 SFU C DATE 601 604 608 611 618 622 625 629 706 709 713 716 709 713 716 720 723 727 730 803 806 810 813	70 COARSE HOURS 72 72 72 72 72 72 72 72 72 72 72 72 72	1306 STAG NA 56* 43* 54* 60 510 510 510 510 510 510 510 510 510 51	1498 E (2.5 MG 595 460 38* 670 40* 640 38* 391 39 2578 64* 64* 64* 64* 64* 64* 64* 64*	90 TO 15 AL 40* 162 105 628 456 943 378 577 283 1073 1021 1208 331 1274 891 734 702 452 452 113 260 280 190	8* MICRON 51 797 526 452 1971 1317 2593 1233 1233 1249 1043 2388 2270 2273 891 2937 1279 1631 1711 1569 573 1047 1143 7322	212 is) P 34* 26* 32* 27* 40* 25* 29* 116* 45* 45* 45* 45* 45* 43* 43* 43* 43* 37* 29* 116* 43* 43* 43* 43* 43* 43* 43* 43	270 S 38 44 19* 38 21* 82 30 24* 22* 95 69 103 24 161 67 87 54 24 19* 23* 24 25* 35 35 35 35 35 35 35 36 36 36 36 36 36 36 36 36 36	376 CL 25+ 25+ 19+ 24+ 20+ 30+ 23+ 21+ 35+ 32+ 35+ 32+ 35+ 32+ 35+ 32+ 35+ 32+ 27+ 18+ 21+ 35+ 24+ 21+ 24+ 25+ 25+ 25+ 25+ 25+ 25+ 25+ 25	125 K 73 100 59 188 146 310 144 185 119 237 263 246 101 261 120 129 167 114 60 99 108 68	37 3- CA 75 66 54 259 173 288 151 245 159 251 372 318 115 339 117 129 157 128 60 103 153 78	6 DAY AVE: 12 10* 10 23 32 32 32 15 28 8* 33* 44 30 12 34 23 29 22 17 10 13 12 10	2* RAGE C 9 9 7 7 7 8 8 31 12 13 12 13 12 13 12 13 12 13 12 13 12 13 12 13 12 13 12 13 13 12 13 13 12 13 13 12 13 13 12 13 13 12 13 13 12 13 13 12 13 13 13 13 13 13 13 13 13 13	3+ ONCENTI 7 9+ 7* 9+ 8* 12* 6 9+ 8* 33* 13* 13* 13* 13* 13* 13* 13* 13* 13	3* CATION. MN 9* 9* 7* 20 12 7* 8* 7 32* 26 16 11 13* 12* 13* 10* 7* 8 9* 4	63 5 IN FE 117 92 131 442 325 514 305 395 252 390 456 247 324 327 546 244 322 289 134 241 327 134 241 327 134 241 327 134 247 137 147 147 147 147 147 147 147 14	2* NANOGRAM NI 7* 5* 6* 5* 6* 5* 22* 9* 6* 9* 8* 7* 5* 6* 5* 6* 3* 3*	49 57 67 67 67 67 67 67 67 74 57 4 20 8 8 74 57 4 20 8 8 8 8 8 8 8 8 8 8 8 8 8	43 3 ZN 7 10 9 9 8 12 8 8 7 19 16 14 6 4 6 4 6 4 7 12 5 4 3 4 7 8 3 3	3* BR 5* 3* 15 5* 4* 4* 4* 4* 18* 7* 5* 7* 6* 8* 5* 5* 5* 5* 2*	9 PB 10+ 11* 7* 10* 13* 9* 9* 33* 13* 13* 14* 13* 14* 13* 14* 13* 14* 13* 14* 14* 13* 4* 4* 4*	28500 MASS 4100 5600 5400 9600 12700 12300 12400 12800 7800 8800 8500 9800 6700 10100 5000 12000 7700 6800 6900 8200 9400 6200
831 SFU C 001 604 608 611 615 622 625 629 702 706 709 713 716 720 723 727 730 803 803 810 813 817	70 COARSE HOURS 72 72 72 72 72 72 72 72 72 72 72 72 72	1306 STAG NA 56* 43* 54* 60 57 50* 48* 71* 47 75* 69* 48* 71* 47 75* 68* 59* 41* 52* 71 24*	1498 E (2.5 MG 595 460 38* 670 40* 640 391 391 391 391 392 2578 64* 64* 64* 64* 64* 64* 64* 64*	90 TO 15 AL 40* 162 105 628 456 943 378 577 283 1073 1021 1208 331 1274 891 734 702 452 113 260 280 190 190	8* MICRON 528 452 1971 1317 2593 1233 1233 1249 1043 2388 2270 2273 2937 1279 1631 1711 1569 573 1047 1143 732 732	212 is) P 34* 26* 32* 27* 40* 25* 40* 29* 116* 45* 46* 29* 116* 43* 43* 43* 37* 24* 31* 33* 14* 14* 14* 14* 14* 14* 14* 14	270 S 38 44 19* 38 21* 82 30 24* 22* 95 69 103 24 161 67 87 54 161 67 54 24* 25* 35 35 35 35 35 35 35 35 35 35	376 CL 25+ 25+ 19+ 24+ 20+ 30+ 23+ 21+ 35+ 32+ 35+ 32+ 35+ 32+ 27+ 18+ 23+ 21+ 10+ 10+ 10+ 23+ 24+ 21+ 25+ 25+ 25+ 25+ 25+ 25+ 25+ 25	125 K 73 100 59 188 146 310 144 185 119 237 263 246 101 120 129 167 114 60 99 108 68 68 68	37 3- 75 66 54 259 173 288 151 245 159 251 372 318 115 339 117 129 157 128 60 103 153 78 78 78	6 DAY AVE: TI 12 10* 10 23 32 32 32 15 28 8* 33* 44 30 12 34 23 29 22 17 10 13 12 10 10	2* RAGE C 9* 9* 7* 9* 7* 11* 12* 8* 8* 31* 12* 13* 12* 13* 12* 10* 6* 8* 9* 4* 12* 10* 12* 10* 10* 12* 10* 12* 10* 12* 12* 12* 12* 12* 12* 12* 12	3* ONCENTT 7 9* 7* 9* 8* 12* 6 9* 6* 33* 13* 6* 13* 14* 12* 10* 7* 9* 9* 4* 12* 13* 14* 12* 13* 14* 12* 14* 12* 14* 12* 14* 12* 12* 13* 13* 13* 14* 12* 14* 12* 14* 12* 14* 12* 14* 12* 14* 12* 12* 13* 13* 13* 14* 12* 14* 12* 14* 12* 14* 12* 14* 12* 14* 12* 12* 13* 14* 12* 12* 12* 14* 12* 12* 12* 12* 12* 12* 12* 12	3* CATION. MN 9* 9* 7* 20 12 7* 8* 7 32* 26 16 11 13* 12* 13* 9 10* 7* 8 9* 4 4 23	63 5 IN FE 117 92 131 442 325 514 305 395 252 390 456 241 324 324 324 324 324 324 134 227 546 241 324 327 134 241 327 134 241 327 269 279 279 279 279 279 279 279 27	2* NANOGRAM NI 7* 5* 6* 5* 22* 9* 9* 6* 9* 8* 7* 5* 6* 6* 5* 6* 3* 3* 9*	49 5 CU 6 5 6 5 7 4 20 8 8 8 8 8 8 8 8 8 8 8 8 8	43 3 ZN 7 10 9 9 8 12 8 8 7 19 16 14 6 * 6 * 12 5 * 3 * 7 8 3 3 6 *	3* BR 5* 3* 15 5* 4* 4* 4* 18* 22 7* 5* 6* 4* 4* 18* 22* 7* 6* 5* 5* 5* 7* 6* 2* 7*	9 PB 10+ 11* 7* 10* 13* 9* 9* 33* 13* 13* 14* 13* 14* 13* 14* 13* 14* 13* 14* 14* 13* 14* 14* 14* 13* 14* 14* 14* 14* 14* 14* 14* 14	28500 MASS 4100 5600 5400 9600 12700 12300 12300 12400 12800 7800 8800 8800 8800 8800 8800 6700 10100 5000 12000 7700 6800 6900 8200 9400 6200 6200
831 SFU C DATE 601 604 608 611 615 622 625 629 702 702 702 709 713 716 720 727 730 803 806 610 813 817 824	70 COARSE HOURS 72 72 72 72 72 72 72 72 72 72 72 72 72	1306 STAG STAG 56* 43* 54* 60 510 57 50* 48* 71* 47 75* 68* 59* 41* 52* 68* 59* 41* 52* 71* 68* 52* 71* 71* 75* 68* 52* 71* 71* 72* 71* 71* 75* 71* 71* 75* 71* 75* 71* 75* 71* 75* 71* 75* 71* 75* 71* 75* 71* 75* 71* 75* 71* 75* 71* 75* 71* 75* 71* 75* 75* 75* 75* 75* 75* 75* 75* 75* 75	1498 E (2.5 MG 595 460 38* 670 40* 640* 670 40* 38* 391 39 2578 64* 64* 64* 64* 64* 64* 64* 64* 64* 64*	90 TO 15 AL 40* 162 105 628 456 943 378 577 263 1073 1021 1208 331 1274 891 1274 891 1274 891 1274 891 1274 891 1274 891 1274 891 1274 891 1274 891 1274 891 1274 892 113 260 280 190 260 280	8* MICRON 51 797 528 452 1971 1317 2593 1233 1849 1043 2388 2270 2273 891 2937 1279 2631 1711 1569 573 1047 1143 732 732 1044	212 is) P 34* 34* 26* 32* 27* 40* 25* 31* 29* 116* 46* 29* 48* 43* 37* 24* 33* 14* 14* 14* 43*	270 S 38 44 19* 38 21* 82 30 24* 22* 95 69 103 24 161 67 87 54 24* 19* 35 35 35 35 31	376 CL 25* 19* 24* 20* 18* 23* 21* 33* 31* 35* 32* 27* 18* 23* 21* 32* 21* 32* 21* 32* 23* 21* 33* 21* 33* 21* 33* 21* 33* 21* 33* 21* 33* 21* 33* 21* 33* 21* 33* 21* 33* 21* 33* 21* 32* 22* 21* 33* 21* 32* 22* 21* 33* 21* 32* 22* 22* 22* 21* 33* 22* 22* 22* 22* 22* 22* 22	125 K 73 100 59 188 146 310 144 185 119 237 263 246 101 261 129 167 114 60 99 108 68 68 84 84	37 3- CA 75 66 54 259 173 245 159 251 372 318 115 339 117 129 157 128 60 103 153 78 78 69 45 78 60 78 78 78 78 78 78 78 78 78 78	6 DAY AVE: TI 12 10* 10 23 32 32 32 15 28 8* 33* 44 30 12 34 23 29 22 17 10 13 12 10 10 10 20*	2* RAGE C 9* 9* 7* 9* 7* 11* 12* 12* 12* 13* 12* 12* 12* 12* 12* 12* 12* 12	3* ONCENTIT CR 7 9* 8* 12* 6 9* 8* 13* 13* 13* 13* 14* 12* 9* 9* 4* 12* 21*	3* RATION. MN 9* 9* 7* 20 12 12 12 12 7* 8* 7 32* 26 16 11 13* 26 16 11 13* 9 10* 7* 8 9* 4 4 23 20*	 83 83 84 <	2* NANOGRAM NI 7* 5* 6* 5* 8* 5* 6* 5* 8* 9* 8* 9* 8* 9* 8* 9* 8* 9* 8* 3* 3* 3* 14*	49 57 60 58 68 58 68 58 68 58 88 88 88 88 88 88 88 88 88 88 88 88	43 3 ZN 7 10 9 8 12 8 8 7 19 16 14 6 6 4 6 4 5 5 7 8 3 7 8 3 3 6 4 23	3* BR 5* 3* 15 6* 4* 4* 18* 22 7* 5* 6* 8* 6* 5* 5* 6* 2* 2* 7* 10*	9 PB 10* 11* 7* 8* 13* 9* 33* 13* 13* 13* 14* 13* 14* 13* 14* 13* 14* 14* 14* 14* 14* 14* 14* 13* 14* 13* 14* 13* 13* 13* 13* 13* 13* 13* 13	28500 MASS 4100 5600 5400 9600 12700 12300 10400 12800 12800 8800 8800 8500 9800 6700 10100 5000 12000 7700 6800 6900 8200 9400 6200 6200 13100
831 SFU C DATE 601 604 608 611 615 622 625 629 702 702 702 709 713 716 720 723 716 720 723 730 803 806 810 811 824 827	70 COARSE HOURS 72 72 72 72 72 72 72 72 72 72 72 72 72	1306 STAG STAG 56* 43* 56* 43* 50* 57 50* 48* 71* 47 75* 69* 68* 59* 41* 52* 71* 52* 71* 52* 71* 52* 71* 52* 71* 52* 71* 52* 71* 52* 71* 52* 71* 52* 71* 52* 71* 52* 71* 52* 71* 52* 71* 52* 71* 52* 71* 52* 71* 75* 71* 75* 71* 75* 71* 75* 71* 75* 75* 75* 75* 75* 75* 75* 75* 75* 75	1498 E (2.5 MG 595 460 38* 670 40* 40* 391 39 2578 64* 64* 64* 64* 64* 64* 64* 64* 64* 64*	90 TO 15 AL 40* 162 105 628 456 943 378 577 283 1073 1021 1208 331 1274 891 734 891 734 891 734 891 732 452 113 260 280 280 280 190 190	8* MICRON 51 797 528 452 1971 1317 2593 1233 1849 1043 2388 2270 2273 891 2937 1279 1631 1711 1569 573 1047 1143 732 732 1044 1414	212 is) P 34* 34* 26* 32* 27* 40* 25* 31* 29* 116* 46* 29* 48* 43* 37* 24* 31* 29* 14* 14* 14* 14* 55* 55* 55* 55* 55* 55* 55* 5	270 S 38 44 19* 38 21* 82 30 24* 22* 95 69 103 24 161 67 67 54 24 19* 23* 25* 35 35 31 54* 71	376 CL 25+ 19+ 24+ 20+ 18+ 23+ 21+ 35+ 32+ 27+ 18+ 23+ 27+ 18+ 23+ 24+ 10+ 10+ 32+ 53+ 41+	125 K 73 100 59 188 146 310 144 185 119 237 263 246 101 261 129 167 114 60 99 108 68 68 84 159	37 3- CA 75 66 54 259 173 245 159 251 372 318 115 339 117 129 157 128 60 103 153 78 78 69 145	6 DAY AVE: TI 12 10* 10 23 32 15 28 8* 33* 44 30 12 34 430 12 34 22 17 10 13 12 10 10 10 10 20* 65	2* RAGE C 9* 9* 7* 9* 7* 9* 7* 8* 8* 8* 8* 12* 12* 13* 12* 13* 12* 10* 6* 8* 4* 4* 12* 12* 15* 12* 15* 12* 13* 12* 13* 12* 13* 12* 13* 12* 13* 12* 13* 12* 13* 12* 13* 12* 13* 12* 13* 12* 13* 12* 13* 12* 13* 12* 12* 13* 12* 12* 12* 12* 12* 12* 12* 12	3+ ONCENTT CR 7 9+ 7+ 9* 8* 12* 6 9* 8* 13* 13* 13* 13* 13* 13* 14* 12* 10* 7* 9* 9* 4* 4* 12* 12* 12* 16*	3* RATION. MN 9* 9* 7* 20 12 12 12 12 12 12 12 12 12 12 12 12 12	 83 83 1N FE 92 131 142 325 514 3395 252 3390 254 456 473 227 546 244 456 473 324 324 322 289 134 324 322 289 134 324 327 174 210 296 562 	2* NANOGRAM NI 7* 5* 6* 5* 8* 5* 22* 9* 9* 6* 6* 6* 6* 6* 3* 3* 3* 3* 3* 10*	49 5 5 6 5 6 5 6 5 7 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 6 5 7 4 5 6 5 7 4 5 6 5 7 4 5 6 5 7 4 5 7 8 7 8 7 7 7 7 7 7 7 7 7 7 7 7 7	43 3 ZN 7 10 9 9 8 12 8 8 7 19 16 14 6 * 6 * 12 5 * 7 8 3 3 6 * 23 39	3* BR 5* 3* 15 6* 4* 4* 18* 22 7* 5* 6* 8* 5* 6* 5* 5* 6* 2* 7* 5* 10* 2* 10* 9*	9 PB 10* 11* 7* 10* 13* 9* 33* 13* 13* 13* 14* 13* 14* 13* 14* 13* 14* 13* 14* 13* 14* 13* 14* 13* 13* 13* 13* 13* 13* 13* 13	28500 MASS 4100 5600 5400 9600 12700 12300 10400 12800 12800 8800 8500 9800 6700 10100 5000 12000 7700 6800 6900 8200 9400 6200 6200 6200 13100 18800

. .

· ·

YOSEMITI	E NP			J	jne -	AUG 198	5	(SUMMER)			•		NPS	PARTI	CULATE NO	NITORIN	i network
FINE PA	RTICLE:	S SMALLE	R TILAN	2.5	MICRO	NS, CO	ARSE	: PART	ICLES BETWE	EN 2.	5 AND 1	5 M	ICRONS	c	ONCENT	RATIONS I	N NANOGI	anms/m••3
				ARI	I I I I I I I I I I I I I I I I I I I	C MEAN	CONC	ENTRA	TIONS AND S	TANDA	RD DEVI	ΛΤΙ (DNS	DIST	RIBUTI	ONS OF CO	NCENTRA	TIONS
		CASES								÷ .	_				1.4	MEDTAN	3 /4	MAYTMIM
		FOUND		JUN			յու		AUG		S	EAS	DN	MINIMUM	1/4	MEDIAN	3/4	MAKIPUL
S FII S COA	NE	26/26 18/26	409 31	+/- +/-	223 24	441 76	+/ +/	156 43	403 +/- 29 +/-	119 20	418 46	+/- +/-	167 37	180 10	257 24	389 33	441 67	825 161
CU FIL CU COJ	INE	11/26 1/26	2	+/-	1 Ins	3 UFFICIE	+/-	5 NATA	9 +/-	16	4	+/-	10	1	1	3	10	49
ZN FII ZN COI	ARSE	23/26 20/26	3	+/- +/-	1 2	4 9	+/- +/-	3 6	9 +/- 11 +/-	14	5 9	+/- +/-	6 8	. 1 2	3 3	4 6	9 13	43 39
PB FIN PB CON	NE	14/26 0/26	5	+/-	3 Ins	4 UFFICIE	+/- NT [3 ЛТЛ	4 +/-	2	4	+/-	3	1	2	3	5	10
BR FI	NE	12/26	2	+/-	ı	2	+/-	1	3 +/-	1	2	+/-	1	1	1	2	3	4
SI F II	NE	26/26	283	+/-	133	205	+/-	75	178 +/-	57	224	+/-	102	91	116	177	216	460
SI CO	ARSE	26/26	1309	+/-	713	1883	+/	633	1162 +/-	644	1463	+/-	713	452	713	1152	1631	2937
AL FIN AL CO	INE DARSE	26/26 25/26	143 395	+/- +/-	84 292	106 854	+/ +/-	48 326	113 +/ - 355 +/-	47 295	121 541	+/- +/-	63 374	34 20	63 260	84 364	121 734	295 1274
к ги	NE	26/26	109	+/-	68 76	136 182	+/-	79 69	100 +/-	39 49	116 146	+/- +/-	64 71	17	64 69	88 106	136 154	299 310
K CO	AUSE	20/20	11/	*/			''		,	_							17	
CA FII CA COI	ARSE	26/26 26/26	59 163	+/- +/-	35 87	32 214	+/- +/-	13 106	28 +/- 116 +/-	62	40 166	+/- +/-	26 93	54	78	116	163	372
FE FIL	NE	26/26 26/26	75 286	+/- +/-	37 151	. 55 363	+/- +/-	18 110	51 +/- 265 +/-	16 137	61 306	+/- +/-	27 135	23 92	31 151	46 254	56 324	126 562
-	NE	75/76	6	×/-	2	4	+/-	2	3 +/-	1	4	+/	2	2	2	3	4	9
TI CO	ARSE	22/26	18	+/	11	25	+/-	10	18 +/-	19	20	+/-	14	4	11	18	25	65
CL CON	ARSE	2 /26			INS	UPFICIE	NT C	ата										
M2N F1R	INE	10/26	1	+/-	0	1	+/-	0	. 1 +/-	. 1	1	+/-	0	1	1	1	1	2
v FI	NE	0/26			INS	UFFICIE	NT E	ата										
H FI	NE	26/26	235	+/	116	303	+/-	109	785 +/	700	428	+/-	453	74	218	383	443	2311
MASS FIL	NE	26/26	6300	+/-	30 00	7500	+/-	2300	15800 +/-1	1600	9700	+/-	7800	2300	5700	8000	10300	39300
MASS CO	ARSE	26/26	9000	+/-	3400	8400	+/-	2100	9400 +/-	4500	8900	+/	3300	4100	5000	7300	9400	18800
SOIL FIL	NE	26/26	1202	+/-	599	928	+/-	355	828 +/-	253	992 5012	+/- +/-	446	339	538 2370	735 3810	992 5702	1975 10280
SOIL COL	SOIL	26/26 = S1 *	4372 2.14 +	+/ AL	440/ • 1.89	0099 0099	*/-4	200 20 + C	μ * 1.40 +	FE P	1.36 +	TI	1.67	(FAC	TORS T	O INCLUDE	OXIDE)	

. .

•

•

WHEN A CONCENTRATION IS LESS THAN THE MINIMUM DETECTABLE LIMIT, 1/2 OF THE LIMIT IS USED.

ti f

ASH MOUNTAIN ********** STACKED FILTER UNIT, FINE STAGE. STATISTICS OF 3-4 DAY SAMPLES.

All concentrations in ng/m^3

	A1	Si	S	C1	K	Ca
NUMBER ABOVE D.L	32	32	32	0	32	32
AVERAGE **	126.6	345.7	675.8		142.1	49.8
STD DEV	53.2	.131.3	172.0		59.5	18.7
MAXIMUM	250.4	609.7	1076.5	DL	330.9	91.0
MINIMUM	11.8	35.0	381.4	DL	46.3	13.6
DET LIM				3.3		
	Тi	v	Cr	Mn	Fe	Ni
NUMBER ABOVE D. L.	32	15	01	25	32	28
AVERAGE **	7.0	1.4		1.7	98.5	3.5
STD DEV	2.8	0.7		0.9	33.3	1.3
MAXTMUM	12.4	3.5	ות.	4.1	156.7	7.0
MINIM	1.8	1.3	DL	0.6	29.8	1.8
DET LIM		1.0	1.0	1		1
	.	•		. *•		
	Cu	Zn	Br	Pb	Soot C	Fine mass
NUMBER ABOVE D.L	28	30	18	30	32	32
AVERAGE **	2.7	5.8	5.0	14.0	380	10670
STD DEV	1.6	2.7	3.0	5.0	110	2170
MAXIMUM	6.5	15.8	16.2	24.8	670	15610
MINIMUM	0.9	2.4	5.1	6.7	240	7390
DET LIM	1	1	1	1		

****** Average calculated using (0.5*DET LIM) for missing values.

AVERAGE ELEMENTAL RATIOS (VALUES >DL ONLY)

Ni/V	2.0		14	cases
Pb/Br	2,.8	•	17	caseş
K/Fe	1.5		32	cases
Zn/Cu	2.5		26	cases
S/Fine	mass 6.3	%		
(NH4)2.	SO4/Fine	mass	26	.1 %

SEQUOIA ACID DEPOSITION STUDY, SUMMER 1985 86/05/15

ASH MOUNTAIN, SEQUOIA NP, SUMMER 1985.

STACKED FILTER UNIT GRAVIMETRIC MASS AND LIPM SOOT CARBON CONCENTRATIONS.

SAMPLE	SOOT C	SFU MASS	SFU MASS	SOOT C/	FINE/
START	LIPM **	FINE	COURSE	FINE MASS	TOTAL MASS
DATE	ug/m^3	ug/m^3	ug/m^3	%	%
10 7		·			
18 - Jun	0.61	15.61	33.50	3.9	31.8
21 - Jun	0.30	8.08	16.71	3.8	32.6
25-Jun	0.33	8.88	23.96	3.7	27.0
28-Jun .	0.27	7.88	22.45	3.4	26.0
02-Jul	0.43	11.58	28.85	3.7	28.6
05-Jul	0.38	11.11	23.92	3.4	31.7
09-Jul	0.47	12.17	33.47	3.9	26.7
12-Jul	0.31	11.01	9.28	2.9	54.3
16-Jui	0.67	13.96	26.20	4.8	34.8
19-Jul	0.33	12.15	15.48	2.7	44.0
23-Jul	0.49	12.36	17.51	4.0	41.4
26-Jul	0.38	10.44	8.67	3.6	54.6
30-Jul	0.50	11.84	23.35	4.2	33.7
02-Aug	0.42	10.60	18.23	4.0	36.8
06-Aug	0.43	11.04	27.73	3.9	28.5
09-Aug	0.37	9.98	20.72	3.7	32.5
13-Aug	0.52	14.81	32.28	3.5	31.4
16-Aug	0.40	12.44	20.68	3.2	37.6
20-Aug	0.52	13.46	24.29	3.8	35.7
23-Aug	0.32	9.77	31.08	3.3	23.9
27-Aug	0.31	8.31	25.32	3.7	24.7
30-Aug	0.31	7.39	24.22	4.1	23.4
03-Sep	0.25	7.61	12.53	3.3	37.8
06-Sep	0.24	8.83	16.98	2.8	34.2
10-Sep	0.27	6.77	9.53	3.9	41.5
13-Sep	0.36	10.79	12.21	3.3	46.9
17-Sep	0.33	8.59	14.17	3.8	37.7
20-Sep	0.35	9.79	14.07	3.6	41.0
24-Sep	0.51	11.75	31.84	4.3	27.0
27-Sep	0.32	11.13	32.12	2.9	25.7
01-Oct	0.26	12.59	26.71	2.1	32 0
04-Oct	0.28	8.63	11.93	3.2	42.0
AVERAGE	10.38	10.67	21.56	3.6	34.6
STD DEV	0.11	2.17	7.57	0.5	8.0
COUNT	32	32	32	32	32

Updated April 26 1986.

÷

SEQUOIA ACID DEPOSITION PROJECT

APRIL 26 1985

(8°m/gu

.

ASH MOUNTAIN PERIOD 1. DATA O/P 12/18/85

. ..

.

.

	SITE ASH M PERIO SAMPLSPASI	OUNTAIN 1 N.B	. 4 HOURS	FILES SHORT=1 ST	30101/2/3 BP	ANAL 0/P	ON12/18/85 ON 12/18/85		
FRACTIONAACTUAL DAY HOUR 18.67 16 18.83 20 19.00 0 19.17 4 19.33 8 19.50 12 19.67 16 19.83 20 20.00 0 20.17 4 20.33 8 20.50 12 20.67 16 20.83 20 21.00 0 21.17 4 21.33 8 21.67 16 21.83 20	INDEX 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	ID MO DY 1 6 18 2 6 19 4 6 19 5 6 19 5 6 19 5 6 19 7 6 19 9 6 20 10 6 20 11 6 20 11 6 20 12 6 20 13 6 20 14 6 21 15 6 21 17 6 21 17 6 21 17 6 71 18 6 71	NOMINAL HE DATE 20 18 20 18 4 19 16 19 16 19 16 19 12 20 4 20 12 20 4 20 4 20 12 20 4 20 12 20 12 20 12 20 12 20 12 20 12 20 12 20 12 20 12 21 12 21 12 21 12 21 12 21	AL Jun Jun 49.3 Jun 53.7 Jun 24.7 Jun 24.7 Jun 38.0 Jun 59.5 Jun 12.3 Jun 41.2 Jun 45.9 Jun 33.3 Jun 74.3 Jun 74.3 Jun 27.7 Jun 19.2 Jun 34.3 Jun 34.3 Jun 52.7	SI 23.8 1 72.3 2 134.8 2 116.4 2 99.7 2 119.7 2 99.7 2 119.7 3 76.8 3 139.4 2 119.9 2 125.2 2 119.0 2 124.9 1 75.6 2 73.3 1 54.3 1 155.5 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	K CA .6 94.0 2 .6 20.4 3 .4 22.7 3 .4 11.2 1 .2 21.3 2 .4 22.57 3 .1 21.3 3 .9 17.4 3 .5 28.4 3 .6 21.9 3 .2 28.1 4 .1 15.5 2 .2 20.2 2 .3 13 15.5 .3 14.5 9	FE CU 6.7 25.7 3.0 28.8 9.6 41.7 4.9 14.5 8.9 12.9 9.1 5.1 5.1 1.6 5.9 1.6 3.2 3.2 5.6 7.9 0.5 8.2 8.9 4.9	ZN 24.6 28.0 11.3 8.4 7.9
22.00 0 22.17 4 22.33 8 22.50 12 22.67 16 22.83 20 23.00 0 23.17 4 23.33 8 23.67 16 23.67 16 23.67 16 23.67 16 23.83 20 24.00 0	21 22 23 24 25 26 27 28 29 30 31 32 33	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 22 4 22 12 22 16 22 0 22 4 23 16 23 16 23 16 23 12 23	Jun 23.2 Jun 52.3 Jun 52.3 Jun Jun Jun 63.0 Jun 29.0 Jun 26.3 Jun 30.0 Jun Jun Jun Jun 56.8 Jun 56.8	70.1 2 83.2 2 73.5 2 98.4 2 99.5 3 91.6 2 53.9 2 54.7 2 83.8 3 564.3 7 80.3 6	10.1 38 48.2 53 61.0 49 81.2 64 05.4 66 07.1 58 39.0 30 48.1 28 55.8 27 692.8 67 88.1 74 88.1 74	11.1 4 .0 13.2 3 .2 32.0 2 .8 17.8 2 .6 12.0 3 .6 10.0 3 .0 11.1 2 .3 13.6 2 .7 13.5 3 .8 2 2 .8 19.0 4 .1 33.7 3	73 61 58 24 24 15 15 15 39 9	6.9
24.17 4 24.33 8 24.50 12 24.67 16 24.83 20 25.00 0 25.17 4 25.33 8 25.50 12 25.67 16 25.83 20 25.00 0	34 35 36 37 39 41 42 43 44 45	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4 24- 8 24- 12 24- 16 24- 20 24- 4 25- 8 25- 12 25- 16 25- 20 25- 25- 25- 25- 25- 25- 25- 25-	Jun 44.8 Jun 32.0 Jun 35.8 Jun 69.2 Jun Jun Jun Jun	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	39.0 51 69.7 30 49.1 34 97.6 41 28.7 40 28.7 50 04.1 59 79.6 63 79.6 63 70.5 60 75.2 41	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.1 2.1 8.4 18.2 10.7 17.2 11.1 8.5 17.2 21.8 17.7 15.6 3.0 0.2 33.7 4 4 5 1	5.6 7.8 8.7 8.1 18.9
26.17 4 26.33 8 26.50 12 26.67 16 26.83 20 27.17 4 27.50 12 27.67 16 27.83 20 28.00 0 28.00 0 28.17 4 28.33 8	*44445555555555555555555555555555555555	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4 26 8 26 12 26 20 26 20 26 16 27 12 27 12 27 12 27 12 27 16 27 0 28 8 28	Jun 31.9 Jun 40.4 Jun 40.5 Jun 40.5 Jun 65.1 Jun 65.1 Jun 30.9 Jun 30.4 Jun Jun Jun Jun Jun Jun Jun 55.8 Jun 21.6	63.8 3 63.8 2 91.8 1 79.4 1 79.4 1 72.8 1 72.8 1 72.8 1 39.7 1 31.3 1 39.7 1 31.3 1 39.7 1 31.3 1 39.7 1	10.4 33 60.8 34 60.6 46 33.2 32 46.0 38 110.7 26 00.4 24 00.5 45 10.7 26 00.8 59 28.0 52 40.9 59 35.4 39	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	115.1 33.2 659.4 795.0 558.1 209.6 60.0 17.5 19.8 19.8 15.0 14.5 18.5
28.50 12 28.67 16 28.83 20 29.00 0 29.17 4 29.33 8 29.50 12 29.67 16 29.83 20	60 61 62 65 65 66 67 68	20 6 28 21 6 6 29 23 6 6 29 24 6 29 29 25 6 29 29 26 6 29 29 27 6 29 29 28 6 29 29	12 28- 16 28- 20 28- 0 29- 4 29- 12 29- 12 29- 16 29- 20 29-	Jun 25.2 Jun 25.2 Jun Jun Jun 14.5 Jun 35.6 Jun 35.6 Jun 16.6 Jun 24.7 Jun 13.2	43.4 47.2 83.3 66.3 1 22.4 1 20.2 1 33.9	68.2 49 79.3 42 70.9 45 81.0 63 32.1 33 28.0 28 52.2 27 85.3 40 76.8 55	.2 1 .8 12.1 1 .5 58.9 1 .6 99.9 3 .5 19.6 1 .5 12.6 1 .5 11.5 1 .5 11.5 1 .8 17.5 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5.6 8.8 14.8 12.7

ASH MOUNTAIN PERIOD 1. DATA O/P 12/18/85

30.00 30.17 30.33	048	69 70 71	29 30 31		0 4 8	30-Jun 30-Jun 30-Jun		23.7 29.2 24.0	153.8 139.5 146.0	40.6 40.2 29.5	15.4 14.6	12.8 9.6 8.2		3.8
30.50	12	12 73	32	6 30	12	30-Jun 30-Jun	19.7	35.9	125.5	29.1 18.4	6.9	9.8	7.2	
30.83 31.00 31.17	20 0 4	74 75 76	34 35 36	$ \begin{array}{c} 6 30 \\ 7 1 \\ 7 1 \\ 7 1 \end{array} $	20 0 4	30-Jun 01-Jul 01-Jul	27.3	14.9 18.0 123.9	206.8 124.3 96.0	21.8 19.8 12.0	12.6 7.8 23.6	10.6 6.9 22.9	5.4	
31.50	12	78 79	38 39	$ \begin{array}{c} 1 \\ 7 \\ 7 \\ 1 \end{array} $	12	01-Jul 01-Jul	13.1	21.5	103.9	13.3 16.3 12.3	(.4 Q 1	5.6		
31.83 32.00 32.17	20 0 4	80 81 82	40 1 2	$ \begin{array}{c} 7 & 1 \\ 7 & 2 \\ 7 & 2 \\ 7 & 2 \end{array} $	20 0 4	01-Jul 02-Jul 02-Jul	26.0 59.9	44.7 68.8	201.0 252.3	20.0	741	10.8 37.4	5.5 39.6	28.2
32.33 32.50 32.67 32.83	8 12 16 20	83 84 85 86	3	7 2 7 2 7 2 7 2	8 12 16 20	02-Jul 02-Jul 02-Jul 02-Jul 02-Jul								

.

GIANT FOREST, SEQUOIA NP, SUMMER 1985.

STACKED FILTER UNIT GRAVIMETRIC MASS AND LIPM SOOT CARBON CONCENTRATIONS.

SAMPLE	SOOT C	SFU MASS	SFU MASS	SOOT C/	FINE/
START	LIPM **	FINE	COURSE	FINE MASS	TOTAL MASS
DATE	ug/m^3	ug/m^3	ug/m^3	%	%
18-Jun	0.38	17.15	28.12	2.2	37.9
19-Jun	0.25	12.60	13.87	2.0	47.6
20-Jun	0.40	13.47	20.44	3.0	39.7
21-Jun	0.52	14.69	19.01	3.6	43.6
22-Jun	0.38	11.42	18.01	3.4	38.8
23-Jun	0.27	16.44	15.89	1.6	50.9
24-Jun	0.24	14.63	17.22	1.7	45.9
25-Jun	0.32	12.12	15.84	2.7	43.4
26-Jun	0.24	10.87	14.60	2.2	42.7
27-Jun	0.26	10.66	14.86	2.4	41.8
28-Jun	0.30	26.80	19.66	1.1	57.7
29-Jun	0.34	10.74	15.72	3.2	40.6
30-Jun	0.31	9.22	10.64	3.4	46.4
01-Jul	0.27	8.57	12.63	3.2	40.4
02-Jul	0.34	8.71	13.81	3.9	. 38.7
03-Jul	0.31	8.83	13.34	3.5	39.8
04-Jul	0.27	11.11	13.89	2.4	44.4
05-Jul	0.22	10.88	11.52	2.0	48.6
06-Jul	0.35	12.73	15.90	2.7	44.5
07-Jul	0.27	9.00	14.82	3.0	37.8
08-Jul	0.36	8.70	11.04	4.1	44.1
09-Jul	0.31	10.56	15.42	3.0	40.6
10-Jul	0.37	13.46	18.09	2.8	42.7
11-Jul	0.36	15.36	17.40	2.3	46.9
12-Jul	0.34	13.56	15.00	2.5	47.5
13-Jul	0.36	14.46	16.32	2.5	47.0
14-Jul	0.28	11.54	12.67	2.4	47.7
15-Jul	0.34	14.67	15.93	2.3	47.9
16-Jul	0.41	14.61	16.10	2.8	47.6
17-Jul	0.33	15.54	16.73	2.1	48.2
18-Jul	0.42	15.89	14.91	2.6	51.6
19-Jul	0.32	15.49	10.98	2.1	58.5
20-Jul	0.52	15.97	11.63	3.3	57.9
21-Jul	0.29	9.82	8.07	2.9	54.9
22-Jul	0.34	10.84	9.05	3.1	54.5
23-Jul	1.09	22.41	13.42	4.9	62.5
24-Jul	0.45	14.48	12.32	3.1	54.0
25-Jul	0.49	11.02	5.42	4.5	67.0
26-Jul	0.46	15.12	11.76	3.1	56.3
27-Jul	0.42	10.87	10.56	3.8	50.7
28-Jul	0.34	11.49	10.24	3.0	52.9
29-Jul	0.35	8.98	12.78	3.9	41.3

SEQUOIA ACID DEPOSITION PROJECT

APRIL 26 1985

GIANT FOREST, SEQUOIA NP, SUMMER 1985.

đ

STACKED FILTER UNIT GRAVIMETRIC MASS AND LIPM SOOT CARBON CONCENTRATIONS.

SAMPLE	SOOT C	SFU MASS	SFU MASS	SOOT C/	FINE
START	LIPM **	FINE	COURSE	FINE MASS	TOTAL MASS
DATE	ug/m^3	ug/m^3	ug/m^3	%	%
30-Jul	0.29	12.29	12.73	2.4	49.1
31-Jul	0.30	12.69	13.61	2.3	48.2
01-Aug	0.33	13.05	15.53	2.5	45.7
02-Aug	0.46	12.55	13.05	3.6	49.0
03-Aug	0.37	11.78	13.43	3.2	46.7
04-Aug	0.39	11.92	12.21	3.3	. 49.4
05-Aug	0.39	11.06	13.14	3.6	45.7
06-Aug	0.38	11.77	14.47	3.2	44.9
07-Aug	0.44	14.75	18.29	3.0	44.6
08-Aug	0.43	12.76	16.45	3.4	43.7
09-Aug	0.42	15.05	15.85	2.8	48.7
10-Aug	0.35	15.03	16.88	2.3	47.1
11-Aug	0.44	15.23	15.94	2.9	48.8
12-Aug	0.36	14.77	17.15	2.4	46.3
13-Aug	0.32	16.17	16.45	2.0	49.6
14-Aug	0.43	14.72	15.82	2.9	48.2
15-Aug	0.42	15.55	19.28	2.7	44.6
16-Aug	0.36	16.50	18.61	2.2	47.0
17-Aug	0.31	11.47	12.85	2.7	47.2
18-Aug	0.41	13.23	9.20	3.1	59.0
19-Aug	0.42	12.09	10.23	3.4	54.2
20-Aug	0.67	13.36	12.74	5.1	51 2
21-Aug					01.2
22-Aug	0.44	15.94	14.87	2.8	51 7
23-Aug	0.40	12.74	14.14	3.2	47 A
24-Aug	0.34	10.70	12.07	3.2	47 0
25-Aug	0.40	14.19	13.59	2.8	51 1
26-Aug	0.34	9.49	12.78	3.6	42 6
27-Aug	.0.40	9.38	12.67	4.2	42.0
28-Aug	0.34	8.98	10.16	3.8	46 9
29-Aug	0.37	10.99	14.37	3.4	43 3
30-Aug	0.58	11.83	16.45	4.9	41 8
31-Aug	0.39	* 17.05	15.61	2.3	52 2
01-Sep	0.20	6.82	12.61	3.0	35 1
02-Sep	0.22	4.81	11.42	4 7	29.6
03-Sep	0.22	7.27	5.04	3 0	59.0
04-Sep	0.26	7.84	5 25	2.0	59.0
05-Sep	0.34	10.99	6.91	2.1	55.9 R1 1
06-Sep	0.35	16.94	9.31	9 1	61 5
07-Sep	0.38	15.88	8.86	2.1	64.0
08-Sep	0.14	7.50	5.59	2.4 1 0	57 9
09-Sen	0.23	2.62	5 29	1.9	01.J 20 A
		0.00	0.04	4.1	04.0

SEQUOIA ACID DEPOSITION PROJECT

APRIL 26 1985

ROJECT APR

GIANT FOREST, SEQUOIA NP, SUMMER 1985.

STACKED FILTER UNIT GRAVIMETRIC MASS AND LIPM SOOT CARBON CONCENTRATIONS.

SAMPLE	SOOT C	SFU MASS	SFU MASS	SOOT C/	FINE/
START	LIPM **	FINE	COURSE	FINE MASS	TOTAL MASS
DATE	ug/m^3	ug/m^3	ug/m^3	%	%
10-Sep	0.22	8.48	5.11	2.6	62.4
11-Sep	0.62	17.45	9.68	3.5	64.3
. 12-Sep	0.53	10.30	5.45	5.1	65.4
13-Sep					
14-Sep	0.46	23.58	12.69	2.0	65.0
15-Sep	0.29	12.55	9.48	2.3	57.0
16-Sep	0.43	9.41	8.80	4.6	51.7
17-Sep	0.31	5.87	8.77	5.2	40.1
18-Sep	0.16	7.02	8.05	2.3	46.6
19-Sep	0.21	8.22	6.77	2.5	54.8
20-Sep	0.51	12.68	8.43	4.1	60.1
21-Sep	0.45	15.68	9.12	2.9	63.2
22-Sep	0.40	9.20	6.61	4.3	58.2
23-Sep	0.29	7.74	6.49	3,8	54.4
24-Sep	0.37	11.05	9.95	3.3	52.6
25-Sep	0.43	11.93	11.52	3.6	50.9
26-Sep	0.36	11.83	11.41	3.0	50.9
27-Sep	0.29	7.53	7.67	3.8	49.6
28-Sep	0.30	11.49	8.37	2.6	57.9
29-Sep	0.28	12.48	10.91	2.3	53.4
30-Sep	0.31	8.73	6.34	3.6	57.9
01-Oct	0.29	7.09	6.95	4.1	50.5
02-Oct	0.49	7.25	6.08	6.7	54.4
03-0ct	0.20	17.12	5.44	1.1	75.9
04-Oct	0.22	17.59	7.43	1.2	70.3
05-Oct	0.39	19.88	3.99	2.0	83.3
06-Oct	0.16	14.13	9.89	1.1	58.8
07-Oct	0.15	11.54	3.59	1.3	76.3
AVERAGE	0.36	12.45	12.29	3.0	50.9
STD DEV	0.12	3.62	4.27	0.9	9.0
COUNT	110	110	110	110	110
茂		-			

Updated April 26 1986.

2

SEQUOIA ACID DEPOSITION PROJECT

APRIL 26 1985

SEQUOIA NP ACID DEPOSITION PROJECT PARTICULATE ELEMENTAL CONCENTRATIONS

1997 - 199**4**

SITE: GIANT FOREST (LOWER KAWBAB) SAMPLER: STACKED FILTER UNIT, FIME STAGE; 0.1 - 2.5 mmad

ŝ

.

DATE	e Codina	¥.,	43	a:		_
<u>0875</u> 18-Jun	<u>Soures</u> En	<u>ar</u> Mu	A1 ND	<u>31</u>	Ϋ́ν.	<u>8</u>
10 Jun	ap Wh	20 20	EV MD	ни жр	EU MD	ED
20-Jun	KD KD	49 Wh	av Wh		80 80	. ED
21-Jun	ND ND	WD .			80 ND	ED
22-Jan	ND		ay Wh		AU ND	
23-Jun	ND	#D		an An		EU ED
24-Jun	HD	WD	ND.			50 10
25-Jun	254.0 +/- 27.0	DL 3.6	141.5 +/- 15.6	193 5 ±/_ 79 9		515 9 1/ 55 I
25-Jun	167.0 +/- 19.0	DL 3.3	153.0 +/- 16.6	$353.8 \pm / = 35.8$	DD 2.0	798 9 ±/_ 79 C
27-Jun	98.0 +/- 13.0	DL 3.7	150.5 +/- 17.1	264.5 +/- 27 3	DI. 7 9	117 8 4/- 37 A
28-Jun	109.0 +/- 15.0	DL 3.8	199.9 +/- 21.5	373.8 + / - 33.0	DI 21.3	
29-Jun	146.0 +/- 18.0	DL 3.6	184.7 +/- 19.9	327.5 + / - 33.3	DE 213	A31 6 1/2 A3 0
30-Jun	105.0 +/- 14.0	DL 3.2	131.7 +/- 14.7	226.7 + / - 23.3	DI. 7.4	369 7 4/- 37 6
01-Jul	97.0 +/- 13.0	DL 3.7	106.2 +/- 11.3	260.8 +/- 25.5	DL 2.9	397 8 +/- 40 0
02-Jul	DL 6.4	DL 3.6	120.9 +/- 12.7	373.9 +/- 37.7	BL 2.7	474.3 +/- 48.0
03-Jul	DL 6.0	73.8 +/- 10.4	103.0 +/- 11.1	302.3 +/- 20.5	DL 2.4	482.7 +/- 48.8
04-Jul	92.0 +/- 13.6	DL 4.3	122.6 +/- 13.0	316.3 +/- 32.1	BL 3.4	398.0 +/- 40.8
05-Jul	DL 6.7	78.8 +/- 11.9	65.6 +/- 7.9	198.5 +/- 20.2	DL 2.9	452.4 +/- 45.8
0€-Jul	105.0 +/- 15.0	DL 3.7	139.1 +/- 14.4	344.1 +/- 34.7	BL 2.7	582.2 + 1 - 59.0
07-Jul	90.0 +/- 12.3	DL 3.4	110.0 +/- 12.0	279.5 +/- 28.3	DL 2.5	456.8 +/- 46.4
08-Jul	79.0 +/- 12.2	DL 4.0	91.0 +/- 9.9	251.9 +/- 25.6	DL 3.2	464.2 +/- 47.3
09-Jul	DL 7.1	DL 4.0	120.1 +/- 12.7	338.3 +/- 34.2	DL 3.2	474.2 +/- 48.4
10-Jul	DL 1.5	125.1 +/- 16-1	155.2 +/- 16.9	487.4 +/- 49.0	DL 3.1	625.7 +/- 63.5
11-Jul	112.0 +/- 16.0	DL 3.9	151.9 +/- 16.2	411.2 +/- 41.4	DL 2.9	580.6 +/- 59.0
12-Jul	DL T.Z	DL 4.0	125.6 +/- 13.3	341.7 +/- 34.5	DL 3.2	506.4 +/- 51.7
13-Jul	99.0 + / - 13.5	DL 3.7	124.1 +/- 13.4	309.9 +/- 31.3	DL 2.9	499.5 +/- 50.7
14-Jul	104.0 +/- 14.7	DL 4.4	118.5 +/- 13.5	249.5 +/- 25.7	DL 3.5	482.5 +/- 49.3
15-Jul	104.0 +/- 14.9	DL 3.5	172.6 +/- 18.5	335.1 +/- 33.9	DL 2.5	595.8 +/- 70.5
16-Jul	158.0 +/- 19.Z	DL 4.4	151.8 +/- 16.5	394.8 +/- 39.9	DL 3.4	691.8 +/- 70.1
17-Jul	Z16.0 +/- Z5.4	DL 5.4	163.1 + - 17.3	452.7 +/- 45.8	DL 4.1	1007.8 +/-102.0
18-311	144.0 +/- 19.4	DL 4.8	165.8 + / - 17.9	423.5 +/- 42.8	DL 3.6	805.9 +/- 81.E
18-121	DL 10.1	DL 5.9	76.0 +/- 9.3	242.9 +/- 25.0	DL 4.9	717.5 +/- 73.0
40-301 91 Jul	UL 8.0	BL 4.Z	151.8 +/- 16.3	378.0 +/- 38.2	DL 3.2	742.2 +/- 75.3
21-341 99 Tel	DL 7.Z.	DL 3.9	83.5 +/- 9.6	244.4 +/- 24.8	DL 3.0	614.2 +/- 62.1
44-JQ1 79_7-1	30.0 4/- 13.5	DL 4.3	90.0 +/- 10.8	253.0 +/- 25.7	DL 3.4	510.8 +/- 52.0
29-981 24 1-1	30.0 +/- 43.3	DF 10.0	116.0 4/- 14.9	273.5 +/- 29.1	DL 8.4	799.8 +/- 82.0
25-341 75-341	50.0 + 7 - 14.3	DL 3.V	76.1 +/- 9.4	Z05.Z +/- Z1.Z	DL 3.9	581.8 +/- 59.1
25-541 26-1n1	195 n 1/ 19 9	96 4.4 D1 4.5	63.1 +/- 8.Z	131.6 +/- 13.9	DL 3.1	486.2 +/- 49.3
20-041 97_Jul	153.0 + 7 - 11.4 101 0 4/- 14 4	ШЬ 4.3 Вт. 4.4	130.2 +/- 14.2	Z84.1 +/- Z9.0	DL 3.5	711.7 +/- 72.2
28-Jul		DF 1-9	83.3 4/- 3.8	Z17.6 +/- ZZ.3	DL 3.3	500.8 +/- 50.9
20 Jul		96 1.6 DT 4 5	34.7 4/- 11.1	251.0 4/- 25.6	BL 3.3	, 604.7 + / - 61.3
30-Jn1	171 6 4/- 76 8	1.J 1.7 1.J	04.1 1/- 3.3 177 0 1/ 10 0	241.6 4/- 24.6	BL 3.7	431.1 +/- 43.9
31-Jul	60.0 + / - 12	00 3.3 NI 7 7	107 0 1/- 10.U	132.4 + 7 - 20.3	DL Z.8	643.7 +/- 55.0
01-Aug	48.0 4/- 12 5	NI. 1 C	101°3 1/- 14°4 108 1 °/- 11 9	1(4.0 T/- 18.0 915 0 1/ 99 1	UL Z.7	51Z.4 +/- 51.9
02-Aue	101.6 +/- 18 3	ni. 1 1	108 8 4/- 11 9	413.3 7/- 44.1 986 8 1/ 96 P	UL Z.8	540.3 +/- 59.8
C3-Ang	105.3 4/- 18 7	DI. 4 6	175 6 J/ 11.8	498.3 t/- 23.Z	UL 3.Z	57Z.1 +/- 58.4
04-Aug	135.8 4/- 19 0	nt. 1 K	191 7 1/- 11.3	ava.o 4/- 30.8 991 8 1/ 99 r	UL 3.3	283.3 H/- 60.1
Blement:	al concentrations	in ng/m1, 14/_1 in	ore 1/- 11.0 Adicates Standard Dov	detto _ t/= detto	UL S.S statistic -	-1- 68.Z
'MD' ind	dicates Missing Da	ta - no sample, '	li,' indicates value 1	viaciou - Councing helow diven Datasti	acalistics () ap limit	ull •
GIANT P	OREST: SPU FINE		Di ingrouses faige i	AUN I PIACE DECECTI	ou bimit.	
03/06/1	86		11			

SEQUOIA NP ACID DEPOSITION PROJECT PARTICULATE REFERENTAL CONCENTRATIONS

SITE: GIANT FOREST (LOWER KAWBAN) SAMPLER: STACIED FILTER UNIT, FINE STAGE; 0.1 - 2.5 unad

		- · · · ·					
	DATE	Sodium	<u>Hr</u>	<u>41</u>	<u>Si</u>	P	2
•	05-Aug	120.2 +/- 17.9	DL 4.4	120.1 + / - 13.3	275.9 +/- 28.9	DL 3.2	496.5 +/- 5
	DE-Arg	195.1 4/- Z3.5	DL 4.5	164.4 +/- 17.5	376.1 +/- 38.1	DL 3.2	469.8 +/- 4
i i	07-Aug	209.9 + / - 25.1	DL 4.5	184.4 +/- 19.8	365.5 +/- 37.0	DL 3.2	595.1 +/- 6
	08-Ang	Z15.5 +/- Z4.8	DL 4.5	177.2 +/- 19.1	395.2 +/- 39.9	DL 3.2	479.4 +/- 4
	09-Aug	200.1 + / - 24.5	DL 4.7	183.5 +/- 19.7	412.1 +/- 41.6	DL 3.3	496.5 +/- 5
	10-Aug	190.5 + / - 23.7	DL 4.5	185.0 +/- 19.7	454.4 +/- 45.8	DL 3.2	529.1 +/- 5
	11-Aug	298.6 +/- 24.2	YOL 4.5	1\$7.1 +/- 18.5	281.7 +/- 28.9	DL 3.3	580.7 +/- 5
	12-Aug	233.3 +/- 27.2	DL 4.5	158.2 +/- 17.2	351.3 +/- 35.5	DL 3.2	711.3 +/- 7-
	13-Aug	284.5 +/- 31.3	DL 3.0	168.7 +/- 18.1	325.3 +/- 32.9	DL 2.1	822.9 +/-=8
	14-Aug	327.8 +/- 36.3	DL 6.0	158.7 +/- 18.0	313.3 +/- 32.2	DL 5.3	825.1 +/- 8
	15-Aug	311.6 +/- 34.9	DL 6.1	210.2 +/- 22.8	394.5 +/- 40.2	DL 5.3	800.4 +/- 8
	16-Aug	182.0 +/- 22.7	DL 4.4	155.6 +/- 16.8	357.6 +/- 36.1	DL 3.1	815.7 +/- 8
	17-Aug	107.8 +/- 15.0	DL 4.2	93.3 +/- 10.4	210.5 +/- 21.4	BL 3.1	571.7 +/- 5
	18-Aug	142.5 +/- 19.5	DL 5.7	75.6 +/- 10.0	152.5 +/- 11.5	DL 4.1	145.8 +/- 7
	19-åug	91.0 +/- 15.0	DL 4.2	77.3 +/- 8.9	150.0 +/- 16.5	DL 3.1	606.8 +/- 8
	20-Aug	99.0 +/- 18.5	DL 7.1	152.2 +/- 19.4	184.1 +/- 20.4	DL 5.3	501.9 +/- 5.
	21-Aug	HD	ND	ND	ND	H D	1 Da
	22-AQE	141.0 +/- 19.0	DL 3.0	147.8 +/- 16.0	308.5 +/- 31.3	DI. 3.2	723.5 +/- 1
	23-Aue	145.7 +/- 19.5	DL 4.5	151.8 +/- 16.3	$325.1 \pm / - 33.0$	DL 3.7	591.6 +/- 6
	24-Aug	110.1 +/- 18.Z	DL 3.0	118.0 +/- 12.7	232.8 +/- 23.6	DL 2.2	438.5 +/- 4
·	25-Ang	125.2 +/- 17.5	DL 3.0	134.5 +/- 14.6	313.7 + 1 - 31.7	DL 7 1	570.7 4/- 5
	Z6-Aug	123.7 +/- 17.1	' BL 4.3	127.9 +/- 14.0	307.1 + / - 31.1	DL 3.7	122.4 41-4
	27-Aug	01. 8.7	DL 4.5	124:1 + 1 - 13.5	341 8 47- 34 5	ni. १२	155.1 1/- 1
•	28-Aug	91.2 +/- 14.4	DL 2.9	111.2 + 11.9	257.3 +/- 25.5	D1. 7 1	379 3 4/- 3
	29-Age	184.3 +/- 23.9	DL 4.5	176.0 + / - 13.7	317 9 4/- 31 6	DL 3 3	197 7 +1- 1
	30-Aug	$139.1 \pm 1 - 18.9$	DL 1.0	163 3 + 1 - 17 7	396 5 1/2 39 7	DE 3.5	598 1 ±/_ K
	31-Ang	ni. 8.1	DE 4.4	165 9 4/- 17 7		DI 3.3	501 2 4/- 5
н. Н	01-Sep	116.5 +/- 15.4	DL 1.1			DD 3.2	
	02-Sen	85 6 4/- 17 8	DI 59	95 1 4/- 14 1	403+9 TJ- 40+0 995 5 1/ 99 6	1010-3-2 101-9-1	461 9 1/ 9
	03-Sen	21 0 ±/_ 9 1	01 7 1	30.0 1/- 10.1	640.3 f/- 64.3	DU 2.1	401.0 T/- 4
	Di-Sen	26.3 +/- 9.8	DU U.I DI 97	$\frac{1}{1}$	JI.V TJ = 0.7 17 E 1/_ E 1	DU 301 DI 91	400.0 T/- 4 950 B 1/ 9
	05-Sen	104.6 +/- 14 9	DL 13		91 6 1/- 8 K	00 4.1 DI 5 9	500.0 T/- 3
	05-Sen			66.3 + 7 - 3.3	51.5 T/- 3.3 190 B s/ 19 D	DU 3.2	343.8 f/- 5
	87-Ser	$69.7 \pm 1 = 13.5$	DU 1.1 DI 1.1		143.3 + 1 - 13.3	DL 3.2	014-1 +/- 0
	08-Sen	76 8 ±/_ 18 9	DU 1.J DI 9.9	30.0 4/- 1.1 96 9 1/ 9 9	134.0 T/- 13.5	UL 3.3 БТ 4 1	136.9 t/- 1 599 5 .1 5
	09-9-90 09-9-00		DD 2.0			UL 2.1	933./ t/- 3
	10-505	70.1 TJ = 11.5 77 8 ±1_ 16 4	ינע 1.4 קיזה	47.0 T/- 4.2 17 G // - A	40.3 t/- 3.8	DL 3.4	130.2 t/- 4
	11-90P	71 1 1 1 2	90 4.1 TT 4 4	11.8 T/- 3.V TO 6 1/ 10 0			424.8 +/- 4
	17-Sen	71.1 T/- 19.0 98 6 1/- 11 1	ר.ר טע אר זה	13.3 T/- 10.0 97 4 1/ E A	143.0 +/- 14.1	DF 9 1	622.: +/- b
	12-3ep	60.0 TJ- 11.9 WD	96 2.C	31. <u>6</u> +/- 3.0	63.2 +/- 7.7	UL Z.1	4ZU.U +/- 4
	10-3ep	80 80 6 1/ 19 1			HD	HD	#D
	14-3ep	$\frac{10.3 + 1 - 11.1}{24 + 11.1}$		33.4 +/- 10.8	Z17.9 +/- ZZ.3	DL Z.8	719.5 4/- 7
	15-3ep	0(.1 Y/= 14.1 ET T ./ 17 9	DL 2.9	13.1 +/- 8.7	131.0 +/- 13.8	DL Z.1	594.9 +/- 7
	10-3ep	0(.(±/- 13.3	UL 4.Z	56.1 4/- 6.9	112.5 +/- 12.0	DL 3.2	372.0 +/- 3
	11-3ep	33.1 +/- 11.0	UL Z.8	57.0 4/- 5.4	109.1 +/- 11.3	DL 2.1	253.8 +/- 2
	10-3ep		DL 4.1	Z2.Z +/- 4.3	54.5 +/- 6.5	DL 3.2	267.8 +/- 2
	13-26P	40.2 +/- 11.8	BL Z.8	43.9 +/- 5.9	77.1 +/- 8.7	DL 2.2.	505.8 +/- 5
	ZU-Sep	63.1 +/- 14.7	DL 5.6	6Z.3 +/- 7.9	172.4 + / - 18.1	DL 5.Z	488.2 +/- 5
	ZI-Sep	71.6 +/- 15.0	DL 4.4	87.7 +/- 10.1	195.8 +/- 20.2	DL 3.3	558.5 +/- 5
	Blement	al concentrations in	ng/m'. '+/-' in	dicates Standard De	viation - counting	statistics of	aly.
	180° 18	Gicates Sissing Data	- no sample. 'D	L'indicates value	below given Detecti	on Limit.	
	03/06/	88 APP21: DEA RENK		Р	AGK Z		

SEQUOIA NP ACID DEPOSITION PEOJECT PARTICULATE ELEMENTAL CONCENTRATIONS

	SAMPLER: STACKED FIL	TBR UNIT, FINE 81	AGB; 0.1 - 2.5 unac	<u>i</u>			
DATE	Sodium =	Hg	A 1	Si	P	S	
22-Sep	69.8 +/- 13.5	DL 2.9	83.4 +/- 9.1	208.8 +/- 21.2	_ DL 2.1	461.6 +/- 47.	Ż
23-Sep	67.5 +/- 13.5	DL 4.3	78.3 +/- 8.7	194.0 +/- 19.7	DL 2.2	391.1 +/- 40.	0
24-Sep	90.5 +/- 15.8	DL 4.5	123.7 +/- 13.4	321.8 +/- 32.5	DL 3.3	526.1 +/- 53.	4
25-Sep	110.3 +/- 17.5	DL 4.5	153.5 +/- 16.5	388.T +/- 39.3	DL 3.3	603.3 +/- 61.	6
26-Sep	58.6 +/- 13.9	DL 4.5	88.2 +/- 10.0	247.1 +/- 25.1	DL 3.3	550.5 +/- 55.	6
27-Sep	23.1 +/- 9.9	DL 4.2	48.4 +/- 5.8	140.6 +/- 14.5	DL 3.1	383.0 +/- 39.	Z
28-Sep	51.1 +/- 10.9	DL 3.0	51.9 +/- 6.2	129.9 +/- 13.3	DL 2.2	593.9 +/- 60.	1
29-Sep	50.7 +/- 11.2	DL 4.4	69.0 +/- 8.3	208.5 +/- 21.3	DL 3.2	839.5 +/- 84.	9
30-Sep	92.7 +/- 14.5	DL 5.8	50.5 +/- 7.0	157.4 +/- 16.5	DL 4.3	608.5 +/- 62.	1
01-0ct	84.4 +/- 12.7	DL 4.3	85.2 +/- 9.2	222.8 +/- 22.7	DL 3.2	542.3 +/- 55.	0
02-0ct	84.1 +/- 13.4	DL 4.4	79.8 +/- 9.2	184.4 +/- 19.1	DL 4.3	461.2 +/- 46.	5
03-0ct	60.9 +/- 11.1	DL 4.1	53.5 +/- 6.4	146.1 +/- 15.2	DL 4.1	235.1 +/- 24.	7
04-0ct	40.1 +/- 11.5	DL 4.2	59.3 +/- 5.8	158.2 +/- 17.3	DL 3.2	264.1 +/- 27.	2
05-0ct	118.3 +/- 15.5	DL 4.6	136.8 +/- 15.1	428.8 +/- 43.3	DL 4.5	566.5 +/- 57.	8
05-0ct	61.0 + / - 10.8	DL 4.2	73.2 +/- 8.5	208.8 +/- 21.3	DL 3.2	307.7 +/- 31.	Ê
07-0ct	23.9 +/- 8.9	DL 4.2	13.6 +/- 3.0	54.5 +/- 6.2	DL 3.2	289.9 +/- 29.	7
== Cou	nt ====================================				=================		:=
	92		103	103		103	
== Ave	rage ===================				**********	*****************	:=
	110.1		109.5	253.4		534.5	
== Nin							:=
	ZI.0	•	13.6	43.5		Z04.3	
. == 8ax	111111111111111111111111111111111111111		71N 7			1007 8	. =

SITE: GIANT FOREST (LOWER KAWBAB) SAMPLER: STACKED FILTER UNIT, FINE STAGE; 0.1 - 2.5 unad

Elemental concentrations in ng/m³. '+/-' indicates Standard Deviation - counting statistics only. 'MD' indicates Missing Data - no sample. 'DL' indicates value below given Detection Limit. GIANT FOREST: SFU FINE PAGE 3 03/06/86

<u>SEQUOIA NP ACID DEPOSITION PROJECT: SUMMER 1985</u> <u>PARTICULATE BLEMENTAL CONCENTRATIONS</u>

	SABPLER: STACABU	FILTER URIT, FIR.	<u>k stagk; 0.1 - 2.5</u>	unad		
B 4 B 7	.	-			_	
UATE	<u>61</u>	Ĩ	<u>Ca</u>	Ti	Y	Cr
18-Jun	ED	AD	E.C.	ED	#D	HD
19-Jun	EØ	28	НÐ	#D	HD	U D
ZU-Jun	ED	ED.	#D	HD	HD	KD
Zl-Jun	ED.	ED	HD	ND	ED	KD
ZZ-Jun	E D	HD.	HD	NC	HD.	HD
Z3-Jun	HD.	ED	MD	ĦD	ED	ND
Z4-jun	KD .	HD	ED	- HD	ED	ND
Z5-Jun	DL 2.1	154.1 +/- 15.6	43.3 + - 5.1	4.3 +/- 0.9	BL 0.9	DL 1.0
Z5-Jun	DL Z.O	193.0 + / - 19.4	78.1 +/- 8.5	4.3 + - 0.9	DL 0.9	DL 0.9
Z7-Jun	DL 2.4	185.5 +/- 18.7	67.6 +/- 7.5	4.2 +/- 1.0	DL 1.0	DL 1.1
Zð-Jun	DL Z.3	$207.9 \pm / - 20.9$	64.8 +/- 7.4	4.1 +/- 0.9	1.0 +/- 0.5	DL 1.1
Z9-Jun	DL Z.Z	212.8 + / - 21.4	60.1 +/- 7.0	5.2 +/- 1.0	DL 0.9	BL 1.0
30-jun	DL Z.O	102.7 + / - 10.4	40.5 +/- 4.5	3.4 +/- 0.8	DL 0.9	DL 0.9
01-Jul	DL Z.3	79.4 +/- 8.Z	37.8 +/- 4.1	3.1 + / - 0.9	DL 1.0	DL 1.1
0Z-Jul	BL Z.Z	143.3 + - 14.5	48.2 +/- 5.4	5.2 +/- 1.0	DL 1.0	BL 1.0
03-Jul	DL 1.9	143.5 +/- 14.5	42.5 + - 4.9	4.3 + / - 0.8	DL 0.8	DL 0.9
94-Jul	DL Z.8	219.3 + / - 22.1	51.1 +/- 5.3	4.1 +/- 1.1	DL 1.2	DL 1.4
05-Jul	DL Z.4	219.9 + / - 22.2	35.7 +/- 5.2	2.5 +/- 0.9	DL 1.0	DL 1.1
05-Jul	DL 2.2	194.7 +/- 19.6	46.4 +/- 5.7	5.1 +/- 1.0	1.3 +/- 0.6	DL 1.0
07-Jul	DL 2.1	123.2 +/- 12.5	42.5 +/- 4.8	3.7 +/- 0.8	DL 0.9	DL 1.0
08-Jul	DL 2.6	109.9 + / - 11.2	40.1 + - 4.5	2.8 +/- 1.0	DL 1.1	DL 1.3
09-Jul	DL 2.6	100.8 + / - 10.3	40.2 +/- 4.5	4.1 +/- 1.1	DL 1.2	DL 1.3
10-Jul	DL 2.4	190.2 + / - 19.2	· 61.1 +/- 6.9	7.4 +/- 1.Z	DL 1.1	DL 1.2
11-Jul	DL 2.4	225.2 +/- 22.7	47.1 +/- E.O	5.9 +/- 1.Z	DL 1.1	DL 1.1
12-Jul	DL 2.6	161.4 + - 15.4	42.2 +/- 5.1	4.4 +/- 1.1	DL 1.2	DL 1.3
13-Jul	DL 2.4	149.0 +/- 15.1	44.7 +/- 5.2	3.7 +/- 0.9	DL 1.1	DL 1.1
14-Jul	DL 2.9	147.2 +/- 15.0	34.8 +/- 4.4	3.3 +/- 1.1	DL 1.3	DL 1.4
15-Jul	DL 2.0	215.9 + / - 21.7	52.9 +/- 6.4	5.0 +/- 0.9	2.0 +/- 0.7	DL 0.9
16-Jul	DL 2.7	152.4 + / - 15.5	47.3 +/- 5.5	5.0 +/- 1.1	DL 1.2	DL 1.3
li-Jul	DL 3.5	238.8 +/- 23.9	55.5 +/- 6.9	4.2 +/- 1.3	DL 1.8	DL 1.6
. 18-Jul	DL 2.9	230.0 +/- 23.2	55.8 +/- 6.8	4.9 +/- 1.3	DL 1.2	DL 1.3
19-Jul	DL 4.1	161.9 +/- 16.6	Z1.6 +/- 3.7	1.9 +/- 1.4	DL 1.9	DL 2.0
20-Jul	DL 2.5	239.5 +/- 24.1	40.8 +/- 5.7	5.7 +/- 1.1	DL 1.0	DL 1.1
21-Jul	DL Z.4	148.8 +/- 15.1	21.8 +/- 3.3	3.7 + 1.0	DL 1.0	DL I.1
22-Jul	DL 2.7	125.5 + / - 12.8	28.4 +/- 3.5	2.4 +/- 1.1	DL 1.3	DL 1.4
Z3-Jul	9.4 +/- 6.7	350.1 +/- 35.1	36.9 +/- 7.5	3.8 +/- 2.8	DL 3.2	DL 3.5
24-Jui	BL 3.2	263.1 +/- 26.6	30.8 +/- 5.5	2.4 + / - 1.3	DL 1.4	DL 1.5
25-Jul	DL 2.5	137.5 + - 14.0	21.8 +/- 3.2	DL 1.1	1.3 +/- 0.5	DL 1.2
25-Jul	DL 2.8	205.1 + / - 20.7	42.0 + - 5.4	3.1 +/- 1.1	DL 1.2	DL 1.3
27-Jul	DL 2.8	154.5 +/- 15.7	27.6 +/- 3.9	3.1 +/- 1.1	DL 1.3	DL 1.3
28-Jul	DL 2.5	109.5 + / - 11.2	30.6 +/- 3.7	3.2 +/- 1.1	DL 1.1	DL 1.2
29-Jul	DL 3.1	72.4 +/- 7.6	23.7 +/- 2.9	2.5 +/- 1.2	DL 1.4	DL 1.5
30-Jul	DL 2.3	78.1 +/- 8.1	30.6 +/- 3.4	1.9 +/- 0.9	DL 1.0	DL 1.0
31-Jul	DL 2.2	104.7 +/- 10.7	25.1 +/- 3.1	2.7 +/- 0.9	DL 0.9	DL 1.0
01-Aug	50.9 +/- 7.4	115.5 +/- 11.7	23.1 +/- 3.1	2.4 +/- 0.8	1.3 +/- 0.7	DL 1.0
0Z-Aug	DL 3.1	106.8 +/- 11.0	28.5 +/- 3.5	1.7 +/- 1.1	DL 1.0	DL 1.0
03-Aug	4.1 +/- 2.3	144.1 +/- 14.6	34.2 +/- 4.3	4.4 +/- 1.3	DL 1.0	1.1 + / - 1.0
04-Lug	DL 3.2	169.1 +/- 17.2	40.4 +/- 5.0	3.6 +/- 1.2	DL 1.0	DL 1.0
Blement	al concentrations	s in ng/m³. '+/-'	indicates Standard	Deviation - cou	nting statisti	cs only.
'MD' in	dicates Hissing 1)ata - no sample.	'DL' indicates val	ue below given D	etection Limit	•
GIANT P 03/06/	UKKST: SFU FINE '86			PAGE 1		

SITE: GIANT FORBST (LOWER KAWRAH) SAMPLER: STACIED FILTER UNIT. FINE STAGE: 0.1 - 2.5 and

. . .

-

<u>SEQUOIA NP ACID DEPOSITION PROJECT: SUMMER 1985</u> <u>PARTICULATE BLEMENTAL CONCENTRATIONS</u>

SITE: GIANT FOREST (LOWER KAWEAH) SAMPLER: STACKED FILTER UNIT, FINE STAGE; 0.1 - 2.5 umad

DATE	<u>C1</u> –	K	Ca	Ti	¥	Cr
05-Aug	DL 2.1	122.8 +/- 12.5	33.9 + / - 4.0	3.5 +/- 0.9	DL 1.0	DL 1.0
06-Aug	DL 3.2	176.6 +/- 17.9	52.0 +/- 5.6	4.8 +/- 1.3	DL 1.0	DL 1.0
07-Aug	DL 2.1	158.3 +/- 16.0	48.5 +/- 5.5	5.5 + 1 - 1.1	DL 1.0	DI. 1.0
08-Aug	DL 3.2	148.9 +/- 15.1	52.8 +/- 5.9	5.4 +/- 1.2	DL 1.0	BL-1.0
09-Aug	DL 2.2	361.1 +/- 36.3	65.4 +/- 8.8	5.3 +/- 1.1	DL 1.0	DI. 1.0
10-Aug	DL 2.1	177.9 +/- 18.0	55.4 +/- 5.3	7.3 + 1 - 1.2	DL 1.0	DE 1.0
11-Aug	DL 2.1	195.4 +/- 19.7	44.1 +/- 5.5	3.8 +/- 1.2	DL 1.0	DJ 1.0
12-Aug	DL 2.1	101.4 +/- 10.4	53.3 +/- 5.7	5.5 + 1 - 1.1	BL 1.0	DL 1.0
13-Aug	DL 2.1	156.2 +/- 15.8	44.1 +/- 5.2	$4.5 \pm 1 - 0.9$	1.5 +/- 0.5	DI. 1.0
14-Aug	DL 4.1	155.6 +/- 16.0	44.5 +/- 5.5	3.1 +/- 1.1	DL 2.0	BL 7.0
15-Aug	DL 4.2	181.2 +/- 18.5	53.8 +/- 6.4	5.4 +/- 1.1	BL 2.0	DI. 2.0
16-Aug	DL 2.0	92.7 +/- 9.5	38.1 + 4.2	4.0 + / - 1.0	1.2 +/- 0.5	DL 1.0
17-Aug	DL 2.0	119.5 +/- 12.1	24.7 + 1 - 3.2	2.3 + 1 - 0.9	DL 1.0	BL 1.0
18-Aug	6.8 +/- 3.3	132.2 +/- 13.5	25.6 +/- 3.6	1.4 + 1.3	DL 1.9	7.3 +/- 1.3
19-Aug	DL 2.0	122.2 +/- 12.4	19.7 +/- 2.9	1.0 + / - 0.8	DL 1.0	DT. 1 0
20-Aug	DL 4.2	151.4 +/- 15.7	34.4 +/- 4.5	BL 7.1	DE 1.0	DL 7 0
21-Aug		WD	WD	WD LII	WR	DL 1 0
22-Aug	DL 2.1	177.7 +/- 17.9	35.8 +/- 4.6	€.1 ∔/= 0.9	154/-05	
23-Aug	DL 2.1	174.0 +/- 17.6	47.3 +/- 5.6	4.3 +/- 0.9	BL 1 A	DD 1.0 DI 1.0
24-Aug	DL 2.2	156.7 +/- 15.8	34.5 +/- 4.4	5.6 +/- 0.9	BL 1 1	DL 1.1
25-Aug	DL 2.1	216.4 + / - 21.8	43.5 +/- 5.5	4.1 + 1 = 0.9	BL 1 0	
28-Aug	DL 3.1	125.6 +/- 12.8	35.5 +/- 4.3	15 +/- 1 7	DI 1 0	DD 1.0
27-Aug	DL 2.2	225.4 +/- 22.8	44.0 + 1 = 5.8	5 5 1/2 1 1		- 01 1.0
28-Aug	BL 2.1	132.2 +/- 13.4	32.4 +/- 4.0	3 4 +/- 0 8	bi 1.0	
29-Aug	DL 2.1	152.2 +/- 15.4	$41.3 \pm 1 = 5.0$	k = 1/2	DD 1.V DT 1 0	
30-Aug	DL 2.2	210.7 + 1 - 21.2	54.2 +/- 6 5	5 6 4/- 1 0	DU 1.0	DD 1.0
31-Aug	DL 2.1	197.4 +/- 19.9	46.5 4/- 5.7			DD 1.0
01-Sep	DL 2.1	105.7 + / - 10.8	37.5 + 1 = 3.8	5 0 4/- 1 1	1.1 T/- V.J DI 1 D	90 I.U BT 1 A
02-Sep	DL 2.1	60.2 +/- 6.3	25.8 +1- 2 9	7 9 1/2 0 9	DL 1.0	
03-Sep	DL 2.1	98.5 +/- 10.1	7.9 ± 1.9	DI. 1 0	DJ 1.0	DU 1.V
04-Sep	DL 2.0	51.8 +/- 5.4	3.5 + 1 - 1.2	DL 1.0		
05-Sep	DL 2.1	109.4 +/- 11.2	16.9 +/- 2.7	DL 1.0	DL 1.4	
06-Sep	$2.9 \pm 7 - 2.5$	187.5 +/- 19.0	$23.0 \pm 1 - 3.9$	DL 1.0	DD 1.0 NT 1.0	1.1 T = 0.3
07-Sep	DL 3.2	101.9 +/- 10.5	$17.8 \pm 1 - 2.6$	DL 1.0		DD 1.0
08-Ser	DL 2.0	29.2 +/- 3.2	5.7 +/- 0.9		DD 1.0	0110
09-Sep	DL 3.1	67.6 +/- 7.2	5.9 +/- 1.6	DE 1.0	DD 1.0	DL 1.0
10-Sep	DL 2.1	86.0 +/- 8.8	5.1 + 1.7	DU 1.0 DL 1.0		DF 1 0
11-Sep	DL 2.1	258.4 +/- 27.0	27:4 ÷/_ 5 2		D1 1.V	10 I.U
12-Sep	DL 2.1	267.9 +/- 26.9		N 8 +/- N 9		UL 1.0
13-Sep	ND	ал. 10 ст. 19 Ил		4.5 7/- 4.1 Min	ND 1.0	80 I.U
14-Sep	DL 2.8	228.4 +/- 23.0	27.5 +1- 1 7	<u>مە</u> 15 × 1-10	עם	57 1 9
15-Sen	BL 2.1	67.6 +/- 6 9	$17 4 \pm 1 = 1.9$	1 7 1/- 6 7	191105	DF 1.3
16-Sep	DL 2.1	58.3 +/- 7.1		1 + 2 + 7 = 0 + 1 1 + 2 + 7 = 0 + 1	1.4 + 7 - 0.3	DF 1.0
17-Sep	DL 1.1	37.5 +/- 3 9	16 0 4/- 1 9	1 4 1/ 8 6	DL 1.V DT 1.0	UL 1.U
18-Sec	DL 3.1	30.5 4/- 3 4	10.0 - 1 - 1.0 1 - 7 + 1 - 1 - 1	0.0 =/ד דונ 1 זה	JF 1.0	DF 1.0
19-Sen	DE 2.1	31.8 +/- 3.5	7.4 (17 1.1)	06 I.V nt 1 1	JL 1.U	0L 1.0
20-Sen	DL 4.1	158.3 +/- 16 1	1+1 T/~ 1+1 76 7 1/_ 1 1	1.1 UL 1.1 9 Q 1 1 0	UL I.U	DL 1.0
21-Sen	DI. 3.2	200.6 +/- 20 1	2016 TJ = 111 99 1 2/- 2 0	4.3 T/- 1.3 9 9 1/ 1 A	UL Z.U	DL Z.0
Elements	al concentrations	tin ng/m3. 31/=3	44.1 T/ - 9.4 indiatae Ctandad	6.1 T/- 1.U Boviation	UL LU	061.0
'MD' ind	dicates Missing D	ata = na samle	"BL' indicates unl	veviacion - COU no holou dimo- N	uting statistic	E ODI J .
GIANT P	OREST: SPU PINR	are no perfict	on indicates Adj	DICE 9	erection Fimit.	
				INUD L		

03/06/86

SEQUOIA NP ACID DEPOSITION PROJECT: SUMMER 1985 PARTICULATE ELEMENTAL CONCENTRATIONS

LIID. VIARI TVADU (UVTDA RATDAL)						
	SAMPLER: STACKED	FILTER UNIT, FI	<u>NE STAGE; 0.1 - 2.</u>	unad		
DATE	c1 -	Ľ	Ca	Ti	<u>Y</u>	Cr
22-Sep	DL 2.1	97.2 +/- 9.9	28.7 +/- 3.4	2.5 ÷/- 0.8	DL 1.0	DL 1.0
23-Sep	DL 2.1	75.9 +/- 7.9	30.1 + / - 3.4	2.2 +/- 0.8	DL 1.0	DL 1.0
24-Sep	DL 2.2	117.1 +/- 11.9	39.8 +/- 4.5	4.4 +/- 1.0	BL 1.0	DL 1.0
25-Sep	BL 3.2	221.0 +/- 22.3	51.5 +/- 5.3	5.1 +/- 1.1	DL 1.0	DL 1.0
26-Sep	DL 2.2	202.0 +/- 20.4	33.1 +/- 4.7	Z.5 +/- 0.9	DL 1.0	DL 1.0
27-Sep	DL 2.1	83.3 +/- 8.6	23.5 +/- 2.9	2.1 +/- 1.2	DL 1.0	DL 1.0
28-Sep	DL 2.2	66.2 +/- 6.8	12.8 +/- 1.8	2.4 +/- 0.8	DL 1.1	DL 1.0
29-Sep	DL 3.2	93.7 +/- 9.7	20.0 +/- 2.7	2.2 +/- 1.2	DL 1.0	DL 1.0
30-Sep	DL 3.2	77.5 +/- 8.3	22.3 +/- 2.9	3.1 +/- 1.4	DL 2.0	DL 2.0
01-0ct	DL 2.1	83.1 +/- 8.6	28.4 +/- 3.3	3.9 + / - 1.0	DL 1.0	DL 1.0
02-0ct	DL 3.2	77.8 +/- 8.2	26.4 +/- 3.2	2.7 +/- 1.2	1.2 +/- 1.0	BL 2.1
03-0ct	39.2 +/- 5.3	80.0 +/- 8.3	32.4 +/- 3.5	1.8 + / - 1.1	2.6 +/- 1.0	DL 2.0
04-0ct	48.2 +/- 5.5	93.6 +/- 9.6	21.3 +/- 2.8	0.8 + / - 1.2	1.1 +/- 0.8	DL 1.0
05-0ct	DL 3.3	179.7 +/-129-7	-18. 57.5 +/- 6.8	5.1 +/- 1.5	DL 1.0	DL 2.1
05-0ct	64.1 +/- 7.1	137.7 +/-127-1	¥++ 27.7 +/- 3.7	3.4 +/- 1.0	DL 1.0	DL 1.0
07-0ct	83.1 +/- 8.9	59.0 +/- 50.0	6. 5.2 +/- 1.5	DL 1.1	DL 1.0	BL 1.0
== Cou	nt ====================================				***************	
	9	103	103	89	13 103	
== Average ====================================						
		146.9	34.7	3.7	1.1	
== Hin						
	Z.9	Z9.Z	35	0.8	1.0 0.5	•
== Har						
	83.1	351.1	78.1	7.4	Z.6 3.2	

SITE: GIANT POREST (LOWRE MANRAH)

Blemental concentrations in ng/m². '+/-' indicates Standard Deviation - counting statistics only. 'HD' indicates Hissing Data - no sample. 'DL' indicates value below given Detection Limit. GIANT POREST: SPU FINE PAGE 3 03/06/86

4
<u>SEQUOIA NP ACID DEPOSITION PROJECT: SUNNEE 1985</u> <u>PARTICULATE ELEMENTAL CONCENTRATIONS</u>

1.00

SITE: GIANT FOREST (LOWER KAWBAR) SAMPLER: STACKED FILTER UNIT, FINE STAGE; 0.1 - 2.5 unad

DATE	<u>H b</u>	<u>Pe</u>	<u>Xi</u>	<u>Cu</u>	<u>Zn</u>	Br	Pb
18-Jun	MD	MD	ND	ND	KD	MD	ND
19-Jui	ND	۲D	· ND	ND	KD	HD	ND
Z0-Jun	HD	HD	ND	ND	ED	HD	MD
Zl-Jun	ND	ED	KD	ND	MD	ND	ND
ZZ-JUN 20 Jun	HD ND		ND	HD	HD	ND	KD.
43-JUN 94 Jun		ED ED	HD	ED	ĦD	MD	ND
24-JUD 95 Jun		- 5U 			ND	MD	HD
20-940 75-145	1.2 1/ 0.8	(3.0 t/- 1.3 92 9 1/	U.D t/- U.D	1.3 +/- 0.5	2.5 4/- 0.5	4.3 +/- 1.0	10.0 +/- Z.Z
20-240 99_Ten	1.2 + 7 = 0.1	19+4 7/- 1+0 57 9 ±1. 5 5		V./ +/- U.J	2.3 +/- 0.7	BL 0.6	4.5 +/- 1.8
28-Jun	1 3 4/- 0 8	76 8 4/- 7 8	1 1 4/- 0 6	96 V.8 DT 0 7	4.3 t/- U.I 7 7 i/ R 0	3.7 + 7 - 1.0	
29-Jun	1.6 +/- 0.9	R1 7 4/- R 3	DL 6 7		3.2 7/- 0.8	0.0 + j - 1.2	1.1 + / - 2.1
· 30-Jun	D1. 0.9	67.5 + / - 6.4	1.9 4/- 0.5	1.3 +/- 0.0	7.1 T/- 0.0 7 6 A/- 0 7	$2 \cdot 1 + 7 - 1 \cdot 1$	
01-Jul	DL 1.1	62.2 +/- 6.4	1.4 + 1 - 0.5	$9.6 \pm 1 = 0.5$	2.0 +/- 0.1	1.J T/- 1.4 DI D 7	0.0 T/- 2.U T 0 1/- 7 7
02-Jul	1.5 + / - 0.8	79.5 +/- 8.1	DL 0.7	2.0 + 1 - 0.7	4.3 + 1 = 0.8		5 5 ±/_ 7 8
03-Jal	1.4 +/- 0.6	69.7 +/- 7.1	2.7 +/- 0.6	DL 0.6	3.3 + 1 - 0.7	2.9 +/- 0.8	5.5 +/_ 1.8
04-Jul	1.7 +/- 1.0	75.4 +/- 7.8	1.0 +/- 0.6	1.8 +/- 0.8	3.9 +/- 0.9	DT. 0.8	10.2 + / - 3.0
05-Jul	1.1 +/- 0.9	38.1 +/- 4.0	1.6 +/- 0.6	1.1 +/- 0.6	3.4 +/- 0.8	4.9 +/- 1.2	4.5 +/- 1.9
06-Jul	1.4 +/- 0.9	83.7 +/- 8.5	3.1 +/- 0.7	DL 0.7	4.3 +/- 0.8	BL 0.7	8.5 +/- 2.3
07-Jul	1.1 +/- 0.8	67.0 +/- 6.8	DL 0.7	0.9 + - 0.5	2.5 +/- 0.5	4.4 +/- 1.2	7.7 +/- 2.2
08-Jul	1.0 + / - 0.8	55.9 +/2 5.8	2.0 +/- 0.7	DL 0.9	2.0 +/- 0.7	DL 0.7	8.8 +/- 2.5
09-Ju]	1.1 + / - 0.8	84.8 +/- 8.7	1.5 +/- 0.7	DL 0.9	2.8 +/- 0.8	DL 0.7	11.2. +/- 2.9
10-Jul	2.2 +/- 0.8	114.0 +/- 11.8	2.4 +/- 0.7	0.9 +/- 0.6	5.6 +/- 1.0	6.9 +/- 2.3	10.3 +/- 217
lj-jul	2.9 4/- 0.8	100.1 +/- 10.2	DL 0.8	1.7 +/- 0.6	5.2 +/- 1.0	4.6 +/- 1.1	10.9 +/- 2.9
	1.4 +/- 1.0	82.5 +/- 8.4	DL 0.9	Z.5 +/- 0.8	7.2 +/- 1.1		12.0 +/- 3.1
13-3 <u>6</u>] 14 Tu)		82.1 +/- 8.4-	1.9 +/- 0.6	1.4 + - 0.5	5.0 +/- 0.9	4.8 +/- 1.3	7.5 +/- 2.4
19-341 15_7v)	1.4 + 7/- 1.0		DF 1.0	DL I.U	3.9 +/- 1.0	5.1 +/- 1.3	10.9 + / - 3.2
15-541 16-Jul	1.3 T/- 0.8 Di 1 7	90.3 7/- 9.2	3.3 t/- U.8 D: A G	BL 0.7	5.1 4/- 0.8	6.9 4/- 1.4	9.5 +/- 2.2
17-Jul	DE 1.5 DL 1.6	$97 0 \pm 10 0$	DL U.J DI 1 9	1.3 +/- V.I br 1 4	4.5 +/- 0.9	7.4 +/- 1.8	10.5 +/- 2.8
18-Jul	1.5 ± 1.0	99.3 +/- 10.1	DL 1.0	DL 1.2 DL 0 9	1 + 0 + 1 - 1 + 1 = 1 = 1 = 0		13.3 + 7 - 3.5
19-Jul	DL 2.0	51.9 +/- 5.6	DL 1.4	DL 1.4	$3 \ 9 \ \pm / = 1 \ 9$	9.9 7/= 1.5 BT 1 8	11.0 7/= 2.5 11.6 1/7 6
20-Jul	2.0 + / - 0.9	87.9 +/- 8.9	DL 0.8	1.9 +/- 0.6	5.6 +/- 1.1	594/-16	11.0 + 7 = 2.0 $17.5 \pm 7 = 2.0$
21-Jul	DL 1.1	55.2 +/- 5.7	1.1 +/- 0.6	DL 0.8	3.7 + / - 0.8	$\delta.4 + / - 1.8$	7.4 + 1 - 7.4
22-Jul	DL 1.4	56.8 +/- 5.9	DL 1.0	1.8 +/- 0.7	2.6 +/- 0.8	10.9 +/- 2.7	$10.9 \pm 1/- 2.0$
23-Jul	4.7 +/- 2.7	64.4 +/- 7.2	DL 2.5	DL 2.4	5.3 +/- 2.1	DL 2.4	18.1 + / - 8.1
24-Jul	1.4 +/- 0.9	50.5 +/- 5.3	DL 1.1	DL 1.1	5.3 +/- 1.1	6.5 +/- 1.9	8.9 +/- 3.0
25-Jul	DL 1.1	29.9 +/- 3.2	DL 0.8	1.0 +/- 0.6	3.6 +/- 0.8	5.3 +/- 1.5	5.6 +/- 2.4
Z5-Jul	DL 1.3	74.2 +/- 7.6	DL 1.0	1.4 + - 0.8	4.5 +/- 0.9	DL 0.8	11.4 +/- 3.2
Z7-JU]	1.7 +/- 1.1	48.4 +/- 5.1	DL 0.9	DL 0.9	3.3 +/- 0.8	4.7 +/- 1.2	7.7 +/- 2.9
48-311] 98 (-)	96 I.Z	bb.3 +/- 6.8	DL 0.9	DL 0.9	2.5 + / - 0.8	9.4 + / - 1.9	8.8 +/- 2.8
23-201 20-1-1		58.9 t/- 5.1	DL I.I	1.Z +/- 0.7	4.Z +/- 1.0	DL 0.9	7.3 +/- 2.9
30-241 31_JnJ	1.4 T/- U.J DT 1 0	28.0 t/- 8.0 57 0 1/ 5 5	DL U.7	1.4 +/- 0.6	3.2 +/- 0.7	3.5 +/- 1.0	6.8 +/- 3.0
01-441 01-And	ינעע 1.0 +/- ח.1	33.0 T/- 3.3 60 6 4/- C 7	116 V.7 7 1 1/- 0 6	1.3 +/- 0.6	5.3 +/- 1.0	4.1 +/- 1.1	6.8 +/- 2.3
02-Aus	1.5 7/2 V.3 DL 1.A	60.9 4/- 6 A	2.3 T/- V.8 1 7 1/- 1 A	3.0 +/- 9.7 pt 1.6	3.1 +/- U.7 9 7 1/ 1 A	DL 0.7	7.0 +/- 2.8
03-Aug	1.4 +/- 0.8	76.4 4/- 7.9	2.9 +/- 0.9	1 2 1/2 A 0 0 1 1 1 2 1	5 7 1/ - 1.0	0.1 +/- 1.5 ▼ 0 +/ ▼ 7 7	12.0 +/- 3.0
04-Aug	1.5 + / - 1.2	85.9 +/- 8.8	3.8 4/- 8 9	via t/- 0.3 Via	9+4 T/- 1.0 5 T ±/= 1 A	1.5 t/- 1.5 7 9 1/ 1 0	14.0 +/- 3.1
Blementa	l concentration	ns in ng/m ¹ . '+/-'	indicates Stan	dard Deviation	- constist ete	1.3 1/- 1.8 tistios1-	14.1 4/- 3.7
'MD' ind	icates Missing	Data - no sample.	'DL' indicates	value below ≠i	ven Detection	limit	
GIANT PO	REST: SPU FINE			PAGE 1		u 1 al 1 % (
03/06/8	6						

SEQUOIA NP ACID DEPOSITION PROJECT: SUMMER 1985 PARTICULATE ELEMENTAL CONCENTRATIONS

SITE: GIANT FOREST (LOWER RAWRAH) SAMPLER: STACKED FILTER UNIT, FINE STAGE; 0.1 - 2.5 unad

•

-

	-						
DATE	Mn	Fe	<u>II</u>	<u>Cu</u>	Zn	Br	Pb
05-Aug	1.3 +/- 0.9	67.4 +/- 6.9	2.4 +/- 0.6	2.0 + - 0.7	8.6 +/- 1.0	7.7 +/- 1.8	13.8 +/- :
06-Aug	3.1 +/- 1.1	92.8 +/- 9.5	2.4 +/- 0.8	1.7 +/- 0.7	19.1 +/- 2.0	5.8 +/1.5	15.3 +/- (
07-Aug	$1.9 \pm - 0.9$	92.2 + / - 9.4	2.0 +/- 0.5	2.0 +/- 0.6	10.Z +/- 1.O	8.5 +/- 1.5	10.4 +/- :
08-Aug	Z.1 +/- 1.0	98.0 +/- 10.0	2.7 +/- 0.8	DL 1.0	5.7 +/- 1.0	7.7 +/- 1.6	13.0 +/- 3
09-Aug	2.2 +/- 1.0	99.0 +/- 10.1	3.2 +/- 0.8	DL 1.0	4.9 +/- 1.0	8.0 +/- 1.8	14.1 +/- 2
10-Aug	2.8 +/- 1.0	110.2 +/- 11.2	1.8 +/- 0.7	1.6 ÷/- 0.6	5.2 +/- 1.0	6.0 +/- 1.4	9.5 +/- 1
11-Aug	2.8 +/- 1.0	76.0 +/- 7.8	1.6 +#- 0.7	DL 1.0	4.7 +/- 1.0	5.5 +/- 1.4	10.2 +/- 1
12-Aug	Z.0 +/- 0.9	87.2 +/- 8.9	3.0 +/- 0.7	1.4 +/- 0.6	4.5 +/- 1.0	7.0 +/- 1.5	7.8 +/- ÷
13-Aug	1.5 + - 0.7	85.3 +/- 8.7	3.9 +/- 0.7	DL 1.0	4.7 +/- 1.0	6.2 +/- 1.2	11.9 +/-1
14-Aug	2.1 +/- 1.5	78.0 +/- 8.1	4.6 +/- 1.3	DL 1.0	5.7 +/- 1.0	7.8 +/- 2.1	16.7 +/- 4
15-Aug	2.3 +/- 1.4	105.8 +/- 10.9	3.8 +/- 1.1	DL 1.0	8.2 +/~ 1.0	7.4 +/- 2.0	19.7 +/
16-Aug	2.0 +/- 0.8	91.5 +/- 9.3	3.2 +/- 0.1	1.8 +/- 0.6	5.8 +/- 1.0	7.8 +/- 1.5	16.7 +/- :
17-Aug	1.5 +/- 0.9	51.8 +/- 5.3	1.5 +/- 0.6	1.8 +/- 0.6	4.0 +/- 1.0	4.8 +/- 1.2	11.5 +/- :
18-Aug	DL 1.9	35.4 +/- 4.0	3.0 +/- 1.1	DL 1.0	5.9 + 1 - 1.0	3.4 + 1.5	12.4 +/- 2
19-Aug	0.0 + / - 1.0	39.0 +/- 4.1	4.2 +/- 0.8	DL 1.0	3.5 + 1 - 1.0	3.4 + 1 - 1.0	9.4 +/- 1
20-Aug	2.8 + / - 2.0	51.8 +/- 5.7	5.9 +/- 1.5	DL 2.0	5.2 +/- 1.0	5.3 +/- 2.1	14.7 4/- 4
Z1-Aug	ND	KD	HD	ND	HD.	WD	ND ND
22-Aug	1.9 +/- 0.8	11.1 +/- 1.9	4.7 +/- 0.8	3.1 +/- 0.7	6.6 +/- 3.0	5.4 +/- T 3	15.7 +/- 5
23-Aug	$1.7 \pm 1 - 0.8$	88.7 +/- 9.0	4.2 +/- 0.8	0.7 +/- 0.5	4.5 +/- 1.0	5 8 +/- 1.3	9.0 4/- 1
24-402	1.5 +/- 0.7	59.4 +/- 6.1	2.4 + 1 - 0.6	2.0 + 1 - 0.5	4.7 ± 1.0	4 3 +/- 1 1	884/- 1
25-Ang	1.2 + 1 - 0.7	78.6 +/- 8.0	5 3 4/- 0 8	574/-09	7 6 4/2 1 8		15 9 4/-
25-Aur	2.3 \$/- 1.0	- 15.1 +/- 1.9	4 7 +/- 0 9	nt 1 0		1 + 7 = 1 + 7	12.2 1/
29-Ang	1.7 +/- 0.8	89.6.4/- 9.1	1 6 1/- 8 2	BL 1 B		$\frac{1}{5} \frac{1}{5} \frac{1}{1} \frac{1}$	1191/ ·
28-4110	1.5 +/- 0.7		1 # 1/2 0 5	DD 1.4	· · · · · · · · · · · · · · · · · · ·	J.4 77-1.1	11-6 T] - 4 7 C 17 - 4
29_1ue	1 7 4/- 8 8		1.0 T/- 0.J 9 7 1/- 0.5	1 7 1 0 1 0	5.0 Y/~ 1.0 5.1 ±/ 1.0	4.0 T/- 1.1	1.0 ?/~ /
20-106 20-10d	1 5 1/2 0 9		5 1 ×/- 0 9	1.1 T/~ U.U DT 1.D		0.0 T/= 1.4 4 5 1/ 1 1	0.1 9/
JU-HUG	1.5 +/- <u>V</u> .5	20+1 T/- 3+3 07 1 1/ 0 E	2.1 T/~ V.0 3 B 1/ 0 G	06 I.U DI 1 0		4.2 + 1 - 1.1	10.9 +/- /
01-Son	1 5 1/ 0 0	99117/- 919 4411/ 42	3.3 T/- 0.8	96 I.U 51 I 6	3./ +/- 1.0	b.8 +/- 1.4	8.3 +/- 2
01-3ep 07 9op	1.3 7/- 0.3	19.1 7/- 1.0	1.U t/- U.D	10 i.u Dr. 10	3.8 +/- 1.0	5.2 +/- 1.4	8.7 +/- 2
01 90- 01 90-	DT 1 0	22.3 7/- 2.8		DL 1.0	3.8 +/- 1.0	1.6 +/- 0.8	1.3 +/- 1
01.80p	912 1.V 1 1 1/ A C		1.0 +/- 0.0	96 I.Q		2.7 + 1 - 1.0	
of Con	1.1 T/- U.O DT 1.0		4.3 t/- V.D	DP 1.4	4.4 +/- 1.0	Z.T +/- 0.8	6-9 ÷/-
ne en	01 1 0 01 1 0		1.3 +/- 0.1	DL 1.0	3.5 +/- 1.0	3.7 4/- 1.3	DL :
vo-sep			2.8 +/- 0.1	06 1.0	4.9 +/- 1.0	3.T +/- 1.Z	6.3 +/
vi-sep		30.0 +/- 3.9	2.8 +/- 0.8	96 1.9	4.0 +/- 1.0	4.8 +/- 1.3	14.0 4/- 2
08-3ep	UL 1.U DI 1.0		1.6 4/- 4.5	DL 1.0	1.5 + / - 1.0	Z.4 + / - 0.8	DL
10 gee	UL 1.V	3.8 +/- 1.8	1.7 +/- U.8	06 I.U	4.5 +/- 1.0	Z.9 + / - 1.3	5.1 +/- 2
10-365			BF 1.0	06 1.0	1.7 + 1 - 1.0	DL 1.0	4.9 +/-
ii-Sep	1.0 + 7 - 1.0	33.1 +/- 3.5	2.9 4/- 0.7	DL 1.0	5.1 +/- 1.9	3.7 + / - 1.1	10.2 +/- 2
12-Sep	U.T +/- U.D	14.9 +/- 1.7	3.0 +/- 0.5	DL 1.0	3.1 + / - 1.0	1.7 + - 0.8	1.8 <u>*</u> /-
13-5ep	50		ED	KD	KD	ED	ED
14-Sep	9L 1.3	55.4 +/- 5.8	4.9 +/- 1.0	DL 1.3.	5.0 + / - 1.0	4.5 +/- 1.4	14.8 +/- 0
13-8ep	1.1 +/- 0.7	33.5 +/- 3.5	3.2 +/- 0.5	DL 1.0	Z.0 + / - 1.0	2.5 +/- 0.8	10.0 +/- (
lb-Sep	UL 1.0	Z8.4 +/- 3.1	1.Z +/- 0.6	1.4 +/- 0.5	3.7 +/- 1.0	DL 1.0	11.2 +/- ;
17-Sep	0L 1.0	25.3 +/- 2.7	0.4 +/- 0.3	1.1 + - 0.4	2.0 ÷/- 1.0	DL 1.0	5.0 +/- i
18-Sep	DL 1.0	12.4 + - 1.7	DL 1.0	9.8 +/- 1.4	8.0 +/- 1.0	DL 1.0	9.1 +/- 1
19-Sep	DL 1.0	17.3 + - 2.0	DL 1.0	2.0 +/- 0.5	3.8 ± 1.0	DL 1.0	7.4 +/- 1
20-Sep	1.5 +/- 1.4	40.3 +/- 4.5	2.7 +/- 1.1	10.5 +/- 1.7	8.8 +/- 1.0	DL 2.0	9.9 +/- :
21-Sep	DL 1.0	48.4 +/- 5.1	Z.1 +/- 0.7	DL 1.0	5.4 +/- 1.0	3.8 +/- 1.3	8.8 +/- :
Elementa	l concentration	ns in ng/m ¹ . '+/-'	indicates Stan	dard Deviation	- counting stat	tistics only.	
'MD' ind	icates Hissing	Data - no sample.	'DL' indicates	value below g	iven Detection i	Limit.	
GIANT PO	LEST: SPU FINE		•	PAGE Z			
03/06/8	5						

SEQUOIA NP ACID DEPOSITION PROJECT: SUMMER 1985 PARTICULATE ELEMENTAL CONCENTRATIONS

	SITE: GIANT FOREST (LOWER KAWRAH)											
	SAMPLER: STACKED) FILTER UNIT, FIN	<u> 8 STAGE; 0.1 -</u>	Z.5 UBRC								
DATE	<u>Hn</u>	<u>Fe</u>	Ni	<u>Cu</u>	<u>2 n</u>	Br	Pb					
ZZ-Sep	DL 1.0	48.0 +/- 5.0	1.4 +/- 0.6	DL 1.0	2.8 +/- 1.0	2.3 +/- 0.8	13.2 +/- 2.8					
23-Sep	DL 1.0	46.1 +/- 4.8	2.5 +/- 0.6	5.1 +/- 0.9	3.8 +/- 1.0	2.8 +/- 0.9	9.8 +/- 2.3					
24-Sep	1.2 +/- 0.9	80.7 +/- 8.2	3.3 +/- 0.8	0.8 +/- 0.6	3.6 +/- 1.0	4.0 + / - 1.3	7.6 +/- 3.2					
25-Sep	2.3 +/- 1.1	95.8 +/- 9.7	2.4 + / - 0.8	DL 1.0	4.3 +/- 1.0	5.2 +/- 1.3	14.5 +/- 3.4					
26-Sep	1.0 + / - 1.0	62.2 +/- 6.4	1.7 +/- 0.5	DL 1.0	4.3 +/- 1.0	5.4 +/- 1.3	5.1 +/- 2.3					
27-Sep	DL 1.0	32.8 +/- 3.5	DL 1.0	DL 1.0	2.0 +/- 1.0	DL 1.0	9.1 +/- 2.6					
28-Sep	1.1 + - 0.8	23.5 +/- 3.1	1.3 +/- 0.5	DL 1.1	3.3 + / - 1.0	5.1 +/- 1.2	7.4 +/- 2.0					
29-Sep	1.4 + / - 1.2	47.0 +/- 5.0	2.3 +/- 0.9	DL 1.0	3.5 +/- 1.0	5.4 +/- 1.3	9.7 +/- 3.0					
30-8ep	DL 2.0	42.5 +/- 4.5	DL 1.0	DL 1.0	4.5 +/- 1.0	5.2 +/- 1.5	14.0 +/- 3.8					
01-0ct	DL 1.0	56.4 +/- 5.9	2.2 +/- 0.7	2.2 +/- 0.7	4.2 +/- 1.0	DL 1.0	8.2 +/- 2.5					
02-0ct	DL 2.1	47.5 +/- 5.1	2.7 +/- 0.9	Z.T +/- 0.9	9.0 +/- 1.0	DL 1.0	DL 3.1					
03-0ct	DL 2.0	36.5 +/- 4.0	1.5 +/- 0.8	1.6 +/- 0.8	0.0 + / - 1.0	DL 1.0	9.7 +/- 5.2					
04-0ct	DL 1.2	40.8 +/- 4.3	2.3 +/- 0.8	2.3 +/- 0.8	2.8 +/- 1.0	DL 1.0	8.7 +/- 2.7					
05-0ct	DL 2.6	108.1 +/- 11.1	3.3 +/- 0.9	3.3 +/- 0.9	6.0 +/- 1.0	6.8 +/- 1.6	-11.7 +/- 3.1					
06-0ct	DL 1.3	52.0 +/- 5.4	DL 1.0	DL 1.0	3.9 +/- 1.0	5.5 +/- 1.3	6.5 +/- 2.8					
07-0ct	DL 1.6	11.5 +/- 1.5	DL 1.0	1.0 +/- 0.7	2.5 +/- 1.0	2.7 +/- 1.1	5.4 +/- 2.4					
== Cou	nt ====================================						***********					
	65 -	103	73	48	103	78	98					
== Ave	rage ===========	****************					=================					
	1.6	62.1	2.5		4.5	5.3	9.9					
== Hin												
	0.0	6.9	0.4	0.5	0.0	1.5	4.5					
== Hax												
	4.7	114.0	6.9	10.5	19.1	10.9	19.7					

Blemental concentrations in ng/m³. '+/-' indicates Standard Deviation - counting statistics only. 'HD' indicates Hissing Data - no sample. 'DL' indicates value below given Detection Limit. GIANT FOREST: SFU FINE PAGE 3 03/06/86

EMERALD LAKE ********** STACKED FILTER UNIT, FINE STAGE. STATISTICS OF 7-DAY SAMPLES.

All concentrations in ng/m^3

	Al	Si	S	C1	K	Ca
NUMBER ABOVE D.L	16	16	16	1	16	16
AVERAGE **	35.1	121	250	0.9	49.3	17.3
STD DEV	14.4	50	90	0.0	26.2	9.6
MAXIMUM	67.6	220	424	4.0	107.0	42.6
MINIMUM	9.5	34	129	DL	10.8	4.3
DET LIM				1.5		
	Ti	v	Cr	Mn	Fe	Ni
NUMBER ABOVE D.L	15	1	0	12	16	16
AVERAGE **	2.6	0.4		0.9	32.0	2.4
STD DEV	1.1	0.0		0.4	12.3	3.7
MAXIMUM	5.0	1.0	DL	1.8	54.6	16.7
MINIMUM	\mathbf{DL}	DL	\mathbf{DL}	0.6	9.3	0.7
DET LIM	1.0	0.7	0.8	1.0		а. - С
	11 L			'		
	Cu	Zn	Br	Pb	Soot C	Fine mass
NUMBER ABOVE D.L	12	13	8	11	16	16
AVERAGE **	0.9	1.6	2.0	4.2	109	5300
STD DEV	0.3	0.6	1.2	1.8	30	1370
MAXIMUM	1.6	3.2	5.3	8.7	164	7920
MINIMUM	DL	DL	\mathbf{DL}	DL	55	2910
DET LIM	0.9	0.5	0.6	1.0		

****** Average calculated using (0.5*DET LIM) for missing values.

ELEMENTAL RATIOS OF AVERAGE CONCENTRATIONS

Ni/V		1.3		1	sample	only
Pb/Br		2.1				
K/Fe		1.5				
Zn/Cu		1.8				
S/Fine	mass	4.7	%			

SEQUOIA ACID DEPOSITION STUDY, SUMMER 1985 86/04/28

EMERALD LAKE, SEQUOIA NP, SUMMER 1985.

STACKED FILTER UNIT GRAVIMETRIC MASS AND LIPM SOOT CARBON CONCENTRATIONS.

SAMPLE	SOOT C	SFU MASS	SFU MASS	SOOT C/	FINE/
START	LIPM **	FINE	COURSE	FINE MASS	TOTAL MASS
DATE	ug/m^3	ug/m^3	ug/m^3	%	%
18-Jun	0.122	5.79	7.51	2.1	43.5
25-Jun	0.110	5.17	11.28	2.1	31.4
02-Jul	0.088	3.11	6.87	. 2.8	31.1
09-Jul	0.164	7.06	4.64	2.3	60.3
16-Jul	0.106	7.92	23.50	1.3	25.2
23-Jul	0.125	6.53	6.76	1.9	49.1
30-Jul	0.142	6.38	18.01	2.2	26.2
06-Aug	0.153	6.63	8.69	2.3	43.3
13-Aug	0.104	5.29	18.58	2.0	22.2
20-Aug	0.132	5.74	6.60	2.3	46.5
27-Aug	0.102	4.22	4.93	2.4	46.1
03-Sep	0.055	3.70	3.94	1.5	48.4
10 [±] Sep	0.058	2.91	2.04	2.0	58.8
17-Sep	0.090	4.80	2.44	1.9	66.3
24-Sep	0.113	4.65	3.16	2.4	59.5
01-Oct	0.076	4.94	6.63	1.5	42.7
AVERAGE	0.109	5.30	8.47	2.1	43.8
STD DEV	0.030	1.37	6.09	0.4	13.1
COUNT	16	16	16	16	16

** LIPM: Absorption measurements by Laser Integrating Plate Method.

b.abs	Ξ	cc * ln (Io/I) [1/m]
where cc	Ξ	A/V
Α	Ξ	filter area [m^2]
v	=	<pre>sampled volume [m^3]</pre>
Io	=	laser intensity through clean filter
I	Ξ	laser intensity through exposed filter
soot mass	Ξ	K * b.abs [g/m^3]
where K	=	0.1 [g/m ²] is a nominal conversion factor to
		convert the absorption coefficient b.abs into mass
		concentration units.

SEQUOIA ACID DEPOSITION PROJECT

:

SEQUOIA NP ACID DEPOSITION PROJECT 1985 PARTICULATE BLEMENTAL CONCENTRATIONS

<u>SITE:</u>	BUBBALD LAKE	SAMPLE	DUBATION: 7 DAYS	8	
SAMPLER:	STACKED FILTER UNI	<u>T, FINB STAGB; 0.</u>	1 - 2.5 UHAD		
DATE		<u>Si</u>	<u>8</u>	<u>C1</u>	<u>K</u>
18-Jun	01.0 +/- 1.0	220 +/- 22	338 +/- 4U	96 I.4	94.0 +/- 9.5
25-Jun	49.7 +/- 5.6	198 +/- 20	200 +/- 20	DL 2.1	68.1 +/- 7.0
02-Jul	33.2 +/- 3.7	93 +/- 9	139 +/- 14	DL 1.3	54.6 +/- 5.8
09-Jul	46.6 +/- 5.4	158 +/- 15	347 +/- 35	DL 1.4	107.0 +/-10.8
16-Jul	31.5 +/- 4.0	106 +/- 11	424 +/- 43	DL 1.3	68.9 +/- 7.0
23-Jul	37.4 +/- 4.6	149 +/- 15	378 +/- 38	DL 1.3	64.2 +/- 6.5
30-Jul	39.0 +/- 4.7	144 +/- 15	286 +/- 29	4.0 +/- 2.1	48.2 +/- 5.0
06-Aug	44.9 +/- 5.0	161 +/- 16	242 +/- 25	DL 1.8	58.7 +/- 6.1
13-Aug	22.7 +/- 3.2	100 +/- 10	254 +/- 26	DL 1.6	34.6 +/- 3.7
20-Aug	18.2 +/- 3.0	80 +/- 8	251 +/- 26	DL 2.2	33.3 +/- 3.7
27-Aug	42.5 +/- 4.5	140 +/- 14	178 +/- 18	DL 1.7	37.4 +/- 4.0
03-Sep	9.5 +/- 1.8	34 +/- 4	214 +/- 22	DL 1.5	10.8 +/- 1.4
10-Sep	10.9 +/- 1.7	38 +/- 4	129 +/- 13	DL 1.0	11.0 +/- 1.3
17-Sep	34.0 +/- 3.9	84 +/- 9	190 +/- 19	DL 1.0	23.3 +/- 2.5
24-Sep	40.3 +/- 4.6	126 +/- 13	206 +/- 21	DL 1.0	39.3 +/- 4.1
01-0ct	34.2 +/- 3.7	98 +/- 10	164 +/- 17	DL 1.0	35.1 +/- 3.6
== Count	; =====================================				
	16	16	16	1	16
== Avers	lge ====================================	121	250	4.0	49.3
== Min =					
II WAY T	9.5	34 	129	4.0	10.8
1148 -	67.6	220	424	4.0	107.0

Blemental concentrations in ng/m^3. '+/-' indicates Standard Deviation - counting statistics only. 'HD' indicates Missing Data - no sample. 'DL' indicates value below Detection Limit. EMERALD LAKE: SFU FINE PAGE 1

05/15/86

SEQUOIA NP ACID DEPOSITION PROJECT 1985 PARTICULATE ELEMENTAL CONCENTRATIONS

SITE: SAMPLEE:	BNBRALD LAKE STACKED FILTER UNIT,	<u>SAMPLE I</u> FINE STAGE; 0.1	DURATION: 7 DAY: - 2.5 UHAD	8	
DATE	<u>CA</u>	<u>Ti</u>	<u>v</u>	<u>Cr</u>	<u>Mn</u>
18-Jun	34.4 +/- 3.8	4.3 +/- 0.7	1.0DL 0.5	DL 0.7	1.3 +/- 0.4
25-Jun	42.6 +/- 4.5	4.3 +/- 1.0	DL 0.9	DL 1.0	1.3 +/- 0.7
02-Jul	16.6 +/- 2.0	2.1 +/- 0.6	DL 0.6	DL 0.6	0.6 +/- 0.5
09-Jul	21.7 +/- 2.8	2.4 +/- 0.5	DL 0.6	DL 0.7	0.8 +/- 0.5
16-Jul	10.0 +/- 1.5	2.4 +/- 0.5	DL 0.5	DL 0.6	0.6 +/- 0.5
23-Jul	13.9 +/- 1.8	2.7 +/- 0.6	DL 0.6	DL 0.6	1.2 +/- 0.5
30-Jul	18.1 +/- 2.1	3.5 +/- 0.7	+/- 0.7	DL 0.8	1.2 +/- 0.6
06-Aug	25.2 +/- 2.8	5.0 +/- 0.9	DL 0.8	DL 0.9	1.8 +/- 0.7
13-Aug	12.6 +/- 2.5	2.8 +/- 0.7	DL 0.8	DL 0.8	0.7 +/- 0.5
20-Aug	13.3 +/- 1.7	1.2 +/- 1.0	DL 1.0	DL 1.1	1.5 +/- 0.8
27-Aug	16.7 +/- 1.9	3.0 +/- 0.8	DL 0.8	DL 0.9	1.2 +/- 0.8
03-Sep	4.3 +/- 0.7	1.4 +/- 0.8	DL 0.6	DL 0.7	0.7 +/- 0.5
10-Sep	5.4 +/- 0.7	DL 1.0	DL 1.0	DL 1.0	DL 1.0
17-Sep	10.9 +/- 1.3	1.7 +/- 0.6	DL 1.0	DL 1.0	DL 1.0
24-Sep	17.0 +/- 1.9	1.7 +/- 0.5	DL 1.0	DL 1.0	DL 1.0
01-0ct	13.4 +/- 1.5	2.0 +/- 0.5	DL 1.0	DL 1.0	DL 1.0
== Count					
== Avera	10 ge ====================================	15	ا =====================	V ======================	
== Min =	17.3 ====================================	2.7 ========			1.1
	4.3	1.2			0.6
681	42.6	5.0			1.8

.-

 \mathbf{x}_{i}

Blemental concentrations in ng/m^3. '+/-' indicates Standard Deviation - counting statistics only.'MD' indicates Missing Data - no sample. 'DL' indicates value below Detection Limit.EMBERALD LAKE: SFU FINEPAGE 105/15/86

SEQUOIA NP ACID DEPOSITION PROJECT 1985 PARTICULATE BLENENTAL CONCENTRATIONS

SITE:	ENBRALD LAKE	SAM	PLE DURATION: 7	DAYS		
SAMPLER:	STACKED FILTER	UNIT, FINE STAGE	; 0.1 - 2.5 UMAD			
DATE	<u>Fe</u>	<u>Ni</u>	<u>Cu</u>	<u>2n</u>	<u>Br</u>	<u>Pb</u>
18-Jun	54.6 +/- 5.5	1.3 +/- 0.4	0.9 +/- 0.3	1.9 +/- 0.5	4.2 +/- 0.9	7.8 +/- 1.5
25-Jun	46.9 +/- 4.9	1.7 +/- 0.5	1.0 +/- 0.4	DL 0.5	DL 0.4	DL 1.3
02-Jul	24.7 +/- 2.6	1.2 +/- 0.3	0.7 +/- 0.3	1.0 +/- 0.4	DL 0.3	5.4 +/- 1.0
09-Jul	40.5 +/- 5.1	1.6 +/- 0.4	1.1 +/- 0.4	2.9 +/- 0.5	3.4 +/- 0.7	5.0 +/- 1.3
16-Jul	25.8 +/- 2.7	1.3 +/- 0.3	0.9 +/- 0.3	2.1 +/- 0.5	4.0 +/- 0.7	6.7 +/- 1.5
23-Jul	32.0 +/- 3.3	1.5 +/- 0.4	0.8 +/- 0.3	2.5 +/- 0.5	5.3 +/- 0.9	4.5 +/- 1.2
30-Jul	41.1 +/- 4.2	2.5 +/- 0.5	1.6 +/- 0.4	DL 0.5	4.4 +/- 0.8	8.3 +/- 1.9
06-Aug	46.5 +/- 4.8	2.6 +/- 0.6	1.6 +/- 0.4	3.2 +/- 0.7	DL 0.4	8.7 +/- 2.0
13-Aug	33.0 +/- 3.4	1.5 +/- 0.4	1.2 +/- 0.4	1.7 +/- 0.5	4.3 +/- 0.8	DL 1.1
20-Aug	30.8 +/- 3.3	16.7 +/- 1.9	DL 0.7	1.5 +/- 0.5	DL 0.4	6.8 +/- 1.8
27-Aug	39.6 +/- 4.1	1.4 +/- 0.4	1.2 +/- 0.5	1.8 +/- 0.5	DL 0.4	4.7 +/- 1.5
03-Sep	10.5 +/- 1.2	1.2 +/- 0.4	0.7 +/- 0.4	DL 0.4	DL 0.3	DL 0.9
10-Sep	9.3 +/- 1.1	1.3 +/- 0.4	DL 1.0	0.8 +/- 0.3	1.0 +/- 0.5	DL 1.0
17-Sep	20.8 +/- 2.2	1.2 +/- 0.3	DL 1.0	1.6 +/- 0.4	DL 1.0	DL 1.0
24-Sep	30.4 +/- 3.1	0.7 +/- 0.3	DL 1.0	2.1 +/- 0.5	3.1 +/- 0.8	3.5 +/- 1.4
01-Oct	24.8 +/- 2.6	0.8 +/- 0.3	0.8 +/- 0.3	1.7 +/- 0.4	DL 1.0	3.1 +/- 1.3
== Count						
== Avera	15 ge ====================================	16 	12	13 ===============	8 	11
	32.0	2.4	1.0	1.9	3.7	5.9
== Min =					1 0	
== Max =	3.3 :===============================	V./	V.{ =========================	V.8 ===============	1.U	\$.1
	54.6	16.7	1.5	3.2	5.3	8.7

Blemental concentrations in ng/m^3. '+/-' indicates Standard Deviation - counting statistics only.'MD' indicates Missing Data - no sample. 'DL' indicates value below Detection Limit.EMEBALD LAKE: SFU FINEPAGE 105/16/86

	•	AHOUNTS	IN NANOGRA	MS/M++3						
		HATRIX	COPRECTIONS	USING DRUH	l					
ID SLIDE	C C	NA	нс	AL	. S.f	P	8	CL	ĸ	C.A.
1 3	0.238	54.6*	238.2	613.3	1722.1	24,4+	18.0*	16.7+	125.0	154.5
2 4	0.238	58.6*	43.4+	843.4	1958.2	24.4*	16.8+	15.3+	175.7	178.0
3 5	0.238	55.5*	313.2	635.3	1947.1	24.4*	16.8*	15.3+	159.7	183.9
4 6	0.258	55.5*	43.8+	528.1	1067.0	22.8+	16.8*	15.3×	A3.5	110,5
5 7	0.238	55.5.	63.6	211.5	428.9	22.8+	10.8.	15.3*	33.4	40.2
6 8	0.238	74.0*	55.4+	324.7	461.5	30.44	21.9+	19.5*	23.0	46.1
7 9	0.236	74.0+	126.1	428.5	1141.2	32.0+	21.9+	20.9+	90.7	115.0
8 10	0.238	61.7.	201.1	558.0	1564.3	25.9*	18.0*	16.7*	145.4	166.6
9 11	0.238	67.8.	52.5+	670.8	1589.6	28.9*	20.6*	18.1+	129.5	186.6
10 12	0.238	77.1*	76.0	366.9	832.0	32.0*	23.2+	20.9*	64.2	92.7
11 13	0.230	55.5+	102.8	219.9	474.7	22.8+	16.8*	15.3*	28.4	40.6
12 14	0.238	58.6*	142.1	433.9	916.8	25.9*	18.0*	10.7*	70.5	91.5
13 15	0.238	58.o×	46.7*	554.6	1147.3	25,9+	18.0*	16.7*	80.6	102.2
14 16	0.238	64 8*	49.6*	622.6	1575.0	27.4+	19.3*	18.1*	134.3	151.0
15 17	0.238	58.6*	43.8*	739.0	1642.0	24.4*	16.8*	15.3+	141+0	141-4
16 18	0.218	55.5*	113.7	644.5	1309.0	22.8×	16.8*	15.3*	125.7	129.7
17 19	0.238	52.4+	40.8*	305.3	657.0	21.3+	15.5*	13.9*	48.3	56.7
18 20	0.238	52,4*	40.6*	441.5 `	776.2	21.3*	15.5+	13.9+	50.3	81.3
19 21	0.238	52.44	135.3	644.0	1211.7	22.8+	15.5*	13.9*	94.1	110.6
50 55	0.234	55.5*	182.1	635.7 .	1607.7	55"8*	16.8*	15.3*	145.3	157.3
21 23	0.238	207.2	135.6	967.5	8.1915	24.4*	10.8+	15,34	203.1	209.2
22 24	0.23A	58.6*	43.d*	751.0	1697.1	24.4*	18.0*	16.7*	139.1	139.8
23 25	0.238	58.6*	43.8+	476.5	982.1	24.4+	16.8+	15.3*	78.7	. 83.4
50 56	0.238	243.8	46.7*	445.6	887.0	24.4+	18.0*	16.7*	69.9	85.9
25 27	9.230	58.0*	173.2	607.5	1565.9	24,4+	18.0+	16.7#	122.4	144.0
59 58	0.234	58.64	46.7*	669.5	1580.1	25.9*	18.0*	16.7*	132.4	136.0
27 29	0.238	61.7+	287.7	560.9	1594.0	24,4+	18.0*	16.7*	131.0	134.0
29 30	0.23H	58.0*	259.8	354.5	912.6	24.4*	18.0*	16.70	65.8	80.8
29 31	0.23A	58.6*	40.7*	195.7	366.3	24.4+	18.0+	16.7*	18.7	35.2
30 32	865.0	Q0.3	40。∦∗	500.0	357.5	22.8× ·	16.8*	15.3*	22.2	31,8
31 33	0.238	56.5	46.7+	201.1	615.0	25.9*	18.0*	16.7*	46.1	72.1
32 34	0.238	58.6*	59.7	267.3	680.0	24,4*	16.8+	15.3*	49.3	66.2
33 35	0.238	52.0	77.3	372.1	179.6	24.4+	16.8+	15.3*	73.7	79.4
34 36	0.238	61.7×	44.8	216.2	510.2	24.4.	18.0*	16.7*	37.0	46.9
35 37	0,255	61.7*	75.8	156.1	212.6	25.9*	18.0*	16.7*	15.7	55.9
36 38	0.238	A3.2	49.0*	138.7	24H.3	25.4+	19.3*	16,7*	18.7	25.6
37 30	0.238	58.6*	46.7+	283.2	552.4	24.4+	18.0+	16.7+	39.8	54.2
38 40	0.238	55.5*	123.3	385.8	612.1	22.6+	16.8*	15.3*	63.2	60.0
39 41	0.236	55.5*	172.3	461.7	1059.9	24.4*	10.8*	15.3*	88.7	89.8
40 42	0.238	52.4*	40.8*	319.6	600.1	21.3+	15.5*	13.9*	41.8	54.1

11 .

.

•

.

UC DAVIS PIXE ANALISIS FILE 31511 ANALYSIS ON 02/26/86 0/P ON 02/27/86 PAGE 1 OF 2 SEGUUTA-GIANT FOREST / PEPIOD 5 / STAGE 1 / PART 1

.

µ ≮_r

1

. . .

.

,

.

UC DAVIS Sequnta-0	PIXE ANALYS GIANT FOREST	SIS 1 / PERIOD 5	FILE 315 / STAGE 1 /	11 Part 1	۴.	ANALYSIS	UN 02/26/86	076 NO 410	27/80	PAG	E 2,0F 2	
		AMOUNTS MATRIX C	AMOUNTS IN NANOGRAMS/M**3 Matrix corrections using drum									
ID SLIDE	TT	v	CR	MN		Ft	NI	cu	ZN	HR	PB	
1 3	32.9	5.4+	5.4*	5.4*		339.8	4.3*	4.3±	4.2*	3.2*	9.9*	
24	31.1	5.4*	5.4*	8.3	·	382.4	4.3*	3.2*	4.2*	3.2*	9.9*	
35	24.9	5.4*	5.4+	7.3		376.8	4_3*	3.2*	4.2*	3.2*	9.9*	
4 6	13.3	4.3*	5.4+	6,6		213.3	2.8	3.2*	4.2*	4.3*	9.9*	
57	5.5+	4.3*	5.4+	5.4*	•	79.4	3.2+	3.2*	4.2*	3.2*	9.4*	
6 6	8,1	5.5×	6 . 5*	6.5×		88.8	4.3*	4.3⊭	4.2*	6.4*	12.1*	
79	11.9	6.5*	6.5*	6,5+	•	555-1	5.4*	4.3+	5.3+	6.4+	13.2+	
8 10	58.5	5.4*	5.4+	10.1		309.8	4.3+	3.2+	4.2*	4.3*	11.0*	
9 11	18.6	6.5×	6.5*	6.3		342.1	4.3*	4.3*	4.Ž*	5.4*	11.0+	
10 12	14.7	ð.5+	7.6*	6.5*		175.4	5.4*	4,3+	5.3*	7.5*	15.4*	
11 13	7.2	4.3+	5.4*	5.4*	•	92.3	3.2*	3.2*	4.2*	3.2*	9.9*	
12 14	16.7	5,4*	5.4×	6.4		508.0	4.3×	3.2+	4.2*	4.3*	11.0*	
13 15	17.3	5.4*	5.4+	5.4*		217.2	4.3*	4.3*	4.2+	4.3+	11.0*	
14 16	12.2	5.4*	6.5*	6.7		309.1	4.3#	4.3*	4.2*	4.3*	11.0*	
15 17	24.3	5.4*	5.4*	10.5		344.9	4.3+	3.2*	4.2+	3.2*	9.4*	
16 18	16.0	5.4*	5.4*	5.4+		280.6	3.2+	3.2*	4.2*	3.2+	8.6+	
17 19	10.2	4.3+	4.4*	4.3+		140.7	3.2*	3.2+	3.2*	3.2*	8.6*	
18 20	12.4	4.3*	4.4+	4.3*		166.4	3.2+	3.2+	3.2*	4.3+	9.9+	
19 21	14.5	4.3+	5.4+	5.2		242.8	3.2*	3.2*	3.2+	4.3×	9.9*	
50 55	26.7	4,3*	5.4+	4.3	- '	334.1	3.2+	3.2*	4.2*	4.3*	9.9*	
21 23	32.0	5.4+	5.4*	9.9		432.8	4.3+	3.2*	4.2+	3.2*	9.9*	
22 24	24.3	5,4+	5.4*	6.5		313.5	4.3+	4.3*	4.2+	3.2*	9.9*	
23 25	12.0	5,4+	5.4*	5.3	•	187.3	4.3*	3.2*	4.2*	3.2*	9.4*	
24 26	12.3	5.4+ /	5.44	4,9		178.9	4.3*	3.2*	4.2*	3.2*	9.9*	
25 27	16.3	5.4+	5.4*	6.4		285.5	4.3*	3.2+	4.2*	3.2+	9.9+	
26 28	14.8	5.44	5.4*	9.4		312.6	4.3*	4.3*	4.2*	3.2+	11.0*	
27 29	29.4	5.4+	5.4+	9.4		346.8	4.3*	3.2+	4.2+	3.2*	11.0*	
28 30	10.9	5.4+	5.4*	5.4+		188.2	4.5±	3.2+	4,2*	3.2+	9.9*	
29 31	5.5*	5.4+	5.4*	5.4*		80.1	4 3 *	3.2*	4.2*	4.3*	11.0+	
30 32	5.9	4.3.	5.4+	5.4+		102.1	3.2+	3.2+	4.2*	4.3*	9.9*	
11 11	14.7	5.4*	5.4*	5.4*		138.9	4.3+	3.24	4.2*	4.3+	11.0*	
32 34	5.1	5.4*	5.4*	5.4+		140.2	4.3+	3.2+	4.2*	3.2+	9.9*	
11 15	9.7	5.4+	5.4+	5.4+		172.9	4.3+	3.2+	4.2+	5.2+	9.9+	
34 36	9 1	5 4 .	5.4+	5.4+		114.2	4.5+	3.2+	4.2*	4.3+	11.0+	
15 17	÷ 5.	5 4 +	5 4 .	5 4+	-	50.3	4 .	4.3+	4.2*	4.3+	11.0*	
36 18	5 5.	5 4 4	5.4+	5.4	•	59.0	4 . 3 .	4.3.	4.2*	4.3*	11.0.	
17 10	5 8	5 4 +	5 4 .	4.1		116.7	4 3.	3.2.	4.2*	4.3.	11.0+	
37 37 In 110	0.0 0 A	5	5 4 4	5 4 4		175.7	4 .	3.2.	4.24	3.24	9.9.	
	17 7	5.4*	5.4+	5.0		214.0	4.3.	3.2*	4.2*	5.2+	9.04	
40 42	12 5	4 3.	4 4 .	5,5		128.5	3.2.	3.2.	3.2*	3.2+	8.8+	
	16.0		• • •									

ŧ. 1 ...

.

. .

.

.

~

* MINIMUM DETECTABLE LIMIT, ELEMENT NOT FOUND

ADDITIONAL ELEMENTS FUUND: 10, SLIDE, ELEMENT, ANDUNT 40 42 RU 51.1

UC DAVIS Sequoia-	PIXE ANALY GIANT FORES	SIS T / PERIOD 5	FILE 315 5 / STAGE 1 /	12 1 PART 2	ANALYSIS	04 05/26/86	U/P 0N 05	/27/86	Ρ4(GE 1 OF 2
		AMOUNTS Matrix	IN NANOGRA Cornections	HS/M++3 HSING DHUH1						
ID SLIDE	cc	NA	HG	AL .	51	P DL D	5 15 E.	CL	Х 1	C A
1 3	0.238	72.4*	40.8*	177.0	241.0	21.3*	12,24	17 04	19.1	17 1
24	0.235	104.0	40.04	177.0	341.0	21.3*	15 5.	11 01	45 1	78 9
5 5	0.230	47.3*	253 4	262.4	001.0	21.3*	15.54	12 04	110.7	146.6
4 0 6 7	0.230	52.4*	272.0	121 2	1413.0 A13 A	21.34	15 5+	13.94	50 3	63.5
57	0.230	62 114	100.0	5140	120 0	21 4	15 5+	13 9.	16.5	30.1
7 0	0,210	53 JA	04.6	34/4 1		31 24	15.5+	13.94	27.9	47.3
9 10	0.218	55 5.	200.7	105 5	967 7	22 84	15 5+	15 3.	75.2	94.8
9 1 1	0 218	64 A	49 5+	428 2	1261 2	27 4	19.3	18.1.	102.0	118.0
10 12	0.214	58 6	46 74	524 2	1370 6	24 44	18.0+	16.7+	107.0	129.3
11 13	0 218	52.4+	40.8	253.6	614.8	21.5+	15.5*	13.9+	42.1	59.2
12 14	0 238	55 5.	53 1	195 A	430 9	25 9+	18.0+	16.7.	30.3	49.1
13 15	0.238	55.5	A7.7	347 4	672.2	22.84	16.8+	15.3*	52.6	70.3
14 16	0.258	55.5*	43.8*	527.1	1165.6	22.0+	16.6+	15.3*	97.5	113.9
15 17	0.238	55.5+	43.8*	743.1	1854.5	22.8+	16.8+	15.3*	161.6	175.8
16 18	0.238	68.5	40.8+	709.6	1523.3	22.8+	15.5*	15.3#	105.2	163.0
17 19	0.238	52.41	107.1	309.4	647.5	22.8+	15.5*	13.9*	34.8	59.9
18 20	0.238	52.4+	55.1	210.0	411.2	21.3+	15.5+	13,9+	27.0	43.3
19 21	0.238	52.4+	258,1	380.0	850.0	22.8+	16.8+	15.3*	46.2	90.9
20 22	0.238	55,5+	43.8×	612.0	1341.2	22.8+	16.8*	15.3*	102.7	119.7
21 23	0.23A	55 5+	45.A+	653.1	1569.6	55°8*	16.8+	15.3*	148.1	137.4
55 54	0.238	55.5+	40.8*	595.8	1369,2	22.d*	16.8+	15.3*	117.2	124.4
23 25	0.238	52.4+	91.5	0,£85	o40.5	21.3+	15.5+	13.9*	41.4	68.3
24 26	0.238	55.5	41.1	206.5	376.0	22.8*	12.7	13.9+	29.6	39.9
25 27	0.238	55,5*	51.2	272.3	644.0	22.8+	16.8*	15.3*	44.5	68.3
59 58	0.238	150.0	49.6*	123.0	1446.2	27.4±	19.3+	18.1*	127.0	141.9
27 29	0.238	61.70	46.7*	755.5	1915.8	25.4+	18.0*	16.7*	166.0	164.2
28 30	0.238	120.4	43.8*	692.7	1335.2	24.4*	16.8×	15 3×	127.9	150.6
29 31	0.238	55.5*	43.8+	266.7	604.9	22.8×	16.8*	15.3*	44.7	58.2
30 32	0.238	121.2	43.R+	215.1	448.8	55.4*	16.8*	15.3*	30.0	52.0
31 33	0.238	58.6*	123.4	345.3	757.7	24.4*	16.8*	15.3*	57.3	73.3
32 34	0.238	58.0*	555°3	A83.3	1501.6	24,4+	18.0*	16.7*	138.1	144.6
33 35	0.238	61.7×	195.0	504.4	1889.7	25.4*	18.0*	16.7*	140.5	181.1
34 36	0.238	61.7+	46.7*	614.0	1478.4	25.9*	10.0*	16.7*	130.5	152.5
35 37	0.238	52.4+	180.0	454.2	907.2	22.8+	15.5*	15.9*	65./	/0.3
36 38	0.238	55.5*	45.8+	242.0	403.8	22.04	16.8*	15.5*	29.4	55.0
37 39	0.234	55.5*	60.1	362.0	121.9	22.0+	10.8*	15.34	41.5	70.0
38 40	0.238	55.5*	359.5	542.2	1474.4	24.4*	10.00	17-3*	111.0	121.0
39 41	0.238	55.5*	43.8+	691.4	1737.1	24.4+	18.0*	16./*	14/.4	101.5
40 42	0.238	55,5+	45.0*	674.0 .	1525.1	24.4*	10.04	12.3*	140.5	141.1

•

н к -

۰.

. .

		MATRIX (CURRECTIONS I	ISING DRUM1						
ID SLIDE	П	v	CR	MN	FE	NT	CU	ZN	88	PB
1 3	4.4.	4.3*	4.4*	4.3*	54.6	3.2*	3.2+	3.2+	3.2+	8.8+
2 4	4.4*	4.3*	4,4+	4.3*	76.0	3.2+	3.2*	3.2*	3,2*	8.8*
3 5	10.1	4.3+	4,4*	5.2	168.6	3.2*	3.2+	3.2*	3.24	9.9*
4 6	28.7	4.3+	4.4+	6.1	276.5	3.2*	3.2+	3.2+	3.2*	8.8*
5 7	10.5	4.3*	8 4 +	4.8	138.3	3.2*	3.2*	3.2+	3.2*	9.9*
6 8	4.4+	4.3+	4.4*	3.5	63.6	3.2*	3.2*	3.2*	3.2+	8.8*
7 9	5.4	4.3+	4 4 *	4.3+	88.4	3.2+	3.2+	3.2*	3.2+	8.8*
8 10	14.4	4.3*	5.4*	8.9	196.3	3.2+	3.2+	3.2*	4.3*	9.9*
9 11	94.0	5,4+	38.8	6.5*	306.4	4.3*	4.3*	4.2*	4.5+	11.0*
10 12	61.0	5.4+	14.5	5.4+	299.2	4.3+	3.2+	4.2*	3.2*	9.9*
11 13	35.6	4.3+	10.5	4.34	148.7	3.2*	3.2*	3.2+	4.3*	9.9*
12 14	49.7	5,4+	17.3	5.4*	158.7	4.3+	4.3+	4.2*	3.2*	11.0*
13 15	28.4	5.4+	5.6	5.4*	147.8	3.2*	3.2+	4.2*	3.2*	9.9*
14 16	20.6	5.4+	5.4+	4 4	263.6	4.3+	3.2*	4.2*	4.3*	9.9+
15 17	27.9	4.3*	5.4+	8.6	363.6	3.2*	3.2*	4.2*	4.3*	9.9*
16 18	22.7	4.3*	5.4+	7.4	305.0	3.2*	3.2*	4.2*	4.3*	9.9*
17 19	7.7	4.3+	5.4+	4.3+	139.5	3.2+	3.2+	3,2*	4.5*	9.9*
18 20	8.5	4. š*	4.4★	3.4	91.7	5.2+	3.2*	3.2*	4.3+	9.9*
19 21	10.5	4.3*	5.4*	7.3	4178.1	3.2.	3.2*	4.2*	4.3+	9.9*
20 22	21.3	4.3+	5.4+	H.3	293.4	3.2+	3.2*	4.2*	4.3±	9.9*
21 23	24.1	4.3*	5.4*	7.8	334.3	3.2*	3.2+	4.2*	4.3*	4.9+
22 24	24.3	4.3+	5.4+	7.6	275.9	3.2*	3.2+	4.2*	4.3*	9.9*
23 25	11.8	4.3*	4.4+	4.6	115.0	3.2+	3.2*	3.2*	4.3*	9.9*
24 26	4.3	4.3+	4.4+	4.3*	17.5	3.2+	3.2*	3.2*	5.2*	9.9*
25 27	9.9	4.3+	5.4+	5.4*	129.5	4.0	3.2*	4,2*	3.2+	9.9*
26 28	17.7	5.4.	n.5*	0.5*	293.5	4.5+	4.3*	4.2*	4.3*	12.1*
27 29	28.4	5.4+	5.4*	9.1	404.9	4.3*	4.3*	4.2*	4.3*	11.0+
28 30	22.0	5.4*	5.4*	7.2	301.0	4.3+	3.2+	4,2*	3.2+	9.9*
29 31	11.8	4.3+	5.4*	7.6	112.0	3.2+	3.2*	3.2*	3.2*	9.9*
30 32	7.0	4.3*	5.4*	5.4*	82.2	3.2+	3.2*	4.2*	4.3+	9.9*
31 33	11.6	5.4*	5.4+	4.5	165.0	4.3*	3.2*	4.2*	3.2+	9.9*
32 34	24.1	5.4*	5.4+	5.5	298.4	4.3*	3.2+	4.2+	4.3*	11.0*
33 35	37.1	5.4+	5.4+	7.8	411.6	4.3+	4.3*	4.2*	4.3+	11.0+
34 36	23.9	5.4+	5.4*	5.2	32A A	u 3.	3.2*	4.2*	4.3*	9.9*
35 37	11.9	4.3*	5.4*	7.4	196.2	3.2+	3.2*	4.2*	3.2*	9.9*
				•						•

3,2*

3.2+

4.3+

4.3*

4.5+

3.2+

3.2*

3.2*

3.2*

3.2*

9 1 4.2+

4.2*

4.č*

4.2*

4.2*

3.2*

4.3*

4.3*

3.2*

3.2*

9.9*

9.9+

9.9*

9.9*

11.0+

ANALYSIS ON 02/26/86

0/P ON 02/27/86

PAGE 2 OF 2

* MINIMUM DETECTABLE LIMIT, ELEMENT NOT FOUND

5.4+

5.4+

5.4*

5.4+

5.4*

4,9

4.8

ь.3 7.5

3.8

. •

÷

A5.5

136.4

302.4

381.5

327.0

4.3+

4.3+

5.4*

5.4+

5.4*

6.1

21.1

17.9

19.3

27.0

36 38 37 39

38 40

39 41

40 42

FILE 31512

AMOUNTS IN NAHOGRAMS/M##3

UC DAVIS PIXE ANALYSIS

SENUNIA-GIANT FOREST / PERIOD 5 / STAGE 1 / PAHT 2

UC DAVIS Serudia-1	PIXE ANALYS GIANT FOREST	SIS / PERIND 5	FILE 315 / STAGE 1 /	513 / PART 3	ANALYSIS	01 05/56/46	076 ON 05	/27/86	PAG	E 1 OF 1
		AMOUNTS Matrix	IN HANOGRA	WS/H##3 USING DRUM1	• •					
ID SLIDE	CC	NA	MG	AL	\$1	55°8*	5	CL	к	C#
	0,238	55,5+	54,9	257.5	563.9	h	16,8*	15.3≉	34.3	49,2
ID SLIDE	T[V	CR	MN	FE	NT	CU	ZN	8R	PB
	5.4	4 .3 +	5,4*	5,4+	115.2	3.2+	3.2*	4.2#	3,2*	9,9*

· · ·

* MINIMUM DETECTABLE LIMIT, ELEMENT NOT FOUND

.

.

1

Carlos a construction de la construcción de la construcción de la construcción de la construcción de la constru

						•	·				
				۰.			•	-	• •		
							•				
				•							
					•						
		676	E11 E 244		ANIAL YSTS	04 02/26/86	075 UN 02	127/86	PAG	F 1 0F 2	
SEGUOIA-G	IANT FORES	T / PERIOD 5	/ STAGE 2 /	PART 1		0. 0772070.	0,1 0	277.00			
		AMOUNTS		HS/M##3	•						
		MAINIA	CORRECTIONS	COING MROME	•	_	_			•	
SLIDE	20	NA 161 1	46 XI I+	AL 256 A	. SI 4915	P 21.6+	5 16 1*	CL 14 5#	К 45.8	СА 58.1	
24	0.238	327.9	29.0*	299.6	826.6	19.2.	15.0+	13.3*	68.0	86.3	
5 5	0.238	40.2*	293.5	283.8	H76 U	19.2*	15.1+	13.3*	61.4	88.5	
1 6	0.238	37.0*	233.8	223.5	467.2	19.14	15.0+	13.2+	37.9	49.0	
57	0.238	34.2*	99.4	87.7	- 256. ⁸	19.0+	14.9+	13.2*	17.1	25.1	
ь Ą	0.238	154.3	20.9+	231.4	306.9	19.0*	15.0*	13.2*	19.5	29.6	
9	0.238	37.4+	228.9	240.5	620.5	19.14	15.0*	13.5*	53.9	۶ <i>۲</i> .۶	
5 10	0.238	321.7	24.04	319.3	700.7	19.2*	15.0#	13.3*	10.1	99.5	
11	0.238	3/.9#	264.2	244.8	176.0	19.24	15.0*	13.3*	29 1	19 6	
	0.230	36 1+	170 9	59 B	201 1	19 0*	13.8*	13.2*	14.6	26.6	
2 1 4	0.230	36 44	28 8	179.9	345.0	19.0.	13.8*	13.2*	21.7	40,4	
5 15	0.218	37.3*	195.1	241.0	608.3	19.1+	13.9*	13.3*	43.9	64.8	
4 16	0.238	37.6*	27.4+	298.4	761.2	19,1+	13.9*	13.3*	58.6	81.9	
5 17	0.23#	38.1+	249.2	285.1	904.8	19,2+	13.9+	13.3+	78.4	96.0	
5 18	0.238	37.3*	29.3*	337,7	- 648 .1	19.1+-	15.0*	13.3+	53.3	71.5	
7 19	0.238	36.4+	28.8*	168.4	350.6	19.0+	13.8+	13.2*	26.5	38.6	
8 50	0.238	37.1*	0.89	304.7	546.6	19.1+	13.8*	13.3+	36.4	45.5	
51	0.236	37.0+	27.2+	305.5	512.8	19.1+	13.6*	13.2*	40.5	55.0	
55	0.238	36.0*	218.4	370.9	856.5	19.2+	13.9*	12.1*	/1.4	44.7	
23	0.254	54.5*	21.8*	423.1	1044.3	17.67	13.7*	12.14	71.4 80 ú	01 1	
24	0.238	30.1*	210.4 31 AA	333.1	772.U 519 //	20 4	15 0+	13.24	41.4	46 0	
1 24	1.230 A 310	30°44	172 7	272.5	590	17.8+	13.9*	12.1*	54.1	62.9	
20	7.238 0 218	15 5.	27.4+	302.6	802.8	17.8.	13.9	12.1+	56.9	81.7	
28	0 238	35 1+	128.1	202.8	629.2	17.8.	13.8+	12.1+	42.2	64.3	
7 29	0.238	36.4*	27.1+	232.7	532.4	14.0+	13.0+	12.0+	39.5	38.9	
3 30	0.238	34.4+	26.9*	197.4	370.2	19.0+	13.8+	12.0*	25.7	27.1	
9 31	0.230	36.1*	26.8*	134.0	233.3	19.0+	13.8*	12.0*	7.2	23.6	
32	0.238	36.1+	26.8*	145.3	560.8	19.0+	13.8+	13.2*	11.2	21.0	
1 33	0.238	36,4*	109.0	146.4	349.9	19.0*	13.6+	13.2*	51.5	36.3	
2 34	0.238	57.5	112.0	126.3	351.2	19.04	13,8+	13.2*	51.0	37.8	
335	0.238	30.4*	65.2	124.8	365.7	14.04	15.04	13.2*	23.0	36.4	
4 36	0.238	36.2*	97.7	103.4	259.6	19.0+	14.9*	13.2*	14.9	27.4	
57	0,238	55./*	20.3×	r1.5* 73 7	134.0	10.78	14.94	11 24	7.0#	6.5	
6 38 7 7 0	0.234	55./*	04.7	12.1	104.0	10.7*	14.78	11.2+	18.3	21.0	
7 39	0.238	116.4	<8.8 ₽ 259.9	170.0	61707 451 5	19 31	15.04	13.24	31.2	46.2	
5 40	0.230	17 1.	29 24	262 9	579 7	19 1.	15.0+	13.3*	58.3	59.4	
	1,230	77.61	r 7.6 W	£ 1 G a 7							

1 1 - 4

. E

·

			CONTRACTIONS C	of the proof of						
IT SLIDE	ΤT	v	CR	MN	FE	41	CU	ZN	BR	PB
1 3	15.8	5.2*	5.2*	3.4	119.4	4.2*	3.1*	4.1*	4.2*	10.5*
2 4	7.3	5.2*	5.2*	6.9	179.6	4.2+	3.1+	4.1*	4.2*	10.5*
35	5.3*	5.2*	5.2+	5.2*	183.7	4.2*	3.1*	4.1*	4.2*	9.5+
46	10.6	4.2*	5.2+	5,2+	106.1	3.1*	3.1*	4.1*	3.1*	9.5*
57	5.0	4.24	5.2+	5.2*	55.4	3.1+	3.1+	4.1*	3.1*	8.4*
68	5.3*	5.2+	5.2+	5.2+	78.3	4,2*	3.1+	4.1+	3.1*	9.5*
79	11.4	4.2*	5.2+	5.2*	145.8	3.1*	3.1*	4.1+	4.2*	9.5*
8 10	12.6	4.2*	5.2+	5.1	170,2	3.1+	3.1+	4.1*	4.2*	9.5*
9 11	8.8	4.2*	5.2*	5.2+	184.5	3,1+	3.1*	4.1*	4.2*	9.5+
10 12	8,7	4.2*	5.2+	3,1	77.9	3.1+	3.1*	4.1*	4.2*	9.5+
11 13	5.3+	4.2*	5,2+	5.2*	47.1	3.1+	3.1*	4.1*	4.2*	9.5+
12 14	5.3*	3.5	5.2*	5.2*	84.9	3.1*	3.1*	3.1*	4.2*	9.5+
13 15	11.0	4.2+	5.2+	5.2*	133.4	3.1+	3.1*	4.1*	4.2*	9.5*
14 16	10.6	4.2*	5.24	5.2*	179.5	3,1+	3.1*	3.1*	4.2-	9.5*
15 17	18.8	4.2*	5.2*	4.8	202.7	3.1+	3.1*	4.1*	4.2*	9.5*
16 18	9.1	4.2*	5.2*	5.2*	158.3	3.1+	3.1*	4.1*	4.2*	9.5*
17 19	5.3+	4.2*	5.2*	5.24	83.6	3.1+	3.1*	4.1#	4.2*	9.5*
18 20	6.5	4,2*	5.2+	3.5	121.9	3.1*	3.1*	4.1*	3.1*	9.5*
19 21	6.6	4.2.	5.2*	4.2	130.9	3.1+	3.1+	4.14	5.1*	9.5*
20 22	14.9	4.2+	5.2+	5.8	180.5	5.1+	3.1+	4.1*	3.1*	9.5*
21 23	16.3	4.2*	5.2*	1.8	231.5	3.1+	3.1+	4.1*	3.1+	8.4*
22 24	15.6	4,2+	4.2*	5.4	205.1	3.1+	3.1+	3,1+	3.1+	8.4*
23 25	12.5	5.2+	5.2*	4.0	116.5	4.2+	3.1*	4.1*	4.2*	9.5*
24 26	10.1	4.2*	4.2*	4,2*	152.2	3.1+	3.1+	3.1*	3.1+	9.5*
25 27	4.8	4.2*	4.2+	3.1	166.1	3.1+	3.1*	5.1*	3.1*	9.5*
26 28	A . 2	4 . 2 +	4.2*	4.1	129.6	3.1+	3.1*	3.1#	3,1*	9.5*
27 29	6.2	4.2*	5.2+	5.2#	155.9	3.1+	3.1+	3.1×	3.1*	9,5*
28 30	5.3+	4.2+	5.2+	4.2*	78.8	3.1+	3.1+	3.1*	3.1*	8.4▲
29 31	5.3*	4,2+	5.24	3.0	53.5	3.1*	3.1+	4.1*	3,1*	9,5*
30 32	5.3.	4.2*	5.20	5.2#	56.0	3.1+	3.1+	4.1*	3.1*	9,5*
31 33	6.5	4.2.	5.2+	5.2+	68.1	3.1+	3.1+	4.1+	3.1+	4.5*
32 34	4.0	4.2+	5.2+	5.2+	73.3	3.1+	3.1+	4.1+	3.1+	9.5*
11 15	3.9	4.2+	5.2.	4.4	76.6	3.1.	3.1*	4.1×	4.2*	9.5*
34 36	5.5*	5.2+	5.2+	4.0	51.9	3.1+	3.1+	4.14	4.2*	9.5*
15 17	5.3.	4.2.	5.2	5.2	25.0	3.1.	3.1+	4.1.	3.1+	9.5+
36 38	5.3.	4.24	5.2	5.2.	21.2	3.14	3.14	4.1*	4.2+	9.5+
17 19	4.5	4.2*	5.2*	5.2*	43.5	3.1*	1.1#	4.1*	3.1*	9.5*
18 40	6.2	5.2+	5.2.	4.3	.91.8	4.2	5.1*	4.1*	3.1+	9.5+
19 01	5 9	5.2.	5.2.	5.1	133.5	4.2	3.1*	4.1*	3.1*	9.5*
10 11 2	1 5 1	5.2.	5.2.	5.2.	71.0	3.1.	1.1	4.1.	3.10	9.5+
	جديد ع	J & C =			r	~			*	

4

1

AMOUNTS IN NANOGRAMS/MAR3 MATRIX CORRECTIONS USING DRUM2

.

90 - 1 - 2

.

PAGE 2 OF 2

* MINIHUM DETECTABLE LIMIT, ELEMENT NOT FOUND .

UC DAVIS PIXE ANALYSIS FILE 31522 Segunia-giant forest / period 5 / stage 2 / part 2	ANALYSIS ON 02/26/86
AMOUNTS IN NANDORANS/MARK	

AMOUNTS IN NANOGRAMS/MAA3 MATRIX CORRECTIONS USING DRUM2

٠,

ε.

-

ID SLIDE	CC	N A	MG	AL .	S I	Р	S	CL.	к	C 🛦
1 3	0.238	35.9*	206.4	86.7	77.0	18.9*	14.9*	13.2+	7.0*	10.2
24	0.238	35.8*	28.6×	169.7	77.4	18,9+	14.9*	13.2*	7.6+	17.9
35	0.238	3H.3*	123.4	123.0	303.6	19.0*	15.0*	13.2+	18.3	31.2
46	0.238	37.6*	132.0	301.9	698.3	19.1*	15.0*	13.3*	61.7	88.7
57	0.238	36,3*	58 8*	197.7	272.0	19.0+	14.9+	13,2+	10.4	34.0
68	0.238	35.8*	98.0	21 . 5*	141.0 .	18.9+	13.0+	12.u*	7.6*	14.5
79	0.238	35.9*	28.6×	145.5	157.7	18.9*	14.9+	13.2+	1.1	13.4
8 10	0.238	36.8+	133.5	175.1	462.3	14.0*	15.0+	13,2*	34.0	41.5
9 11	0.23P	37.6*	27.4+	\$35.0	782.3	19.1+	13.9*	13.3*	66.3	82.5
10 12	0.23P	36.0#	285.8	320.0	863.0	19.2+	13.9*	12.1+	72.3	98.2
11 13	0.238	36.7*	27.1+	233.0	441.8	19.0*	15.8*	12.0*	37.2	50.5
12 14	0.238	36.2+	28.7+	125.0	280.1	19.0+	13.8*	12.U×	18.4	31.8
13 15	0.238	36.2*	26.8+	139.9	305.1	19.0+	13.8+	12.0*	17.7	27.0
14 16	0.238	36.6*	73.4	160.8	408.2	19.0+	13.8*	13.2*	26.2	40.2
15 17	0.238	37.0*	29.1+	239.8	585.3	19.1+	13.8+	13.2+	42.7	52.5
16 18	0.238	37.3+	29.3*	299.3	669.7	19.1+	13.9*	13.3+	52.1	71.6
17 19	0.238	36.4*	26.9+	14828	327.0	19.0+	13.**	12.0*	18.7	38.8
18 20	0.238	36.0*	76.6	A8.3	180.5	18.9+	13.8+	12.0*	7.8	50.3
19 21	0.238	97.1	63.9	205.0	231.8	19.0+	13.0+	12.0+	10.6	26.7
20 22	0.238	36.7+	123.9	170.5	455.5	19.0*	13.8+	13.2*	25.9	43.4
21 23	0.238	37.2*	119.6	2.205	\$55.7	19.1*	13.9*	13.3*	47.3	70.8
22 24	0.238	39.4+	29.3+	271.5	661.7	19.1+	15.0*	13.3*	57.7	73.7
23 25	0.238	36.44	54.7	195.4	318.2	19.U#	15.0+	13.2*	18.2	33.3
24 26	0.258	35.9+	26.7*	99.7	195.5	15.9*	13.8+	12.0*	13.4	23.7
25 27	0.238	36.3+	26.9*	195.4	303.2	19.0+	13.8+	12.0*	8.8	33.0
26 28	0.238	37.0*	158.9	217.4	513.7	19.1+	15.0+	13.2*	38.0	57.5
27 20	0.238	35.4+	27.4#	319.5	748.5	19.1+	13.9*	12.1+	58.5	72.8
28 30	0 218	38 0+	187.1	301.1	908.5	19.2+	13.9+	12.1+	82.8	87.2
29 31	0.238	36.9+	145.3	188.1	484.7	19.04	13.8*	12.0*	32.5	53.2
10 12	0 238	36 54	26.9+	157 7	109 2	17 7.	13.6+	12.00	23.9	43.4
11 22	0 238	36.5+	102.9	176.0	367 0	19.0+	13.6*	12.0+	29.7	43.0
12 14	0.238	37.2.	88.2	271.8	622.9	19.1*	15.9*	12.1#	44.2	57.0
11 15	0 218	35 5.	27 4.	371 5	743 2	19 14	13.9.	12.1+	61.8	82.0
34 36	0 218	18 14	27 7*	412 B	1017 1	19 24	13.9*	13.3+	87.3	125.6
15 17	0 238	35.0+	182.5	233.9	532.0	19.1+	13.6+	13.3*	40.2	44.5
36 38	0 238	35 9.	26 7.	123 2	184 3	18 9.	13.8+	12.0*	13.9	18.5
27 20	0.278	24.2*	26.94	188.3	121.4	17.7*	11.84	12.0*	19.1	36.6
37 37	0 238	16 7	27.1+	249.6	467.2	19.0*	13.8*	12.0*	33.0	35.0
19 41	0 238	37 9+	164.5	319.3	813.6	19.1	13.9*	12.1*	76.7	86.3
40 42	0.238	37.9*	27.6*	406.6	862.2	19.1+	13.9*	13.34	71.6	89.3

PAGE 1 OF 2

.

0/P ON 02/27/86

Π, .

~

.

UC DAVIS PIXE ANALYSIS FILE 31522 Sequuita-gtant forest / Period 5 / Stage 2 / Part 2

,

.

.

ANALYSIS ON 02/26/86 0/P ON 02/27/80

9 F

.

. .

PAGE 2 OF 2

. . . .

AMOUNTS IN NANOGRAMS/MAA3 Matrix corrections using drum?

.

. •

.

10 SEIDE	11	V	CR	MN	FE	NŢ	CU	ZN	BR	PB
1 3	5.3*	4.2*	5.2*	5.2*	24.7	3.1*	3.1*	4.1+	3.1*	9.54
2 4	5.3+	4.2*	5.2*	4.9	20.9	3.1+	3.1*	4.1*	3,1#	9.5*
3 5	5.3*	5.2*	5.2+	5.2*	64.0	4.2*	3.1*	4.14	3.1*	9.5×
4 ь	A_4	4.2*	5.2+	3.3	162.2	3.14	3.1*	4.1*	4.2+	9.5*
57	7.2	4,2*	5.2+	5.2*	65.2	3.1+	3.1*	4.1*	3.1*	9.5*
6 8	5.3*	4.2+	5.2+	4.4	20.7	3.1+	3.1*	4.le	3.1*	9.5*
79	4,7.	4.2*	5,2+	5.2+	41.1	3,1+	3.1*	4.1.	3,1+	9,5*
8 10	5.3*	4.2*	5.2+	5.9	103.0	3.1+	3.1*	4.1+	3.1*	9.5*
9 11	12.0	4.2*	5.2*	5.0	168.5	3.1*	3.1*	4.1*	3.1*	9.5*
10 12	13.0	4.2*	5.2*	5,2+	194.3	3.1+	3.1*	4.1+	3.1+	9.5+
11 13	10.1	4.2*	5.2*	5,2*	107.0	3.1*	3.1*	4.1+	3.1*	9.5*
12 14	4,2	4.2*	5.2*	5,2+	61.6	3.1*	3.1*	3.1*	4.2*	9.5*
13 15	5.3+	4.2*	5,2+	4.2+	67.9	3.1+	3.1*	3.1*	4.2*	9.5*
14 16	6.6	4.2*	5.2+	5.2*	.95.0	3.1*	3.1*	4.1*	4.2*	9.5*
15 17	5.0	4.2*	5.2+	3.5	122.8	3.1+	3.1*	4.1*	4.2*	9.5*
10 18	9,8	4.2*	5.2+	5.2*	154.9	3.1*	3.l×	4.1*	4.2*	9.5*
17 19	4.1	4.2*	5.2*	5.2	69.4	3.1*	3.1*	3.1*	4.2*	9.54
1A 20	5.3*	4.2*	5.2*	4.2*	40.7	3.1*	3.1*	3.1*	4.2*	9.5*
19 21	6.0	4.2*	5.2+	6.6	59.6	3.l+	3.1*	3.1*	4.2*	9.5*
50 55	5.5	4.2*	5.24	4.0	97.4	3.1*	3.1*	3.1*	4.2*	9.54
51 53	7.3	4.2.	5.2*	4 o	134.0	3.1+	3.1*	4.1+	4.2*	9.5+
22 24	10.2	4.2*	5.2+	5.4	157.8	3.1*	3.1*	4.1+	4.2*	9.5+
23 25	5.3*	4.2*	5 6	5.24	77.5	3.1*	3.1*	4.1*	3.1*	9.5*
54 59	5.3×	4.2*	5.2*	3.9	40.6	3.1*	3.1*	3.1*	3.1*	9,5*
25 27	9,5	4.2*	5.2*	5.2 ·	68.3	3.1*	3.1*	3.1*	3.1*	9.5+
39 58	6.2	4.2*	5.2*	5.2*	113.7	3.1*	3.1*	4.1*	3.1*	9.5+
27 29	10.0	4.2*	5.2*	5.2+	164.4	3.14	3.1*	4.1*	3.1*	9.5*
28 30	۹.2	4.2*	5.2*	·5.4	190.6	3.1*	3.1*	4.1*	3.1+	9.5*
30 3l	6.8	4.2*	5.2+	5.2*	101.0	3.1*	5.1*	3.1+	3.1+	9.5*
50 32	7.0	4.2+	4.2+	3.9	76.3	3.1*	3.1*	3.1+	3.1*	8.4*
51 33	5.3+	4,2*	5.2+	3.3	79.0	3.1+	3.1*	3.1*	3.1+	9.5*
52 34	10.5	4.24	5.2*	4.7	140.7	3.1+	3.1*	3.1*	3.1*	9,5+
13 35	12.6	4.2*	5,2+	4.5 /	169.5	3.14	3.1*	4.1*	3.1*	9.5+
\$4 36	16.2	4.2*	5,2*	5.2* .	235,2	3.1*	3.1*	4.1*	5.1*	9.5*
15 37	1.9	4.2.	5.0*	5.2*	123.8	3.1+	3.1*	4.1+	3.1+	9.5+
15 38	5.3*	3.7	5.2*	4 . t	33.1	5.1+	3.1+	3.1*	3.1*	8.4+
17 19	5.9	4.2*	4.2*	5.1	68.1	3.1*	3.1*	3.1*	3.1+	9.5*
18 40	11.9	4.2*	5.2+	4.2*	107.2	3.1+	3.1*	3.1*	3.1#	8.4*
19 41	8.7	4.2+	5.2+	4.0	1A1.0	3.1*	3.1+	3.1*	3.1*	9.5*
10 42	14.8	4.2*	5.2*	5,2*	206.0	3.1+	3.1*	4.1+	3.14	9.5*

.

* MINIHUM DETECTABLE LIMIT, ELEMENT NOT FOUND

UC DAVIS SEQUOIA-O	PIXE ANALYS	SIS T / PERIOD 5	FILE 31 / STAGE 2	523 / Part 3	ANALYSIS	ON 05159189	079 VN 02	/27/86	PAGE 1 OF 1		
		AMOUN TS Matrix 1	IN NANOGP Corrections	AMS/M##3 USING DRUM2							
D SLIDE 1 3 2 4 3 5	CC 0.238 0.238 0.238	NA 35.1* 34.5* 36.4*	MG 27.3* 27.0* 20.9*	AL 285.9 178.9 179.0	SI 601.8 401.8 339.0	Р 19,1* 19,0* 19,0*	S 13.6+ 13.6+ 13.8*	CL 12.1+ 12.0+ 12.0+	к 56.8 23.6 16.2	CA 60.9 42.2 33.9	
D SLIDE 1 3 2 4 3 5	2°3* 6°6 58°0 11	V 4.2* 4.2*	CR 5.2* 5.2* 5.2*	4N 6.8 4.2* 5.2*	FE 137.8 81.5 84.7	NI 3,1* 3,1* 3,1*	CLI 3.1+ 3.1+ 3.1+	ZN 3.1+ 3.1+ 3.1+	6R 3.1* 3.1* 3.1*	РВ 9.5* 8.4* 9.5*	

* MINIMUM DETECTABLE LIMIT, ELEMENT NUT FOUND

· · ·

 ${}^{\mu}$

UC DAVIS Sequuta-g	PIXE ANALY TANI FORES	SIS ST / PEPIOD 5	FILE 319 / STAGE 3 /	BART 1	ANALYSIS	UN 02/27/84	07P UN 02	/27/86	PåG	E I OF 2	
		AMOUNTS HATRIX	IN NANOGRA Corrections	MS/H##3 USING DRUM3:							
D SLIDE		NA	MG	AL.	SI	р	S	CL	к	C A	
1 3	0.238	292.7	27.5*	115.1	244.8	22.7+	17.7	15.4×	19.9	26.3	
24	0.238	294.8	50.4+	\$05.5	311.9	21.7+	41.4	14.4*	33.5	67.7	
35	0.234	347.3	24.9*	312.7	359,9	19.4+	48.6	13.3*	43.7	52.2	
46	0.238	22H.P	24.6*	158.3	258.8	20.4*	24.9	13.2*	20.1	37.7	
57	0.238	212.5	23.l*	110.2	156.9	19,3*	13.6	13.2*	18.8	31.0	
o H	0.238	163.2	23.0×	91.7	126.7	18.1*	15.0+	13.2*	0.3×	51.0	
79	0.238	317.2	23.3×	150.2	273.5	18.2*	30.8	13.3*	31.7	35,2	
8 10	0.238	411.3	23,4*	207.6	303.3	19,4*	45.0	13.3*	48.0	47.9	
9 11	0.238	238.3	26,2*	237.7	248.8	20.5*	27,1	14.4*	34,5	62.8	
0 12	0.238	98.7	24.4*	135.6	94.8	19.3+	18.2	13.2*	12.3	22.5	
1 13	0.238	114.5	21.5+	159.2	71.4	18.1+	20.5	12.1+	7.2	27.2	
2 14	0.238	189.1	21.7.	192.1	152.9	18.2+	16.2	12.1*	20.4	25.9	
3 15	0.238	222.8	23.24	202.3	231.9	18.2+	20.4	13.2+	33.0	40.9	
4 16	0.238	176.9	23.24	251.1	251.8	19.3	15.1+	13.2+	29.8	39.4	
5 17	0.238	283 2	21.3.	221 1	270.2	19 3.	20.2	13.3+	36.6	47.6	
5 18	0.238	200 0	20.04	130 5	245 6	21 6.	17 2+	14.1+	26 3	11 A	
7 19	0.238	160 8	23.04	93 6	154.6	16 1.	15 /1+	13.2+	15 1	25.3	
A 20	0 210	108 5	20 114	205 8	145 2	20 // 4	15.04	10 3.	12 0	21.8	
0 34	0 210	217 7	21 14	135 5	213.2	10 1.	16 14	11 24	25 /	21 6	
A 22	0.219	237.7	24 7.	101 5	215 0	20.54	15.1	1 1 1	26.3	18 4	
1 22	0.230	228+2	24.14	141.1	1110	20.0*	12.4	13.24	70.2	10.0	
2 24	0,230	101.4	74.0#	230.0	331.2	20.5*	10.0	13.3*	34.2	17 5	
<i>K K</i> 4	0.230	320.1	20.3*	144.5	410,0	×1.04	11.2*	12.3#	51.5	51.5	
3 25	0.238	244.5	24.74	134.2	367.4	19.3*	13.4	12.2	41.9	43.4	
4 26	0.238	205.4	r 5 . 5 *	155.0	544.1	14.24	24.1	13,3*	32.1	33.2	
5 27	0.238	262.4	23.3#	149.6	377.0	19.5+	17.5	15.5*	25.8	51.7	
6 2K	0.238	50.0*	152.7	115.7	258.0	19.3*	15.1*	13.2*	25.0	35.3	
7 29	0.236	244.3	23.1*	89,5	249.9	14,3+	15.1*	13.2*	13.7	22.4	
830	0.238	29.7*	147.0	63.6	195.1	19.3*	15.0+	13.2*	15.5	31.6	
9 31	0.238	163.0	55°6*	18.5*.	153.4	18,1+	15.0*	13.2*	8.5	12.1	
0 35	0.238	84.5	22°A¥	83.1	130.5	11.6	15.0*	13.2*	15"0	0.2*	
1 33	0.238	201.2	21.04	78.9	174.9	18,1*	13.3	12.1*	10.5	24.1	
2 34	0.238	136.5	21.5+	73.0.	173.1	18,1+	14.0*	12.1*	9.9	20.5	
5 35	0.238	122.9	21.0*	194.3	104.0	18.1*	16.5	12.1*	15.0	28.7	
4 36	0.234	94.3	21.5+	59.8	106.2	18.1*	10.7	12.1+	12.7	6.20	
5 37	0.238	46.3	21.3*	17.1+	37 8	10.9+	13.9*	12.1*	7.3.	6.2*	
6 3A	0.23A	84.4	21.4+	41.9	30.2	21.1	13.9*	12.1*	7.3*	9.1	
7 19	0.238	51.2	21.5+	129.3	72.9	17.0+	15.5	12.1*	6.9	10.8	
8 40	0.238	71.9	21.5*	121.9	160.4	17.04	14.0*	(2.1+	19.0	22.5	
0 // 1	0 214	26.0	172 3	62 H	248 1	14.2.	16 3	12.14	41 3	33 0	
	·· • € 20	5 O . **		C C					-	22.9	

. .

.

,

10 - 11 - 21

JC DAVIS Sequoia-g	PIXE ANALY: IANT FORES	SIS T / PERIOD S	FILE 3153 / STAGE 3 /	31 ANALYSIS Part 1	ON 02/27/86	07P UN 027	/27/86	PAG	E 2, 0F 2
		AMOUNTS Matrix (IN NANOGRAD	IS/M##3 JSING DRUM3					
) SLIDE	τι	v	CR	MN FE	NI	CU	ZN	96	PB
1 3	6.2*	6.1*	6.1*	5.7 69.3	5.1+	4.1+	5.1*	5.1+	10.3
24	6.6	6.1*	6.1*	6.1* 104.9	4.1+	4.1*	4.1+	4.1+	11.3
35	5.2*	5.1*	5,1*	5.1* 114.9	4.1*	4.1*	4.1+	4.1*	10.3
4 6	5,2*	5.1*	5.1+	5.1+ 68.1	4.1+	4.1.	4.1*	4.1*	10.3
57	5.2+	5.1*	5.1*	5.1* 50.0	4.1*	4.1*	4.1*	3.1*	10.3
68	5.1+	5.1+	5.1*	5.1+ 42.2	4.1.	3.1*	4.1*	3.1*	9.2
79	5.2+	5.1*	5.1+	5.1* 80.5	4.1+	3.1*	4.1*	3.1+	9.2
8 10	5.2+	5.1+	5.1+	3.8 A7.5	4,14	3.1+	4.1+	4.1*	10.3
9 11	6.2+	5.1*	6.1*	5.2 101.8	4.1*	4.1*	4.1+	4.1*	10.3
0 12	5,1+	5.1*	5.1+	5.4 37.0	4.1*	4.1*	4.1+	4.1+	10.3
1 13	5,1*	5.1*	5,1*	5.1* 36.9	4.1+	3.1*	4.1*	3.1*	9.2
2 14	5.2*	4.1	5.1*	5.14 50.6	4.1+	3.i*	4.1*	3.1+	9,2
3 15	7.1	5.1*	5.1+	5.1+ 74.1	4.1*	3.1*	4.1*	3.1*	9.2
4 16	5,2+	5.1+	5.1+	5.1+ 80.2	4.1+	4.1+	4.1*	3.1+	9.2
5 17	7.5	5.1*	5.1+	5.1# 92.3	4.1*	4.1+	4.1+	3.1*	10.3
5 18	6.2+	5.1+	6.1+	6.1* 79.2	4.1+	4.1*	4.1+	4.1*	11.3
7 19	5.1+	5.1*	5.1+	5.1+ 48.8	4.1*	3.1+	4.1*	3.1*	9.2
8 20	6.2*	5.1+	0.1+	6.1+ 63.8	4.1+	4.1+	4.1*	4.1+	10.3
9 21	5.2.	5.1+	5.1+	5.1* 62.9	4.1*	3.1+	4.1*	3.1*	9.2
2 2 C	5.2*	5.14	5.14	5.1* 81.6	4.1+	4.1*	4.1*	4.1*	10.3
1 23	6.2+	5.1+	6.1+	5.1+ 101.3	4.1+	4.1+	4.1+	4.1+	10.3
2 24	5.9	6.1*	6.1*	6.1* 115.9	4.1+	4.1+	5.1+	4.1+	10.3
3 25	5.2*	5.1+	5.1+	5.1+ 95.0	4.1*	4.1*	4.1+	3.1*	10.3
. 4 26	5.2+	5.1*	5.1+	3.8 82.9	4.1+	4.1+	4.1+	3.1+	9.2
5 27	6.5	5.1+	5.1+	5.18 86.5	4.1+	4.1*	4.1.	3.1+	9.2
6 28	5.2*	5.1+	5.1+	5.1+ 68.4	4.1*	3.1*	4.1*	3.1+	9.2
7 29	5.2+	5.1*	5.1+	5.1# 57.9	4.1*	4.1*	4,1+	3.1*	9.2
8 30	5.1*	5.1+	5.1+	5.4 48.1	4.1*	3.1+	4.1*	3.1+	9.2
9 31	5.1+	5.1+	5.14	5.1+ 31.6	4.1+	3.1+	4.1*	3.1+	9.2
0 12	6.1	5.1#	5.1*	5.1+ 33.9	4.1+	3.14	4.1*	3.1*	9.2
1 11	5 1.	5 1+	5.1+	5 1 43 4	4 1.	3 14	4.1+	U.1+	9.2
2 34	5.1+	5.1.	5.1+	5.1. 19.8	4.1.	3.1+	4.1.	3.1+	9.2
2 15	5 1	5 1+	5 1+	5 1+ 50 9	4 1 +	3.1.	4 1.	3.1.	6.5
1 16	6.5	5.1+	5.1+	51+ 297	4 1 4	U.1.	4.1.	3 1.	9.2
5 17	5 1.	4.1.	5.1*	5.8 11 8	3 1 4	3.1+	4.1.	4.1.	9.2
6 14	5 1.	4 1.	5.1.	5 1+ 10 4	3 1 4	3.1.	4.1.	4 1 .	9.2
7 19	5 1.	4 1 .	5.1.	1 2 2A I	3 1.	3.1.	4.1.	4 1 .	9 2
P 40	5.1.	4.1.	5.1*	5.1+ 53.9	1.1.	1.1+	4.1+	4.1+	9.2
9 4 1	5.2.	5.1.	5.1+	5.4 71.0	3.14	3.1+	4.1.	3.1.	9.2
0 42	5 14	5 1 -	5 1.	S 1	4 1.	3 1 4	4 1 .	2 1 .	6.2

R

* MINIMUM DETECTABLE LIMIT, FLEMENT NOT FOUND

1

ć

SEQUOLA-G	LANT FORES	T / PEPIND 5	/ STAGE 3 /	PART 2						
		AMOUNTS MATRIX	IN NANOGRA	MS/H**3 USING DRUH3						
SLIDE	CC	NA	MG	AL	. SI	р	S	CL	к	C 🛦
3	0.238	66.0	123.8	18,4*	42.1	19.1+	13.9*	12,1*	23.8	14.8
2 4	0.23A	27.8*	140.6	18.4+	24.1	18.1*	13.9*	12.1*	8.3*	7.9
5	0.238	29.5*	163.3	49.5	117.1	18,1*	15.0*	13,2*	13.5	10.0
16	0,238	30.2+	206.4	158.1	358.0	19.3*	15.1*	13.2*	35,7	47.5
5 7	0.238	274.7	23.1×	107.1	186.2	18.2*	15.1*	13,2*	15,2	27.0
6 6	0.238	29.5*	100.5	18.4*	94.0	18.1*	15.0*	12.1*	8.3*	12.2
9	0.238	29.3*	55.1	48.3	57.6	10.0	13.9*	12.1*	8.3*	10.2
4 10	0.238	56.14	154.5	99.3	250.2	18.2*	15.1*	13.2*	28.9	27.2
11	0.238	30.2*	186.1	103.1	360.0	18.2+	14.0+	12.1*	36.8	51.7
12	0.238	370.2	22.0×	151.7	441.6	18.2*	15.5	12.2*	40.3	51.9
13	0.238	291.A	21.8*	121.4	290.4	18.2*	14.0*	12.1*	40.1	34.5
2 14	0.238	167.5	21.6*	163.8	176.4	18.1*	12.7	12.1*	25.7	25.1
15	0.23A	169.4	21.4*	155.0	144.0	18.1*	14.0*	18.3	40.6	24.9
16	0,238	224.6	51.7*	105.8	225.7	17.0+	51.4	20.7	44.6	41.7
5 17	0.238	150.0	21.8 +	292.2	223.9	18,2+	14.0*	15.1*	41.2	46.0
5 18	0.238	171.9	21.8*	214.4	317.4	18.2*	14.0*	12.1*	30.7	50.4
1 1 9	0.23A	234.9	21.6+	84.2	511.0	17.0*	18.3	12.1*	15.1	56.3
20	0.238	110.3	21.5+	117.2	147.5	17.0+	14.0*	12.1*	7.3*	36,5
15 (0.238	105.7	21 . 5+	95.1	154.4	18.1*	12.1	12.1#	7.2	19.5
22	0.236	2H.1+	21.6*	128.9	205.1	18.1+	14.0#	12.1*	8.1	30.4
23	0.238	28.5*	153.5	100.5	330.2	18,2+	14.0*	12.1*	31.7	47.4
2 24	0.238	169.0	21.9*	173.4	537.8	18.2+	14.0*	12.2*	39.2	57.2
5 25	0.238	28.1*	74.0	103.2	164.5	18.1+	14.0*	12.1*	8,5	22.4
1 59	0.238	60.9	21.4*	89.4	96.5	18.1*	13.9*	12.1*	7.3*	10.1
5 27	0.238	28.1*	74.0	88.7	203.0	17.0+	14.0*	12.1#	7.3*	50.5
85 d	0.238	43.2	21.7*	158.6	285.7	17.U+	. 14.0*	12,1*	13.0	25.3
24	0.23A	28.6*	134.8	107.0	429.4	18.2+	14.0#	12.1*	20.7	34.9
30	0.238	124.2	21.9*	195.5	438.0	18.5*	14.0*	12.2*	43.9	55.4
31	n.238	51.8	21.5*	180.0	176.0	18.1*	14.0*	12.1*	19.8	31.5
32	0.236	59.5*	136.2	49,5	511.5	18.1*	14.0*	15.1*	11.1	27.4
33	p.23A	2A°I*	118.2	15.9	183.5	17.0+	14.0*	12.1*	12.6	27.8
2 34	0.230	5H°5*	97.3	97.9	231.5	18.1+	14.0*	12.1*	17.1	24.3
35	0.238	0.5A	21.7*	139.9	268.3	17.0*	14.0+	12.1*	55°0	36,1
1 35	0.238	31.1*	54*4*	102.3	215.3	19.3*	15.0*	13.2*	11.4	31.4
5 37	0.238	24.1+	29.6	90.4	172.8	18.1+	14.0*	12.1*	1.7	22.4
58	0.238	27.6*	55°8* -	56.0	49.3	18.1+	13.9*	12.1*	8.3×	23,5
39	0.238	50.5+	55*8+	37.5	A4.3	18.1+	13.9*	12.14	6.3*	12.3
3 40	0.238	54.4*	22.9+	61.4	116.7	18.1+	15.0*	13.2*	8.3*	6.2
9 4 1	0.23A	28.3*	43.4	79,1	244.4	18.1*	15.0*	12.1*	10.0	74.2
42	0.238	29.6*	32.1	105.0	293.1	19.34	15.1*	13.2+	17.3	36.2

· . . .

•

А.

н с. -

a≜GE 2 0F 2		6d	42.6	4Z*6	9.24	9.24	+2.9	9.2*	9 ° 2 *	9.2.	9°5*	9.24	9 ° 2 *	10.3*	10.3+	9.2*	10.3*	10.3*	9.2*	9.2*	4.2.4	10.3*	9.2*	10.3+	9.2*	8.2*	4°°6	10.3+	10.3*	10.3+	9 . 6	4.2*	9 . č +	4.2.	4°°6	10.3*	9.2+	4.2*	42.4	10.3*	10.3+	10.3*	
.7		НR	3.1*	3.1*	3.1*	3.1*	3.1*	3.1*	3.14	3.1*	3.1.	3,1*	3.1.	41.14	4.1+	4.1.	4.0.7	4.1.	4.1.	4.1*	4.1*	4.1*	4.1*	4.1*	3.1*	3.1*	4.1*	* *	4.1*	4.1.*	4°1×	4.1*	3.1*	4+	41°1	* - *	ü.l.*	4.1*	4.1*	4.1*	4.1*	4.1*	
02/27/86		NZ	41.1*	4.1.	4.1.	4.1*	4.1*	4.1.	4.1.	4.1*	4.1.	4.1*	4.1*	4.1*	41.1*	4.1*	4.1*	4	4.1.	4.1+	4.1+	4.1.*	4 . 1 *	4.1*	4.1*	4.1.*	4.1+	4.1.	4.1*	4.1*	4.1.	4] " 1	4.1+	4.1*	4.1*	4.1*	4.1.	4.1*	4.1*	*1.5	4.1*	4.1*	,
10 U/P		CU	3.1*	J.l.	3.1*	4.1*	3.1*	5.1*	3.1*	3.1*	3.1*	3.1*	3.1*	3.1*	3.1*	3.1*	3.1+	3.1*	5.1*	3.1+	3.1*	3.1.	3.1+	3.1*	3.1+	3.1*	3.1.	3.1*	3.1*	3.1+	3.1*	5.1+	5.1*	3.1*	3.1+	\$.1.	3.1*	5.1+	5.1*	3.1*	3.1*	3.1*	
0N U2/27/46		I Z	4.1.	4.1.	4.l*	4°7+	4.1.	4.1.	4.1.	4.1.	41.7	41.4	2.4	4.1.	4.1+	1.5	4.1*	4.1.	5.1*	3.14	3.1.	4.1.	4.1.	4.1*	4.1.	4 T . P	3.1+	3.1*	4.1+	4.1.	5.1*	4.1.	3.1*	4.1.	3.1+	4.1.	4.1.4	4.1.	4.1.	4.1.	4.1*	4.1.	
ANALYSIS		33	10.6	1.1	32.4	9,40	40.3	16.8	21.6	76.1	94.9	110.6	71.1	48.5	47.3	57.7	A1.5	10.4	52.0	1.96	34.1	56.4	88.9	104.9	34.9	20.6	23.2	56.2	63.6	109.7	61.8	8.94	4.44	· 63.8	72.8	64.2	54.5	16.8	30.6	79.6	65.1	77.9	
532 / PAHT 2	NHS/M++3 USING ARIM3	NH	5.1+	5.1*	5.1*	5.1*	5.1*	5.1*	6.1	5.1+	4.3	4	5.1*	5.1+	5.14	6.5	÷1+5	-0 -	5.1*	÷	5.1*	4.1	5.1*	5.1+	5.1*	5.1*	3.2	5.1*	5.1*	5.1*	5.1+	3.9	5.1*	5.1*	5.1*	5.1+	5.3	5.1	5.1+	5.1+	5.1*	*	
FILE 315 / STAGE 3 /	TN NANUGRI CORRECTIONS	CR	5.1*	5.1*	5.1*	5.1*	5.1*	5.1*	5.1*	5.1*	5.1*	5.1+	5.1+	5.1*	5.1+	5.1*	-1-5	5.1*		5.1*	5.1+	5.1*	5.1*	5.1 .	5.1+	5.1*	5.1.	5.1+	5.1+	5.1+	5.1*	5.1*	5.1*	5.1*	5.1.	5.1.	5.1.	5.1*	5.1+	5.1*	5.1*	5.1*	
SIS T / PERICID 5	AMOUNTS Matrix	>	5.1+	3.4	5.1+	5.1*	5,1*	5.1*	5.1*	5.1*	5.1*	5.1+	5.1*	5.1*	5.1*		5.1*	5.1+	* 1 *	5.1*	4.1.	*1.	5.1*	5.1*	5.1.	5.1*	4.1.	5.1*	5.1* ·	5.1*	5.1*	5.1*	5.1*	5.1*	4.1*	5.1+	5°1*	5.1*	5.1*	5.1+	5 °] + .	, i .	
GIANT FURES	·	11.	5.1+	5 T +	5.1+	5.0	5.2*	5.1*	5.1*	7.6	5.5		0.7	5.2*	5.2*	2.5	5,2*	1	4°7	5.14	4.7	7.5	5.24	1.0	5.14	5.1*	5.1*	5° 5	5.2*	в. ч	6.8	6 7	5.1*	5.2*	5°2	5.1*	5.1*		• T • 5	4 °	5.1*		
UC DAVIS Sequoia-		D SI IDF	2	- - -	2	4 6	5 7	9	6 4	9 10	11 6	0 12		214	21 5	4 10	5 17	6 1 8	19	8 20	12 6	10 22	1 23	22 24	3 25	14 26	15 27	24 2B	27 29	28 30	15 6;	10 32	51 33	52 34	55 55	54 36	15 37	56 38	17 39	5A 40	59 41	CP 01	

* HINIMUM DETECIAFLE LIMIT, ELEMENT NOT FOUND

UC DAVI Seguota	S PIXE ANALY -GIANT FORES	915 7 / PEPIOD 5	FILE 315 / STAGE 3 /	33 ' PART 3	ANALYSIS	ON 02/27/86	0/P ON 02.	/27/86	PAG	E, 1 OF 1
	v	AMOUNTS Matrix (IN NANOGRA	HS/H##3 USING DRUM3						
ID SLIDE	<u></u>	NA DO TI	HG	AL	81	ц Lo I	S	CL ·	ĸ	C A
24	0.238	29.48	24.3+	200.2	183.0	19.2+	15.0*	13.2*	8.3*	18.8
3 5	0.238	30.94	44.3	143.2	87.6	20.4*	16.1*	13.2*	8.3*	7,4
ID SLIDE	τŢ	v	CR	MN ,	FE	NT	CU	ZN	BR	PB
13	5.1+	5.1+	5.1*	5.1+	65.5	4.1*	3.1+	4.1*	4.1*	10.3+
24	5.i*	5.1+	5.1+	5.1+	40.4	4.1*	4.1*	4.1+	4.1*	10.3*
35	5.1*	5.1+	5.1+	5.1*	33.4	4.1*	4.1*	4.1*	4.1+	10.3*

.

* MINIMUM DETECTABLE LIMIT, ELEMENT NOT FOUND

4

.

.

.

.

с, ^с

•

19 10 - 1

• •

UC DAVIS PIXE ANALYSIS FILE 31541 Seoudta-giant forest / period 5 / stage 4 / part 1

AMOUNTS IN NANOGRAMS/M++3 Matrix corrections using drum4

ID SLIDE	CC	NA	MG	AL	S I	P	S	CL .	к	C.A.
1 3	0.238	169.4	22.0×	97.6	74.4	19,2+	56,8	12.6*	13.9	19.0
2 4	0.238	213.2	22.Ú±	18.6*	140.0	19.2*	71.4	12.0*	11.7	23,3
35	0.238	231.3	*1,55	124.9	139.2	19.2*	77.5	13.7*	21.7	23.4
4 6	0.238	211.5	20.8*	38.2	17.7	18,1*	56.6	12.6+	8.2*	15.5
5 7	0.238	149.4	19.5×	53.1	34.5	18,1+	29,7	12.0*	8.2*	10.4
6 A	0.238	110.5	20.7*	48.0	43.7	18.1+	27.6	12.6*	8.2*	6.1*
79	0.238	183.1	19.5+	72.6	62.4	17,1+	64.5	12.6*	9.3	15.1
8 10	0.238	252.0	+8.0S	17.5+	118.0	18.1*	57.5	12.6*	18.0	20.1
9 11	0.238	198.3	19.6*	110.0	129.4	17.1+	66.6	12.6*	14.5	31.0
10 12	0.238	65.5	19,4*	17.3+	18.5+	17.0x	59.9	12.6*	8.2*	6.1*
11 13	0.238	161.2	19.4*	49,3	17.4+	17.0+	23.0	12.6*	8.2*	10.4
12 14	0.238	188.9	19.5*	30.5	41.6	17.0*	27.7	12.6*	8.2*	6.9
13 15	0.238	219.7	19.5+	16.3*	93.3	17.1*	47.2	11.6+	8.2+	13.3
14 16	0.238	178.3	19.6+	9,4 . 3	107.8	18.1+	47.9	12.6*	16.0	25.6
15 17	0.238	224.7	19.6*	58.3	155.3	17.1+	44.9	11.0*	14.7	22.4
16 18	0.238	163.4	19.5*	77.0	91.6	17.1+	46.3	12.0*	10.3	20.2
17 19	0.238	157.9	18.5*	31.3	67.4	17.1+	53,2	11.6*	9.4	15.5
18 20	0.238	90.4	18.2*	76.7	58.0	17.0+	17.7	11.6*	10.0	14.6
19 21	0.238	120.6	18.3*	76.4	73.4	17.1+	30.7	11.0*	11.1	14.6
20 22	0.238	169.1	18.3*	65.0	116.2	17.1+	46.3	11.6*	18.6	24.7
51 53	0.238	148.5	19.6*	73.3	206.3	17.1+	40.1	11.0*	50.6	18.3
22 24	0.238	100.4	19.0*	167.2	90.1	17.1*	38.0	11.6*	19.5	21.4
23 25	0.238	141.7	19.5*	58.6	87.2	17.1+	52.9	11.6*	13.2	6.4
24 26	0.238	82.9	18.5*	84 . 8	64.7	17.1+	71.3	11.6*	14.4	6.1*
25 27	0.238	68.0	19.5*	56.9	63.3	17.0*	38.5	11.6*	9*5+	16.9
59 58	0.238	82.4	18.2+	38.3	72.5	17.0+	35.4	11.5*	9.1	7.6
27 29	0.238	116.2	19.5+	33.2	79,9	17.0*	37.1	11.6*	10.1	16.1
2A 30	0.238	97.0	18.2*	52.1	39.2	16.0*	38.5	11.5*	7.1*	7.5
29 31	0.238	63.9	18.2*	36.5	19.6	17.0+	34.0	11.5+	7.1*	6.1+
30 32	0.238	23.2*	70.2	30.0	25.9	16.0#	31.3	11.5+	7.1+	6.1*
31 33	0.238	23.3*	49.6	49.2	24.4	17.0*	59.5	11.5*	7.1*	6.1*
32 34	0.238	50.6	81.3	16.2*	50.3	17.0*	33.8	11.5*	7.1+	0.1*
33 35	0.238	72.8	19.4+	40.9	41.9	17.0+	45.3	11.5+	8.2*	6.1*
34 36	0.238	112.5	14+5+	10.2*	37.4	16.0*	45.7	11.5*	7.1*	6.1*
35 37	0.238	115.8	18.2+	10.2*	17.4*	10.0*	55.6	11.5*	7.1*	6.1*
36 38	0.238	33.3	18.2+	61.7	17.4+	15,9+	10.0	11.5*	7.1+	6.1*
57 39	0.238	95.0	18.2*	18,9	16.0	15.0*	29.6	11.5*	7.1*	6.1*
38 40	0,238	25.2*	18.2+	46.2	51.0	10.0*	4v.7	11.5*	10.2	6.1+
39 41	0.238	73.3	16.2*	34.8	71.1	10.v*	41.3	11.5*	7.1*	20.5
40 4 5	0.23R	126.4	18.2*	30.3	46.0	10.0*	31.5	11.5*	7.1*	6.1+

1

,

ar Triz

2 0F 2		Р.В.	11.1*	10.1*	10.1+	10.1*	9.1*	9.1×	10.1+	10.1*	10.1*	10.1*	10.1*	10.1*	10.1*	10.1.	10.1.	10.1+	9.1+	9.1.	9.1*	9.1*	10.1*	10.1+	10.1.	10.1*	10.1+	10.1+	10.1+	-		* · ·		9.1*	* T • •	4.1.	9.1*	6.1 *	6 1 *	9.1*	9.1+	9.1.
PAGE		ВŖ	40.4	4.0.4	40.4	4.0*	4 . 0 .	4.0*	4.0.	40.4	*0°7	u • 0 •	40.1	40*	4°0+	40.4	40,64	*0*7	3 o U #	- C -	3.0.	3.0*	3.0+	3.0+	40.1	5.0*	40°	5.0*	5.0*	3.0*	3°0*	3.04	1 0 1	3.04	3.0.	3.0*	3.0*	3.0+	3.0.	3 O +	3.0*	3. 0*
27/86		NZ	4,0,4	40*	40°7	40.4	40°7	4.0*	40.4	4.0.4	+0°n	40.4	40.1	40.4	40*	4.0.+	40*7	40.0+	40.4	4.0.4	40.4	40.4	4.0.4	4.0.4	40.4	40.4	40.4	4.0*	4.0.	# 0 * 1	40°7	4 O * D	4 0 *	40.1	40.0	40.4	40.0*	40°t	40.4	3.0*	40*	*0*1
U/P UN 02/		00	40°7	40*	4 O . 4	40.4	3.0*	3.0+	3.0+	40°7	3.0*	3.0*	M. 0.*	3.0*	3.0*	3.0.	3,0*	3.0+	3.0*	3.0+	3.0+	3,0*	3 。0*	3,0+	3.0*	3.0*	3。()*	1 ,0 ,	3°0*	1 , C 1	3.0+	3 . 0 .	3.0*	3. 0*	3.0*	3.0*	3 .0*	5. 0*	4 O *	3.0*	3.0+	3.0+
1 02/27/86		12	4.0.4	4.0.	40.4	4.0*	40.4	4.0*	4.0.4	2.4	4,0,4	40.7	4.0.	4,0+	4.0.4	4.0.	4,0,4	40.7	3.0*	4°0*	4 ° 0 *	3.0.	4,0,4	t. 0.	4.0+	40,4	ц. О.	3.0.	1.1	9. 0*	3°0*	3.0.	3.0.	40*7	4.0+	3.04	3.0.	3.0+	۰0 م	3.0*	3.0*	3.0+
ANALYSIS OF		ين 1	33.8	42.6	58.7	29.0	13.9	21.3	27.0	40.8	56.6	6 , 1	. 5.1.	15.0	24.6	43.7	56.6	50.3	22.5	. 27 . 7	28.1	43.2	54.8	45,1	29.3	25.7	23.2	21.4	22.b	11.2	5.8	7.7	11.2	12.0	13.0	F.1	6.1	40°7	9.4	12.6	25.1	9.1
1 Part 1	8/H++3 Bing drum4	NF	5,14	5.1*	5.1+	5.1*	5.1*	5.1+	5.1*	5.1.	5.1*	5.1.	5.1*	5.1.	5.1*	5.1*	1. [*	5.1+	*1.°	5.1+	5.1*	5.1*.	5.1+	5.1.	5.1+	5。1* `	5.1*	5.1*	5.1*	5.1*	5.1*	5.1*	5°,1¢	5°1+.	5.1*	3.5	4.7	5.1.	40.4	5.14	5.1*
FILE 3154	N MANGGRAM	Сн	5.1*	5.1.4	6.1.	5.1.	5.1*	5.1*	5.1*	5.1.	5.1*	5.1.	5.1*	5.1*	5.1*	5.1+	5.1*	*		5.1*		5.1.	5. L *	5.1+	5.1.	5.1*	5.1+	5.1*	5.1*	5°1*	5.1*	• <u>•</u> •	5.1.	5.1.	5.1*	5° – +	5.1*	5.1*	5.1+	5.1.	5.1+	5.1.
S / PERTOD 5 /	AMOUNTS I Matrix Co	2	5.1+	5.1*	5.1*	5.1.	5.1.	5.1.	5°1+	5.1*	5.1*	5.1*	5.1.	5.1*	5.1*	∕ 5°I∗	5.1*	5.1*	4.0+	5,1*	5.1*	4,0.*	5.1*	5.1.	4.7	5.1*	5.1*	5.1*	40°7	40.1	5.1*	5.1+	t, 0+	5.1+	5.1.	40*1	5,5	*v° n	*~*7	4 ° 0 •	40°7	5.0
PIXE ANALYSI IANI FUREST		11	5 "I*	5.8*	6.4	، ا •	5.1+	5.1*	5.1.	5°1*	5.1 *	5.1*	8,2	5.1*	5,1+	5.1+	5.1*	*		• •	5.1*	5.1+	* 	5.1.	5.1.		5.1.	5.1*	5.1.	5. •	<u>،</u> ا ،	5.1*	5.1.	5.14	5.1*	·	5.1*	5.1*	5.1+	5.1*	5.1*	5.1*
UC 04V13 F S€qU0IA-6]		to sline	-	2 4	35	4 6	5 7	6 8	7 9	A 10	11 6	10 12	11 13	12 14	13 15	14 16	15 17	16 18	51 71	14 20	19 21	20 22	21 23	22 24	11 25	24 26	25 27	25 28	1 29	24 30	10 31	50 32	51 33	52 34	13 15	54 36	15 37	56 3A	17 39	5A 40	10 41 50 41	10 42

.

.

6

* HIMINM DETECTABLE LIMIT, ELEMENT NOT FOUND

UC DAVIS PIXE ANALYSIS FILE 31542 Seguoja-giant forest / period 5 / stage 4 / part 2

ANALYSIS ON 02/27/86 0/P ON 02/27/86

9 1 a

AMOUNTS IN NANOGRAMS/M##3 Matrix corrections using druma

ID SLIDE	CC	NA	MG	AL	. ST	P	S	CL	ĸ	C A
1 3	0.238	95.4	18.1*	16.2*	16.3+	15.9*	16.0	11.5*	7.1*	6.1*
2 4	0.238	21.9*	39.0	11.8	16.3*	17.7	18.9	11.5*	7.1+	6.1+
3 5	0.238	32.4	90.4	16.2+	17.4+	16.0*	27.1	11.5*	7.1+	6.1*
4 6	0.238	85.1	18.3+	80.2	126.0	17.1*	28.4	11.6*	10.5	15.0
5 7	0.238	79.0	18.2*	34.0	49.8	16.0+	22.8	11.5*	7.1*	5.2
6 8	0.238	47.6	18.1*	15.0*	16.3*	15,9*	37.5	10.5*	7,1*	6.5
7 9	0.238	49.5	40.0	15.0+	16.3+	12.2	22.3	10.5*	7.1	6.1*
P 10	0.238	23.2	71.7	15.1*	47.6	14.9+	17.7	10.5*	7.1*	9.3
9 11	0.238	151.2	17.1*	44.1	176.9	16.0+	26.7	10.5*	10.9	10.5
10 12	0.238	95.2	17.2+	146.7	144.3	16.0+	40.0	10.5*	27.9	29.3
11 13	0.238	89.5	17.0*	15.1*	135.2	15.0*	36,7	10.5*	9.6	13.0
12 14	0.238	141.5	17.0*	23.3	46.5	16.0*	35.0	11.5*	7.1*	5.2
13 15	0.238	126.9	18.2+	16.2*	61.4	17.0+	26.9	11.5*	6.5	13.3
14 16	0.238	60.0	18.2*	66.0	62.6	16.0*	25.3	10.5*	7.1*	5.3
15 17	0.258	57.0	18.2*	78.5	53.2	16.0*	14.7	11.5*	7+1+	7.6
16 18	0.238	50,9	18.2+	39.7	66.0	16.Ú×	12.3	11.5*	7.4	14.7
17 19	0.238	46.8	18.2*	28.3	27.8	13.7	13.5*	11.5*	7.1*	6.1*
18 20	0.238	38,7	18.1*	10.2*	42.8	17.0+	13.5*	11.5*	7.1*	6.1*
19 21	0.238	47.3	18,2*	13.4	17.4+	17.0+	13.8	11.5+	8.2*	13.0
25 05	0.238	23.24	58.5	20.4	34.2	10.2	12.6	11.5*	7.1*	5.9
21 23	0.238	43,5	49.4	10.2*	34.1	17.0+	13.5*	11.5*	7.4	14.0
22 24	0.238	23.2+	19,4+	24.3	37.3	17.0+	23.0	11.5+	13.6	6.1*
13 25	0.238	23.1*	19.3*	39.0	17.4*	17.0*	31.3	11.5+	7.1+	6.l*
14 26	0.238	23.1*	28.9	14:0	16.3*	10.7	13.4	11.5*	7.1*	6.1*
25 27	0.238	23.2+	18.2*	24.4	17.4+	16.0*	· 13.5*	11.5*	7.1*	6.1×
16 28	0.23A	21.9*	21.6	27.1	28.7	11.7	14.5	11.5*	7.1*	7.0
17 29	0.238	37.8	18.1*	23.9	22.5	15,9+	13.5*	11.5*	7.1+	0.1*
18 30	0.238	49.5	18.2*	21.8	39.0	15.8	13.5*	11.5+	b.5	7.0
29 31	0.238	61.5	14.2+	15.0*	47.5	15.9*	13.5+	11.5*	7.1+	6.1*
10 32	0.238	34.2	18.1*	18.9	28.3	15.9*	12.4*	10.5*	7.1*	7.1
\$1 33	0.238	21.°*	29.0	18.4	30.2	15.5	12.4*	10.5+	7.1+	7.6
\$2 34	0.238	21.9*	28.6	26.8	32.1	15.9*	12.4*	10.5*	7.1*	5.8
\$3 35	0.238	21.9*	18.1*	26.5	. 36.0	15.9*	15.0	10.5*	7.1+	9,8
\$4 36	0.238	20.8*	75.5	15.1*	55,4	14.9+	14.6	10.5*	7.1+	10.5
5 37	0.230	55°0+	17.0*	50.3	68.1	14,9*	20.4	10.5*	7.7	11.0
16 38	0.238	20.7*	46.3	18.0	16.3*	14.9*	21.0	10.5*	7.1	5.1*
17 39	0.238	21.9+	16.9+	37.2	16.3+	15.9+	12.4*	10.5+	7.1+	5.1+
;A 40	0.238	23.2	16.9+	53.6	10.3+	20.8	12.4+	10.5+	7.1*	6.4
19 41	0.238	56.9	17.0*	50.0	43.3	0.6	13.5	10.5*	7.1*	13.8
10 42	0.238	41.9	17.0+	53.u	37.7	14.9*	9.7	10.5*	7.1+	6.0

	* * * * * * * * * * * * * * * * * * *	* * * * * * * *
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	M2233WWWWWWWWWWWA3333333334WWWWWWWWWWWWWW	ммммм • • • • • • • • • • • • • • • • •
	CMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM	ыңыылыы 0.4.4.4.4 4.4.4.4.4 4.4.4.4.4 4.4.4.4.4
	Zuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu	
		8 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M
8/н≠+3 8[Ng dRUH4	Σ Ν Ν Ν Ν Δ 3 3 3 3 3 2 N N 2 N N N N N N N N N N N	* * * * * 0
IN NANDGRAH		
AHUUNTS HATRIX CO	> 4 w a w a w a a a a a a w a a a w a w a	
		* * * * * * * • • • • • • • • • • • • • • • • •
	の し」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」	5 4 F 8 6 0

•

•

.

.

* HINIMUM DETECTABLE LIHIT, ELEMENT NOT FOUND

•

۰. ب

-

•

IC DAVIS IERUOIA-O	PIXE ANALYS	SIS T / PEPIOD 5	FILE 315 / STAGE 4 /	43 PART 3	ANALYSIS	UN 05/51/80	074 UN 05	/27/86	PAG	E_1 OF 1
		APOUNTS MATRIX	IN NANOGRA	MS/M++3 USING DRUM4						
· SLIDE	cc	NA	MG	AL	S1	P	S	CL	к	CA
• 3	0.238	22.1*	47.0	33.8	73.2	14.9*	12.4*	10.5*	7.1*	29.9
: 4	0.238	58.3	17.0*	28.0	29.9	14.9*	16.1	10.5*	7.1*	5.1*
5	@.238	50.1	17.0*	35.8	32.4	14.9*	13.8	10.5*	7.1*	5.1*
SLIDE	, TT	v	CR	HN	FE	NT	CU	ZN	BR	PB
3	4.1+	4,0*	4.0+	4.0*	17.6	3.0*	3.0*	3.0*	18.9	9.1*
4	4.1+	4.0*	4.0*	4.0+	16.3	3.0*	3.0*	3.0*	4.0*	9.1*
5	4.1*	4.0+	4.0+	4.0+	14.2	3.0+	3.0*	3.0+	4.U*	9.1*

,

.

9 1 4

1

* MINIMUM DETECTABLE LIMIT, ELEMENT NOT FOUND

蕭

*****

IC DAVIS	PIXE ANALY STANT FORES	SIS 1 / PERIOD 5	FILE 315 / STAGE 7 /	71   PART 1	ANALYSIS	ON 07/77/86	076 NN 057	27/86	PAGE	1 OF 2
		AMOUNTS MATR1X	IN NANOGRA	HS/M##3 USING DRUM7						
SLIDE	CC	NA	HG	AL	51	Р	8	ÇL.	ĸ	C.A.
3	0.238	96.5	18.34	16.0	14.1*	54.4	25.1	13.14	1.1	/.U*
4	0.238	60.3	1/.1*	32.9	17.0*	20.2	67.6	12.1*	8.0*	1.0*
5	0.238	47.2	17.14	25.1	18.0*	15.3	25.4	12.1*	8.0*	1.0*
6	0.238	56.5	10,1*	20.1	10.04	10.1*	17.6	11.1*	8.Uk	n.U*
· /	0.230	14.04	63.5	20.0	10.04	23.0	13.145	11.1#	8.0*	0.U*
· 8	AC28	19.0*	62.1	14.0*	16.0*	52.9	18.5	11.14	8.0*	6.0*
4	0.238	19.54	15.0*	14.0*	16.0*	16.1*	51.0	11.1*	/.0*	0.0*
10	0.258	14.6*	54.4	17.5	16.04	25.7	24.0	11.1*	7.0*	0.0*
11	0.238	19.6*	58.6	14.0#	16.0+	16.1*	43.5	11.1.1	7.0*	6.U*
12	425.0	18.5*	49.0	17.8	10.0*	11.9	14.2		7.0*	0.U*
1.5	0,258	101.2	15.1*	14.0*	10.0*	15.1*	14.0	11.19	/ . U #	0.0*
14	0.238	32.0	15.0*	13.0*	15.0*	15.1*	44./	11.1*	2.9	6.0×
15	0.250	13.0	50.2	15.0*	15.04	12.1*	33.4	11.1*	7.0*	6.0*
16	0.235	14.0*	44.4	14.0*	10.0*	23.0	43.1	11.1*	7.04	0.0*
17	0.234	44.5	15.04	43.4	10.0*	13.17	13.1710	11.1.	7.U#	6.UX
1.0	0.230	47.7	10.9	14 18	10.00	10.1*	36.3	11.1*	<b>7</b> A +	6.0*
14	0,230	E4 0	12,1*	10.1	10.0*	14.0	43.3		7	6.0×
20	0.250	20.4	1600	14,1*	10.04	20.4	30.2	11 14	7 0 *	6.0×
21	0.230	14.04	15 1.	14.17	10.0*	76 4	53.4	11.1."	7 0.4	6.0×
22	0.230	30.0	13.1.	12 1	10.04	n <b>J</b> . C	12 6	11 14	7+	6 0.0
23	0.230	17.0ª 5/ 7	16 14	32.01	10.04	43.2	53.5	11.1."	7.04	6.5
24	0.730	34.7	74 1	11 7	10.1*	10.0	30.0	11 14	7.0x	5 0 t
25	0.578	10,0*	1 L L L	1.3.7	10.00	1~.6	33.1	11.14	0.0W	· 6 () •
20	0.210	10+3-	43.5	14 14	16.04	21 5	13.1-	11 1.	7 0.4	6.0+
24	0.230	14 44	57 1	1 4 1 4	16 04	20.4	51 /	11 14	7 04	6.0+
20	1.23	18 44	71 1	33.0*	15.04	15 14	22 8	11 14	7	6.0*
20	0.218	18 5.	79 2	14 04	15.04	15 1.	20.6	11 14	7 0+	6 I.+
30	0 218	19.5	60 5	11.04	15 04	14 9	22.6	11 14	7	6 /1+
22	0.218	18 64	80.3	20.2	15 04	17.7	13 1+	11 14	7 0 *	6 04
. 17	0.230	30 0	45 /	11 4	15.04	10.2	31 20.3	11 14	7 0+	6.0+
1/1	0 248	18	58 9	12.04	15 0.	21.2	70 1	11.14	7 0 *	6.0*
15	0.218	18	76.5	18 04	15.0*	5 <b>1 1</b>	41 5	11.14	7.0+	<b>b</b> .0*
35	0.218	18 64	75 5	13.04	15.0+	25 9	15 1	11 14	7.0+	6.0*
17	A 21H	18 64	86 1	11 04 1	15.0+	21 4	23.4	11.14	7.0+	6.0*
1.9	0 218	18	15 14	65 6	13.6	17 8	29 1	11 1*	7.0*	6.0±
10	0.210	18	57.0	14 04	15 0.	15 1	<u>64</u> 6	11.14	7.0+	b.0+
37	1 248	10.0=	15 14	4.07	9.0	15.1.	117 9	11.1+	7.0.	15.2
41	0.51A	21 0	15	55 /	7.1	19.1	90.3	11 14	7 0*	6.0+
41	V.C30	E1." 19 6.	15 14	10 2	15 04	17.1	18 6	11 14	7 0+	6 0 4
ч с	v. e 20	10.04	13*1#	47,6	13,00	11.0	JU . U		1.07	0.0*

.

e -

.

.

Ŋ

0101A-6	PIKE ANALYSI Mani Fohest	S PEPTOD 5 . Amounts   Matrix cc	FILE 3157 / STAGE 7 / in nanngram Drrections u	1 P4RT 1 18/m**3 18ING DRUM7	ANALYSIS O	N 02/21/86	0/P UN 02/	27/86	99 4 1 99 4 1	2 0F 2
SI. IDE	11	>	CR	NH	FE	I N	CU	NZ	88	ВЧ
ñ	6.0*	5.0+	6.Û*	6 . U *	5.0*	4,0,4	40"7	4.0*	5.0*	10.0.
31	5.0*.	*:•: •:•	* 0 * S	5.04	5 * 0 <b>*</b>	4 0 ° 7	40°7	*0 * 7	* 0 * :	10.0*
۰ n	• • • •	° '	* <b>.</b> .	* 0 * 1	• • •	*	40°7	*	* - C *	*0*0*
•••	* ° °	ເ	*		* .	*	5°C		* <b>0</b> **	
~ ,		*= •	*. •		*	4	*		# = - = = - = = = = = = = = = =	
¢C I		*= *	- - -	2	- - -	4.0*	#0°7		*	*0*0I
•	*	2.5	#		* <b>-</b> - u	•0•4	# <b>0</b> • 7		*0*0	
		• • •			+0				1.0+	*0°6
: :			+0 - 5						1.0+	*0.6
						• • •	3.0.		3, 13+	+0 · 6
12	.0.	10 ° 1			40 · 7		3.0+	4.04	3 . U .	+ 0 • 6
<u> </u>		4 U =	- 0 - 5		4 · 0 +		1.0+	4.0.4	1.04	<b>*</b> 0 <b>*</b> 6
- 4	0	10.1		5.0+	5.04	. 0.	3.0*	4.0.4	3.0+	<b>6</b>
	- 0 - v	*0 · 0		10.5	40°	- 0 - F	3,0+	40.4	3.0*	9.0*
	6 2 9	÷0+	-0-2	+0.5	10.2		3.0+	4.04	3.0*	9.0*
0	- 0	1015	6.2	5.0*	+0.5	• 0 • 5	3.0*	4.0.	1.04	<b>6</b>
20	5.0*	5.04	• 0 • 5	5.0*	+0 -5	40.1	3.0*	4,0+	3.0+	40.9
512	.0.5	5.0*	5.0*	5.0+	5.0*	4 0.4	3.0*	4.0*	3.0+	9.0*
22	5.0+	5.0.	5.0*	5 °0+	5.0*	3.0.	3.0+	4,0+	3.04	+0°6
23	4.1	5.0*	5.0*	5.0+	5,0+	<b>،</b> ۵.٤	3.0+	4 . 0 *	3.0.	4 N * O *
54	5.0+	5.0*	5.0+	5.0*	5.0+	40.4	3.0*	40.4	3.0+	9°0*
25	5.0*	3.9	5.0*	5.0*	, <b>5.</b> 0+	4.0.4	4 O = 2	40.4	3.0+	40°6
26	5.0*	5.0*	5.0*	5 • 0 •	5.0*	4 ° 0 *	3.0*	40.4	5.0+	<b>0</b> .0
27	5.0*	4.0+	5.04	5.0	5.0+	<b>3</b> . 0 <b>.</b>	3.0*	40°7	3.04	*0* 6
28	٤.۶	40.4	<b>5</b> 0 <b>*</b>	, 5°0+	40.4	5.0.	3.0*	4 C 4	+ 0 <b>+</b>	•0•
29	5.0*	ਰ <b>ੰ</b> ਤ	5.0*	5°0*	40°7	5. 0.	- C+	40°7	# 0 #	*0°6
30	• 0•	5°0+	5°0	*0*s	5.0+	* <b>.</b>	8 ° 0 *	4.0.4	# 0 #	10.0*
51	5°0*	# 0 <b>*</b>	5.04	2°C+	*0 * T	5 . C +	5.0*	* 0 * :	40° 1	*0°5
32	*0°4	* : -	*D•0	5.0	* <b>0</b> *	*0 ° 1	*0*C	# 	* . * .	40°6
33	0.1	0°1		2 * C * .	*0 ° r	• 0 • 5	*)•7	4 ° C 4	40. 7	*
74	2.04		*D*C	*0°.1	* <b>0</b> *	* - • ·	40°5	* <b>-</b> - *	* <b>0</b> *	* ) · ·
35	د <del>،</del> ۲	40.4	5.0*	2.0*	*0°7	3° C*	3.04	40°7	40°7	40°6
36	5.0*	*0°n	*0°5	5°0*	40.4	5 ° 0 *	3.0*	40.4	40.4	40°
37	5.0*	¥*7	5.0*	5 °0+	40°7		3°0*	40°7	# 0 # +	4°°6
38	*0* •	40.0	5°0*	5° व	4 ° ° *	5.0*	3.0*	4 ° ° +	*0* 7	* 0 * 5
39	••••••••••••••••••••••••••••••••••••••	#0°	ວ ວ		<b>₹</b> 0.*		5.U#	*0 * F	5.0*	* <b>`</b> *
14.0	2°0*	o.	5°0+	5°0	* C *	* n *	¥0.5	4 *	* 0 * 1	* 0 * *
	*•••	40°7	τ. • •	<b>5</b> .0	2°0*	3°0*	* 0 * F		3.6*	4 0 ° 6
217	5.0+	4.6	5.0*	5°0*	4.0.4	3.0*	5. U *	<b>5.</b> U*	40.4	40.6
	MUMINIM *	+ OFTFCTAPLE	F I TMIT, FLF	MENT NOT FOUN						
					2					

.

ļ

		ÀHOUNTS HATRIX (	IN NANOGRA Corrections	HS/N++3 USING DRUH7						
SLIDE	CC	NA	MG	AL.	SI	P	S ,	CL	ĸ	CA
3	0.238	18.6*	57.2	38.9	15.0+	18.0	27 1	11.1*	7.0×	6.0*
4	0.236	19.6*	86.7	14.0*	17.4	16.1#	13.1*	11.1*	7.0+	6.0*
5	0.238	55.0	15.1+	13.0*	15.0+	22.2	55.0	11,1*	7.0+	6.0*
6	0.238	110.5	15.1*	24.9	16.1*	15.5	127.4	11.1*	B.U*	6.0*
7	0.238	19.6*	15.1*	24.4	35.8	10.1*	58.9	11.1*	5./	0.0*
8	0.238	24.1	48.4	14.0*	16.0*	10.8	13.1*	11.84	7.0*	0.0*
9	0.238	32.2	42.0	14.1*	16.1*	52.5	13,1*	11.1*	7.0*	5.0*
10	0.238	42.6	32.5	14.1*	15.0*	10.1*	45.3	11.1*	7.U*	6.U*
11	0.238	18.8*	52.5	14,1*	16.8	13.2*	73.1	11.17	7.UA 7.A.	0.0*
12	0.238	10.0*	50.0	13.0*	- 13.Ux	1/.0	31.3	11.14	7.04	D.U.#
13	0.234	10,3*	32.0	11.0	10.0*	10.14	37.7	11.1	7.UR 7.0-	0.U#
12	0.238	27,4	23.0 15 1.	123	15.0#	17.1*	24.4 68 0	18.8H	7.0#	D.U# 6.0+
10	0.230	10.08	12.1*	42.3	15.0*	15 14	50.6	11.1"	7 0.	6.0*
17	0.230	10	F1.0	11 0+	10.2	15.17	31.3 74 // (.)	11.14	7 0.	6 0 A
10	0.236	10.0*	77 4	13.0*	15 0+	13.4	10 1	11.1.	7 0.	6 0+
20	0.218	26.24	17 2	13 0+	15 0+	22 5	19.4	11 14	7.0+	6.0+
21	0.238	20.5	15.0*	11.0.	15.0	15.4	30.3	11.1#	7.0+	6.0#
22	0 218	18 5+	15.0*	45.3	15.0+	15.1+	19.8	11.14	7.0+	6.0
23	0.238	18.7.	15.1+	182.1	15.1*	17.8	18.6	11.1*	7.0*	6.0
24	0.238	20.9	94.7	13.0*	15.0*	19.1	13.3	11.1*	7.04	6.0*
25	0.238	19.5+	34.6	14.0+	16.0+	17.6	15.7	11.1+	8.0*	6.0+
26	0.238	22.6*	25.1	10.0*	18.0*	18,1+	17.4	13.1*	9.0*	7.0+
27	0.238	21.7	17.0+	16.0*.	18.0*	16.1+	17.2	13.1*	9.0*	7.0*
28	0.238	19,6*	39.3	15.0	16.0+	20.7	34,9	11.1*	8.0*	6.0*
29	0.23A	19.64	32.1	14.0*	16.0*	16.1+	44.8	11.1+	8.0*	6.0*
30	0.238	18.5*	42.1	12.1	16.0+	15.1+	27.5	11.1*	7.0+	9.5
31	0.238	19.5+	15.0*	35.0	16.0*	16.1+	32.2	11.1*	7.Um	6.0+
32	0.238	19.6*	15.1*	39,4	16.0*	27.3	55.9	11.1*	7.4	6.0*
33	0.23P	14.5*	49.3	14.0*	15.0*	15.1*	32.5 * 1	11+1*	7.0*	6.0*
34	0.238	18.6+	40.0	14.0*	15.0×	15.1	57.2	11.1*	7.0*	6.0*
15	0.238	18.4+	61.9	13.0#	15.0+	14.7	53.5	11.1*	7.0*	6.0*
36	0.238	18.5*	15.0*	13.0*	15.0*	13.7	32.7	11-1*	7.0*	0.0*
37	0.238	53.2	32.4	13.1*	15.0*	30.5	13.1*	11.1*	7.0*	58.2
38	0.238	69.0	15.1+	35.2	15.0*	15.1+	17.4	11.1*	7.0*	6.0*
39	0.238	25.9	15.0*	13.0*	15.0*	24.5	18.1	11.1*	7.0*	6.0*
4.0	0,23A	18.5+	56.7	15.04	15.0*	55.0	25.8	11.1*	7.0*	6.0+
41	0.238	34.5	15.0*	13.0*	15.0*	15,1+	43.7	11.1*	7.0*	6.0*
		18 5.	30 0	12 04	15 04	128	21 2	11 1#	7 0 *	6 0 ±

•

.

.

и и г П , Т и

.

.

TVAU C EQUUIA	S PIXE ANALYSIS -GIANI FOREST /	PERIOD 5 /	FILE 31572 STAGE 7 / 1	ART 2	ANAL YSIS (IA	1 02/27/46	07P UN 027	27/86	PAGE	2 0 2
		AFOUNTS IN	NANDGRAM	3/Han3						
		MATRIX COR	RECTIONS U	ING DRUMT						
SLIDE	11	>	чÜ	WN	FE	In	Cn	N.Z.	99	98 9
<b>F</b>	5.0*	4,0+	3.1	5.0+	4.0.4	3.3	3.0*	40.4	4.0.4	9.6*
9	5.0+	5.0*	5.0*	5.0*	5,0+	3.0*	3.0*	4.0*	4.0+	9°0*
ŝ	5.0*	4.0*	5.0*	5.0*	40.4	3.0.	7.8	40.4	4.0*	+0°6
-0	5.04	5,0+	5.0*	5.0+	5.0+	4.0+	3.0*	40.4	40°7	10.04
1	5.0+	5.0*	5.0*	4.0	5.0*	3.0+	3.(*	40.4	3.0*	4°°6
80	5.0*	5°0*	5.0+	5.0*	5.0*	40.0+	5.8	40.04	3.0*	40°6
•	5,1	5.04	5.1	5.0*	5.0*	4.1	300.6	*0°7	3.0*	<b>6</b> 0*
01	5.0*	5.0+	5.0*	5.0+	5 <b>,</b> 0+	4.0+	52.1	40.4	3.04	9°0*
=	5.0+	5.0+	5.0*	5.0*	5.0*	3.0*	74.6	40°7	3.0.	4°0*
12	5.0*	3.9	5.0+	5,0+	4.0*	3.0.	18.7	40.4	3.0+	9°0*
[]	5,0+	5.0*	5.0+	5.0*	5.0+	40*	6°2	40.4	3.0+	<b>*0</b> *6
15	5°,0*	5.0*	5.0+	5.0+	5.0+	40*	3.0*	40.4	3.0+	<b>6</b> .0*
16	5.0+	4.0.4	5.0*	5.0+	40.1	3.0+	3.0*	40.4	3,0*	<b>9.0</b> *
17	5.3	40.4	5.0*	1. 1. 1.	40.4	3.0*	3.0*	40.4	3.0*	+0°6
18	5.6	4.0*	5.0*	5.0.	4 O.+	3.0*	5.0+	3.0+	3.0+	4°°+
6	5.0*	4.0*	2.0+	5.0+	5.0*	3.0+	3.0+	40.4	5.0*	9.0*
20	5.0*	4.0*	5.04	5.0*	40.4	3.0+	3.0*	40.4	4°0+	<b>6</b> .0*
12	5.0*	4.0*	5°0+	5.0+	40.4	3.0+	3.0*	40.4	4,0,4	9°0*
22	7.0	40.4	5.0*	5.1	- 0 - P	3.0.	3.0*	40.4	4 ° 0 +	9°0*
23	3.7	40.4	5.0*	7.1	40*7	3.0+	13.4	40.4	4.0.+	+ 0 ° 6
24	5.0*	5.04	5.0*	5.0+	5.0+	3.0+	3.0*	40.4	40.4	10.0*
. 25	5,0*	5.0*	5.0*	5.0+	5.0*	3.9	3.0*	+0"n	3.0*	10.0*
26	•0•	5,0*	6.0*	b. ()*	5,0*	40.4	40.04	4 . 0 .	5.0*	10.0*
27	5.0*	5°0*	<b>6</b> .0*	5.0*	5.0+	40.4	40.1	40.4	4.0*	11.0*
28	5.0+	5.0*	5.0*	5.0*	5.0+	40°	3.0*	40.4	40.4	10.0*
29	5.0+	4.6	5.0+	4.4	5.0*	40.4	3.0*	40.4	3.0*	10.0*
30	5.0+	с. 5	5.0*	5.0*	5.0*	3.04	3.0+	4.0*	3.0+	40°6
31	6° n	5.0+	5.0*	5.04	5.0*	*0°7	3.0*	40.4	3.0+	4°°6
. 32	5.0*	4 .0 *	5.0*	5.0*	5.0+	3.0+	3.0*	40.4	3.0+	+0°6
33	5.0+	4 °5	5.0+	5.04	5.0*	3.0+	3.0*	40.5	3.0*	40°6
34	5.0*	4.1	5.0*	5.0+	5.0*	3.0*	3.0*	40.3	3.0*	40°6
35	B.2	4.0+	5.0*	5.0*	4.0*	3.0+	3.0*	40.4	3.0*	40°6
36	4.3	40.1	5.0*	J.o	4.0.4	3.0+	3.0+	40.4	3.0*	4°°0
- 37	5.0+	40.4	5.0*	3.4	5.0*	3.0.	3.0*	40.4	3.0*	+ 0 ° 6
38	5.0*	40.4	5.0*	5.0* -	40°n	3.0*	3.0*	40.4	4.0*	4 <b>0</b> °6
39	5.0*	4.0*	5.0*	5.0*	4 Ū *	3.0+	3.0.	40.4	3.0*	40.6
10	4.3	4.0*	5.0+	5.0+	40.4	3.0+	3.0+	3.0*	3.0+	9°0*
17	5.0*	40.4	5.0*	5.0+	40.4	3.0*	3.0*	3.0*	3.0*	40.9
42	5.0+	4.0*	5 ° U *	5.0*	4,0+	3.0.	3.0*	3,0*	3.0*	+n.e

* HINIMUM DETECIARLE LIMIT, ELEMENT NOT FOUND

. -=

C DAVIS EQUOIA-G	PIXE ANALYS	IS / PERJOD 5	FILE 315 / STAGE 7 /	73 Part 3	ANALYSIS	ON 05/51/84	U/P UN 02	/27/86	PAGE	1 OF 1
		AMOUNTS HATRIX	IN NANOGRA Corrections	MS/M##3 USING DRUH7						
SL 1DE	CC	NA	нG	AL	51	P	S	CL	к	C A
3	0.23A	18.5*	57.2	13.0*	15.0*	20,6	13.1*	11.1*	7.0*	6.0*
4	0.238	39,7	30.8	13.0*	15.0*	15,1+	22.5	11.1*	7.0*	6,0×
5	0.238	16.6	71.7	13.0+	15.0+	15,1+	10.0	11.1+	7.0*	6.0*
SL1DE	11	v	CP	MN	Ft	NJ	CH	ZN	8K	₽ĸ
3	5,0*	4 . Ü A	5.0*	5,0×	4.0*	3.0*	3.0+	4.0+	4.0.	9.U*
4	5.0+	4.0*	5.U+	5.0+	4.0*	3.0+	3.0+	4.0*	3.0*	4.U*
5	5.0+	4.0*	5.0+	5,0*	4.0*	3.0+	3.0*	4.0+	3.0*	9°0*

1.

• .

· .

97 - 4 - -

,

* MINIHUM DETECTABLE LIMIT, ELEMENT NOT FOUND

6

						•						•	
				s	1		•						
								-					
						- '							
			•										
						· .							
UC DAVIS	PIXE ANALY	SIS	FILE 31a	261	ANALYSIS	ON 02/07/86	07P ON 07	2/07/86	PAG	E 1 OF 2			
SEQUOIA-0	SIANT FORES	1 / PERIOD S	2 / STAGE 6 /	PART 1									
	AMOUNTS		FIN NANUGRAMSZMARS		-								
		MATHIX	LUMNELIIUNS	USING DRUM6									
10 81 105		N A	MC		6 1	<b>D</b>	•	<b>C</b> 1	•	<i>C</i> <b>A</b>		•	
1 3	n <b>2</b> 44	44 3.	36 1+	34 1	70.8	37 6.	11 14	27 34	18 1+	15 1.			
2 4	0.244	42 3.	34 14	29 0	128 7	36 64	30 3.	26 3+	17 1.	14 5.			
ĩŝ	0.244	41.2+	33.0+	35.5	93.1	34.6.	28.3.	25.3+	15.6	13 1			
4 6	0.244	43.4+	35.1+	37.0	120.7	17 6.	31.34	27 3.	18 1.	14 1+			
5 7	0.244	46.5+	36.3*	34.6*	156.8	39.7+	33.3*	29.4+	20.1*	16.1*			
6 8	0.244	43.3+	35.1*	32.5+	134.0	37.0+	31.3+	27.3*	10.1+	15.1+			
7 9	0.244	41.2*	33.0+	30.4+	34.9+	146.4	29.3+	25.3+	17.14	13.1*			
8 10	0.244	40.1+	32.9+	29.5	86.6	34.6+	28.2*	25.3*	17.1*	13.1*			
9 11	0.244	41.2*	33.0*	38.9	115.0	34.6*	29,3±	25.3*	17.1+	13.1+			
10 12	0.244	36.6+	30.1+	27.5+	93.1	95.2	223.7	22.3*	46.3	12.1*			
11 13	0.244	33,4×	26.9*	145.1	79.4	62.9	212.4	19.3*	28.5	10,1*			
12 14	0.244	34.4*	27.9*	87.2	51.7	88.3 .	198.3	22.0	13.1+	11.1+			
13 15	0.244	33.2*	26.8*	24,2*	76.4	92.5	196.4	16.7	23.8	10.1*			
14 16	0.244	33.2*	26.8*	72.6	73.7	64.6	191.0	19.3*	13.1+	10.1*			
15 17	0.244	33.2*	26.8*	66.7	78.2	79.9	143.2	16.5	13.1*	10.1*			
16 18	0.244	33.4*	101.1	39.1	61.1	80.5	179.5	19.5*	26.4	10.1*			
17 19	0.244	33.5*	27.0*	88.5	78.8	73.2	248.1	19.3*	67.4	10.1*			
18 20	0.244	32.6*	-26.0*	03.4	64.9	86.9	248.8	19.3*	154.6	16.1*			
19 21	0.244	32.5*	25.9*	70.3	87,6	M2.0	220.2	14.3*	110.9	23.0			
20 22	0.244	32.1*		30,4	17.0	74.5	00.0	17.0	12.1*	10.1*			
21 23	0.244	50.9*	24.0*	2C.l*	90.0 50 B	70.3	142.2	11.2*	1/.7	7.1*			
22 24	0.244	32.48	23.74	3/1 1.	01 1	00.0	271 /	10.3*	37.0	10.14			
23 27	0 244	32.3*	1° 25 0+	126 6	73.5	78 7	208 2	20 3+	78 2	10.14			
24 20	0.244	11 0+	28.24	25.5+	129.7	126 1	181.8	21.4±	87.5	41 7			
26 28	0 244	14 1.	27 9+	98.8	130.3	153 8	25.3	22.3+	26.6	12.1+			
27 29	0.244	34.1+	27.8+	230.3	94.7	29.5+	25.3*	22.3*	14.1*	11.1*		•	
28 30	0.244	34.3*	27.9*	277.5	108.6	29.6+	24.3*	22.3+	35.2	12.1+			
29 31	0.244	33.9*	27.1+	163.2	95.0	108.0	421.3	21.4+	14.1+	11.10			
30 32	0.244	34.0*	27.2*	97.6	106.7	131.3	410.8	25.1	38.0	11.1+			
31 33	0.244	36.7*	30.2*	42.4	61.3	111.3	301.7	21.3*	50.1	11.1*			
32 34	0.244	35.6*	29.1*	145.9	57.3	98.2	226.3	21.3*	14.1*	11.1*			
33 35	0.244	34,3*	27.9*	95.8	100.4	102.0	107.9	20.3*	13.1+	8.9			
34 36	0.244	34.5*	58.8	25.4*	124.0	121.6	195.5	20.3*	13.1+	10.9			
35 37	0.244	34.5×	28.0×	104.2	79.8	109.7	244.5	20.3*	14.1+	11.1*			
36 38	0.244	35.8×	28.1*	70.3	94.3	144,6	309.1	21.3*	30.6	11.1*			
37 39	0.244	35.7×	75.3	93.2	87.1	29.6*	292.3	21.3*	33.7	16.3			
38 40	0.244	34.6*	28.0*	158.3	85.3	147.5	164.8	21.3+	14.1+	11.1+			
39 41	0.244	33,6*	27.0*	188,9	80.0	111.2	220.7	20.3*	14.9	11.1*			
40 42	0.244	33.6*	27.0*	131.6	61.7	94.1	258.1	20.3×	54.6	11.1*		•	

• •

•

UC DAVIS PIXE ANALYSIS FILE 31261 Segunia-giant forest / period 2 / stage 6 / part 1 ANALYSIS ON 02/07/86 0/P UN 02/07/86

.

PAGE 2 OF 2

31 1 7

1

۰.

at in the second

#### AMOUNTS IN NANOGRAMS/M**3 MATFIX CORRECTIONS USING DRUM6

TO SLIDE	Τī	v	C.8	MN	₹F	NT	CU.	ZN	HR	PB
1 3	12.1=	13.0*	12.04	11.0*	10.0*	8.0*	7.0*	7.0+	12.0*	25.14
2 4	11.0+	12.0*	11.0*	11.0*	10.0*	7.0*	7.0*	7.0*	11.0+	23.1+
3 5	11.0*	12.0*	11.0*	10.0	10.0*	7.0+	0.0*	6.0*	11.0+	22.1+
4 6	12.1+	13.0+	12.0*	11.0+	11.0+	7.0*	7.0*	7.0+	12.0*	24.1*
5 7	13.1*	14.0+	13.04	13.0*	12.0+	8.0*	7.0*	6.0+	14.0*	28.1+
6 8	12.1+	13.0+	12.01	12.04	11.0#	8.0*	7.04	7.04	12.01	24.1*
7 9	11.0+	12.0+	11.0.	10.0*	10.0+	7.0+	7.0+	7.0+	10.0.	21.14
8 10	11.0.	12.0+	11.0+	11.0+	10.0+	7.0.	7.0.	7.0.	10.0	20.1.
9 11	11.0+	12.0+	11.0+	11.0.	10.0+	7.0*	7.0*	7.0+	10.0	21.1+
10 12	10.1	10.0+	10.0+	10.1	9.0.	.D.D.	6.0*	14.2	6.0+	17.14
11 13	A 0.	9.0+	B 0+	8.0.	7.0+	5.04	5.0+	5.0+	6.0.	13.04
12 14	9.0*	10.0*	9.0+	9.0*	8.0+	5.U.	6.01	6.41	7.0.	14.0+
13 15	8.0+	9.0+	8.0.	8.0*	6.6	6.0*	5.0+	5.0*	7.0.	14.0+
14 16	A.0+	9.0.	8 0.	8.0+	8.0.	6.0+	7 6	9.6	7 0+	13.0+
15 17	8 0+	9 0 4	8 0.	8 0.	7 0.	6.0+	5 0.	7 9	6.0+	13 04
16 18	8 0.	9.0+	8.0+	11.3	7.0.	6.0+	5.0.	5.0.	b.0+	13.00
17 19	H 0+	9.0+	8 0.	8.0+	13.6	6 0	5.0+	7.1	6 0+	13.0+
18 20	8 0+	9.0+	8 0.	8.0*	11.9	6 Ü#	5.0	12.2	6.0*	13.04
19 21	8 0.	9.0+	8.0.	8.0+	7.0+	5.0	5.0.	9.9	6.0±	13.04
20 22	8.0*	9.0	8.0*	8.01	7.0.	5.0.	5.0*	5.0	6.01	12.0+
21 23	8.0+	8.0+	8.0*	7.0+	7.0.	5.0*	5.0.	5.9	6.0.	12.0+
22 24	8.0+	9.0+	8.0.	8.0+	7.0+	5.0	5.0+	5.0+	6.0±	12.0+
23 26	8 0 +	9.0+	8.0+	8.0+	7.0.	5 0	5.6.	5.9	5 0+	12.0+
24 26	9.0+	9.0+	9.0+	8.0.	8.0.	6.0+	5.0*	5.0+	6.0*	12.0*
25 27	15 2	10.0+	9.0.	9.04	11 8	6.0*	6.0+	7.6	b 0+	13.04
26 28	9 0+	10.0+	9.04	9.0+	8 0.	6 0.	6.0.	6.0+	7 0.	14 0.4
27 29	9 0.	10.0.	7.5	9.0.	8.0.	6.0+	6.0.	5.0*	7.0.	14.0+
28 10	10 0.	10 0.	10 0+	9.0.	9.0+	6 04	6 0.	6 0.0	7 0+	14 0+
20 11	11 3	10 0+	0.0.	0.0.	8 fi e	6 0.4	6 0+	5.0+	6 0+	13 04
30 32	9 1 .	9.04	9.04	9 9	8 9	6 04	5 0+	5 0.	6 0+	13 0+
31 11	0 0.	10 0+	9 0.	9 0 4	8 0.	6 04	6 04	5.04	8 04	17 1.
12 14	7.0×	10.0+	7.0k	0 0.		4 1	6.0F	6.0k	0.0k	14 14
11 16	9.04	10.0+	9.04	9.04		6.5	5 0+	5.0+	7 0+	14 0+
34 36	30 6	10 0+	9.0.	9 (1+	A 7	6 0+	5 ()+	5.04	7 0+	14.04
16 17	0.04	10.0+	0.0+	0 0 4	4 0 <b>.</b>	6.0x	4 04	L 0.	7 0+	14.04
36 39	0.04	10 04	9.0+	9 0 4	8 0.	5.04 5.04	5.0×	10.0	7.04	14.04
17 10	9 0.4	10 04	7.V# 0.04	9.04 0 ()4	8 01	6 0'A	6 0 A	10.0	7 0 4	19.08
19 40	7.UF	10.0*	7.08	9 (i +	0.VW 8 //+	6.0×	5.0F	10.0 A 0.4	7 0 4	14 04
10 /1	9.07	10 04	0 0 ×	9.04	8 01	6 0.4	5 04	10.2	7 04	14.0*
J7 41 10 13		10.0+				4 2	2.UH 6.0.4	10.2	7.UH 6.Ú.	17,4-
40 42	7.08	10.00	7.08	7.04	0.0*	U . E	0.0*	0.0*	<b>U</b> _U#	3 J . V *

* MINIMUM DETECTABLE LIMIT, ELEMENT NOT FOUND

.

ī
												c
				•		1000 1000						
						•						
						*.						
UC DAVIS		919	E11 E 31	262	ANAL VSTS	ON 02/07/86	078 0N 02	/07/86	PAG	F 1 0F 2		
SEGUOIA-G	IANT FORES	T / PERIOD 2	/ STAGE 6	/ PART 2				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
			• •								,	
		AMOUNTS	IN NANOGR	AMS/H##3								
		PAIRIA (	0446611048	USING DRUMB								
ID SLIDE	CC	NA	MG	AL	SI	P	S	CL	к	CA		
1 3	0.244	34.7*	28.1+	144.5	66.4	103.7	271.0	21.3+	11.7	8.8		
2 4	0.244	33,9×	28.2*	211.8	78.8	101.9	352.9	21.4*	47.8	11.1*		
35	0.244	54.0*	27.2*	224.1	108.5	166.5	320.8	\$7.2	16.3	11.1*		
4 6	0.244	33.0*	27.0.	234.4	50.0	73 5	320.1	20,31	13.0			
5 / 6 A	0.244	13 4.	26.9+	24 3+	133 4	27 6+	338 7	20.3+	30 5			
7 9	0.244	33.8*	63.9	73.2	101.8	99.4	310.4	20.3*	29.0	11,1*		
8 10	0.244	33.7*	27.1+	135,4	99.4	109.4	328,5	21.3+	35.3	11.1*		
9 11	0.244	32.5*	90.3	24.4+	95.7	113.6	257.2	19.3+	30.5	37.3		1
10 12	0.244	32.5*	44.6	A1.1	74.8	101.1	297.5	19.3*	27.2	10.8		
11 13	0.244	32.6*	25.9*	. 97.4	68.7	99.5	320.5	19.3*	42.0	10,1*		
12 14	0.244	32.9*	26.1*	160.7	65.2	92.3	422.5	13.4	52.0	10.1*		
15 15	0.244	32./*	20.0*	27 44	32.3	61.3	422.7	19.3*	42.4 54 6	IV.]* Ск		
15 17	0.244	32.1+	25.2	241.1	88.1	120.9	477.5	18.3+	86.0	10.14		
16 18	0.244	31.6*	24.9*	122.9	86.4	66.5	339.1	18.3+	37.8	10.1*		
17 19	0.244	31.2*	24.7*	83.0	58.4	76.1	212.8	18.3*	18.4	10.1*		
18 20	0.244	31.1*	24.7*	23.2*	60.7	83.3	197.7	18.3+	30.4	10.1+		· · · ·
19 21	0.244	31.5*	59.9	127.4	67.0	105.4	279.5	19.3*	52.7	10.1+		
20 22	0.244	36.7*	26.0*	5271.3	24.2* ,	62.8	181.0	10.8*	40.4	9.2*		
21 23	0.244	32.0*	44.4 35 44	140.0	43.4	81 4	231.2	19.3*	67.0	10.14		
22 24	0.744	32.3*	25.0*	23.24	62.2	94.8	191.7	19.3	15.4	10.1*		
24 26	0.244	31.5*	36.7	69.0	89.1	104.1	249.1	14.34	17.5	10,1*		
25 27	0.244	32.3*	25.8+	23.2*	79.5	79.3	279.3	19.3*	31.9	10.1*		
26 28	0.244	31.4*	24.8*	23.3×	85.7	96.4	289.4	19.3+	19.1	10.1*		
27 29	0.244	32.8*	170.8	68.3	82.7	98.2	315.9	20.3*	35.0	10.1*		
28 30	0.244	35.0*	28.2*	241.9	111.1	109.6	310.7	22.4*	15.5	11.1*		
29 31	0.244	35.34	47.5	155.7	82.3	20.04	210.7	21.3*	14.1*			
50 52	0.244	34./*	20.1*	101.0	124 4	105.5	255.7	22.34	15 1.	12 14		
31 33	0,244	34,78	28.24	221.1	156.1	30 7.	373.1	22.44	30.0	12.1*		
31 35	0.244	35.3*	28.4*	225.1	156.8	172.8	381.6	22.4*	15.2*	12.1*		
34 36	0.244	35.1*	28.3*	188.1	140.4	130.6	338.0	22.4*	31.6	12,1*		
35 37	0.244	34.7*	28.1+	155,9	103.8	145,8	188.5	28.1	14.1*	11.1*		
36 38	0.244	34.6*	28.1*	186.5	99.3	119.0	175.3	21.3*	15.8	10.9		
37 39	0.244	34.8*	28.1*	210.8	106.5	29.6*	304.4	22.4*	45.3	11.1*		
58 40	0.244	34.3*	27,9*	181.9	121.2	123,5	27.3*	22.3*	14.14	12.1*		
34 41 40 43	0.244	34.0*	20.U# 27 84	186 1	4 <u>4</u> 4	29 5.	25 1.	22 3.	57.1 14 1+	11 1*		
40 42	0.244		6/+OF	100.1	,	E 7 4 27 .						

y r te

UC DAVIS PIXE ANALYSIS FILE 31262 SEGUIOIA-GIANT FOREST / PERIOD 2 / STAGE 6 / PART 2

.

ANALYSIS ON 02/07/86 U/P ON 02/07/86

.

÷.

.

.

4

PAGE 2 OF 2

91 1 - 4

7

AMOUNTS IN NANOGRAMS/M**3 Matrix corrections using drum6

		MAINIX I	CORRECTIONS	USING DRUM6						
ID SLIDE	TI	v	CR	MN	FE	NT	CU	ZN	8R	PB
13	9,0*	10.0*	9.0*	7.4	8.0*	6.0+	·5.0*	6.0+	18.2	13.0*
24	9.1*	10.0+	9.0*	9.0*	8.0+	6.0+	6.0*	6.0+	6,0*	13.0+
35	9.1*	9,0*	9.0*	8.0*	8.0*	6.0+	5.0+	5.0*	6.0+	13.04
4 6	9.1*	9.0*	9.0*	8.Ú*	8,0+	6_U±	5.0×	5.U*	6.Ú*	13.0*
57	9,0*	9.0*	9.0+	8.0*	8.0+	6 0 .	5,0*	5.0*	6.0*	13.0*
6 8	9.0*	9.0*	9.0*	Baua	8.3	6.0+	5.0×	5.0	6.0×	13.0*
79	9.0*	9.Ű#	9.0+	A.0+	34.5 /	6.0+	5_U*	5.0*	6.0*	13.0*
8 10	9.04	10.0+	9.0*	9.0+	8.0+	6.Û#	6.0*	6_0×	6.0+	13.0*
9 11	8,0a	9.0*	8.0+	8,0*	5.9	6.0*	5.0+	5 ູ ປໍ່ *	6.U±	13.0*
10 12	8.0*	9.0*	8.0+	8.0*	7.0+	6.0*	5.0*	b.7	6.Û#	13.0*
11 13	15.0	°.0*	8.0*	6.1	7.0+	5.0+	5.0*	5.0*	6.0×	13.0*
12 14	8.0+	9.0*	8.0*	12.3	7.0+	5_0*	5.0*	7.9	6.0+	12.0*
13 15	8.0+	9.0*	8.0×	8.0+	7.0+	4.6	5.0*	5.0+	6.U#	12.0*
14 16	8.0×	9.0*	7.2	8.0+	5.8	5.0+	5.0×	5.0+	6.0+	12.0*
15 17	8.0×	9.0*	8.0*	8.0+	7.0×	5.0×	5.0*	14.6	6.0*	12.0*
16 18	8.0*	5.7	8.0*	8.0#	43.3	5.0*	5.0*	5.0*	5.0*	11.0*
17 19	8.0*	9.0*	8.0*	8.0*	8.5	5.0*	5.0*	5.0*	6.0+	11.0+
18 20	8.0*	9.0×	8.0×	8.0×	22.1	5.0*	5.0*	11,5	b.0×	12.0*
19 21	8,0*	9.0*	8.0*	8.0×	7.0*	5.0*	5.0*	5.0*	6.0*	12.0+
20 22	7.1+	8.1*	7.1*	5,3	50.9	5.UA	9,4	7.1	5.0×	10.0*
21 23	8.0*	9.0*	8.0×	8.0*	7.0*	6.0+	5.0*	12.2	6.0×	12.0*
22 24	8.0*	9.0*	8.0*	8.0*	7.0+	6.0+	5.0*	5.0*	. b.U+	12.0*
23 25	8.0×	9.0*	8.0+	8,1	9.0	5.0*	5.0*	7.0	· • • 0*	12.0*
24 26	6,0+	9.0+	13.5	6.0+	54.6	5.0*	5.0×	14.6	<b>b</b> ,0+	12.0*
25 27	8.0*	9.0*	8.U*	8_0#	26.A	8.6	5.0*	5.0*	6.0+	12.0*
59 58	8,0*	9.0*	8.0*	8,0+	66.4	12.9	5.0×	6.2	6.0*	12.0*
27 29	9,1+	9.0*	9.0*	8.0∗	8.0+	<b>6.1</b>	5.0*	8.9	6.0*	· 12.0*
28 30	9,1+	10.0*	9.0*	10.2	13.1	6.0*	6.0*	6.0+	6.0*	13.0*
29 31	9,0*	10.0+	9.0*	9.0*	6.0*	6.0*	6.0*	6.0*	6.0*	13.U×
30 32	9.0*	10.0*	9.0*	9.0*	8.0*	6.0+ ·	6.Û*	6.0*	7.0+	14.0×
31 33	10.1*	11.0+	10.0*	9.0*	9.0*	7,0★	6,0+	6.7	7.0+	14.0*
32 34	10.1+	10.0*	10.0*	8.3	9.0*	6.0+	6.0+	6.0*	7.UA	14.0*
33 35	10.1+	11.0+	10.0*	10.0*	9.0*	7.0+	6.0×	6.0×	7.0*	14.0*
34 36	10.1*	11.0+	10.0+	10.0+	9.0*	7.0*	. 6.Û*	6.0*	7.0+	14.0*
35 37	7.8	10.0*	9.0*	9.0*	8.0*	6.0+	6.0*	6.8	7.0+	14.0*
36 38	9.0×	10.0*	9.0*	9.0*	8.0*	6.0*	6.0*	6.0*	7.0+	14.0*
37 39	9.0*	10.0*	9.0+	9.0*	£.0*	6.0*	6.0#	13.1	7.0×	14.0*
38 40	10.0*	10.0*	9.0*	9.0*	9.0*	6.Ú*	6.0*	6.0+	7.0*	14.0*
39 41	10.1*	10.0*	9.0*	9.0+	9.0*	6.0*	6.0#	6.0*	7.0*	14.0+
40 42	9.0*	10.0*	9.0*	9.0+	8.0+	6.0*	6.0*	6.0×	7.0*	14.0*

.

* HINIHUM DETECTABLE LIMIT, ELEMENT NOT FOUND

.

L S	JC DAVIS Sequoia-1	PIXE ANALYS GIANT FOREST	IS / PERIOD 2	FILE 312 / STAGE 6 /	263 / PART 3	ANALYSIS	ON 02/07/86	076 NO 410	/07/86	PAG	E 1 OF 1
			AMOUNTS MATRIX	IN NANDGRA	MS/H##3 USING DRUM6						
1.0	SITOF		A1 A	MC		61	D	e		r.	<b>C</b> 1
10		0 344	74 8.	38.1.	AL	<b>3</b> 1	• • • •	201 4		- <u></u> , ,	LA
1	3	0.244	34.04	20.18	134.3		141.4	271.0	21.34	<i>e</i> 1.3	11.14
- 2	4	0.244	34.2*	27,3*	215.8	123.4	145.6	416.7	21.4*	46.1	11.14
- 3	5	0.244	35.1*	28.3*	144,7.	122.6	138,1	· 392.3	22.4*	45.9	11.14
4	6	0.244	34.0*	27.2*	200.1	94.4	146 9	385.9	20.3*	17.6	11.1.
10	SLIDE	TI	v	CR	MN	FE	NI	CU	ZN	88	PB
1	3	9.0*	10.0*	9.0*	9.0+	8.0+	6.0+	6.0*	6.04	7.0*	13.01
2	4	9.1+	10.0+	7.0	9.0*	8.0*	6.0*	6.0*	6.0*	7.0+	13.0
1	5	9 1 .	10.0+	9.0+	9.0*	8.0+	6.2	6.0.	6.0.	7.0+	13.0
		0.1.	10 04	0.0+	0.04	13 1	- <b>-</b>		7 6		11 0.

ъ÷.,

.

* MINIHUM DETECTABLE LIMIT, ELEMENT NOT FOUND

UC DAVIS PIXE	ANALYSIS	FILE	31461
SEQUOIA-GIANT	FOREST / PERIOD	4 / STAGE	6 / PART 1

ANALYSIS DN 02/07/86 0/P UN 02/07/86

• · · ·

PAGE 1 OF 2

н 1-л

1

.

AMOUNTS IN NANOGRAMS/M**3 Matrix corrections using drum5

ID SLIDE	C C	NA	MG	AL.	S1	P	S	CL	ĸ	C A
1 3	0,239	34.7*	27.6*	25.1*	37.5	27.4+	42.5	19.2*	13.1+	10.1+
2 4	0,239	30.4*	24.4*	21.9*	24.6*	23.4+	19.2+	17.2+	11.1+	9.1*
35	0.239	28.4*	23,3*	50.4*	34,8	22.3+	16.2+	16.2+	11.1*	9.1*
46	0.239	28.3*	22.3*	19,9*	33,9	21.3*	18.2*	15.2*	10.1*	8,0*
57	0,239	28.4*	22.3+	19,9*	26.9	22.3+	18.24	16.2+	16.1	8.0*
68	0.239	27.4*	22.3+	30.2	57.3	22.4*	18.24	16.2*	10.1*	8.1*
7 9	0.239	27.3*	22.3+	10.9*	29.9	21.3+	18.1*	15.2*	10.1+	6.0*
6 10	0,239	24.3.	22.3*	19.9+	26.5	21.3+	17.14	15.2*	10.1+	8.1+
9 11	0,239	27.3*	1.2+	18.8*	18.1	21.3+	17.1*	15.2*	10.1*	8.1*
10 12	0.239	26.7*	21.4*	18.9*	31.7	20.4*	119-1	14.2*	141.9	11.3
11 13	0.239	26.3*	21.2+	18.8*	33.3	20.3+	17.1+	15.2*	10.1*	8.1*
12 14	0.239	20.6+	21.4*	15,9*	47.6	20.4+	213.4	14,2*	9.0	24.5
13 15	0.239	26.6*	21.4*	18,9*	25.2	67.7	163.3	14.2*	10.1*	6_1×
14 16	0.239	26.4*	20.2*	18.9*	20.6+	79.5	81.3	14.2+	9.1*	8.1*
15 17	0.239	25,4*	20.3*	17.8*	21.3	62.9	100.3	14.2*	9.1*	7.Ú#
16 18	0.239	26.0*	20,5*	18.0*	23.5	81.1	371.9	14.2*	76.8	11.0
17 19	0.239	26.1*	50.0*	18.0*	20.5	70.7	553.5	14.2*	21.8	7.1*
18 20	0.239	25.9*	20,5×	16.0*	23.3	19.4*	380.4	13.2*	120.6	7.1*
19 21	0.239	25.4*	19.2*	10.8+	17.5	68.7	90.6	13,2+	9,1*	7.0*
50 55	0.239	24.2*	19.1*	16.8*	18.5+	69.4	29.5	13.2*	9.1*	7.0*
21 23	0.239	24.3*	19.1*	16.8*	18.5+	47.8	64.5	13.2*	18.8	7.0*
22 24	0.239	24.5*	19.2+	16.8*	25.4	61.1	150.1	13.2*	21.0	7.0×
23 25	0.239	25.4*	20.3*	17.8*	27.5	63.6	102.0	13.2*	9.1*	7.0*
24 26	0.239	25.3*	20.2*	17.8*	32.9	19.3*	77.3	17.0	10.8	7.0*
25 27	0.239	25.3*	20.2+	17.8*	19.5*	72.1	43.4	13.2*	9.1*	7.0*
26 28	0.239	25.3*	19.1*	17.8*	15.2	70.0	15.1*	13.2*	9.1*	7.0*
27 29	0.239	24.3*	19.1*	16.8*	50.0	55.5	37.1	13.2*	9.1*	7.0*
28 30	0.239	24.3*	19.1*	28.4	31.1	18.3*	39.3	13.2*	9.1+	7.0*
29 31	0.239	25.4*	50.5*	17.8*	26.0	54.8	103.6	13.2+	9.1*	7.0*
30 32	0.239	25.5*	20.3*	18.0	32.5	57.9	83.9	13.2+	9.1*	7.0*
31 33	0,239	25.4*	19.2*	21.7	31.2	41.7	52,8	13.2*	9.1*	7.0×
32 34	0.239	24.3*	19.2*	16.8*	37.5	52.7	36.9	12.8	9.1*	7.0*
33 35	0.239	24.3*	19.1+	16.8*	27.4	80.8	22.6	13.2*	. 9.1*	7.0★
34 36	0.239	25.2*	20.2*	17.8*	28.1	19.3±	32.4	14.2*	9.1*	7.0*
35 37	0.239	25.5*	20.3*	22.7	28.8	72.0	97.6	14.2*	9.1*	7.0×
36 38	0.239	25.4*	20.3+	17.4	14.9	61.4	78.3	13.2*	30.8	7.0*
37 39	0.239	25.4*	20.3*	51.2	20.1	66.3	57.2	13.2*	9.1+	7.0*
3A 40	0.239	25.3*	19.1+	15.5	29.2	54.7	30.2	13.2+	9.1*	7.0★
39 41	0.239	25.3*	19.1+	17.8*	26.6	57.5	27.9	13.2*	9.1*	5.5
40 42	0.239	28.5*	22.3*	19.9#	32.1	53.6	17.1*	15.2*	10.1*	12.0

UC DAVIS Seguoia-g	PIXE ANALYS Iant Forest	IS / PERIOD 4 /	FILE 3146 STAGE 6 /	1 Part 1	ANALYSIS	DN U2/07/86	0/P UN 02/	07/86	PAG	E 5 OF 2
		AMOUNTS I Matrix co	N NANOGRAM Rrections u	IS/M**3 ISING DRUM6		· · · ·				
ID SLIDE	ŢŢ	v	CR	MN	FE	NI	CU	ZN	BR	PA
13	8,0×	9.0*	8.0*	8.0*	7.0×	6 <u>.</u> 0*	5.0×	5.0*	8.0×	16.0*
24	7.0*	8.0*	7.0+	7.0×	7.0×	5.0*	5.0*	5.0*	6.0*	13.0*
35	7.0*	8.0*	7.0+	7.0.	6.0*	4.5	4.0*	4.0+	5.0+	11.0+
4 6	7.0+	7.0*	7.0*	·7.0*	6.0×	4.0 +	4.0*	4.0*	5.0×	11.0+
57	7.0*	8.0*	7.0*	7.0*	6.0*	5.0*	4.0*	4 <b>.</b> Ú*	5.0*	11.0*
68	7.0*	7.0*	7.0+	7.0*	6.0×	5.0*	4.0*	4.0*	5.0*	10.0*
79	7.0×	7.0+	7.0*	7.0*	6.0*	5.0×	4.0*	4.0*	5.0*	10.0*
8 10	7.0*	7.0*	7.0*	6.0*	6.0+	4.0*	4.0*	4.0*	5.0*	11.0*
9 11	7.0+	7.0*	7.0+	6.0*	6.0*	4.0*	4.0*	6.1	5.0*	10.0*
10 12	6.0*	7.0*	6.0*	6.0*	6.0+	4,9	4.0*	4.0+	5.0*	9.Ú*
11 13	6.0×	5.2	6.0*	6.0*	6.0*	4.0.	4.0*	4.0*	5.0*	9.0*
12 14	6.0*	7.0*	5.8	6.0×	6.0+	4.0*	4.0*	4.0*	4.0*	9.0*
13 15	6.0×	7.0*	6.0+	6.0+	6.U*	4.0*	4.0*	4.4	4.0*	9.0*
14 16	6.0*	7.0*	5.8	6.0*	b.0+	4.0±	4.0★	4.0*	4.0*	9.0×
15 17	6.0×	6.0*	6.0*	7.5	5.0+	-4.0×	4.0*	6.3	4.0*	9.0*
16 18	6.0*	7.04 ."	6.0*	6.0*	7.8	4.0*	4.0*	4.0*	4.0*	9.0*
17 19	6.0*	6.0*	6.0+	6.0+	5.0#	4.0×	4.0*	4.0*	4.0*	9.0*
18 20	6.0×	6.0*	6.0*	5.0	5.0+	4.5	4.0*	4.0*	4.0*	8.0★
19 21	9.5	6.0×	6.0*	5.0*	4.3	4.0+	4.0*	4.0*	4.0*	8.0*
20 22	4.5	6.0*	6.0*	4.0	5.0*	4.0×	4.0+	4.0*	4.0*	8.0*
21 23	6.0+	6.0#	6.0*	6.0*	5.0*	4.0*	4.0*	4.0*	4.0*	8.0*
22 24	6.0×	6.0*	6.0*	5.0*	5.0+	4.0*	4.0*	4.0*	4.0*	8.0*
23 25	6.0+	6.0*	0.0+	6.0+	5.0*	4.3 4	4.0*	4.0*	4.0*	8.0*
24 26	6.0*	6.0*	6.0*	6.0*	5.0*	4.0*	4.0*	4,0*	4.0*	9.0*
25 27	6.0*	6.04	6.0+	6.0*	5.0*	4.0+	4.0*	4.0*	4.0*	8.0*
26 28	6 0+	6.0.	6.0*	6.0*	5.0*	4.0+	4.0+	4.0*	4.0*	8.0*
27 29	6 0*	6.01	6.0*	6.0*	5.0*	4.0*	4.0*	4.0*	4.0+	8.0*
28 30	6.9	6.0+	n.0±	6.0+	4.1	3.0	4.0*	4.0*	4.0*	8.0*
29 31	6.04	6.0+	6.0+	6.0*	5.0+	4.0+	4.0*	4.0*	4.0+	8.0*
30 32	6 0 #	6.0+	5.3	6.0+	8.2	10.1	4.0*	5.2	4.0*	8.0*
11 11	4 04	6 04	6 04	6.0+	5 0+	4 0.	4.0+	4.0+	4.0+	8.0+
12 1/	6 0A	6 0+	4 7	5 0.	5 04	4 04	4 0+	4 0+	4.0.	8.0+
11 16	<i>n</i> 7	6.0x	4./ 6.0+	5.0+	5 0+	4 0.	4 0+	4 0+	4 0+	8.0+
33 33	4.7	7 0.	6 0.	6 04	5 0+	4 6.	4 0 -	4 0+	4 04	9 0.
34 30	5.VX	4 0 4	6 0 4	4 0.	5.05	4.04	4.04		. 0+	0 0+
JJ J/ 14 18	7.1		6 0+	6 A.	5 04	1 5	4.04	4.0+	4 0.	7.0× 8 0∸
30 30	0,0 <b>m</b>	0.UH 6 0.	6 0.	6 0.	5.04	2.2	<b>₩</b> .₩₩	4 0+	4 0 4	9 0-
31 37	0.0#	0.00	0.UH 4 0+	0.0# 6 0.4	5.0*	4 0	<b>₩.V</b> ₩ 4 0+	4.0 <b>4</b>	4 0+	7.UK 8 0.4
30 40	4.0	0,0# 6 0.	5 0 ×	6.04	5 0.	4.04	4 0.	4.04	4 0 4	8 0.
37 41		0.UH 7 A.	0.Ux	6 0.	9.VH 6.44	7.VH 4 0.	4.0×	4 0.	5 0.	11 0+
40 46	0,0*	/*	0.08	0.08	0 <b>.</b> V R.	~	~	~	<b>J</b> • U F	11.08

* MINIMUM DETECTABLE LIMIT, ELEMENT NOT FOUND

UC DAVIS PIXE	ANALYSIS		FILE	31462	
SEQUOIA-GIANT	FOREST / PERIOD	4 /	STAGE	6 / PART	2

• .

.

1

·

•

H F J

AHOUNTS	S IN	NANDGR	AHS/M#1	•3
MATRIX	CORR	ECTIONS	USING	DRUM6

10 SLIDE	CC	NA	HG	۸L	81	P	8	CL	к	C A
1 3	0.239	33.8*	26.6#	24.1+	22.3	52.2	20.2*	18.2+	12.1*	9.1+
2 4	0.239	34.8+	26,6*	24.1*	32.0	59,5	34,9	18.2*	12,1+	10.1*
3 5	0.239	32.6*	25,5*	23.0*	24.6*	43.8	19.2+	17.2+	11.1+	9.1*
4 6	0.239	32.6* 1	25.5+	22.0+	23.6+	46.7	24.4	16.2*	11.1*	9.1*
5 7	0.239	26.3*	20.2*	17.8+	27.4	32:0	16.1*	14.2*	9.1+	7.0*
6 8	0.239	25.3+	20.2*	21.3	23.0	59.5	32.4	13.2+	9.1*	7.0#
79	0.239	26.4+	21.3*	18.9+	25.4	61.3	53.1	14.2*	9,1+	7.0*
8 10	0.239	26.4*	20.2+	17.8+	19.5+	37.1	68,0	14,2*	36.0	7.0+
9 11	0.239	25.3+	20.2*	17.8+	18.8	69.6	15.i×	13.2+	9.1*	7.0*
10 12	0.239	25.2+	19.1*	17.8+	19.5*	43.9	15.1*	13.1+	9.1*	7.0±
11 13	0.239	25.3+	20.2*	17.8*	19.3	48.9 *	15.1+	13.2*	9.1*	7.0+
12 14	0.239	27.5+	21.3*	15.6	31.6	64.3	53,4	14,2+	15,4	7.0*
13 15	0.239	25.3*	20.2*	17.8*	19.5*	46.7	66.5	13.2*	9.1*	7.0*
14 16	0.239	24.4*	19.24	24.5	26.9	46.9	78.3	16.7	23.3	7.0*
15 17	0.239	24.2+	19.1*	16.8*	18.5*	41.4	58,1	13.2*	9.1*	7.0*
16 18	0.239	24.24	19.1*	15.4	18.5*	64.9	22.6	13.2+	9.1*	7.0×
17 19	0.239	25.3+	19.1*	16.7*	18.5*	57.8	14.6	13,2+	4.1*	7.0*
18 20	0.239	25.4*	20.2*	12.4	19+1	71.0	48.5	13.2*	19.1	7.0*
19 21	0.239	25,4*	\$0.2*	24.1	28.8	66.0	71.9	14.2*	9.1*	7.0*
20 22	0.239	25.34	20.2*	17.8*	22.1	19.34	44.6	14.2*	21.2	7.0*
21 23 -	0.239	25.4*	20.2*	17.8*	21.9	70.8	61.1	14.2*	16.3	7.0*
22 24	0.239	25.3*	20.2*	17.6+	19.5+	63.4	22.5	14.2*	9.1*	7.0*
23 25	0.239	25.3+	20.2*	17.8*	16.1	55,6	33.8	14.2*	9.1*	7.0*
24 26	0.239	25.5*	20.3*	17.9*	15.4	78.5	67.6	14.2*	62.9	7.0+
25 27	0.239	25.4*	20.2*	15.9	32.7	80,4	43.7	14.2*	9,1*	7.0+
26 28	0.239	25.8*	19.0	17.9#	31.1	52.1	123.6	14.2*	196.1	8.1*
27 29	0.239	25.4*	50.5*	17.8+	20.6*	63.7	57.2	14.2*	51.8	8.1*
28 30	0.239	25.3*	20.2+	17.8*	20.5*	63.9	25,6	14.2*	9.1*	7.0*
29 31	0.239	25.24	20.1+	17.8*	20,5	19.3+	16.1+	14.2*	9.1*	7.0*
30 32	0.239	26.3*	21.2*	18.8*	20.5*	66.3	16.1+	14.2*	10.1+	8.1*
31 33	0.239	26.4*	21.3*	18,9*	24.4	45.2	78,4	15.2+	10.1+	8.1*
32 34	0.239	29.5*	23.4*	20.9*	22.6*	50.1	57.9	16.2+	10.1*	8.1*
33 35	0.239	26.4+	21.3+	18.9*	17.6	52.5	62.7	14.2+'	10.4	8.1×
34 36	0.239	26.3*	21.2*	18.8*	20.5*	38.5	18.4	14.2*	10.1*	8.0*
35 37	0.239	26.3*	20.2*	18,8+	20.5*	47.6	28.9	14.2*	9.1*	8.1*
36 38	0.239	25.3*	21.2*	18.9*	21.6*	33.4	51,3	15.2+	13.1	8.1*
37 39	0.239	24.2*	20.2*	18.9*	20.5*	20, 3+	90.9	14.2*	10.6	8.1*
38 40	0.239	25.3+	20.2*	18.8+	20.5*	20.3*	41.1	14.2*	32.8	8.1*
39 41	0.239	25.4*	21.3*	18.9*	21.6*	21.4+	48.7	15.2*	115.1	8.4
40 42	0.239	26.2*	21.2*	19.9*	21.5*	21.3*	18.1*	15.2*	10.1+	8.0*
•••••				-	• -			-		
						•				

N 5 n, PAGE U/P ON 02/07/86 ************* ON 02/07/86 ANAL YSIS AMDUNTS IN NANDGRAMS/M++3 Matrix Corrections Using Drum6 • • ð n, FILE 31462 Stage & / Part - 1 UC DAVIS PIXE ANALYSIS Sequota-Glani Forest / Period .... له ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ -۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ SL I DE 2 

FOUND NOT ELEMENT LIMIT, DETECTABLE MININUM

							1				
UC	DAVIS	PIXE ANALYS	SI S	FILE 314	63	ANALYSIS	ON 02/07/86	076 ON 05	/07/86	PAGE	E 1 OF 1
S€	00034-0	GIANT FOREST	T / PERIOD 4	/ STAGE 6 /	PART 3						
			AMOUNTS Matrix	IN NANDGRA	MS/M##3 USING DRUM6			,			
D.	SLIDE	CC	NA	MG	AL.	<b>S</b> I	P	s	CL	ĸ	C A
1	3	0.239	25.2*	20,2+	18.8*	32.7	20.3+	17.1*	14.2*	9.1*	8.1*
2	4	0.239	25.3+	21.3*	18.9*	16.7	35.1	73.1	15.2+	10.1*	8.1*
3	5	0.239	25.2*	21.2+	18.8+	21.5*	21.3+	17.1+	15.2+	10.1+	8.0*
4	b	0.239	24.6*	20.4*	19.0*	26.0	20.4+	338,8	14.2*	15,1	8,1+
D.	SLIDE	T1	v	C.R	MN	FE	NJ	CU	ZN	BR	PB
1	3	6,0*	6.6	6.0×	6.0*	6.0*	5.3	4.0*	4.0*	5.0*	9.0*
2	4	6.0*	7.0*	6.0*	6.0*	6.7	4.0*	4.0*	4.0*	5.0*	10.0*
ŝ	5	7.0+	7.0+	7.0+	6.0+	6.0*	4.0.	4.00	4.0*	5.0+	10.0*
4	6	6.0+	7.0+	6.0×	4.7	6.0+	4.0+	4.0*	4,0*	4.0*	9.0a

1.1

1.1

.

.

ti.

.

.

* HINIHUH DETECTABLE LIMIT, ELEMENT NOT FOUND

.

K,

UC DAVIS SEGUCIA-O	UC DAVIS PIXE ANALYSIS FILE 31351 Segucia-giant forest / Period 3 / Stage 5 / Part 1			ANALYSIS ON 02/27/86 U/P (IN 02/27/86			2/27/86	PAGE 1 OF 2		
		AMOUNTS MATRIX	IN NAMOGRA	MS/M##3 USING DRUM5						
10 SLIDE	cc	NA	HG	AL.	51	μ • Η ΄ 7 •	5 1#5 9	CL 13 4+	к 272	C.A. 7.1.#
1 3	0.241	66.0	64.4	1/.34	14.00	10,74	100.0	17 74	22 2	10.5
2 4	0.241	62.9	51-1+	17.7.	23.1	15.3	98 1	13 4	17.8	49.9
55	0.241	74.7	20.01	17 3.	16 64	18 6.	132.2	13.3+	ł.5	20.1
4 6	0.241	53.1	10.7*	2 2	17 8+	20.3	173.4	12.3*	24.3	0.1*
5 /	0.241	52.1	17.8.	22 1	17 8+	24.0	160.5	12.3+	19.3	0.1+
<b>7</b> 0	0.241	107.5	17 8.	26 4	17 64	18.8	162.9	12.34	53.4	6.1A
8 10	0.241	106.4 66 B	17	40.8	17.6+	17.0+	158.2	12.3+	57,5	0.1#
0 11	0 201	66.0	17 8.	31.0	12.1	21.4	202.6	12.3+	37.4	10.0
9 11	0 241	22 1.	78 1	16.5+	17.8+	17.0+	249.5	12.3*	23.4	7.6
10 12	0 241	62 7	17.8.	19.4	16.6+	16.5+	280.6	12.3*	19.5	8.8
12 14	0 241	22.4+	74.6	22.6	10.0+	16.5+	298.3	12.3*	35.6	6.1+
13 15	0.241	18.0	58.8	15.2+	16.8+	15.5	242.3	11.3*	41.6	11.4
14 16	0.241	21.1+	74.7	20.2	16.8+	10.50	139.9	11.3*	42.1	b.1*
15 17	0.241	21.1*	82.3	15.1+	16.7+	16.5+	117.2	11.3*	27.9	6.1*
16 18	0.241	68.9	17.8*	28.1	16.6+	15.3	130.9	11.3+	27.4	0.1*
17 19	0.241	45.7	17.8*	74.9	16.8+	10.5+	155.0	11.3+	20.1	0,1*
18 20	0.241	71.0	16.7*	46.5	10.4	10.5+	149.7	11.3*	19.9	6.1*
19 21	0.241	32.2	16.7+	48.1	16.8*	16.5*	171.0	11,3+	31.6	10.6
20 22	0.241	66.7	10.8*	15.2+	16.8+	19.6	304.7	11,3*	68.1	10.7
21 23	0.241	69.1	10.8*	59.1	16.8*	15.5*	367.0	11.3+	50.2	5.6
22 24	0.241	51.1	16.8*	52.3	16.8+	12.1	417.3	11,3+	71.9	6.1*
23 25	0.241	21.4±	16.6*	43.4	16.84	19.4	351.6	11.3+	55.0	6.1*
24 26	0.241	20.2+	98.7	15.2*	15.7+	20.3	292.0	11.3*	40.4	6.1*
25 27	0.241	20.2+	84.4	24.4	15.7*	22.7	249.4	11.3*	31.7	6.1*
26 28	0.241	69.1	16.7*	50,2	16.0	16.5*	214.9	11.3+	17.0	16.4
27 29	0.241	21.2*	50,4	27.3	15.1	10.5+	178.2	11.3*	19.6	0.1±
28 30	0.241	21.3*	94.9	13.0	16.8*	20.7	233.2	11.3*	36.8	0.1*
29 31	0.241	50.5*	113.3	18.0	16.8#	12.5	239.5	11,3*	14.5	0,1*
30 32	0.241	21.1*	61.9	15.2*	16.6*	16.5+	191.0	11.3*	19.3	0.1*
31 33	0.241	20,1*	102.8	15.2+	15.7*	23.5	186.3	11.3*	18.4	0.1*
32 34	0.241	<b>51*5</b> *	51.2	17.3	16.8*	32,5	169.6	11.3+	23.0	0.1*
33 35	0.241	50.0*	54.5	14.1+	15.7*	15.5*	132.9	11.3+	33.9	C.14
34 36	0.241	21.9	16.6*	30.5	16.7+	15,5+	165.4	11.3*	23.8	0.1*
35 37	0.241	74.0	16.7*	21.0	15.7*	16.5	171.8	11.3+	18.5	D.1+
36 38	0.241	20.1*	16.7*	71.8	15.7+	27.4	172.2	11.3*	23.7	0.14
37 39	0.241	50+0+	50.2	26.6	15.7*	15.5*	134.8	11.3*	15.6	24.5
38 40	0.241	94,9	16.7*	42.H	15.7+	13,3	127.5	11.3+	15.0	0.1*
39 41	0.241	44.4	10.6+	40.2	16.7+	15.5*	101.6	11.3*	7.4	0.1*
40 42	0.241	21+1*	47.5	15.1*	16.8*	15.5#	135.5	11.3*	12.8	D.]#

and the second sec

•

•

10 SLIDE 1 3 2 4 3 5 4 6 5 7		AMOUNTS IN NANOGRAMS/H**3 Matrix corrections using drum5								
1D SLIDE	11	v	CR	MN	FE	4T	CU	ZN	нR	₽Ą
1 3	6.1*	5.0*	6,0*	6.0*	8,1	4.0*	590°5	55,2	4.0*	11.1*
2 4	8.1	5.0*	6.4	h.0+	5.0×	4.0+	4,0±	4.0*	5.0+	10.1*
35	6.0*	5.0*	6.0+	6.Û#	6.6*	4.Ū*	4.0*	4.0*	5.0*	10.1*
4 6	n_0+	5.0*	6.0*	4.6	5.0*	4.0*	4.0+	4.0*	4.0+	10.1*
57	5.0×	5.0*	5.0+	5.0*	5.0+	4.0*	4.0*	4.0*	4.0×	10.1+
6 8	5.0×	5.0*	5.0*	5.5	5.0*	4.0*	3.0*	4.0*	4.0*	10.14
79	5.0*	5.0*	5.0+	5.0×	5.0+	4.0*	4.0+	4.0*	4.0+	10.1*
A 10	5,0*	5.0*	5.0*	5.0*	5.0+	4.0+	3.0*	4.0+	4.0*	10.1+
9 11	4.6	5,0≭	5.0*	5.0*	5,0+	4.0×	3.0*	4.0*	4.0+	10.1*
10 12	5.0*	5.0×	5.0*	5.0*	5.0+	4.0*	5.0*	4.114	4.0*	10,1*
11 13	5.0*	5.0*	5.0*	5.0*	5.0+	3.2	3.0*	4.0+	4.0*	10.1*
12 14	5.0*	5.0	5.0+	5.U*	5.0*	4.0+	3.0*	4.0*	4 <u>.</u> U *	10.1*
13 15	5.0*	4.3	5.0*	4.8	5.0+	4,Ü#	3.0*	4.0*	3.0+	4.1×
14 16	3.9	5.0*	5,0*	5.0+	5.U*	4.0+	3.0+	4.0*	3.0×	4.1*
15 17	5.0+	5.0×	5.0+	5.0*	5.0*	4 <u>.</u> Ú*	3.0*	4.0*	3.0*	9.1*
16 18	5.0*	5.0+	5.0*	3.5	5.0+	4_0*	3.0*	4.0*	3.0*	9.1+
17 19	4.3	5.0*	5.0*	5.0*	5.0+	4.0*	3.0*	4.04	3.0*	9.1+
18 20	5,(1*	5.0*	5.0*	5.0*	5.0*	4 <b>Ú</b> #	3.0*	4.0+	3.0*	9.1+
19 21	5.0*	4.0*	4.6	5.0+	5.0+	3.0+	3.0*	4.0*	3.0+	9.1+
50 55	5.0*	5.0*	5.0×	4.5	3.5	3.0*	3.0+	4.0*	4.0*	10_1+
21 23	5.0*	5.0×	5.0*	5.0×	5.0*	3.0*	3.0*	4.0*	4.0★	9,1+
22 24	5.0*	5.0×	5.0*	5.0*	5.0*	4.0*	3.0*	4.0*	4.0*	9.1*
23 25	5.0+	٥.٥	7.A	5.U*	4.0*	3.0+	3.0*	4.0*	4.0+	9.1*
24 26	5.0*	5.0×	5.0*	5.0*	5.0*	3_0*	3.0*	4.0*	4.0*	9.14
25 27	3.5	4.0*	5.0*	5.0*	4.0*	3.0+	3.0*	4.0+	4.0+	9.1*
59 58	5.0*	4.0*	5.0*	3.5	4.0*	3.0+	3.0*	4.0+	4.0*	9.1*
27 29	5.0*	5.0*	5.0*	5.0*	5.0+	3.0+	3.0*	4.6*	4.0*	9.1*
28 30	5.0*	5.0*	5.0*	5.0*	5.0+	4.0,	3.0*	4.0*	4.0*	10.1#
29 31	5,0*	5.0×	5.0*	5.0*	5.0*	4.0*	3.0*	4.0*	4.0+	9.1*
30 32	5.0+	5.0*	5.0*	5.0*	5.0*	4.0,*	3.0*	4.0*	3.0*	9.1*
31 33	5.0*	5.0*	5.0*	5.0*	5.0*	5.0+	3.0*	4.0*	4.0*	9.1*
32 34	5,0*	3.9	5.0*	5.0*	5.0*	3.0*	3.0*	4.0*	3.0*	9.1*
33 35	5.0*	4.0*	5.0×	5.7	4.0*	3.0*	3.0*	4.0*	3.0*	9.1*
34 36	5.0*	5.0*	5.0*	5.0*	5.0+	3.0*	3.0*	4.0*	3.0*	9.1*
35 37	5.0*	4.0×	5.0*	5.0*	4.0*	3.0*	3.0*	4.0*	3.0+	9.1*
36 38	5.0*	4.0*	5.0+	2,9	4.0+	3,0*	3.0*	4.0	4.0*	9.1*
37 39	5.0*	4.0*	5.0*	5.0*	4.0*	3.0+	3.0*	4.0*	12.3	9.1*
38 40	5.0*	4.0+	5.0+	5.0*	4.0*	3.0+	3.0*	4.0*	4.0*	9.1*
39 41	5.0*	4.0+	5.1	5.0*	5.0+	3.0*	3.0*	4.0*	3.0+	9.1*
40 42	5.0*	5.0*	5.0*	5.0*	5.0×	3.0*	3.0×	4.0*	3.0+	9.1+

.. ·

1

UC DAVIS PIXE ANALYSIS FILE 31351 Seguo1a-giant forest / period 3 / stage 5 / part 1

ANALYSIS DN 02/27/86 0/P ON 02/27/86

.

PAGE 2 OF 2

0 1 1 1

* MINIMUM DETECTABLE LIMIT, ELEMENT NOT FOUND

UC DAVIS PIXE ANALYSIS Sequoia-giant forest / perio		SIS ST / PERIOD 3	FILE 31352 IDD 3 / STAGE 5 / PART 2		ANALYSIS	ANALYSIS ON 07777786		N/P DH 02/27/86		PAGE 1 OF 2		
		AMOUNTS MATRIX	IN NANOGRAD Corrections	MS/M++3 HSTNG DRUM5								
ID SLIDE	CC	NA	MG	AL	SI	Р	S	CL	ĸ	CA		
13	0.241	58.5	16.7*	19.9	16.6*	10.5+	238.2	11.3*	18.4	8.0		
24	0.241	21.1*	10.6*	43.5	16.7*	10.5+	173.7	11.3*	19.3	6.1+		
35	0,241	63.5	57.5	15,2*	15.7*	13.9	120.6	11.3*	33.0	6.1*		
46	0.241	41.3	10.6*	37.4	15.7*	15.5*	128.5	11.3*	39.9	6.1*		
57	0.241	72.5	16.7+	18.8	10.6+	15,5+	162.1	11.3*	37.1	6.1+		
68	0.241	28.3	30.8	21.8	16.8+	16.5+	243.3	11.3*	52.9	6.1+		
79	0.241	21.3+	59.9	15.2+	16.8+	16.2	267.4	11.3*	58.0	7.8		
A 10	u.241	29.0	16.7*	33.9	16.8*	17.8	192.1	11.3*	29.3	6.1+		
9 11	0.241	20.0+	61.2	14.1+	15.7*	15.5+	149.0	11.3*	23.5	6.1*		
10 12	0.241	64.6	16.6+	30.7	15.7+	15,5+	111.5	10.2+	21.3	8.4		
11 13	0.241	119.2	16.7.	20.3	15.7+	15.5+	163.7	11.3*	54.9	6.1*		
12 14	0.241	20.0+	65,9	14.1*	15.7+	15.5+	178.6	11.3*	42.3	6.1*		
13 15	0.241	20.1+	A9.8	16.7	15.7+	17.5	160.9	11.3+	43.5	6.1+		
14 16	0.241	20.0+	48.6	29.5	15.7+	22.6	95.7	11.3*	9.6	6.1*		
15 17	0.241	21.0+	16.6*	79.4	16.7.	10.5+	62.3	11.3*	7.1+	6.1*		
16 18	0.241	21.0+	16.6*	27.4	16.7*	15.5+	100.2	11.3*	16.7	6.1*		
17 19	0 241	47 4	16.7+	13.3	10.6+	10.5.	106.3	11.3*	24.7	6.1+		
18 20	0 241	16 3	15.5*	15.1+	15.7.	15.5+	135.8	11.3+	18.2	6.1*		
10 21	0 241	21 1+	16.64	35.0	16.7.	15.2	154.8	11.3+	20.3	6.1+		
20 22	0 241	20.0*	85 4	17 0	15.7*	14.0	123.9	11.3*	29.0	6.1*		
21 21	0 241	010	10.04	14 1+	15.7+	20 1	121.4	11.3*	16.2	6.1+		
22 24	0 241	21 24	73 4	16.6	15.7+	18 9	150.3	11.3+	31.1	6.1+		
21 25	0.241	52 5	16 7.	40.8	15.7*	30 3	164.5	11.3*	18.9	6.1*		
21 24	0 2/1	20 04	10.1 ···	18 1	15 7.	23 8	175.5	11.3	18.0	6.1+		
24 20	0.241	51 1.	H7 4	15 14	16 7.	15 5.	143 1	11 3.	20 0	b.1+		
27 21	0.241	21.1*	44.0	12.1*	10.7-	15.54	70 R	11.34	12.0	6.14		
20 20	0.741	21.0-	20.1	12.0	16 7.	16.0	57 4	11 3.	7.1+	6 1+		
21 24	0.241	24.0*	17 1.	20.7	16.7-	16 54	A3 7	11 1.	9 A	5 1 e		
20 30	0.241	24.1	70.0	34.3	10.74	10.5*	80.4	11.34	7 1+	6 14		
29 31	0.241	23+0*	74.0	13.1*	10.7-	17.0 44 E.	74 8	11.3"	4 2	5 1 A		
30 32	0.241	21.0*	72.9	12.1*	10,7*	10.2*	10.0	11,3*	14 0	6 1 4		
31 35	0.241	65.2	10.0*	20.0	10.7*	12,2*	70.7	11.3*	7 0	4.3		
32 34	0.241	75.5	10.0*	15.1*	16./*	10.5*	90.2	11.3*	1.0	D.2		
33 35	0.241	21.0+	16.7	22.5	10./*	10.5*	04.4	11.3*	0.1*	D.1.		
34 36	0.741	70.1	177*	15.5	1/.8*	1/.5+	101.0	12.3*	0.1*	0.1*		
35 37	0.241	44.6	30.8	25.3	16.7*	13.2	120.7	11+3*	/ + 1*	0.1*		
30 38	0.241	27.0	19.0	32.5	10.7*	19.0	141.1	11,3*	11.0	b.1*		
37 39	0.241	21.1+	A7.9	15.1+	16.7*	16.5*	133.0	11.3*	8.1+	6.2		
38 40	0.241	46.0	106.5	15.2*	16.8*	25.2	131.7	11.3*	7.1+	6.1*		
39 41	0.241	21 <b>.</b> 1+	118.6	31.3	16.7+	17.4	86.4	11.3*	8.1*	6.1*		
40 42	0.241	177.4	17.8*	40.7	16.8+	22.2	91.0	12.3*	8.i× -	6.1*		

•

tr tran

ł

UC DAVIS PIXE ANALYSIS FILE 31352 SERUDIA-GIANT FOREST / PERIOD 3 / STAGE 5 / PAPT 2

ANALYSIS ON 02/27/86 0/P UN 02/27/86

•

۰.

. •

**x**, 1

.

PAGE 2 OF 2

, **.** 

AMOUNTS IN WANDGPAHS/H++3 MATRIX CORRECTIONS USING DRUMS

.

ID SLIDE	11	V	CR	MN	FE	NT	CU	ZN	88	۲B
13	5.0*	5.0*	5.0×	5.6	5,0*	5.0+	3.0*	4.0×	3.0+	9.1*
24	5.0*	5.0*	5.0*	5,0*	5.0.	4.U*	3.0*	4.0.	3.0+	9.1+
35	5.0+	4.0*	3.3	5.0+	4.0+	3.0+	3.0*	4.0*	4.0*	9.1×
46	3.9	4.8	5.0*	5.0+	4.0*	5 Ò+	3.0*	3.0*	3.0*	9.1+
5 7	5.0*	5,0*	5,0*	5,0+	5,0+	3.0*	3.04	4.0+	3.0+	9.1+
6 8	5.U*	5,0*	5.0*	0,6	5.(+	4.0+	3.0+	4.0*	5.0+	10.1*
79	5.0*	5.0*	5,0*	5.0*	5.0+	3.0*	3.0*	4.0*	3.0*	9.1*
н 10	5.0*	5.0+	3.7	5.0*	5.0+	3.0+	3.0*	4.0*	3.0*	9.1+
9 1 1	5.0*	4.0*	5.0+	5.0+	4.0*	3.0+	3.0*	4,0★	3.0*	9.1*
10 12	3.9	4.0+	5.0*	4.0×	4.0+	3.0*	3.0*	3.0*	4.0+	9.1×
11 13	5.0*	4.0*	5.0*	5.0×	4.U*	3.0*	3.00	4.0*	3.0*	9.1*
12 14	5.0+	4.0+	5.0*	5.0×	4.0*	3.ü×	3.0*	4.0+	3.0*	9.1*
13 15	5.0*	4.4	5,0*	5.0*	4.0*	3.0*	3.0*	3.0+	3.0*	9.1*
14 16	6.1	4.0*	5.0+	4.0*	4.0*	3,0*	3.0*	3.0+	3.0*	9.1*
15 17	5.0+	5.0*	5.0*	5.0*	5.0*	3,0+	3.0*	4.0*	3.0*	9.1*
16 18	5.0+	4.0*	5.0*	6.6	4.0+	3_0×	3.0+	4.0*	4.0*	10.1*
17 19	8.0	5.0*	5.0*	5.0*	64.8	4,0÷	3.0+	4.0*	3.0*	9.1*
18 20	5,0+	4.0*	5.0*	5.0*	4.D*	.3.0×	3.0+	4.0*	3.0+	4.1*
19 21	5.0*	4.0*	5.0*	5.0*	4_0*	3.0+	3.0*	4.0+	3.0+	10.1*
50 55	5.0*	4.0*	5.0*	5,0*	4.0*	3.0+	3.0+	4.0*	3.0+	9.1+
21 23	5.1	4.0*	5.0*	5.0+	4.0*	3.0*	3.0+	4.0*	4.0*	9.1*
22 24	5.0#	4.0*	5.0*	4.4	4.0*	3.04	3.0*	4.0*	4.Ů*	9.1*
23 25	5.0*	4.0*	5,0*	6.8	4.0*	3.0*	3.0*	4.0*	4.0*	9.1*
24 26	5.0*	4.0*	5.0+	5.0*	4.0*	3.0*	3.0*	4.0*	3.0+	9.1*
25 27	5.0*	3.9	5.0*	4.0	4.0*	3.0+	3.0*	4.0*	3.0*	9.1*
59 58	5.0*	5.0*	5.0*	5.1	5.0+	5.0*	3.0+	4.0*	4.0*	10.1+
27 24	5.0*	4.0±	5.0*	5.0*	5.0*	3.Ú*	3.0*	4.0+	4.0*	10.1*
28 30	5.0*	5.0*	5.0+	5.0*	5.0*	4 Ü M	· 3.0*	4.0*	4.0+	10,1+
29 31	5.0×	5.0*	5.0*	5.0×	5.0*	3,0∗	3.0*	4.0*	4.0*	10.1+
30 32	5.0+	5.0*	5.0*	5.0*	5.0*	4.0*	3.0*	4.0*	4.0+	10.1+
31 33	5.0*	4.0*	5,0*	5.0*	5.0*	3.0*.	3.0*	4.0*	3.0*	10,1*
32 34	5.0×	5.0*	5.0*	5.0*	5.0*	4.0*	3.0*	4.0*	3.0*	10.1*
33 35	5.0*	5.0*	5.0*	5.0+	5.0*	4 <b>.</b> U *	3.0*	4.0*	4.0*	10.1*
34 36	5.0×	5.0*	5.0*	5.0*	5.0*	4.Q+	3.0*	4.0*	4.0*	10.1*
35 37	5.0*	5.0×	5.0*	5.4	5.0+	3.0+	3.0*	4.0*	3.0+	10.1+
36 38	5.0*	4.0	5.0*	5.0*	5.0+	3.0+	3.0*	4.0+	3.0*	9.1*
37 39	5.0*	5,0+	5.0*	5.0*	5.0*	4.0+	3.0*	4.0*	3.0*	9.1*
38 40	5.0+	5.0+	5.0*	5.0*	5.0*	4.0.	3.0+	4.0*	4.0*	9.1*
39 41	5.0*	5.0*	5.0*	5.0*	5.0+	4.0*	3.0*	4.0*	3.0*	9.1*
40 42	6.7	5.0+	5.0*	5.0+	5.0*	4.0*	3.0*	4.0*	3.0+	9.1*
40 42	6.7	5.0*	5.0*	5.0*	5.0*	4.0*	3.0*	4.0+	3.0+	4

* HININUH DETECTABLE LIMIT, ELEMENT NOT FOUND

н 1 .....

UC DAVIS Sequola-	PIXE ANALY: GIANT FORES	SIS 1 / PEPIOD	FILE 313 3 / STAGE 5 /	53 Part 3	ANAL YSIS	UN 02/27/86	076 00 05	/27/86	PAGE	1 OF 1
		AMOUNT: MATRIX	S 14 NANOGRA Corrections	MS/M##3 USING DRUH5		т. Тара Сала				
ID SLIDE	CC	NA	MG	AL	SI	р	s	CL	K	CA
1 3	0.241	41-1	101.2	10.2+	22.6	35.6	100.0	12.3+	8. *	6.1*
2 4	0.241	45,9	17.8*	93.2	17.6*	16.5*	123.9	12.3+	8.1≪	5.1*
10 SLIDE	ŤI	ก" ก	CR	MN	FF	N]	CII	ZN	BR	PB
1 3	5.0≠	ก" ท	5,4	5.0+	5.0+	4.0#	4.0+	4.0*	3.0+	9.1*
2 4	5.0≠	ภ	5,0+	3.7	5.0+	4.0#	3.0+	4.0*	3.0+	9.1*

.

.

· . ·

11

* MINIMUM DETECTABLE LIMIT, ELEMENT NOT FOUND

ID SLIDE	CC	NA	MG	AL 1	SI	P	S	CL.	ĸ	C A
13	0,239	25.5×	104.3	18.4*	19.9+	15.3	94.6	14.3+	9.1*	7.1+
2 4	0.239	87.1	31.8	22.5	27.2+	20.8+	139.1	18.4*	15.1*	10.1#
35	0,239	98.2	25.5*	25.1+	25.1+	24.8+	145.2	17.4*	11.1+	9.1.
46	0.239	70.7	24.4*	21.0*	24.1*	23.7.	194.5	16.4+	11,1+	9.1*
57	0,239	30.0	42.5	17.3+	18.9+	18.6*	255.8	13.3*	9.1+	7.1+
ь <u>8</u>	0.239	68.5	42.2	17.4*	16.9*	18.5	287.5	13.3*	8.1*	7.1#
79	0.239	4R.4	48,9	10.2+	17.6+	17.5×	196.4	12.3*	8.1*	6.l*
8 10	0.239	50.8	10.0+	40.4	16.7*	14.4	91.7	11.3+	8.1+	6.1+
9 11	0.239	36,1	18.9*	37.5	17.0*	21.7	182.6	12.3*	ð, 8	6,1¢
10 12	0.239	30.0	17.7*	16.2	17.6*	17.5+	100,4	12.3*	8.1+	6.1A
11 13	0.239	23.1*	18.8*	16.2+	18.6*	17.5*	73.2	12.3*	8.l*	7.1+
12 14	0.239	54°5*	19.9+	17.3+	18.6+	18.5*	86.8	13.3*	9.1+	7.1+
13 15	0.239	19.9*	37.1	12.9	15,7+	15.5+'	114.0	11.3*	5.6	6.1+
14 16	0.234	19.9*	16.6*	14.0*	15.7*	15.5+	127.4	11.3*	17.9	6.1×
15 17	0.239	49 ° 6	16.6#	25.1	15.7*	15.5*	123.3	11.3*	11.4	6,i#
16 18	0.239	68.2	16.6*	24.8	15.7+	13.3	98.7	11.3*	13.6	b.1*
17 19	0.239	33.5	16.6*	51.9	15.7+	15.5*	149.0	11.3*	12.5	· 6.1*
18 20	0.239	20.0*	54,4	13.3	15.7*	11.0	143.7	11.3*	8.9	0,1*
19 21	0.239	19.9*	34.4	55°0	15.7*	15.5+	82.5	11.3*	7.1*	6.1*
20 22	0.239	9.9*	7.7*	b.5*	6.3*	6.2×	16.2	4.1*	3.1	2.U*
21 23	0.239	25.8	17.7*	40.7	16.7*	24.5	63.5	11.3*	8.1*	5.5
22 24	0.239	20.9×	11.9	15.1*	16.7*	16.5#	55.8	11.2*	8.6	0.1+
23 25	0.239	20.9*	16.5+	15.1*	16.7*	15_4*	44.3	11.2*	7.1*	6.1*
24 26	0.239	19.8*	11.6	14.0+	15.7+	15.4+	33,3	10.2*	7.1*	6.1+
25 27	0.239	19.8*	16.6*	15.7	15.7*	17.5	29.7	11.2*	7.1*	6.1*
26 28	0.239	19.8+	15.4+	14.0*	15.7*	15.4*	41.1	10.2*	11.0	6.1+
27 29	0.239	19.8*	16.5+	14.0*	15.7+	15,4+	18.9	11.2+	12.0	6.1*
28 30	0.239	20.9+	17.6*	15.1+	16.7*	16.5+	36.0	11.2*	16.2	6.1*
29 31	0.239	18.7*	15.5*	12.9+	14.6*	14.4*	46.0	10.2*	19.5	5.0*
30 32	0.239	18,7*	15,4*	14.0*	14.6*	14.4*	<b>n5</b> °P	10.2*	12.9	5.0*
31 33	0.239	18.7*	15.4*	14.0*	15.7*	15.4*	34,9	10.2*	16.5	5.0+
32 34	0.239	19.8*	15.5+	14,0*	15.7*	14,4*	47.2	10.2+	50.0	5,0*
33 35	0.239	18.7+	15.4*	14.0*	14.6*	14.4.	33.2	10.2*	19.5	5.0*
34 36	0.239	20.9*	17.7+	15.1*	16.7+	16.5*	51.1	11.2*	22.0	6.1*
35 37	0.239	22.0×	17.6+	16.2*	17.7*	17.5*	36.1	12.3*	14.8	0,1*
36 38	0.239	22.0*	17.6*	10,1*	17.7*	17.5*	21.2	12.3*	8,1*	6,1*
37 39	0.239	20.9+	16.5+	15.1*	16.7*	15,4*	40.3	11.2*	8.0	6.1+
38 40	0.239	19.B*	16,5×	14.0*	15.7*	15.4*	46.6	11.2*	10.2	6.1*
39 41	0.239	20.9*	16,5*	15,1*	10.7+	16.5*	45.4	11.2*	7.4	6.1*
40 42	0,239	20.9*	17.6*	15.1*	16.7*	16.5+	38.0	11.2*	8.1×	6.1*

÷

UC DAVIS PIXE ANALYSIS FILE 31451 SFOUOIA-GIANT FUREST / PERIOD 4 / STAGE 5 / PART 1

Е,

AMOUNTS IN NANOGRAMS/M##3 MATRIX CORRECTIONS USING DRUMS

## ANALYSIS ON 02/27/86 0/P ON 02/27/86

.

1.

PAGE 1 OF 2

•

ŧ! 1 2

PAGE 2 OF 2

U/P ON 02/27/A6

ANALYSIS ON U2/27/86

10.1

UC DAVIS PIXE ANALYSIS FILE 31451 Seguula-Giami Fonest / Period 4 / Stage 5 / Part 1

AMOUNTS IN NANOGRAMS/MA*3

		MATRIX CO	RRECTIONS	USTHG DRUMS					
IN SITUE	11	2	a J	N T	یل اند	12	CU	NZ	ЫR
	+0+	6-0+	6.04	6°0	0.0	40 ° 1	4.0+	7.7	5.0*
	H. 14	H. 0.	8.0*	8°0*	8.0*	6.0 <b>.</b>	. 5.0*	6.U*	6.0*
	7.1.	7.0*	7.0+	8°2	7.0+	5.0*	5.0+	5.0.	8.0.
0 	7.1+	7.0*	7.0+	7.0*	7.0*	5.04	4.0*	5.0+	7.04
	6_0*	5.0*	6°0*	• () • q	5.0*	4°0+	4.0*	40.4	40.4
- 60 - 40	6°,0*	5.04	6°0*	5.0+	5.0+	4.0.	40°n	4.0+	4°.0.+
9 5	5.0.	5.0*	5,0*	5.0*	3.9	4.0+	3.0+	t.0*	4.0.4
A 10	5.0*	•0•	5,04	5.0*	5 .ú.	4°.0.	3.0.	4.0.4	\$.U*
11 6	5.0*	5.04	5.0.	5.0*	5.0+	4 n + n +	4.04	4.0.4	a . 0 .
10 12	5,0*	5.1	5.0*	5.0*	5.0+	4 0 4	3.0*	4.0*	4.0.4
11 13	5.0*	5.0*	5.0+	5.0+	5.0+	4.0+	4.0.+	4.0*	4.0.4
12 14	• 0 •	6.3	6.0*	5.04	5.0*	4.0+	4.0.4	4.0.4	5.04
11 15	¥0, 5	4.0+	5.0*	5.0+	40.4	3.0%	3.0*	40.4	4.0.4
14 16	<b>1</b> 0 <b>-</b> 5	1.1	5.0*	5.0*	40.4	3.0*	3.0+	4.0.*	3.0+
5 1 7	5, 0+	4.0+	5.0+	5 0*	4.0.4	3.04	3.04	4.0.	4.0.4
14 18	5.04	4.0.4	5.0+	5,04	40°7	3.0*	3.0+	4.0*	3.0.
19	5.0+	4 - () +	*0*5	5,0*	40.4	3,04	3.04	4.0*	3.0*
02 8		4.0.4	5.0.	5.0+	4.0.4	3.0*	3.0.	4.0*	4.0+
12 0	• 0 •	40.04	5.0*	*0*5	4.04	3.0.	3.0*	4.0+	4.0*
	*0*2	2.0+	2.0*	2.0*	2.0*	1.0+	1.0*	1.0*	1.0.
1 23		10.0	5.0*	5, 04	5.0*	4.0.4	3.0*	¥0°7	40.4
		5.01	5.0+	5.04	5.0*	4.0+	3.04	4.0*	4.0*
22 22	- 0		5.01	5.0+	4.0.4	3.0.	3.0*	-4.0.	4.0*
20.26	.0.		5.0*	4 0 ×	40.4	3.0.	3.0*	3.0*	3.04
22 22	0.5	5.2	5.04	8,1	4.0+	3,0*	3.0*	3.0*	3.04
86.40		40.4	0 5	4.0*	4.0+	3.0.	3.0+	3.0*	3.04
27 29	5.0*	4 ° 0 •	5.0*	4.0*	40.4	3.0+	3.0*	3.0.	3.0*
28 30	5.0*	5.0*	5.04	5.0+	5.0+	3.0+	3.0*	4,0,4	4.0.4
29 31	0.7	40*	40.4	40.4	40°ħ	3.0*	3.0*	3.0*	40.4
30 32	4.0.	4.1	4,0*	4.0*	4.0+	3.0*	3.0*	3.0*	4.0.4
31 33	5.0*	40.4	40.4	4.0.4	4.0.	3.0.	3.0*	3.04	3.0+
32 34	7.1	*0*7	40.04	4,04	+0+	. 3,04	3.0*	3.0*	3.0*
33 35	4.0+	4 U *	4.0*	4.0.	4.0+	3.0.	3.0+	3.0*	4.0.4
34 36	5.4	5.04	5.0*	4.2	5.0*	3.0*	3.0+	4 <b>0 #</b>	4.0.4
35 37	5.0*	5°.0*	5.0*	5.04	5.0*	4.0.	3.0*	40°7	4.0*
36 38	5.0*	5.0	5.0+	u "3	5.0*	40.4	3.0+	40.4	40.4
37 39	5.0*	40°7	5.0*	5°0*	*0*7	3.0.	3.0*	40.4	40.4
38 40	5.0*	4 0 4	5.0*	5.0*	40.4	3.0*	3.0*	3.0*	3.0*
39 41	5.0	5,04	5.0+	5.04	3.7	4.0*	3.0+	40.4	4.0.+
40 42	5.0*	5.0*	5.0*	5.0+	5.0*	40.04	3.0+	4.0*	40.4
	UNININ -	N NETECTABLE	I THTT	CMENT NUT FUNNI	_	- ,			

* WININGL NEVELLIAPLE LIVEL EVEN

· · · 2 3

ADDITIONAL ELFMENTS FUUND: JD, SLIDE, ELEMENI, AHOUNT 8 10 Ra 35.6

UC DAVIS PIXE	ANAL YSTS	FILE	31452
SEQUOIA-GIANT	FOREST / P	ERIOD 4 / STAGE	5 / PAPT 2

.

ANALYSIS ON 02/27/86 U/P ON 02/27/86

с. Т

۰.

9 7 - 5

.

•

· .

.

AMOUNTS IN NANOGRAMS/MA#3 Matrix corrections using drum5

ID SLIDE	CC	NA	MG	AL	<b>S</b> I	Ρ.,	3	CL.	к	C.A.
1 3	0.239	20.8*	16,5*	15.1+	16.7*	16.5+	14.2+	11.2+	6.1*	6.1+
2 4	0.239	20.9*	17.6+	15.1*	16.7+	16,5+	14.2*	12.3+	B.1*	6.1±
35	0.239	*0 <b>.</b> 55	18.8*	16.2+	18.8+	17.5+	15.2+	12.34	8.1×	7.1*
4 6	0.239	60.6	16.6#	15.1*	16.7+	16.5.	17.2	11.2+	8.1+	6.1*
57	0.239	26.1	16.5*	15.1*	16.7*	16.5*	13.2*	11.2+	8.1*	6.1*
68	0.239	40.0	16.0+	15.1*	10.7+	16.5*	17.0	11.2+	7.1+	12.3
79	0.239	55.6	16.6+	15.1+	16.7+	16.5*	16.7	11.2+	8.1+	6.1*
8 10	0.239	55'1	18.3	16.2*	18.8*	17.5+	18.9	12.3*	6.1*	7.1*
9 11	0.239	109.2	10.6*	15,1*	16.7+	16.5+	14.2*	12.3+	8.1*	6.14
10 12	0.239	76.3	17.7+	16.2*	17.8+	17.5*	26.6	12.3+	8.1+	6.1*
11 13	0.239	89.0	19.94	17.3+	19.9*	14.6+	55.8	13.3#	12.1	7.1+
12 14	0,239	116.9	19.9*	17.3+	19.9+	19.64	71.8	13.3*	10.4	7,1+
13 15	0.239	119.1	18.8*	14.5	18.8*	18.0+	68.4	13.3+	12.2	7.1*
14 16	0.239	21.0*	91.1	15.1*	17.8+	16.5+	48.4	12.3*	8.1*	6.1*
15 17	0.239	22.1+	102.4	15.1+	17.8*	14.8	49.3	12.3*	6.1+	6.1×
16 18	0.239	130.8	17.7+	15.1*	17.8*	10.5*	55.7	12.3+	6.7	7.4
17 19	0.239	29.7	59.2	15.1*	16.7*	25.1	36.0	11.3*	6.1*	6.1*
18 20	0.239	41.7	50.6	17.4	16.7+	10.5*	14.2+	12.3#	8.1×	6.1*
19 21	0.239	22.1*	107.4	15,1*	16.7#	16.S*	38.9	11.3*	7.1+	6.1*
50 55	0.239	22.2×	108.4	15.1*	16.7*	40.6	44.9	11.3+	B,1*	6.1*
21 23	0.239	54.1	17.7+	54.9	17.6*	17.5*	30,8	12.3+	8.1+	6.14
22 24	0.239	142.9	17.8*	52.2	17.8*	15.7	43.4	12.3*	15.7	7.7
23 25	0,239	23.4*	107.8	51.4	17.8*	47.8	50.2	15.3+	37.0	6.1+
24 26	0.230	94.1	18.9+	90.5	18,9*	18.6*	53.0	13,3*	32,5	7.8
25 27	0.239	24.4×	148.1	17.3*	18.8+	18.6+	39.9	13.3*	45.2	7.1*
26 28	0.239	84.4	20.0+	150.5	18.9+	26.3	4ú.8	13.3*	47.0	7.1*
27 29	0.239	65.3	21.1+	74.8	50.5	31,0	32,6	14.3*	26.9	8.4
28 30	0.239	52.4	204.8	26 0+	39.8	28.9*	47.5	20.5+	27.9	10.1+
29 31	0.239	25.0*	180.7	17.3*	32.2	25.6	45.6	13.3*	9.1*	7.1*
30 32	0.239	23.4*	216.5	17.3*	18.8*	18.6+	40.4	13.3*	14.6	7.1+
31 33	0.239	23.4+	178.2	16.2×	70.0	17.5+	31.8	12.3+	8.1*	7.6
32 34	0.239	127.0	18.8*	10.2*	18.8+	37.6	40.4	13.3*	5.9	7.1*
33 35	0.239	183.4	20.0*	52.6	19.9+	37.4	52.9	13.3*	13.2	7.1*
34 30	0.239	110.5	112.8	18.4*	21.0*	34.7	89.2	14.3*	9.14	7.1*
35 37	0.239	49.5	20.0*	99.3	19.9*	19.6*	119.4	13.3*	9.1+	15.1
36 38	0.239	26.7	49.4	16.2*	11.5	15.9	66.7	12.3*	8.1*	6.14
37 39	0.239	76.7	48.6	16.2+	17.8+	17.5*	96.6	12.3*	8.1+	6.1*
38 40	0.239	21.0*	48.9	30.0	16.7*	12.9	40.1	11.3*	8.1+	6.14
39 41	0.239	26.4	17.7+	15.1*	16.7*	16.5*	51.2	11.2*	8.14	6.1*
40 42	0.239	62.1	17.7*	19.5	16,7+	16.5+	131.5	11.3*	8.1+	6.1*

.

É,

į

UC DAVIS PIXE ANALYS Seguola-Giant Forest		FILE 31452 / Period 4 / Stage 5 / Part 2			ANALYSIS (	ANALYSIS ON 02/27/86 0/P ON 02			PAG	AGE 5 OF 5	
		ANDUNTS MATRIX (	IN NANOGRAM	IS/M##3 ISING DRUM5							
ID SLIDE	71	v	CR	MN	FE	NT	CU	ZN	BP	₽B	
1 3	5.0×	5.0×	5.0*	5.0*	5,0	4.0+	3.0×	4.0*	4.0*	10.1*	
24	5.0*	5.0*	5.0*	5.0*	4.2	4.0*	3.0*	4_0*	4.0*	10.1+	
35	5.0*	5.0+	5.0*	. 5.0×	5.0*	4 . 0.4	55.5	4.0*	4.0*	10.1*	
46	5.0*	5.0*	5.0+	5.0+	5.4	4.0★	3.0*	4.0*	3.0×	9.1+	
57	5.0*	5.0*	5.0*	5.0*	4.4	4.0+	3.0*	4.0*	3.0*	9.1*	
6 R	5.0*	4.5	5.0*	5.0×	5.0*	4.0*	3.0*	4.0*	3.0*	9.1*	
79	3.8	5.0*	5.0*	3.9	5.Ü*	4.0*	10.7	4.0±	3.0*	9.1*	
8 10	5.0*	5.0*	5.0	5.0+	5.0+	4.0+	4.0*	4.0+	4.0+	11,1*	
9 11	5.0*	5.0*	5.0+	5.0+	5.0×	4.0*	3.0*	4.0*	3.0*	10.1+	
10 12	5.0*	5.0*	5,0*	5.0*	5.0*	4.0*	10.2	4.0*	4.0*	10_1*	
11 13	6.0.	5.0+	b.0*	6.0+	5.0*	4.0*	4.0*	4.0+	5.0*	11.1+	
12 14	6.0*	6.0*	b.0*	6.Ú*	4.2	4.0+	4,0±	4.0*	4.0*	10.1*	
13 15	8.7	5.0+	6.0*	5.0*	5.0+	4.0+	4.0+	4.0*	4.0*	10.1*	
14 16	5.0+	5.0+	5.0*	5.0*	5.0+	4.0*	3.0+	4.0+	3.0*	10.1*	
15 17	5.0+	5.0+	5.0*	6.0	5.0+	4.0*	3.0*	4.0*	3.0*	10.1*	
16 18	7.2	5.5	5.0*	5.0+	5.0+	4.0*	3,0+	4.0*	4.0*	10.1*	
17 19	5 0.	5.0*	5.0*	5.0+	5.0+	4.0*	3.0.	4.0+	4.0+	10.1+	
18 20	5 0.	5 0+	5.0+	5.0+	5.0+	4.0+	3.0*	4.0*	4.0*	10.1+	
10 21	7 5	5.0+	5.0+	5.0+	5.0*	3.0*	3.0*	4.0*	3.0+	9.1+	
20 22	7 1	5.04 5.8	5.04	5.0+	5.0+	3.0+	3.0±	4.0*	3.0*	9.1*	
20 22	7 <b>5 1</b>	5.0+	5 04	5 0+	5.0+	4 0+	3.0.	4.0*	5.0*	9.1+	
23 23	5.05	5.04	5.04	5 0 -	5 0.	4 0.	3.0-	4 0+	3.0.	9.1+	
22 24	5.0*	3,0#	5.04	5.04	5.04	7.VF // ().	1 0.	4.04	4 0+	10.1.	
23 23	5.0*	10.3	5.0.	5.0*	5.0*		4 0.	4 04	4.0+	9 1 +	
24 20	11.1	2.0*	5.0	5.0"	5.0.	4.04	" ^ .	7.0A	4.04	10 1+	
25 27		5.0*	5.0*	5.1	5.0*	4.0*	4.VX	4.04	4.0*	10 1.	
26 28	12.9	5.0*	5.04	5.0*	2.0#	4.0*	4.0*	4.04	4 0 4	11 14	
27 29	5./	5.0*	0.0*	<b>D</b> .U#	0.0*	4.UR	4,0#	4.0*	9.04	18 14	
2A 30	9,1*	9.1	9.0*	0.0*	0.0*	0.04	<b>3.V</b>	0.0*	7.0#	10.14	
20 31	4.4	7.8	6.0*	6.0*	5.0*	4.0*	4.0*	4.0*	4,04	10.18	
30 32	5.8	5.0*	5.0*	5.0*	5.0*	4.0*	4.0*	4.0*	3.04	11.14	
31 33	5.3	5.0*	5.0*	4.6	5.0*	4.0*	4.04	4.0*	3,0*	11.14	
32 34	5.0	5.0*	6.0*	5.0*	5.0*	4.0*	4.0*	4.0*	5.0*	11.1*	
33 35	8.3	5.0*	6.0×	6.0+	5.U*	4.0*	4.0*	4.0*	4.0*	10.1*	
34 36	6.0*	6.0*	6.0*	6.0*	6.0*	4.0*	4.0*	5.0*	4.0*	11.1*	
35 37	6.0×	5.1	6.0*	6.6	5.0+	4` <b>0</b> *	4.0*	4.0*	4.0*	10.1+	
36 38	5.0×	5.0+	5.0*	5.U×	5.0*	4.0+	3.0+	4.0*	4.0*	11.1+	
37 39	5.0*	5.0*	5.0×	4.0	5.0+	4.0+	. 3 <u>.</u> 0*	4.0*	4.0*	10.1+	
38 40	6.0	5.0*	5.0*	5.0*	5.0*	4,0*	3.0*	4.0*	4.0*	10_1+	
39 41	5.0*	5.0*	5.0*	5.0*	5.0*	4,0*	3.0*	4.0*	4.0*	10.1+	
40 42	5.0*	5.0*	5.0*	5.0*	5.0*	4.0+	3.0*	4.0*	4.0*	10.1*	

Q

* MINIMUM DETECTABLE LIMIT, ELEMENT NOT FOUND

. .

UC SE	DAVIS 00014-0	PIXE ANALYSI Giant Forest	S 7 PERIOD 4	FILE 314 / STAGE 5 /	53. PART 3	ANALYSIS	ON 02/27/86	07P ON 02	/27/86	PAG	E 1 OF 1
			AHOUNTS MATRIX	IN NANOGRAD Corrections I	MS/H**3 USING DRUH5						
ID	SLIDE	66	NA	HG	<b>A</b> 1	ST	Р	5	C1	к	C A
1	3	0.239	64.5	17.7*	25.8	17.8*	17.5+	135.3	12.3+	6.8	6.5
2	4	0.239	54.5	14.9*	17.3*	18.8+	18.6#	115.1	13.3*	8.1	7,1+
3	5	0.239	80.5	18,9+	20,8	17.8+	18.2	114.9	12.3+	8.1+	6.1+
4	6	0.239	154.9	17.9*	19.4	17.8+	17.1	558.8	12,3+	8.1+	6,14
[D	SLIDE	Tt	v	CR	HN	FE	NI.	Cυ	ZN	BR	PB
1	3	5,0*	5.0*	5.0*	5.04	5.0*	4.0+	3.0*	4.0*	4.0*	10.1*
2	4	6.0±	5.0+	5,0×	4.3	5.0*	4.0+	4.0+	4.0+	5.0*	10.1*
3	5	5,1	5.0+	5.8	5.0×	5.0×	4,0≠	3.0*	4.0*	4.0±	10.1+
4	6	5.0*	5.0+	5.0x	5.00	5.0*	3.7	3.0*	4.U*	4.0*	10.1.

.

•

1

u r e

. .

۰.

. . . .

.

* MINIMUM DETECTABLE LIMIT, ELEMENT NOT FOUND

.