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ABSTRACT 

Benefits of improved air quality are estimated by exam1n1ng the public's
willingness to pay for visibility as revealed in home sale prices. The inves­
tigation is conducted for the 1978-79 period in two study areas, Los Anqeles 
(four counties) and San Francisco (five counties). The analysis uses an 
extremely large, finely resolved data set for visibility levels, home sale 
prices, and house/community/location/socio-economic characteristics. · The data 
are gathered from 39 airport weather stations (visibility), the. Market Data 
Cooperative (home sale prices and house specific characteristics), as well as 
the Census and other data sources (other characteristics). 

The economic analysis follows the hedonic price method. First, home 
sale price is related statistically to visibility and the house/community/ 
location/socio-economic characteristics. The results (including the hedonic 
price for visibility) are statistically significant, have the expected siqn, 
and are stable with respect to various sample sizes, visibility indices, 
model formulations, and functional forms. Next, the 11 hedonic price 11 for 
visibility is related to visibility levels and income levels in order to deter­
mine the economic (inverse) demand curve. This demand curve in turn yields
estimates of benefits. It is found that, depending on assumed functional form, 
a 10% improvement in visibility would produce benefits of 250-617 million 
dollars per year in Los Angeles and 190-220 million dollars per year in San 
Francisco. 

A demonstration is made of how to apply the results through an illustra­
tive examole -- benefits of controlling diesel narticle emissions in Los 
Angeles. It is estimated that the elemental carbon component of diesel 
particle exhaust contributed 12% of Los Anqeles' visibility reduction in 
1980, and that diesel emissions will grow ~Ya factbr cf 2.3 from 1980 to 
1992 under a 11 no-control II scenario. It is found that 50% control of diesel 
elemental carbon emissions would yield benefits of one to five billion 
dollars over the 1980~1992 period. The benefits are substantially reduced 
by postponing and phasing-in controls. 
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EXECUTIVE SUMMARY 

This study places an economic value on improved air ~uality by investi­
gating the public's willingness to pay for visibility as revealed in housing 
market data. Specifically, we examine the relationship between housing values 
and visibility, di-scounting for the effects of other collinear variables 
(house/community/location/socio-economic characteristics). This relationship 
serves as the basis for determining an economic (inverse) demand curve for 
visibility which in turn allows estimation of the benefits associated with 
improved air quality. 

In this project, emphasis is placed on what individuals perceive, as 
visibility is the object of the valuation exercise. The presumption is that all 
components of air quality valued by peo~le are included in ~erceived visibility, 
and no attempt is made to separately value the independent components of air quality. 

The analysis uses an extremely large, finely resolved data set for 
visibility levels, housing values, and house/community/location/socio-economic 
parameters. The study is conducted for the 1978-79 time period in two study 
areas, Los Angeles (four counties) and San Francisco (five counties). The 
report also demonstrates how the results can be applied through an illustrative 
example -- the benefits of controlling diesel oarticle emissions in Los Angeles. 

The remainder of the Executive Summary is organized.according to the 
three main chapters of the report: Description of the Visibility Data (Chaoter2), 
Estimation of Benefits from Visibility Improvement (Chapter 3), and Illustrative 
Application: Diesel Particulate Control in Los Angeles (Chaoter 4). 

CHAPTER 2: DESCRIPTION OF THE VISIBILITY DATA 

Weather Station Visibility Data: Compilation and Analysis 
One of the inputs required for the statistical analysis is information 

on visibility levels throughout the two study areas. The visibility data used 
herein consist of visual range observations made at airports and other weather 
stations. Specifically, data are compiled for three observations oer day at 
twenty-one Los Angeles stations and eighteen San Francisco stations during each 
day of 1973-74 and 1978-79. 

For the purposes of this study, the airport visibility data generally 
appear to be of good quality. The quality of the data was assured by conducting 



surveys at the weather stations and by scrutinizing the statistical distribu­

tions of the data. Because of the nature of reporting practices at airports, 

special techniques documented in the literature have been applied in determining 

cumulative frequency· distributions and in calculating visibility statistics. 

Visibility (Extinction) Indices 

Maps of visibility in the Los Angeles· area reveal that the lowest median 

visual range in the basin, about 7 miles, occurs in the San Gabriel and 

Pomona Valleys. Median visual range improves toward the west and east, to 

about 11 miles along the western coast- and to over 25 miles in the San Gorgonio 

pass. Visibility is significantly higher in San Francisco than in Los Anqeles. 

There are two notable hot spots in the San Francisco area where visual range 

is about 13 miles -- the San Francisco-Oakland urban core and the Southern 

Bay area around San Jose. However, the San Francisco area otherwise demon­

strates median visibility of about 15 to 25 miles. Comparing maps for the two 

time periods indicates that a slight but not uniform improvement in visibility 

occurred in both study areas from 1973-74 to 1978-79. 

For use in the economic regression studies, the visual range data are 

converted to atmospheric extinction data. The atmospheric extinction coef­
ficient represents the fraction of light that is lost per unit distance as a 

light beam traverses the atmosphere. In a uniform atmosphere, a simple recioro­
11 k11cal formula relates extinction (B) to visual range (V): B = k/V, where 

is a constant that depends on the observer detection threshold. 

Extinction is generally considered preferable to visual range as a 

scientific measure of visibility. In addition, extinction seems nreferable 

in this study for two practical reasons. First, economic regressions usinq 

extinction agree with the known principle that humans perceive a unit change 

in visual range much more at low visibilities (e.g. from 1 to 2 miles) than at 

high visibilities (e.g. from 100 to 101 miles). Second, airport data are known 

to be of relatively higher quality at lower visibilities than at higher vis­

ibilities; using extinction rather than visual range emphasizes the variations 

in the higher quality part of the data rather than the variations in the lower 
quality part of the data. 

In each study area and each time period, three indices of extinction 

are compiled for use in the economic studies. These indices are median annual 

extinction for all hours, median annual extinction for hours excluding precipi­

tation or fog, and median annual extinction with sea haze contribution sub-
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tracted out. It turns out that the first two indices are so highly intercor­
related that they yield identical results. The third index is not that 
highly correlated with the other two, but it nevertheless again leads to 
similar conclusions in the economic analysis. 

CHAPTER 3: ESTIMATION OF BENEFITS FROM VISIBILITY IMPROVEMENT 

Methodological Review 
The economic analysis used herein follows the Freeman-Rosen aporoach 

for identifying demand curves of commodities not normally traded in markets. 
The essential element of the Freeman-Rosen approach, as applied to housing 
data, is the "hedonic" price function which relates the price of a home to its 
characteristics (structural, locational, neighborhood, and environmental 
aspects). This function allows determination of the implicit or hedonic price 
of each characteristic (i.e. visual air quality), which can be interpreted 
as the individual's marginal willingness to pay for that characteristic .. 

The individual's marginal willingness to-pay for air quality depends 
upon other housing characteristics and the individual's characteristics, 
especially income. The second stage of the hedonic procedure is to estimate 
the relationship between marginal willingness to pay and these other charac­
teristics. This latter relationship can be interpreted as the (inverse) demand 
curve for air quality, since it connects price to quantity and other shift 
variables. The benefits of a specific air quality change can be determined by 
integrating the inverse demand curve over the proposed imorovement. 

Until recently, the basic Freeman-Rosen framework has been widely 
accepted as a means of estimating the benefits of environmental improvements. 
However, the procedure has lately been criticized as being inappropriate 
under certain conditions. The criticisms have focused on two iss·ues: (1) the 
functional form of the hedonic equation in the first stage, and (2) the iden­
tification of the (inverse) demand curve in the second stage. 

With respect to the first issue, there are no clues as to the correct 
shape of the hedonic function. Therefore, sensitivity analysis is emoloyed in 
this study to determine a range of benefit estimates. With respect to the 
second issue, various authors have questioned whether sufficient information 
exists for estimating the demand curve. Two possible solutions are utilized 
here: (1) combining data from multiple markets to yield information on how 
individuals respond to different price sets, and (2) using data from a single 
market but imposing further restrictions on oossible functional forms. 
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Data Specifics 

Implementation of the hedonic approach requires two data sets. The 

first data set includes the sale prices of numerous homes and their attributes 

(structure, neighborhood, community, and environment). The data on sale price 

and house structure were obtained from the Market Data Cooperative for the 

1978-79 time period. Structural variables pertain to both quantity (square 

footage, number of bathrooms, etc.) and quality (pool, fireplaces, view, etc.). 

A very large number of observations were used to provide robust statistical 

estimation properties. Neighborhood refers to the surrounding census tract 

and includes the variables -- population, age, ethnic composition, distance 

to work, and distance to the beach. Co~munity (city level) variables encompass 

density, school quality, crime rate, and others. The final variable included 
in the hedonic modeling is atmospheric light extinction, discussed in Chapter 2. 

The neighborhood, community, and light extinction data were matched with the 

household data using Thomas Brothers maps (4 x 4 km grid squares). 

Once hedonic prices (marginal willingness to pay) for light extinction 

improvements have been determined from the first data set, the second step 

of the approach is to determine the shape of the inverse demand curve. This is 

done by relating the hedonic prices to light extinction and income. The data 

base for this second step is compiled at the community level. 

Empirical R~sults: Hedonic Housing Value Equations 

Given the data as described above, the hedonic technique consists of a 

two-stage estimation procedure. The initial task is to determine the relation­

ship between home price and its characteristics. This procedure allows one to 

focus on the signif1cance of light extinction while separating out the influ­
ence of other extraneous variables. 

Benchmark hedonic housing value equations are estimated for both the Los 

Angeles and San Francisco areas. A number of aspects of the benchmark results 

are worth noting. First, the non-linear specifications are significant im­

provements over linear forms. Second, a large proportion of the variation in 
home sale price is explained by the independent variable set. Third, the· 

independent variables generally possess the expected relationship to home sale 

price and are significantly different from zero at the one percent level. 

However, the most important result from the perspective of this study 

is that the extinction variable is significantly different from zero and pos­

sesses the expected relationship to home sale price. Evidently, individuals 
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are acting upon extinction information when making locational choices, with the 
action translated into a measurable hedonic gradient. This result is essentially 
invariant with respect to various sample sizes, extinction measures, model 
forinulatior:is, and functional forms. 

The value of a hypothetical ten percent change in extin~tion ranges from 
approximately .7 - 2.1 percent of home price in the Los Angeles area and from 
1.4 - 2.5 percent of home price in the San Francisco area. The specific 
value within an air basin is primarily dependent upon functional form. 

Empirical Results: Inverse Demand Equations 
The second stage of the hedonic price technique is to determine the 

inverse demand curve for light extinction. As discussed above, this step 
relates the individual marginal willingness to pay (hedonic price) to extinc­
tion level and income. 

The inverse demand curves for the Los Angeles and San Francisco areas 
possess a number of noteworthy asoects. First, a large proportion of the 
variation in marginal willingness to pay is explained by the variables quantity 
(extinction) and income. Second, linear forms outperform non-linear forms. 
Third, the independent variables are generally significant at the one percent 
level. Finally, an interesting phenomenon occurs in the Los Angeles area only, 
where the inverse demand curves suggest that residents may be willing to pay 
even more for each unit decrease in extinction as air quality improves. This seemingly 
demonstrates what economists call 11 non-convex 11 preference patterns. However, since 
the hedonic housing equations are non-linear, no interpretation can really be 
attached to the inverse demand curves regarding convexity of preferences. 

The magnitude of air quality benefits can be illustrated by calculating 
the annual basinwide benefits associated with a hypothetical ten percent im­
provement in visibility. These benefit figures are obtained by integratfog 
the inverse demand curves over the proposed visibility change and surnminq 
over all households. The benefit estimates are dependent upon the functional 
form of the hedonic price equation. This is especially true for the Los Angeles 
area where benefits range from 250 to 617 million dollars per year (depending 
on functional form) for a ten percent change in visibility. The San Francisco 
results are not as dependent upon functional form, ranging from 190 to 220 million 
dollars per year for a similar ten percent improvement. 

The range of benefit estimates discussed above utilize the classic 
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hedonic approach as developed by Freeman and Rosen with an added functional 

form restriction. An alternative approach is to pool the data across markets 

and estimate one multi-market inverse demand curve. This approach requires 

the assumption that individual preferences be identical across the markets. 

The use of multiple markets adjusts the estimates in the manner anticipated. 

For instance, adding San Francisco households into an analysis of the Los 

Angeles area increases the benefit estimates since San Francisco home prices 

seem to show more sensitivity to visibility degradation. 

CHAPTER 4: ILLUSTRATIVE APPLICATION: DIESEL PARTICULATE CONTROL IN LOS ANGELES 

Relationship Between Diesel Particle Emissions and Visibility 

The benefit analysis for a specific emission control strategy senarates 

into two basic parts. First, one must determine the degree of visibility 

improvement associated with the control strategy (this subsection). Second, 

the benefits produced by the visibility improvement are estimated usinq the 
economic inverse demand curve (the following subsection). 

The current visibility impact from diesel road vehicles (essentially 

heavy-duty trucks) is estimated using two models, an emission budget model and 

a lead tracer modei. These two models indicate that heavy-duty diesels 

presently contribute about 20 percent of light extinction in the Los Angeles 

basin. This 20 percent is composed of 12 oercent from the elemental carbon 
component of particle exhaust, 1 percent from other primary particle emissions, 

4 percent from secondary products of NOx emissions, and 3 percent from secondary 

aerosols due to so2 emissions. Because this example i~ concerned with directly­

emitted particles (i.e. particulate emission standards), and because nearly 

all of the visibility effects from primary diesel particles are due to elemental 

carbon, the application study is restricted to only the contribution from elem­

ental carbon particle emissions. 

The lead tracer model calibrated against the average of the two models 

considered provides a detailed spatial distribution for the diesel visibility 

effects. In absolute t~rms, the greatest extinction contributions from current 

diesel elemental carbon emissions occur in a triangle from the San Fernando 

Valley to Long Beach in the west out to San Bernardino in the east. 

The effect of future diesel emissions on extinction can be estimated by 

proportioning the current spatial distribution of diesel impacts according to 

emission ch-anges. This can be done for emission growth increases, emission 

control decreases, or combinations of both. 
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For the purpose of control strategy analysis, elemental carbon. emissions 
from diesel road vehicles are projected for a 11 no control" scenario covering 
1980 to 1992. Without control, diesel emissions are forecasted to increase 
by a factor of 2.3 from 1980 to 1992. This rapid increase in emissions 
results from two factors, overall growth in highway traffic and partial ·con-

. version of gasoline cars and trucks to diesel oower. It is noteworthy that, 
even in 1992, heavy-duty vehicles would still account for n~arly 90 percent 
of total diesel fleet emissions. The benefit analysis considers various 
degrees of control applied to forecasted diesel emissions. 

Benefit Estimation 
A variety of control scenarios are examined for diesel particulate 

emissions, with calculated benefits representing the change from "no control" 
\ 

to the specified level of control. Benefits are computed over the 1980-1992 
time period, at the community level, for various discount rates, with results 
expressed in terms of constant 1980 dollars. 

Following the traditional Freeman-Rosen approach, the Los Angeles inverse 
demand equations are mathematically integrated over the visibility improvement 
to determine individual household benefits. Aggregate benefits then come from 

1' summation over the relevant population. The calculations are illustrated herein 
through a specific example. Results are presented for four alternative func­
tional forms and two alternative discount rates. 

In the first scenario, diesel emissions are assumed to be fixed over 
time, and a constant 50 percent particulate control level is imposed over 
the entire 1980-1992 time period. All subsequent scenarios are more realistic 
in that uncontrolled diesel emissions are allowed to grow over time. Scenario 
II considers 50 percent control of forecasted emissions starting in 1980. 
Fifty percent is approximately the degree of control being considered for state 
and national emission standards. Scenario III is similar to Scenario II, 
except that 80 percent control is assumed. Scenario IV considers the effect of 
phasing in controls by assuming that no emission reduction is imposed until 
1985, and that control is phased in linearly up to 50 percent in 1992. 

The net benefits, averaged over the four functional forms and the two 

discount rates, are as follows: $2.2 billion for Scenario I, $2.7 billion for 
Scenario II, $4.5 billion for Scenario III, and $.98 billion for Scenario IV. 
Scrutiny of the results leads to several general conclusions. First, the 

benefits qrow disproportionately as control levels increase, but this effect 
-· 

is relatively minor for maroinal chanoes in extinction. Second. the larqer 
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the control effect, the larger the corresponding benefits. The third conclusion, 
that the benefits of stringent control on basin-wide extinction should be 
extremely large, arises from a combination of the first two factors. This 

occurs because (l) the larger the control the larger the benefits, and (2) 
as pristine air quality is approached, benefits grow at an increasing rate 

due to the shape of the demand curve. The fourth feature is the substantial 

loss in benefits from postponing and phasing controls (i.e. Scenario IV). 
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1.0 INTRODUCTION 

With increasing frequency, the cost effectiveness of public programs 
is being questioned. One of the largest environmental programs, especially 
in California, is the maintenance of air quality. The costs of the vari­
ous programs which comprise air pollution control are reasonably well 
documented (for example, see Lloyd, 1979 and SCAQ, 1979), but benefit estima­
tion is poorly understood. There exists confusion concerning the goods 
to value (health, aesthetics, etc.),the evaluation methods, and the relation­
ship between them. In this project, an attempt is made to help fill this 

void by placing an economic value on chanqes in air quality. The 
analysis is completed for two air basins, the South Coast Air Basin (Los 
Angeles area) and the Bay Area Air Basin (San Francisco area). 

The approach taken here is to examine the public's willingness to pay 
for improved visual air quality, as revealed by their preferences in the 
housing market. Specifically, we examine the relationshin between housing 
values and visibility, discounting for the effects of other collinear vari­
ables (house/community/location/socio-economic characteristics). After being 
analyzed and t_ested according to economic and statistical principles, this 
housing-value/visibility relationship serves as a basis for estimating an 
economic (inverse) demand curve for visibility. This allows one to estimate 
the benefits associated with improved visual air quality. 

The analysis is based on an extremely large, finely resolved data base 
for visibility levels, housing values, and house/community/location/socio­
economic parameters. The investigation is conducted for the 1978-79 'time 
period in two study _regions, four Los Angeles area counties and five San 
Francisco area counties. An additional analysis for the 1973-74 time oeriod 
is presented in•an apoendix. 

In this project, emphasis is placed on what individuals nerceive, as 
visibility is the object of the valuation exercise. The presumption is that 
a11 components of air quality valued by people a re included i-n perceived 
visibility, an-d no attempt is made to se-paratelv value the independent 

components of air quality. 
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l .l ECONOMIC CONCEPTS AND APPROACH 
Environmental commodities. such as visibility are different from most 

goods and services because they are not transacted in established markets. 

Hence, market prices do not exist, and value cannot be derived from an 

analysis of a market for these goods. In lieu of direct market revelation 

of value, econo1~ists have .turned to alternative methods to value environ­

mental goods. There are primarily two methods available: (1) analyze 

data from market transactions for goods and services related to. the environ­

mental good, and (2) ask individuals directly using survey instruments. 

This analysis of visibility-related benefits uses the technique in­

volving related market data. In particular, the 11 hedonic housing value 11 

method is utilized to determine the value of visibility changes. This 

approach is the most common form of the hedonic price* procedure as developed 

by Rosen (1974), the basis of which is Lancaster 1 s (1966) consumption theory. 

The procedure assumes that access to environmental (dis)amenities is 

capitalized in housing values. This assumption is based on the premise 

that households are willing to pay a premium for an otherwise identical 

home located in a clean air area versus one located in a polluted area. 

This methodology was chosen for two reasons. First, it has received 
the greatest attention (theoretical and empirical scrutiny) and support 

from the economics profession. Among public goods which have been valued 

using the hedonic housing approach are air pollution (Anderson and Crocker, 

1971; Harrison and Rubinfeld, 1978), social infrastructure (Cummings et al., 

1978), noise level (l~elson, 1979), and ethnic composition (Schnare, 1976). 

Second, this approach is attractive because there is a wealth of readily 

available data for the required parameters. - The necessary data include 

visibility levels, housing values, and housing/socio-economic/community/ 
locational variables. 

In employing the hedonic housing method herein, particular attention 

has been given to three specific issues. First, this project uses light 

extinction (inversely related to visual range) as a measure of air quality. 
Earlier studies have used suspended particules and oxides of nitrogen 

* Hedonic prices are implicit prices of the characteristics which differen-
tiate closely related items in a product class. 
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(Brookshire et al., 1982), carbon monoxide (Bresnock, 1980), and other 
measures to represent the overall pollution level. However, these pollutants 
are either imperceptible or correlate rather poorly with visibility (Trijonis 
et al., 1982). Thus, earlier studies can be questioned as to how people 
could perceive what was being valued. This study uses what people actually 
perceive. Furthermore, the results are amenable to policy applications since 
the transformation between light extinction and emissions levels can be 
determined. 

The second issue concerns the hedonic housing value method. This 
approach is generally viewed as a multistage procedure (Rosen, 1974; 
Freeman, 1979). The initial step is to estimate the hedonic price gradient 
which explains home sale price as a function of its structural characteristics 
as well as the characteristics of the community and neighborhood in which it 
is located. The second step is to determine the implicit price of environ­
mental change by differentiating the hedonic price gradient with respect to 
the environmental variable of interest. Subsequent steps include estimation 
of the inverse demand curve and integration to obtain benefit estimates. 

The hedonic procedure as outlined above has been generally well re­
ceived by the economics profession. Recently, however, a number of authors, 
including Brown and Rosen (1982), Mendelsohn (1980), and Palmquist (1981), 
have criticized the approach as not possessing sufficient information to 
identify the (inverse) demand curve in the subsequent steps. A possible 
solution to this under-identification problem is to use data from geograph­
ically separate markets to identify the inverse demand curve. This solution 
is examined empirically in this project by employing data from both the 
Los Angeles and San Francisco air basins. The multi-market results are 
then compared to the single market results. 

The third issue concerns functional form. Bender et al. (1980) found 
that the value of air quality improvements was related to the assumed 
functional forms of the hedonic price equation and the inverse demand curve. 
Again, this issue is ~xamined empirically in this study·. 

1.2 ORGANIZATION OF THE REPORT 
The main body of this report consists of three chapters. Chapter 2 

develops the visibility data base for the study. Visibility observations 

from 21 airports in Los Angeles and 18 airports in San Francisco are 
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used to prepare maps of visual range for the two study reqions. Three 

indices of atmospheric light extinction (inversely proportional to visual 

range) are then computed on a detailed spatial grid for each study area. 

Chapter 3 implements the hedonic housing value approach. A very thorough 

statistical analysis is performed to characterize the relationship of 

home sale price to visibility and home-specific/locational/neighborhood/ 
social-economic-parameters. This relationship allows estimating the inverse 

demand curve for visibility, which in turn serves as the basis for economic 

benefit calculations. Chapter 4 presents an illustrative policy application 

involving diesel particulate control in Los Angeles. Diesel particulate 

emissions are related to extinction (visibility) levels using a modified lead 
tracer model. The benefits of potential emission reductions are then 

estimated using the results of Chapter 3 and economic calculations of varying 

temporal complexity. 
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2.0 DESCRIPTION OF THE VISIBILITY DATA 

The economic benefit analysis in this report will be based on statis­
tical relationships between housing values and visibility, determined for 
two study regions (Los Angeles and San Francisco) and two time periods 
(1973-74 and 1978-79). In order to develop the statistical relationships, 
we need a detailed characterization of spatial visibility patterns within 
the two study regions during the relevant time periods. This chapter explains 
how routine weather station (airport) visibility observations were assembled, 
processed, and analyzed in order to provide that characterization. 

Section 2.l describes the visibility observation procedures, indicates 
the study locations, and reviews data quality. Section 2.2 explains the 
special techniques that must be applied in order to estimate median visibilities 
from airport data. Section 2.3 discusses the three measures of atmospheric 
extinction (visibility degradation) that were compiled for use in the housing 
value study. 

2.l WEATHER STATION VISIBILITY DATA 

The visibility data presented in this report consist of "prevailing 
visibility 11 recordings made by weather station observers. According to 
National Weather Service procedures, prevailing visibility is defined as 
the greatest visual range that is attained or surpassed around at least half 
of the horizon circle, but not necessarily in continuous sectors (Williamson, 
1973). Daytime visibility is measured by observing markers (e.g. buildings, 
mountains, towers, etc.) against the horizon sky; nighttime visibility 
measurements are based on unfocused, moderately intense light sources. Be­
cause our experience indicates that daytime and nighttime observations are 
often incompatible, and the daytime data are usually of higher quality 
(Trijonis and Yuan,1978; Trijonis, 1979, 1980), only ~aY.time observations 
are used herein. 

Weather observers usually perform visibility measurements each hour, 
but only the readings for every third hour are entered into the National 
Climatic Center computerized data base: Although our previous studies of 

* In the Pacific Time Zone, these hours are 1:00 AM, 4:00 AM, •.. , 10:00 PM, 
standard time. 
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spatial visibility patterns were based on only one observation per day 

(1:00 PM PST in California), we decided to include three observations per 

day in this project so as to increase the statistical sample size. Because 

this study uses hard-copy weather station records rather than computerized 

NCC data (very few of our study sites had computerized data), there was 

complete freedom of choice in selecting the three hours. Nevertheless, we 

chose the computerized hours of 10:00 AM, l :00 PM, and 4:00 PM in order to 

allow compatibility in any future projects that might employ computerized 

data bases. 

For each study region, separate analyses were conducted for two 

different time periods, 1973-74 and 1978-79. Two periods were desirable 

for the economic studies in order to test the results for consistency over 

time. Two years of data for each period provided large, yet manageable, 

amounts of data. 

2.1.l Study Locations 

Before sites were selected for this study, telephone surveys pertaining 

to data quality were conducted with visibility observers at the various 

weather stations. The main purpose of these surveys was to insure that each 

station had an adequate set of visibility markers for estimating visual range. 

In particular, we attempted to choose sites that had farthest markers located 

at distances at least as great as the visibility levels typical of the sur­

rounding area. Because visibility is generally rather low in the study 

regions (especially the Los Angeles region), nearly all of the weather 

stations had adequate markers, and we acquired data for essentially every 

weather station in each region. In one case (Banning), the station did not 

have markers at distances exceeding the median visual range, so that we had to 

extrapolate the cumulative frequency distribution in order to estimate median 

visual range. 

Figures 2.1 and 2.2 show the study sites in the 4-county Los Angeles 

region and the 5-county San Francisco region, respectively. Data were ac­

quired and processed for 21 Los Angeles stations and 18 San Francisco stations. 

As discussed in the next section, we later decided to eliminate all Coast 

Guard stations, leaving 19 final study sites in Los Angeles and 14 in San 

Francisco. 

At this point, it is worthwhile to mention the enormity of the task of 
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data for the Los Angeles study area. 
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hand-processing visibility data for all the study locations. In all, we 
hand-transcribed and processed approximately 170,000 data points (39 sites 
x 4 years per site x 365 days per year x 3 observations per day). 

2.1.2 Data Quality 

Previous studies (Trijonis and Yuan,1978; Trijonis and Shapland,1979; 
Husar et al., 1979; Trijonis, 1979, 1980) have found that airport data are 
of good quality for use in analyzing spatial visibility patterns. The quality 
of the data is indicated by the excellent consistency generally found in the 
observed spatial patterns of airport visibility. Specifically, the above 
cited studies have shown that median visibilities at neighboring airports 
tend to agree and that reasonable monotonic gradients often exist in passing 
from areas of poor visibility to areas of good visibility. Furthermore, Nochum­
son et al.(1983) has shown that the spatial patterns of airport visibility 
correlate highly with independent data sets for aerosol concentrations and 
relative humidity. 

In our prior work with weather station visibility measurements, we 
have generally found that the best quality data come from sites operated by 
weather service personnel or by commercial airport personnel. This expectation 
was borne out in the present study by the fact that we observed no obvious 
anomalies in the data from such sites. Possibly because of personnel turnover 
or because of operational priorities, we have gener~lly found that visibility 
data from Coast Guard, Navy, and Air Force facilities sometimes contain 
inconsistencies. All of our potential study sites were weather service or 
commercial airline operations except for six Coast Guard locations, two 
Navy air stations, four Air Force bases, and one APCD location. The data 
bases for these last 13 sites deserve special discussion. 

The data from Coast Guard locations exhibited significantly lower 
visual ranges than the data from the other locations. The most likely ex­
planation is that the Coast Guard stations are sited right on the water and 
are subject to more fog and sea spray. Another potential explanation concerns 
possible biases in the Coast Guard data -- from reporting procedures, marker 
types, or some systematic patterns in the rather large number of missing 
observations at Coast Guard stations. In either case, it seems best to ex­
clude the Coast Guard data from our study. Even if the lower visibility 
at Coast Guard stations is a real effect (as we suspect), it appears to be 
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extremely localized, and we cannot represent it adequately within the spatjal 

revolution of our analysis (4x4 mile grid squares). 

In processing and analyzing the data from the two Navy sites and four 

Air Force sites, we generally found these data sets to be reasonable. The 

only two exceptions were the Navy data at Alameda and Moffett during 1973-74. 
The median visibilities at these two sites in 1973-74 seemed anomalously low 

compared to median visibilities at nearby locations. We do not know the 

cause, but such an anomaly could have been produced by inconsistent reporting 

practices (such as one observer reporting a maximum visibility of 7 miles). 

This caveat regarding the 1973-74 data at Alameda and Moffett will be referenced 

later when we discuss the regression results for the San Francisco area during 

1973-74. 
The APCD data at Downtown Los Angeles appeared to be of good quality 

and consistency, but a bias occurred during 1978-79 because of the ab­

sence of weekend data for that period. We derived and applied a factor to 

eliminate that bias by quantifying weekend/weekday visibility differences at 

Downtown Los Angeles during 1973-74 as well as at Burbank and El Monte 
during all the years.* 

2.2 DATA COMPILATION AND ANALYSIS 

In practice, a weather station visibility recording of X miles usually 

means that visual range is at least X miles rather than vis~al range is 

exactly X miles. For example, at a station with farthest visibility markers 

of 40 and 30 miles, a recording of 40 miles would imply that visual range 
was at least 40 miles, and a recording of 30 miles would imply that visual 

range was between 30 and 40 miles. Because of this phenomenon, weather 

station visibility observations are most appropriately summarized by cumu­

lative frequency distributions of the form "percent of time visibility is 

•greater than or equal to X miles 11 These cumulative frequency distributions 

are determined by noting the percent of time that visibility exceeds the 

farthest reported value, and 
. 

then adding percentages cumulatively as one. 
proceeds toward the smaller reported values. In this process, it is very 

important to use only those visibilities that are routinely reported 

* Visual range on weekends averages about 15% higher than on weekdays, implying 
that a full week average should be about 4~b higher than a weekday only average. 
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by the weather observation team* ; otherwise, artificial 11 kinks 11 will be pro-
duced in the cumulative frequency distribution. Summarizing the visibility 
data in the above way should make the data consistent from station to station 
even if the vari~us stations have visibility markers at different distances. 

The first step in processing the airport visibility data was to scan 
the readings in order to select the "routinely reported" visibilities by 
which the data should be organized. Next, the data were recorded on forms 
such as the one shown in Table 2.1. We used a separate recording form for 
each quarter (3 months) of data, even though the entire two-year period was 
aggregated in our statistical analysis. Compiling the data by individual 
quarters allowed us to detect and adjust for changes in the reporting prac­
tices (i.e. in the "routinely reported" visibilities). Also, organizing 
the data quarterly allowed for the possibility of seasonal stratification 
in potential future projects with these data sets. 

Table 2.1 shows that we compiled the frequency distributfons not only 
for "all hours" but also for "hours with precipitation or fog 11 

• By sub­
tracting the latter from the former, we obtained the distribution for 
11 hours excluding precipitation and fog 11 As discussed in the next section,• 

both 11 all hours 11 and "hours excluding precipitation and fog" are among the 
visibility indices used in the housing value regressions. 

After being recorded on the quarterly forms, the data for each site 
and each two-year period were summarized according to cumulative frequency 
tables (for example, Table 2.2). We also plotted the cumulative frequency 
distributions (as in Figure 2.3) to scan visually for anomalies. The median 
visual ranges over each two-year period were calculated by interpolating 
the cumulative frequency distributions between the routinely reported 
visibilities. 

2.3 VISIBILITY (EXTINCTION) INDICES 

This section explains how the median visual ranges for each two year 
period were summarized and formatted for direct use in the econometric studies. 

*Referring to the previous example (with the 40 and 30 mile markers), if one 
member of the observation team occasionally decided to report 35 mile visi­
bility rather than the routine 30 miles, then the 35 mile recordings should 
be lumped with the 30 mile recordings in the cumulative frequency distribution. 
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TABLE 2.1 EXAMPLE OF CHART FOR RECORDING VISIBILITY OBSERVATIONS 
(first quarter for Burbank, 1978). 

Visual NUMBER OF OBSERVATIONS 

Marker Precipitation 
or Fog(miles) Total Observations 

50 

40 

25 

20 

15 

7 

5 

2 

1 

0 
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TABLE 2.2 EXAMPLE OF CUMULATIVE 

ALL HOURS 

Number of Cumulative 
Observations Number 

2 2190 

33 2183 

439 2155 

298 1716 

310 1418 

231 1108 

186 877 

192 691 

230 499 

127 269 

142 142 

FREQUENCY 

Cumulative 
Percent 

100 

99.9 

98.4 

78.4 

64.7 

50.6 

40.0 

31.6 

22.8 

12.3 

6.5 

f___.._:::..~J 

I 

DISTRIBUTION {Burbank, 1978-79) 

ALL HOURS EXCLUDING 
PRECIPITATION OR FOG 

Number of Cumulative Cumulative 
Observations Number Per·cent 

0 1974 100 

1 1974 100 

309 1973 99.9 

269 1664 84.3 

297 1395 70.7 

227 1098 55.6 

183 871 44.1 

189 688 34.·9 

230 499 25.3 

I 127 269 13.6 

I 142 142 7.2 

Median Visibility: 10.3 miles 12. 4 mil es 
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Figure 2.3 Example of cumulative frequency distribution plot 
(all data for Burbank, 1978-79). 
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The first major step in this final process involved the decision to base 
our studies on extinction indices rather than visual range indices. The 
atmospheric extinction coefficient represents the fraction of light that 
is attenuated per unit distance as a 1ight beam traverses the atmosphere. 
In a uniform atmosphere, the extinction coefficient (B) is inversely 
proportional to visual range (V). The Koschmeider formula expressing this 
relationship is 

B = JL. ( 2-1) V , 

where the constant "k 11 is usually chosen as 3.9 or 3.0, depending on whether 
one assumes a 2% or 5% contrast detection threshold for the observer. In 
this study, we have computed extinction based on a Koschneider constant of 
3.o*, which is the appropriate value when using airport data (Trijonis et al., 
1982; Allard and Tombach, 1980; Malm, 1979). 

As a visibility index, extinction is scientifically preferable to 
visual range for two reasons: (1) all major indices of visual air quality 
(visual range, contrast, and discoloration) can be calculated in a straight­
forward manner knowing the spatial/spectral distribution of extinction and 
the optical specifications of the scene, and (2) total extinction is a simple 
linear sum of scattering and absorption from each particulate and gaseous 
component.** Extinction also seems preferable to visual range as an index 
of, visual air quality in our housing value regressions for two reasons. 
First, we know that humans perceive -- and therefore value -- a unit change 
in visual range more at low visibilities (e.g. from 1 to 2 miles) than at 
higher visibilities (e.g. from 100 to 101 miles); linear regressions against 
extinction agree with this principle. Second, airport data are known to be 
of relatively higher quality at lower visibilities than at higher visibilities; 

*we report our extinction values in the conventional units of [10-4m-l]. Be­
cause visual range is in units of [miles], the constant of k = 3.0 becomes 
transformed to a value of k = 18.7 when accounting for the switch in units. 

** Total extinction consists of four basic components: natural light-scattering
by air molecules (blue-sky scatter), light absorption by gases (essentially 
all from N02), light scattering by particles (usually dominated by fine 
particles in the 0.1 to 1.0 µm size range), and light absorption by particles
(basically all from black carbon). · 
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performing the regressions in terms of extinction rather than visual range 

emphasizes the variations in the higher quality part of the data rather 

than the variations in the lower quality part of the data. 

Three indices of extinction were determined for each weather station 

and each two-year time period. The first is median annual extinction, cal­

culated by applying Equation (2-T) to the median two-year visual range at each 
station. The second is median annual extinction for hours without precipitation 

or fog, calculated by applying Equation (1) to median two-year visual range for 

non-precipitation, non-fog hours. The third is median annual extinction 

discounting fo.r sea haze. This last index is calculated at each weather station 

by subtracting an estimate of median ocean haze/fog extinction from median 

total extinction. We estimated the median ocean haze/fog contribution by 

studying shore to inland gradients of extinction (as reported by Trijonis, 

1980, 1982) in rural coastal areas of California that are free from strong 

local pollution effects. Our general estimate of sea fog/haze extinction in 

Ca1ifo rn i a is 

Bsea = l • e -x/30 km, (2-2) 

11 x11where Bsea is in units of ,o-4m-l , and is the distance from the station 

to the coastline. * 

Figures 2.4 through 2.6 present maps of the three visibility indices 

(specified as visual range rather than extinction) for the Los Anoeles study 

area in 1978-79. Each mao illustrates the visibility values at the various 

weather stations as well as isooleths drawn to those values. It is anparent 

from Figure 2.4 (all hours) that the lowest visual ranqe in the basin~ about 

7 miles, occurs south of the San Gabriel Mountains in the Pomona end lfest 

San Gabriel Valleys. Median visual range improves toward the WESt and P.ast. 
to about 11 miles along the western coast and to over 25 miles in the San 

Gorgonio pass. Figure 2.5 (all hours excluding precipitation and foq) is 

very similar to Figure 2.4, except that the median visibilities are slightly 

higher when fog and precipitation are sorted out. Figure 2.5 (all hours, 

sea haze contribution subtracted out) is somewhat like Figure 2.4 except for 

11 x11 *For San Francisco sites, we chose as a weighted average -- .75 times 
the distance to the outer coastline and .25 times the distance to the 
inner bay shoreline. 
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Figure 2.4 Isopleth map of median annual visibility 
-for the Los Angeles area, all hours, 1978-79. 
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figure 2.5 Isopleth map of median annual visi~ility 
for the Los Angeles area, all hours, 
excluding precipitation and fog, 1978-79. 
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Figure 2.6 Isopleth map of median annual visibility 
for the Los Angeles area, all hours, sea 
haze contribution subtracted out, 1978-79. 



the stronger gradient of improving visibility toward the coast; with sea haze 

discounted, median visual range along the west shore of the region is 20-25 

miles rather than 10-12 miles. 
Figures 2.7 through 2.9 present corresponding maps for the 1973-74 oeriod. 

The spatial pattern during 1973-74 is generally similar to 1978-79, but the 

area of lowest visibility extended through the East San Gabriel Valley to 

Downtown Los Angeles in the earlier years. Generally, a slight imnrovement 

in visibility occurred from 1973-74 to 1978-79, with the largest increases in 

the Los Angeles County part of the region. 

Figures 2.10 to 2.12 present maps of the three visibility indices for 

the San Francisco study area during 1978-79. It is obvious that visual range 

is significantly higher in San Francisco than Los Angeles. Figure 2.10 (all 

hours) reveals two notable hot spots in the San Francisco area whe-re visual 
range is less than 15 miles. These are the San Francisco-Oakland urban core 

and the Southern Bay area around San Jose. Again, Figure 2.11 (all hours 

excluding precipitation and fog) is very similar to Figure 2.10 except for 

slightly higher median values. Figure 2.12 shows that, with sea haze eliminated, 

a band of very high visibility (visual range exceeding 35 miles) occurs along 

the western coast of San Francisco. 

Figures 2.13 to 2.15 present San Francisco maos for 1973-74. The 

spatial patterns are similar to Figures 2.10-2.12, but aqain we find a qeneral 

pattern of slightly improving visibility from 1973-74 to 1978-79. 
For the purposes of our regression studies, we needed extinction in-

dices for the Thomas Brothers grid squares shown in Figures 2.16 and 2.17. 

These were obtained by overlaying transparencies of Figures 2.16 and 2.17 

on Figures-2.4 to 2.15 and estimating (interpolating) the visibility indices 

according to the isopleths. As noted oreviously, the visual range indices 
were converted to extinction indices for the ~urposes of the regression 
analyses. 

We a 1 so assigned an II uncertainty va 1ue 11 to the data for each grid 
11 011square. An uncertainty code of denoted grid squares where we had the 

most confidence in the visibility data. An uncertainty code of 11 l II indicated 

squares where we had less confidence. Some of the uncertain squares are on 

the outskirts of the region covered by the weather stations. The other 

uncertain squares contain hilly or mountainous terrain (we thought that 
visibility might vary substantially with altitude within these squares, and 
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Figure 2.7 Isopleth map of median annual visibility 
for the Los Angeles area, all hours, 1973-74. 
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Figure 2.8 Isopleth map of median annual visibility 
for the Los Angeles area, all hours, 
excluding precipitation and fog, 1973-74. 
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Figure 2.9 Isopleth map of median annual visibility 
for the Los Angeles area, all hours, sea 
haze contribution subtracted out, 1973-74. 
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Figure 2. 10 Isopleth map of median annual visibility for 
the San Francisco area, all hours, 1978-79. 
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Figure 2.11 Isopleth map of median annual visibility 
for the San Francisco area, all hours, 
excluding precipitation and fog, 1978-79. 
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Figure 2.12 Isopleth map of median annual visibility for 
the San Francisco area, all hours, sea haze 
contribution subtracted out, 1978-79. 
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Figure 2.13 Isopleth map of median annual visibility for 
the San Francisco area, all hours, 1973-74. 
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Figure 2.14 Isopleth map of median annual visibility 
for the San Francisco area, all hours, 
excluding precipitation and fog, 1973-74. 
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Figure 2.15 Isopleth map of median annual visibility for 
the San Francisco area, all hours, sea haze 
contribution subtracted out, 1973-74. 
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Figure 2.16 Thomas Brothers grid map system 
for the Los Angeles study region. 
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Figure 2. 17 Brothers grid map system for 
the San Francisco study region. 
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that visibility might be valued differently in hilly areas than in flat 

areas). The housing value regressions were run with data from all the grid 

squares as well as with data only from the most certain grid squares. Little 
difference was found between the two sets of results. Only the regression 
runs using all the grid squares are reported in the next chaoter. 
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3.0 ESTIMATION OF BENEFITS FROM VISIBILITY IMPROVEMENT 

The objective of this chapter is to attempt to place a monetary value 
on improvements in visibility (decreases in light extinction). The hedonic 
housing value approach is the methodology employed. The major results of this 
inquiry can be summarized as follows: 

• In the hedonic price gradient estimation, the light extinction variable 
is a significant negative determinant of home sale price. This result 
holds in both air basins and for various sample sizes, functional 
forms, and light extinction measures. 

• The monetary impact of a hypothetical ten percent change in extinction 
ranges from approximately .7 - 2.1 percent of home sale price in the 
Los Angeles Area and from 1.4 - 2.5 percent of home sale price in the 
San Francisco Area. The value within an air basin is primarily dependent 
upon functional form, consistent with the results of Bender et al. (1980). 

• The inverse demand curve estimation which relates income and existing 
extinction levels to margin~l willingness to pay (price) for extinction 
reductions indicates that both income and existing extinction levels are 
significant determinants of willingness to pay for decreases in extinction 
levels. In addition, these two variables explain a large proportion of 
the variation in this willingness to pay. 

• The inverse demand results for the Los Angeles Area are somewhat 
surprising in that they apparently indicate non-convex preference 
patterns. The sign of the extinction variable seems to suggest 
that Los Angeles residents have a willingness to pay that is smaller 
for initial incremental improvements relative to subsequent incremental 
improvements. This would be contrary to standard economic theory but 
consistent with a growing volume of literature concerning environmental 
goods (see Crocker, 1981 for a summary). However, because the hedonic 
equations are non-linear, the sign of the pollution variables in the 
inverse demand curves cannot be predicted a priori (Bartik and Smith, 
1984). Thus, the negative sign in the Los Angeles Area cannot really 
be interpreted as demonstrating abnormal convexity. it should be noted 
that the San Francisco Area results indicate consistency with more 
traditional economic theory. But again, no conclusive interpretation 
can be attached. 
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• Benefit estimates based on the inverse demand curves are variable, depend­

ing upon the functional form of the hedonic price gradient. This result 

is consistent with the Bender et al. (1980) findings. However, the benefit 

estimates are not dependent upon the functional form of the inverse 

demand curve. Given this background, a hypothetical 10 percent improve­

ment in visibility would generate benefits of between 250 and 620 million 

dollars annually in the Los Angeles Area and between l90 and 220 million 
dollars annually in the San Francisco Area. 

• The use of multiple markets adjusts the benefit estimates in the manner 

anticipated. For instance, adding San Francisco Area households into an 

analysis of the Los Angeles Air Basin increases the benefit estimates since 

San Francisco Area households seem to have a greater aversion to air 

pollution. 
The remainder of this chapter is organized as follows. The hedonic 

housing value method is reviewed in Section 3.1. This section is somewhat tech­

nical and may be difficult for the lay person. However, it is a separate entity 

and the reader may neglect this material without a significant loss of under­
standing. Section 3.2 presents and discusses the housing data utilized in the 

estimation of the hedonic equations. The empirical results for the Los Angeles 

and San Francisco Areas are presented in Section 3.3. Section 3.4 describes the 

demand estimation procedures and results. Section 3.5 offers concluding remarks. 

3. 1 METHODOLOGICAL REVIEW 
The benefits of improved visibility estimated herein employ a methodology 

derived from ideas originally proposed by A. Myrick Freeman (1974, 1979a, and 

1979b) and Sherwin Rosen (1974). Their approach, referred to here as the 

Freeman-Rosen (F-R) technique, facilitates the identification of demand curves 
for commodities which are not normally traded in markets. Despite numerous 

professional comments (especially those appearing in the Review of Economics 

and Statistics), the basic framework of the F-R technique has become accepted 

by economists and applied to a·wide range of problems. Several researchers have 

used this technique to estimate the benefits (whether marginal or total) of 

changes in various environmental commodities, among which are air pollution 

(Brookshire etal.~1982; Harrison and Rubinfel~ 1978; and Nelso~ 1979) and shore­

line (Brown and Pollakowski, 1977), indicating its applicability in the field of 

environmental economics. 

However, the F-R technique has recently been criticized for being inappro­

priate under some very general conditions. Through the work of Brown and Rosen 
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(1982), Mendelsohn (1980), Palmquist (1981), and Quigley (1982), it has become 
increasingly clear that implementation of the F-R approach requires more assump­
tions and/or data than originally anticipated by Freeman and Rosen. 

The purpose of this section is to review the F-R technique and reconcile 
it with these recent criticisms so that the methodology used in obtaining the 
benefit estimates reported in Section 3.4 can be completely understood. The 
major conclusion of the present chapter.is that the benefits from improving 
visibility in the Los Angeles and San Francisco Areas can be estimated using 
the F-R framework and a couple of additional assumptions. Although more restric­
tive, these assumptions do not make the F-R technique unrealistically abstract 
or unusable. To the contrary, our benefit estimates correspond closely to our 
a priori expectations, which were based on previous work in this area. 

3.1.1 The Freeman-Rosen Model 
The fundamental importance of the F-R model is that it provides a method­

ology for estimating demands for the characteristics of certain commodities. 
For example, an automobile can be described by various characteristics, such as 
color, number of doors, type of seats, etc. The F-R methodology could, in theory, 
be used to determine the demand for, say, doors (e.g. two or four) on an auto­
mobile. Likewise, the technique can be used to determine the demands for the 
differing characteristics of homes. It is this application that we consider 
below, and, because our concern is with the environmental quality characteristics, 
much of the discussion foiuses on it. 

The key elements of the F-R model, as applied to housing markets, can be 
examined using the following notation. Let: 

P = the price of housing. 
S = a vector of site specific characteristics of homes. For example, living 

area, number of bathrooms, and the age of the home would be represented
in S. 

N = a vector of neighborhood characteristics of the home. These include, 
for example, age of the surrounding population, locational parameters,
public services, and racial make-up. 

E = the environmental quality associated with the home. For our purposes, 
Eis light extinction (inverse of visual range). 

X = a composite commodity. The variable represents consumption on all 
goods and services except housing. The price of Xis set equal to one 
for simplicity. 

Y = Income. 
The measures in S, N, and E completely describe the housing prices pro­

vided by homes and therefore determine P for each unit. More formally, this 
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relationship, 

P = P(S, N, E), (3-1 ) 

is called the hedonic price function,and it is assumed to be continuous and twice 

differentiable. Since S, N, E, and Pare observable during market transactions, 
Equation (3-1) is theoretically observable as well. Unfortunately, there are no 

clues to the shape of this function, requiring that its functional form be deter­

mined statistically through some type of estimation procedure. It is, however, 

improbable that the function will be linear in all of its arguments. This would 

imply, for example, that a home with 2000 square feet of living area would always 
be worth a certain amount more than one with 1000 square feet,an unlikely situation. 

Equation (3-l)determines the total cost of a bundle of attributes repre­

sented by S, N, and E. The marginal cost due to an additional amount of some 

characteristic (e.g., E) is PE =oP/oE. PE is referred to as the implicit price 
of E or the hedonic price of E. A simple example will help clarify why PE is, in 

fact, the implicit price of additional units of E. Imagine that P represents the 

total cost of a shopping basket containing various items represented by S, N, and 
E. If one of the items is soup, then we can calculate the change in P (the total 

cost) due to an additional container of soup, holding constant the other items 

in the basket. Obviously this is the same as the price of an additional container 

of soup. Similarly, PE is the price of additional units of environmental quality. 
In as much as Equation (3-1) is observed (or estimated) from data accumulated 

during market transactions, the implicit prices can be calculated. Thus, the 
existence of the hedonic price function necessarily implies that the implicit 

prices for the characteristics can be obtained. This is a major aspect of the 

F-R framework. 
Next consider a consumer whose preferences over housing characteristics 

and other goods are represented by the following utility function: 

U = U(X, S, N, E) (3-2) 

The behavior of the consumer is characterized by maximizing (3-2) subject to 
a budget constraint: 

Maximize: U = U(X, S, N, E) 

Subject to: Y = X + P(S, N, E). 
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The first order necessary conditions for utility maximization yield 

(3-3) 

where subscripts denote partial differentiation. The implicit prices reveal 
marginal rates of substitution (MRS), a fundamental result of the F-R model, 
especially since Eis a public good. 

Now define Was the amount an individual is willing to pay for alternative 
amounts of S, N, and E given a level of satisfaction and some amount of income. 
Wis an implicit function defined by: 

U(Y-W, S, N, E) = 0 (3-4) 

where Ois arbitrarily fixed. Thus, 

W= W(S, N, E, Y, 0). (3-5) 

The marginal willingness to pay for some characteristic (say E) is oW/cE = WE 

/ i. and 

WE= f(S, N, E, 0, Y) ( 3-6). 

is the consumer's compensated (inverse) demand curve for E. The outstanding 

feature of the F-R model is that in equilibrium, WE= PE= MRSEx· PE reveals 
the consumer's marginal willingness to pay for E, given the other characteristics, 
utility, and income. Moreover, data can be obtained for all the variables 
(except, of course, 0) in the equation. Under what conditions then, can (3-6) 
be identified empirically? 

Following Freeman (1979) and Harrison and Rubinfeld (1978), a fair assump­
tion is that the supply of Eis exogenous or fixed, particularly in the short 
run. Given this, and a nonlinear Equation (3-1), there is variation in the 
price (PE= WE) and quantity (E) data, and applying ordinary least squares to 
Equation (3-6) should identify the inverse demand curve for E. On the other 
hand, if the supply of E cannot reasonably be assumed to be independent of PE, 
then the demand and supply relationships should be estimated jointly (Nelson, 
1979). In light of the fact that Eis mainly determined by exogenous influences 
such as topography and wind patterns, we have chosen to ignore the supply side of E. 
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It appears as though the F-R model does provide a workable framework for 

estimating the benefits from discrete changes in E. An estimated version of 
(3-6) would be an ordinary inverse demand curve, even though the theory suggests 

that (3-6) is the utility compensated demand curve. This is because observations 

on Oare not generally available, meaning that there is no way to empirically 
hold utility constant. If, however, the utility function is known a priori, or 

assumed, then compensated demand curves can be estimated. Quigley (1982) 
assumed a generalized utility function with constant elasticity of substitution 

and was able to identify compensated demand curves. In practice, when an ordinary 
demand curve is estimated, benefits are calcula.ted as changes in willingness to 

pay and, when compensated demand curves are estimated, benefits are calculated 

as the measure of compensating variation. The difference between the two will 
be minor as long as the income elasticity is relatively small and the ratio of 
the consumer 1 s surplus to income is small (Willig, 1976). To the extent that E 

is a relatively minor item for most individuals, the distinction between willing­
ness to pay and compensating variation (or, for that matter, between ordinary 
and compensated demand curves) can be ignored. 

As is the case whenever demand curves are estimated, it is necessary to 

assume that all individuals in the market are identical except for income and 

measurable taste shift parameters. The shift parameters are usually socio­
economic variables such as education, sex, rac~, age, and political beliefs. 

Below, we have assumed that individuals within a market are identical except 
for differences in income levels. 

3.1.2 Recent Criticisms and Comments 

Brown and Rosen (1982), Mendelsohn (1980), Palmquist (1981 ), and Quigley 

(1982) have all illustrated a basic flaw in the F-R technique. Their argument 
is that the implicit prices (e.g., PE) are endogenous in the model, rather than 

given to consumers. As a matter of fact, the consumer actually chooses PE when 
making his locational decision. To see this, assume that the hedonic price 

function depends on only three arguments represented by S, N, and E. In general, 

then, implementation of the F-R approach requires the estimation of the following 
equations. 

P = P(S, N, E) 

PE= f(S, N, E, Y) 
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= g(S, N, E, Y)P5 

PN = h(S, N, E, Y) 

where subscripts again denote partial derivatives. Since PE, P5, and PN are 
deterministic functions of S, N, and E (according to the hedonic price function), 
it is impossible to estimate f, g, and h. Only when PE, Ps, and PN are exogenous 
will any new information be gained by estimating f, g, and h. Since this point 
is crucial to the implementation of the F-R technique, some additional comments 
and suggestions are warranted. 

Following Mendelsohn, within a market (e.g., an SMSA) all individuals face 
the same set of prices for the characteristic under consideration. The price 
set given by PE represents the array of prices faced by individuals when choosing 
optimal levels of E. The implication of this can be realized by comparing two 
individuals, A and B. Individual A chooses a different level of Ethan does B, 
only if his demand for Eis different than B's (perhaps due to different income 
or tastes). Their quantity choices are not different because of differences in 
PE. It seems as though the observed data reveal information about how different 
individuals respond to the same set of prices, rather than the desired situation 
of identical individuals responding to different prices. In essence, the data 
give us one point on each demand curve which, without some additional structure, 
is not enough information to estimate the shape of the underlying r~lationship 
between price and quantity. 

Figure 3.1 visually highlights this issue. In the figure, P~ is the 
implicit price set faced by all individuals in the market and W~ and W~ are 
the demand curves for A and B, respectively. The demand curves illustrate that 
different individuals choose different levels of E and, therefore a different 

PE. The information revealed by the F-R approach is (P~, E~) and (P~, E~). 
Now, unfortunately, exactly the same information is revealed by the demand curves 
W~ and W~. And, in general, there will be no way to discern whether the shape 
implied by W~ and W~ is correct or the shape of w: and Q~ is the appropriate 
representation of reality. 

Brown and Rosen have examined the econometric implications of the endo­
genicity of the implicit prices in greater detail. Say that the hedonic price 
function is estimated as the following polynomial: 
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Figure 3.1 Alternate environmental demand 
curves for two individuals. 
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Then 

(3-7) 

(3-8) 

If we try to estimate a demand equation that is linear in E, say 

(3-9) 

we would find that the R-square is one, =a3, B1 = 2a4, and B2 is insignifi-B0 
cant. Clearly, demand estimation cannot reveal any additional informationotherthan 
that contained in (3-7) in this case. At first this may seem to be a fatal 
blow to the F-R technique; however, when the demand equation is not a determin­
istic function of the hedonic price equation, then estimation is still possible. 
The problem is a drawback, though, since it requires researchers to assume away 
the problem and avoid these situations. 

Mendelsohn and Palmquist suggest that a way to overcome these difficulties 
may be to use hedonic price functions from several different markets. The 
effect of this is to add additional price sets into the problem and obtain in­
formation on how like individuals respond to different price sets. An example 
is illustrated by P~ in Figure 3.1. P~ is the set of implicit orices calculated 
from another market; with the additional information denoted by (Py, Ey) and 
(P~, E~) it is possible to discover the appropriate price and quantity relation­
ships. (In the figure, W~ and W~ reflect the true relationship between price 
and quantity.) Obviously, more precision will be gained by adding in more and 
more markets. 

The use of multimarket data revolves around two issues; first, we need to 
determine what, if any, additional assumptions are required for estimation. 
Then, we need to be able to identify the different markets. 

As noted above, demand estimation using the traditional hedonic approach 
requires the assumption of like preferences for individuals within the market. 
The multimarket approach requires an assumption of like preferences across 
markets. For example, individuals in Boston will have the same shaped demand 
curve for environmental quality as individuals in Los Angeles. This assumption 
describes how similar people respond to different price sets and, if appropriate, 
facilitates estimation of demand curves. 

In order to identify the different markets, Mendelsohn suggests that a 
sufficient condition for hedonic functions to vary across markets is "that the 
underlying array of suppliers changes across the markets." An example would 
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be different supply arrangements induced by building codes and realtor boards. 

Another sufficient condition noted by Mendelsohn is, 11 if the number of demanders 

in a market is independent of the market prices, the supply curves are not per­

fectly elastic, and the number of demanders varies across markets." This can 
result when the transportation costs between markets prohibit consumers from 

locating in either area (Palmquist). Therefore, we have some guidelines on 

defining different markets within a geographic region, which,coupled with the 

assumption of identical individuals across markets,enable us to implement the 
multimarket approach. 

An alternative to the Mendelsohn and Palmquist suggestion is the approach 

taken by Harrison and Rubinfeld (1978) and formally suggested by Quigley (1982). 

In this case, we eliminate the endogenous nature of the implicit prices by 

taking the hedonic price function as given (or determined in a prior step) and 

use the nonlinear budget constraint to empirically determine preferences. The 

choice of these two procedures is examined below. 
3.1.3 Assumption Choices 

In order to implement the F-R technique, two different assumption sets 

can be imposed. The first requires the use of multimarket data, while the 

second, although operational with data from a single market, requires restric­

tions on the functional fonns of the hedonic price equation and the demand curves. 

Even though there are good and bad points about each set of assumptions, we 

have concluded that the estimates from single market data will be more appropriate 

in this study. There were several reasons for this conclusion. 

Foremost in our reasoning was the requirement that individual preferences 

needed to be identical across markets in order to use multimarket data. Indeed, 

since people tend to gravitate toward others who have similar preferences, we 
expect San Franciscans to be similar and Los Angeles Area residents to be similar, 

but there is no reason to suspect that the two groups are similar to each other. 

There does not seem to be an empirical test of this hypothesis, although we have 

found that hedonic price equations and the demand equations are different across 

the two areas. Thus, our initial empirical investigations seemed inconsistent 
with the multimarket approach. 

Another consideration was the amount of data required for multimarket 

estimation. We have two viable markets but doubt that two is a sufficient 

number to adequately implement Mendelsohn's suggestion. More confidence could 

be achieved by obtaining data from more markets. Perhaps San Diego, Portland, 
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and Seattle would be reasonable choices to combine with Los Angeles and San 

Francisco. 
As noted above, Brown and Rosen have illustrated that some functional form 

combinations must be eliminated. This type of assumption may not be overly 
restrictive. For example, if the demand curve is going to be linear in E, the 
only forms ruled out for the hedonic price equation are polynomials of degree 
two in E. Basically, this is what we have done below. 

The approach used herein is essentially the same as that taken by Quigley. 
We assume that the individuals within each market are identical with the excep­
tion of income and that they take as given the nonlinear hedonic price function. 
Then, since the budget constraint is nonlinear, differences in income are suf-_ 
ficient to identify consumer's preferences. For a graphical presentation of 
this, see Quigley's Figure 1. Harrison and Rubinfeld appear to have used the 
same approach as well. 
3. 1.4 Methodological Summary 

The following is a formal categorization of the procedures followed in 
obtaining the estimated benefits from changes in levels of visibility. 

1. Determine the appropriate set of variables to be entered into the 
hedonic price equation. Included in this evaluation is the suitable 
measure of visibility. 

2. Identify the functional form of the hedonic price equation. This can 
be very important -- several others have found benefit estimates to 
be sensitive to functional form (Bender et al., 1980). 

3. Assume that all individuals within a market are similar except for 
income and that visibility (or extinction) is neither a substitute 

for nor a complement with other characteristics. Thus demand is given 
by 

WE= f(E, Y). 

4. Assume that the demand equation is not a deterministic function of the 
hedonic price equation. Thus, all variation in PE is not due entirely 

otO differences in E. 
5. Calculate PE for each community and regress E and Yon these calcula­

tions. (The choice of community as the individual is arbitrary. See 
below.) 

6. Use the results from (5) to calculate the benefits of various programs. 
Implementation of this methodology is described in the remaining sections 

of this chapter. 
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3.2 DATA SPECIFICS: HEDONIC HOUSING EQUATIONS 

The initial procedural step of the hedonic housing value approach is to 

estimate a hedonic housing equation which relates home sale price to the attri­

butes of the home. Of particular interest is the relationship of home sale 

price to light extinction levels. The estimation is particularly concerned with 

testing the hypothesis of whether or not extinction levels are a significant 

determinant of home prices. 

The study areas are within the South Coast and Bay Area Air Basins. In­

cluded in the first study area are Los Angeles, Orange, Riverside, and San 

Bernardino counties. The latter study area consists of San Francisco, Alameda, 

Contra Costa, San Mateo, and Santa Clara counties. The analysis is specifically 

confined to single family residences in these areas. Thus, not considered is 

the impact of visibility variations upon other structures (multiple family 

dwellings, mobile homes, commercial, etc.) or other ownership types (rental 

leasing, etc.). Therefore, within our sample, this research asks if households 

will pay a premium in price for single family homes located in clean air areas 

and what is the magnitude of that willingness to pay. 

The data base was constructed to enable the testing of hypotheses con­

cerning the impact of extinction levels on housing sale price. The dependent 

variable in the entire analysis is the sale price of owner occupied single 

family residences.* The independent variable set consists of variables which 

correspond to three levels of aggregation: house, neighborhood, and community. 

Table 3.1 describes further the data employed in the study. 

The housing characteristics data, obtained from the Market Data Center (a 

computerized appraisal service centered in Los Angeles), pertain to homes sold 

in the 1978-79 time period and contain information on nearly every important 
. ** 

structural and/or quality attribute. Included in the list of available variables 

are those that pertain to both quantity (lot size, total number of rooms, square 

footage of living area) and quali.ty (pool, view, number of fireplaces, parking, 

*The sale price or the discounted value of the flow of rents rather than actual 
rent is used as the dependent variable. The two are interchangeable given the 
appropriate discount rate. 

** The 1978-79 time period was chosen because it represented the latest years that 
housing data were available. It should be noted that this project was initially 
designed to also examine the 1973-74 time period. This effort constituted an 
attempt to examine preference shifts over time. However, the assumptions neces­
sary to allow such a comparison were so restrictive as to make the effort 
meaningless. Therefore, the 1973-74 analysis is relegated to Appendix A-
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TABLE 3.1 VARIABLES USED IN ANALYSIS OF HOUSING MARKET FOR 1978-79. 

Uefinition (hypothesized effect on 
Variable on housing sale price) Unit Source 

Dependent: 

Sale Price 

Independent-Housing: 

Sale Uate 

Age 
Bathrooms 
Living Area 

~ Pool 

Fireplaces 
View 

Independent-Neighborhood: 

Distance to Beach 
Age Composition 

Ethnic Composition 

Time to Work 

Sale price of owner occupied 
single family residences 

Month the home was sold (positive) 

Age of home (negative) 
Number of bathrooms (positive) 
Square feet of living area 
(pos-itive) 
l if pool, O if no pool (positive) 

Number of fireplaces (positive) 
l if view present, 0 if not 
(positive) 

Miles to nearest beach (negative) 
Percent greater than 62 in census 
tract (positive) 
Percent white in census tract 
(positive) 
Average time to employment from 
censuo tract (negative) 

($100) 

January 1978 -
December 1979 -
Years 
Number 
Square Feet 

0 - no pool 
l - pool 
Number 
0 - no view 
l - view 

Miles 
Percent 

Percent 

Minutes 

Market Uata Center 

l Market Data Center 
24 

Market Data Center 
Market Data Center 
Market Uata Center 

Market Data Center 

Market Data Center 
Market Data Center 

Calculated 
1980 Census 

1980 Census 

1980 Census 
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TABLE 3.1 (Continued). 

Definition (hypothesized effect on 
Variable on housing sale price) Unit Source 

Independent-Community: 

School Quality 

Population Density 

Miles to Central Business 
District 

(Jl Crime m 

Age 

Race 

Unemployment 

Education 

Poverty 

iiome Density 

Populatlon per Household 

Community's 12th grade math score 
(positive) 

Population per square mile in 
surrounding community (negative) 

Distance from census tract to 
dominant city in county (negative) 

Seven major crimes per 1000 people 
in surrounding colUlllunities (negative) 

Median age of population in sur­
rounding community (positive) 

White percentage of population in 
surrounding community (positive) 

Unem~loyment rate in surrounding 
community (negative) 

Percentage of population in commun­
ity with High School Diploma 

.(positive) 

Percentage of population in commun­
ity below poverty level (negative) 

Hundreds of people per square mile 
(negative) 

Persons per household (negative) 

Percent 

Persons/square 
mile 

Miles 

Crimes/persons 

Years 

Percent 

Percent 

Percent 

Percent 

Homes/ square mi le 

People/Home 

California Assessment 
Program ( 1979) 

1980 Census, Thomas 
Brothers Grid Maps 

Thomas Brothers Grid 
Maps 

Summary Characteris­
tics 1980 Census 

Summary Characteris­
tics 1980 Census 

Summary Characteris­
tics l 980 Cemms 

Summary Characteris­
tics 1980 Census 

Summary Characteris­
tics 1980 Census 

Summary Characteris­
tics 1980 Census 

Calculated 

Summary Characteris­
tics 1980 Census 



T~BLE 3.1 (Concluded). 

Uefinition (hypothesized effect on 
Variable on housing sale price) Unit ~oucce 

lndeeendent Air Quality: 

4 )-1Light EKtinction* (l) Median annual ex~inction level (neg.) (10 meters See Chapter 2 

Light EKtinction* (2) Median annual extinction level dis- (104 meters)-l See Chapter 2 
regarding hours with fog or 
precipitation (negative) 

Ul Light Extinction* (3) Median annual eKtinction subtracting (104 meters)-l See Chapter 2 
-.....J 

sea haze contribution (negative) 

*Light Extinction= 18.7/visibility, where visibility is in units of [miles]. 



stories, etc.) of each particular house. This list was pared to those variables 
presented in Table 3.1 in order to reduce collinearity problems. But note 

that both home quantity and quality are covered by the variables chosen. 

It should be emphasized that housing data of such quality (e.g., micro 

level of detail over time) are rarely available for studies of this nature. 

Usually outdated data which are overly aggregated and collected irregularly 

(for instance census tract averages only in census years) are employed. Our 
data sets yield results relevant at the household (micro) level. 

The Market Data Center provided data tapes listing all homes sold in the 

counties specified above during the 1978-79 time period. The number of entries 

was unmanageably large (in excess of 100,000 observations), so the data sets 

were reduced using a random number matching system. The selection criteria 

satisfied a desire to maintain: (l) a large data set (greater than 3000 observa­

tions), and (2) the relative proportions of homes sold in the counties. Table 

3.2 lists the number of observations from each county, illustrating that 4765 and 

3106 home sales were included in the Los Angeles and San Francisco Areas, 

respectively. 

In addition to the immediate characteristics of a home, other variables 

which could significantly affect its sale price are those that reflect the 
condition of the neighborhood and community in which it is located. In order 

to capture those impacts and to isolate the independent influence of location 

vis-a-vis extinction differences, several neighborhood and community variables 

were included in the econometric modeling. 

Neighborhood refers to the surrounding census tract and includes the vari­

ables -- population, age, ethnic composition, distance to work, and distance to 

the beach. Given the large number of census tracts (for example over 1500 in 

the Los Angeles Area) variations in this data are quite substantial. Pertinent 

community (city level) variables include density measure, school quality, crime 

rate, and others. However, in contrast to the house and neighborhood character­
isti.cs, there are only a limited number of communities. Thus, collinearity 

between community measures presents empirical difficulties (see following 
section). 

The neighborhood and community data were matched to the household char­

acteristic data using the transformation from Thomas Brothers grid maps to the 

relevant census tracts and communities. Thus, each household was matched with 

its corresponding neighborhood and community characteristics. 
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TABLE 3.2 NUMBER OF OBSERVATIONS FROM EACH COUNTY IN 
ANALYSIS OF HOUSING MARKET FOR 1978-79. 

Los Angeles Area 

Los Angeles County 

Orange County 

Riverside County 

San Bernardi no County 

San Francisco Area 

San Francisco County 

Alameda County 

Contra Costa County 

San Mateo County 

Santa Clara County 

4765 

2682 

1399 

187 

497 

3106 

580 

908 

461 

531 

626 

59 



Symmary statistics for the variables used in the hedonic housing equation 

estimation are presented in Table 3.3 (Los Angeles Area) and Table 3.4 (San 

Francisco Area). Most of the figures in the tables are self explanatory and 
require no further discussion. However, of special interest in this project 
are the light extinction variables. As is evident through a comparison of 

Tables 3.3 and 3.4, the San Francisco Area possesses significantly better average 

visibility than does the Los Angeles Area. Further, the range of the San 
Francisco Area extinction data (a factor of 2) is small compared to the range 
of the Los Angeles Area extinction data (a factor of 5). The Los Angeles Area 

would seem to be a better study area because the variations in the data are much 

greater. 
A final point on the extinction data concerns the relationship between 

the various measures. The first and second extinction variables (annual median 
and annual median excluding hours of precipitation or fog) are nearly equivalent. 

Their means and standard deviations are quite close. Furthermore, the simple 

correlation between these measures is 0.98 in each study area. Therefore, in 
the empirical analysis that follows, the results for these two variables are 

treated as interchangeable. However, this is not the case with the relation­

ship between the third extinction variable (annual median subtracting sea haze) 

and either of the other measures. Thus, extinction (3) is treated as a parameter 
which measures something different from extinction (1) or extinction (2). When 

either of these latter two variables are used it is just labelled extinction. 
Only with the third extinction variable is a distinction made by adding the 

parenthetic identification. 
The data base assembled for the housing value study is appropriate to 

test the hypothesis outlined above for two reasons. First, the housing char­
acteristic data are extremely detailed at the household level of aggregation and 

extensive in that a relatively large number of observations are considered. 
Second, a variety of neighborhood and community variables have been included 

to help isolate the specific effect of light extinction on housing values. 
3.3 EMPIRICAL RESULTS: HEDONIC HOUSING EQUATIONS 

The initial task in the hedonic housing value analysis is to determine 

the relationship between light extinction levels and home sale price. The 

underlying structure of this hypothesis test is an empirical equation which 
attempts to explain the variation in home prices located in the Los Angeles 

and San Francisco Areas for the years 1978-1979.* The estimated coefficients 

*See Freeman (1979)and Maler (1979) for reviews of estimation techniques for 
hedonic housing equations. 60 



TABLE 3.3 SUMMARY STATISTICS FOR VARIABLES USED IN ANALYSIS 
OF HOUSING MARKET FOR THE LOS ANGELES AREA. 

Variable Mean Standa·rd Minimum Maximum 
Deviation Value Value 

Home Sale Price 93060.00 60508.00 9000.00 725000.00 

Sale Date 11.63 6.45 1.00 24 .oo 
Age of Home 20.61 16.15 1.00 77.00 

C, 
C: .,.. Bathrooms 1.86 0.42 0.50 7 .50 
U"l 
:::, Living Area 1524.00 608.90 371.00 9942.000 

:l: 

Pool 0.13 0.34 0 .oo. 1.00 

Fireplaces 0.72 0.61 o.oo 5.00 

View 0.078 0.27 0.00 1.00 
-0 Distance to Beach 14.53 ll.99 0.13 59.800 
0 

.J:: Age Composition 9.33 5.48 1.30 60. 70s.. 
0 
..c Ethnic Composition 83. 77 15.49 2.10 99 .10.J:: 
C, .,.. Time to Work 23 .33 3.40 10.00 38.00a., 
z

I'J 
1 

chool Quality 66.07 4.56 45.60 81.00 

Population Density 58. 65. 22.13 1.38 190.00 

Miles to Business District 15.56 7.90 o.oo 34.00 

Crime 48.06 13 .28 15.47 212.62 
>i 
+,) A.ge 2·9 .87 2.68 22.00 49.00

I, .,.. 
1 C:1' ::l Race 75.63 13. 93 6.22 97.49 

~ Unemployment 5.99 1.64 1.60 12.500 
u 

Education 73.74 9.48 30.70 97.00 

Poverty 10.92 4.66 1.90 29.40 

Home Density 10.61 3.53 0.19 26.99 

Population Per Household 2. 72 0.30 1.91 4.00

l}ight Extinction (1) 1.97 0.42 0.62 3.12~ s.. .,.. 
.,..,_ Liaht Extinction (2) 1.80 0.37 o·. 62 2.67 
c:::( "' 0 

::l 
o- Light Extinction (3) 1.40 0.55 0.62 2.88 
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TABLE 3.4 SUMMARY STATISTICS FOR VARIABLES USED IN ANALYSIS 
OF HOUSING MARKET FOR THE SAN FRANCISCO AREA. 

Variable ~ean Standard Minimum MaxiDDlm 
Deviation Value Value 

O'l 
I:: 

l/'l 
:::l 
0 
:c 

-0 
0 
0 

..i:::: 
s... 
0 

..c 

..i:::: 
O'l 

.,-
aJ 
z 

>, 
..µ 
.,-
I:: 
:::l 

~ 
0 
u 

>, 
..µ 

s.. .,-
.,- ,--
c::t ro 

:::l 
er 

Home Sale Price 

Sale Date 

Age of Home 

Bathrooms 

Living Area 

Pool 

Fireplaces 

View 

Distance to Beach 

Age C01lll)OSition 

Ethnic Composition 

Time to Work 

School Ouali ty 

Population Density 

Miles to Business District 

Crime 

Age 

Race 

Unemployment 

Education 

Poverty 

Home Density 

Population Per Household 

Extinction (1) 
~ght

ight Extinction (2) 

ight Extinction (3) 

89980.00 

11.66 

25.46 

1.69 

1443.90 

0.062 

0.81 

0.10 

26.22 

10 .11 

74.75 

24 .15 

68.12 

59.09 

11.13 

45.45 

31.72 

72.24 

6.42 

78.62 

9.05 

24.49 

2.58 

1.11 

1.02 

0.66 

51410.00 

6.33 

18.34 

0.65 

562.30 

0.24 

0.55 

0.31 

12.87 

6.47 

21.84 

3. 77 

4 .36 

45.48 

7.64 

22.44 

3.50 

17.10 

2.24 

6. 72 

5.03 

20.84 

0.34 

0.19 

0 .16 

0.20 

15000.00 850000.00 

1.00 23 .oo 
1.00 79.00 

1.00 5.50 

600.00 9600.00 

0.00 LOO 

0.00 6.00 

0.00 1.00 

6 .69 . 66.22 

0.70 84.30 

2.70 99.70 

14.00 35.00 

52.30 81.00 

4.33 151. 73 

0.00 27.84 

6.01 119. 08 

26.30 40.90 

38 .14 97 .53 

1.20 12.80 

58. 70 97.50 

2.20 21.00 

1.35 66.81 

l. 74 3.49 

0.78 1. 56 

o. 72 1.44 

0.45 1.10 

62 

https://51410.00
https://89980.00


of these hedonic equations represent the effects that changes in the independent 
variables have on sale price. In reference to the light extinction variable, 
this procedure allows one to focus on its significance while separating out 
the influence of other extraneous variables. Therefore, this.analysis yields 
two outputs concerning the relationship of extinction differentials to housing 
price. The relative significance of location with respect to extinction is 
determined, and the estimated coefficient pertaining to extinction implicitly 
measures its monetary value at the margin. 

This section is organized as follows. Estimated hedonic price gradients 
are presented for each of the study areas. The functional forms presented serve 
as benchmark results. The stability of those benchmark results is then analyzed 
by altering sample size, extinction measure, and functional form. In the 
latter case, both the independent variable set (other than extinction) and the 
mathematical form of the relationship are allowed to vary. The initial hedonic 
price gradients do not necessarily provide the best statistical fit of the data 
nor the most suitable relationship for subsequent analyses. Rather, only after 
all possible influences are analyzed do we choose the most appropriate relation­
ship to utilize in the subsequent steps of the hedonic price method. Finally, 
it should be noted that the order in which we have chosen to analyze these poten­
tial destabilizing influences has no effect on the ultimate choice of the best 
estimated price gradients. Thus, for instance, sample size has essentially 
no effect wh~ther it is analyzed first or last. 
3.3.1 Benchmark Results 

The estimated hedonic price gradients which serve as the base results 
are presented in Tables 3.5 and 3.6 for the Los Angeles Area and San Francisco Area, 
respectively. A number of aspects of the equations are worth noting. First, 
the independent vari ab1 e set was chosen to account for a11 the d"i fferent char­
acteristics of a home. Thus, square feet of living area represents the quantity 
of a home, whereas pool, house age, and the number of bathrooms and fireplaces 
describe the quality. In addition, characteristics which reflect the immediate 
neighborhood (ethnic and age composition) and the location (time to employment and.. . 

distance to beach) were included. Also, variables such as school quality and 
population density were included to represent overall community attributes. In 
this latter category, only a couple of available community variables were used 
because of collinearity difficulties. Collinearity is especially problematical 
because only a relatively few communities exist (112 in the Los Angeles Area and 
51 in the San Francisco Area). There is insufficient variation to allow the 
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TABLE 3.5 ESTIMATED HEDONIC EQUATION (LOG-LINEAR)
FOR THE LOS ANGELES AREA. 

DEPENDENT VARIABLE= tn(HOME SALE PRICE IN HUNDREDS OF 1978-79 DOLLARS) 

Variabl,es Coefficient t - Statistic 

Site Specific Characteristics: 

in (Sales Month) 
in ( Age of Home) 
in (Square Feet of Living Area) 
in (Number of Bathrooms) 

Number of Fireplaces 
Pool 
View 

Neighborhood Characteristics: 

in (Percent Greater than 64) 
in (Percent White) 

Location Characteristics: 

in (Distance to Beach) 
in (Time to Employment) 

Orange County 
Riverside County 
San Bernadina County 

Community Characteristics: 

in (Population Density) 
in (School Quality) 

in (Light Extinction) 

Constant: 

0.110 
-0.018 
o. 724 
0.099 
0.093 
0.079 
0.161 

0.053 
0.269 

-0.122 
-0.030 
-0 .141 
-0.303 
-0.173 

-0.017 
0.498 

-0.202 

-1.65 

27.64 
-5.39 
47.78 

6.83 
14.21 
8.21 

13.04 

8.11 
26.55 

-30.21 
-1.23 

-15.28 
-14.51 
-11.27 

-1.85 
8.15 

-10.03 

-5. 72 

R-Squared 0. 792 

Number of Observations 4766 
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TABLE 3.6 ESTIMATED HEDONIC EQUATION (SEMI-LOG)
FOR THE SAN FRANCISCO AREA. 

DEPENDENT VARIABLE= £n(HOME SALE PRICE IN HUNDREDS OF 1978-79 DOLLARS) 

Variables Coefficient t - Statistic 

Site Seecific Characteristics: 

Sales Month 
Age of Home 
Square Feet of Living Area~ 

J Number of Bathrooms,1 

Number of Fireplaces 
Pool 
View 

Neighborhood Characteristics: 

Percent Greater than 64 
Percent White 

Location Characteristics: 

Distance· to Beach 
Time to Employment 
Alameda County 
Contra Costa County 
San Mateo County 
Santa Clara County 

Community Characteristics: 

Population Density 
School Quality 

Liiht Extinction 

Constant 

0.015 25.42 
-0.0021 -7.59 

0.00039 35.26 
0.053 5.40 
0.094 11.63 
0.105 6.55 
0.0698 5.25 

0.0043 6.41 
0.0062 27 .72 

-0.0067 -10.74 
-0 .0036 -2.74 
-0.315 -9.67 
-0.443 -12.49 
-0.203 -6.83 
-o .165 -5.51 

-0.0005 -1.86 
0.0097 8 .23 

-0.228 -4.63 

5.429 40.56 

R-Squared 0.794 

Number of Observations - 3106 
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inclusion of more community variables. However, as is seen below, this problem 

can be successfully overcome using principal components analysis. The final 

variables of interest represent counties. These are zero-one dichotomous 

variables. In the Los Angeles Area, Los Angeles is the omitted county, whereas 

San Francisco county is omitted in the San Francisco Area. The coefficients 

yield information a? to the home sale price differences between the omitted 

county and the included counties. 

The second noteworthy aspect of the equations is that the non-linear 

specifications (log-linear for the Lo-s Angeles Area, semi-log for the San 

Francisco Area) are significant improvements over linear forms.* As Rosen (1974) 

pointed out, this is to be expected since consumers cannot always arbitrage by 

dividing and repackaging bundles of housing attributes. Third, in each case, 

approximately 80 percent of the variation in home sale price is explained by 

the independent variable set (R2 = 0.79). Fourth, with the exception of 
** population density in both areas and the time to employment in Table 3.5, all 

variables possess the expected relationship to home sale price and are significantly 

different from zero at the one percent level (It! > 2.326). Population density 

is significant at the five percent level given a priori information whereas 

time to employment in Table 3.5 is insignificant. The latter result reflects 

the fact that most individuals travel approximately the same time to work. 

This is consistent with the small standard deviation around the mean (see 

Table 3.3). 

However, the most important result from the perspective of this study is 

that the extinction variable is significantly different from zero and possesses 

the expected relationship t~ home sale price. These results indicate that 

individuals are acting upon extinction information when making locational choices 

and this action is translated into a measurable hedonic gradient. As is 

described below, this result is essentially invariant with respect to various 

sample sizes, extinction measures, model formulations, and functional forms. 

Regarding the monetary impact on housing sale price of a change in an 

independent variable, the non-linear specification does not always allow 

straightforward interpretation because the effect of any independent variable 

*The question of appropriate functional form is considered in detail in a 
subsection below. 

** The insignificance of these variables does not present an overwhelming problem 
because in the final equations they are eliminated using principal components 
analysis. 

6G 



depends upon the level of all other variables. However, the San Francisco Area 
results are particularly amenable to interpretation. This occurs because·in the 
semi-log form, the coefficients represent the percentage change in home sale 

*price given a one unit change in the independent variable. 
Thus, from Table 3.6 we can see that for the San Francisco Area in 1978-79, 

home sale prices were rising at 1.5 percent per month, 100 ft2 of living area 
was worth 3.9 percent of price, and a pool had a value of 10.5 percent of price. 
In addition, a one unit change in extinction had a value of 22.8 percent of 
home sale price. Thus, a ten percent change in extinction would alter home sale 
price by 2.5 percent. Based on a mean home sale price of approximately $90,000, 
this latter figure translates into $2250. 

In the Los Angeles Area the log-linear form is not as easy to interpret. 
However, if all indepenoent variables are assigned their mean values, then a 
ten percent change in extinction would be valued at $1819. In relative terms, 
extinction is valued approximately equal to the presence of a view. 

Given these benchmark results, their stability is the subject of the 
remainder of this section. 
3.3.2 Stability of Results· -- Sample Size, Extinction Measure 

As an initial test of the stability of the results presented above, hedonic 
equations were estimated for various sample sizes. Table 3.7 presents a particular 
example for a smaller independen~ sample in the Los Angeles Area. As is illus­
trated, the results seem to be quite insensitive to sample size; that is, all 
the basic conclusions drawn above continue to be relevant. Although we present 
only this one example, insensitivity with respect to sample size is a general 
characteristic of our results. 

Another issue is the appropriate light extinction measure. As indicated 
in the previous section, there is very little difference between the first two 
extinction measures (median for all hours, and median for hours without precipita­
tion or fog); they are essentially interchangeable. The estimations in Tables 
3.5-3.7 are based on these measures. However, the third extinction measure, 
which includes a subtraction of sea haze contributions, is significantly dif­
ferent from the others. For comparison, the hedonic equations were re-estimated 
substituting this sea haze adjusted extinction variable. The results of this 
estimation are presented in Tables 3.8 and 3.9. As is illustrated, the results 
are not radically altered by the choice of the extinction variable; extinction (3) 

*See the subsection on functional form for a description of differentiation 
of non-linear forms. 
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TAGLE 3.7 ESTIMATED HEDONIC EQUATION (LOG-LINEAR) FOR 
THE LOS ANGELES AREA WITH ALTERED SAMPLE SIZE. 

DEPENDENT VARIABLE= tn(HOME SALE PRICE IN HUNDREDS OF 1978-79 DOLLARS) 

Variables Coefficient t - Statistic 

Site Specific Characteristics: 

in (Sales Month) 
bl (Age of Home) 
1n (Square Feet of Living Area) 
1n (Number of Bathrooms) 

Number of Fireplaces 
Pool 
View 

Neighborhood Characteristics: 

in (Percent Greater than 64) 
1n (Percent White) 

Location Characteristics: 

1n (Distance to Beach) 
1n ( Time to Employment) 

Orange County 
Riverside County 
San Bernadine County 

Community Characteristics: 

in (Population Density) 
in (School Quality) 

J.n (Light Extinction) 

Constant 

0.106 
-0.019 
o. 714 
0.095 
0.099 
0.078 
0.159 

0.046 
0.259 

-0.120 
-0.052 
-0.141 
-o. 291 
-0 .167 

-0.018 
0.569 

-0.216 

-1.738 

21.73 
-4.86 
37.47 

5 .29 
12.01 
6.62 

10.46 

5.66 
20.50 

-23 .80 
-1.74 

-12.35 
-10.89 
-8.80 

-1.53 
7.54 

-8.69 

-4.88 

R-Squared 0.789 

Number of Observations 3096 
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TABLE 3.8 ESTIMATED HEDONIC EQUATION (LOG-LINEAR) FOR THE 
LOS ANGELES AREA WITH SEA HAZE ADJUSTED EXTINCTION .. 

DEPENDENT VARIABLE= in(HOME SALE PRICE IN HUNDREDS OF 1978-79 DOLLARS) 

Variables Coefficient t - Statistic 

Site Specific Characteristics: 

,\ 
:1 
J 

tn 
1n 
1n 
1.n 

(Sales Month) 
(Age of Home) 
(Square Feet of Living Area) 
(Number of Bathrooms) 
Number of Fireplaces 
Pool 
View 

0.110 
-0 .017 

0.725 
0.102 
0.094 
0.081 
0.163 

27.56 
-5.23 
47.56 
6.70 

14.25 
8.30 

13.08 

Nei~hborhood Characteristics: 

tn (Percent Greater than 64) 0.060 9 .15 
1n (Percent White) 0 .276 27.21-

! 
'1/ 

I 
Location Characteristics: 

tn·(Distance to Beach) -0.114 -22.05 
bl (Time to Employment) -0.026 -1.07 

Orange County -0.159 -17.78 
Riverside County -o. 275 -13.30 
San Bernadina County -0.192 -12.62 

Community Characteristics: 

tn (Population Density) -0.023 -2.47 
tn (School Ouality) 0.413 6.31 

tn (Light Extinction) (3) -0.090 -6.46 

Constant -1.444 -4. 96 

R-Squared 0.789 

Number of Observations 4766 
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TABLE 3.9 ESTIMATED HEDONIC EQUATION (SEMI-LOG) FOR THE 
SAN FRANCISCO AREA WITH SEA HAZE ADJUSTED EXTINCTION. 

DEPENDENT VARIABLE= in(HOME SALE PRICE IN HUNDREDS OF 1978-79 DOLLARS) 

Variables Coefficient t - Statistic 

Site Specific Characteristics: 

Sales Month 
Age of Home 
Square Feet of Living Area 
Number of Bathrooms 
Number of Fireplaces 
Pool 
View 

Neighborhood Characteristics: 

Percent Greater than 64 
Percent White 

Location Characteristics: 

Distance to Beach 
Time to Employment 

Alameda County 
Contra Costa County 
Santa Mateo County 
Santa Clara County 

Community Characteristics: 

Population Density 
School Quality 

Light Extinction (3) 

Constant 

0.015 
-0. 002 

0.00039 
0.053 
0.095 
0.105 
0.071 

0.005 
0.006 

-0.005 
-0. 0029 
-0.289 
-o. 403 
-0.187 
-o .161 

-0.0004 
0.0096 

-0 .144 

5 .177 

25.36 
-7.56 
35.25 

5.37 
11.68 
6.55 
5 .31 

6.63 
28.63 

-8.88 
-2.24 
-9 .10 

-12.02 
-6.27 
-5.29 

-1. 54 
8. 09 

-3 .16 

45.87 

R-Squared 0.794 

Number of Observations 3106 
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is somewhat less important than the previous extinction parameters but is still 
very significant statistically. It should be noted that the Los Angeles results 
in Table 3.8 are somewhat deceiving because extinction (3) does not perform as 
well for other functional forms. The reason for this can be ascertained through 
an examination of a simple correlation matrix. The use of extinction (3) 
introduces a large amount of collinearity into the data set. The simple corre­
lation between distance to beach and extinction (3)· is 0.73, whereas the 
correlation between distance to beach and the other extinction measures is only 
0.38. Thus, with a sea haze adjustment, extinction (3) and distance to beach 
are partly measuring the same phenomenon. Note that this is not the case in the 
San Francisco Area since distance to beach is not linear from the ocean but 
includes the bay impact. The conclusion for the Los Angeles Area is that extinc­
tion (3) does work for some functional forms, but that the other extinction vari­
ables perform better. On the basis of statistical performance, extinction (3) 
is eliminated. The results in the San Francisco Area are less variant with 
respect to the extinction variable, but for consistency extinction (3) is alsoil 

1'
'i omitted henceforth in San Francisco. * 

3.3.3 Stability of the Results -- Principal Components Analysis 
As indicated previously, the benchmark results contain only two community 

variables, population density and school quality. It could be argued that this­
limited number of variables does not account for all important community charac­
teristics. If so, then the light extinction variable, in addition to representing 
air quality, could be serving as a proxy for one of the missing variables. In 
that case the coefficient of light extinction would be biased. 

To test for such a bias, we should add in more community variables. However, 
additional community variables would introduce the problem of multi-collinearity. 
In order to overcome this latter problem, the method of principal components is 
utilized. 

Principal component analysis is a method of transforming ·a given set of 
variables into a new set of composite indices or principal components that are 
orthogonal (uncorrelated) to each other. Because of the severe collinearity in 
this study, a transformation that yields uncorrelated variables is particularly 
useful. The transformation is accomplished by choosing the best linear combina­
tion of variables as the first principal component. In this context, 11 best 11 

*The sea haze adjusted extinction measure may also be questioned on a percep-
tion basis. That is, individuals are assumed not only to perceive visibility
but also to divide visibility into its components. 
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implies that the combination chosen accounts for more of the variance· in the 

data than any other linear combination of variables. ·rhe first principal com­

ponent is therefore viewed as the single best summary of linear relationships 
exhibited in the data~ The second component is defined as the second best 

linear combination of variables, given the condition that the second is orthogonal 
to the first. This continues until as much variation as possible is explained. 

The principal component method can be expressed as: 

(3-10) 

where 
N. = the community variables included in the principal component analysis

1 (i = 1, 2, ... M), 

F. = the principal components or factors (j = 1, 2, ... , K), K < M,
J 

and a .. = estimated coefficients.
lJ 

If the number of factors equals the number of variables (K = M), then the entire 

variation in the variables is explained by the factors. However, it is the 

usual case to use fewer factors than variables because, if the two are equal, 

then the procedure is identical to not using principal components analysis 

(Johnston, 1972). 

The estimated coefficients are important in that they indicate the relative 
importance of each factor. The importance of a given factor for a given variable. 

can be expressed in terms of the variance in the variable that is explained by 

the factor. Mathematically this is the square of the estimated coefficient (aij 2). 
The total variation of a variable explained by all factors is obtained by summing 

the squared coefficients, 

K 2 
( I a. . ) . 
j=l , J 

Given the relationships described in equation (3-10), the original vari­
ables are transformed into a set of composite scales or factor scores that 

represent the relative importance of the respective factors or principal com­

ponents. In order to do this, the matrix of a .. is transformed into a factor
lJ 

score coefficient matrix (b .. ).
lJ 

The composite scales or factor scores are then 
calculated as: 
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where 
z. = factor score representing t~e j th factor (j = l, 2, ... , K),

J 
b .. = factor score coefficient (i = l, 2, ... , M),

lJ 
N. = original variable (i = 1, 2, ... , M), 

N. 
l 

= mean of the ; th independent variable,
1 

and cr. = standard deviation of the i~h independent variable. 
1 

Note that the original variables are normalized to be nondimensional (Johnston, 
1972). 

The factor scores represent the transformed data set in which orthogonality 
is preserved. These new data are then inputs into the home sale price hedonic 
equation as explanatory variables. In essence, a set of highly correlated vari­
ables are replaced by a new set of uncorrelated variables which measure precisely 
the same infonnation. However, it should be noted that the initial variables 
have been constrained to a linear relationship. Essentially, the procedure 
represents the imposition of a linear restriction, where the linear relationship 
is not based on a priori information but is chosen as the one which best fits 
the data. 

In the semi-log form, the hedonic equation can be written as: 

(3-12) 

where 
P = home sale price, 
Zj = factor scores representing the principal components (j = l, 2, ... , K), 
Si= remaining explanatory variables (site influences) not included in 

the principal component analysis (i=j+l, ... , L), 
and s0, Bj, Bi, BL+l = estimated coefficients. 

Since the principal components are linear combinations of other variables, 
no precise interpretation can be given to the factor score variables. However, 
one can still determine the relative effect of a change in a variable included 
in the principal component analysis by differentiating equation (3-12) with 
respect to that variable. For instance, consider the impact of N1, a variable 
included in the principal component analysis. Substituting equation (3-11) into 
(3-12) and differentiating, we obtain 

73 



( 3-13) 

Thus, although N does not enter the hedonic housing equation directly its rela­1 
tive importance can still be determined. 

In the particular situation under study, a severe collinearity exists be­

tween the community variables. Thus, it was decided to perform principal com­

ponent analysis on these troublesome variables to transform them into a set of 

uncorrelated variables. In both study areas, eight community variables -- school 

quality, crime rate, unemployment rate, educational level, poverty rate, popu­

lation per household, population per square mile, and miles to the business 

district -- were transformed into three factors or principal components. 

The initial factor matrix (a .. ) is presented in Table 3.10 for each of the
lJ 

study areas. As is illustrated, the first factor or principal component 

largely explains school quality, crime, unemployment, education, and poverty. 

Because of the distribution of signs on these variables the expected relation­

ship of Factor 1 to home sale price is negative. A similar analysis can be 

conducted for the other factors. Finally, in each of the two areas, the three 

factors explain approximately 83 percent of the variation in the variables. 

As outlined above,the initial factor matrix is transformed in a factor 

score coefficient matrix. The relevant matrices are presented in Table 3-11. 

These factor score coefficients are used to compute factor scores or composite 

scales which represent the relative importance of each factor for each variable. 

This is accomplished in accordance with equation (3-12). The factor scores 

are input data (explanatory variables) into the hedonic housing equation. 

The hedonic equations which include the three factors to account for 

eight community variables are presented in Tables 3-12 and 3-13. These results 

are quite consistent with the benchmark results. All variables remain significant, 

R2 is essentially the same, etc.* Although there is little change in the overall 

results, the equations presented in Tables 3.12 and 3.13 are considered superior 

because they include more community variables. In addition, it is notewo~thy that 

the coefficient on extinction is affected by the inclusion of more community 

variables. In each study area, a 10 percent change in light extinction is 

valued significantly less due to the inclusion of more variables {$1194 in Los 

Angeles and $1250 in San Francisco). Light extinction was evidently serving 

*Note that time to employment has been left out in Tables 3.12 and 3 .13. This 
variable was replaced by miles to the central business district and included 
in the principal component analysis. 
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TABLE 3-10 FACTOR COEFFICIENT MATRIX. 

Los Angeles Area 

Variable Factor l Factor 2 Factor 3 

School Quality -0.828 -0.317 0.126 

Miles to Business District -0.595 0.402 -0.050 

Crime 0.797 -0.302 -0.222 

Unemployment 0.943 0.057 -o .122 

Education -0.799 -0.470 -0.093 

Poverty 0.954 -0. 055 -0.075 

Population Per liousehold -o. 169 0.897 -0.034 

Population Per Square Mile 0.396 -0.019 0.904 

San Francisco Area 

School Quality -o. 714 0.544 0.191 

Miles to Business District -0 .587 -0.353 0.658 

Crime 0.784 0.129 0.384 

Unemployment 0.885 -0.332 0.081 

Education -0.818 0.414 0.026 

Poverty 0.902 0.017 0.145 

Population Per Household -0.554 -0.660 -0.305 

Population Per Square Mile 0.626 0.530 -0.205 
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TABLE 3 .11 FACTOR SCORE COEFFICIENT MATRIX. 

Los Angeles Area 

Variable Factor 1 Factor 2 Factor 3 

School -0. 277 0.158 0.082 

~les to Business District -0.032 -0.316 -0.074 

Crime 0.165 0.269 -0.202 

Unemployment 0.246 0.029 -0.078 

Education -0 .248 0.274 -0 .154 

Poverty 0.214 0.105 -0.031 

Population Per Household 0.159 -0. 630 -0 .021 

Population Per Square Mile -0.144 0.009 0.981 

San Francisco Area 

School -D .372 0.290 0.083 

Miles to Business District 0.049 0.289 0.839 

Crime 0.069 0.443 0 .284 

Unemployment 0.301 0.029 0.113 

Education -0 .328 0.096 -0.035 

Poverty 
@ 

0.144 0.226 0.064 

Population Per Household 0.210 -0. 577 -0.052 

Population Per Square Mile -0 .130 0.139 -0.435 
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TABLE 3.12 ESTIMATED HEDONIC EQUATION (LOG-LINEAR) FOR THE LOS ANGELES AREA 
WITH PRINCIPAL COMPONENT COMMUNITY VARIABLES. 

DEPENDENT VARIABLE= tn(HOME SALE PRICE IN HUNDREDS OF 1978-79 DOLLARS) 

Variables 

Site Specific Characteristics: 

~ 
I;) in (Sales Month) 

!n ( Age of Home) 
tn (Square Feet of Living Area) 

~ tn (Number of Bathrooms) 
~ Number of Fireplaces1 

Pool 
View 

Neiihborhood Characteristics: 

tn (Percent Greater than 64)!~ 
1, tn (Percent White)~ 

Location Characteristics: 

1.n (Distance to Beach) 
Orange County 
Riverside County 
San Bernadina County 

Community Characteristics: 

Factor 1 
Factor 2 
Factor 3 

tn (Light Extinction) 

[I Constant 

Coefficient 

0.109 
-0.018 

0.725 
0.095 
0.088 
0.078 
0.156 

0.041 
0.278 

-0.1167 
-o .134 
-0.274 
-o .173 

-0.027 
0.033 

-0.0093 

-o .133 

0.205 

t - Statistic 

27.54 
-5.66 
48.15 

6. 64 
13 .52 
8.10 

12.73 

6.47 
27.67 

-28. 7 5 
-15.29 
-13.83 
-11.52 

-6.62 
8 .22 

-2.16 

-5.83 

1.81 

R-Squared o. 796 

Number of Observations 4766 
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TABLE 3.13 ESTIMATED HEDONIC EQUATION (SEMI-LOG) FOR THE SAN FRANCISCO 
AREA WITH PRINCIPAL COMPONENT COMMUNITY VARIABLES. 

DEPENDENT VARIABLE= tn(HOME SALE PRICE IN HUNDREDS OF 1978-79 DOLLARS) 

Variables Coefficient t - Statistic 

Site Specific Characteristics: 

Sales Month 
Age of Home 
Square Feet of Living Area 
Number of Bathrooms 
Number of Fireplaces 
Pool 
View 

Neighborhood Characteristics: 

Percent Greater than 64 
Percent White 

Location Characteristics: 

Distance to Beach 
Alameda County 
Contra Costa County 
San Mateo County 
Santa Clara County 

Community Characteristics: 

Factor 1 
Factor 2 
Factor 3 

Light Extinction 

Constant 

0.015 
-0 .0022 

0.00039 
0.052 
0.091 
0.097 
0.068 

0.0039 
0.0063 

-0.0056 
-0.212 
-0.336 
-0 .121 
-0.097 

-0.051 
0.020 

-0.0067 

-0 .127 

s. 77 

25.57 
-8.06 
35.60 

5.31 
11.33 

6 .11 
5 .19 

5.68 
27.27 

-8.21 
-11.38 
-15.34 

-6.52 
-4.21 

-9.40 
3.15 

-1.08 

-2. 70 

76.81 

R-Squared 0.797 

Number of Observations 3106 
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as a proxy for excluded community variables. This suggests that the previous 
benchmark results were likely biased due to specification error. 

The principal component analysis is considered an improvement over the 
benchmark results. Thus, the equations in Tables 3.12 and 3. 13 will be those 
that are analyzed further in subsequent sections.* 
3.3.4 Stability of the Results -- Functional Form 

As previously mentioned, a priori i nformat.i on about the functional form 
of the hedonic price equation is unavailable. This requires that some considera­
tion be given to correct form, especially since the estimated benefits depend 
heavily upon the implicit prices calculated from the equation. As an aid in 
determining the appropriate functional form, the Box-Cox transformation has 
been employed. This has become a fairly standard approach and has been used 
by Bender et al.- (1980), Quigley (1982), and others. Moreover, most researchers 
have found that benefits are indeed sensitive to functional form, adding impor­
tance to these considerations. 

Our search ranged over six possible forms: linear, semi-log, log-linear, 
classical Box-Cox, extended Box-Cox, and semi-log exponential. A basic under­
standing of these forms and how they relate to each other can be gained by 
considering a simple four variable model. Let P be the dependent variable 
(home sale price) and S, N, and Ethe independent variables ( a site variable, 
n~ighborhood variable, and an environmental variable, respectively). Then the 
linear form is stated as 

(3-14) 

By using in to denote the natural logarithm of a variable, the semi-log form 
is given by 

(3-15) 

(The letters -- a0, a1, a2, anQ -- are used to denote statistical coefficientsa3 
in each equation. These are not necessarily equal between equations.) The semi­
log form is commonly used to estimate an exponential function, equation (3-15) 

being equivalent to 

*The effect of sample size and different light extinction measures were examined 
using the equations in Tables 3 .12 and 3 .13. Our previous conclusions were 
unaltered. 
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P = exp(a0 + a1s + a2N + a3E~. (3-l5a) 

On the other hand, the log-linear form 

in P = a + a ins+ a in N + a in E (3-16)
0 1 2 3 

is used to estimate the well known Cobb-Douglas equation; 

(3-l6a) 

The classical Box-Cox specification can be denoted by 

(3-17) 

where P(A) = (PA - 1)/A. This type of transformation is very convenient because 

when A= l, it is the same as the linear form (equation 3-14) and as A approaches 

zero, P(A) approaches in P, and (3-17)is the same as the semi-log form (equation 

3-15). Thus, both the linear and semi-log specifications are special cases of the 

classical Box-Cox transformation. Furthermore, using advanced estimation tech­

niques (the method of maximum likelihood), A can be estimated simultaneously with 

a0 , a1, a2 , and a3 . In effect, the Box-Cox transformation is a flexible func­

tional form that allows the data to choose the best form. Also, after estimating 

A, restrictions such as A= 0 or A= l can be tested statistically. This method­

ology rationalizes, to some extent, the search for appropriate functional forms. 

The logical next step is to consider transformations on all variables in the 

model. (In practice, dummy variables and others whose values can be equal to 

zero are not transformed, since in(O) is undefined.) This is referred to as the 

extended Box-Cox specification and is written as 

(3-18) 

indicating that the Box-Cox transformation has been applied to each variable. 

The log-linear form is a special case of (3-18) where A= 0, therefore, the log­

linear form can be tested statistically with equation (3-18). 

The last form examined is semi-log exponential. This is given by 

(3-19) 
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In equation (3-19), one of the independent variables is transformed by a power 
of~, while the de~endent variable is entered as its natural logarithm. This 
form was used by Harrison and Rubinfeld (1978) who found it performed better 
than the semi-log or the log-linear. We have included it for completeness but• 
have only examined two cases, with 0 = 2 and 0 = 1/2. 

Equations (3-14) through (3-19) represent the range of functional forms 
considered for the 1978-79 data sets in both study areas. In order to choose 
among the alternatives, the value of the likelihood function for each form was 
computed (see Spitzer, 1982). The form that achieves the highest likelihood 
(i.e., that is most probable) is generally considered the most appropriate. In 
order to determine whether one value is statistically greater than another, a 
likelihood ratio test (Judge et al-, 1980) can be performed.* Table 3. 14 summarizes 
our findings in terms of the log of likelihood values. The most probable form 
was the extended Box-Cox in the Los Angeles Area, while in the San Francisco Area, 
the classical Box-Cox out-performed the others. Interestingly, in the classical 
Box-Cox case, the maximum likelihood estimate of A from both areas was equal to 
-0.05. For the extended Box-Cox form A equalled -0.05 in the Los Angeles Area, 
but was equal to -0.08 in the San Francisco Area. 

For the Los Angeles Area, the three best functional forms are extended 
Box-Cox, log-linear (Table 3. 12), and classical .Box-Cox. The first and last 
of these are presented in Tables 3.15 and 3. 16, respectively. In the Los Angeles 
Area, the semi-log form does not perform to the level of the other forms, but 
it is nevertheless presented in Table 3.17 for use in the next section. 

In the San Francisco Area, the most probable functional forms are classical 
Box-Cox, semi-log exponential (0 = 2), and semi-log (Table 3.13). The first 
two of these are presented in Tables 3.18 and 3. 19. 

In all of the tables alluded to above, the light extinction variable re­
mains significantly different from zero and has the expected (negative) rela­
tionship to home sale price. Thus, the results are quite stable among functional 
forms in those respects: However, as discussed in the next section, the resulting 
benefit figures ·vary somewhat. For purposes of i 11 ustrati on, estimated demand 

*The ratio of the likelihood values is distributed chi-square with one restriction. 
If the log of the likelihood values are used then two times the difference in these 
values is distributed chi-square. It should also be noted that all functional 
forms cannot be compared in this manner. For instance, the classical Box-Cox 
and extended Box-Cox cannot be compared using a chi-square test since one is not 
a restricted form of the other. Thus, classical Box-Cox should be compared to 
semi-log and linear whereas extended Box-Cox is compared to log-linear. Since 
some cross comparisons cannot be made statistically, we opt for the forms 
which have the largest likelihood values. 
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TABLE 3.14 LOG OF LIKELIHOOD VALUES FOR THE 
VARIOUS FUNCTIONAL FORMS BY AREA.* 

Functional Form Los Angeles San Francisco 

1. Linear k-27696 k-17591 

2. Semi-Log k-24640 k-15893 

3. Log-Linear k-24631 k-15945 

4. Classical Box-Cox k-24633 k-15880 

5. Extended Box-Cox k-24621 k-15938 

6. Semi-Log Extinction Squared k-24641 k-15891 

7. Semi-Log Square Root Extinction k-24638 k-15894 

*k is a constant common to each functional form 
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TABLE 3.15 ESTIMATED HEDONIC EQUATION (EXTENDED BOX-COX)
FOR THE LOS ANGELES AREA. 

DEPENDENT VARIABLE= (HOME SALE PRICE IN HUNDREDS OF 1978-79 DOLLARS)* 

Variables Coefficient t - Statistic 

Site Specific Characteristics: 

*Sales Month* 
Age of aome 
Square Feet of Liviig Area* 
Number of Bathrooms 
Number of Fireplaces 
Pool 
View 

Neighborhood Characteristics: 

Percent Great1r than 64* 
Percent White 

Location Characteristics: 

Distance to Beach* 
Orange County 
Riverside County 
San Bernadina County 

Community Characteristics: 

Factor l 
Factor 2 
Factor 3 

Light Extinction* 

Constant 

0.084 
-0.015 

0.741 
0.068 
0.063 
0.055 
0.109 

0.030 
0.238 

-0.087 
-0.093 
-0.204 
-o .131 

-0.020 
0.243 

-0.0059 

-0 .103 

0.2414 

27.27 
-6.03 
47.91 

6.48 
13 .53 
8.07 

12.42 

5.97 
28.00 

-28.20 
-14.81 
-14.50 
-12.21 

-6.99 
8.42 

-1.91 

-6 .22 

2.52 

R-Squared 0.793 

Number of Observations 4766 

Indicates the variable is transformed using the Box-Cox transformation. 
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TABLE 3.16 ESTIMATED HEDONIC EQUATION (CLASSICAL BOX-COX)
FOR THE LOS ANGELES AREA. 

DEPENDENT VARIABLE= (HOME SALE PRICE IN HUNDREDS OF 1978-79 DOLLARS)*-

Variables Coefficient t - Statistic 

Site Specific Characteristics: 

Sales Month 
Age of Home 
Square Feet of Living Area 
Number of Bathrooms 
Number of Fireplaces 
Pool 
View 

Neighborhood Characteristics: 

Percent Greater than 64 
Percent White 

Location Characteristics: 

Distance to Eeach 
Orange County 
Riverside County 
San Bernadina County 

Community Characteristics: 

Factor l 
Factor 2 
Factor 3 

Light Extinction 

Constant 

0.010 
-0.0014 

0.00025 
0.073 
0.073 
0.033 
0.112 

0.0041 
0.0049 

-0 .. 0095 
-o .126 
-0.069 
-o .0077 

-0 .027 
0.0199 

-0.0078 

-0.025 

4.79 

28.84 
-7.66 
40.90 
12.82 
15.78 
4.83 

12.81 

8.70 
28.86 

-25.91 
-19.45 
-4.34 
-0.63 

-9.24 
6 .. 72 

-2.47 

-2.51 

187.53 

R-Squared 0.792 

Number of Observations 4766 

* Indicates the variable is transformed using ~he Box-Cox transformation. 
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TABLE 3.17 ESTIMATED HEDONIC EQUATION (SEMI-LOG)
FOR THE LOS ANGELES AREA. 

DEPENDENT VARIABLE= tn(HOME SALE PRICE IN HUNDREDS OF 1978-79 DOLLARS) 

Variables Coe£ficient t: - Statistic 

M, 

.~ 

~ 

~. 
~ 

Site Seecific Characteristics: 

Sales Month 
Age of Home 
Square Feet of Living Area 
Number of Bathrooms 
Number of Fireplaces 
Pool 
View 

0.014 
-0.0018 

0.00036 
0.104 
0.101 
0.048 
0.162 

28.93 
-7.07 
41.58 
13.02 
15.64 
4.99 

13.19 

Neiihborhood Characteristics: 

Percent Greater than 64 
Percent White 

rr Location Characteristics: 
I I 

Distance to Beach 
Orange County 
Riverside County 
San Bernadina County 

Community Characteristics: 

Factor l 
Factor 2 
Factor 3 

Light Extinction 

Constant 

0.0060 
0.0068 

9.00 
28.42 

-0.013 
-0.177 
-0.095 
-0.0068 

-26 .17 
-19.54 
-4.26 
-0.39 

-0.037 
0.027 

-0.117 

-9 .18 
6.67 

-2.67 

-Q. 038 -2.70 

5.44 152.11 

R-Squared 0.795 

Number of Observations 4766 
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TABLE 3.18 ESTIMATED HEDONIC EQUATION (CLASSICAL BOX-COX)
FOR THE SAN FRANCISCO AREA. 

DEPENDENT VARIABLE= (HOME SALE PRICE IN HUNDREDS OF 1978-79 DOLLARS)* 

Variables Coefficient t - Statistic 

Site Specific Characteristics: 

Sales Month 
Age of Home 
Square Feet of Living Area 
Number of Bathrooms 
Number of Fireplaces 
Pool 
View 

Neighborhood Characteristics: 

Percent Greater than 64 
Percent. White 

Location Characteristics: 

Distance to Beach 
Alameda County 
Contra Costa County 
San Mateo County 
Santa Clara County 

Community Characteristics: 

Factor l 
Factor 2 
Factor 3 

Light Extinction 

Constant 

0.107 
-0.016 

0.00027 
0.037 
0.067 
0.067 
0.047 

0.0027 
0.0046 

-0.004 
-o .152 
-0.243 
-0.087 
-0.071 

-0.036 
0.148 

-0.0062 

-0.91 

5.026 

25.64 
-9.28 
35.04 

5.40 
11.53 
5.90 
5.05 

5.46 
27.92 

-8.18 
-11.44 
-15.57 

-6 .60 
-4.35 

-9.30 
3.28 

-1.41 

-2.70 

93.94 

R-Squared 0.795 

Number of Observations 3106 

*Indicates the variable is transformed using the Box-Cox transformation. 
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TABLE 3.19 ESTIMATED HEDONIC EQUATION (SEMI-LOG EXPONENTIAL)
FOR THE SAN FRANCISCO AREA. 

DEPENDENT VARIABLE= in(HOME SALE PRICE IN HUNDREDS OF 1978~79 DOLLARS) 

Variables Coefficient t: - Statistic 

Site Specific Characteristics: 

Sales Month 
Age of Home 
Square Feet of Living Area 
Number of Bathrooms 
Number of Fireplaces 
Pool 
View 

Neighborhood Characteristics: 

Percent Greater than 64 
Percent White--

Location Characteristics: 

Distance to Beach 
Alameda County 
Contra Costa County 
San Mateo County 
Santa Clara County 

Community Characteristics: 

Fae.tor l 
Factor 2 
Factor 3 

Light Extinction 

Constant 

0.015 
-0.0022 

0.00039 
0.052 
0.092 
0.097 
0.068 

0.0039 
0.0063 

-0.0058 
-0.214 
-0.336 
-o .123 
-0.090 

-0.052 
0.020 

-0.0053 

-o. 06(, 

5.72 

25.59 
-8.03 
35.57 

5.31 
11.34 
6.14 
5.17 

5.68 
27.18 

-8.78 
-11.52 
-15.88 
-6.67 
-3.97 

-9.57 
3.17 

-0.86 

-3.38 

115.17 

R-Squared 0.797 

Number of Observations 3106 
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curves (and benefits) will be presented for the two best functional forms from 

each area as well as for the semi-log and classical Box-Cox forms. The inter­

pretability and performance of the semi-log and classical Box-Cox specifications 

made them logical choices to impose on both areas. Direct comparisons between 

regions can be made by examining the results for these latter two forms. 

Table 3.20 presents the derivatives of the five forms that will be used 

to estimate demand curves. Because the Box-Cox transformations generate rather 

abstract functional forms, the derivatives of these forms are also quite 

abstract. 

3.4 EMPIRICAL RESULTS: INVERSE DEMAND EQUATIONS 

The final set of hedonic equations discussed in the previous section are 

the basis for determining the benefits of visibility improvements. In order to 

complete the benefit estimation procedure, the following steps are required. 
First, the hedonic equations are differentiated to determine the marginal willing­

ness to pay for a change in extinction. The marginal willingness to pay is 

evaluated for each individual point in the data set. These values represent the 

implicit price of extinction for each individual and are dependent upon all the 

other characteristics of the home.* Given these implicit prices, an inverse 

demand curve** can be estimated by regressing price against quantity (extinction) 

and other household (homeowner) shift variables (income, etc.). Integrating 

under these inverse demand curves for any proposed extinction change yields the 

benefits attributable to the change. 

In this section, estimated inverse demand curves are presented for both 

the Los Angeles and San Francisco Areas following the approach set out by 

Freeman (1974, 1979) and Rosen (1974). In addition, an alternative estimation 

to the Freeman-Rosen methodology is performed. In this latter instance, a 

multi-market demand curve is estimated using the data pooled from across the 

two study areas. 

Because of data difficulties, the demand curve estimation is performed 

at the community level, rather than at the individual level. Specifically, be­

cause individual homeowner income is not available, the price and quantity data 

*For instance, sale prices of homes with views exhibit a larger marginal willing-
ness to pay than for those without vi e\--.JS (in the Bay Area, the difference is 
approximately $800 over the life of the home according to equation (3-13)). 

** Demand curves usually represent quantity as a function of price. In this case, 
price is a function of quantity, so the label is 11 i nverse 11 demand curve. 
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TABLE 3.20 VARIOUS FUNCTIONAL FORMS AND THEIR DERIVATIVES. 

Form Derivative ~1th Respect to E 

l. Semi-log 

2. Log-linear 

3. Classical Box-Cox 

a3[(a0 + a1s + a2N + a3E)A 

+ l]l/1'.-l 

4. Extended Box-Cox 

5. Semi-log Exponential (D • 2) 

1n P • a0 + a1S + a2N + a3E2 
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must be aggregated to the community level. The demand curve estimation utilizes 

the following data. Marginal willingness to pay (in hundreds of dollars) is the 

implicit price of light extinction improvements per ,o-4m-1. It is the deriva­

tive of the hedonic equation evaluated for each data point, and it represents 

the average home sale price differential attributable to a unit extinction dif­
ference. The quantity variable is the initial average community extinction level. 

Income represents average community income in hundreds of dollars per year. 

The estimated inverse demand curves for the Los Angeles Area are presented 

in Table 3-21. There are·a number of noteworthy aspects. First, only quantity 

(extinction) and income are employed to describe the variation in price. A 

large proportion of the variation is explained (R2 = 0.8 and above), so additional 

variables would be of marginal significance. Second, the linear forms presented 

for the inverse demand curve perform better than alternative non-linear forms. 
But this is not a crucial point since the resulting benefit figures are quite 

insensitive to the functional form of the inverse demand curve. The third aspect 

is the range of results for the various functional forms of the hedonic equations. 

There is a close similarity between the equations that use a left-hand side trans­

formation only (semi-log, classical Box-Cox) and between the equations that use a 

transformation of all the variables (log-linear, Box-Cox extended). However, 
the difference between the two types is quite pronounced. Fourth, all ·variables 

are significant at the one percent confidence level. 
In addition to the points mentioned above, also note that income possesses 

the expected relationship to marginal willingness to pay. Another interesting 

result of the demand estimation for the Los Angeles Area is the 11 unexpected 11 

negative relationship of extinction to price. A positive relationship might 

be expected because this is an inverse demand curve for a 11 bad 11 *, and standard 

economic theory suggests that individuals will pay more to avoid an additional 

unit of 11 bad 11 at higher levels than at lower levels. Thus, the negative 

relationship might be contrary to conventional economic theory and might 

imply non-convex preferences. This would not be without precedent in the study 

of environmental goods, as Crocker (1981) has demonstrated in a recent paper. 

However, Bartik and Smith (1984) indicate that this is a mute issue because the 

non-linearity of the hedonic equation prevents a priori prediction of the sign 

on the pollution variable. Thus, although the negative sign seems to suggest 

non-convex preferences, there is really insufficient evidence to make such 
a conclusion. 

*A 11 bad 11 is a commodity for which less is preferred to more. 
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TABLE 3.21 ESTIMATED LINEAR DEMAND CURVES 
FOR THE LOS ANGELES AREA. 

DEPENDENT VARIABLE= MARGINAL WILLINGNESS TO PAY FOR 
LIGHT EXTINCTION IMPROVEMENTS IN HUNDREDS OF 1978-79 DOLLARS 

Functional Independent Variable Coefficients 
Form of ( t -statistics) 
Hedonic 
Price Light Number of 

R2Gradient Constant Extinction Income Observations 

'l 
I"(

,j E:xtended 124.70 -55.10 0.209 0.82 112 
Box-Cox (-12.30) (17 .88) 

Log-linear 108.50 -43.51 0.136 0.82 112 
(-13.72) (16.48) 

Classical 14.75 -3.84 0.090 0.81 112 
Box-Cox (-2.39) (21.39) 

Semi-log 17.28 -3.89 0.092 0.80 112 
(-2.30) (21.06) 
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The inverse demand curves for San Francisco are presented in Table 3.22. 

As is illustrated, the San Francisco results are apparently consistent with 

standard convex preferences. However, as in the Los Angeles case, no a oriori 

interpretation can really be attached to the sign of the pollution variable. 

There are other aspects of the San Francisco Area inverse demand curves 

that are worth noting. First, extinction level is a relatively insignificant 

determinant of price.* This is not unexpected in the San Francisco Area, since 

the data demonstrate little variation at the community level. Only in the case 

where extinction is transformed in the hedonic equation (semi-log exponential) is 

it significant at the one percent level in the inverse demand curve. Second, 

the R2 values are quite high, indicating a large proportion of the variation is 

explained by the independent variable set. Third, the linear equations perform 

better than non-linear equations. 

A deeper understanding of the inverse demand relationships can be obtained 

by calculating the annual household benefits associated with a hypothetical ten 

percent improvement in visibility. These benefit figures are obtained by inte­

grating the inverse demand curves over the proposed visibility change. The 

resulting benefit figures are presented in Table 3-23. As is evident the benefit 

estimates are dependent upon the functional form of the hedonic price gradient. 

This is especially true for the Los Angeles Area. The San Francisco iesults 

are not· as dependent upon functional form. However, the variation increases as 

the size of the improvement increases. Thus, for non-marginal changes, the benefit 

estimates would be more dependent upon functional form. 

An alternative approach to estimating separate demand curves is to pool the 

data across markets and estimate one multi-market inverse demand curve. The 

theoretical reasoning for this approach, outlined in Section 3.2, is associated 

with Mendelsohn (1980) and others. This approach requires the assumption that 

individual preferences must be identical across the markets. It is felt that 

this is a very unreasonable assumption because individuals tend to gravitate 

to their own kind. For example, those who are relatively adverse to pollution 

might not live in the Los Angeles Area. Our doubts notwithstanding, the multi­

market estimation is completed for comparison purposes. 

*Extinction is always significant at the ten percent level with a priori infor-
mation concerning its sign. This latter condition allows the use of a one 
tailed t-test. 
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TABLE 3.22 ESTIMATED LINEAR DEMAND CURVES 
FOR THE SAN FRANCISCO AREA. 

DEPENDENT VARIABLE= MARGINAL WILLINGNESS TO PAY FOR 
LIGHT EXTINCTION IMPROVEMENTS IN HUNDREDS OF 1978-79 DOLLARS 

Functional Independent Variable Coefficients 
Form of (t -statistics) 
l:iedonic 
Price Light Number of 

a2Gradient Constant Extinction Income Observations 

Classical -22.78 23 .49 0.429 0.84 51 
Box-Cox (1.29) (15.50) 

Semi-log -130.89 135.48 0.408 0.90 51 
Exponential (8.60) (17.06) 

Semi-log -9.68 25.65 0.337 0.84 51 
( l. 73) (149.69) 
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TABLE 3.23 ESTIMATED ANNUAL HOUSEHOLD BENEFITS 
FOR A HYPOTHETICAL TEN PERCENT 
IMPROVEMENT IN VISIBILITY. 

Functional Form 
of the Hedonic Los Angeles Area San Francisco Area 
Price Gradient 

Extended Box-Cox 

Log-Linear 

Classical Box-Cox 

Semi-Log 

Semi-Log Exponential 

152.6 

125.0 

56.9 124.6 

62.2 128.4 

115. 2 
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The#multi-market inverse demand curves are presented in Table 3.24 for the 
common hedonic price equations. The equations seem to be dominated by the nega­
tive extinction result for Los Angeles. The coefficients are quite significant, 
but R2 values are lower reflecting the difficulty of determining a common demand 
curve for diverse groups. 

A comparison of the single market result to the multi-market results can 
best be completed by calculating benefit figures from each equation. Consider 
again a hypothetical ten percent improvement in average visibility over the 
entire Los Angeles Area. Integration of the inverse demand curves for this 
change yields the household benefits associated with the change.* The Los 
Angeles Area inverse demand curve based ·on the semi-log hedonic equation yields 
an average annual value of approximately $62 per household.** The corresponding 
pooled estimate is $99 per household annually. The difference may be partly 
attributed to the use of San Francisco individual preferences in evaluating a 
Los Angeles policy. Since San Francisco individuals are likely more adverse 
to pollution, they place a higher value on the improvement. This result con­
firms our reservations about pooling the data across obviously diverse groups. 

In conclusion, the work described in this section was designed to determine 
the inverse demand curve for visibility improvements. This has been done using 
both the Freeman-Rosen methodology and a multi-market approach. The Los Angeles 
results seem unusual with respect to preference convexity but may not really 
be unusual in light of the work of Crocker (1981) and Bartik and Smith (1984). 

The San Francisco results conform to traditional theory. Finally, the multi­
market approach alters the single market analysis in an expected manner. 
3.5 CONCLUDING REMARKS 

The analysis reported in this chapter was designed to determine the value 
that individuals place on air quality improvements. The information required to 
conduct this calculation was obtained from the market for single family resi­
dences using the hedonic price procedure. The analysis was conducted in two 
air basins, Los Angeles and San Francisco. 

*The formula used in these calculations is: 
Extinction 
before 
f(MWTPi)d(Extinction)
Extinction 
after 

where (MWTPi) = f(income, extinctJon). 
** 

In order to determine basin-wide benefits one must multiply by the number of 
households in the basin. In 1980 this figure is 4,045,800..Total benefits 
are then approximately 250 million dollars annually. 
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TABLE 3.24 ESTIMATED LINEAR DEMAND CURVES FOR POOLED DATA. 

DEPENDENT ·VARIABLE= MARGINAL WILLINGNESS TO PAY FOR 
LIGHT EXTINCTION IMPROVEMENTS IN HUNDREDS OF 1978-79 DOLLARS 

Functional Independent Variable Coefficients 
~orm of (t -st:at:istics) 
liedonic 
Price 
Gradient Constant: 

Light 
Extinction Income R2 

Number of 
Observations 

Semi-log 111.39 -60.06 0 .178 0.57 163 
(-10.80) (8.82) 

Classical 110 .96 -63.62 0.207 0.56 163 
Box-Cox (-10.02) (8.98) 
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The hedonic equation estimation indicates that air quality, as measured 

by light .extinction, is a significant determinant of home sale price. This 
implies that decreases in visual air quality cause housing values to decrease. 
Further, this result is independent of sample size, extinction measure, and 
functional form. However, the ultimate benefits are somewhat dependent upon 
functional form. For this reason, benefits cannot be precisely determined. 
Rather, a range of benefits dependent upon the functional form of the hedonic 
housing equation is P.rovided. 

Give the hedonic equations, inverse demand curves for ai_r quality have 
been estimated. Integration of these demand curves over a proposed improvement 
yields the total benefit associated with the improvement. As an example, the 
annual basin-wide benefits of a pypothetical ten percent improvement in air 
quality in the Los Angeles Area range from approximately 250 million dollars 
to 617 million dollars. A similar ten percent improvement in the San Francisco 
Area would have an annual benefit range of approximately 190 million dollars 
to 220 million dollars. A type of confidence interval could be constructed 
around these benefit estimates by adjusting the extinction coefficient in both 
the hedonic equation and the inverse demand curve by the corresponding standard 
errors of the estimated coefficients. This would yield a measure of the 

uncertainity of the estimated benefits. However, this exercise is not undertaken 
since the uncertainity inherent in the range of functional forms is far greater 
than uncertainity around the estimated coefficients. These figures must be 
compared to the cost of obtaining such an improvement before the efficiency 
of the change can be determined. 
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4.0 ILLUSTRATIVE APPLICATION: DIESEL 
PARTICULATE CONTROL IN LOS ANGELES 

This chapter presents an example illustrating how the results of the 
previous chapter can be used to estimate the benefits associated with a given 
emission control strategy. The specific example considered is the control 
of diesel particulate emissions in Los Angeles. As noted by Trijon,s (1983, 
1984), diesel trucks are currently a significant cause of visibility reduction 
in Los Angeles and an expanded diesel highway fleet is projected to become the 
single most important source of visibility reduction in the region by the 
early 1990 1 s. 

The benefit analysis for emission control strategies separates 
naturally into two basic parts. First, we determine the degree of visibility 
improvement associated with the control strategy (Section 4.1). Next, the 
economic benefits produced by the visibility improvement are estimated using 
the results of the previous chapter (Section 4.2). 

· 4.1 RELATIONSHIP BETWEEN DIESEL PARTICLE EMISSIONS AND VISIBILITY 
Diesel vehicles affect visibility via three emission categories: sulfur 

dioxide (precursor of sulfate particles), nitrogen oxide (precursor of nitrate 
particles and N02), and primary (dir~ctly-emitted) particles. Because this 
chapter is concerned with control strategies for directly-emitted particles 
(i.e. particulate emission standards), we will consider the visibility impact 
for the third category only. It is known that about 90% of the visibility 
effect from primary diesel particulate emissions comes from elemental carbon, 
which constitutes about 70% of diesel particle exhaust (Trijonis, 1983)~ 
Because elemental carbon dominates the visibility effect of diesel particle 
emissions, and because some control strategies might affect elemental carbon 
differently from other emitted particles, we will focus exclusively on the 
visibility effects from the elemental carbon component of primary particulate 
exhaust. 

The remainder of this section is organized as follows. Section 4.1 .1 
discusses the methodology for estimating current visibility impacts from 
diesel elemental carbon emissions. Our assessment of the current impacts 
also serves as the basis for the methodology to estimate the visibility 

99 



effects of potential control strategies. Section 4.1 .2 briefly describes 

the projected growth of diesel emissions for a 11 no control 1
1 scenario. 

Finally, Section 4.1.3 deals with a side issue -- the relevance of human 

perception of visibility changes in considering control strategy benefits. 

4.1.1 Current Visibility Effects from Diesel Elemental Carbon Emissions 

In this section, we used two approaches to determine the current (1980) 

visibility impacts from diesel elemental carbon emissions. The first aoproach, 

an emission budget model, provides an estimate of overall basinwide impacts. 

The second approach, a lead tracer model, yields not only basinwide effects 

but also the spatial distribution of the impacts. To arrive at a best estimate, 

we use the spatial distribution from the lead tracer model, but calibrate 

the predictions to the average of the two models. 

The emission budget model is quite simple and direct. Several inves­

tigators have concluded that elemental carbon contributes about 22% ~ 7% of 
light extinction (visibility reduction) in the Los Anqeles basin (Conklin 

et al., 1981; Trijonis et al., 1982; Aonel et al., 1983; Davidson, 1983). 

Furthermore, the emission inventory of Cass et al. (1982), modified to be con­

sistent with the diesel emission factors of Trijonis (1983), indicates that 

diesel highway vehicles account for about 40% ± 10% of elemental carbon emis­

sions in Los Angeles. The inference from these two results is that elemental 

carbon from diesel vehicles contributes about 9% (22% x -40%) of light extinc­

tion in Los Angeles. A reasonable uncertainty range for this estimate is ~4%. 

The lead tracer model for diesel elemental carbon concentrations is based 
on the equation: 

[C]. = [Pb]. • ECY (4. 1 ) 
JY Jx EPbx 

where [C]. = annual mean elemental carbon concentration from diesel vehicles
JY y 11at site 1'j1 1 in year 11 (y=l980 for current imracts), 

EC = total elemental carbon emissions from diesel vehicles in year 11Y11, y 
II XII,EPb = total lead emissions from all sources in year

X 

llj IIand [Pb]. = annual mean lead concentration at Site in year llxll • 

JX 

Trijonis ( 1983) has conducted a detailed analysis of statewide lead and diesel 

emissions for use in Equation 4.l. For example, his lead emission inventory 

includes stationary sources as well as light-, medium-, and heavy-duty gasoline 

100 



vehicles, taking into.account long-tenn trends in the percentage of non­
catalyst (leaded-fuel) traffic and yearly changes in the Pb content of leaded 
gasoline. The predictions of Trijonis' statewide lead tracer model are adjusted 
herein by a factor of O. 76 = 3. 5/4. 6, because heavy-duty trucks contribute 
3.5% of total traffic in Los Angeles as opposed to 4.6% statewide. 

Once elemental carbon concentrations from diesels have been estimated 
by Equation 4.1, the computation of visibility impacts is straightforward. 
The extinction efficiency for fine elemental carbon is well documented: 
12 ! 3 m2/g, approximately 9 m2/g absorption and 3 m2/g scattering (see ·list 
of references in the 1983 Trijonis paper). The light extinction due to diesel 

elemental carbon emissions is simply the product of the elemental carbon 
concentration and the extinction efficiency. One can further compute percen­
tage contributions of diesel carbon to total light extinction using the total 
extinction levels in Los Angeles given by Figure 2.4. 

Using ambient lead data for 26 monitoring sites in the Los Angeles 
region, we calculate that -- for the average site in 1980 -- diesel elemental 

_carbon contributes 15% of total light extinction. A reasonable uncertainty 

level for this estimate is !6%. 
Averaging the results of the emission budget model (9%) and lead tracer 

model (15%), we conclude that elemental carbon from highway diesels accounts 
for about 12% of light extinction in the Los Anqeles region during 1980. To 
obtain the spatial distribution of the 1980 impacts we use the lead tracer 
model but multiply the predictions by 0.8 = 12%/15% to calibrate against the 
average of the two models. Figure 4.1 presents the resulting spatial dis­
tribution of estimated light extinction levels from diesel truck elemental 
carbon in 1980. 

Using a simple proportioning procedure, Figure 4.1 serves as the ba­
sis for calculating extinction improvements associated with various degrees 

of diesel. elemental carbon control. For example, if we assume 50% control 
from current levels, then the extinction changes are one-half of the values 
presented in Figure 4.1. Or, if we assume emissions grow by 60% to some 
future year with 50% control aoplied at that time, then the extinction changes 
are 80% of the values illustrated in Fiqure 4.1. For the purposes of the 
economic benefit analysis, we have digitized Figure 4.1 according to the 
Thomas Brothers grid squares using the same _procedure as in Chapter 2. 
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Figure 4.1 Current (1980) light extinction levels (Mm- 1) from 
diesel vehicle elemental carbon in Los Angeles. 



As an aside, it is worthwhile restating that the above analysis does 
not include all of the visibility impacts from diesel emissions. In addition 
to the 12% light extinction contribution via elemental carbon, diesel vehicles 
currently contribute about 4% of total light extinction via NOx emissions, 3% 

via S~ emissions, and 1% via other primary particle emissions (Trijonis, 1984). 
If one were considering a control strategy that reduced NOx and so2 emissions 
as well as elemental canbon emissions (i.e. reduced diesel ijSage or methanol 
conversion), then the total visibility benefits would be significantly greater 
than those just from the elemental carbon reductions. 

4.1.2 Projected Growth in Diesel Emissions 
For the purpose of considering control strategy effects over time, we 

need to know future projections of diesel elemental carbon emissions. Trijonis 
(1983) has forecasted diesel emissions from 1980 to 1992 on a statewide basis 
for California. The projections used herein are based on his forecasts with 
two exceptions: (1) an update has been made on the assumptions regarding the 
f~-~~tion of gasoline vehicles that will be converted to diesel powe~_, and (2) 

the statewide projections have been disaggregated to provide estimates of 
emission growth on a county basis. 

Table 4.1 lists the fundamental assumptions regarding traffic growth 
and dieselization percentages. Basically, it is assumed that total traffic 
in California will increase by 2.6% per year from 1980 to 1992, with growth 
rates relatively higher in the heavier vehicle classes. Furthermore, it is 
assumed that 4% of the light-duty fleet, 10% of the medium-duty fleet, and 
50% of the currently gas-powered heavy-duty fleet will become di ese1-powered 
by the early 1990 1 s. As noted in the table, these updated dieselization 
percentages differ significantly from earl.ier forecasts. 

For the "no control" scenario, we adopt the following particulate 
emission factors compiled by Trijonis (1983): 

light-duty cars and trucks . . . . . . 0.4 gm/mile, 
medium-duty trucks ......... . 0 . 7 gm/mil e , 

heavy-duty-G trucks (smaller type that was 
gasoline powered in 1980) ........ . l . 3 gm/mile , 

and heavy-duty- □ trucks (larger type that was 
already diesel powered in 1980) ..... . .1 .8 gm/mile. 
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TABLE 4-1. TRAFFIC GROWTH AND DIESELIZATION ASSUMPTIONS FOR 
PROJECTING STATEWIDE DIESEL EMISSIONS (Trijonis, 1983) 

VEHIClE WEIGHT CLASS 

Light-duty cars and 
trucks (GVW* S 6000 1 bs) 

Medium-duty trucks 
(6000 < GVW ~ 8500 lbs) 

__,I 

0 Heavy-duty-G trucks..i::,. 

(GVW > 8500 lbs, and 
were gasoline-powered 
type in 1980) 

Heavy-duty-D trucks 
(GVW > 8500 1 bs, and 
were diesel-powered 
type in 1980) 

All vehicles 

CALIFORNIA STATEWIDE VMT* PROJECTION 

1980 VMT by Average yearly VMT 1992 VMT by
weight class growth 1980 to 1992 weight class 

88.5% 2.5% 87.0% 

4.2% 3% 4.4% 

2.7% 4% 3.2% 

4.6% 4% 5.4% 

150 109 miles 208 x 109 mil es2.6%x year year 

DIESELIZATION PROJECTION 
(Fraction of VMT in vehicle 
class contributed by diesels) 

1980 1992 

0% 4%a (l0%)b 

0% l0%a (20%)b 

0% 50%a (60%)b 

100% 100% 

4.6% 10.9%a (16.9%)b 

* GVW = Gross Vehicle Weight, VMT = Vehicle Miles Traveled 

a: Revised dieselization projections used herein. The revisions are based on updated information from 
the California Energy Commission (CEC 1984) and General Motors (Chock, et. al. 1983). 

b: Original projection of Trijonis (1983). 
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For each vehicle class, we furthermore assume that 70% of these emissions are 
elemental carbon. The above "no control" emission factors pertain to average 
emission rates over the life of the vehicle and therefore include deterioration. 

Based on the above assumptions, Table 4.2 presents projections for 
statewide elemental carbon emissions from diesel vehicles. It is forecasted 

that statewide diesel ~missions will i~crease bv a factor of 2~3~_from 26!~ TPD 
in 1980 to 59.5 TPD in 1992. An elucidating way to view this projection is as 
follows: Of the 59.5 TPD of diesel elemental carbon in the early 1990 1 s, 
26.2 TPD (44%) already exists with the current 1980 heavy-duty diesel fleet. 
Another 16.7 TPD (28%) will be added from projected growth in use of these 
(ultra) heavy-duty vehicles. About 9.1 TPD (16%) will result from the 50% 
dieselization of heavy-duty vehicles that are currently gasoline powered. 
About 6.1 TPD (10%) will arise from the 4% dieselization of light-duty vehicles 
(GVW ~6,000 lbs). Only 1.4 TPD (2%) will come from the 10% dieselization of 
medium-duty vehicles (6,000< GVW ~ 8,500 lbs). It is especially notable that, 
even in 1992, the heavy-duty class will still account for 88% diesel fleet 
emissions. 

For the purpose of the economic benefit calculations, we need to 
know the spatial distribution of diesel emission growth with the Los Angeles 
air basin. This has been obtained by factoring the statewide annual emission 
growth rate (7.1% from 1980 to 1992 from Table 4.2) according to county 
population gr·owth relative to statewide population growth. This calculation 

indicates that diesel elemental carbon emissions (and related aimosohe~jc 
extinction) will grow annually by 3.1%, 7.5%, 14.8%, and 14.5% in Los Angeles, 
Orange, Riverside, and San Bernardino counties, respectively. 

As an aside, it is interesting to note the insensitivity of our 
economic benefit calculations with respect to the projected growth rate for 
diesel emissions. For example, we now forecast diesel elemental carbon 
emissions to increase by a factor of 2.27 from 1980 to 1992, whereas Trijonis 
(1983) previously forecasted an increase factor of 2.74 (because of his higher 
dieselization percentages). However, puttin~ both forecasts into the economic 
calculations yields a difference in estimated control benefits of only about 
five percent! The reason is that projected emission growth is significant 
only in the future, but the future is discounted by appropriate interest.rates 
in the economic calculations. 

105 



TABLE 4.2 FORECASTS OF STATEWIDE ELEMENTAL CARBON 
EMISSIONS BY DIESEL VEHICLE CLASS 

STATEtHDE ELEMENTAL CARBON EMISSIONS 
VEHICLE CLASS TONS PER DAY (PERCENT OF DIESEL TOTAL) 

1980 1992 

Light-duty cars and trucks 6. 1 (10%) 

Medium-duty trucks 1.4 (2%) 

Heavy-duty-G trucks 9.1 (16%) 
(w~re gasoline powered in 1980) 

Heavy-duty-0 trucks 26.2 (100%) 42.9 (72~~)(were diesel powered in 1980) 

Total 26.2 59.5 
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4.1.3 A Side Issue -- Human Perception Thresholds 
Experiments have demonstrated that a 5% chanqe in light extinction is 

the approximate oercepti on th res hold for human observers viewing tv-10 pictures 
of the same scene simultaneously (one picture taken through a haze and one 
without the haze) (Malm, 1980; Trijonis, 1981). If, however, observers do not 
make simultaneous comparisons but must rely on memory, then the perception 
threshold corresponds approximately to a 10-13% change in light-extinction 
(Malm, 1979; Trijonis, 1981). Considering these results, it is evident 
that the forecasted average 1992 contributions of diesel elemental carbon to 
light extinction -- 27% based on the orojections of Table 4.2 -- would be 
definitely perceptible. The current (1980) average visibility effect of 
diesel elemental carbon (12%} is also probably perceptible. If, however, 
one were considering 50% control of diesel narticles in 1980, then the impact 
(6% extinction change) would be of questionable perceotibility.* 

The above remarks skirt around an interesting side issue: 11 Does a 

ij control strategy have benefits if it fails to yield a perceotible chanqe in 
J visibility?" The correct answer is yes, a control strategy should be assigned 

its estimated benefits even if it does not yield a percentible chanqe. The 
11 No 11alternative answer leads to a logical inconsistency that the whole is not 

equal to the sum of its parts. For examDle, assume that 100 hynothetical pollu­
tion sources produce 1% each of the visibility reduction .in a region. If we 
assign zero benefits to cleaning up a single source because the change is imoer­
ceptible, how could this be consistent with assigning a large benefit to 
cleaning up 20 sources? Each unit of emissions must be viewed as a non-zero 
part of the whole and must be assigned its 11 disbenefit 11 in proportion to its 
contribution. Another way of seeing the correct answer involves the basic 
interpretation of our hedonic estimation technique. The hedonic technique 
provides an estimate of underlying preferences and willingness to pay for 
visibility improvements as measured by integrated steps along an inverse 
demand curve. If the improvement in visibility is finite, then the step 
along the preference curve is finite, and benefits are finite. 

*Actually, in this later case, because the impact of diesels varies significantly 
from day to day and place to place, there would be times and locations of 
perceptible impacts as well as times and locations of imperceptible impacts. 
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4.2 BENEFIT ESTIMATION 

The diesel extinction contributions presented in the Drevious section 

are used in this section to estimate the benefits of diesel particulate con­

trol in Los Angeles. The benefit estimation depends upon the inverse demand 

curves developed in Chapter 3. Following the traditional Freeman-Rosen 

approach, these equations are mathematically integrated over the visibility 

improvement range to determine individual household benefits. Aggregate ben­

efits are then obtained through summation over the relevant noDulation. 

A variety of control scenarios are examined, with calculated benefits 

representing the change from 11 no control 1
1 to the soecified level of control. 

Benefits are computed over the 1980-1992 time period, at the community level, 

for various discount rates, with results expressed in terms of constant 

1980 dollars. The time period corresponds to available data on the growth 

in diesel related emissions (see Section 4.1 .2). The community level was chosen 

since it is the most disaggregated level at which accurate income data are 

available. Different discount rates are used to demonstrate the sensitivity 

of the results to interest rate assumptions. Constant dollars are used to 

eliminate the problem of forecasting future inflation levels. 

4.2.l A Preliminary Issue 

Before proceeding to the actual benefit calculations, it is .necessary 

to first dispense with a common misunderstanding concerning benefits derived 

from a hedonic analysis of housing values. The question that often arises 

in these studies is 11 How is it possible for everyone to exDerience benefits 

from a general air quality improvement?" That is -- "With no increase in 

region-wide income or population in-migration, how can everyone 1 s house increase 

in value when air quality changes? 11 

In order to understand benefit estimation in the hedonic framework, one 

must first realize that the aoproach is not based on changes in house prices. 

Therefore, everyone 1 s house price does not have to increase for benefits to 

exist. The common misperception is that air quality alters the demand for 

housing units (see Figure 4.2), causing the price of homes to increase 

(P1 to P2), and that this price change is the basis for benefit estimation. 

This is an incorrect perception of the hedonic techni~ue. 
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Housing 
Units 

Figure 4.2 Demand and supply of housing units. 

Rather than estimate the demand and supply of housing units, the 
Freeman-Rosen hedonic approach uses information on how consumers choose 
homes in order to reveal the parameters that determine consumer nreferences. 
Thus, the hedonic approach is concerned with these underlying ~arameters, not 
the demand and supply of housing units. 

The hedonic approach uses differentials in house prices to provide 
information on how consumers trade air quality for other goods (living area, 
location, etc.). With this information, the structure of the consumer's 
demand for air quality can be logically deduced (see Figure 4.3). Note that 
this is not the demand for housing units but the demand for only one aspect of 
the housing unit, the air quality aspect. 

D 

Extinction 

Figure 4.3 The ~P~~nd &or extinction. 
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The demand curve for air quality allows computation of the consumer's 

willingness to pay for changes in air quality. Willingness to pay is the 

accepted definition of benefits and is not the same as a change in house 

prices. In Figure 4.3, willingness to pay is taken as the area under the 

demand curve for a change in extinction (E1 to E2). Thus, even with an overall 

change in air quality, individuals are better off and are willing to pay positive 

amounts for this change. Our estimates of the (inverse) demand curves for 

extinction allow calculation of these benefits. 

In conclusion, it can be stated that individuals are made better off 

even if home prices do not change. Improved air quality translates into a 

movement along the demand curve for air quality (movement to a greater satis­

faction level). Of course, an increase in one's house price relative to all 

others would also make one better off. However~ this is not nece,ssary for a 

welfare improvement. Thus, an overall improvement in visibility with no 

increase in either income or population would produce positive benefits even 

though it might not affect prices. 

4.2.2 Assumptions and Procedures 
Household benefits are calculated herein by integrating the inverse 

demand curves presented in the previous chapter over the decrease in extinc­

tion for each control scenario. Since Los Angeles is the study area, the 

relevant equations are the Los Angeles inverse demand curves. Benefits are 

calculated for four different hedonic functional forms: extended Box-Cox, 

log-linear, classical Box-Cox, and semi-log. 

The benefit equations (inverse demand curves) yield household benefits 

over the life of the house since capital values (house prices) are the units 

used in the hedonic analysis. The benefit figures for the first year of con­

trol are obtained by multiplying by the capital recovery factor.* Total 

first-year benefits are then determined by summing over all individuals in 

each community and then summing over all communities. 

In the following year, benefits are determined in the same manner as 

the control measure continues. However, two adjustments are necessary. First, 

*The capital recovery factor (CRF) is the rate which transforms a fixed amount 
into a series of equal annual payments which include principal and interest. 

r 
CRF = l-l/(l+r)T where r is the interest rate and Tis the time horizon. For 
this study an interest rate of 9.5 oercent and a 3O-year time horizon were 
utilized. 
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growth in the region occurs, which increases the number of households over 
which benefits are summed. Second, because the benefits occur in the future, 
they must be discounted to reflect preferences for present over future returns.* 
Two different discount rates are used to demonstrate the sensitivity of the 
results. These are real discount rates rather than nominal (inflation affected) 
interest rates; inflation is not relevant, because benefits are expressed in. 
constant 1980 dollars. Subsequent year benefits are calculated similarly. 
Finally, summing over all years yields the present value of the total stream 
of benefits. 

A detailed outline of the specific calculation procedure is as follows. 
The first step is to calculate the benefits for the average household in each 
community. For instance, consider the inverse demand curve based on the log­
linear hedonic equation. This can be written as 

MWTP = 108.5 - 43.51 x E + .136 x Y, ( 4 .2) ** 

·~ 
,} where MWTP = Marginal willingness to pay for extinction improvements in 

hundreds of dollars, 
E = Extinction level in (104 meters)-1, 

and y = Average household income. 
The community level data requ1red for benefit estimation under this equation are: 
(i) the existing (no control) extinction level; (ii) the new extinction level 
after control, and (iii) the average household ·income. 

Benefits are determined by integrating Equation 4. 2 over the change in 
extinction. The integrated form of Equation 4.2 can be written as 

TWTP = 108.5 x E - (43.51 x E2)/2 + .136 x Y x E. (4. 3) 

The total willingness to pay by the average household for an extinction improve­
ment from E1 to Ez is TWTP(E1) - TWTP(E2). -As an example, if total extinction 

* The discount factor (D) is ~alculated as D = (l+r)t where r is the discount 
rate and tis the time (years) from the beginning period. 

**See Tab1 e 3. 21. 
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is 2.0, diesel related extinction is .36, and proposed diesel -control is 50 per­

cent, then Equation 4.3 is evaluated at E1 = 2.0 and E2 = 1 .82 (1 .82 = 2.0 - .5 
11 t 11x .36). Note that TWTP is actually a function of year , because uncontrolled 

diesel emissions are assumed to grow over time under some of the scenarios. 

The calculated household benefits are in hundreds of dollars over the 

life of the home. The next step is to convert those to annualized figures and 

present values. This is accomplished by multiplying by the capital recovery 

factor (CRF) and discount factor (Dt), respectively. Thus, in year t, 

TWTPt = TWTPt x CRF x Dt, ( 4 .4) 

where 11 TWTP 11 represents an annualized, present value. Benefits for the 

entire community are then obtained by multiplying by the number of households 

in each community (NHt), 

Community Benefitst = TWTPt x NHt. (4.5) 

The procedure outlined above is completed for each community (i = 1,~ .. ,N), 

and each year (t = 1 , ... ,M). Then, the current value of total basin-wide 

benefits is determined by summing over all communities and all years. 

M N 
Basin Benefits = L L Community Benefits it. ( 4 .6) 

t=1 i =1 

4.2.3 Benefits of Diesel Particulate Control for Various Scenarios 

In order to demonstrate benefit estimation within the hedonic framework, 

four different control scenarios are analyzed. In the first scenario, diesel 

emissions are assumed to be fixed over time, and a constant 50 percent par­

ticulate control level is considered over the entire 1980-1992 time period. 

All subsequent scenarios are more realistic in that uncontrolled diesel emis­

sions are allowed :to grow over time as estimated in Section 4.1.2. ·scenario II 

considers 50 percent control of forecasted emissions starting in 1980. Fifty 

percent is approximately the degree of control being considered for state and 

national emission standards. Scenario III is similar to Scenario II, exceot 
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that 80 percent control is assumed. An 80 percent reduction of primary par­
ticulate emissions might be achieved through very strict standards or through 
methanol conversion of diesels. (Actually, because methanol would reduce 
SOx and NOx emissions as well as particulate emissions, the total visibility 
benefits from a strategy of complete diesel methanol conversion would be nearly 
twice those of Scenario III.) Scenario IV considers the effect of phasing 
in controls by assuming that no emission reduction is imposed until 1985, and 
that control is phased in linearly up to 50 percent in 1992. 

Scenario I 
This scenario is the simplest of the four analyzed. The diesel related 

extinction levels presented in Figure 4.1 are assumed to remain constant over 
the period examined. Control is then set at 50 percent of these values. In 
Table 4.3, total benefits (present value) are presented for the 1980-1992 
time period for two different discount rates and for the various functional 
forms. As is illustrated, total benefits range from approximately one to four 
billion dollars. The upper end of the· range is the most reasonable, since 
extended Box-Cox and log-linear are the best functional forms (see previous 
chapter) and real rates of discount are likely closer to 3 percent than to 
10 percent. 

Scenario II 

In this case, extinction is allowed to grow over the time as forecasted 
in Section 4.1 .2. The control level in Scenario II is assumed to be 50 nercent, 
startin~ in 1980 and maintained (at 50 percent of projected emissions) through 
1992. As shown by the second column of Table 4.3, the estimated benefits range 
from 1.2 to 5.0 billion dollars. The benefits are greater than in Scenario I 
because greater amounts of forecasted emissions are controlled. Also, as 
expected, the relative differences between the scenarios are somewhat less for 
a 10 percent discount rate than for a 3 percent discount rate, because the 
growth in future emissions counts less with a 10 percent discount rate. 

Scenario III 

In this case, the implications of various degrees of control are demon­
strated. As in the previous scenario, emissions are assumed to grow at the 
established rates. However, in this case a more stringent control orogram 
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TABLE 4.3 PRESENT VALUE· OF BENEFITS FOR CONTROL OF DIESEL PARTICLE 
EMISSIONS IN LOS ANGELES($ BILLIONS) 1980-1992 

FUNCTIONAL FORM SCENARIO 

II I I I IV 

Extended Box-Cox Ii 

Log-Linear I 
--' ___. 
+::- Classical Box-Cox I 

Semi-Log I 

Extended Box-Cox I 

Log-Linear 

Classical Box-Cox 

Semi-Log 

no growth, 
50% control 

4.01 

3.34 

l. 42 

l. 56 

2.68 

2.23 

.95 

1.04 

growth, 50% control growth, 80% control 
starting in 1980 starting in 1980 

Discount Rate= 3% 

5.03 

4.22 

l. 94 

2 .14 

8.45 

7.06 

3. 13 

3.45 

Discount Rate= 10% 

3.27 

2.74 

1. 24 

· 1 . 37 

5.47 

4.57 

2.00 

2.20 

growth, 50% control 
phased in between 
1985 and 1992 

1. 92 

l. 62 

.80 

.88 

.96 

. 81 

.40 

.44 



is assumed, 80 percent rather than 50 percent. 
As is expected, benefits increase with the more stringent control program. 

This occurs for two reasons. First, since more tonnage of emissions (more 
atmospheric extinction) is controlled, the benefits must increase. Because 

1,11 

-- the control level is increased by 60 percent (50 percent to 80 percent), 
the benefits should increase by about 60 percent. Second, as more extinction 
is controlled, movement occurs to an area of the inverse demand curve with 
increasing willingness to pay for the marginal unit (see previous Figure 4.3). l~i 11-

Willingness to pay i~creases disproportiQnately with qreater control 
because of the sh~pe of th~ deman~ curve. The size of this effect 
varies with functional form. The log-linear and extended Box-Cox 
forms yield the __ l~rgest effect_, whereas the semi-log and_ classical 
Box-Cox forms yield a very small effect. For a 60 percent increase in control 
(50 percent to 80 percent), the log-linear and extended Box-Cox forms oroduce 
an increase in benefits of 68 percent, whereas the semi-log and classical 
Box-Cox forms increase benefits by 61 percent. Thus, the effect of moving up 
the demand curve accounts for approximately one to eight percent increased 
benefits over this range of the data. As one moves toward more pristine air 
quality, this effect would become even larger. 

Scenario IV 
This scenario represents an attempt to be more realistic than the pre­

vious cases. Two adjustments are made to the control assumptions of Scenario 
II. First, no control is imposed until 1985. This is consistent with the 
current situation, since there are no controls at the present time. Second, 
standar~s are assumed to have a minor impact initially with a subsequent 
larger effect. The control level is assumed to change linearly from O percent 
in 1985 to 50 percent in 1992. The estimated benefits for Scenario IV range 
from 0.4 to 1.9 billion dollars. As is exoected, these values are significantly 
smaller than those of the other scenarios. This occurs for two reasons. First, 
the overall level of control for the 1980-1992 period is much less than in any 
previous scenario. Fifty percent control is not reached until the final year 
of the program, and in all prior years, controls are smaller than any other 
scenario. Second, discounting has a larger impact on Scenario IV. This 
occurs because the initial years, which are discounted least, have no attached 
benefits (zero control). When benefits do begin to occur, the discount factor 
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is larger, thereby reducing the present value. The message is that earlier 

controls lead to significantly greater present value of benefits. 

4.2.4 Concluding Remarks 
Estimated benefits have been presented above for four different control 

scenarios. The various cases were chosen to demonstrate the applicability of 

the hedonic technique for estimating benefits of visibility im~rovements in the 

Los Angeles air basin. A number of discernible features can be identified in 

the results. First1 the estimated equations indicate that increasing controls 

produces disproportionately larger benefits. However, as a comparison of the 

first two scenarios demonstrates, the disproportion is relatively small for 

marginal changes in extinction. 

Second, the larger the control effort, the larger are the corresponding 

benefits. Of course, the costs of control also increase with the level of 

effort. Ideally, one would choose the optimal control effort through a com­

parison of the benefits and costs of each level of control. 

The third result from the analysis arises from a combination of the 
first two factors. That is, the benefits of extremely stringent control 

should be very large. This occurs because 1) the larger the control the larqer 

the benefits, and 2) as pristine air quality is approached, benefits grow at 

an increasing rate due to the shape of the demand curve. 

The fourth feature is the substantial loss in benefits from postponing 

and phasing controls (i.e. Scenario IV). Under Scenario IV, the average control 

level over the 1980-1992 time period is substantially less than for the other 

scenarios. In addition, the controls of Scenario IV come mostly in the future, 

so that the present value of the benefits is reduced by the discounting pro­

cedure. The sooner the controls are in place, the larger the overall benefits. 

In conclusion, the hedonic approach can be utilized to determine the 

benefits of air quality improvements under a variety of scenarios. Further, 

these benefits do not require either region-wide income increases or oooula­

tion in-migration, as they are unrelated to housing price increases. Rather, 

they are based on individual willingness to pay for improved air quality. 
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APPENDIX A: ECONOMIC BENEFIT ANALYSIS WITH THE 1973-74 DATA BASE 

This appendix reports on the economic regression analyses for the 

1973-74 time period. The primary motivation for examining this earlier time 
period was to study the possibility of oreference shifts over. time. The 
initial idea was to estim~te demand functions for yisibility (light extinction) 

in the two time periods and then to compare them to determine 1f a shift 
occurred. However, further inspection indicated that a simple comparison 

of these two demand equations would be insufficient to identify the source 
of the shift. · Thus, the shift could be associated with .a change in prefer­

ences, satisfying our initial hypothesis, or could result from a change in 

prices of the housing characteristics or changes in prices of goods outside 

our consideration. Without very restrictive assumptions concerning these 
other influences (i.e., all other prices constant) no definitive statement 

could be made. Since the 1973-74 analysis adds little to the information 
inherent in the 1978-79 data, this appendix has limited value in that the 
estimates provided are never used. However, _in order to fulfill the terms 

of the contract, we do present hedonic estimates for the 1973-74 time period. 

The definitions of the data utilized in the hedonic housing value 

equations are specified in Table 3.1 of the text. The estimated hedonic 

equations for the Los Angeles Area are presented in Tables A.l and A.2. The 
form~r uses population density and school quality to represent community 

characteristics, whereas the latter uses orincipal components. For each of 

the equations presented the following generalizations hold. First, all 

variables except population density (significant at the 5% level) are signific­
antly different from zero at the 1% level and possess the expected relation­

ships to home sale price (HSP)~ Second, in each equation aoproximately 80% 

of the variation in HSP is explained by the variation in the independent 

variable set. Third, light extinction is significantly different from zero 

arid is negatively related to HSP. This indicates that the 1973-74 data confirm 

the 1978-79 results. Also like the 1978-79 results, the 1973-74 results are 
stable across functional forms, sample sizes, and model formulations~ 

The estimated hedonic equation for the San Francisco area is presented 

in Table A.3 .. As in the Los Angeles case, the estimated coefficients qen~rally 
possess the expected relationships to HSP and are significantly different from 
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TABLE A.l ESTIMATED HEDONIC EQUATION (LOG-LINEAR)
FOR THE LOS ANGELES AREA. 

DEPENDENT VARIABLE= tn(HOME SALE PRICE IN HUNDREDS OF 1973-74 DOLLARS) 

- Variables Coefficient t - Statistic 

Site Specific Characteristics: 

ln (Sales Month) 
ln (Age of Home) 
1n (Square Feet of Living Area) 
ln (Number of Bathrooms) 

Number of Fireplaces 
Pool 
View 

~eighborhood Characteristics: 

ln (Percent Greater than 64) 
ln (Percent White) 

Locaticn Characteristics: 

ln (Distance to Beach) 
ln (Miles to Business District) 

Orange Cow:1t:y 
Riverside County 
San Bernadina County 

Community Characteristics: 

ln (Population Density) 
ln (School Quality) 

ln (Light Extinction) 

Constant 

.0272 
-.055 

.627 

.137 

.085 

.100 

.183 

.023 

.078 

- .-099 
-.014 
-.156 
-.193 
-.172 

-.016 
.579 

-.147 

-1.1419 

7.06 
-17.04 

47 .21 
10.91 
14.91 
12.00 
13 .11 

4.33 
13.92 

27.64 
- 5.35 
-16.66 
-11.11 
-12.22 

- 1.71 
11.96 

- 7.04 

- 5.18 

R-Squared .80 

Number of Observations 4934 
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TABLE A.2 ESTIMATED HEDONIC EQUATION (LOG-LINEAR)
FOR THE LOS ANGELES AREA. 

DEPENDENT VARIABLE= tn (HOME SALE PRICE IN HUNDREDS OF 1973-74 DOLLARS) 

Variables Coefficient t - Statistic 
~ 
~ 
f, 

Site Specific Characteri3tics: 

~ 
'Il1 

ln (Sales Month) 
ln. (Age of Home) 
ln (Square Feet of Living Area) 
lr, (Number of Bathrcc::is) 

Number of Firepl.aces 
Pool 
View 

ii ~-l eighborhood Characteriscics: 

ln (Percent Greater ::).an 64) 
ln (Percent White) 

Location Characteristics: 

ln (Distance to Beac~) 
Orange County 
Riverside Count::-
San Bernadina Go~nty 

7 Community Characteristics: 
!l 

Factor 1 
Factor 2 
Factor 3 

ln (Light Extinction) 

Constant 

.028 
-.053 

.632 

.133 

.084 

.099 

.187 

7.20 
-16.34 

47.66 
10.65 
14.67 
11.92 
13. 36 

.021 

.080 
3.68 

14.56 

-.095 
-.142 
-.166 
-.168 

-25.92 
-15.49 
-10. 48 
-13.50 

-.033 
-.019 
-.012 

-10.08 
- 5.58 
- 2. 77 

-.162 - 7.63 

1.139 11.93 

R - Squared . 80 

~umber of Observations 4934 
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TABLE A.3 ESTIMATED HEDONIC EQUATION (LOG-LINEAR)
FOR THE BAY AREA AIR BASIN. 

DEPENDENT VARIABLE= £n (HOME SALE PRICE IN HUNDREDS OF 1973-74 DOLLARS) 

Variables Coefficient t - Statistic 

Site SEecific Characteristics: 

ln (Sales Month) 
ln (Age of Home) 
ln (Square Feet of Living Area) 
ln (Number of Bathrooms) 

Number of Fireplaces 
Pool 
View 

Neighborhood Characteristics: 

ln (Percent Greater than 64) 
ln (Percent White) 

Location Characteristics: 

ln (Distance to Beach) 
Miles to Business District 
Alameda County 
Contra Costa County 
San Mateo County 
Santa Clara County 

Community Characteristics: 

ln (Population Density) 
ln (School Quality) 

ln (Light Extinction) 

Constant 

.039 
-.030 

.669 

.115 

.077 

.058 

.096 

.062 

.139 

-.161 
-.00005 

-2.96 
-2.88 
-2.90 
-2.98 

-.037 
.734 
.193 

.754 

8.82 
- 8.22 
44.68 
8.83 

11.04 
4.31 
8.90 

10 .12 
14.43 

- 9.87 
.93 

-10. 65 
-10.16 
-10. 31 
-10.50 

- 4.69 
11.36 
5. 90 

6.47 

R - Squared .75 

Number of Observations 
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zero at the one percent level. The major exception is the light extinction 
variable; it is significant, but it has an unexpected relationship to home 
sale price. This result is contrary to our findings in Los Angeles and 
San Francisco in 1978-79. In addition, the ooor performance of the extinc­
tion variables in San Francisco in 1973-74 is quite stable across functional 
forms, sample sizes, and model formulations. While this does not invalidate 

our 1978-79 result, it does suggest something is amiss. 
There is no certain ans~er to why }ight extinction fails to perform 

properly in the 1973-74 time period in San Francisco. However, a number of 
possible reasons might be proposed. The first is the lack of variation in the 
light extinction variables in the earlier time period. For instance, the 
third extinction variable (sea haze adjusted) has a mean of .72 with a 
standard deviation of .14 in 1973-74. This contrasts to a 1978-79 mean of 
.66 with standard deviation of .20. Thus, there is more relative variation 
in the data in the later years. Second, inspection of the correlations between 
the visibility variables across the two time periods provides further evidence 
of data problems. For instance, the correlation between extinction (3) in 
1973-74 and the same variable for 1978-79 is approximately .91 in Los Angeles. 
The corresponding figure for San Francisco is only .80. This latter fiqure 
suggests that eiither a shift in the visibility pattern occurred or the earlier 
data are poor and do not reflect the actual situation. It is our opinion 
that the earlier San Francisco extinction data may not reflect the true situa­
tion since values at two critical locales (Alameda and Moffett) seem out of 
character (see discussion in Section 2.1 ). In conclusion, the evidence 

suggests that the 1973-74 San Francisco extinction data may not provide a 
true test because of low inherent variation and, possibly, because of poor 
data quality. 

The next step in the analysis would be to estimate demand curves for 
the 1973-74 time period. However, these results would not provide any fur­
ther information than that gleaned from the above hedonic equation estimates. 
Again, the 1973-74 results would strongly support the 1978-79 results in Los 
Angeles but not in San Francisco. Our reasoning on why would remain the same, 
so this exercise is omitted. Therefore, we conclude that, since the assumo­
tions necessary to comment on the presence of preference shifts over time are 
too restrictive, the 1973-74 results have use only as qualitative confirmation 
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of the 1978-79 results. This occurs in the Los An9eles study area but not 

in San Francisco. The latter finding may be attributable to lower variation 

and poorer quality in the San Francisco data during 1973-74. 
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