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Abstract 

The possible association between three kinds of mortality and several 

pollution and weather variables is investigated using a general multiple 

time series regression model on daily data collected during fourteen London 

winters spanning the time period 19.58-1971. The best model for predicting 

overall mortality, cardiovascular mortality, or respiratory mortality 

involved using lagged temperature in combination with the logarithms of the 

same day levels of either sulfur dioxide or black smoke deposits. The 

pollutants are more important than temperature in predicting changes in 

overall and respiratory mortality but are less important in predicting 

cardiovascular mortality. The mechanism indicated by the regression analysis 

is that pollution acts positively and instantaneously, whereas temperature 

acts negatively with the strongest component at a lag of two days for cardio­

vascular mortality and positively as a function of the two-day temperature 

differential for overall and respiratory mortality. The strongest associa­

tions, as measured by the multiple coherence, occur at periods ranging 

between seven and twenty-one days, implying that pollution and temperature 

"episodes" must persist in order to influence mortality. 
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1. Introduction 

The investigation of a possible association between pollution levels and 
short- or long-term adverse health effects in the presence of other confounding 
environmental factors is a problem of great interest. While it is important to 
be able to quantify any dose response relation which may exist, it is also 
essential to be able to account properly for other environmental factors such 
as temperature and relative humidity. The purpose of this investigation is to 
focus on modeling short-term mortality fluctuations in terms of pollution and 
weather effects using a limited data base consisting of daily measurements made 
over fourteen winters in the immediate vicinity of London. 

The London mortality and air quality data have been used previously in 
attempts to quantify a dose response relation between pollution and daily 
mortality. A review of a nu~ber of such studies, including a groundbreaking 
British contribution by Martin and Bradley (1960), is given in Ware, et al., 
(1981) who describe the results in terms of standard regressions relating 
instantaneous .24-hour mortality to the primary pollutants, black smoke level 
(BSM) and sulfur dioxide (S02), measured in µg/m3. This also characterizes the 
work of Mazumdar, et al., (1980), (1983) using techniques developed by Schimmel 
.(1978) for data collected in New York City. 

In all of the above studies, a minimal amount of time series methodology 
was employed which was confined mainly to .eliminating the low frequency 
"seasonal" effect by using a suitable prefilter; in most cases, the excess over 
a 15-point moving average was used. A first effort tow~rds .resolving some of 
the lagged effects present in the London data was made by Dawson and Brown (1981) 
who assumed an autoregressive structure for mortality and found a reasonable 
correlation with black smoke levels. Wyzga (1978) investigated some 
specific distributed lag models relating lagged pollution and filtered 
temperature to daily mortality in Philadelphia. 

In this report we will develop a multiple time series model which allows 
one to estimate an arbitrary lag structure subject to correlation over time. 
This provides more specific information as to what kinds of pseudo-causal 
mechanisms might be inferred. The analysis detailed a consideration of 
(1) temporal patterns in the data including potential lagged effects with 
pollutants and with temperature and relative humidity, (2) data from more than 
a single year (examples are Mazumdar, et al., (1980) and Wyzga (1978)), 
(3) mortality stratified by cause, and (4) possible nonlinear relationships. 
Furthermore, a stepwise procedure is used to determine which factors contribute 
significantly to daily mortality fluctuations. Since the analysis is done in 
the frequency domain, the periods over which the relationship is strongest can 
be uniquely identified. Although the London data set can still be criticized 
on the basis that it represents a limited population monitored under rather 
restrictive environmental conditions, we are still able to extend the analysis 
to fourteen winters, with mortality stratified according to a limited set of 
causes. 
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2. The Analysis: Choosing the Approach 

The initial raw data used in this analysis involve overall mortality, 
cardiovascular mortality, and respiratory mortality measured along with the 
levels of the two primary pollutants, black smoke (BSM) and sulfur dioxide (S02), 
and two weather series, temperature and relative humidity. The temperature (in 
degrees C) and relative humidity (percent) are measured at 9:00 a.m. each day 
in the Metropolitan Office. The smoke and so levels are the means of seven2sites measured in µg/m3. These seven series are measured over 112 days, 
beginning. at the forty-eighth week of the current year and ending at the fifth 
week of the succeeding year, for each of fourteen London winters spanning the 
years 1958-1971. 

The basic raw data over all fourteen winters are plotted in Appendix C. 
A number of qualitative observations can be made by examining these plots more 
closely. First of all, the mortality plots have linear trends and in some 
years will have a low frequency component corresponding to an epidemic. 
Detrending does not eliminate·· the low frequency component as can be noted from 
the plot in Figure 1 which shows the mortality data measured during the winter 
of 1970. This indicates that a prefilter which eliminates the low frequency 
should be applied at some stage. The pollution series shown in Appendix C also 
have a non-stationary appearance which is induced prima_rily by the occurrence 
of high level episodes. The idea of transforming to logarithms is appealing 
for two reasons. First, the tr~nsformed data, say for 1970 shown in Figure 2, 
have a distinctly stationary character which is more consistent with the 
magnitude of the short-term fluctuations of the mortality-series. Secondly, 
the classical nonlinear dose response relation is often taken to be linear in 
the logarithms (cf. Ware, et al., (1981) and Dawson, et al., (1981)). The 
daily temperature and relative humidity data shown in Figure 2 are visually 
consistent (up to a linear trend) with patterns to be expected with stationary 
data. 

Since linear detrending will not be a completely satisfactory way of 
eliminating the non-stationarity due to the extremely low frequency components 
in the years 1961, 1963, 1967, 1969, and 1970 (see Appendix C), we designed a 
symmetric (phaseless) prefilter with a suitable response. This filtering has 
been done in the past by subtracting a 15-point moving average from each data 
value. However, the frequency response of this filter, shown in Figure 3, has 
some undesirable "ripples" over parts of the high frequency range. A filter 
designed specifically to reject low frequencies and pass high frequencies is 
also shown in Figure 3, and we note that a flat response1 can be achieved by 
suitably modifying the off-center coefficients. In this analysis, we have 
detrended each year to eliminate the changes in overall levels due to year-to­
year longer term fluctuations. The effects of epidemics over the same year are 
taken out by filtering. For example, Figure 4 shows the detrended filtered 
mortality data for the winter of 1970 and the effect of the long-term rise in 
midwinter has clearly been eliminated. 

The preceding arguments and discussion are intended as general support for 
the notion that each year, after suitable detrending and transformation, we are 
observing what can essentially be described as a stationary multiple time series 
and that the years are replicates of this basic underlying series which can be 
described by the input-output regression model to be described in the next section. 
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3. The Input-Output Regression Model 

The assumption that we are dealing with replicates of multiple time series, 
with the input series taken as the pollution and weather traces and the output 
series as mortality, implies that we may consider some sort of regression model 
relating the two. In order to motivate this further we consider 1962 as a year 
in which there were generally high pollution levels associated with high 
mortality values and some dynamic variations in temperature levels. For 
example, at the thirtieth day a high mortality value is associated with high 
pollution and relative humidity combined with a low temperature value. The 
same phenomenon occurs to a somewhat lesser extent at the eightieth day. The 
sample cross-correlation1 functions shown in Figure 6 confirm the strength of 
the correlation between pollution and cardiovascular mortality which is 
maximized (0.62) at lag zero. Cardiovascular mortality is correlated 
negatively with temperature at a lag of two days. This indicates that a change 
in temperature tends to precede a change in mortality by about two days for 
1962. 

The time series regression model provides a basis for investigating 
possible lagged relations between a collection of p stationary input series 
Xjl(t), .•. ,xjp(t) and a stationary output series Yj (t) for j = 1,2, ••• ,N years. 
In the case under consideration, Yj(t) is one of the mortality series measured 
on the tth day of the jth winter and (x- 1 (t), xj 2(t), XjJ(t), x- 4 (t)) are the 
'input series ln(BSM), ln(S02), temperat~re, and relative humidify measured at 
corresponding times. Then, assume that the input and output series are related 
by the regression model 

(3 .1) 

where* denotes the convolution 

00 

(3. 2) 

and ej ( t), j = 1, •.• , N are a collection of independent identically distributed 

The correlation between detrended time series (t) and (t) 

stationary time series with a common a~tocorrelation function 

R(m) = E(e.(t + m)e.(t))
J J 

(3. 3) 

for j = 1, •.• , N. This model which regards the inputs as fixed is equivalent to 

1
cross two z z at

1 2lag mis defined as 

where 

with R
T 

(m) R
T 
21 (-rn) at m = 0,±1, •. o ,±M lags.12 
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performing the analysis on the jointly stationary inputs and outputs 
conditionally on the fixed inputs. We will be interested in estimating the 
regression functions Bk(t) relating the kth input series to the output Yj(t). 
The model includes the usual instantaneous regression model as a special case 
since by replacing convolution* by multiplication we obtain 

p 

y.(t) = I x.k(t)Sk + e.(t), (3. 4) 
J k=l J J 

where ej (t) is now assumed to be independent over time as well so that R(m) = cr2 
for m = O and is zero otherwise. The restrictions inherent in this usual model 
are evident as the Bk does not vary over time, precluding the estimation of 
lagged effects, and the error is assumed to be independently distributed over 
time. 

The basic problems to be considered for the time series regression model 
(3.1) are (a) the determination of the significant environmental contributors 
to mortality and (b) the estimation of the partial regression (impulse response) 
functions Bk(t) for the best model. An arbitrary lagged regression is assumed, 
so that assumptions are not made about causality. 

The analysis is based on the ability to transform all the inputs and 
outputs to stationary time series by detrending or transformations. This 
enables us to .perform the analysis in the frequency domain using the properties 
of the discrete Fourier transform (DFT). Another advantage of the frequency 
domain is that we can isolate the primary coherent period band; the harmonic 

·component may correspond to an identifiable causal phenomenon such as a 
periodic release of high concentration pollutants. 

4. Determining the Significant Environmental Factors Contributing to 
Mortality: Frequency Domain Regression 

In order to determine the joint contributions of the various environmental 
factors influencing mortality in the lagged regression relation (3.1), we 
consider first the analog of the standard measure, the squared multiple 
correlation at frequency v, say R2(v) as defined in equation (AlO) of Appendix 
A. The values of R2(v), called the multiple coherence function, can be 
interpreted as the percentage of power accounted for by the given model at a 
specified frequency v. The frequency vis defined in terms of the number of 
cycles the time series makes in a given unit of time. For example, a series 
which has a strong component at the v0 = 0 .10 cycles per day takes 1/0 .10 = .10 
days to complete one cycle. One may therefore also quote the regre~sion 
results in terms of the period, say To= l/v0 , which is the length of time 
needed to complete one full cycle. 

It is possible to examine the contributions that each band of frequencies 
makes to the variance for each series by looking at the power spectra given in 
Table Bl of Appendix B. The spectra indicate that the frequencies contributing 
the maximum power are centered on 0.09 cycles per day or a period of about 
eleven days. The spectrum is an average of the variance over the band from 
0.078 to 0.109 cycles per day which corresponds to periods between 9.1 and 
12.8 days. 
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The values of R2(v) for a number of combinations of inputs as related to 
the possible outputs, overall mortality (Table 1), cardiovascular mortality 
(Table 2), and respiratory mortality (Table 3) are shown on the next pages. 
In general, a number of models involving single inputs (p = 1), two inputs 
(p = 2), three inputs (p = 3), and four inputs (p = 4) were studied. The 
critical values against which R2 may be compared at a= 0.01 are 0.11, 0.15, 
0.19, and 0.21, for the p = 1,2,3, and 4 cases, respectively. 

Table 1 shows that either of the two pollution series or temperature may 
be considered as primary single contributors to total mortality over a number 
of frequencies corresponding to seven to 21 days and over the 3.4- to 5-day 
band for temperature. Table 1 also indicates that overall mortality is 
predicted best by a model using one of the two pollution values in combination 
with temperature. Either of the two models ((4,6) or (5,6) in the table) 
accounts for over 50 percent of the power in the frequency range 0.06 to 0.09 
cycles per year corresponding to periods of seven to 21 days. This is somewhat 
more than can be accounted for in a ~odel any one of the three inputs singly, 
and no single input appears t·o be an improvement over the other two. The 
effect on mortality of the two pollutants· appears to be identical in terms of 
predictable power. The coherence between ln(BSM) and ln(S02) was uniformly 
high(> 0.80) for all years, bearing out the interpretation that they are 
acting identically or as surrogates for some other unmeasured phenomenon. 

The results for cardiovascular mortality in Table 2 are not as strong but 
still indicate that over 40 percent of the power can be accounted for in the 
frequency band 0.03 to 0.09 cycles per day by a model including temperature and 
one of the two pollutants. A surprising aspect of the cardiovascular mortality 
is that temperature (6) appears as the best single contributor, accounting for 
20 to 40 percent of the power in a somewhat lower frequency band 0.03 to 0.09 
cycles per year corresponding approximately to ten- to thirty-day periods. 

The respiratory mortality results in Table 3 present a similar picture, 
although the primary band of interest corresponds to nine- to 21-day periods~ 

It is clear from Tables 1, 2, and 3 that, in terms of accountable power, 
the combination of either pollutant with temperature caus~s the primary effect 
in a period band corresponding approximately to ten-day cycles. In order to 
arrive at this model through a more formal statistical analysis, consider the 
use of F-tests to compare various models, as described in Shumway (1976) or 
Brillinger (1979). These tests, using equation (Al7) in Appendix A, are shown 
in Table 4 and indicate that if one were to test formally the two-input models 
against the single input models, they are significantly better in the frequency 
band 0.06-0.13 cycles per daycorresponding to eight- to seventeen-day periods. 
Ftirthermore, the models using three or four inputs as predictors are not si~nif­
icantly better than the two-input models. 

It is reasonable to comment further on the frequency dependent nature of 
the relationship between pollution, temperature, and mortality. Since the 
relation is strongest at seven to 21-day periods, oscillations at higher 
frequencies in pollution levels will not lead to significant increases in 
mortality levels. This can be noted in Figure 8 where the low frequency 
oscillations around the thirtieth and eightieth day in•ln(S02) and temperature 
have discernible effects on mortality, whereas higher frequency oscillations 
occurring elsewhere can be tolerated. Since the results in Tables 1 and 2 
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Frequency (Cycles/Day) 

Model o.oo 0.03 0.06 0.09 0.13 0.16 0.19 0.22 0.25 0.28 0.31 0.34 0.38 0.41 0.44 0.47 a.so 

1 vs 4 0.03 0.09 0.32* 0.37* 0.17* 0.20* 0.12* 0.10 0.16* 0.08 0.13* 0.06 0.08 0.15* 0.19* 0.15* 0.10 

1 vs 5 0.03 0.15* 0.36* 0.32* 0.17* 0.19* 0.11* 0.05 0.16* 0.11* 0.09 0.07 0.06 0.12* 0.15* 0.07 0.03 

1 vs 6 0.01 0.33* 0.36* 0.30* 0.14* 0.09 0.03 0.21* 0.15* 0.12* 0.05 0.03 0.09 0.00 0.01 0.01 0.01 

1 vs 7 0.03 0.08 0.20* 0.12* 0.01 0.03 0.07 0.05 0.07 0.09 0.06 0.02 0.00 0.03 0.01 0.09 0.00 

--
1 vs 4,5 0.03 0.16* 0.39* 0.39* 0.19* 0.21* 0.14 0.14 0.17* 0.11 0.14 0.08 0.08 0.17* 0.19* 0.16 0.12 

1 vs 4,6 0.04 0.35* 0.51* 0.53* 0.32* 0.27* 0.22* 0.35* 0.26* 0.19* 0.23* 0.13 0.12 0.16* 0.20* 0.16* 0.10 

1 vs 4,7 0.06 0.16* 0.41* 0.39* 0.19* 0.21* 0.14 0.12 0.20* 0.15* 0.15* 0.08 0.08 0.16* 0.19* 0.21* 0.10 

1 vs 5,6 0.03 0.36* 0.52* 0.52* 0.37* 0.26* 0.21* 0.31* 0.29* 0.26* 0.19* 0.15* 0.12 0.13 0.16* 0.08 0.03 

1 vs 5,7 0.06 0.23* 0.45* 0.34* 0.18* 0.21* 0.14 0.08 0.21* 0.19* 0.11 0.08 0.07 0.14 0.16* 0.151c 0.0] 

1 vs 6,7 0.05 0.38* 0.48* 0.35* 0.15* 0.11 0.10 0.23* 0.18* 0.15* 0.11 0.05 0.09 0.04 0.02 0.10 0.01 

1 vs 4,5,6 0.04 0.37* 0.53* 0.54* 0.38* 0.28* 0.25* 0.36* 0.30* 0.27* 0.23* 0.17 0.13 0.18 0.20* 0.17 0.13 

1 vs 4,5,7 0.06 0.24* 0.46* 0.40* 0.21* 0.22* 0.16 0.16 0.22* 0.19* 0.15 0.10 0.08 0.18 0.19* o.22;c 0.14 

1 vs 4,6,7 0.07 0.39* 0.55* 0.53* 0.33* 0.27* 0.24* 0.35* 0.28* 0.23* 0.24* 0.14 0.12 0.17 0.201c 0.21* 0.11 

1 vs 5,6,7 0.06 0.40* 0.56* 0.53* 0.38* 0.28* 0.24* 0.31* 0.31* 0~29* 0.21* 0.16 0.12 0.15 0.17 0.16 0.03 

1 vs 4,5,6,7 0.07 0.41* 0.56* 0.54* 0.38* 0.29* 0.27* 0.36* 0.31* 0.30* 0.24* 0.19 0.13 0.19 0.20 0. 22* 0 .15 

2
Table 1: Values of Multiple Coherence R Relating Total Mortality to Lagged Regression Models Involving 

Black Smoke (4), so (5), Temperature (6), and ·Relative Humidity (7) for· Pooled 14-Year London 
j--12Data (*indicates significance at a= .01 level). cc 



Frequency (Cycles/Day) 

Model o.oo 0.03 0.06 0.09 0.13 0.16 0.19 0.22 0.25 0.28 0.31 0.34 0.38 0.41 0.44 0.47 0.50 

2 vs 4 0.03 0.10 0.15* 0.22* 0.13* 0.10 0.06 0.03 0.03 0.06 0.04 0.07 0.05 0.12* 0.13* 0.10 0.04 

2 vs 5 0.02 0.16* 0.20* 0.1·9* 0.20* 0.13* 0.04 0.00 0.05 0.11* 0.04 O.ll* 0.03 0.10 0.09 0.05 0.00 

2 vs 6 0.06 0.41* 0.28* 0.21* 0.07 0.10 0.01 0.13* 0.01 0.02 0.01 0.00 0.07 0.03 0.02 0.00 0.00 

2 vs 7 0.02 0.08 0.09 0.06 o.oo o.oo 0.03 0.01 0.07 0.03 0.04 0.02 0.01 0.03 0.02 0.04 0.00 

2 vs 4,5 0.03 0.18* 0.23* 0.22* 0.20* 0.13 0.06 0.12 0.06 0.12 0.05 0.11 0.07 0.17* 0.13 0.11 0.07 

2 vs 4,6 0.07 0.42* 0.31* 0.30* 0.18* 0.15* 0.13 0.20 0.03 0.07 0.08 0.07 0.08 0.15* 0.17* 0.11 0.05 

2 vs 4,7 0.04 0.20* 0.21* 0.25* 0.14 0.10 0.07 0.03 0.10 0.08 0.06 0.08 0.05 0.13 0.14 0.13 0.05 

2 vs 5,6 0.06 0.42* 0.32* 0.29* 0.26* 0.18* 0.10 0.16* 0.06 0.11 0.09 0.14 0.08 0.13 0.12 0.06 . 0.01 

2 vs 5,7 0.03 0.26* 0.26* 0.20* 0.20* 0.13 0.05 0.01 0.12 0.13 0.06 0.12 0.04 0.12 0.11 0.09 0.01 

2 vs 6,7 0.09 0.45* 0.33* 0~23* 0.07 0.11 0.05 0.13 0.07 0.04 0.05 0.02 0.08 0.07 0.04 0.04 0.01 

--
2 vs 4,5,6 0.08 0.43* 0.33* 0.32* 0.27* 0.18 0.13 0.24* 0.06 0.13 0.10 0.14 0.13 0.18 0.18 0.12 0.07 

2 vs 4,5,7 0.04 0.28* 0.27* 0.25* 0.20* 0.14 0.07 0.13 0.13 0.14 0.07 0.13 0.08 0.18 0.15 0.14 0.09 

2 vs 4,6,7 0.10 0.47* 0.34* 0.31* 0.18 0.16 0.14 0.20 0.11 0.08 0.10 0.09 0.10 0.16 0.18 0.14 0.06 

2 vs 5,6,7 0.09 0~47* 0.35* 0.29*·0.26* 0.18 0.12 0.16 0.13 0.13 0.11 0.15 0.09 0.15 0.14 0.09 0.01 

--
2 vs 4,5,6,7 G.11 0.48* 0.36* 0.33* 0.27* 0.19 0.14 0.24* 0.14 0.14 0.11 0.16 0.13 0.20 0.19 0.14 0.09 

2Table 2: Values of Multiple Coherence R Relating Cardiovascular Mortality to Lagged Regression Models 
Involving Black Smoke (4), so (5), Temperature (6), and Relative Humidity (7) for Pooled

2 1---114-Year London Data (*indicates significance at a= .01 level). \0 



Frequency (qycles/Day) 

Model o.oo 0.03 0.06 0.09 0.13 0.16 0.19 d.22 .. b. 25 0.28 0,3i o·.·34 0.38 0.41 0.44 0.47 0.50 

3 vs 4 0.01 0.05 0.34* 0.32* 0.08 0.08 0.03 0.07 0.06 0.03 0.04 0.03 0.02 0.01 0.02 0.02 0.01 

3 vs 5 0.01 0.05 0.31* 0.29* 0.09 0.10 0.01 0.06 0.05 0.04 0.02 0.01 0.01 0.01 0.03 0.01 0.02 

3 vs_6 0.01 0.07 0.24* 0.26* 0.03 0.04 0.01 0.07 0.09 0.15* 0.01 0.00 0.03 0.00 0.02 0.09 0.00 

3 vs 7 0.01 0.04 0.19* 0.11* 0.00 0.04 0.04 0.08 0.-04 0.03 0.. 01 0.01 0.05 0.04 0.02 0.00 0.00 

3 vs 4,5 0.02 0.06 0.38* 0~33* 0.10 0.10 0.03 0.07 0.07 0.04 0.05 0.05 0.02 0.04 0.03 0.03 0.02 

3 vs 4,6 0.02 0.11 0.46* 0.44* 0.10 0.12 0.04 0.16* 0.11 0.16* 0 .. 08 0.04 0.04 0.01 0.04 0.11 0.01 

3 vs 4,7 0.02 0.07 0.41* 0.34* 0.08 0.12 0.05 0.12 0.09 0.05 0.04 0.04 0.06 0.04 0.04 0.02 0.01 

3 vs 5,6 0.01 0.11 0.42* 0.44* 0.11 0.14 0.03 0.16* 0.12 0.16* 0.05 0.03 0.04 0.01 0.04 0.10 0.02 

3 vs 5,7 0.02 0.07 0.40* 0.31* 0.09 0.15* 0.04 0.12 0.08 0.05 0.03 0.03 0.06 0.05 0.04 0.01 0.02 

3 vs 6,7 0.02 0.11 0.37* 0.30* 0.03 0.08 0.05 o.13 . 0.12 ·0.15* 0.02 0.01 0.06 0.04 0.04 0.09 0.00 

3 vs 4,5,6 0.02 0.11 0.46* 0.44* 0.12 0.14 0.05 0.17 0.13 0.16 0.08 0.07 0.05 0.04 0.04 0.11 0.02 

3 vs 4,5,7 0.02 0.09 0.44* 0.35* 0.10 0.15 0.06 0.13 0.10 Q.06 0.05 0.06 0.06 0.07 0.05 0.03 0.02 

3 vs 4,6,7 0.03 0.13 0.49* 0.44* 0.10 0.16 0.07 0.20* 0.13 b.16 0.08 0.05 0.08 0.04 0.05 0.11 0.01 

3 vs 5,6,7 0.02 0.13 0.46* 0.44* 0.11 0.19 0.06 0.21* 0.14 0.17 0.06 0.03 0.08 0.05 0.05 0.10 0.02 

3 vs 4,5,6,7 0.03 0.13 0.49* 0.45* 0.12 0.19 0. 07 - 0. 21 0.15 0.17 0.08 0.07 0.08 - 0.07 0.06 0.11 0.02 

2Table 3: Values of Multiple Coherence R Relating Respiratory Mortality to Lagged Regression Models 
Involving Black Smoke (4), so (5), Temperature (6), and Relative Humidity (7) for Pooled 

N2 
014-Year London Data (*indicates significance at a= .01 level). 
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Model 

Residual Power 
Frequency 

(Cycles/Day) 

.06 .09 .13 
Null Hypothesis 

F-Test .06 

F-Value 
Frequency 

(Cycles/Day) 

.09 .13 

1 vs 4 508 643 385 

1 vs 5 480 694 387 

1 vs 6 479 708 399 

1 vs 4,6 368 475 317 1 vs 4 15.59* 14.50* 8.79* 

1 vs 5,6 357 '485 292 1 vs 5 14 .12,~ 17.67* 13.33* 

1 vs 4,6,7 338 473 312 1 vs 4,6 3.55 .17 .64 

1 vs 5,6,7 327 482 290 1 vs 5,6 3.67 .25 .28 

1 vs 4,5,6,7 326 468 285 1 vs ·4, 6 2.57 .30 2.25 

2 vs 6 117 189 137 

2 vs 4,6 112 168 121 2 vs 6 1.80 5.125* 5.42* 

2 vs 5,6 110 ·170 109 2 vs 6 2.61 4.582 10.53* 

2 vs 6,7 108 185 137 2 vs 6 3.42 .89 .00 

2 vs 4,6,7 106 165 121 2 vs 4,6 2.26 .73 .00 

2 vs 5,6,7 105 169 109 2 vs 5,6 1.90 .24 .00 

2 vs 4,5,6,7 104 160 108 2 vs 4,6 1.54 1.00 2.41 

3 vs 4 81 89 69 

3 vs 5 85 93 69 

3 vs 4,6 67 73 68 3 vs 4 8.57* 8.99* .60 

3 vs 5,6 71 74 67 3 vs 5 8.08* 10.53* 1.22 

3 vs 4,6,7 63 73 68 3 vs 4,6 2.53 .00 .00 

3 vs 5,6,7 66 73 67 3 vs 5,6 3.03 .55 .00 

3 vs 4,5,6,7 62 72 67 3 vs 4,6 1.61 .28 .30 

Table 4: Residual Analysis of Power for Models Involving Total 
Mortalfry (1), Cardiovascular Mortality (2), and 
Respiratory Mortality (3) as Outputs and Black Smoke (5)' 
Temperature (6), and Relative Humidity (7) as Inputs 
(*indicates significance at a= .01 level). 
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have been averaged over all years, the coherence is a persistent phenomenon 
which does not depend on the overall base levels of any of the series. 

5. Describing the Joint Contributions of Temperature and Pollution: 
The Partial Regression (Impulse Response) Functions 

The thrust of the previous secti-on was to establish that pollution (either 
ln(BSM) (4) or ln(S02) (5)) and temperature (6) are jointly contributing to 
detrended filtered mortality through some general linearly filtered regression 
relation of the form (3.1), (3.2). We may rewrite this result as 

(5.1) 

where 
th .th y. (t) = mortality for the t day of the J year

J th h .th
xjl (t) ln(pollution) for the t day of t e J year• 

. h th d h .thxj 2 ( t) = temperature on t et ay of t e J year (10 times 
temperature in degrees C) 

The partial regression or impulse response functions S1 (t) and S2(t) determine 
how the effects of pollution and temperature are passed along to mortality. 
One would anticipate that the relation should be causal, i.e., Bk(t) should 
be zero fort< O, so that the interpretation can be made in terms of mortality 
depending on the present and past values of pollution and temperature.

( 
Again, the .computations for Sk(t) involve calculations which can be 

performed using the pooled spectral matrix; details can be found in Appendix A 
or in Wahba (1969), Shumway (1970), or Brillinger (1976). 

Figure 7 shows the estimated regression (impulse response) functions 
relating ln(SOz) and temperature to overall mortality. The partial regression 
functions given in the lower half are reasonably stable with large coefficients 
in the positive direction. The values for the coefficients are given in 
Table Al in Appendix A, and we note that, neglecting small statistically 
insignificant coefficients,. the lagged regression relation seems to have the 
approximate form 

(5. 2) 

where y3(t) denotes the predicted total mortality. The interpretation is 
that the predicted mortality excess (it has been detrended and filtered) is 
instantaneously related to ln(SOz) and to a lesser extent with temperature. 
However, the lagged effects of temperature in past days tend to produce 
negative contributions, i.e., as temperature goes down, mortality increases 
and vice versa. The maximum effect occurs at t = 2, which implies that the 
negative contribution to overall mortality leads by about two days. The 
results using ln(BSM) instead of ln(S02) are practically identical to those 
obtained for ln(SOz). 

The corresponding partial regression functions for cardiovascular 
mortality, shown in Figure 8 and Table B3, are similar except that the 
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positive temperature contribution at lag zero disappears, and we obtain a 
strictly negative contribution due to temperature. This implies a slightly 
different prediction model for cardiovascular mortality which is of the form 

(5. 3) 

The respiratory mortality regression functions, shown in Figure 9 and 
TableA4, are similar to those given for overall mortality except that there is 
some action over the non-causal (t < O) part of the pollution filters. ·one may 
arrive at the approximate prediction model 

(5.4) 

In any case, the partial regression functions as a whole indicate strongly 
that the pollution effect occurs at lag zero and that there are significant 
negative temperature effects occurring with the maximum occurring at a lag of 
two days. 

Equations (5.2), (5.3), and (5.4) suggest that total and respiratory 
mortality are associated with two-day temperature differentials; whereas the 
cardiovascular mortality depends negatively on the temperature observed two 
days in the past. 

6'. Conclusions and Recommendations 

The overall picture which begins to emerge from this initial analysis of 
the short-term effects of pollution and weather factors on different types of 
mortality in London can be summarized as follows: 

1. The best model for associating daily mortality with the environmental 
factors here involves using temperature in combination with the logarithms of 
either the black smoke or sulfur dioxide pollutant levels. 

2. The two pollutants predict mortality equally well and appear to be 
acting identically in all respects. The nonlinear relation holds consistently 
over all years and, hence, at all levels. No threshold effect was evident. 

3. Relative humidity does not appear to be an important contributing 
factor. 

4. The mechanism by which the factors are influencing mortality has 
pollution acting strongly and instantaneously. Temperature acts negatively at 
a lag of two days in the case of cardiovascular mortality; whereas the two-day 
temperature differential exerts a positive effect on respiratory and total 
mortality. 

5. The strongest coherence occurs at frequencies corresponding to periods 
of seven to 21 days. This implies that the pollution and temperature episodes 
must persist in order to have a discernible effect on mortality. Very short 
pollution episodes or temperature swings of less than seven days do not appear 
to have much effect. 
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The above conclusions were reached on the basis of the limited London data 
base and should not be extrapolated to other sets of data collected in the 
United States or, more specifically, in California. The general nature of the 
relations which are indicated suggests that it may be very important to apply 
the techniques to data in California. For example, the fact that mortality and 
pollution were associated in years with low and moderate pollution levels may 
be peculiar to the London set, or it may be more generally applicable. It will 
be important, in future efforts, to determine whether similar kinds of associa­
tions can be isolated in the California data. 
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APPENDIX A 

Summary of Equations Used in Frequency Domain Regression 

Consider the lagged multiple regression model relating p jointly 
th

stationary input series x. (t), •.• ,x. (t) to the output series y.(t) in the j
1J JP J 

year where data are available over j = 1, .•. , N years for t = 0, 1, •.. , T-1 time 

points. We assume that the. conditional mean of the output series is of the 

form 

p 00 

µJ. (t) = L L x.k(t-u)Bk(u) (Al) 
k=l u=-00 J 

where 8 (t), .•. ,Sp(t) are regression functions to be· estimated. The stationary1 
conditional covariance function is of the form 

cov(y/s),yk(t)) = cjkR(s-t) (A2) 

where c j k = 1 for j = k and is O otherwise. 

The underlying model can be expressed in the frequency domain by 

transforming via the discrete Fourier transform (DFT); that is, let 

T-1 .. 
Y.(l) = T-1/2 l y.(t)e-2TiiVlt (A3) 

J t=O J 

for Vl = l/T and l=.0,1, •.• ,T/2. Then, for a subset of L frequencies where the 

conditional spectrum is approximately constant and under suitable restrictions 

on x.k(t), S.(t) (cf. Brillinger (1975), (1979)), we may rewrite (Al) in terms 
J J 

of an approximation expressed in terms of the DFTs, say 

(A4) 

with the conditional covariance assumed to be given by f(v), the Fourier 

transform of (A2), for all frequencies in the band. In matrix notation, (A4) 

becomes 

(AS) 

where M(l) = (M1 (l), .•. ,~(l))', X(l) {\k(l), j =l, •.• ,N, k=l, ... ,p}, and 

~ = (B ,B
2

, .•. ,Bp)'. This exhibits the model in the standard linear regression
1 

format, so that the estimator 
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i<v) = CI x*ct)x(l))-1I x*ct)_!(l) (A6) 

l l 
is natural for the regression vector at frequency v. An approximation to the 

time domain estimator is given by the inverse DFT (v = m/M)
m 

A 1 M~lA 2TiiV t 
S.(t) = 

O 

M l B.(v )e m, (A7) 
J m=O J m 

and its variance is approximated by (cf. Wahba (1969), Shumway (1970)) 

M 1 M-1 .. 
var(§. (t)) ~ -

2 
l f(v )sJJ(v) (AB)· 

J M · m=0 m m 

thwhere sjj(v) is the j diagonal element of inverse of the spectral matrix of 
m 

the inputs, say 

·· S(v) = X*(v)X(v). - (A9) 

The mean square power 

f(v) = (LN)-
1Ill.!<l) - X(l)Bll 2 (AlO) 
l 

is the estimated conditional error spectrum, (11~112 = ~*i). 

We can measure the strength of the linear relation at each frequency V 

using the multiple coherence 

.•le -1 
s (v)s (v)s (v) 

R2(v) - -xy -xy (All)- 2 
s (V)

y 

where 

s (v) = IX* (l)!_(l) (A12) 
-xy l 

and 

(A13) 

are proportional to the pooled sample spectra and cross spectra between the 

inputs and the outputs. The test that the conditional mean is zero (no 

regression) can be based on the F-statistic 

(n-2p) (A14)
2p 

where n = 2NL in this case. If F is the upper a. level significance
a.; 2p,n-2p . 

point, we may reject the no regression hypothesis when 
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1 

kF 
R2(v) > a;2p,n-2p 

l+kF
a;2p,n-2p 

(Al5) 

with 

k=~
n-2p · 

(Al6) 

AOne may also compare two competing linear models by noting that if f (v) 

and f (v) are the estimated error spectra of the form (AlO) resulting under
2 

hypotheses H and H with the regression coefficients defined by H
2 11 

constituting a proper subset of the p coefficients defined under H2 . The
2 

F-statistic appropriate for this case is of the form 

(n-2p )
2 (A17)

Z(p2-pl) • 

The above equations were computed by pooling the year-by-year spectral 

matrices obtained from BMD-03T (Dixon (1977)) over years. The results were 

then input to BMD-04T which computes (A6), (A9), (AlO), and (All) at each 

frequency. Equation (A7) was evaluated by computing the DFT of the frequency 

response !(V) using a fast Fourier transform algorithm. 
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APPENDIX B 

Additional Tables Mentioned in Text 

( 
\ 
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Series 
Frequency 

(Cycles/Day) 1 2 3 4 5 6 7 

.00 0 160.7909 14.52 46.29 0.0182 0.0111 71. 9304 3.4821 

.03 1 329.7257 67.07 68.46 0.0955 0.0613 480.5129 15.1434 

.06 2 747.82 161. 85 122.64 0.5924 0.2902 1353.67 65.33 

.09 3 1016.73 239.78 130.59 0. 7768 0.4603 2329.36 83.57 

.13 4 464.42 147.18 75.49 0.4787 0.2950 1151.82 63.91 

.16 5 528.21 161."19 63·. 92 o. 5096 o. 2965 952.15 60.23 

.19 6 380.50 126.92 62.13 0.2979 0 .1713 761.04 74.93 

.• 22 7 444.17 117.97 74.39 0.2446 0.1312 600.98 87.24 

.25 8 382.11 72. 37 87.87 0.2152 0.1166 500.45 79.61 

.28 9 505.72 119.63 65.68 0.2106 0.1273 532.36 75.43 

.31 10 393.70 102.66 62.25 0.1664 0.0915 381.54 70.49 

.34 11 351. 24 100.66 63.73 0.1350 0.0736 369.99 79.26 

.38 12 348.20 128.97 65.10 0.1273 0.0635 344.79 67.74 

.41 13 363.26 156.27 50.05 0.1150 0.0546 279.95 57.55 

.44 14 420.51 131.38 56.55 0.1621 0.0799 276.65 42.18 

.47 15 369.06 160.78 69. 77 0.0926 0.0551 296. 23 52.44 

.50 16 384.83 110.66 48.03 0.0620 0.0456 275.36 43.66 

Table Bl: Power Spectra of Prefiltered London Data--Total Mortality (1), 
Cardiovascular Mortality (2), Respiratory Mortality (3), Black 
Smoke (4), so2 (5), Temperature (6), and Relative Humidity (7). 
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INPUT LENGTH= 32 OUTPUT LENGTH= 3 .-, ~ INPUT LENGTH= 32 OUTPUT LENGTH= 3·-,4 

FILTER COEFF FILTER COEFF 
K COEFF ~\ COEFF 

1 -1.3583E-03 1 -4.65617E-05 
2 .0294172 2 1.38798E-04 
3 -.0700377 3 1. 17164E-03 
4 -.0581218 4 -3.67097E-05 

.204837 2.26537E-04 
6 .231599 6 4.61388E-03 
7 -.038908 7 -4.04938E-03 
8 .593063 8 .0256173 
9 -.299427 9 .0125792 

-1.44497 -.0207848 
11 -.326181 11 5.64887E-03 
12 -1.15405 12 .0118377 
13 -.572982 13 .0345718 
14 -1.47537 14 .0369206 

1.2719 -.0218786 
16 -.0769192 16 .0457965 

0-- 17-- 22.2986 0--17-- .210284 
18 -1.24824 18 -.0450681 
19 -2.5613 19 -.154626 

3.00622 -.0301956 
21 
"').-., 
~L 

-.899371 
.164415 

21 
22 

-.0501447 
-.046024 

23 -1. 42616 23 -.0366833 
24 2.06768 24 -4.08345E-03 

-1.39718 -.0195358 
26 -.283807 26 -.0121703 
27 .460213 27 9.87381E-03 
28 -.135586 28 -4.62872E-03 
29 .291687 29 -5.22996E-03 

.0165984 2.7563E-03 
31 .040385 31 -1.00061E-03 
32 8.82939E-03 3--•4 2.09763E-04 

w 
.p... 

Table B2: Partial Regression Functions Relating Total Mortality 
to so and Temperature (see Figure 7).2 
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10 

15 

20 

25 

30 

5 

10 

15 

20 

25 

30 

INPUT LENGTH= 32 OUTPUT LENGTH= 32 INPUT LENGTH= 3--..c.. OUTPUT LENGTH= 32 
FILTER COEFF FILTER COEFF 
K COEFF K COEFF 

1 -1.87502E-03 1 1.45748E-06 
2 .0171671 2 -5.14892E-05 
3 -.0385517 3 1.28175E-03 
4 -.137567 4 -7.91954E-04 

.0422558 -5.66487E-04 
6 .270779 6 2.23176E-03 
7 -.0607811 7 3.0294E-03 
8 -.0881424 8 .0126233 
9 -.172537 9 2.83829E-03 

-.325013 -.0169352 
11 -.292396 11 .017796 
1--·.c.. -.717985 12 -3.4276E-03 
13 -.620582 13 .0231278 
14 -.801128 14 7.96446E-03 

1. 13285 -8.19643E-03 
16 -.411467 16 .0152335 

0--17-- 8.16033 0--17-- 9.91875E-03 
18 -2.66635 18 -.0198162 
19 -.963702 19 -.0755022 

1.05646 -.0258922 
21 -1.13018 21 -.0171661 

.-.,.-.,22 .262212 .c...c.. -9.64089E-03 
23 .0919638 23 -3.54213E-03 
24 1.1302 24 -.0117801 

-.958793 -8.51488E-03 
26 .41795 26 -3.52707E-03 
27 .0822173 27 .0101193 
28 -.329725 28 -5.88095E-03 
29 .212652 29 -6.31517E-04 

-4.0707E-03 1.76477E-03 
31 -.0401015 31 -1.23796E-03 
3--,.c.. .0222291 32 2.93144E-05 

w 
u,Table B3: Partial Regression Functions Relating Cardiovascular Mortality 

to so and Temperature (see Figure 8).2 



5 

10 

15 

20 

25 

30 

INPUT LENGTH= 3·-:•L OUTPUT LENGTH= 3·-,.L. INPUT LENGTH= 32 OUTPUT LENGTH= 3·-,.L. 

FILTER COEFF FILTER COEFF 
t{ 

1 
.-,
L 

3 
4 

COEFF 
-4.84128E-04 
-3.37409E-04 

4.71508E-03 
.0727388 

-9.32217E-03 

•< 
1 
") 
,L. 

3 
4 
5 

COEFF 
-9.79698E-05 
-3.11327E-04 

4.73802E-04 
5.17618E-03 
3.47422E-03 

6 
7 
8 
9 

11 
· 12 

13 
14 

16 
0--17--

18 
19 

21 ,.,,..., 
LL 

23 
24 

26 
27 
28 
29 

9.2787BE-03 
-.0184066 

.289103 

.163919 
-.542163 
-.0662001 

,f ,I ,fr"'\-., I 

• .1 .1 l '7...>-4. 

-.339129 
-.834896 

.348543 

.404412 
4.75735 
1.8606 

-.103793 
.990905 
.625469 

-.514234 
-.271813 
-.372542 
-.21456 
-. 3'+4422 

.0515372 
-.231247 
2.287E-04 
.0340911 

6 
7 
8 
9 
10 
11 
1--·.L. 

13 
14 
15 
16 

0--17--
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
;50 

4.76346E-04 
-.014571 
-9.30418E-03 

3.89406E-03 
.0114 
9.05875E-03 
.0191972 

-.0113996 
-.03129 
-.0110839 

.0283768 

.0960156 
7.55571E-03 

-.030374 
-.045982 
-.018628 
-.0222468 

• 01338L•9 
.0141025 

-5.52109E-03 
-.0193967 
-8.74296E-03 
-9.34187E-04 

1.07776E-03 
5.08059E-03 

31 
3·-·.L. 

-1.43664E-03 
-4.96182E-03 

31 
32 

6.01741E-04 
-4.24155E-04 

Table B4: Par~ial Regression Functions Relating Respiratory Mortality (.;i.) 
0\ 

to Transformed so
2 

and Temperature (see Figure 9). 
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APPENDIX C 

Basic London Data Used in Analysis (1958-1971) 

Mortality 1. Total (Upper) 

2. Cardiovascular (Middle) 

3. Respiratory (Lower) 

Pollution 4. ~_lack Smoke (Upper, Scale on Left) 

5. Sulfur Dioxide (Lower, Scale on Right) 

Weather 6. Temperature (Lower, Scale on Left) 

7. Relative Humidity (Upper, Scale on Right) 
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