List of Appendices

Appendix A: Possible positive ion m/z assignments for mass spectra.

Appendix B: Possible negative ion m/z assignments for mass spectra.

Appendix C: ART-2a positive-ion weight vectors for Riverside ambient August 21-23, 1997: m/z ratio and normalized intensity (vigilance factor = 0.5; top 20 of 57 clusters)

Appendix D: Matching results for particles in Los Angeles, Azusa, and Mira Loma matched to top 20 Riverside clusters (shown in Appendix C). Note matching procedure uses positive ion spectra only since lab-based instrument could obtain only one ion polarity. Matching is for total particles sampled.

Appendix E: Matching results for particles in Los Angeles and Azusa matched to top 20 Riverside clusters (shown in Appendix C). Note matching procedure only uses positive ion spectra since lab-based instrument could only run with one ion polarity. Matching is sub-divided into sub- and super- μ m particles.

Appendix F: ART-2a dual-ion weight vectors for Los Angeles ambient August 21, 1997 12:40-15:40: m/z ratio and normalized intensity (vigilance factor = 0.7; 20 clusters)

Appendix G: ART-2a dual-ion weight vectors for Azusa ambient August 21, 1997 17:30-22:30: m/z ratio and normalized intensity (vigilance factor = 0.7; 8 clusters). New clusters for particles not matching Los Angeles types.

Appendix H: ART-2a positive-ion weight vectors for diesel vehicle dynamometer: mass-tocharge ratio and normalized intensity (vigilance factor = 0.5; 6 clusters; single polarity analysis).

Appendix I: ART-2a dual-ion weight vectors for diesel vehicle dynamometer: mass-to-charge ratio and normalized intensity (vigilance factor = 0.5; 12 clusters; dual polarity analysis).

Appendix J: ART-2a positive-ion weight vectors for car vehicle dynamometer: mass-to-charge ratio and normalized intensity (vigilance factor = 0.5; 14 clusters; single polarity analysis).

Appendix K: ART-2a dual-ion weight vectors for car vehicle dynamometer: mass-to-charge ratio and normalized intensity (vigilance factor = 0.5; 22 clusters; dual polarity analysis).

Appendix L: ART-2a dual-ion weight vectors for diesel vehicle dynamometer: mass-to-charge ratio and normalized intensity (vigilance factor = 0.7; 11 clusters)

Appendix M: ART-2a dual-ion weight vectors for car vehicle dynamometer: mass-to-charge ratio and normalized intensity (vigilance factor = 0.7; 27 clusters)

Appendix N: Table showing matching of Azusa to ART-2a dual-ion weight vectors for car vehicle dynamometer: m/z and normalized intensity (vigilance factor = 0.7; 27 clusters)

Appendix O: ART-2a positive-ion weight vectors for Diamond Bar, Mira Loma, and Riverside ambient during trajectory-matched times September 27-29, 1997: m/z ratio and normalized intensity (vigilance factor = 0.7; 57 clusters)

Appendix P: Color versions of similarity plots presented in the body of the report in grayscale. A red to blue color-coding replaces the white to black grayscale coding. See the body of the report for captions and additional information.

Appendix Q: Temporal plots of clusters #1-20 in Riverside over 40 consecutive days between August 19, 1997 and September 27, 1997 during SCOS97-NARSTO.

Appendix R: List of publications directly supported by this contract.

<u>m/z (+)</u>	Species	See also related species at m/z	<u>m/z (+)</u>	<u>Species</u>
1	Н		63, 65	Cu
6, 7	Li		64	Mg ₂ O
10, 11	В		64, 66, 68	Zn
12	С	15, also multiples of 12: 24, 36,	67	VO
15	CH ₃	-	69	$C_4 NH_7$
17	NH ₃	35	70	Al ₂ O
18	NH_{4}	35	71	$\tilde{C_4 NH_9}$
19	H ₃ O		72	C ₆
23	Na	46, 62, 63, 81/83, 108, 165	73	FeOH
24	C ₂		75	As
24, 25, 26	Mg	64	75/77	CaCl
27	CNH		78	K ₂
27	C_2H_3		80	TiO ₂
27	Al	43, 70		
28	Si	44	81, 83	Na ₂ Cl
29	C_2H_5		84	C ₇
29	CNH ₃		86, 87, 88	Sr
30	NO, N_2O_2		96	Ca ₂ O
31	Р		96	C ₈
35	NH_4NH_3		98 (92-100)	Мо
36	C ₃		102	CaNO ₃
39	C_3H_3	41, 43	108	Na_2NO_3
39, 41	Κ	78, 113/115, 140, 175, 213	108	C ₉
40, 41	Ca	44, 56, 75/77, 96, 102	113/115	K ₂ Cl
41	C_2NH_3	39, 43	118 (116-124)	Sn
43	CH ₃ CO		120	C ₁₀
43	C_2NH_5		138 (134-138)	Ba
43	AlO	27, 70	140	$K_2 NO_3$
46	Na ₂ , NO ₂		144	C ₁₁
48	C_4		154	BaO
48 (46-50)	Ti	64, 80	156	C ₁₂
51	V, C_4H_3	67	165	Na_3SO_4
52, 53	Cr		175	K_2HSO_4
54, 56, 57	Fe		184 (182-186)	W
55	C ₃ NH ₅		195 (194-198)	Pt
55	Mn		202 (198-204)	Hg, PAH
56	CaO		206 (205-208)	Pb, PAH
57	C ₃ NH ₇		213, 215	K_3SO_4
58,60	Ni			
59	Co			
60	C ₅			
62	Na ₂ O			
63	Na ₂ OH			
64	TiO			

Appendix A: Possible positive ion m/z assignments for mass spectra.

<u>m/z (-)</u>	Species	<u>m/z (-)</u>	Species
1	electrons	64	SO_2
12	С	64	S_2
16	0	72	C ₆
17	OH	76	SiO3
19	F	79	PO ₃
24	C ₂	79, 81	Br
25	C ₂ H	80	SO ₃
26	CN	81	HSO ₃
32	S	84	C ₇
35	Cl	92	SiO_4
36	C ₃	95	PO_4
37	C ₃ H/Cl	96	C ₈
42	CNO	96	SO_4
43	CNOH/CH ₃ O	97	HSO_4
44	SiO	97	H_2OPO_3
46	NO ₂	108	C ₉
48	C_4	114	NH_4SO_4
59	AlO ₂	120	C ₁₀
60	C ₅	125	HNO ₃ NO ₃
60	SiO ₂	127	Ι
60	CO ₃	132	C ₁₁
61	HCO ₃	142	$NH_4(NO_3)_2$
62	NO ₃	144	C ₁₂
63	HNO ₃	147	$Na(NO_3)_2$
63	PO ₂	156	C ₁₃

Appendix B: Possible negative ion m/z assignments for mass spectra.

Appendix C: ART-2a positive-ion weight vectors for Riverside ambient August 21-23, 1997: m/z ratio and normalized intensity (vigilance factor = 0.5; top 20 of 57 clusters)

Appendix D: Matching results for particles in Los Angeles, Azusa, and Mira Loma matched to top 20 Riverside clusters (shown in Appendix C). Note matching procedure only uses positive ion spectra since lab-based instrument could only detect one ion polarity at a time. Matching is for total particles sampled.

~						-		
Class	Number	of	Number	of	Number	of	Number	of
#	particles	in	particles		particles		particles	
	the class		matched	to	matched	to	matched	to
			the class		the class		the class	
	Riverside		Los Angel	es	Azusa		Mira Loma	ı
1	24,234		223		402		6691	
2	15,488		108		221		572	
3	5,061		18	18		54 22		
4	3,034		252		283	283 741		
5	2,997		23		35		867	
6	2,891		13		41		514	
7	2,861		29		42 2802		2802	
8	2,509		0		0		5	
9	2,338		31	31		49 266		
10	1,783		2		5		1	
11	1,718		106		150	427		
12	1,701		26		19		208	
13	1,654		0		0 17			
14	1,623		23		61 97		97	
15	1,561		22		22 435		435	
16	1,493		151		88 4894		4894	
17	1493		33		22 140		140	
18	1424		0		18		13	
19	1264		0		9		23	
20	1229		0		3		14	

Appendix E: Matching results for particles in Los Angeles and Azusa matched to top 20 Riverside clusters (shown in Appendix C). Note matching procedure only uses positive ion spectra since lab-based instrument could only run with one ion polarity. Matching is sub-divided into sub- and super-**m** particles.

Class	Number of	Number of	Number of	Number of
#	particles	particles	particles	particles
	matched to	matched to	matched to	matched to
	the class	the class	the class	the class
	Los Angeles	Los Angeles	Azusa	Azusa
	sub-	super-	sub-	super-
	micrometer	micrometer	micrometer	micrometer
	sized	sized	sized	sized
	particles	particles	particles	particles
1	11	212	25	366
2	3	105	9	208
3	2	16	2	52
4	155	97	225	57
5	11	12	12	23
6	1	12	10	31
7	16	13	7	34
8	0	0	0	0
9	8	23	12	37
10	1	1	0	5
11	79	25	125	23
12	12	14	7	12
13	0	0	0	0
14	16	7	56	4
15	7	15	8	13
16	111	39	63	23
17	24	8	18	3
18	0	0	3	15
19	0	0	0	9
20	0	0	0	3

Class	Number of	f Number	of
#	particles in	n particles	
	the class	matched	to
		the class	
	Los Angeles	Azusa	
1	165	264	
2	124	44	
3	120	319	
4	94	62	
5	88	151	
6	72	26	
7	49	35	
8	41	0	
9	30	14	
10	29	16	
11	18	41	
12	18	20	
13	17	5	
14	16	12	
15	16	45	
16	14	18	
17	11	28	
18	11	15	
19	11	11	
20	10	29	

Appendix F: ART-2a dual-ion weight vectors for Los Angeles ambient August 21, 1997 12:40-15:40: m/z ratio and normalized intensity (vigilance factor = 0.7; 20 clusters)

For this dual-ion data set the positive-ion spectrum for each weight vector is provided first, followed by the negative-ion spectrum.

Appendix G: ART-2a dual-ion weight vectors for Azusa ambient August 21, 1997 17:30-22:30: m/z ratio and normalized intensity (vigilance factor = 0.7; 8 clusters). New clusters for particles not matching Los Angeles.

Class	Number	of
#	particles	in
	the class	
	Azusa	
1	42	
2	40	
3	39	
4	26	
5	21	
6	21	
7	13	
8	13	

Appendix H: ART-2a positive-ion weight vectors for diesel vehicle dynamometer: mass-tocharge ratio and normalized intensity (vigilance factor = 0.5; 6 clusters)

Class	Number	of	Number of
#	particles	in	particles
	the class		matched to
			the class
	Diesel		Azusa
1	102		630
2	90		115
3	74		269
4	28		303
5	22		17
6	10		153

Appendix I: ART-2a dual-ion weight vectors for diesel vehicle dynamometer: mass-tocharge ratio and normalized intensity (vigilance factor = 0.5; 12 clusters)

Class	Number	of	Number	of
#	particles	in	particles	
	the class		matched	to
			the	class
	Diesel		Azusa	
1	61		390	
2	53		562	
3	42		32	
4	39		30	
5	31		201	
6	30		37	
7	25		22	
8	24		148	
9	22		92	
10	19		84	
11	11		293	
12	10		21	

