TECHNICAL REPORT

Agricultural Systems in the San Joaquin Valley: Development of Emissions Estimates for Nitrogen Oxides

Contract Number: 94-732

Principal Investigators:

Pamela Matson Mary Firestone

Prepared for:

State of California Air Resources Board and the California Environmental Protection Agency

> Prepared by: LIBRARY CALIFORNIA AIR RESOURCES BOARD Pamela Matson P.O. BOX 2815 Mary Firestone SACRAMENTO, CA 95812 Donald Herman Tina Billow Nancy Kiang Tracy Benning Josephine Burns

Department of Environmental Science, Policy and Management 151 Hilgard Hall University of California Berkeley, CA 94305-3110 510 643-9880 FAX 510 643-5098

Disclaimer

The statements and conclusions on this report are those of the contractor and not necessarily those of the California Air Resources Board. The mention of commercial products, their source, or their use in connection with material reported herein is not to be construed as actual or implied endorsement of such products.

Acknowledgments

Tasks I and II of this project happened thanks to contributions of numerous scientists. We would first like to thank all the contributors in Appendix 1 who took time from their busy schedules to answer questions about crop distribution and management. We also owe a debt of gratitude to Fred Swanson (Superintendent of the Kearney Agricultural Center), Jimmie Ross (Superintendent of West Side Research Center), and Louis Whitendatle (Superintendent of Lindcove Field Station) for expediting the process of our proposals to conduct research at U.C. research centers; Jean Chevalier (Superintendent of Agriculture, Kearney Agricultural Center), Richard Schetter (Superintendent of Agriculture, West Side Agricultural Center), and Walter Stuttsman Superintendent of Agriculture, Lindcove Agricultural Center) for coordinating use of on-station facilities and sites; Pete Christiansen (Viticulture Specialist, Kearney Agriculture Center), Nick Dokoozlian (Viticulture Specialist, Kearney Agriculture Center) and Don May (Fresno County Farm Advisor); for use of their U.C. station research plots; Scott Johnson (Pomologist, Kearney Agriculture Center), Daniel Monk (Fresno County Farm Advisor), Carol Frate (Tulare County Farm Advisor), Thomas Johnson (Spreckels Sugar), Manuel Cunha (Nisei Farmer League), and Roger Isom (California Cotton Growers Association) for recruiting growers and arranging off-station sampling sites.

We are grateful to David Major, Adam Davis, Claire Eustace, Farhad Ghodrati, Ulysses Hillard, Steve Lindblom, Toby Sprunk, and Anna Thompson for technical support in field, laboratory, and data management operations.

This report was submitted in fulfillment of ARB 94-732: Agricultural Systems in the San Joaquin Valley: Development of Emissions Estimates for Nitrogen Oxides by the University of California, Berkeley under the sponsorship of the California Air Resources Board. Funds for M.K. Firestone and P.A. Matson from the California Agricultural Experiment Station and the USDA also contributed to the accomplishment of this project. Specifically, salaries for Firestone, Matson, Herman and Billow were covered by these latter sources. Work was completed as of January 31, 1997.

Abstract

The objective of this study was to estimate emissions of nitrogen oxides (NO_x) from agricultural systems in the San Joaquin Valley of California during the late summer period of maximum tropospheric ozone development. Nitrogen oxide fluxes were measured during July, August, and early September of 1995. Field sites that were utilized for sampling represented the most important crop types and the dominant fertilizer and irrigation management practices for the area. Hourly and daily flux data along with a spatial data base of crop type areas were used to extrapolate fluxes to county and Valley scales. Soil, climatic, and management factors that were important in controlling the rate and timing of NO_x flux from soil were identified.

Information on crop acreage for eight San Joaquin Valley counties was used to identify nine dominant crop types including: alfalfa, citrus, corn, cotton, grapes, irrigated pasture, stonefruits, sugar beets, vegetables, and other. Twenty-eight agricultural systems were identified that represented the most important crop types and the dominant fertilizer and irrigation management practices of the area. Diel measurements were carried out at least once on four sites; thirteen sites were sampled repeatedly over several week periods in order to estimate variation in fluxes within sites over time.

Soil water filled pore space (WFPS), soil temperature, air temperature, soil ammonium and nitrate, total soil organic nitrogen and organic carbon, soil pH, and soil texture were determined for all sites. Net and gross nitrogen mineralization and nitrification, and nitrification potentials were also measured for a subset of the sites.

There was substantial variability in NO_x fluxes among crops (crop mean fluxes at mid-day ranging from 1.0-9.1 ng-N cm⁻² h⁻¹), with irrigated pastures, almonds, and tomatoes having generally high mean fluxes relative to the other crops. Variation among different fields of the same crop type was also very large (e.g., 0.13-17.53 ng-N cm⁻² h⁻¹for cotton, 0.16-15.69 ng-N cm⁻² h⁻¹for corn) and appeared to be related to proximity in time to a fertilizer application and soil moisture characteristics. The low fluxes measured from many of the sites during the July-August period reflected the management practices for that period of time. There was relatively little application of fertilizer to crops during this mid-summer period. Sites sampled during or immediately after fertilizer application (one each of almonds, corn, and cotton) showed substantially higher NO_x flux values than did the same fields or other fields of the same crop type when they were not sampled soon after fertilization.

Two types of regression models were developed to relate NO_x fluxes to environmental or soil variables: 1) Point-predictive model, which is

driven by information on crop type, WFPS, soil texture, soil temperature, soil NO_3^- and NH_4^+ , total soil C and N, and field position. 2) Management model, which is driven by crop type, fertilizer characteristics, WFPS, pH, and air temperature. The management model was designed to utilize more generally available data for the development of regional emissions estimates. By incorporating important controllers of NO_x flux from soil, especially WFPS and temperature, the management model developed and evaluated here improves our capacity to predict NO_x fluxes under a variety of cropping and management regimes as compared to single-factor empirical models.

GIS-based data on major crop types in the San Joaquin Valley was used to calculate hourly and daily NO_x flux by crop type and county, which could then be summed to estimate total flux for the Valley. Cotton, which had an intermediate mean mid-day hourly flux in comparison with other crops, had the highest total Valley hourly flux (232120.9 g-N h⁻¹) due to a large total acreage. Grapes were calculated to have the next largest total flux when summed over the Valley. Total flux values however can mask the spatial component of the fluxes which may be critical in determining air chemistry. Spatial distribution of NO_x fluxes was presented for seven San Joaquin Valley counties. Total mid-day hourly flux ranged from 60265 to 188422 g-N h⁻¹, with the counties with the highest to lowest fluxes following this sequence: Fresno, Kern, Tulare, San Joaquin, Merced, Kings, Madera. Agricultural Systems in the San Joaquin Valley: Development of Emissions Estimates for Nitrogen Oxides

Table of Contents

List of Figures List of Tables Executive Summary

- 1. Project Objectives
- 2. Tasks: Methods and Results
- 2.1 Task I. Systematic Sampling plan.
- 2.1.1 Methods.
- 2.1.2 Results.
- 2.2 Task II. Field Studies.
- 2.2.1 Methods.
- 2.2.1.1 Field Methods.
- 2.2.1.2 Laboratory Methods.
- 2.2.1.3 Data Management.
- 2.2.1.4 Estimation of Diel Fluxes.
- 2.2.2 Results.
- 2.2.2.1 Diel Flux Calculation Results.
- 2.2.2.2 Daily Maximum Fluxes for NO_x.
- 2.2.2.3 Soils and Process Data.
- 2.2.2.4 Results Summary.
- 2.3 Task III. Soil Emissions.
- 2.3.1 Extrapolation Approach.
- 2.3.1.1 GIS-Based Crop Maps and Extrapolation Approaches.
- 2.3.1.2 Results.
- 2.3.2 Statistical Model Development.
- 2.3.2.1 Approach.
- 2.3.2.2 Results.
- 2.3.2.2.1 Application of Williams' Model.
- 2.3.2.2.2 Point Predictive Model.
- 2.3.2.2.3 Management Model.
- 2.3.2.2.4 Comparison of models.
- 2.3.2.2.5 Comparison of Davidson Model (CASA) and San Joaquin Valley NO_x data.
- 2.3.3 Discussion.
- 2.4 Task IV. Integrated Field Measurement Program.
- 3.0 Summary and Conclusions

List of Figures

- Figure 1. Targeted crop systems, indicating typical fertilization and irrigation practices in the San Joaquin Valley.
- Figure 2. Tactical display of sites sampled for NO_x emissions in the San Joaquin Valley, July-September, 1995.

- Figure 3a. Diel plots: time of day vs. measured NO_x flux by crop, site, position, and date (corn and grapes).
- Figure 3b. Diel plots: time of day vs. measured NO_x flux by crop, site, position, and date (almonds).
- Figure 3c. Diel plots: time of day vs. measured NO_x flux by crop, site, position, and date (cotton).
- Figure 4a. Diel plots: time of day vs. measured NO_x flux, with 95% confidence interval (corn and grapes).
- Figure 4b. Diel plots: time of day vs. measured NO_x flux, with 95% confidence interval (almonds).
- Figure 4c. Diel plots: time of day vs. measured NO_x flux, with 95% confidence interval (cotton).

Figure 5. Diel characteristic curves: means and 95% confidence envelopes by crop and position, with dates averaged.

- Figure 6a. NO_x flux and associated soil parameters: Site B, floodirrigated almonds, Parlier, CA.
- Figure 6b. NO_x flux and associated soil parameters: Site C, dripirrigated almonds, Parlier, CA.
- Figure 6c. NO_x flux and associated soil parameters: Site D, cotton, San Joaquin, CA.
- Figure 6d. NO_x flux and associated soil parameters: Site I, corn, Tulare, CA.
- Figure 6e. NO_x flux and associated soil parameters: Site J, corn, Plainview, CA.
- Figure 6f. NO_x flux and associated soil parameters: Site K, corn, Waukena, CA.
- Figure 6g. NO_x flux and associated soil parameters: Site Q, dripirrigated grapes, Kearney Agricultural Center.
- Figure 6h. NO_x flux and associated soil parameters: Site R, floodirrigated grapes, Kearney Agricultural Center.
- Figure 6i. NO_x flux and associated soil parameters: Site T, oranges, U.C. Lindcove Field Station.
- Figure 6j. NO_x flux and associated soil parameters: Site V, peaches, Wawona, CA.
- Figure 6k. NO_x flux and associated soil parameters: Site W, irrigated pasture, Bonadelle Ranchos, CA.

Figure 61. NO_x flux and associated soil parameters: Site X irrigated pasture, Bonadelle Ranchos, CA.

Figure 6m. NO_x flux and associated soil parameters: Site Y, cotton, U.C. West Side Field Station.

Figure 6n. NO_x flux and associated soil parameters: Site Z, tomatoes, U.C. West Side Field Station.

Figure 7. Mean mid-day NO_x fluxes averaged for each crop measured in the San Joaquin Valley, July-September, 1995.

Figure 8. Mean mid-day NO_x fluxes for sites sampled in the San Joaquin Valley, July-September, 1995.

Figure 9. Comparison of NO_x flux measured in the San Joaquin Valley, July-September 1995, to predictions of NO_x flux estimated from water-filled pore space by the Davidson CASA model.

Figure 10. Relationship of NO_x flux to nitrification potential.

Figure 11. Relationship of NO_x flux to gross nitrate production.

Figure 12a. Estimated NO_x emissions: Fresno County.

Figure 12b. Estimated NO_x emissions: Kern County.

Figure 12c. Estimated NO_x emissions: Kings County.

Figure 12d. Estimated NO_x emissions: Madera County.

Figure 12e. Estimated NO_x emissions: Merced County.

Figure 12f. Estimated NO_x emissions: San Joaquin County.

Figure 12g. Estimated NO_x emissions: Tulare County.

Figure 13a. "A" factors fitted to San Joaquin Valley NO_x data for Williams' Model, using data collected at individual chambers.

Figure 13b. "A" factors fitted to San Joaquin Valley NO_x data for Williams' Model, using site means for all data.

Figure 14. Alternating Conditional Expectations (ACE) transformations to the variables used in the point-predictive model, developed using NO_x emissions and site- and chamber-level variables measured in the San Joaquin Valley, July-September, 1995.

Figure 15a. Coefficients derived from fitting point predictive model to NO_x flux data: Crop interaction with soil temperature.

Figure 15b. Coefficients derived from fitting point predictive model to NO_x flux data: Crop Effects.

Figure 15c. Coefficients derived from fitting point predictive model to NO_x flux data: Soil Texture Effects.

Figure 15d. Coefficients derived from fitting point predictive model to NO_x flux data: Position Effects.

Figure 16. Alternating Conditional Expectations (ACE) transformations to the variables used in the management model, developed using NO_x emissions and site-level variables measured in the San Joaquin Valley, July-September, 1995.

- Figure 17a. Coefficients derived from fitting management model to NO_x flux data: Crop Interaction with Air Temperature.
- Figure 17b. Coefficients derived from fitting management model to NO_x flux data: Crop Effects.
- Figure 17c. Coefficients derived from fitting management model to NO_x flux data: Soil Texture Effects.
- Figure 17d. Coefficients derived from fitting management model to NO_x flux data: Effect of Fertilizer.

List of Tables

- Table 1. Acreages of San Joaquin Valley agriculturual crops obtained from the 1993 County Agricultural Report Data.
- Table 2. Index of sites sampled for NO_x emissions, July-September 1995 in the San Joaquin Valley.
- Table 3. Code, crop, location, date of fertilization, and nitrogen fertilization record for San Joaquin Valley sites sampled for NO_x emissions July-September 1995.
- Table 4. Crop type, soil texture, fertilization type, irrigation type, and number of NO_x flux measurements at each site.
- Table 5. Dates and numbers of observations for NO_x emissions measured at each site in the San Joaquin Valley, July-September 1995.
- Table 6. Summary of: (a) fitted diel curves; and (b) characteristic diel curves for each crop type at sites located in the San Joaquin Valley measured July-September 1995.
- Table 7. Mid-day NO_x flux and total daily NO_x flux (predicted from diel curves) measured in the San Joaquin Valley, July-September 1995.
- Table 8. Mean hourly NO_x fluxes for each crop type, based on measurements taken mid-day in each site.
- Table 9. Comparison of crop categories used by the 1993 County Agricultural Commissioners's report and the Department of Water Resources Database for the San Joaquin Valley.
- Table 10. Area (ha) occupied by major land use types in San Joaquin Valley counties.
- Table 11a. Area occupied by surveyed crops, mean measured midday NO_x fluxes (ng-N km⁻² h⁻¹) for each crop weighted by position, and total NO_x flux for each crop summed over 7 San Joaquin Valley counties made July-September, 1995.
- Table 11b. Total NO_x flux for each crop within 7 San Joaquin Valley counties.

Executive Summary

The objective of this study was to estimate emissions of nitric oxide and nitrogen dioxide (together referred to as NO_x) from agricultural systems in the San Joaquin Valley of California during the months of July and August (periods of maximum tropospheric ozone development). We measured NO_x fluxes in agricultural systems representing the most important crop types, and utilizing the dominant fertilizer and irrigation management practices. We used hourly and daily flux data along with a spatial data base of crop types to extrapolate fluxes to the area of the Valley. We also identified the factors that control the rate and timing of NO_x fluxes, and we suggest ways that this information can be used in the development of spatially explicit models.

The project was organized around four sequential tasks. In the following paragraphs, we will summarize the approach and results of each.

Task I. Determine the most important crop/management practices in the San Joaquin Valley (in terms of area extent of crop type and amounts of fertilizer used) and use this information to develop a systematic sampling plan.

Utilizing information from the "1993 Agricultural Commissioners' Report Data" and the "1990 Engineering Science Design Research Planning Final Report to the Environmental Protectin Agency (EPA): Leaf Biomass Density and Land Use Data for Estimating Vegetative Emissions", we tabulated crop acreage for the eight San Joaquin Valley counties. We identified nine dominant types, including alfalfa, citrus, corn, cotton, grapes, irrigated pasture, stonefruits, sugar beets, vegetables, and other. We identified 28 agricultural systems representing the most important crop types and the dominant fertilizer and irrigation management practices. Diel measurements (measurements carried out over a 24 hour period) were carried out at least once on 4 agricultural systems; 13 of the 28 were sampled repeatedly over several week periods in order to estimate means and variation in fluxes within sites over time.

Task II. Carry out field studies of soil NO_x fluxes measured simultaneously with measurements of environmental and edaphic (soil) characteristics of importance in regulating NO_x emission, and carry out laboratory analyses of soil samples collected simultaneously with NO_x flux.

We measured soil surface NO_x fluxes, water-filled pore space (WFPS), soil temperature, air temperature, ammonium and nitrate in the soil, total soil nitrogen and carbon, pH, and soil texture for all of the sites. Soil characteristics were measured for the top 10 cm of soil. In a subset of the sites, we carried out measurements of net and gross nitrogen mineralization and nitrification and nitrification potentials. In general, there was substantial variability in mean midday NO_x fluxes among crops (range 1.0-9.1 ng-N cm⁻² h⁻¹), with irrigated pastures, almonds, and tomatoes having generally high fluxes relative to the other crops (crop mean mid-day fluxes of 9.1, 6.4, and 7.2 ng-N cm⁻² h⁻¹ for pastures, almonds, and tomatoes respectively; range for other crops: 1.0 - 5.8 ng-N cm⁻² h⁻¹). In the case of almonds and irrigated pasture, mean fluxes were consistently high from site to site and date to date. However, for some of the other crops, variation among different fields or sampling dates were very large (e.g., 0.13-17.53 ng-N cm⁻² h⁻¹ for cotton, 0.16-15.69 ng-N cm⁻² h⁻¹ for corn) and appeared to be related to proximity in time of our measurements to a fertilizer event and to water-filled pore space at the time of sampling. Within a given site, mean fluxes for different days varied by over an order of magnitude, apparently as a consequence of changes in soil inorganic N and in water filled pore space. This temporal variation at the scale of individual fields suggests that estimation of fluxes on a daily or hourly basis, as is needed for air quality and chemical transport models, will be difficult without information on the temporal and spatial distribution of fertilizer and irrigation as well as the more easily obtained information on air temperature.

Task III. Develop soils emissions statistical models based on the field and laboratory study data, and develop spatially and temporally explicit estimates of NO_x flux at the soil-air interface for the San Joaquin Valley for the months of July, August and early September, 1995.

We developed two sets of regression models relating NO_x flux to other variables measured in the field.

a) Models that require more detailed soil variables and that will be useful in process modeling frameworks ("Point-predictive model"). e.g. $NO_x = f(crop type, \%WFPS$, soil texture, soil temperature, soil NO_3^- , NO_2^- and NH_4^+ concentrations, total organic carbon concentration, total organic nitrogen concentration, position within the field -- under canopy/open and furrow/ridge).

b) Models that can be applied at a regional scale using spatial data bases of crop type, soils and climate ("Management model"). e.g. $NO_x =$

f(crop type, air temperature, soil texture, soil pH, an index of fert amount, type and timing, and mean WFPS).

We compared the outputs of our models to those of the Williams model, which uses air temperature as well as an empirically-derived "A value" to drive predictions of NO_x flux. The Point-predictive model and the Management model both substantially improved the prediction of NO_x fluxes across a variety of crops and sites, in contrast to the Williams model. In fact, for most crops, WFPS was as important as temperature in the prediction of NO_x emissions.

We also compared our NO_x flux data to the Davidson model of NO_x flux as a function of soil WFPS (the functional relationship used in the CASA model). There was reasonably good agreement between the summer '95 San Joaquin Valley NO_x flux vs. soil WFPS and that predicted by Davidson. Both show maximum NO_x fluxes occurring at about 50% WFPS; however the San Joaquin Valley data show significant NO_x fluxes occurring at very low water contents (WFPS 1-3 %), a result not predicted by previous models but which has been reported in other measurement studies.

GIS-based data on major crop types in the San Joaquin Valley were used in combination with measured mid-day mean fluxes and calculated daily fluxes for each crop type, in order to calculate hourly and daily NO_x flux by crop type, county, and for the entire San Joaquin Valley area that the GIS data covered. Cotton, which had an intermediate mean mid-day flux in relation to other crops, had the highest Valley-scale flux (232120.9 g/h) due to its large total acreage. Grapes were calculated to have the next largest mid-day hourly flux when summed over the Valley (142936.1 g/h). Among San Joaquin Valley counties, Fresno county had the highest flux summed over the crop types we measured (188422 g-N h⁻¹), while Madera county had the lowest (60265 g-N h⁻¹). The estimated spatial distribution of NO_x flux (which may be an important factor in air chemistry) is presented in map and tabular format.

Task IV. Once the systems with greatest soil fluxes have been identified, begin planning for integrated field studies (to take place in 1996 or later) in several sites to determine the role of vegetation canopies and boundary layer chemistry and dynamics in controlling the contributions and role of soil NO_x emissions in ozone formation.

Planning for integrated field studies should begin with estimation of the potential role of soil NO_x fluxes via air chemistry modeling. Given the range in variability in fluxes measured in our sites during the July-August period, we suggest that air quality modeling experiments be carried out

utilizing the highest and lowest site means measured for the different crops, in addition to the average flux by crop. If such modeling experiments reveal circumstances under which agricultural soils play a critical role in air chemistry, multi-disciplinary studies that couple soil and canopy-scale flux measurements with atmospheric chemistry studies may be appropriate. For such studies, we suggest emphasizing regions with relatively homogeneous expanses of crops with high flux characteristics, such as irrigated pasture or almonds, and as appropriate, with concurrent use of fertilizer.

Overall Conclusions

The San Joaquin Valley is an highly complex agricultural system, composed of at least nine dominant crop types (alfalfa, citrus, corn, cotton, grapes, irrigated pasture, stonefruits, sugar beets, vegetables) as well as other crops, grown on a range of soils and managed under a number of different fertilizer and irrigation management practices. Because NO_x fluxes are potentially influenced by the types of plants growing in the fields as well as by the soils being cropped and by the ways those crops are managed, NO_x fluxes should be expected to show a large degree of spatial and temporal variation within the Valley. The data presented in this document substantiate this expected large range of variation.

The implications of this variability are several. First, it suggests that carrying out a field sampling program that encompasses that variability is a very difficult task. Fluxes change from field to field, crop to crop, and day to day. Therefore, while our flux estimates for given sites and days are accurate, their extrapolation to all sites within a given crop and to all dates within the July-August time-frame must be viewed as rough approximations rather than reality. On the other hand, our data do indicate some consistencies. For example, they indicate that almonds and irrigated pasture have typically higher fluxes than other crops we measured, whereas the other crops have greater ranges in fluxes from time to time or site to site. Also, our data quite clearly suggest that NO_x fluxes in the San Joaquin Valley in July and August 1995 were not remarkably high in comparison with the range of values published in the literature. (We note, however, that we cannot draw conclusions about the relative importance of agricultural soil NO_x emissions in atmospheric chemistry in the San Joqauin Valley by simply looking at these flux values, and we leave it to air quality modelers within the California Air Resources Board to develop that analysis.)

The large potential for spatial and temporal variability in the Valley agricultural system also suggests that, given the difficulties inherent in NO_x measurements and the cost of the instruments used to measure NO_x

flux at the soil-air or canopy-air interface, detailed spatial monitoring of those fluxes (even for a short period) is logistically impossible. We believe a viable alternative for estimation of NO_x in complex systems like the San Joaquin Valley is the development and use of predictive models that can utilize spatially and temporally-varying data on crops, soils, climate/weather, and management. We have developed such models as part of this project. One critical conclusion drawn from the model development task is that accurate prediction for most crop types in the Valley require more than just temperature, the variable used in the only other commonly used NO_x model (Williams et al 1992). Rather, our pointbased "Point-predictive model" and the site-based "Management model" both indicate that soil moisture (described here as %WFPS) is at least as important as temperature, and that variables describing either soil inorganic nitrogen concentrations or fertilization activity are also Given our process-based understanding of the interactive important. controls of nitrogen, water, and temperature on NO_x production and emission, we find these results entirely consistent.

While our models are ready for use at the site level, their application at the scale of the Valley will require several additional steps. First, while spatially-explicit data bases on crop type, soil characteristics like texture, organic C, organic N and pH, and meteorological station data such as air temperature and precipitation are generally available, spatially-explicit data bases on fertilizer type, rate, and time of application, and on irrigation use and thus change in water-filled pore space in the soil, are not available. What may be more available are county-wide monthly data on fertilizer use and on allocation of water for irrigation. Short of doing detailed farm-by-farm surveys of fertilizer and water use, we believe it may be possible to develop models of irrigation and fertilizer applications that distribute county totals as a function of crop type and weather conditions. Once such models have been developed and the NO_x models run at the scale of the Valley, validation through measurements of soil-air and canopy-air exchange of NO_x at select sites would be required. These tasks are outside the scope of this project.

Finally, it is worthwhile to note that our analysis of San Joaquin soils fluxes reflects the current management framework for the Valley, that is, there is relatively little application of fertilizer to crops during the July-August period. Any changes in management practices that lead to increased application of fertilizer during or immediately preceding this July-August time frame may lead to very significant increases in NO_x flux from soils. Thus, the importance of San Joaquin Valley agricultural soils as contributors to air quality in California cannot be assumed to be constant year to year, but rather will change as a function of the crop type, fertilizer and irrigation employed in the valley.

.

1. Project Objectives

The objective of this study was to estimate emissions of nitric oxide and nitrogen dioxide, together referred to as NO_x , from agricultural systems in the San Joaquin Valley of California during the months of July and August (periods of maximum tropospheric ozone development). We measured NO_x fluxes in agricultural systems representing the most important crop types, and utilizing the dominant fertilizer and irrigation management practices. We used hourly and daily flux data along with a spatial data base of crop types to extrapolate fluxes to the area of the Valley. We also identified the factors that control the rate and timing of NO_x fluxes, and suggest ways that this information can be used in the development of spatially explicit models.

Background

Growth and productivity of crops are most frequently limited by the availability of nitrogen; nitrogen, therefore, accounts for the bulk of fertilizer applied worldwide. Today, over 80 Tg (80×10^{12} g) of nitrogen are produced and applied globally each year, an amount equivalent to the natural inputs of nitrogen via biological nitrogen fixation in terrestrial ecosystems (Vitousek and Matson 1993). California alone applies over 0.5 Tg of N annually (California Department of Food and Agriculture 1994).

Numerous studies have demonstrated that nitrogen fertilization in temperate agriculture leads both to increased leaching of nitrate to ground and surface water (e.g., Turner and Rabalais 1991) and to increased emissions of nitrous oxide, a greenhouse gas, to the atmosphere (see Eichner 1990 for a review). The consequences of fertilizer use on nitric oxide (NO) and/or nitrogen dioxide (NO₂) emissions have received much less attention. Nitric oxide is produced by biological and chemical processes in the soil, including nitrification and denitrification -- the same microbial processes that produce nitrous oxide (Firestone and Davidson 1989, Hutchinson and Davidson 1993). While NO is an intermediate in denitrification, NO_x flux from soils in which denitrification is occurring is generally very low. It is likely that in field situations with conditions of high soil moisture that are conducive to denitrification, any NO_x that is produced is consumed before it can diffuse through the soil (Remde et al 1989, Williams et al 1992a). The production of NO_x during nitrification is poorly understood, but the soil studies that have been done suggest that NO_x production via nitrification is far greater than rates of N2O production (Tortoso and Hutchinson 1990, Davidson 1992, Davidson et al. 1993); thus, relatively large losses of NO_x are expected when substrate for

nitrification (i.e., ammonium) is available and when soil conditions are aerobic and moist but not saturated.

In the atmosphere, NO_x is reactive, with a lifetime of hours to days; consequently, its effects are regional in scale. Nitric oxide plays key roles in regulating the concentration of the main oxidizing agent in the atmosphere, the hydroxyl radical, and contributes, often in a rate-limiting way, to the photochemical formation of tropospheric ozone, a major atmospheric pollutant (Jacob and Wofsy 1990, Williams et al. 1992a). Moreover, it is a precursor to nitric acid, a principal component of acid deposition. Nitric acid deposition represents one pathway by which nitrogen applied in agricultural systems can be transferred to natural systems (Melillo et al. 1989). Thus, agricultural systems that lose fertilizer nitrogen in the form of NO_x may be significant non-point sources of air pollution (Vitousek and Matson 1993, Hall et al. in press).

Despite its potential importance, there are currently very few published estimates of NO_x flux in agricultural systems (none in California), but these studies indicate significant effects of fertilization on NO_x fluxes (Johannson and Granat 1984, Williams et al. 1988, Hutchinson and Brams 1992, Shepard et al. 1991, Williams et al. 1992a, Williams et al. 1992b, Keller and Matson 1994, Matson et al. in press, Hall et al. in press). Williams et al. (1992b) used an empirical model based on relationships between NO_x and soil nitrate and temperature to derive continental scale estimates of NO_x flux from natural and agricultural systems; thev estimate that agricultural lands account for 66% of the land source of NO_x in the United States, and suggest that NO_x fluxes in agricultural areas may have a significant effect on atmospheric mixing ratios, ozone production, and acid deposition. Because of the dearth of field data, no statistical analysis of the role of crop, fertilizer type or management has been possible. We developed a data base for NO_x emissions for the San Joaquin Valley, California.

2. Tasks: Methods and Results

We utilized a systematic, phased study in which we addressed the following tasks:

Task I. Determine the most important crop/management practices in the San Joaquin Valley (in terms of area extent of crop type and amounts of fertilizer used) and use this information to develop a systematic sampling plan;

Task II. Carry out field studies of NO_x fluxes measured simultaneously with measurements of environmental and edaphic variables of

importance, and carry out laboratory analyses of soil samples collected during the field studies;

Task III. Develop soils emissions statistical models based on the field study data, and develop spatially and temporally explicit estimates of NO_x flux at the soil-air interface for the San Joaquin Valley for the months of July and August, 1995.

Task IV. Once the systems with greatest soil fluxes have been identified, begin planning for integrated field studies (to take place in 1996 or later) in several sites to determine the role of vegetation canopies and boundary layer chemistry and dynamics in controlling the contributions and role of soil NO_x emissions in ozone formation.

2.1 Task I. Systematic Sampling plan.

- - -

2.1.1 Methods.

Task I involved: (i) identifying the dominant San Joaquin Valley crops, as well as common soil types and management practices for each crop; and (ii) selecting sampling sites representing the dominant crop-soil-management types.

We tabulated crop acreage in each of the eight San Joaquin Valley counties using 1993 County Agricultural Commissioners' Report Data (California Department of Food and Agriculture) (Appendix C), and Engineering Science Design Research Planning's final Report to the U.S. Environmental Protection Agency: Leaf Biomass Density and Land Use Data for Estimating vegetative emissions (1990). Not including nonirrigated rangeland, we identified nine dominant crop types (Table 1).

We next identified the major nitrogen fertilizer types, rates, and application methods used for various crops, and the dominant irrigation types. Sources included: (i) the Radian Corporation's Final Report: AUSPEX Ammonia Emission Inventory / Data Collection Effort (1992); (ii) Fertilizing Materials Tonnage Report, January - June, 1994 (California Department of Food and Agriculture); (iii) interviews with twenty-two county farm advisors, extension specialists, and University of California, Davis faculty (Appendix B). The interviews were particularly useful to identify management practices (including fertilizer use) *currently* being implemented.

Soils on the west side of the valley lie predominantly on the Coast Range alluvial fans; the Tulare lake basin and various stream channels characterize soils along the center of the valley; and Sierran alluvial fan soils are common on the east side of the valley. The

County	Alfalfa	Citrus	Corn	Cotton	Grapes	Irrig. Pasture
San	64,000		81,600			23,700
Joaquin						
Stanislaus	40,200		42,700		17,200	75,500
Merced	75,220		50,540	79,200	14,338	80,000
Madera	31,800		12,800	51,400	81,644	20,000
Fresno	66,000	23,218	24,200	377,700	208,228	40,000
Tulare	76,900	103,357	70,700	148,065	73,580	12,400
Kings	27,457		25,598	266,315	3,905	11,000
Kern	78,568	34,835		300,759	73,719	10,000
Total	460,145	161,410	308,138	1,223,439	472,614	272,600

Table 1. Acreage of San Joaquin Valley agricultural crops obtained from the 1993 County Agricultural Report Data (California Dept. of Food and Agriculture).

County	Prunus	Sugar Beets	Vege-	Other ¹		
	almonds)		tables			
San	36,100	36,800	28,624	118,196		
Joaquin						
Stanislaus	88,100	3,870	69,905	106,518		
Merced	76,711	19,100	46,600	122,646		
Madera	42,454	3,700	7,991	63,339		
Fresno	80,586	33,200	209,045	181,075		
Tulare	63,915	3,600	19,677	207,666		
Kings	10,111	2,016	20,894	144,448		
Kern	79,453	10,650	74,093	167,742		
Total	477,430	112,936	476,829	1,111,630		

¹ "Other" crops include rice, safflower, seeds, onions, garlic, olives, sorghum, hay (other than alfalfa), silage (other than corn), and other fruits and nuts.

alluvial fan soils have various loamy textures, and the basin and stream channel soils range from shallow, poorly drained clayey soils to well-drained sandy soils. We identified boundaries of these materials using Geologic Maps of California (United States Geological Survey). While interviewing farm advisors for fertilizer and irrigation usage, we also queried them for soil characteristics that particular crops favor.

Criteria for selecting crop systems involved identifying the dominant crops in the valley, soils on which they were grown, and their dominant management regimes (Figure 1). Crops selected were planted to a total of 100,000 acres in eight San Joaquin Valley counties. Both the alluvial fan soils and basin soils were selected for crops commonly grown on both soils; otherwise only the dominant soil for a given crop was selected. Likewise, several irrigation or fertilization types were selected for crops commonly managed under several regimes, otherwise only the dominant practice was selected.

S

7.5 CA

Figure 1. Targeted crop systems, indicating typical fertilization and irrigation practices in the San Joaquin Valley in 1995.

* indicates sites sampled intensively, \dagger indicates sites sampled extensively, \$ site codes are explained in Table 2, \ddagger UN-32 is a urea-nitrate fertilizer, and CAN-17 is a calcium-ammonium-nitrate fertilizer.

2.1.2 Results.

Selecting field sites for targeted crops systems was more difficult than expected. Seven sites were located on University of California agricultural research stations, the remaining 19 were on private lands ranging from Kings to Madera counties (Figure 2, Table 2). Sites on U.C. research stations were only included if they were managed as typical of nearby off-station growers (for example, check plots or experimental controls). Numerous prospective sites on U.C. research stations were rejected because they were receiving experimental treatments or otherwise managed atypically. In selecting sites, we achieved a broad spectrum of nitrogen fertilization types, rates, and application methods (Table 3).

As noted in Table 3, only cotton, corn, and alfalfa were fertilized during the study period. According to our interviews and survey, these are the only crops typically fertilized during July and August. For this study, we purposefully followed the NO_x response to fertilization in two fields; our soil sampling, however, suggests that the effects of previous fertilization on soil inorganic nitrogen were evident in several other sites.

Since soil texture may be a controlling factor for NO_x emissions, we sampled on several different soil textures for many crops. Growers reported whether their soils were "light,", "medium," or "heavy." We subsequently located their sites on United States Soil Conservation Service soil surveys, and looked up textures. Soil survey data was occasionally at variance with growers' reports, and preliminary spot tests of soil texture have revealed that growers' reports tend to be accurate. Thus, textural analysis was conducted for soils from each site.

Table 4 provides an inventory of the data taken for all sites. Table 5 is a calendar indicating when measurements were taken, giving the number of observations by field site (the different positions are not shown). Diel observations are marked in bold boxes. Other data are "routine" data from both intensive and extensive study sites, with observations made only at midday, when NO_x flux is expected to be highest.

2.2 Task II. Field Studies.

2.2.1 Methods.

ĺ

The second task involved the measurement of NO_x emissions and related soil properties and processes. Field studies were preceded by the hiring and training of 6 field assistants with 3month appointments, 1 with a 6 month appointment, and 1 with an

Figure 2. Tactical display of sites sampled for NO_x emissions in the San Joaquin Valley, July- September, 1995.

Code	Crop	Location	Soil	Soil texture ⁵	Irrigation
A	Alfalfa	Firebaugh	Basin	sandy loam	Border Check
В	Almonds ^{2,3}	Parlier	Fan	sandy loam	Flood
С	Almonds ²	Parlier	Fan	sandy loam	Drip
D	Cotton ²	San Joaquin ¹	Basin	sandy clay loam	Furrow
Е	Cotton	San Joaquin ¹	Basin	sandy loam	Furrow
F	Cotton	Tranquillity ¹	Basin	clay loam	Furrow
G	Cotton	Riverdale	Basin	fine clay	Sprinkler
Η	Sugar Beets	Mendota	Basin	sandy loam	Furrow
Ι	Corn ²	Tulare	Basin	loam	Furrow
J	Corn ^{2,3}	Plainview	Fan	fine loam	Furrow
Κ	Corn ²	Waukena	Fan	loam	Furrow
L	Grapes	Firebaugh	Fan	loamy sand	Flood
М	Irrigated	Sanger	Fan	sandy loam	Border
N	Pasture	Mendota	Rasin	loam	Eurrow
14	Beets	Mendota	Dasin	Ioam	I dillow
0	Alfalfa	Kearney ⁴	Fan	fine sandy loam	Border Check, unfertilized
Р	Alfalfa	Kearney ⁴	Fan	fine sandy loam	Border Check
Q	Grapes ^{2,3}	Kearney ⁴	Fan	sandy loam	Drip
R	Grapes ²	Kearnev ⁴	Fan	fine sandy loam	Flood
S	Sugar Beets	Corcoran	Basin	sandy loam	Furrow
Т	Orange ²	Lindcove ⁴	Fan	sandy loam	Drip
U	Sugar Beets	San Joaquin	Basin	sandy loam	Furrow
V	Peaches ²	Clovis	Fan	sandy loam	Flood
W	Irrigated Pasture ²	Bonadelle Ranchos	Basin	loam	Border Check
Х	Irrigated	Bonadelle Ranchos	Basin	loam	Border
	Pasture ²	4	T		Check
Y	$Cotton^{2,3}$	West Side ⁴	Fan	sandy clay loam	Furrow
Z	Tomato <u>es</u> ²	West Side ⁴	Fan	clay loam	Furrow

Table 2. Index of sites sampled for NO_x emissions July-September 1995 in San Joaquin Valley.

⁵ Textures determined by the sedimentation-hydrometer method (Day, 1965)
¹ Site arranged by Daniel Munk
² Intensive sampling site
³ Diel measurements were performed at this site.
⁴ University of California Agricultural Research Center

Table 3. Code, crop, location, date of fertilization, and nitrogen fertilization record for San Joaquin Valley sites sampled for NO_x emissions July-September, 1995.

Code	Crop Location		Date	Rate and Form*	How Applied [†]					
A	Alfalfa	Firebaugh	na	None	na					
В	Almonds	Parlier	Mar 13	80 lb N/ac as CAN17	Water-Run					
			May 5	80 lb N/ac as UN32	Surface					
			July 10	80 lb N/ac as CAN17	Water-Run					
С	Almonds	Parlier	Mar 13	80 lb N/ac as NH4NO3	Broadcast					
			May 5	80 lb N/ac as UN32	Surface					
			July 7	50 lb N/ac as NH4NO3	Broadcast					
D	Cotton	San Joaquin	May	160 lb N/ac	Side-Dressed					
			June	89 lb N/ac	Water-Run					
Е	Cotton	San Joaquin	Мау	160 lb N/ac	Side-Dressed					
			June	81 lb N/ac	Water-Run					
F	Cotton	Tranquillity	May	160 lb N/ac	Side-Dressed					
_	_		June	55 lb N/ac	Water-Run					
G	Cotton	Riverdale	June 7	180 lb N/ac as NH3	Injection					
			July 11	30 lb N/ac as UN32	Water-Run					
			July 18	10 lb N/ac as Unocal	Foliar					
			X 1 05	Plus						
	6		July 25	30 lb N/ac as $UN32$	water-Run					
Н	Sugar	Mendota	Apr. 15	28 lb N/ac as 11-52-0	Sub-Soil Shank					
т	Beets	T	June 10	97 ID N/ac as UN32	Sub-Soll Snank					
1	Corn	Tulare	Preplant	18 ID N/ac as 11-52-0	Cida Dracad					
r	C		Apr-May	275 10 N/ac as NH3	Side-Diessed					
J	Corn	Plainview	July 27	150 ID IN/ac as $UN32$	Shanked In					
ĸ	Corn	waukena	Preplant	18 ID N/ac as $11-52-0$	Side Dressed					
т	C	Timbowsh	Apr-May	275 10 N/ac as NH3	Side-Diessed					
L	Grapes	Firebaugn	Uct 794	20 ID N/ac as aqua	Injected					
			reu.	NH3	Injected					
				NH2	Injected					
Л	Inninatad	Samaan	-	Nng Nana						
IVI	Posturo	Sanger	li a	None	li a					
N	Sugar	Mendota	Feb 5	24 lb N/ac as 10.34.0	Soil Injection					
1	Beets	Mendola	Apr 24	100 lb N/ac as 10-54-0	Soil Injection					
	Deeta		Inpl. 24	40 lb N/ac as agua	Water-Run					
			June 15	NH2	Water Run					
0	Alfalfa	Kearnev	na	None	na					
P	Alfalfa	Kearney	Apr 25	20 lb N/ac as $11-52-0$	Broadcast					
Ô	Grapes	Kearney	Mar. 30	30 lb N/ac as CAN17	Water-Run					
×	e. ap ee		June 15	30 lb N/ac as CAN17	Water-Run					
R	Grapes	Kearnev	May 18	60 lb N/ac as NH4NO3	Broadcast					
S	Sugar	Corcoran	na	na	na					
-	Beets									
Т	Orange	Lindcove	Mar. 15	109 lb N/a as Ca(NO3)2	Broadcast					
	C		May 2	14 lb N/ac as Urea	Foliar Spray					
U	Sugar	San Joaquin	Dec/94	24 lb N/ac as 10-34-0	Soil Injection					
	Beets	^	June 1	100 lb N/ac as UN32	Sub-Soil					
					Injection					

V	Peaches	Clovis	Sep/94 Mar	60 lb N/ac as NH4NO3 40 lb N/ac as (NH4)2SO4	Banded in Banded in
W	Irrigated Pasture	Bonadelle Ranchos	na	None	n a
Х	Irrigated Pasture	Bonadelle Ranchos	na	None	na
Y	Cotton	West Side	Feb. May	11 lb N/ac as 11-52-0 180 lb N/ac as urea	Drilled in Side-Dressed
<u>Z</u>	Tomatoes	West Side	May	180 lb N/ac as urea	Side-Dressed

*UN-32 is a urea-nitrate fertilizer, and CAN-17 is a calcium-ammonium-nitrate fertilizer.

†Side-dressed, banded, shanked, drilled, and injected applications are directly incorporated into the soil; broadcast fertilizer is applied to the soil surface; and water-run fertilizer is applied in irrigation water.

						In	igation	ı		1	Position			Prot	ocol	
						border										
	location	crop	soil textural class	fertilizer type	texture	check	drip	flood	furrow	canopy	furrow	open	ridge	Diel	Routine	total number of
					[%Sa/Si/C]*	[numb	er of da	ata poin	ts]							measurements
А	Firebaugh	alfalfa	Sandy Loam	NA	72/19/9			20				20			20	20
8	Parlier	almonds	Hanford Sandy Loam	CAN-17, UN32	77/16/7			660		340		320		500	160	660
С	Parlier	almonds	Sandy Loam	NH5NO3	64/28/8		80			40		40			80	80
D	San Joaquin	cotton	Sandy Clay Loam	UN32	50/23/27				60		30		30		60	60
E	San Joaquin	cotton	Sandy Loam	UN32	59/22/19				40		20		20		40	40
F	Tranquillity	cotton	Clay Loam	UN32	42/26/32				40		20		20		40	40
G	Riverdale	cotton	Fine Clay Loam	UN32	16/32/52				20		10		10		20	20
Н	Mendota	sugar beets	Sandy Loam	NH3	65/23/72				40		20		20		40	40
ł	Tulare	corn	Loam	NH3	51/37/12				60		30		30		60	60
J	Plainview	corn	Fine Loam	UN32	35/40/25				180		90		90	100	80	180
К	Waukena	corn	Loam	NH3	37/45/18				90		40	10	40		90	90
L	Firebaugh	grapes	Loamy Sand	UN32	81/10/9			40			20		20		40	40
М	Sanger	irrig pasture	Sandy Loam	11-52-0	59/30/11	10			(10			10	10
Ν	Mendota	sugar beets	Loam	CAN-17	32/50/18				40		20		20		40	40
0	Kearney	alfalfa	Hanford Fine Sandy Loam	NA	60/30/10			20				20			20	20
Ρ	Kearney	alfalfa	Hanford Fine Sandy Loam	11-52-0	60/30/10			20				20			20	20
Q	Kearney	grapes	Hanford Sandy Loam	CAN-17	70/24/6		120				60		60		120	120
R	Kearney	grapes	Hanford Fine Sandy Loam	NH4NO3	59/31/10			390			200		190	370	20	390
S	Corcoran	sugar beets	Sandy Loam partially drained	NA	67/22/11				10			10			10	10
Т	Lindcove	oranges	San Joaquin Sandy Loam	urea	71/19/10		80			40		40			80	80
U	San Joaquin	sugar beets	Sandy Loam	UN32	65/23/12				40		20		20		40	40
۷	Clovis	peaches	Visalia Sandy Loam Clay Loam	(NH4)2SO4	70/20/10			80	Í	40		40	ľ		80	80
W	Bonadelle Ranchos	irrig pasture	Loam	NA	50/38/13			40				40			40	40
Х	Bonadelle Ranchos	irrig pasture	Loam	NA	50/38/13			40				40	ļ		40	40
Υ	West Side	cotton	Sandy Clay Loam	urea	52/22/26				470		235		235	350	120	470
Z	West Side	tomatoes	Panoche Clay Loam	urea	44/25/31				160		80		80		160	160

Table 4. Crop type, soil texture, fertilization type, irrigation type and number of NOx flux measurements at each site. Total number of flux measurements are presented by irrigation regime, field position and sampling protocol.

*[%Sa/Si/Cl]=percent Sand/Silt/Clay

Fertilizer categories: NH4 fertilizer: 11-52-0, (NH4)2SO4, NH3, aqua NH, urea

Mixed fertilizer: CAN-17, NH4NO3, UN32

2850

	1	J	К	Α	L	D	E	F	G	S	Р	0	Q	R	T	U	В	N	С	Н	М	₩	ž	V	Z	Y
tilized	5/1		5/1		2/28	.5	.5				4/25		6/15	5/18	5/2	6/1 .5		6/10		6/15		Ban	an	3/1	5/15	5/1
Location	Tulare	Plainview	Waukena	Firebaugh	Firebaugh	San Joaqu	San Joaqu	Tranquility	Riverdale	Corcoran	Kearney	Kearney	Kearney	Kearney	Lindcove	San Joaqui	Parlier	Mendota	Parlier	Mendota	Sanger	Bonadelle 1	Bonadelle I	Clovis	West Side	West Side
06/95																	127									
07/95					•									124		<u>.</u>	53		F							
08/95														56					<u> </u>	1						<u> </u>
10/95					<u>.</u>						· ·						F			i	1					
11/95					*****						10						20		-	<u> </u>						70
12/95											10						20								20	70
13/95																	20							20	20	20
14/95														<u> </u>			20		20	· · · · ·				- 20	20	00
16/95							<u> </u>						-			i	20		20	[20	20	20
7/95								i														-				
8/95					; 												20		20						20	20
9/95					<u> </u>													20						20	- 20	20
1/95										•	\leftarrow					; ;	20	20	20		i~			20	20	20
2/95											1															
3/95								i +								! 					ļ					
4/95					! T	<u> </u>			E								1		i							
26/95			-				-									i				, 						
27/95		F				20			!					20								·				· · · ·
8/95							20	20													10				_	
9/95							:				<u> </u>			90		<u> </u>			L							
30/95																	130									
1/95					1	20		20			: <u> </u>					; ;	1		1		<u> </u>				_	110
2/95						20	20	20											<u>}</u>						·····	
3/95								1	;								110	<u> </u>								
4/95			20				-																	1		
5/95	20				<u>.</u>						<u> </u>										i 					<u> </u>
3/95			20					:			<u> </u>								<u> </u>		1					
B/95		20						<u>.</u>	;							1										
9/95		20	20													į	1		1							
0/95		20	20				·	<u></u>								<u> </u>			 ;	20			ļ			
1/95			·					: 	!	10	<u> </u>				20	20				20						
3/95	20	20	10					+	· ·	10			20	<u> </u>	20				i I							
4/95	. 53		···										20													
5/95	20																									
6/95								i							20											
8/95					;		+	<u>.</u>					20	<u> </u>		: 20	<u>-</u>									
9/95						-		:	;			10	20				1			<u> </u>			·			
0/95													20		20											
1/95				10	20		÷					10	20						[
2/95				10	20		<u>.</u>	<u> </u>								ļ			<u> </u>			10	10			
4/95				÷	;	•••••••			<u>.</u>											1		10	10			
25/95																						10	10			1
26/95					<u> </u>		;	i	+											<u> </u>	ļ					
27/95				10			·													·	<u>.</u>	10	10			
29/95								<u></u>													i		i 1			
30/95								1																		
31/95																!		<u> </u>		1	!		[1
01/95		•			+	<u>.</u>	÷	+													ļ					
03/95				1		;			+		:									<u> </u>			<u> </u>			
04/95		•• •• •• ••	**************************************	·		i																		i		1
05/95							:	i								1				ļ	i		1	,		
06/95			:				:				<u> </u>			100					i					:		
07/95	;			<u> </u>	;	<u>.</u>		: 	· · · · · ·	 	+			¦			80		ļ	ļ		Ļ	 	! 		
08/95		100	<u> </u>	<u> </u>					i		+						<u> </u>	Ļ	1							100
109/95						<u>.</u>	-				+					+	1		÷		: 	<u>.</u>			Ļ	:
10/90		·	· ·		1		:	-	20				1			;	!		1	1				-		-
771795																										

Table 5. Dates and numbers of observations for NOx emissions measured at each site in the San Joaquin $1\,3$

.

/

F - Fertilized

11 month appointment. To acquire laboratory facilities for the field work, we requested and received permission to use laboratory space and to sample in fields at the University of California Kearney Agricultural Center. We utilized analytical balances and ovens as well as bench space at the Center.

Research teams were in the field July 5-8, July 10-23, July 26-August 4, August 7-13, August 18-29, and September 5-11. The assistants were divided into two teams and carried out research following three broad protocols: 1) diel sampling; 2) intensive sampling (repeated measures for 3-10 days in a site); and 3) extensive sampling (once or twice only).

The first protocol was a diel sampling in which single fields were measured repeatedly from morning through evening. In some cases, these diel measurements ran from predawn hours until after midnight. Personnel measured soil and chamber temperatures with each NO_x flux, and sampled for soil moisture and inorganic nitrogen content at each chamber each day. Bulk density, pore space, pH, and total N was sampled once at each location. For diel measurements we grouped crops into structural types which collectively share similar patterns in the variation of ambient factors such as temperature and shading. These were grouped as tree crops, vine crops, and row crops, and were represented by almonds, grapes, cotton and corn (Table 2). Diel measurements were repeated in late summer to evaluate seasonal effects such as shorter day lengths.

The second protocol was the intensive protocol, in which individual fields were measured repeatedly over the course of five to ten days. The objective of this protocol was to identify patterns in the change of NO_x flux in relation to fertilization and/or irrigation events. Based on results of the diel measurements, NO_x measurements for the intensive and extensive protocols were performed between 9:30 AM and 3:00 PM to capture peak midday fluxes. In addition to ancillary measurements described above, nitrification potential and *in situ* gross nitrification assays were performed in 13 sites. These allow subsequent correlation of NO_x flux with these measures of the process thought to be the source of NO_x emission. We were able to sample 1 to 2 intensive sites for each targeted crop system.

The third protocol was an extensive protocol, with the objective of identifying spatial and crop-specific patterns of NO_x flux. All of the ancillary measurements performed for the diel measurements were also performed under the extensive protocol.

2.2.1.1 Field Methods.

Field measurements of NO_x (nitric oxide (NO) plus nitrogen dioxide (NO_2)) at the soil-air interface were carried out using a two-piece molded plastic chamber (Matson et al. 1991, 1992) in which a 25 cm diameter PVC base was inserted before measurement, and was capped with a vented ABS plastic cover at the time of sampling. Nitric oxide was measured in the field using a Scintrex LMA-3 luminol chemoluminescence detector modified for field measurements (Appendix D; Davidson et al. 1991,1993b). With this system, gas fluxes are measured over a short (3-5 minute) time period, thereby reducing chamber effects on exchange dynamics. Our system has been compared with the NO/O₃ chemoluminescence detector (Williams and Davidson 1993); the authors concluded that measurements from the two systems were comparable, that the luminol system suffers an approximate 7% decrease in signal under high (>50%) humidity, but that the luminol system is capable of sampling more points per time and thus better able to estimate spatial variability and accurate site means. Such chamber-based measurements are useful only for measuring flux at the soil-air interface; some NO₂ may be taken up by the crop canopy before it is lost to the atmosphere.

Data collected by the chemoluminescence detector allow calculation of NO_x concentrations within the chambers over time. Measurements (mV) were collected every 30 seconds with data loggers and down-loaded to computers for further calculations. Logged data were imported to Excel 4.0 worksheets, and converted to concentrations using the calibration curves developed in the field (see below). Baseline subtractions were performed, and chamber volumes and temperatures were used with NOx concentrations in the ideal gas law equation to determine the mass of NOx in the chamber at each time point. Regressions were performed to determine the linear increase in chamber NO_x over time. Quality assurance was carried out at several points. Transcription errors were checked by verifying that data used in calculations agreed with logged data. Each flux calculation was checked to insure that the correct leading and trailing baseline points were used for baseline subtraction, and that the correct groups of points were used in the regression calculations. Flux calculations and quality control were performed by different personnel.

Calibration curves were run in the field at the beginning and end of each sample run (e.g., every 10-20 samples). The response of the chemiluminescent detector (Scintrex, Ltd., Ontario, Canada) is first calibrated by mixing known flows of ambient air and standard gas (Scott-Marin, Inc., Riverside, CA) through the detector. By varying the proportions of ambient air and standard gas, a calibration curve is developed. The standard gas is supplied as NO; NO in the gas-air mixture is oxidized to NO₂ in a CrO₃ converter, so that NO₂ is the N species actually detected. Bypassing the CrO_3 converter assays NO_2 only; NO is determined by subtracting NO_2 from (NO + NO_2). In most agricultural systems where we have worked, NO is by far the dominant gas emitted from soils, normally contributing over 90% of the total NO_x flux. In this study, we did not distinguish NO and NO_2 , and this we refer to as NO_x .

Hutchinson and Livingston (1993) define a minimum detectable flux based upon the flux standard error:

minimum detectable flux = (t)(SE)

with *n*-2 degrees of freedom and 1 - α significance level. At $\alpha = 0.05$, we determined our minimum detectable flux during the first course of measurements to be 0.655 ng-N cm⁻² h⁻¹.

At each gas sampling site, soil cores were collected down to 10 cm depth and placed in plastic bags; soils were held on ice until laboratory processing (within 8 h). Soil and chamber air temperatures also were collected concomitantly with flux measurements; soil temperature at 2 cm depth was collected with field thermometers. Temperatures within the chambers were collected at the end of each measurement; these within-chamber air temperature measurements were required for the calculation of NO_x flux.

Due to an oversight in field sampling, air temperatures outside of the chamber were not taken. In order to estimate outside air temperatures, we used the mean value of the within-chamber air temperatures from the four coolest chambers at each sampling time (these were shaded chambers). In other words, we assumed that the air temperature inside shaded chambers would not be different than air temperature in the shade outside. We utilized met station air temperature data from the Kearney Agricultural Center in comparison with field temperature estimates from our nearby study site to test the accuracy of this assumption. By paired t-test, differences were not significant (P>0.05; standard deviation was 0.7 C). We report these shaded chamber air temperatures as "air temperature" in the data analysis.

2.2.1.2. Laboratory Methods.

Total N and C content of soils were measured using a Carlo Erba NA1500 automated nitrogen-carbon analyzer on 25 mg samples of soil milled to a fine powder. Soil bulk density was measured by extracting an 8 cm diameter by 9 cm depth soil core (452 cm^3), then weighing after oven-drying to constant weight (overnight) at 105 C.

Soil textural classifications were originally obtained from Soil Conservation Service soil survey maps; however, the resolution of the maps proved too coarse to derive textures for soils from specific fields. Spot tests identified discrepancies between textures reported on the maps and textures measured in our laboratory. Therefore we performed particle size analysis using the sedimentation-hydrometer method (Day, 1965) on soils collected from each site we visited.

With each NO_x flux measured, a soil core was taken and extracted for inorganic N pool size determinations. Fresh soil weights were measured in the field, but pool sizes are usually expressed on an oven-dry soil basis. To convert fresh weights to oven-dry weight equivalents, as well as to determine WFPS, soil moisture measurements were made. Soil moisture was measured using subsamples of soils collected for inorganic N pool size determinations. After obtaining fresh weights, 10 g samples of soil were dried overnight at 105° C and reweighed. After reweighing, soils were wet-sieved to remove > 2 mm particles, and moisture was determined on the < 2 mm fraction.

For analysis of inorganic nitrogen in field soils, 10 g subsamples of soil were placed in 100 mL 2N KCl and shaken for 1 hour; 10 mL aliquots of the supernatant were stored in vials and refrigerated until colorimetric analysis of inorganic ions. Quantification of NH₄⁺, NO₂, and NO₃⁻ in soil extracts was completed in February, 1996, using a Lachat autoanalyzer (Lachat Instruments, Milwaukee, WI). Ammonium was analyzed by reacting NH₃ with sodium salicylate in the presence of hypochlorite (an oxidizing reagent). Sodium nitroprusside catalyzes the reaction, and EDTA complexes cations which would otherwise form interfering precipitates in the reaction. Nitrite is analyzed by reacting it with sulfanilimide (a diazotizing reagent), then treated with a coupling reagent [N-(1-naphthyl)ethylenediamine] to form a red azo compound. Nitrate is analyzed by first passing the extract through a copperized cadmium column to reduce NO₃⁻ to NO₂⁻. It is then determined as $(NO_2 + NO_3)$ minus NO₂⁻.

Having performed the inorganic nitrogen analyses and measured soil weights and moisture contents, soil inorganic nitrogen pool sizes were computed. Fresh weights of soils sampled in the field were adjusted for measured moisture content to an oven dry weight equivalent. Solution volumes were divided by oven dry soil weight equivalent and multiplied by solution concentrations to derive NH_4^+ , NO_2^- , and NO_3^- pools on the basis of μg N per gram of oven dry soil.

For *in situ* nitrification rates, soil samples were labeled in the field with ${}^{15}N-NO_3$ solutions. Soil samples (approximately 500 g) were placed in plastic bags; a ${}^{15}N$ solution (30 ug N mL⁻¹ at 25 atom% excess ${}^{15}N$) was applied by spraying; subsamples of the soils were extracted in KCl as described above for measurement of initial ${}^{15}N$ concentration. The remaining soil was replaced in the holes from which they were cored. After 6 hour *in situ* incubations, soil extracts were again taken. Extracts were first analyzed for $NO_2^- + NO_3^-$ as

described above. Then they were prepared for mass spectrometry by reducing the NO₂⁻ and NO₃⁻ to NH₄⁺, and diffusing the NH₄⁺ onto acidified paper disks. The ¹⁵N/¹⁴N ratio on the disks was measured using automated nitrogen-carbon analyzer - isotope ratio mass spectrometer (Europa Scientific, Crewe, U.K.). The NO₂⁻ and NO₃⁻ pool sizes and isotope ratios measured at the beginning and end of the incubation were used in an isotope dilution model to calculate the gross rate of NO₃⁻ production in the field (Hart et al. 1994).

Nitrification potential was also measured. Nitrification potential is an assay which measures the activity of soil nitrifying enzymes under standardized laboratory conditions and which has been found to correlate with soil NO_x emissions. Field soil samples were collected and 10 g of each sample were weighed into Erlenmeyer flasks. A buffered NH_4^+ supply (100 mL) was added to each flask, and flasks were orbitally shaken. Spaced over the course of 24 hour incubations, four aliquots (10 mL each) of the soil slurries were drawn and centrifuged. Supernatants were colorimetrically analyzed for NO_2^- and NO_3^- as described above. Potential rate of nitrification was calculated from the regression of NO_2^- and $NO_3^$ concentrations during the 24 hour incubation.

Water filled pore space was calculated by the following formula: $%WFPS = [100 \times (\theta_g \times BD)] / [1 - (BD/PD)]$

where

 θ_g = gravimetric soil water content

 \tilde{BD} = bulk density

PD = particle density (2.65 g cm⁻² for most soils)

(Davidson and Schimel, 1995).

2.2.1.3 Data Management.

For each NO_x flux measurement, we also have information on soil temperature, soil moisture, calculated water filled pore space, and nitrate, nitrite, and ammonium concentrations. For each field, we have one-time data for pH, total C and N as well as bulk density and texture. These data were managed using Microsoft Exel 4.0. Statistical analysis are described in the sections below.

2.2.1.4 Estimation of Diel Fluxes.

This summary explains the methods used for estimating: 1) Diel NO_x flux from diel-measured data, for mean chamber results by site, position, and date (refer to Table 4 for data collection layout). 2) Normalized diel NO_x flux curves to represent the hourly distribution of NO_x flux, for estimating diel curves for different levels of peak NO_x flux.

3) Diel NO_x flux from routine-measured data (where measurements were collected only once a day), for mean chamber results by crop, site, position, and date.

4) Diel NO_x flux for whole field crops (position area-weighted average of mean chamber results)

The statistical software S-Plus (MathSoft, 1993), based on the S statistical language developed at At&T's Bell Laboratories, is used to perform all statistical analysis and estimations.

For background on the data set, Appendix A provides a listing and description of the data taken for all sites. Note that the "site" distinguishes categories of conditions at the spatial level of a whole agricultural field (crop, soil texture, bulk density, percent canopy cover, irrigation method), while temperature, moisture, NO_x data, and position within a field's plow pattern are distinguished at the level of a NO_x flux chamber. From here on, "data point" will mean the set of data collected at a point in time from a chamber; places will be referred to as field "sites."

Table 5 is a calendar of when data measurements were taken, giving the number of observations by field site (the different positions are not shown). Diel observations are marked in bold boxes. Other data are "routine" data, with observations made only at midday, when NO_x flux is expected to be highest. Fertilization dates before July 1, 1995 are marked in the second row, and fertilization dates during the study period (July through August 1995) are marked with an "F."

The estimations here make use of both the more detailed but less frequently conducted diel measurements and also the more frequent routine measurements. Calculations are made of mean daily NO_x fluxes based on actual data, rather than on a predictive model with explanatory parameters. The time of day is the only "explanatory" variable, in that it tracks the changes in soil conditions over time and therefore NO_x flux during the course of a day. More complex investigation of explanatory variables is provided in a separate analysis.

The general strategy for NO_x flux estimation here is to make use of the subset of observations that covered NO_x flux over the course of a day to fit curves that represent the relationship between the time of day and NO_x flux in ng-N cm⁻² h⁻¹. This simple correlation is chosen to incorporate the full range of variability in NO_x flux (due to e.g. soil temperature, soil moisture, NH₄⁺, others), including that due to unknown conditions. These "diel curves" can then be used to calculate the mean daily NO flux per unit area of the study site. In addition, these curves can be used to approximate the diel distribution of NO_x flux at field sites where NO_x was measured less frequently (at midday only). The methods used in each kind of estimation will be described in detail in the following pages, and are stated in brief below:

1) Derive diel curves of time of day versus chamber NO_x flux via local regression on NO_x data, generating distinct curves by crop, site, position, irrigation method, and date.

2) Derive normalized diel curves to represent the hourly distribution of NO flux, generating distinct curves by crop, site, position, and irrigation method, grouping different dates together. These curves can then be scaled to generate diel curves for different levels of peak NO_x flux.

3) Estimate daily chamber NO_x flux at field sites where only midday measurements were made ("routine" measurements), deriving diel curves from a) the normalized diel curves that were produced from the diel-measured data, and b) the mean routine-measured midday flux.

Step 1). Diel NO_X flux curves from diel-measured data, by crop, site, position, and date.

Individual curves of diel NO_x flux are calculated for each crop, field site, position, and date for which diel data were taken. At each field site for which diel data were recorded, there were ten replicate chambers for each field position. These ten chambers were visited several times over the course of a day, providing sets of 10 data points for NO flux measurements at different hours. To predict mean hourly fluxes, the data from these ten replicates for a particular day and position are used to estimate a curve of time of day vs. NO_x flux [ng-N/cm2/hour], using local trend surface fitting to derive curves from the replicate data (see Figure 3 for plots of data and fitted curves).

The local trend surface fitting method used here involves local regression with the S-Plus function loess. This function produces a curve that is effectively a "smooth" of the data via weighted least squares to make nearby (by time of day) points more influential. Given n data points, a span parameter alpha < 1, and q = alpha * n,

Figure 3a.Diel plots: time of day vs. measured NOx flux [ng-N/cm2/hour], with loess-estimated curves and integrated daily total NOx flux [ng-N/cm2/day]. By crop, site, position, and date. Corn and Grapes.

Each point is an individual flux measurement (minimum detectable flux = 0.66 ng/cm2/hour; see section 2.2.1.1) Data collected in San Joaquin Valley, July-September, 1995

solid line: loess curve; dashed line: extrapolation (see Appendix E for method)

21
Figure 3b.Diel plots: time of day vs. measured NOx flux [ng-N/cm2/hour], with loess-estimated curves and integrated daily total NOx flux [ng-N/cm2/day]. By crop, site, position, and date. Almonds.

Each point is an individual flux measurement (minimum detectable flux = 0.66 ng/cm2/hour; see section 2.2.1.1) Data collected in San Joaquin Valley, July-September, 1995

solid line: loess curve; dashed line: extrapolation (see Appendix E for method)

Figure 3c.Diel plots: time of day vs. measured NOx flux [ng-N/cm2/hour], with loess-estimated curves and integrated daily total NOx flux [ng-N/cm2/day]. By crop, site, position, and date. Cotton.

Each point is an individual flux measurement (minimum detectable flux = 0.66 ng/cm2/hour; see section 2.2.1.1) Data collected in San Joaquin Valley, July-September, 1995

solid line: loess curve; dashed line: extrapolation (see Appendix E for method)

letting delta equal the distance to the qth nearest point to x, then for observation xi, the weights are:

wi = $[1 - (d(x, xi)/delta)^3]^3$ [+] where [+] denotes the positive part

The span parameter must be subjectively chosen, depending on the degree of smoothing desired. Details for loess are provided by Cleveland, et.al. (1992).

We ran these local regressions assuming a normal distribution of the data. Although NO_x flux is commonly considered to be approximately lognormally distributed, the distribution is not strict, because NO_x flux can be negative, for instance, due to microbial uptake. Since there are no sound transformations to compensate for negative observations of an otherwise lognormally-distributed variable, we ran the regressions assuming normally-distributed data and calculated the associated standard errors.

Since some of the diel data do not span a full twenty-four hours (usually NO_x was not measured during the hours around midnight), combination of spline and lower bounds on NO_x flux is used to interpolate NO flux for the missing hours. The mean standard error and mean confidence interval are taken for bounds on interpolated points. Integration of the diel curve over 24 hours yields an estimate of the daily NO_x flux. The NO_x flux is interpolated as follows:

1.) The NO_x flux is known to be periodic on daily cycles, and it is assumed that adjacent days have similar absolute NO_x fluxes. Therefore, repeating the loess curves from the available data in cycles of 3 consecutive days allows splining in of the missing hours. 2.) If the fitted loess curve is very steep, the splined NO_x values may drop very low, yielding an unrealistic interpolation. In such cases, the lowest predicted value from the loess fit of the data (or zero, whichever is largest) is used as a lower bound for NO_x flux. 3.) When splined values (i.e. no data taken during those hours) fall during the night-time hours of 11 PM to 5 am, the interpolated NO_x flux is held to the minimum of the fitted data, or zero, whichever is larger.

A procedure for calculating the confidence intervals from the standard errors is described in Chapter 6 of the S-Plus Guide to Statistical and Mathematical Analysis (Statistical Sciences, 1993).

Step 2) Normalized diel NO_x flux curves to represent the hourly distribution of NO_x flux, for estimating diel curves for different levels of peak NO_x flux.

It is assumed that the basic shape of the distribution of NO flux over a day stays the same, although absolute NO_x levels may change. The curve shape, as evidenced by the plots in Figures 3 and 4, is generally a bell shape, peaking around midday and dropping to a minimum in the nighttime.

In order to derive a general curve for the same crop, site, position, and irrigation method, the diel curves obtained in (1) are normalized to a [0,1] range of NO_x flux, and these normalized curves are averaged together by site (crop) and position, combining different dates. The ratios between the original curves' amplitudes and maximum fitted fluxes are averaged to characterize the amplitude/maximum ratio of the averaged curve. This step is a necessary simplification in lieu of more data on how the minimum and maximum NO_x flux from a site may vary together. The final average characteristic diel curve is then obtained by a rescaling of the average normal curve (range [0,1]) and translation upward so that the maximum is maintained at 1:

characteristic normalized NO = average normalized * ratio + 1 - ratio

More detail on the methodology for calculating characteristic diel curves by crop and position is provided in Appendix E. Figure 5 shows the mean characteristic curves, scaled by the amplitude/maximum ratio (preserving a peak of 1), and with 95% simultaneous confidence envelopes. The two almond and cotton plots with very flat, near-zero NO_x flux curves were excluded from the calculation of the means, and also the data extending over less than 10 hours were excluded.

Standard errors for these mean characteristic curves are obtained by propagating the (scaled to [0,1]) standard errors of the original curves and scaling by the characteristic amplitude/maximum ratio. The simultaneous confidence envelopes are calculated as in the *S-Plus Guide*, by accounting for the equivalent number of parameters and number of observations of each curve in the average in calculating the F-distributed confidence envelopes.

Figure 4a. Diel plots: time of day vs. diel-measured NOx flux with loess curves and 95% confidence intervals. By crop, site, position, and date. Corn and Grapes.

Each point is an individual flux measurement (minimum detectable flux = 0.66 ng/cm2/hour; see section 2.2.1.1). Data collected in San Joaquin Valley, July-September, 1995.

solid line: fitted means; dashed line: mean diel from normalized curves; dotted lines: 95% confidence intervals

Figure 4b. Diel plots: time of day vs. diel-measured NOx flux with loess curves and 95% confidence intervals. By crop, site, position, and date. Almonds.

Each point is an individual flux measurement (minimum detectable flux = 0.66 ng/cm2/hour; see section 2.2.1.1). Data collected in San Joaquin Valley, July-September, 1995.

solid line: fitted means; dashed line: mean diel from normalized curves; dotted lines: 95% confidence intervals

Figure 4c. Diel plots: time of day vs. diel-measured NOx flux with loess curves and 95% confidence intervals. By crop, site, position, and date. Cotton.

Each point is an individual flux measurement (minimum detectable flux = 0.66 ng/cm2/hour; see section 2.2.1.1). Data collected in San Joaquin Valley, July-September, 1995.

solid line: fitted means; dashed line: mean diel from normalized curves; dotted lines: 95% confidence intervals

Figure 5. Diel characteristic curves: means and 95% confidence envelopes. By crop and position.

Estimated by averaging normalized diel plots (from Figures 3a-3c) for all days by crop and position (see Appendix 5 for method). Data collected in San Joaquin Valley, July-September, 1995.

loess smoother, spline for interpolated points

Step 3). Calculation of diel NO_x flux from routine-measured data, for mean chamber results by crop, site, position, and date.

To estimate daily chamber NO_x flux at field sites where only midday measurements were made ("routine" measurements), it is assumed that the basic shape of the distibution of NO_x flux over a day stays the same, although the maximum NO_x flux levels may change. The associated diel curves are derived from a) the characteristic diel curves that were produced from the dielmeasured data with similar crop type in Step 2 above, and b) the mean routine-measured flux.

The characteristic curves calculated in Step 2 are taken to represent the general distribution of NO_x during a day, for any absolute flux levels for relevant crop types. The ratio of the amplitude to the maximum is assumed to remain constant; this assumption is considered reasonable, as inspection of the data shows the amplitude of the diel flux to be approximately proportional to the The average routine-measured flux, taken around maximum flux. midday, is assumed to be the mean maximum flux for that day, and is used to scale the normalized curve and to estimate the amplitude of the derived diel curve. The times of day for routine data ranged from 9:30 am - 3:00 pm; NO_x flux values taken within this time window routinely fall within the 95% confidence interval for the peak flux predicted by the diel curve (See Figure 4.) Therefore, given:

meanNOmax = peak NO flux level from routine data

C = a relevant characteristic diel curve with:

NOcharacteristic = the value in [0, 1] of C

then

NO = meanNOmax * NOcharacteristic

The integral of the new diel curve provides an estimate of the total daily NO_x flux for the routine-measured site. Standard errors are propagated by taking into account the standard errors in the meanNOmax and in NOcharacteristic. The propagation of standard error is therefore:

= sqrt{ [NOcharacteristic * s.e.meanNOmax]^2 + [meanNOmax * s.e. NOcharacteristic)]^2}

Since full diel data were not taken for all crop types, certain crop types are used as proxy for similar crops:

Crop with diel data	<u>as proxy for</u>	<u>similar crops</u>
corn		corn
grapes		grapes
almonds		tree crops: almonds, peaches, oranges
cotton		row crops: alfalfa, irrigated pasture, sugar beets, tomatoes

2.2.2. Results.

2.2.2.1. Diel Flux Calculation Results.

Figure 3 shows the results of the curve-fitting and interpolation from step 1. The titles for each plot give the total NO_x flux as the 24-hour integral of the curve. Figure 4 shows the results of rescaling the normalized curves to the original diel curves with 95% confidence intervals (F-distribution). There is generally good approximation of the original diels, but in the case of Kearney flood, grapes, furrow, there are very wide differences in the amplitude/maximum ratio due to averaging this ratio for the normalized curve; the steepest and the flattest curves are poorly Ideally, one should know both the maximum and approximated. minimum fluxes at those sites where only routine data were taken, rather than extrapolating from a constant ratio. However, minimum flux levels were not measured, because this would have required an additional nighttime measurement, for which the necessary labor was not available. Characteristics of the normalized individual diel curves from Step 2 and their mean characteristic curves (scale [0,1]) are provided in Table 6. The results for Step 3 field NO_x flux for all

Table 6. Summary of diel curves: a. fitted diel curves, and b. characteristic diel curves for each crop type at sites located in the San Joaquin Valley measured July-September 1995. Flux measurements are presented by irrigation regime and field position. Minimum and maximum NO fluxes represent minimum and maximum points of the fitted diel curves for each site and day; total fluxes are integrated values for the 24-h period.

a. Fitted diel curves.

							[ng-N/cm	2/h]	[ng-N/cm2/day]		
						Min.	Max.	Standard	95% Confidence	Total	95% Confidence
code	crop	location	position	irrigation	date	NOx	NOx	Error	Interval	NOx	Interval
J	Corn	Plainview	furrow	Furrow	09/08/95	0.280	0.610	0.051	0.143	8.937	3.422
J	Corn	Plainview	ridge	Furrow	09/08/95	0.242	0.647	0.068	0.192	9.086	4.609
R	Grapes	Kearney	ridge	Flood	07/07/95 07/0	8/{ 1.343	4.542	0.642	2.072	67.972	49.722
R	Grapes	Kearney	ridge	Flood	07/29/95	2.813	5.415	0.815	2.473	90.209	59.358
R	Grapes	Kearney	ridge	Flood	09/06/95	0.428	2.189	0.212	0.685	25.492	16.447
R	Grapes	Kearney	furrow	Flood	07/07/95 07/0	8/{ 1.820	3.612	0.398	1.288	62.371	30.913
R	Grapes	Kearney	furrow	Flood	07/29/95	1.009	6.471	0.387	1.252	67.937	30.045
R	Grapes	Kearney	furrow	Flood	09/06/95	0.565	8.226	0.413	1.341	60.666	32.190
в	Almonds	Parlier	canopy	Flood	07/06/95 07/0	7/{ 0.228	1.038	0.117	0.384	11.449	9.208
В	Almonds	Parlier	canopy	Flood	07/30/95	0.051	0.294	0.037	0.112	3.594	2.697
В	Almonds	Parlier	canopy	Flood	08/03/95	0.269	4.510	0.354	1.130	38.580	27.124
в	Almonds	Parlier	canopy	Flood	09/07/95	1.023	2.864	0.624	1.880	36.672	45.128
В	Almonds	Parlier	open	Flood	07/06/95 07/0	7/9 0.733	2.655	0.477	1.607	32.449	38.569
В	Almonds	Parlier	open	Flood	07/30/95	0.447	0.567	0.150	0.396	12.566	9.506
В	Almonds	Parlier	open	Flood	08/03/95	0.648	7.933	0.672	2.159	58.412	51.813
В	Almonds	Parlier	open	Flood	09/07/95	1.654	4.631	0.990	2.998	52.270	71.951
Y	Cotton	West Side	furrow	Furrow	07/11/95 07/1	2/{ 0.000	2.752	0.231	0.746	17.972	17.897
Y	Cotton	West Side	furrow	Furrow	07/31/95	0.000	1.220	0.124	0.373	7,771	8.942
Y	Cotton	West Side	furrow	Furrow	09/09/95	0.107	0.130	0.063	0.167	2.855	4.007
Y	Cotton	West Side	ridge	Furrow	07/11/95 07/1	2/§ 0.000	2.153	0.357	1.224	18,368	29.372
Y	Cotton	West Side	ridge	Furrow	07/31/95	0.019	1,202	0.215	0.701	7.841	16.822
Y	Cotton	West Side	ridge	Furrow	09/09/95	0.080	1.372	0.273	0.870	7.791	20.870

b. Characteristic diel curves.

crop	position	Amplitude/Max	Max	Curve.se	Curve.conf	Crops represented by curve
Corn	furrow	0.540	1.000	0.027	0.225	corn
Corn	ridge	0.626	1.000	0.042	0.284	
Grapes	ridge	0.663	1.000	0.622	1.178	grapes
Grapes	furrow	0.757	1.000	0.382	0.845	
Almonds	canopy	0.849	1.000	0.347	0.881	tree crops:
Almonds	open	0.904	1.000	0.707	0.889	almonds, peaches, oranges
Cotton	furrow	1.000	1.000	0.263	0.508	row crops: alfalfa, tomatoes
Cotton	ridge	0.975	1.000	0.489	1.498	irrigated pasture, sugar beets

field sites (with diel data, with routine data, different crop type) are provided in Table 7.

The hourly and daily NO fluxes in Table 7 show, for corn crops, very low fluxes (<1 ng-N cm⁻² h⁻¹), due most likely to very dry conditions, except for the site located at Plainview (site code J), which was fertilized during the study period. The fluxes for this site decrease markedly over time (Figure 6e). Grape crops show consistently higher fluxes in the furrow rather than ridge position. The almond crop at site B, like the corn crop at site J, was also fertilized during the study period and show marked increases then decreases over time in both canopy and open positions (Figure 6a.). Among all tree crops, there is no consistent NO_x flux difference between canopy and open positions. Cotton crop and other row crops (sugar beets, tomatoes) exhibit a high degree of variability over time that is not clearly related to either time since fertilization or position. Especially the intensively sampled sites can show orders of magnitude differences in fluxes over two to three consecutive days. Tree crops also exhibit some of this variability, but with row crops there does not appear to be other strong trends related to the variables listed. More explanation of these NO_x flux characteristic follows.

The methods used here to estimate daily NO_x fluxes are bottom-up in nature and provide more detailed estimation than has been available to date. Caveats are in order, of course: (1) Local regression that takes into account lognormality and also negative NO_x fluxes would be most ideal for fitting diel curves; unfortunately, the negative fluxes preclude the possibility of a data transformation that would preserve lognormality. (2) It is not known how the amplitude of a diel curve varies with the mean peak NO_x flux or even the overall maximum NO_x flux at a site; therefore, a characteristic curve may not necessarily remain the same in shape over time and under different conditions; (3) The diel curves derived for routine data make use of the assumption that the routine data collected all were at the time of peak NO_x flux during the day. For these "routine" data, it cannot be known from the data when peak NO_x actually occurred; maximum solar insolation and hence maximum soil temperature would be required when peak conditions occur. This driving data was not available to us. Moreover, flux measurements taken at "peak conditions" are statistically indistinguishable from values used. (4) The confidence bounds on the diel curves, incorporating the standard error of the fitted diel curve) integrate to produce extremely large integral (daily flux) differences from the mean

Table 7. Mid-day NOx flux (mean of all NOx measurements per site and day) and total daily NOx flux (predicted from diel curves)measured in the San Joaquin Valley, July-September, 1995. Fluxes were computed from diel curves derived from: a. corn, b. grapes,c. almonds, d. cotton, e. cotton, ridge. Flux measurements are presented by irrigation regime and field position.'For diel-measured data, the standard error columns are simultaneous confidence bounds rather than standard errors.

Table 7a. Diel fluxes derived from Site J, Corn diel data

							mid-day N	lOx flux	total daily N	Ox flux
diel/routine	site	crop	location	position	irrigation	date	mean	std. error	mean	std. error
	code				method		[ng-N/cm2/h]	[ng-N/cm2/h]	[ng-N/cm2/day]	[ng-N/cm2/day]
d	J	Corn	Plainview	furrow	Furrow	09/08/95	0.610	0.143	8.9	3.4
d	J	Corn	Plainview	ridge	Furrow	09/08/95	0.647	0.192	9.1	4.6
r	J	Corn	Plainview	furrow	Furrow	08/08/95	13,483	22.084	197.5	1521.1
r	J	Corn	Plainview	furrow	Furrow	08/09/95	9.741	11.055	142.7	767.1
r	J	Corn	Plainview	furrow	Furrow	08/10/95	8.655	6.013	126.8	416.3
r	J	Corn	Plainview	furrow	Furrow	08/12/95	7.601	6.237	111.3	431.1
r	J	Corn	Plainview	ridge	Furrow	08/08/95	52.411	33.161	735.6	2306.9
r .	J	Corn	Plainview	ridge	Furrow	08/09/95	39.485	29.955	554.2	2076.3
r	J	Corn	Plainview	ridge	Furrow	08/10/95	12.116	9.238	170.1	640.3
r	J	Corn	Plainview	ridge	Furrow	08/12/95	12.142	11.484	170.4	793.6
r	I	Corn	Tulare	furrow	Furrow	08/05/95	0.041	0.067	0.6	4.6
r	Ι	Corn	Tulare	furrow	Furrow	08/13/95	-0.007	0.281	0.0	0.0
r	I	Corn	Tulare	furrow	Furrow	08/16/95	0.276	0.272	4.0	18.7
r	1	Corn	Tulare	ridge	Furrow	08/05/95	0.202	0.113	2.8	7.9
r	1	Corn	Tulare	ridge	Furrow	08/13/95	0.129	0.436	1.8	30.0
r	I	Corn	Tulare	ridge	Furrow	08/16/95	0.351	0.678	4.9	46.7
r	к	Corn	Waukena	furrow	Furrow	08/04/95	0.064	0.225	0.9	15.5
r	к	Corn	Waukena	furrow	Furrow	08/06/95	0.480	0.691	7.0	47.6
r	К	Corn	Waukena	furrow	Furrow	08/09/95	1.013	0.880	14.8	60.8
r	К	Corn	Waukena	furrow	Furrow	08/10/95	0.095	0.126	1.4	8.7
r	к	Corn	Waukena	ridge	Furrow	08/04/95	0.383	0.271	5.4	18.8
r	к	Corn	Waukena	ridge	Furrow	08/06/95	0.557	0.233	7.8	16.5
r	к	Corn	Waukena	ridge	Furrow	08/09/95	0.523	0.388	7.3	26.9
r	к	Corn	Waukena	ridge	Furrow	08/10/95	0.112	0.120	1.6	8.3

Table 7b. Diel fluxes derived from Site R, Grapes diel data

1.5

 γ , γ ,

							mid-day N	IOx flux	total daily N	Ox flux
diel/routine	site	crop	location	position	irrigation	date	mean	std. error	mean	std. error
	code				method		[ng-N/cm2/h]	[ng-N/cm2/h]	[ng-N/cm2/day]	[ng-N/cm2/day]
d	R	Grapes	Kearney	ridge	Flood	07/07/95	4.542	2.072	68.0	49.7
d	R	Grapes	Kearney	ridge	Flood	07/29/95	5.415	2.473	90.2	59.4
d	R	Grapes	Kearney	ridge	Flood	09/06/95	2.189	0.685	25.5	16.4
d	R	Grapes	Kearney	furrow	Flood	07/07/95	3.612	1.288	62.4	30.9
d	R	Grapes	Kearney	furrow	Flood	07/29/95	6.471	1.252	67.9	30.0
d	R	Grapes	Kearney	furrow	Flood	09/06/95	8.226	1.341	60.7	32.2
r	R	Grapes	Kearney	ridge	Flood	07/27/95	4.607	2.251	66.3	289.6
r	R	Grapes	Kearney	furrow	Flood	07/27/95	7.800	1.860	93.9	270.5
r	L	Grapes	Firebaugh	furrow	Flood	08/22/95	20.451	20.584	246.1	2463.3
r	L	Grapes	Firebaugh	furrow	Flood	08/23/95	16.450	6.177	198.0	805.6
r	L	Grapes	Firebaugh	ridge	Flood	08/22/95	2.517	3.083	36.2	363.6
r	L	Grapes	Firebaugh	ridge	Flood	08/23/95	0.906	0.618	13.0	75.5
r	Q	Grapes	Kearney	furrow	Drip	08/12/95	2.116	0.611	25.5	83.9
r	Q	Grapes	Kearney	furrow	Drip	08/15/95	3.391	1.816	40.8	225.0
r	Q	Grapes	Kearney	furrow	Drip	08/19/95	2.751	0.866	33.1	116.5
r	Q	Grapes	Kearney	furrow	Drip	08/20/95	3.663	1.739	44.1	218.2
r	Q	Grapes	Kearney	furrow	Drip	08/21/95	3.815	1.724	45.9	217.6
r	Q	Grapes	Kearney	furrow	Drip	08/22/95	3.184	2.151	38.3	261.8
r	Q	Grapes	Kearney	ridge	Drip	08/12/95	0.939	0.525	13.5	66.3
r	Q	Grapes	Kearney	ridge	Drip	08/15/95	1.146	0.577	16.5	73.8
r	Q	Grapes	Kearney	ridge	Drip	08/19/95	1.180	0.589	17.0	75.5
r	Q	Grapes	Kearney	ridge	Drip	08/20/95	1.215	0.644	17.5	81.5
r	Q	Grapes	Kearney	ridge	Drip	08/21/95	1.168	0.691	16.8	86.0
r	Q	Grapes	Kearney	ridge	Drip	08/22/95	0.639	0.400	9.2	49.4

7 *

Table 7c. Diel fluxes derived from Site B, Almonds diel data

			on one b, Amon				mid-day M	lOx flux	total daily N	Ox flux
diel/routine	site	crop	location	position	irrigation	date	mean	std. error	mean	std. error
	code			······	method		[ng-N/cm2/h]	[ng-N/cm2/h]	[ng-N/cm2/day]	[ng-N/cm2/day]
d	В	Almonds	Parlier	canopy	Flood	07/06/95	1.038	0.384	11.4	9.2
d	В	Almonds	Parlier	canopy	Flood	07/30/95	0.294	0.112	3.6	2.7
d	В	Almonds	Parlier	canopy	Flood	08/03/95	4.510	1.130	38.6	27.1
d	В	Almonds	Parlier	canopy	Flood	09/07/95	2.864	1.880	36.7	45.1
d	В	Almonds	Parlier	open	Flood	07/06/95	2.655	1.607	32.4	38.6
d	В	Almonds	Parlier	open	Flood	07/30/95	0.567	0.396	12.6	9.5
d	В	Almonds	Parlier	open	Flood	08/03/95	7.933	2.159	58.4	51.8
d	В	Almonds	Parlier	open	Flood	09/07/95	4.631	2.998	52.3	72.0
r	В	Almonds	Parlier	canopy	Flood	07/11/95	15.558	14.181	165.2	1678.1
r	В	Almonds	Parlier	canopy	Flood	07/12/95	15.600	13.528	165.7	1604.1
r	В	Almonds	Parlier	canopy	Flood	07/13/95	25.269	20.546	268.4	2443.2
r	В	Almonds	Parlier	canopy	Flood	07/14/95	16.455	13.786	174.8	1637.1
r	В	Almonds	Parlier	canopy	Flood	07/15/95	36.300	26.885	385.5	3231.6
r	В	Almonds	Parlier	canopy	Flood	07/16/95	2.414	2.168	25.6	256.7
r	В	Almonds	Parlier	canopy	Flood	07/18/95	6.374	5.192	67.7	617.4
r	В	Almonds	Parlier	canopy	Flood	07/21/95	3.473	2.593	36.9	309.8
r	В	Almonds	Parlier	open	Flood	07/11/95	0.646	0.645	6.4	68.2
r	В	Almonds	Parlier	open	Flood	07/12/95	4.327	1.847	42.8	212.1
r	В	Almonds	Parlier	open	Flood	07/13/95	5.461	2.081	54.0	244.7
r	В	Almonds	Parlier	open	Flood	07/14/95	2.863	1.828	28.3	198.7
r	В	Almonds	Parlier	open	Flood	07/15/95	8.007	4.042	79.1	451.5
r	В	Almonds	Parlier	open	Flood	07/16/95	0.479	0.345	4.7	37.3
r	В	Almonds	Parlier	open	Flood	07/18/95	1.329	0.695	13.1	77.3
r	В	Almonds	Parlier	open	Flood	07/21/95	1.862	0.929	18.4	103.9
r	С	Almonds	Parlier	canopy	Drip	07/14/95	7.265	9.444	77.2	1121.9
r	С	Almonds	Parlier	canopy	Drip	07/16/95	3.651	9.006	38.8	1047.9
r	С	Almonds	Parlier	canopy	Drip	07/18/95	0.206	0.238	2.2	28.4
r	С	Almonds	Parlier	canopy	Drip	07/21/95	9.355	15.937	99.4	1859.8
r	С	Almonds	Parlier	open	Drip	07/14/95	9.940	7.767	98.2	841.7
r	С	Almonds	Parlier	open	Drip	07/16/95	4.862	3.372	48.1	363.7
r	С	Almonds	Parlier	open	Drip	07/18/95	0.196	0.317	1.9	33.2
r	С	Almonds	Parlier	open	Drip	07/21/95	9.635	4.050	95.2	466.5
r	т	Oranges	Lindcove	canopy	Drip	08/11/95	0.855	0.918	9.1	108.0
r	Т	Oranges	Lindcove	canopy	Drip	08/12/95	2.140	2.898	22.7	339.3
r	Т	Oranges	Lindcove	canopy	Drip	08/17/95	1.590	1.346	16.9	159.8
r	т	Oranges	Lindcove	canopy	Drip	08/21/95	1.480	1.711	15.7	200.9
r	Т	Oranges	Lindcove	open	Drip	08/11/95	0.796	1.728	7.9	179.5

			,		irrigotion	data	mid-day N	lOx flux	total daily NOx flux	
diel/routine	site	crop	location	position	irrigation	date	mean	std. error	mean	std. error
	code				method		[ng-N/cm2/h]	[ng-N/cm2/h]	[ng-N/cm2/day]	[ng-N/cm2/day]
r	Т	Oranges	Lindcove	open	Drip	08/12/95	1.323	1.128	13.1	120.0
r	т	Oranges	Lindcove	open	Drip	08/17/95	1.573	1.389	15.5	147.5
r	Т	Oranges	Lindcove	open	Drip	08/21/95	1.822	1.507	18.0	160.6
r	V	Peaches	Clovis	canopy	Flood	07/13/95	2.117	1.139	22.5	139.6
r	v	Peaches	Clovis	canopy	Flood	07/15/95	0.438	0.489	4.7	57.5
r	V	Peaches	Clovis	canopy	Flood	07/19/95	0.046	0.047	0.5	5.6
r	v	Peaches	Clovis	canopy	Flood	07/20/95	0.418	0.497	4.4	58.4
r	V	Peaches	Clovis	open	Flood	07/13/95	3.626	2.261	35.8	246.3
r	V	Peaches	Clovis	open	Flood	07/15/95	0.561	0.486	5.5	51.9
r	V	Peaches	Clovis	open	Flood	07/19/95	0.060	0.026	0.6	2.9
r	٧	Peaches	Clovis	open	Flood	07/20/95	0.654	0.428	6.5	46.4

Table 7c. Diel fluxes derived from Site B, Almonds diel data, cont'd.

6.3

Table 7d. Diel fluxes derived from Site Y, Cotton diel data

							mid-day M	IOx flux	total daily N	Ox flux
diel/routine	site	crop	location	position	irrigation	date	mean	std. error	mean	std. error
	code				method		[ng-N/cm2/h]	[ng-N/cm2/h]	[ng-N/cm2/day]	[ng-N/cm2/day]
d	Y	Cotton	West Side	furrow	Furrow	07/11/95	2.752	0.746	18.0	17.9
d	Y	Cotton	West Side	furrow	Furrow	07/31/95	1.220	0.373	7.8	8.9
d	Y	Cotton	West Side	furrow	Furrow	09/09/95	0.130	0.167	2.9	4.0
d	Y	Cotton	West Side	ridge	Furrow	07/11/95	2.153	1.224	18.4	29.4
d	Y	Cotton	West Side	ridge	Furrow	07/31/95	1.202	0.701	7.8	16.8
d	Y	Cotton	West Side	ridge	Furrow	09/09/95	1.372	0.870	7.8	20.9
r	Y	Cotton	West Side	furrow	Furrow	07/13/95	0.281	0.231	1.8	22.8
r	Y	Cotton	West Side	furrow	Furrow	07/15/95	0.942	0.692	6.1	68.4
r	Y	Cotton	West Side	furrow	Furrow	07/16/95	0.273	0.433	1.8	42.3
r	Y	Cotton	West Side	furrow	Furrow	07/18/95	0.082	0.204	0.5	19.9
r	Y	Cotton	West Side	furrow	Furrow	07/19/95	0.157	0.133	1.0	13.2
r	Y	Cotton	West Side	furrow	Furrow	07/21/95	0.005	0.078	0.0	7.7
r	Y	Cotton	West Side	ridge	Furrow	07/13/95	0.783	0.764	5.4	95.7
r	Y	Cotton	West Side	ridge	Furrow	07/15/95	2.899	1.742	19.9	233.1
r	Y	Cotton	West Side	ridge	Furrow	07/16/95	0.698	0.452	4.8	59.7
r	Y	Cotton	West Side	ridge	Furrow	07/18/95	0.550	0.367	3.8	48.1
r	Y	Cotton	West Side	ridge	Furrow	07/19/95	0.484	0.277	3.3	37.4
r	Y	Cotton	West Side	ridge	Furrow	07/21/95	0.246	0.197	1.7	25.2
r	D	Cotton	San Joaquin	furrow	Furrow	07/27/95	65.404	58.199	421.8	5730.2
r	D	Cotton	San Joaquin	furrow	Furrow	08/01/95	8.074	4.940	52.1	491.6
r	D	Cotton	San Joaquin	furrow	Furrow	08/02/95	6.160	3.991	39.7	396.3
r	D	Cotton	San Joaquin	ridge	Furrow	07/27/95	10.194	3.874	70.1	591.1
r	D	Cotton	San Joaquin	ridge	Furrow	08/01/95	10.278	4.538	70.6	656.9
r	D	Cotton	San Joaquin	ridge	Furrow	08/02/95	5.074	1.657	34.9	269.5
r	Е	Cotton	San Joaquin	furrow	Furrow	07/28/95	0.917	0.862	5.9	84.8
r	Е	Cotton	San Joaquin	furrow	Furrow	08/02/95	3.096	6.837	20.0	667.7
r	E	Cotton	San Joaquin	ridge	Furrow	07/28/95	1.438	1.311	9.9	168.9
r	E	Cotton	San Joaquin	ridge	Furrow	08/02/95	3.003	2.500	20.6	319.8
r	F	Cotton	Tranquillity	furrow	Furrow	07/28/95	2.339	3.454	15.1	338.0
r	F	Cotton	Tranguillity	furrow	Furrow	08/01/95	2,072	0.677	13.4	70.7
r	F	Cotton	Tranquillity	ridge	Furrow	07/28/95	2.088	1.261	14.3	168.5
r	F	Cotton	Tranquillity	ridge	Furrow	08/01/95	3.282	1.230	22.6	188.7
r	G	Cotton	Riverdate	furrow	Furrow	09/11/95	0.057	0.145	0.4	14.2
r	G	Cotton	Riverdale	ridge	Furrow	09/11/95	0.208	0.177	1.4	22.5
r	Н	Sugar beets	Mendota	furrow	Furrow	08/10/95	0.967	0.380	6.2	38.9
r	н	Sugar beets	Mendota	furrow	Furrow	08/11/95	0.757	0.585	4.9	57.8
r	н	Sugar beets	Mendota	ridge	Furrow	08/10/95	0.451	0.285	3.1	37.8
r	н	Sugar beets	Mendota	ridge	Furrow	08/11/95	0.678	0.439	4.7	57.9

				mid-day NOx flux	IOx flux	flux total daily NOx flux				
diel/routine	site	crop	location	position	irrigation	date	mean	std. error	mean	std. error
	code	-			method		[ng-N/cm2/h]	[ng-N/cm2/h]	[ng-N/cm2/day]	[ng-N/cm2/day]
r	N	Sugar beets	Mendota	furrow	Furrow	07/19/95	0.406	0.185	2.6	18.7
r	Ν	Sugar beets	Mendota	furrow	Furrow	07/20/95	0.806	0.276	5.2	28.7
r	Ν	Sugar beets	Mendota	ridge	Furrow	07/19/95	1.346	1.089	9.3	139.0
r	N	Sugar beets	Mendota	ridge	Furrow	07/20/95	1.201	1.215	8.3	151.7
r	S	Sugar beets	Corcoran	open	Furrow	08/12/95	0.086	0.110	0.6	13.6
r	U	Sugar beets	San Joaquin	furrow	Furrow	08/11/95	7.968	5.736	51.4	571.1
r	U	Sugar beets	San Joaquin	furrow	Furrow	08/18/95	3.670	2.090	23.7	208.6
r	U	Sugar beets	San Joaquin	ridge	Furrow	08/11/95	3.786	1.489	26.0	224.3
r	U	Sugar beets	San Joaquin	ridge	Furrow	08/18/95	4.765	2.700	32.7	365.8
r	Z	Tomatoes	West Side	furrow	Furrow	07/12/95	4.967	3.125	32.0	312.5
r	Z	Tomatoes	West Side	furrow	Furrow	07/13/95	3.418	1.630	22.0	164.3
r	Z	Tomatoes	West Side	furrow	Furrow	07/14/95	2.502	1.118	16.1	113.2
r	Z	Tomatoes	West Side	furrow	Furrow	07/15/95	20.732	10.462	133.7	1050.9
r.	Z	Tomatoes	West Side	furrow	Furrow	07/16/95	0.757	0.229	4.9	24.2
r	Z	Tomatoes	West Side	furrow	Furrow	07/18/95	8.005	1.866	51.6	206.4
r	Z	Tomatoes	West Side	furrow	Furrow	07/20/95	16.150	3.433	104.2	388.4
r	Z	Tomatoes	West Side	furrow	Furrow	07/21/95	1.157	0.247	7.5	27.9
r	Z	Tomatoes	West Side	ridge	Furrow	07/12/95	9.317	4.565	64.0	641.0
r	Z	Tomatoes	West Side	ridge	Furrow	07/13/95	8.912	12.129	61.3	1486.7
r	Z	Tomatoes	West Side	ridge	Furrow	07/14/95	2.193	0.994	15.1	142.7
r	Z	Tomatoes	West Side	ridge	Furrow	07/15/95	10.545	4.119	72.5	624.5
r	Z	Tomatoes	West Side	ridge	Furrow	07/16/95	1.111	0.470	7.6	68.9
r	Z	Tomatoes	West Side	ridge	Furrow	07/18/95	12.685	4.084	87.2	668.6
r	Z	Tomatoes	West Side	ridge	Furrow	07/20/95	12.329	4.054	84.7	657.3
r	Z	Tomatoes	West Side	ridge	Furrow	07/21/95	1.152	0.189	7.9	47.2

 $Z \sim$

 $\delta = \chi$

11 A

Table 7d. Diel fluxes derived from Site Y, Cotton diel data, cont'd.

2.8

2.5

 $(1,2,\infty)$

2.8

Table 7e. Open crops: Diel flux derived from Site Y, Cotton, ridge

	perrer				90		mid-dav N	Ox flux	total daily N	Ox flux
diel/routine	site	crop	location	position	irrigation	date	mean	std. error	mean	std. error
	code				method		[ng-N/cm2/h]	[ng-N/cm2/h]	[ng-N/cm2/day]	[ng-N/cm2/day]
r	Α	Alfalfa	Firebaugh	open	Flood	08/22/95	6.948	4.283	97.5	315.8
r	Α	Alfalfa	Firebaugh	open	Flood	08/23/95	3.545	1.675	49.8	117.6
r	0	Alfalfa	Kearney	open	Flood	08/20/95	1.342	0.637	18.8	44.7
r	0	Alfalfa	Kearney	open	Flood	08/22/95	0.396	0.246	5.6	17.1
r	Р	Alfalfa	Kearney	open	Flood	07/11/95	2.399	0.542	33.7	40.7
r	Р	Alfalfa	Kearney	open	Flood	07/12/95	2.546	0.946	35.7	67.3
r	М	Irrigated pasture	Sanger	open	Border Check	07/28/95	10.956	12.195	153.8	846.6
r	w	Irrigated pasture	Bonadelle Ranchos	open	Flood	08/24/95	13.169	23.102	184.8	1590.3
r	W	Irrigated pasture	Bonadelle Ranchos	open	Flood	08/25/95	6.984	7.606	98.0	524.9
r	W	Irrigated pasture	Bonadelle Ranchos	open	Flood	08/26/95	10.786	9.876	151.4	682.7
r	W	Irrigated pasture	Bonadelle Ranchos	open	Flood	08/28/95	6.898	9.602	96.8	661.6
r	х	Irrigated pasture	Bonadelle Ranchos	open	Flood	08/24/95	6.953	14.169	97.6	975.0
r	х	Irrigated pasture	Bonadelle Ranchos	open	Flood	08/25/95	10.771	29.313	151.2	2015.9
r	х	Irrigated pasture	Bonadelle Ranchos	open	Flood	08/26/95	4.755	1.769	66.7	133.0
r	х	Irrigated pasture	Bonadelle Ranchos	open	Flood	08/28/95	4.836	10.888	67.9	749.0

Figure 6a. NOx fluxes and associated soil parameters measured at site B (flood almonds), Parlier, CA, July-September, 1995. Each bar or point is a mean of 20 observations.

 $<\infty$

Figure 6b. NOx fluxes and associated soil parameters measured at site C (drip almonds), Parlier, CA, July, 1995. Each bar or point is a mean of 20 observations.

Figure 6c. NOx fluxes and associated soil parameters measured at site D (cotton), San Joaquin, CA, July-August, 1995. Each bar or point is a mean of 20 observations.

 $\sim \sim$

. .

Figure 6d. NOx fluxes and associated soil parameters measured at site I (corn), Tulare, CA, August, 1995. Each bar or point is a mean of 20 observations..

Figure 6e. NOx fluxes and associated soil parameters measured at site J (corn), Plainview, CA August, 1995. Each bar or point is a mean of 20 observations.

Figure 6f. NOx fluxes and associated soil parameters measured at site K (corn), Waukena, CA, August, 1995. Each bar or point is a mean of 20 observations.

Figure 6g. NOx fluxes and associated soil parameters measured at site Q (drip grapes), Kearney Ag Center, August, 1995. Each bar or point is a mean of 20 observations.

18

 $r \rightarrow c$

Figure 6h. NOx fluxes and associated soil parameters measured at site R (flood grapes), Kearney Agricultural Center, July-September, 1995. Each bar or point is a mean of 20 observations.

Figure 6i. NOx fluxes and associated soil parameters measured at site T (oranges), Lindcove, CA, August, 1995. Each bar or point is a mean of 20 observations.

÷ • .

 $\sim s_{\rm e}$

Figure 6j. NOx fluxes and associated soil parameters measured at site V (peaches), Wawona, CA, July, 1995. Each bar or point is a mean of 20 observations.

Figure 6k. NOx fluxes and associated soil parameters measured at site W (irrigated pasture), Bonadelle Ranchos, CA, August, 1995. Each bar or point is a mean of 10 observations.

••- •

Figure 6I. NOx fluxes and associated soil parameters measured at site T (irrigated pasture), Bonadelle Ranchos, CA, August, 1995. Each bar or point is a mean of 10 observations.

Figure 6m. NOx fluxes and associated soil parameters measured at site Y (cotton), West Side Field Station, July-September, 1995. Each bar or point is a mean of 20 observations.

*с*н.

Figure 6n. NOx fluxes and associated soil parameters measured at site Z (tomatoes), West Side Field Station, July, 1995. Each bar or point is a mean of 20 observations.

curve, larger than six times the mean in some cases. This is partly because the normal rather than lognormal distribution was assumed in order to include the negative and zero value fluxes; a log normal distribution would yield smaller confidence intervals for the integral. Also, confidence bounds for interpolated data could only be imputed from the mean standard error of the data.

Despite these simplifying assumptions, the detail of the above methods for estimating hourly and daily NO_x fluxes makes use of the general observed behavior of these fluxes out in the field, and the flux amounts calculated here for different crop type, sites, irrigation methods, positions within a field, and dates can allow formation of hypotheses about other factors controlling NO_x flux. Using the diel relationships developed and described above, fluxes for any hour of any day can be estimated based on the application of the curve to a measured or estimated maximum hourly flux. Values for the curves are provided in a computer file (Appendix H.; Diskette 2; File: Diel.xls)

2.2.2.2 Daily Maximum Fluxes for NO_x.

In our original sampling plan, we developed a stratified sampling scheme that would maximize variation in what, based on the literature and our own experience, we expected to be the major controls on NO_x flux -- crop type, soil type, and fertilization/irrigation effects on soil inorganic N and water filled pore space. Using this sampling design, we can ask:

- 1) Do crops differ with respect to NO_x flux?
- 2) Do site means differ on the basis of broad soil types (basin vs. fan)?
- 3) Do site means differ within a crop based on soil type or fertilization/ irrigation regime?
- 4) Are our intensive study sites representative of the extensive sites within the crop type?

Analyses of variance and means comparisons were performed using daily maximum NO_x fluxes averaged for each crop-site-date combination, and weighted by position (e.g. % ridge vs. % furrow). Differences in means were considered to be significant at P < 0.05.

To determine if there were differences among crops in NO_x flux, a one way ANOVA was performed using crop as a factor, and all sites and dates within a given crop as replicates. The model was weighted by the number of dates that each site was sampled. While Figure 7 shows substantial differences in maximum NO_x fluxes among crop types, the variability within crop was so large and nonuniformly distributed among crops, that no significant differences among crops could be detected using parametric statistics. However

Figure 7. Mean mid-day NOx fluxes averaged for each crop measured in the San Joaquin Valley, July-September, 1995. Values are means of 1 - 5 sites per crop type (see Figure 8); 10 - 660 chamber measurements were performed at each site.

the non-parametric Kruskal-Wallis Rank Sum Comparison among crops identified significant differences among crops (P < 0.01, Figure 7). Figure 8 clearly shows the large and nonuniform variability within a crop.

To determine distinguishable differences among the sites we sampled (not categorized on basis of crop) a one way ANOVA was performed with site as the factor and date as replication. Tukey's honestly significant difference (HSD) test was performed to identity specific differences. Site J (corn) was different from sites K (corn), Q (grapes), and Y (cotton), and site D (cotton) was different from site Y (cotton) (Figure 8). All other comparisons were indistinguishable.

To determine if basin and fan soils yielded different NO_x fluxes, a 2-way ANOVA was performed. Crop type was treated as a blocking factor and soil type as the treatment effect. The model was weighted by the number of dates each site was sampled. No significant effects were detected. While no differences in soil type could be detected from simple ANOVA analysis of basin vs. fan soils, the soil texture variable was found to be important in regression model analysis (see 2.3.3.2).

To determine if site means differed within a crop and if our intensive sites were representative of their crops, we performed separate ANOVAs for each crop. Each ANOVA was a one-way design using site as the factor and date as the replication. Means were compared using Tukey's HSD (honestly significant difference) test. Orange, peach, and tomato crops were only sampled at one site each. For the crops sampled at multiple sites, there were no site differences for alfalfa, almonds, cotton, or irrigated pasture (Figure 8). For corn, site J was higher than site K; site J had been fertilized shortly before sampling while sites I and K had not. For grapes, all three sites were different from each other, in the order L > R > Q. Site L had an oat and vetch cover crop planted in alternating rows the previous October. In February the grower manured the cover crop rows and ripped the other rows. The management of site L resulted in high NO_3^- concentrations (37-47 ug-N g⁻¹) during the summer sampling period. Sites R and Q were both at Kearney, but site R was flood irrigated and site Q was drip irrigated. The flood irrigated site, Q, had numerous observations with WFPS greater than 8% which generally corresponded to high NO_x fluxes. The drip irrigated WFPS were mostly less than 3% and generally had low but measurable NO_x fluxes. This association of low but measurable NO_x fluxes with very dry soils is notable in the overall data set (see Figure 9). Sugar beet site U was different from H, N, and S but this difference could not be

Figure 9. Comparison of NOx flux (ng-N cm⁻² hr⁻¹) measured in the San Joaquin Valley, July-September, 1995 to predictions of NOx flux estimated by the Davidson CASA model from water-filled pore space.

simply related to soil type or texture, fertilization or irrigations or WFPS.

We performed intensive and extensive sampling on only one crop type, cotton, for which two sites were sampled intensively and two extensively. Based on daily maximum NO_x fluxes, the sites extensively sampled were not distinguishable from the sites intensively sampled.

2.2.2.3 Soils and Process Data.

Figures 6a through 6n provide summaries of NO_x fluxes from intensively sampled sites and the associated inorganic N, temperature, and soil water parameter (WFPS). Fertilization events are noted in the sampling time frame for sites B, C, and J (Figures 6a, b, and e). Regression analyses for NO_x and these soil variables are presented in 2.3.3.2.

 NO_x flux was not significantly correlated with either nitrification potential or gross nitrate production (correlation coefficients of -0.0005 and +0.023 for nitrification potential and gross nitrate production, respectively). See Figures 10 and 11 for scatter plots.

2.2.2.4 Results Summary.

In general, there was substantial variability in NO_x fluxes among crops, with irrigated pastures, almonds, and tomatoes having high fluxes relative to other crops (Table 8). For some crops variability within crop was quite large, yet in other crops substantially less. Due to the high and nonuniform variability within crops, crop differences could not be detected by ANOVA analysis. A nonparametric test did, however, confirm significant differences between crop types. Variation among different fields of single crop types was also large, sometimes significant, and appeared to be related to close temporal proximity to a fertilizer event and WFPS; time from fertilization seemed to be important within a 2-3 week window after fertilization. Over the summer sampling schedule, three sites were sampled within three weeks of a fertilization event (B, C, and J); all three sites showed elevated NO_x fluxes after fertilization which declined with time from fertilization application. Within a given site, fluxes varied more than a factor of 10 over time, probably as a consequence of combined changes in soil inorganic N and in water filled pore space.

2.3 Task III. Soils Emissions.

The approach taken above (emphasizing systematic studies spanning a range of crop, soil, and management conditions) allows development of emissions estimates for the San Joaquin Valley using several different approaches. In the following sections we describe the

		Site mean	Overall crop	Overall crop
			mean	mean
Crop	Site	(ng-N cm ⁻² h ⁻¹)	$(ng-N cm^{-2} h^{-1})$	(g-N_ha ⁻¹ hr ⁻¹)
Corn	J *	15.689	5.4	0.54
Corn	Ι	0.165		
Corn	Κ	0.404		
Grapes	R	5.358	5.8	0.58
Grapes	L	10.081		
Grapes	Q	2.100		
Almonds	B*	7.121	6.4	0.64
Almonds	C*	5.639		
Oranges	Т	1.447	1.4	0.14
Peaches	V	0.990	1.0	0.10
Cotton	Y	0.902	4.6	0.46
Cotton	D	17.530		
Cotton	E	2.113		
Cotton	F	2.445		
Cotton	G	0.132		
Sugar beets	н	0.713	1.7	0.17
Sugar beets	Ν	0.940		
Sugar beets	S	0.086		
Sugar beets	V	5.047		
Tomatoes	Z	7.246	7.2	0.72
Alfalfa	Α	5.247	2.9	0.29
Alfalfa	D	0.869		
Alfalfa	Р	2.473		
Irrigated	Μ	10.956	9.1	0.91
pasture				
Irrigated	W	9.459		
pasture		6.000		
Irrigated	Х	6.829		
pasture				

Table 8. Mean hourly NO_x fluxes, based on measurements taken mid-day in each site. Site means include 10 - 660 chamber measurements, weighted by area of each position. Crop means are means of 1 - 5 site means.

*Average values include measurements taken within two weeks following fertilization (See Table 3 for fertilizer schedule, and Figures 6 a, b, and e for changes in NO_X flux following fertilization).

7...

Nitrification Potential (ug N/g/da)

Figure 10. Relationship of NOx flux to nitrification potential measured in the San Joaquin Valley, July-September, 1995. Each point is one NOx flux measurement with its corresponding nitrification potential measurement.

Figure 11. Relationship of NOx flux to gross nitrate production measured in the San Joaquin Valley, July-September, 1995. Each point is one NOx flux measurement with its corresponding gross nitrate production measurement.

analytical and statistical approaches taken, and present results of the analyses. We will describe 1) extrapolations using maximum hourly and daily fluxes together with a GIS data base of the crop types in the counties of the San Joaquin Valley; 2) development of statistical models relating NO_x flux to other site and soil variables; 3) comparisons to other models.

2.3.1 Extrapolation Approach.

First and most simply, we have used information on NO_x emissions over time in each crop type times the area of that crop type to calculate total daily, weekly, and monthly fluxes in the San Joaquin Valley during July, August and early September.

2.3.1.1 GIS-Based Crop Maps and Extrapolation Approaches.

Crop distribution maps were produced using ARC/INFO 7.0.3 and ArcView 2.1. The maps are based on data obtained from the Air Resources Board, and the original source of the data was the California Department of Water Resources (DWR). The data covers parts of seven counties in the San Joaquin Valley; no data was available for Stanislaus county. It should be noted that the available data were not comprehensive. Fresno, Kern, Madera, Merced, and Tulare counties are covered only in the center of the Valley; San Joaquin and Kings counties are covered in their entirety. In this analysis, we assume that the non-covered areas were not under agriculture.

It was necessary to make several assumptions while analyzing the data. The DWR data showed a small percentage of the sites (less than 1%) planted in several crops or rotating crops throughout the year. In these instances, the site was assigned a code for only one of the crops. The following order of preference was used: grapes > tropical fruits > deciduous fruits and nuts > truck crops > pasture > field crops > rice > grain. For example, a site which was planted in both tomatoes (a truck crop) and corn (a field crop) would be assigned the code for tomatoes. Therefore, there is a slight bias in the analysis toward crops appearing earlier in the above list.

The DWR data assigned a small percentage of the sites (less than 0.1%) ambiguous codes. These sites were included as "unclassified" for the purposes of this analysis, except for sites assigned a code "W", which were assumed to be water.

The DWR data provided more detailed and specific crop classifications than were represented by our gas and soil sampling, so it was necessary to simplify the data in several ways. For this analysis, if a site was planted with one of the crops identified in Section 2.1.1 (Table 1.) as a dominant San Joaquin Valley crop, it was assigned a code for that specific crop. Otherwise, the site was assigned a code that only identified the broad category to which the crop belonged.

A few broad categories of data were concatenated. Sites coded as "entry denied", "outside the zone of study" and "not surveyed" were all included as "unclassified" for the purposes of this analysis. Sites coded as "native classes", "native vegetation" and "riparian vegetation" were all included as "native vegetation." Urban classes were not differentiated for this analysis.

The broad category of "Vegetables, as defined in the County Agricultural Commissioners's Report Data (CACRD), was identified as a dominant San Joaquin Valley crop. The DWR data categorized crops somewhat differently. Table 9 below shows the crop components of each category. It should be noted that the CACRD's category "vegetables" is comparable to the DWR's category "truck crops" except for the inclusion of dry beans.

Table 9 Comparison between crop categories used by the 1993 County Agricultural Commissioners' report and the Department of Water Resources Database for the San Joaquin Valley.

<u>Crop Category</u>	Crops Included					
Cotton	cotton					
Corn	corn					
Sugar beets	sugar beets					
Alfalfa	alfalfa					
Irrigated pasture	non-alfalfa, irrigated pasture					
Vegetables	dry beans, green beans, cole crops, carrots,					
	eggplant					
Prunus	almonds, apricots, peaches, nectarines, plums,					
	prunes					
Citrus	citrus					
Department of Wate	er Resources Categories					
Crop Category	Crops Included					
Grains	barley, wheat, oats, miscellaneous and mixed					
	grains and hay					
Field crops	cotton, safflower, flax, hops, sugar beets, corn,					
_	grain sorghum, sudan, castor beans, dry beans,					

sunflowers, miscellaneous

1993 County Agricultural Commissioners' Report Categories

Pasture	alfalfa, clover, native, turf farms, mixed and miscellaneous
Truck crops	artichokes, asparagus, green beans, cole crops, carrots, celery, lettuce, melons, onions and garlic, peas, potatoes, sweet potatoes, spinach, tomatoes, flowers, tree farms, berries, peppers, mixed and miscellaneous
Deciduous fruits and nuts	apples, pears, cherries, walnuts, pistachios, figs, almonds, apricots, peaches, nectarines, plums, prunes, miscellaneous
Citrus and subtropical fruits Grapes Idle lands	citrus, dates, avocados, olives, kiwis, jojoba, eucalyptus, miscellaneous table, wine, raisin recently cropped land, land being prepared for cropping
Semi-agricultural lands	farmsteads, livestock feed lots, dairies, poultry, miscellaneous

Once the spatial distribution and area of relevant crop types are available, extrapolation of NO_x flux can utilize measured fluxes (ng-N cm⁻² h⁻²), calculated daily fluxes (g m⁻² day⁻¹), calculated monthly fluxes and so on. For this analysis, we choose to present the mean measured hourly fluxes per crop type (T_{able} 8). Our assumption here is that the mean flux of all sites within a type accurately represents the mix of high to low fluxes that are occurring across the valley at any one time and that result from variation in management within that type. This variation includes response to fertilizatoin. Alternatively, we could have extrapolated using the maximum site values to indicate spatial characteristics of flux under field conditions leading to high fluxes.

2.3.1.2 Results.

Table 10 presents the area (in hectares) of each major crop type in the Valley, based on the GIS-based California Department of Water Resources data base. The areas of the different crop types calculated from the GIS-based data base do not agree perfectly with our initial estimates derived from the 1993 County Agricultural Commisioners' Report (Table 1). However, the two area estimates are typically within 85% of each other. It is not within the scope of this project to examine the basis for disagreement in the two estimates; however, differences may have arisen from different definitions of crop classes, from survey errors, or simply Table 10. Area (ha) occupied by major land use types in San Joaquin Valley counties. (Source: California Department of Water Resources, data collected between 1987 and 1993.)

				Cultivated land						
County	Grains	Rice	Field crops	Pasture	Truck crops	Deciduous fruits & nuts	Tropical fruits	Grapes	Idle land	Cultivated Area
Fresno	51384.3	1787.5	175333.5	61240.1	62177.9	44462.9	10964.7	98779.6	5596.3	511726.9
Kern	24972.0	231.2	179413.3	48606.6	27245.5	56449.2	20367.9	39197.3	22145.3	418628.4
Kings	16392.2	0.0	152740.8	26681.7	8245.4	11631.0	557.4	2055.8	28320.2	246624.6
Madera	17924.3	58.3	42834.9	22333.4	2193.8	34926.0	2616.4	36955.8	1953.2	161796.1
Merced	17017.4	4737.2	57504.7	58396.9	6761.6	39275.0	67.6	7064.4	10422.1	201246.9
San Joaquin	25115.8	2192.3	62305.8	47593.3	31899.9	44211.0	203.3	27474.0	14341.8	255337.3
Tulare	42628.2	0.0	103986.7	37317.2	3936.9	46982.1	56917.0	32975.4	1803.7	326547.1
Totals	195434.3	9006.5	774119.8	302169.2	142461.0	277937.2	91694.3	244502.3	84582.7	2121907.3
% of Land	5.4%	0.3%	21.5%	8.4%	4.0%	7.7%	2.5%	6.8%	2.4%	
% of Cultivated Land	9.2%	0.4%	36.5%	14.2%	6.7%	13.1%	4.3%	11.5%	4.0%	

		-	Non-cultivat	ed land			
County	Semi- agricultural	Urban	Native vegetation	Water	Barren Iand	Not surveyed	Non-Cultivated Area
Fresno	38639.6	37273.9	123713.4	2817.8	0.0	1832.0	204276.7
Kern	10615.2	29974.2	429207.4	1813.2	0.0	8195.0	479805.0
Kings	4921.6	8152.3	120376.5	3352.3	0.0	10.5	136813.2
Madera	3153.1	4991.6	88059.2	480.1	0.0	3817.5	100501.5
Merced	6706.1	8850.9	155998.4	971.7	0.0	16700.5	189227.6
San Joaquin	16110.4	31026.7	87970.2	10002.3	69.5	11.0	145190.3
Tulare	7848.0	27267.5	179322.9	3449.3	364.1	0.0	218251.9
Totals	87994.0	147537.1	1184648.1	22886.9	433.6	30566.6	1474066.2
% of Land	2.4%	4.1%	32.9%	0.6%	0.0%	0.9%	

from the fact that the survey years differed. For the extrapolations, we will utilize the spatially explicit data provided by the GIS framework.

Total NO_x flux by crop type and county is given in Tables 11a and 11b. Cotton, which had an intermediate mean flux in relation to the other crops (.46 g N ha⁻¹ h⁻¹), had the highest total flux due to the large total acreage. Grapes produced the next largest amount when summed over the Valley.

Expression of NO_x emissions in terms of total fluxes, however, masks the spatial component of the fluxes that may be critical in determining air chemistry. Spatial distributions of measured average NO_x fluxes (g N ha⁻¹ h⁻¹) by county are shown in Figures 12 a-g. The spatial characteristics of fluxes are apparent for Tulare County (Figure 12g, Tables 11a and 11b), in which grapes account for 14.4% of the total area and 21.3% of the total flux. Because of the distribution of crops, highest fluxes are concentrated near the south border of the county.

2.3.2 Statistical Model Development.

2.3.2.1 Approach.

Statistical models were developed to investigate relationships between NO_x flux and various driving variables. First, a widely used empirical model by Williams, et.al., 1992, was investigated by application to the San Joaquin Valley data, and the model's explanatory ability and consistency with Williams' results were analyzed. Then, two new models with greater explanatory power were developed for 1) "point-predictive" purposes, to examine basic mechanisms at the chamber level; and 2) management purposes, to make use of measures for which published spatially explicit data are more widely available. Results of all three models were then compared.

The following model of NO_x flux was previously posed by Williams, et.al., 1992:

NO = A*exp(cT) where NO = NO emission [ng-N/m^2/s] T = soil temperature [degrees C] A, c = constants from log-linear regression

Williams, et.al., 1992, obtained their model fit by observing that NO_x flux is more nearly lognormally distributed, so that a log transform would allow a straight linear regression:

Table 11a. Area occupied by surveyed crops, mean measured mid-day NOx fluxes for each crop weighted by position, and total NOx flux for each crop summed over the 7 San Joaquin Valley counties made July-September 1995 in the San Joaquin Valley. Total NOx flux was calculated by multiplying the total acreage for a crop by the weighted mean mid-day hourly NOx flux for that crop. (Source Crop Acreages: California Department of Water Resources, data collected 1987 and 1993.)

									Weighted mean	Total
								Total Area	NOv flux	NOx flux
Surveyed Crops	Fresno	Kern	Kings	Madera	Merced	SanJoaquin	Tulare	(hectares)	(g N/ha/h)	(g N/h)
Cotton	139432.3	140077.9	100312.7	23357.7	23149.8	11926.7	63625.9	501883.0	0.46	232120.90
Sugarbeets	11988.6	4595.5	2465.6	1706.5	7093.5	17120.7	888.0	45858.6	0.17	7782.20
Corn	13322.8	2671.0	10485.6	7957.8	16851.0	26165.6	31528.8	108982.6	0.54	59232.03
Irrigated pasture	9965.0	2252.0	1715.9	6523.4	30287.7	17812.3	4371.8	72928.0	0.91	66225.88
Alfalfa	51264.5	46354.6	24965.8	15810.1	28076.1	29781.0	32945.4	229197.4	0.29	65619.21
Tomatoes	28257.9	2105.3	4774.7	758.7	3210.8	13556.9	299.1	52963.4	0.72	38377.28
Almonds	15757.9	37872.7	1280.8	18599.1	29409.9	19143.3	4801.9	126865.6	0.64	80940.23
Peaches	12133.5	1904.4	2914.3	1211.9	2005.1	1043.1	11816.7	33028.9	0.10	3269.86
Oranges	10061.6	17099.9	25.9	1776.8	36.9	0.0	46075.4	75076.5	0.14	10863.58
Grapes	98779,6	39197.3	2055.8	36955.8	7064.4	27474.0	32975.4	244502.3	0.58	142936.06
Total	390963.6	294130.7	150997.2	114657.8	147185.3	164023.6	229328.3	1491286.3		707367.23

Table 11b. Total NOx flux for each crop within 7 San Joaquin Valley counties. Total fluxes were computed by multiplying the total acreage for a crop (Table 11a) by the weighted mean midday hourly NOx flux for that crop (Table 11a).

Surveyed Crops	Fresno	Kern	Kings	Madera	Merced	SanJoaquin	Tulare
	(g_N/h)	(g N/h)	(g N/h)	(g N/h)	(g N/h)	(g N/h)	(g N/h)
Cotton	64487.4	64786.0	46394.6	10802.9	10706.8	5516.1	29427.0
Sugarbeets	2034.5	779.9	418.4	289.6	1203.8	2905.4	150.7
Corn	7240.9	1451.7	5698.9	4325.1	9158.5	14221.0	17135.9
Irrigated pasture	9049.2	2045.0	1558.2	5923.9	27504.2	16175.4	3970.0
Alfalfa	14677.0	13271.3	7147.7	4526.4	8038.2	8526.3	9432.3
Tomatoes	20475.7	1525.5	3459.8	549.7	2326.5	9823.3	216.7
Almonds	10053.6	24162.8	817.1	11866.2	18763.5	12213.4	3063.6
Peaches	1201.2	188.5	288.5	120.0	198.5	103.3	1169.9
Oranges	1455.9	2474.4	3.8	257.1	5.3	0.0	6667.1
Grapes	57746.6	22914.8	1201.8	21604.4	4129.8	16061.3	19277.4
Total	188421.9	133599.9	66988.8	60265.3	82035.3	85545.4	90510.5

Figure 12a. Estimated NO_x Emissions as a Function of Crop Type in Western Fresno County, California

Crop distribution is based on data provided by the California Department of Water Resources. Data on NO_x emissions was produced and analyzed by the University of California at Berkeley. See accompanying metadata for details. NO_x emissions (g N ha⁻¹ hr⁻¹) for each crop type are the mean values for measurements taken in 1 - 5 fields per crop type.

69

Figure 12b. Estimated NO_x Emissions as a Function of Crop Type in Western Kern County, California

Crop distribution is based on data provided by the California Department of Water Resources. Data on NO_x emissions was produced and analyzed by the University of California at Berkeley. See accompanying metadata for details. NO_x emissions (g N ha⁻¹ hr⁻¹) for each crop type are the mean values for measurements taken in 1 - 5 fields per crop type.

70

Figure 12c. Estimated NO_x Emissions as a Function of Crop Type in Kings County, California

Crop distribution is based on data provided by the California Department of Water Resources. Data on NO_x emissions was produced and analyzed by the University of California at Berkeley. See accompanying metadata for details. NO_x emissions (g N ha⁻¹ hr⁻¹) for each crop type are the mean values for measurements taken in 1 - 5 fields per crop type.

Figure 12e. Estimated NO_x Emissions as a Function of Crop Type in Eastern Merced County, California

Crop distribution is based on data provided by the California Department of Water Resources. Data on NO_x emissions was produced and analyzed by the University of California at Berkeley. See accompanying metadata for details. NO_x emissions (g N ha⁻¹ hr⁻¹) for each crop type are the mean values for measurements taken in 1 - 5 fields per crop type.

73

1.5

~

r

Ę

Figure 12f. Estimated NO_x Emissions as a Function of Crop Type in San Joaquin County, California

Crop distribution is based on data provided by the California Department of Water Resources. Data on NO_x emissions was produced and analyzed by the University of California at Berkeley. See accompanying metadata for details. NO_x emissions (g N ha⁻¹ hr⁻¹) for each crop type are the mean values for measurements taken in 1 - 5 fields per crop type.

Figure 12g. Estimated NO_x Emissions as a Function of Crop Type in Western Tulare County, California

Crop distribution is based on data provided by the California Department of Water Resources. Data on NO_x emissions was produced and analyzed by the University of California at Berkeley. See accompanying metadata for details. NO_x emissions (g N ha⁻¹ hr⁻¹) for each crop type are the mean values for measurements taken in 1 - 5 fields per crop type.

$\log(NO) = cT + \log(A) + error$

Any non-soil temperature effects are grossly incorporated in the A coefficient (or log(A) intercept). Note that since NO_x flux can be zero or negative, it is not strictly lognormally distributed and to date there are no satisfactory transformations to account for zero or negative observations from these "pseudo"-lognormal variables. As will be later shown below, the NO_x fluxes at or below zero exhibit different behaviors from positive fluxes, and so we could model these separately for our Point-predictive and Management models.

We applied the model of Williams, et. al. to the San Joaquin Valley data as they did for their data, using the same units of NO_x flux [ng-N m⁻² s⁻¹], and running regressions for individual sites. We used our measures of soil temperature directly, however, rather than using a derivation of soil temperature from air temperature, as Williams did. We then examined the model's explanatory ability and consistency with Williams' results.

For our more detailed Point-predictive and Management models, we utilized variables for which the collected data vary at both the site and chamber levels. The reader should refer again to Table 4 of Section 2.2.1 for a mental picture of the experimental layout. All data types collected are listed in Appendix A-2, and those relevant to a statistical model are outlined below:

Site-level variables:

Crop [categorical] Soil texture [categorical] "clayey", "loamy", "sandy"*

Fertilizer type [categorical]

 NH_4^+ -fertilizer, mixed fertilizer (both NO_3^- and NH_4^+) Fertilizer amount [numeric, but does not vary within site]

Days since last fertilizations [numeric]

Organic matter

C content [numeric, but does not vary within site]

N content [numeric, but does not vary within site] pH [numeric, but does not vary within site]

Air Temperature [one site mean per sampling period]

Chamber-level variables:

Position [categorical] Temperature soil temperature [numeric, taken for each NO_x reading]
Moisture

water-filled pore space [WFPS]
[one observation per chamber per sampling period]

NH₄⁺ content [one observation per chamber per sampling period]
NO₃⁻ content [one observation per chamber per sampling period]
NO₂⁻ content [one observation per chamber per sampling period]

NO₂ content [one observation per chamber per sampling period]

The variable sets for the two sets of models were:

Point prediction:	response = NO_x flux/hour
	explanatory variables =
	crop, soil texture category, C, N, position,
	soil temperature, WFPS, NH4 ⁺ , NO3 ⁻ , NO2 ⁻

- sub-models: same model as above, but run on subsets of the data by crop type
- Management: response = mean measured NO_x flux/hour on a day (measured between 9:30 a.m. and 3 p.m.) explanatory variables = crop, soil texture, pH, daily mean air temperature at time of flux, daily mean WFPS at time of flux, amount last fertilized, fertilizer type, days since last fertilization

sub-models: same model as above, but run on subsets of the data by crop type

*These categories include texture classes from a standard textural triangle (Brady 1974): clayey= clay, sandy clay; loamy= loam, clay loam; sandy= sand, loamy sand, sandy loam, sandy clay loam.

Soil texture was categorized into three broad classes, "clayey", "loamy", and "sandy" as indicators of the porosity of the soil and hence its interaction with soil moisture and its impedance of the escape of NO_x gas from the soil. None of the soils in our data set were of silty textures, so no category was created for silty soil textures. For other soil characteristics, in the Point model, soil organic matter is indicated by N and C content, and soil chemistry is quantified by NH_4^+ , NO_3^- , and NO_2^- contents.

The management model makes use of NO_x measurements at the site level, since the explanatory variables rely on measures that are mostly obtainable only at the site level. For routine data collected at the chamber level, we took the site means by day of observation. For diel data we took the maximum NO_x flux from the diel curves and the mean air temperature and WFPS for the hours between 9:30 a.m. and 3 p.m. when maximum NO_x flux occurs. The management set of variables include air temperature rather than soil temperature, since air temperature is readily available on an hourly basis from weather stations. While there is a crude linear relationship between soil temperature and air temperature, some modeling of their relationship should be done to take into account soil moisture and canopy effects if it is necessary to convert between the two measures. Soil acidity (pH) is included in the Management model but not in the Point model because one average soil pH value was measured at the site level and expressed as a mean. (The pH values were based on random soil samples collected, rather than the soils collected at chamber positions.) Soil pH is also readily available from soil databases and maps and is easily measured in the field; therefore, we retained our own field-measured pH values to fit the Management model. Fertilizer variables were used to represent the nitrogen variables of the point model, since fertilization data are presumably more available over large spatial scales than are soil N concentrations. Fertilizer types were broadly grouped into two categories: those that are NH_4^+ -based (11-52-0, (NH₄)₂SO₄, NH₃, aqua NH₃, urea) and those that utilize mixes of NO₃⁻ and NH₄⁺ compounds $(NH_4NO_3, CAN17, UN32)$; there were no sites in this study that received only NO_3^{-} -based fertilizer. The categories for the NH_4^{+} fertilizers and the mixed fertilizers are listed in the bottom of Table 4. Water-filled pore space (WFPS) is one variable that is not generally available, but it was included because it was the best available data to describe soil moisture conditions. For broad application of this model, water-filled pore space may be estimated as a function of irrigation event or precipitation event and soil texture, as has been attempted in the CASA model (Potter, et. al., 1996).

The statistical modeling strategy was to 1) postulate a basic model, 2) run diagnostics on the data to look for nonlinear relations, and 3) use goodness of fit tests to improve the model fit. The general statistical model is of the form:

$$Y = f(x1, x2, ...) + e$$

where $Y = NO_x$ flux [ng-N/cm²/hr] f = any function, to be determined x1, x2,... = explanatory variables e = error (assumed normally distributed)

A first pass at determining the function f was to postulate an additive model of the form:

$$t(Y) = a0 + f1(x1) + f2(x2) + \dots + e$$

where a = intercept t, f1, f2,... = transformations of the response and variates, not necessarily linear e = error

If a variable is categorical, such as crop, then its presence in the equation is like that of a set of dummy variables for each level of the variable, such as alfalfa, almonds, corn, etc. The fitted coefficients to these categorical variables serve as offsets to the intercept in the linear regression equation. Contrasts between levels of a categorical variable can be modeled as linear combinations that maintain relationships between levels. Here, a simple treatment contrast was used, assigning a 0 to the first level and 1 to the other k-1 of k variables. Thus the model being fit would be:

 $\begin{array}{rcl} t(Y) &=& a0 + & + f2(x2) + f3(x3) + ... + e \\ t(Y) &=& a0 + a12[crop2] + f2(x2) + f3(x3) + ... + e \\ t(Y) &=& a0 + a13[crop3] + f2(x2) + f3(x3) + ... + e \\ ... continue for each k-1 levels of crop for total k levels \end{array}$

To explore the form of the transforming functions, the Alternating Conditional Expectation (ACE) algorithm of Breiman & Friedman (J. Amer. Stat. Assoc., Vol. 80,1985), available in S-Plus software, was used. This algorithm seeks to maximize correlations between the predictor (a + f1(x1) + ...) and t(Y). The plots of the transformed variates provided clues to the form the relations between the response and the explanatory variables. Regression was performed for the two model sets using a) a straight linear model, and b) an additive model of curve fits to the transformed variates. The Chi-square test then was used to determine the importance of the variables in the model, and analysis of deviance to compare different models' goodness of fit.

In summary, our modeling involved the following:

(1) Application of Williams' simple model to the San Joaquin Valley data to validate or invalidate his model.

(2) Development of more detailed models with more explanatory variables, the chamber-level Point-predictive model and the site-level Management model, through the following procedure:

(a) Using the framework of a general additive model, diagnostics were run on the data with ACE to look for important variables and non-linearities.

(b) A straight log-linear model was fit to the data, with significant reactions retained but no transformations to explanatory variables.

(c) The same model as in (a) was refit with transformations to explanatory variables, as indicated by the ACE transformations; the goodness of fit of this new model was compared to that of the straight log-linear model in (a) through analysis of deviance.

(d) The robustness of the final model in (b) was tested by application to individual crop types.

(3) Comparison of Williams' model, the Point-predictive model, and the Management model results.

2.3.2.2 **Results.**

2.3.2.2.1 Application of Williams' Model.

Figures 13a and 13b show the results of refitting Williams' simple NO = $A^*exp(cT)$ model to the San Joaquin Valley data; tables of the fitted parameters are given below the figures of A factors. Figure 13a makes use of the San Joaquin Valley data at the chamber

Cotton

Figure 13a. "A" factors fitted to San Joaquin Valley NOx data using Williams' model: NO= A^ exp(cT), using data collected at individual chambers. NOx emissions and temperatures were measured July-September 1995.

Sites regressed separately: from regression on In(NO>0) = In(A) + cT + error

Almonds Almonds Corr

Cotton Cotton Cotton Cotton

Corn

Corn

0.0010

0.0001

0.0000

Alfalfa Aifalfa Alfalfa

_				In(A)			Α	c						
crop	site	Location	soil	intcpt	intcpt.se	intcpt.t	<u>A</u>	coeff	coeff.se	coeff.t	null.dev	deviance	%dev red.	numdata
Alfalfa	A	Firebaugh	Sandy Loam	1.451	1.985	0.731	4.2661	-0.034	0.059	-0.569	5.697	5.559	2.4%	15
Alfalfa	0	Kearney	Hanford Fine Sandy Loar	3.713	1.821	2.039	40.9771	-0.137	0.047	-2.895	19.383	13.226	31.8%	20
Alfalfa	Ρ	Kearney	Hanford Fine Sandy Loar	-0.969	2.405	-0.403	0.3795	0.024	0.073	0.330	0.614	0.606	1.3%	10
Almonds	8	Parlier	Hanford Sandy Loam	-0.570	0.326	-1.746	0.5658	-0.016	0.010	-1.662	1737.028	1728.331	0.5%	551
Almonds	С	Parlier	Sandy Loam	-1.798	0.894	-2.011	0.1656	0.042	0.026	1.642	201.743	193.708	4.0%	67
Corn	1	Tulare	Loam	-7.698	3.128	-2.461	0.0005	0.184	0.119	1.552	68.183	64.484	5.4%	44
Corn	J	Plainview	Fine Loam	-8.070	0.441	-18.298	0.0003	0.269	0.016	16.958	510.347	171.846	66.3%	148
Corn	к	Waukena	Loam	-9.434	2.312	-4.080	0.0001	0.256	0.087	2.940	67.207	57.470	14.5%	53
Cotton	D	San Joaquin	Sandy Clay Loam	-1.511	0.768	-1.967	0.2208	0.087	0.024	3.613	49.080	39.665	19.2%	57
Cotton	Е	San Joaquin	Sandy Loam	-5.383	1.861	-2.893	0.0046	0.140	0.060	2.345	74.443	63.530	14.7%	34
Cotton	F	Tranquillity	Clay Loam	-0.900	1.504	-0.598	0.4067	0.018	0.047	0.383	17,795	17.725	0.4%	39
Cotton	G	Riverdale	Fine Clay Loam	-8.277	2.885	-2.869	0.0003	0.213	0.120	1.771	23.173	18.033	22.2%	13
Cotton	Y	West Side	Sandy Clay Loam	-6.248	0.442	-14.124	0.0019	0.138	0.016	8.579	1099.908	905.124	17.7%	344
Grapes	L	Firebaugh	Loamy Sand	-8.123	1.088	-7.464	0.0003	0.256	0.033	7.870	85.589	30.335	64.6%	36
Grapes	Q	Kearney	Hanford Sandy Loam	-2.239	0.277	-8.076	0.1066	0.045	0.007	6.140	91.982	69.569	24.4%	119
Grapes	R	Kearney	Hanford Fine Sandy Loar	-0.871	0.163	-5.340	0.4186	0.026	0.005	5.147	283.531	264.731	6.6%	375
Irrigated pastul	М	Sanger	Sandy Loam	10.061	6.489	-1.551	0.0000	0.302	0.181	1.667	12.039	8.619	28.4%	9
Irrigated pastur	W	Bonadelle Ran	c Loam	-0.740	2.424	-0.305	0.4769	0.035	0.080	0.441	62.639	62.173	0.7%	28
Irrigated pastur	Х	Bonadelle Ran	c Loam	-0.956	5.944	-0.161	0.3845	0.010	0.196	0.052	74.877	74.868	0.0%	24
Oranges	т	Lindcove	San Joaquin Sandy Loarr	-4.062	0.930	-4.367	0.0172	0.093	0.030	3.097	166.795	147.430	11.6%	75
Peaches	V	Clovis	Visalia Sandy Loam Clay	-2.348	1.048	-2.241	0.0956	0.011	0.034	0.317	18.117	18.004	0.6%	18
Sugar beets	н	Mendota	Sandy Loam	-2.837	0.571	-4.965	0.0586	0.047	0.020	2.358	16.033	13.939	13.1%	39
Sugar beets	Ν	Mendota	Loam	-4.273	1.175	-3.637	0.0139	0.089	0.036	2.503	17.649	15.151	14.2%	40
Sugar beets	S	Corcoran	Sandy Loam partially dra	-5.076	1.618	-3.138	0.0062	0.052	0.043	1.195	3.751	2.918	22.2%	7
Sugar beets	U	San Joaquin	Sandy Loam	-0.846	0.583	-1.450	0.4293	0.034	0.017	2.069	16.759	14.977	10.6%	38
Tomatoes	Z	West Side	Panoche Clay Loam very	2.807	0.815	3.445	16.5655	-0.069	0.023	-2.948	163.242	152.133	6.8%	121

Irrigated pasture Irrigated pasture pasture

Oranges

Peaches

Sugar beets Sugar beets Sugar beets beets

Sugar

Tomatoes

Grapes

Grapes

Grapes

Figure 13b. "A" factors fitted to San Joaquin Valley NOx data using Williams' model: NO = A * exp(cT), using site means for all data. NOx emssions and temperatures were measured July-September 1995.

Sites regressed separately: from regression on ln(NO>0) = ln(A) + cT + errorNO responses are daily mean maximums converted to Williams' units of [ng-N/m^2/s]. Soil temperatures are the mean soil temperatures between 10 a.m. and 3 p.m.

 ~ 2

				In(A)			Α	C						
crop	site	Location	soil	intept	intcpt.se	intcpt.t	A	coeff	coeff.se	coeff.t	null.dev	deviance	%dev red.	numdat
Almonds	В	Parlier	Hanford Sandy Loam	4.597	1.790	2.568	99.233	-0.166	0.057	-2.933	52.113	34.599	33.6%	19
Almonds	С	Parlier	Sandy Loam	1.829	2.706	0.676	6.227	-0.050	0.077	-0.654	16.896	15.771	6.7%	8
Сол	1	Tulare	Loam	-1.166	7.158	-0.163	0.311	-0.050	0.274	-0.182	3.654	3.624	0.8%	6
Com	J	Plainview	Fine Loam	-14.915	2.866	-5.204	0.000	0.492	0.093	5.303	44.867	7.890	82.4%	8
Com	Κ	Waukena	Loam	-3.105	1.679	-1.849	0.045	0.021	0.059	0.356	2.008	1.958	2.5%	7
Cotton	D	San Joaquin	Sandy Clay Loam	-4.576	4.245	-1.078	0.010	0.164	0.134	1.230	8.044	5.837	27.4%	6
Cotton	Е	San Joaquin	Sandy Loam	-7.201	1.660	-4.339	0.001	0.227	0.054	4.193	2.438	0.249	89.8%	4
Cotton	F	Tranquillity	Clay Loam	7.236	4.300	1.683	1389.210	-0.248	0.134	-1.849	1.371	0.506	63.1%	4
Cotton	Y	West Side	Sandy Clay Loam	-4.887	2.415	-2.024	0.008	0.095	0.087	1.086	11.079	10.088	8.9%	14
Grapes	L	Firebaugh	Loamy Sand	-9.512	3.455	-2.753	0.000	0.301	0.104	2.876	6.407	1.247	80.5%	4
Grapes	Q	Kearney	Hanford Sandy Loam	-2.453	0.590	-4.157	0.086	0.036	0.016	2.265	3.756	2.482	33.9%	12
Grapes	R	Kearney	Hanford Fine Sandy Loa	ı -1.836	1.430	-1.284	0.159	0.013	0.041	0.315	4.450	4.363	2.0%	7
Oranges	Т	Lindcove	San Joaquin Sandy Loan	r -0.850	1.086	-0.783	0.427	0.008	0.035	0.214	0.811	0.805	0.8%	8
Sugar beets	н	Mendota	Sandy Loam	-0.625	1.508	-0.414	0.536	-0.046	0.053	-0.862	0.269	0.196	27.1%	4
Sugar beets	N	Mendota	Loam	-17.061	2.897	-5.890	0.000	0.467	0.088	5.312	2.730	0.181	93.4%	4
Sugar beets	U	San Joaquin	Sandy Loam	-0.764	2.132	-0.358	0.466	0.020	0.061	0.335	0.984	0.932	5.3%	4
Tomatoes	Z	West Side	Panoche Clay Loam ver	1.304	3.086	0.423	3.685	-0.051	0.089	-0.573	25.023	24.449	2.3%	16

level, while Figure 13b makes use of the site means of these data at the mean measured NO_x at mid-day.

Williams assumed the c parameter to remain fairly constant, while only the A factor would vary with different crop types and other soil conditions. This is in accord with our strategy here, in which the variables other than soil temperature should account for the magnitudes of the A factor in Williams' model. Ideally, in a loglinear model, the c parameter would remain constant if the soil temperature is additive with other (unknown) terms. However. without other explanatory variables, both c and A may obtain very different values in simple regressions on different data sets, especially if soil temperature is not the main driving variable at a particular site and especially if it is interactive with other driving variables. Both the c and A parameters are equally important in determining the magnitude of the predicted NO_x flux -- much attention to Williams' model has been devoted only to the A parameter. Williams, et.al., recognized the importance of at least some other variables in their efforts to extrapolate the A factor for different crop types and also different fertilizer regimes. Here, we have not averaged the fitted parameters to produce "representative" equations of crop types, because from the A and c values in the table. it is evident that there can be extreme differences between sites with the same crop, such that averaging their fitted parameters will not produce a representative equation. Also, when Williams, et.al., chose an average c parameter, they neglected to account for the standard deviation in the coefficients that were averaged (they calculated a c value of $0.071 \pm .007$, but the smallest standard deviation in one of the c's used is 0.011).

The fitted parameter values for the San Joaquin Valley data are nowhere near those calculated by Williams for the same crop type. For corn crops, Williams obtained an A factor of 9 ng-N m⁻² s⁻¹, whereas, for the chamber level data we obtained A values of 0.0001-0.0005 ng-N m⁻² s⁻¹, while for the site means we obtained A values of less than 0.00001 to 0.311. For cotton, Williams' A value was 4, whereas we found a range of 0.002-0.4 ng-N m⁻² s⁻¹ for the chamber level data. The c values for cotton range from 0.018 to 0.213, which are close to Williams' value, but in some cases the c value is negative. In Figure 13b, we see how dramatically the A and c parameters can interplay with each other in a single-variable regression, with a negative value of c offsetting a very large value of A (Cotton F). Looking at the model deviances in our applications of the model, we can see that soil temperature is highly variable in its influence on NO_x flux, accounting for anywhere from nearly 0% to 66% of the deviances of the null model. There must, therefore, be other variables that at different times or places have a strong or stronger influence on NO_x flux. We now investigate some of these.

2.3.2.2.2 Point-Predictive Model.

Alternating Conditional Expectation (ACE) transformations

The ACE transformations to NO_x and the Point-predictive model's explanatory variables are shown in Figure 14. Each plot consists of the variable data values on the x-axis and its ACE transformation on the y-axis. The transformation to the response, NO_x, is clearly of a log form over a limited range of about 0-20 ng-N cm⁻² h⁻¹, but at the other interval above 20 and less than or equal to zero NO_x flux, the transformation behavior is very different. These changes in behavior may indicate different processes operating at extreme levels of NO_x flux, and developing different models over specific ranges of NO_x may be the appropriate approach. The transformation of soil temperature appears to be of a log form, also, indicating that it may not be exponentially related to NO_x . Waterfilled pore space shows a remarkable trend of increase in NO_x flux over 0-45 percent water-filled pore space and then decrease with higher moisture contents; these trends are in accord with previous evidence of higher nitrification at moderate moisture levels, then shift to denitrification and greater impediment to NO_x escape in more anaerobic soil environments. Other variables appear to be fairly linearly related to the transform of NO_x , but all exhibit a large amount of noise at their low values, which also often include a large fraction of the data. The poor R-squared of 0.4 for the pointpredictive model indicates either the high variability of the data or the inappropriateness of a linear or additive model. Also, interaction terms may play an important role; these are produced in model equations later.

The three ranges of different NO_x behaviors are $NO_x \le 0$, $0 \le NO_x \le 20$, $NO_x \ge 20$. The transition at the $NO_x = 20$ point is not so marked, however, and the number of observations above this account for only 2 percent of the data. Given the fairly disjoint nature of the transformations from ACE at $NO_x=0$, and since 93 percent of the data occur in the interval $0 \le NO_x$, we modeled the upper two of the three ranges of NO_x flux together and separately from the lower range. (Note that we did not separate these ranges for the diel curve estimations, because there we were merely finding

Figure 14. Alternating Conditional Expectations (ACE) transformations to the variables used in the Point-Predictive Model, developed using NOx emissions and site-level variables.

Data collected in San Joaquin Valley, July-September, 1995.

rsq = 0.423867 Num obs = 2324

mean flux levels, while here we must model the driving variables, which may act differently for NO_x flux above and below zero).

Fitting of Point-Predictive Model

For $NO_x > 0$, the data are still very noisy, with persistent high variability in the low ranges of some variables, giving an R-squared of only 0.42. We first ran a full model with all interaction terms and used the Chi-square test for analysis of deviance to identify significant terms. Also, plotting out the data by individual crops allowed us to see possible interactions between crop type and other explanatory variables. This resulted in the following model with significant interactions (from now on, coefficients of terms will not be explicitly written but implied in the equations):

(#) $\log(NO) = \operatorname{crop} + \operatorname{soilcat} + \operatorname{position} + \operatorname{soiltemp} + WFPS + NH_4^+ + NO_3^-$

+ $NO_2^- + C + N + crop*soiltemp + soiltemp * WFPS * <math>NH_4^+ + WFPS * (NO_3^- + C) + NO_3^- *C + NO_2^- * N + WFPS*C*N + NH_4^+ * NO_2^- *C*N$

* indicates interaction term

The ACE transformations indicated two non-linear transformations that would improve the model fit: a concave-down transformation for water-filled pore space, and an exponential transformation for soil temperature. Water-filled pore space has been observed to be correlated with increases in NO_x flux from 0 up to around 45 percent water-filled pore space, and then with decreases in NO_x flux at higher water contents. We obtained a concave-down transformation of water-filled pore space through non-linear regression on the ACE transformed output, achieving the following:

transformed WFPS = $0.57 * \sin(WFPS/17.6 - 1) + 0.04$

(Note: Future users of the model should constrain the transformed WFPS to the half sine period and extrapolate downward, in cases where observed soil temperature is higher than the maximum in the data here (60 degrees Celsius).

Soil temperature appeared more linearly related to NO_x , and therefore we transformed (to get $log(NO_x) = ...log(soil temperature)...)$:

transformed soil temperature = log(soil temperature)

Model (#) was run with the transformed WFPS and soil temperature, adding transforms one at a time, and the deviances of the original and new model were compared. The models were run both on the entire data set (for $NO_x > 0$) and also on individual crop types. We found that the above transformations do significantly improve the model fit in their reduction of the deviances, and are therefore closer to the true relationship between NO_x flux and soil temperature and water-filled pore space.

Point-predictive model results

A listing of the final model with significant interactions retained is provided in Table 12. The t values are generally high (>2), except for tomatoes (t=0.700), irrigated pasture (t=1.784), and peaches (t=1.714). Note that the categorical variables' levels listed in parentheses simply have 0 offsets from the intercept, since this was how the contrasts between category levels were modeled. There are still considerable deviances unaccounted for by the model, but the Chi-square test was still able to show the significant variables and interactions.

The Chi-square test, interestingly, consistently showed NO₃⁻ to be less successful at explaining NO_x flux than NH₄⁺ or NO₂⁻; this low significance is likely due to the extreme non-linearities in the relation between NO_x and NO₃⁻, which we did not try to model here. Nitrate is known to exhibit high spatial heterogeneity at small scales. Most studies have suggested that nitrification (the conversion of NH₄⁺ to NO₃⁻) is the primary source for NO_x production in soils, so differences in NH₄⁺ may be more closely tied to NO_x emission than are NO₃⁻ concentrations. This is corroborated by its low significance in the model. Interestingly, however, the interaction between the transformed WFPS and NO₃⁻ shows high significance and also a tight standard error; the positive coefficient implies that if WFPS is around 45 (when its transformation is a maximum) and NO₃⁻ content is high, then NO_x flux is promoted.

All of the first-order variables are highly significant in the model. Crop effects show fairly tight standard errors, except for tomatoes. Transformed water-filled pore space, NH_4^+ , and the

Table 12. Parameters for point-predictive model developed using NOx emissions and site and chamber-level variables measured July-September 1995 in the San Joaquin Valley. Model with significant interactions, transformed soil temperature and transformed water-filled pore space, with interactions between crop and soil temperature.

- -

Variables:

"Alfalfa" "Almonds" "Corn" "Cotton" "Grapes" "Irrigated pasture" "Oranges" "Peaches" "Sugar beets" "Tomatoes"

Soil temperature NH4. NO3, NO2, C, N Soil texture category "clayey" "loamy" "sandy"

Position "canopy" "open" "furrow" "ridge"

Water-filled pore space

Call: glm(formula = log(NO) ~ crop * log(soiltemp) + soilcat + position + twfps + NH4 + NO3 + NO2 + C + N + log(soiltemp) * twfps * NH4 + twfps * (NO3 + C) + NO3:C + NO2 * N + twfps:C:N + NH4:NO2:C:N, data = as.data.frame(cbind(data[index,], twfps = pred.wfps1(wfps[index],))))

Deviance Residuals:

Min	1Q	Median	3Q	Max
-6.783	-0.746	0.114	0.900	4.164

Coefficients:

	Value	t value	
(Intercept)	10.666	6.758	1.578
	0	7.522	
cropAlmonds	-13.842	6.761	-2.047
cropCorn	-33.908	7.166	-4.732
cropCotton	-33.718	6.920	-4.872
cropGrapes	-18.203	6.781	-2.685
croplrrigated pasture	-16.161	9.057	-1.784
cropOranges	-22.429	7.473	-3.002
cropPeaches	-14.811	8.641	-1.714
cropSugar beets	-26.954	7.244	-3.721
cropTomatoes	-5.359	7.652	-0.700
soilcatclayey	0	0.387	
soilcatloamy	0.234	0.432	0.541
soilcatsandy	1.189	0.399	2.979
positioncanopy	0	0.420	
positionopen	0.442	0.113	3.923
positionfurrow	2.616	0.573	4.565
positionridge	2.651	0.573	4.624
log(soiltemp)	-3.451	1.894	-1.822
twfps	-2.248	1.929	-1.165
NH4	0.136	0.056	2.418
NO3	-0.003	0.002	-1.079
NO2	-0.104	0.232	-0.451
С	-0.429	0.257	-1.670
N	9.475	2.275	4.165
(cropAlfalfalog(soiltemp))	0	2.585	
cropAlmondslog(soiltemp)	3.975	1.897	2.095

Table 12. Con't. Point-predictive model parameters.

-	Value	Std. Error	t value	
(Intercept)	10.666	6.758	1.578	
cropCornlog(soiltemp)	9.142	2.016	4.535	
cropCottonlog(soiltemp)	8.789	1.937	4.538	
cropGrapeslog(soiltemp)	4.767	1.894	2.517	
croplrrigated pasturelog(soiltemp)	4.555	2.586	1.762	
cropOrangeslog(soiltemp)	6.247	2.115	2.953	
cropPeacheslog(soiltemp)	3.708	2.476	1.497	
cropSugar beetslog(soiltemp)	6.980	2.024	3.449	
cropTomatoeslog(soiltemp)	1.290	2.142	0.602	
log(soiltemp):twfps	0.939	0.563	1.667	
log(soiltemp):NH4	-0.035	0.017	-2.131	
twfps:NH4	0.270	0.124	2.172	
twfps:NO3	0.021	0.004	4.852	
twfps:C	0.685	0.499	1.372	
NO3:C	0.009	0.003	2.812	
NO2:N	0.620	2.448	0.253	
log(soiltemp):twfps:NH4	-0.069	0.037	-1.878	
twfps:C:N	-3.126	1.369	-2.283	
NH4:NO2:C:N	-0.010	0.017	-0.603	

- - - - -

(Dispersion Parameter for Gaussian family taken to be 1.936568)

Null Deviance: 7305.35 on 2323 degrees of freedom Residual Deviance: 4421.184 on 2283 degrees of freedom

Analysis of Deviance Table Gaussian model Response: log(NO)

	Df	Deviance	Resid. Df	Resid. Dev	Pr(Chi)
NULL			2323	7305.350	
crop	9	1113.780	2314	6191.570	0.00000
log(soiltemp)	1	326.736	2313	5864.834	0.00000
soilcat	2	26.799	2311	5838.036	0.00000
position	3	56.270	2308	5781.765	0.00000
twfps	1	503.055	2307	5278.711	0.00000
NH4	1	51.293	2306	5227.417	0.00000
NO3	1	1.773	2305	5225.644	0.18296
NO2	1	7.846	2304	5217.798	0.00509
С	1	38.015	2303	5179.783	0.00000
Ν	1	27.936	2302	5151.847	0.00000
crop:log(soiltemp)	9	574.338	2293	4577.510	0.00000
log(soiltemp):twfps	1	0.629	2292	4576.881	0.42771
log(soiltemp):NH4	1	11.144	2291	4565.736	0.00084
twfps:NH4	1	36.165	2290	4529.571	0.00000
twfps:NO3	1	57.517	2289	4472.054	0.00000
twfps:C	1	12.307	2288	4459.747	0.00045
NO3:C	1	18.676	2287	4441.072	0.00002
NO2:N	1	0.417	2286	4440.655	0.51849
log(soiltemp):twfps:NH4	1	8.922	2285	4431.733	0.00282
twfps:C:N	1	9.845	2284	4421.889	0.00170
NH4:NO2:C:N	1	0.704	2283	4421.184	0.40132

interaction between them are very significant, as is organic matter (C, N), confirming our expectations about the influence of these variables on NO_x flux. The coefficient to WFPS is negative, because it turns out that the interactive effect of WFPS with soil temperature takes over the depressing effect of WFPS > 45% on NO_x flux; this interaction is always negatively correlated with WFPS, and the two may switch sign for different data sets. In the full-data model, this interaction appears as not significant, but as we see later, it can often be highly significant within crop types, so it is retained in the model.

The relative effects of crop, soil texture, and position are graphically shown in Figures 15 a, b, c, and d. Note that these are relative effects, with shared additive effects contained in the intercept of the regression equation. Recall that the first level in each category has a zero offset relative to the intercept. The effects are additive in the log model, and therefore multiplicative in the effect on actual NO_x. Corn and cotton crops have lowering effects on NO_x emissions, controlling for the other variables, while almonds reduce NO_x less. The other crops cannot really be differentiated from each other, given the standard errors on their coefficients.

For soil temperature effects, note that there are two coefficients to take into account, that for soil temperature and that for the crop interaction with soil temperature. The crop-soil temperature variable is a dummy variable whose coefficient is added to that for soil temperature to obtain the net soil temperature effect for a crop. The crops in fact have different NO_x flux responses to soil temperature, as shown in Figure 15a. Alfalfa and tomatoes show decreases in NO_x flux with temperature, while corn and cotton show strong increases. The other crops are in between, with more probable increases in NO_x flux with temperature; these crops are not distinguishable from each other.

Clayey and loamy soil textures are no different in their effects on NO_x emissions, but sandy soils appear to produce higher emissions than the other two. Similar results have been found in clay vs. Sandy tropical forest soils (Bakwin, et. al., 1990). Position in a field does not seem to play a major role, since other explanatory variables account for the differences between positions; this variable appears as significant in the model, because canopy/open crops do differ from ridge/furrow crops, but within these types, position makes little difference (besides the soil temperature and WFPS differences).

90

Coefficients derived from fitting Point-Predictive Model to NOx flux data collected from $-9\,1$ San Joaquin Valley, July-September, 1995.

Point-Predictive Model Robustness

To test the robustness of the model we ran the same model above on each crop individually. Results of these tests are provided in Appendix F. Given our knowledge about the diversity of site and crop effects, the same variables should not have the same level of significance for all crop types. Also, because of the deviances still unaccounted for by the available variables, we expect there to be other unknown variables or non-linear relations. We therefore looked for which variables and interactions were especially important for a particular crop.

The model was able to account for anywhere from 16% (almonds) to 73% (alfalfa) of the deviances of the null model, improving somewhat on Williams' soil temperature model when non-soil temperature variables are also important, but also indicating that there is still unexplained variation. The variables and interactions that showed up as significant most consistently among the crop types were soil temperature, water-filled pore space, the interaction between water-filled pore space and NH₄⁺, and the interaction between water-filled pore space and soil temperature. Other higher-order interactions varied in their importance for different crops. Less frequently, NH₄⁺, NO₃⁻, and C, were among the very important explanatory variables.

For alfalfa, soil temperature accounted for 46% of the model deviance, and water-filled pore space accounted for 12%. For corn, the significant interactions in addition to soil temperature and WFPS were organic matter content (C and N percent) (P < 0.0009 and P < 0.002, respectively), NO₃⁻ (P < 0.003), the interaction between NH₄⁺ and WFPS (P < 0.002). For cotton, the additionally significant variables were the same as for corn, except that NO₃⁻ was highly insignicant. For peaches, no higher-order interactions were significant.

The fitted coefficients for the separate regressions vary between crops, meaning that these coefficients are not robust for transfer of the model to other systems. However, the relative differences between crops in terms of the soil temperature-crop interaction are preserved from the full data model. The coefficients for water-filled pore space and for its interaction with soil temperature seem individually inconsistent, but they are consistently opposite in sign, indicating when one of the two variables has greater influence than the other, or when soil temperature switches in effect between crop types to negative or positive. The interactions $WFPS*NH_4^+$ and $WFPS*NO_3^-$ show good consistency in relative magnitude of their coefficients. The intercept, of course, changes depending on which categorical variable levels are relevant.

2.3.2.2.3 Management Model.

Management Model ACE Transformations

The ACE transformations to the variables of the management model are shown in Figure 16. Fewer observations were available for this model: taking the site means reduced the data set size (but also removed the high variability of the chamber level); fertilizer data are not applicable to irrigated pasture; there were too few days of observations for alfalfa and peaches. Transformations for crop, soil texture, air temperature, and NO_x flux are very like those for the same variables in the point-predictive model (air temperature in the management model in place of soil temperature). Removing the chamber-level variability has greatly reduced the data size and hence increased the uncertainty of estimation and led to some overfitting by ACE. This overfitting is seen in the lack of smoothness in the transformations of air temperature and pH. Cross-validation by modeling from subsets of the data shows that the transformation for air temperature is between a log or linear transformation, such that the exponential relation between temperature and NO_x flux in Williams' model may be adequate, after all. Cross-validation also showed the concave downward trend centered at 45 % WFPS is still additionally, the low-WFPS variability that was seen preserved here; in the point-predictive model now is more distinctly a spike of NO_x flux at WFPS < 2%. This spike at very low WFPS and high temperature has been observed previously (Davidson et. al., 1993).

The pH transformations show some interesting trends. At very low pH (<4.0), there may be extremely high NO_x flux (these low pH levels with high NO_x occurred at site D, cotton on sandy soil with mixed fertilizer, with an air temperature range of 25-38 degrees Celsius). No sites had pH levels between 4 and 6.4, but the ACE transformations indicate much lower NO_x flux at higher pH, with a local peak at pH = 7.5. The time since last fertilization (days) does not have any meaningful relation to NO_x flux here. According to previous experience with fertilization events, the NO_x flux is only affected during a very short time (1-2 weeks) immediately after the fertilization; only three sites here were fertilized during the study period. Fertilizer amount also has little meaningful relationship to
Figure 16. Alternating Conditional Expectations (ACE) transformations to the variables used in the Management Model, developed using NOx emissions and site-level variables.

Data collected in San Joaquin Valley, July-September, 1995.

rsq = 0.679133 Num obs = 139

÷

ſ

 NO_x flux, because our data do not provide comparisons of several fertilization events on a particular site or crop type. It appears that fertilizer types utilizing a mix of NO_3^- and NH_4^+ tend to promote greater NO_x flux than simple NH_4^+ -based fertilizers, which is contrary to our expectations about nitrification. Again, there may be other confounding interactions, which we investigate in the regression models.

Fitting the Management Model

We ran the management model with all potentially meaningful interactions and looked for significant components, using the Chisquare test (not all interactions of higher orders were tested here, due to the smaller data set for the Management model). The resulting model with significant interactions and selected interactions of interest was (coefficients are implied again for each term):

log(NO) = crop + soilcat + airtemp + tWFPS + pH + crop*airtemp + fertcat*(fertamt/fertdt)

> where fertcat = fertilizer category fertdt = days since last fertilization "*" denotes interaction terms

The transformation of WFPS provided a better model fit than the untransformed WFPS. The log transformation for air temperature, however, was not significantly better than the untransformed variable, and so closer investigation should be done on the relation between air temperature and soil temperature. We did not attempt to model the small spike of NO_x at WFPS < 2%, but this may be interesting for future work.

For pH, we maintained a linear term in the model, as the small hump in the ACE transformation may be due to site effects in this data set; however, the downward trend in NO_x flux with increasing pH is significant to preserve. Previous studies of tropical soils have found an increase in NO_x flux following an arctan-shaped curve from pH ranging from 4.0 to 6.8 (Motavalli, et.al., 1996), with exceptions for acid soils with high nitrification rates (Stams, et.al., 1990; Parton, et.al., 1996). Our data included a soil with pH slightly less than 4.0, and other soils with pH levels from 6.4 to 9.0. While we use a rough linear term here, it may be desireable in future modeling to fit a transformation piecewise for pH < 4.0, pH = 4.0 to 7.5, and pH > 7.5. The last term in the equation, fertcat:(fertamt/fertdt), expresses the decay in effect of a fertilization event with time, with different responses for NH_4^+ fertilizers versus mixed fertilizers. We did not find it realistic to model the three fertilizer variables as independent, but, combined, they indicate the soil chemistry on the day of a NO_x measurement.

Management Model Results

The regression results for the management model are shown in Table 13. With the chamber-level variation removed, these variables were able to explain 61 percent of the deviances of the model with fewer parameters than the point-predictive model. However, the management model was less able to distinguish the amount of influence of different levels of certain categorical variables.

All terms are highly significant at P < 0.002. Unlike in the Point model, the interaction between air temperature and WFPS did not show significance in the Management model, and so this interaction was dropped.

Figures 17 a, b, c, d show the coefficients for the categorical The interaction between air temperature and crop (Figure variables. 17a, sum of airtemp coefficient and crop:airtemp coefficients), shows the same pattern as the crop:soiltemp interaction of the pointpredictive model, which implies that air temperature may be a good proxy for soil temperature in predicting NO_x flux at the site level. The coefficients that resulted for the crops (Figure 17 b) also show similar relative trends as in the point-predictive model; however, the differences are not as pronounced. Almonds, grapes, and tomatoes would tend to show greater NO_x flux than other crops, but their overall effect on NO_x flux, positive or negative, is uncertain due to the size of the standard errors on their coefficients. Note that values are relative effects, since shared effects are contained in the regression equation intercept. If the intercept is taken into account, then it appears that the crops other than almonds, grapes, and tomatoes would tend to have a decreasing effect on NO_x emissions from the soil. The effects of soil texture and fertilizer type are shown in Figures 17 c and d. Soil texture effects show the same trends as in the point-predictive model but are not as clearly different, due to the standard errors in the coefficients; the tendency appears to be that sandy soils promote NO_x emissions the most, which was more confidently differentiated in the point-predictive model.

Table 13. Parameters for management model developed using NOx emissions and site variables measured July-September 1995 in the San Joaquin Valley. (Model with selected interactions and transformations to air temperature and wfps.)

Variables:

crop "Alfalfa"(*) "Almonds" "Corn" "Cotton" "Grapes" "Irrigated pasture"(*) "Oranges" "Peaches"(*) "Sugar beets" "Tomatoes" soil texture category "clayey" "loamy" "sandy"

fertilizer category "NH4fert" "mixedfert"

fertilizer amount days since last fertilized

water-filled pore space

response: NO > 0

air temperature

*Alfalfa and peaches are not included, because there were too few observations at the site level. Irrigated pasture is excluded, because fertilizer type and date are not available.

Call: glm(formula = log(NOmax) ~ crop + soilcat + airtemp + twfps + pH + crop:airtemp + fertcat:I(fertamt/fertdt), data = as.data.frame(cbind(sitemeans[index,], twfps = pred.wfps1(wfps[index], junk1))))

Deviance Residuals:

	Min	1Q	Median	3Q	Max
	3.304	-0.577	0.113	0.604	2.401
Castlinianta					
Coemcients:		Value	Std Error	t value	
(1-1			2 160		
(Intercept)		-0.004	3.169	-0.210	
(cropAlmonds)		0.000	3.664		
cropCorn		-8.284	3.792	-2.185	
cropCotton		-3.679	3.122	-1.178	
cropGrapes		0.956	3.826	0.250	
cropOranges		-3.901	4.510	-0.865	
cropSugar beets		-3.969	3.538	-1.122	
cropTomatoes		2.978	3.197	0.931	
(soilcatclayey)		0.000	0.911		
soilcatloamy		1.727	0.946	1.825	
soilcatsandy		3.000	0.876	3.425	
airtemp		0.011	0.092	0.121	
twfps		1.843	0.589	3.126	
рH		-0.194	0.133	-1.457	
(cropAlmondsairtemp)		0.000	0.119		
cropCornairtemp		0.299	0.123	2.425	
cropCottonairtemp		0.119	0.101	1.178	
cropGrapesairtemp		-0.019	0.121	-0.158	
cropOrangesairtemp		0.099	0.156	0.636	
cropSugar beetsairtemp		0.117	0.114	1.033	
cropTomatoesairtemp		-0.002	0.099	-0.016	
fertcatNH4fertI(fertam	t/fertd1	-0.538	0.162	-3.314	
fertcatmixedfertl(ferta	mt/fert	0.000	0.016	-0.023	

(Dispersion Parameter for Gaussian family taken to be 1.110171)

Null Deviance: 340.3161 on 138 degrees of freedom Residual Deviance: 132.1103 on 119 degrees of freedom Table 13 Cont'd. Management model parameters.

Besponse: log(NOmax)					
ricoponico: log(ricomax)	Df	Deviance	Resid. Df	Resid. Dev	Pr(Chi)
NULL			138	340.316	
crop	6	52.498	132	287.819	0.0000
soilcat	2	12.991	130	274.828	0.0015
airtemp	1	19.245	129	255.583	0.0000
twfps	1	63.505	128	192.078	0.0000
pH	1	17.941	127	174.137	0.0000
crop:airtemp	6	29.447	121	144.690	0.0001
fertcat:I(fertamt/fertdt)	2	12.580	119	132.110	0.0019

Analysis of Deviance Table Gaussian model

Ę

-

2

1

.1

Coefficients derived from fitting Management Model to NOx flux data collected from San Joaquin Valley, July-September, 1995.

The effect of fertamt/fertdt is contrary to our expectations, with strong differentiation between fertilizer categories. NH_4^+ -fertilized crops have lower NO_x emissions (negative coefficient) with increasing fertilizer content, while crops with mixed fertilizer have no or possibly increasing effect on NO_x emissions. Further investigation must be carried out to determine the extent to which these fertilizer measures can be surrogates of soil chemistry.

Transformed water-filled pore space shows a tight standard error, with t=3.126. Soil pH has a negative coefficient (t=-1.457), implying an overall decline in NO_x flux with increasing pH.

Management Model Robustness

As for the point-predictive model, we applied the management model to subsets of the data by crop to test the robustness and to look for differences in significant terms between crops. Alfalfa, irrigated pasture, and peaches were excluded due to too few observations at the site level, so the crops analyzed were almonds, corn, cotton, grapes, oranges, sugar beets, and tomatoes. Soil pH was excluded for oranges, because there was only one site and hence one pH value for oranges. The model is able to account for from 16% of the variation in NO_x flux at 24 degrees of freedom (d.f.) (almonds) to as high as 96%, 13 d.f. (corn), and 76%, 23 d.f. (cotton).

Which terms are of greatest significance varies between crop types. Air temperature was strongly explanatory for almonds (P < 0.09), corn ($P \sim 0$), cotton ($P \sim 0$), and sugar beets (P < 0.04), but not so for grapes (P > 0.20) or tomatoes (P > 0.80). For oranges, the model shows poor P values (>0.60) for all terms, which is the same case for the point model. Water-filled pore space is significant for corn (P < 0.07), cotton ($P \sim 0$), grapes (P < 0.1), and tomatoes (P < 0.001), but not for almonds or sugar beets. Soil pH is significant for almonds (P < 0.08), corn (P < 0.001), and cotton (P < 0.02), but not for the other crops.

The fertilizer indicator, fertamt/fertdt, showed significance only for corn (P < 0.002), with coefficients following the trend of the full data management model, lower for NH₄⁺ fertilizers, and higher for mixed fertilizers. This low significance means that better measures need to be found to estimate soil chemistry for NO_x prediction at the site level.

The parameter coefficient magnitudes vary considerably among the model fits to different crops. This lack of robustness is due to an inadequate amount of variation in the small data subsets for the different crops. The Management model with the full data set is consistent with our scientific knowledge of the effects of temperature and WFPS, may provide new insight on pH, but requires better estimators of soil N. The most consistently significant variables continue to be temperature and WFPS.

2.3.2.2.4 Comparison of Models.

We compare now Williams, et.al.'s soil temperature-based model, the point-predictive model, and the management model, and examine where aspects of one model improve on the deficiencies of another. For consistency of comparison, we look at only those crops for which data were fully available for the management model, which had the most limited data set. We will not be exhaustive in our comparison here, but will note important differences between the models. Note that when soil temperature or air temperature are mentioned in relation to the point-predictive and management models, it is their transformation that is being discussed.

With Williams' model (see again Figures 13a and b), the one explanatory variable, soil temperature, derived from air temperature data, was inconsistent at explaining almonds, corn, cotton, grapes, sugar beets, and tomatoes, accounting for less than 7% of the variation in NO_x flux at several sites, while accounting for as much as 80% at other sites within the same crop. For almonds, the point-predictive model shows that WFPS, NO₃, the interaction between soil temperature and and NH4⁺, the interaction between WFPS and NH_4^+ are all even more important than soil temperature, which itself is significant at P < 0.0005, thus explaining both site differences and the influence of WFPS. In the management model, pH is also an important explanatory variable. For corn, the pointpredictive model shows soil temperature to be the most important driving variable but also organic matter, WFPS, and several interactions with WFPS. The management model additionally shows some indicator of remaining fertilizer by type may be important. NO_x flux from tomato crops, for which the Williams model explains less than 7% of the NO_x variation on a chamber basis and less than 3% on a site basis, are consistently shown by both the pointpredictive model and the management model to be very strongly explained by WFPS (P < 0.0001, 21% variation

explained by WFPS (F < 0.0001, 21% variation explained by WFPS alone in the point-predictive model, and 61% by WFPS in the management model).

 NO_x flux from orange crops is consistently poorly explained by all three models, although in the point model temperature is

101

significant (10% of NO_x variation). In Williams' and the pointpredictive model, soil temperature is quite evidently important, a ccounting for 80% of the NO_x variation on a site basis at one site (but only 2% at another in the Williams model). The point-predictive model confirms that WFPS is highly significant, and shows that soil chemistry (soil N parameters) and hence probably fertilizer type, amount, and timing explains site differences.

These statistical models using both direct driving variables and indirect explanatory variables were able to confirm the nature of influence of some soil and environmental conditions on NO_x emissions from soil. Sandy soils consistently promote NO_x emissions more than finer-textured soils. In the point-predictive model, increasing soil temperature effects can be very dependent on crop types and is not necessarily exponentially related to NO_x flux; waterfilled pore space is just as important as soil temperature, with a peaking influence at around 45 percent WFPS; the interactions WFPS*soil temperature, WFPS*NH₄⁺, WFPS*NO₃⁻, are all frequently important drivers of NO_x emissions, with the first varying in its effect depending on the relative importance of WFPS or soil temperature, and with the latter two being promoters of NO_x emissions. Water-filled pore space alone and its interaction with soil temperature are negatively correlated with each other in their promotion of NO_x flux.

In the management model, air temperature generally works well as an indicator of soil temperature. Water-filled pore space is not significant as often as it is in the point-predictive model, possibly because the spatial heterogeneity within sites has been removed due to using site mean values of the data. Fertilizer amount divided by days since fertilization may be too rough an indicator of fertilizer remaining, i.e. of soil N; however, there is a clear distinction between NH_4^+ -based and mixed fertilizers, the latter surprisingly promoting NO_x flux more than the former.

On a crop basis, it appears from the point-predictive model that alfalfa has less of a tendency to reduce NO_x emissions than other crop types, otherwise the crop effects cannot be distinguished. An interesting finding, however, of both this and the management model is that the crop types do interact differently with soil temperature in influencing NO_x flux: emissions from alfalfa fields apparently decline with increasing temperature, and emissions from corn, cotton, and sugar beets increase with higher temperature. The alfalfa results, however, may have been confounded by a mowing event that occurred between sampling dates (Site A = premowing; Site P = premowing; Site O = post-mowing; Figure 8). When post-mowing

102

measurements were removed from the analysis, the temperature- NO_x relationship was not significant.

In general, the high variability of NO_x emissions measured on a chamber-level basis limited the ability of point-predictive model to account for more than 40% of the total variation in NO_x fluxes for the whole data set. It would be interesting in future work to apply the point-predictive model to eddy correlation estimates of fluxes at the site level which average over the point level variability.

The management model performed fairly well as a more widely usable version of the point-predictive model on a site basis, given adequate variation in the data; how it falls short of the pointpredictive model in explanatory power with respect to the influence of water-filled pore space should be examined further, for example in the legitimacy of using the site mean WFPS. Also, more modeling should be done to make use of information on fertilization and to explain why field with mixed fertilizers should emit more NO_x than those with NH₄⁺-based fertilizers. The mechanisms behind some of the significant interactions must be further analyzed; for example, fine modeling can be done for NO_x fluxes less than or equal to zero and for very low water-filled pore space less than 2%. Further efforts should also be made to derive more mechanistic relations between variables than are currently in this general additive model.

2.3.2.2.5 Comparison of Davidson Model (CASA) and San Joaquin Valley NO_x data.

Figure 9 shows the relationship between NO_x flux and soil WFPS assumed by the CASA model (derived from Davidson, 1991) as an overlay of the actual NO_x fluxes and associated WFPS values from our data base. A simple bar graph of mean maximum NO_x fluxes plotted against WFPS shows a pattern roughly similar to that of the Davidson model (used by CASA). Our NO_x fluxes do show a maximum at about 50% WFPS, decreasing generally with lower WFPS. The summer '95 fluxes show a small spike at very low water content (WFPS = 1-3%). The occurrence of significant NO_x fluxes from very hot and dry central valley soils has been previously reported and discussed (Davidson, et al., 1993a).

2.3.3. Discussion.

Mean fluxes of NO_x , measured during midday when fluxes are highest, ranged from less than 1 to greater than 9 ng-N cm⁻² h⁻¹ across all the crops measured, with peach and orange crops having the lowest fluxes and tomatoes, almonds, and irrigated pastures having the highest (Figure 7). Values for individual chambers across all sites ranged from -0.9 to 194 ng-N cm⁻² h⁻¹. In comparison with NO_x measurements taken in other crops, the average fluxes measured in the San Joaquin Valley crops fall within the range of values reported for not-recently-fertilized agricultural fields in the temperate zone (from 0.4 to 5 ng-N cm⁻² h⁻¹; conversion of data in Williams et al., 1992b). In contrast, recently fertilized crops generally have much higher fluxes ranging from 4 to 34 ng-N cm⁻² h⁻¹ (Williams et al. 1992b). Matson et al. (1996) measured mean NO_x fluxes of over 100 ng-N cm⁻² h⁻¹ in surface fertilized sugar cane systems in Hawaii, and of over 300 ng-N cm⁻² h⁻¹ in fertilized and irrigated wheat systems in Sonora, Mexico (Matson, pers. comm).

Non-parametric statistics indicated significant differences among crops, but variability among sites within crop types (Figure 8) and even among different days for a single site was extreme. This variability could in many cases be related to soil inorganic nitrogen and water filled pore space (WFPS). This point is reinforced by regression analysis. Analyses using chamber NO_x measurements and soil and site data also indicated the importance of WFPS, NH_4^+ , and the interaction of soil temperature and WFPS.

In our spatial extrapolation, we used a crop data layer in a GIS to extrapolate average mid-day fluxes per crop type. While this presentation indicates potentially important spatial patterns in NO_x fluxes, it is of limited use given the high variance of fluxes within crop types. Nevertheless, this approach indicates that across the seven counties of the San Joaquin Valley which we sampled, a total of 707 kg of NO_x is emitted per hour by the crop types we measured during July and August. These fluxes are spatially heterogeneous, with Fresno county having the highest total flux, and Madera county having the lowest (Calculated from data in Table 11b). Likewise, within counties, NO_x appears to be spatially heterogeneous.

We present no calculations on the proportion of applied fertilizer lost as NO_x . Our temporal sampling window (July-August) was short and because of the sampling period chosen, we had very few sampling dates closely associated with fertilizer application (the period during which NO_x fertilizer loss is likely highest). We conclude that use of our data set for this type of extrapolation would be misleading.

Our analysis indicates that simple algorithms such as produced by Williams et al (1992b) are not appropriate for use in the San Joaquin Valley. Instead of the Williams model, we suggest a management model that utilizes information on water-filled pore space, soil texture, crop type, time since fertilization, and interactions between WFPS X temperature and crop X temperature. WFPS is clearly a critical factor in this model; we suggest that functions such as the one used in the CASA model can be developed to serve as proxy for measured WFPS.

2.4 Task IV. Integrated Field Measurement Program.

Field experiments designed to evaluate both emissions of NO_x from soil and the fate of NO_x as it moves through plant canopies and enters into boundary layer chemistry are necessary for regional air quality studies. These experiments will require collaborative efforts by atmospheric chemists and modelers as well as ecosystem and microbial ecologists (Matson and Harriss, 1995). These efforts can build on the basic understanding of the spatial and temporal patterns of NO_x emission from soil that have been developed in this study.

These comprehensive studies should include measurement of NO_x fluxes at the soil surface, turbulent transfers at the top of the canopy, concentrations of NO, NO₂, O₃, PAN, and hydrocarbons inside and above the canopy, and micrometeorological data to calculate rates of vertical exchange.

Based on our field measurements and spatial extrapolation, it seems reasonable to direct such expensive field set ups to regions with relatively homogeneous distributions of high-flux crops such as irrigated pasture in Merced County or almonds in Merced or Kern counties.

On the other hand, our analysis indicates low fluxes from most crops during these months. If fertilizer use remains limited during these months, it is possible that soil NO_x fluxes may be relatively insignificant in terms of atmospheric chemistry and air pollution events. As a preliminary step to any major multi-disiplinary field study we believe that air quality modeling exercises should use the highest and lowest site means per crop type as well as the overall crop means (Table 8) of hourly mid-day NO_x fluxes in order to evaluate the potential importance of NO_x flux at varying soil conditions. It is worthwhile to note, however, that any changes in management practices that lead to increased application of fertilizer during or immediately preceding this July-August time from may lead to very significant increases in NO_x flux from soils. Thus, the importance of San Joaquin Valley agricultural soils as contributors to air quality in California cannot be assumed to be constant year to year, but rather will change as a function of the fertilizer and irrigation use and timing that are employed in the Valley.

3. Summary and Conclusions

The objective of this study was to estimate emissions of nitric oxide and nitrogen dioxide (together referred to as NO_x) from agricultural systems in the San Joaquin Valley of California during the months of July and August (periods of maximum tropospheric ozone development). We measured NO_x fluxes in agricultural systems representing the most important crop types, and utilizing the dominant fertilizer and irrigation management practices. We used hourly and daily flux data along with a spatial data base of crop types to extrapolate fluxes to the area of the Valley. We also identified the factors that control the rate and timing of NO_x fluxes, and we suggest ways that this information can be used in the development of spatially explicit models.

The project was organized around four sequential tasks. In the following paragraphs, we will summarize the approach and results of each.

Task I. Determine the most important crop/management practices in the San Joaquin Valley (in terms of area extent of crop type and amounts of fertilizer used) and use this information to develop a systematic sampling plan.

Utilizing information from the "1993 Agricultural Commissioners' Report Data" and the "1990 Engineering Science Design Research Planning Final Report to the Environmental Protectin Agency (EPA): Leaf Biomass Density and Land Use Data for Estimating Vegetative Emissions", we tabulated crop acreage for the eight San Joaquin Valley counties. We identified nine dominant types, including alfalfa, citrus, corn, cotton, grapes, irrigated pasture, stonefruits, sugar beets, vegetables, and other. We identified 28 agricultural systems representing the most important crop types and the dominant fertilizer and irrigation management practices. Diel measurements (measurements carried out over a 24 hour period) were carried out at least once on 4 agricultural systems; 13 of the 28 were sampled repeatedly over several week periods in order to estimate means and variation in fluxes within sites over time.

Task II. Carry out field studies of soil NO_x fluxes measured simultaneously with measurements of environmental and edaphic (soil) characteristics of importance in regulating NO_x emission, and carry out laboratory analyses of soil samples collected simultaneously with NO_x flux.

We measured soil surface NO_x fluxes, water-filled pore space (WFPS), soil temperature, air temperature, ammonium and nitrate in the soil, total soil nitrogen and carbon, pH, and soil texture for all of the sites. Soil characteristics were measured for the top 10 cm of soil. In a subset of the sites, we carried out measurements of net and gross nitrogen mineralization and nitrification and nitrification potentials. In general, there was substantial variability in mean midday NO_x fluxes among crops (range 1.0-9.1 ng-N cm⁻² h⁻¹), with irrigated pastures, almonds, and tomatoes having generally high fluxes relative to the other crops (crop mean mid-day fluxes of 9.1, 6.4, and 7.2 ng-N cm⁻² h^{-1} for pastures, almonds, and tomatoes respectively; range for other crops: 1.0 - 5.8 ng-N cm⁻² h⁻¹). In the case of almonds and irrigated pasture, mean fluxes were consistently high from site to site and date to date. However, for some of the other crops, variation among different fields or sampling dates were very large (e.g., 0.13-17.53 ng-N cm⁻² h⁻¹ for cotton, 0.16-15.69 ng-N cm⁻² h⁻¹ for corn) and appeared to be related to proximity in time of our measurements to a fertilizer event and to water-filled pore space at the time of sampling. Within a given site, mean fluxes for different days varied by over an order of magnitude, apparently as a consequence of changes in soil inorganic N and in water filled pore space. This temporal variation at the scale of individual fields suggests that estimation of fluxes on a daily or hourly basis, as is needed for air quality and chemical transport models, will be difficult without information on the temporal and spatial distribution of fertilizer and irrigation as well as the more easily obtained information on air temperature.

Task III. Develop soils emissions statistical models based on the field and laboratory study data, and develop spatially and temporally explicit estimates of NO_x flux at the soil-air interface for the San Joaquin Valley for the months of July, August and early September, 1995.

We developed two sets of regression models relating NO_x flux to other variables measured in the field.

a) Models that require more detailed soil variables and that will be useful in process modeling frameworks ("Point-predictive model").

e.g. $NO_x = f(crop type, \%WFPS, soil texture, soil temperature, soil NO₃⁻, NO₂⁻ and NH₄⁺ concentrations, total organic carbon concentration, total organic nitrogen concentration, position within the field -- under canopy/open and furrow/ridge).$

b) Models that can be applied at a regional scale using spatial data bases of crop type, soils and climate ("Management model"). e.g. $NO_x = f(crop type, air temperature, soil texture, soil pH, an index of fert amount, type and timing, and mean WFPS).$

We compared the outputs of our models to those of the Williams model, which uses air temperature as well as an empirically-derived "A value" to drive predictions of NO_x flux. The Point-predictive model and the Management model both substantially improved the prediction of NO_x fluxes across a variety of crops and sites, in contrast to the Williams model. In fact, for most crops, WFPS was as important as temperature in the prediction of NO_x emissions.

We also compared our NO_x flux data to the Davidson model of NO_x flux as a function of soil WFPS (the functional relationship used in the CASA model). There was reasonably good agreement between the summer '95 San Joaquin Valley NO_x flux vs. soil WFPS and that predicted by Davidson. Both show maximum NO_x fluxes occurring at about 50% WFPS; however the San Joaquin Valley data show significant NO_x fluxes occurring at very low water contents (WFPS 1-3 %), a result not predicted by previous models but which has been reported in other measurement studies.

GIS-based data on major crop types in the San Joaquin Valley were used in combination with measured mid-day mean fluxes and calculated daily fluxes for each crop type, in order to calculate hourly and daily NO_x flux by crop type, county, and for the entire San Joaquin Valley area that the GIS data covered. Cotton, which had an intermediate mean mid-day flux in relation to other crops, had the highest Valley-scale flux (232120.9 g/h) due to its large total acreage. Grapes were calculated to have the next largest mid-day hourly flux when summed over the Valley (142936.1 g/h). Among San Joaquin Valley counties, Fresno county had the highest flux summed over the crop types we measured (188422 g-N h⁻¹), while Madera county had the lowest (60265 g-N h⁻¹). The estimated spatial distribution of NO_x flux (which may be an important factor in air chemistry) is presented in map and tabular format.

Task IV. Once the systems with greatest soil fluxes have been identified, begin planning for integrated field studies (to take place

in 1996 or later) in several sites to determine the role of vegetation canopies and boundary layer chemistry and dynamics in controlling the contributions and role of soil NO_x emissions in ozone formation.

Planning for integrated field studies should begin with estimation of the potential role of soil NO_x fluxes via air chemistry modeling. Given the range in variability in fluxes measured in our sites during the July-August period, we suggest that air quality modeling experiments be carried out utilizing the highest and lowest site means measured for the different crops, in addition to the average flux by crop. If such modeling experiments reveal circumstances under which agricultural soils play a critical role in air chemistry, multi-disciplinary studies that couple soil and canopyscale flux measurements with atmospheric chemistry studies may be appropriate. For such studies, we suggest emphasizing regions with relatively homogeneous expanses of crops with high flux characteristics, such as irrigated pasture or almonds, and as appropriate, with concurrent use of fertilizer.

Overall Conclusions

The San Joaquin Valley is an highly complex agricultural system, composed of at least nine dominant crop types (alfalfa, citrus, corn, cotton, grapes, irrigated pasture, stonefruits, sugar beets, vegetables) as well as other crops, grown on a range of soils and managed under a number of different fertilizer and irrigation management practices. Because NO_x fluxes are potentially influenced by the types of plants growing in the fields as well as by the soils being cropped and by the ways those crops are managed, NO_x fluxes should be expected to show a large degree of spatial and temporal variation within the Valley. The data presented in this document substantiate this expected large range of variation.

The implications of this variability are several. First, it suggests that carrying out a field sampling program that encompasses that variability is a very difficult task. Fluxes change from field to field, crop to crop, and day to day. Therefore, while our flux estimates for given sites and days are accurate, their extrapolation to all sites within a given crop and to all dates within the July-August time-frame must be viewed as rough approximations rather than reality. On the other hand, our data do indicate some consistencies. For example, they indicate that almonds and irrigated pasture have typically higher fluxes than other crops we measured, whereas the other crops have greater ranges in fluxes from time to time or site to site. Also, our data quite clearly suggest that NO_x fluxes in the San Joaquin Valley in July and August 1995 were <u>not</u> remarkably high in comparison with the range of values published in the literature. (We note, however, that we cannot draw conclusions about the relative importance of agricultural soil NO_x emissions in atmospheric chemistry in the San Joqauin Valley by simply looking at these flux values, and we leave it to air quality modelers within the California Air Resources Board to develop that analysis.)

The large potential for spatial and temporal variability in the Valley agricultural system also suggests that, given the difficulties inherent in NO_x measurements and the cost of the instruments used to measure NO_x flux at the soil-air or canopy-air interface, detailed spatial monitoring of those fluxes (even for a short period) is logistically impossible. We believe a viable alternative for estimation of NO_x in complex systems like the San Joaquin Valley is the development and use of predictive models that can utilize spatially and temporally-varying data on crops, soils, climate/weather, and management. We have developed such models as part of this project. One critical conclusion drawn from the model development task is that accurate prediction for most crop types in the Valley require more than just temperature, the variable used in the only other commonly used NO_x model (Williams et al 1992). Rather, our pointbased "Point-predictive model" and the site-based "Management model" both indicate that soil moisture (described here as %WFPS) is at least as important as temperature, and that variables describing either soil inorganic nitrogen concentrations or fertilization activity are also important. Given our process-based understanding of the interactive controls of nitrogen, water, and temperature on NO_x production and emission, we find these results entirely consistent.

While our models are ready for use at the site level, their application at the scale of the Valley will require several additional steps. First, while spatially-explicit data bases on crop type, soil characteristics like texture, organic C, organic N and pH, and meteorological station data such as air temperature and precipitation are generally available, spatially-explicit data bases on fertilizer type, rate, and time of application, and on irrigation use and thus change in water-filled pore space in the soil, are not available. What may be more available are county-wide monthly data on fertilizer use and on allocation of water for irrigation. Short of doing detailed farm-by-farm surveys of fertilizer and water use, we believe it may be possible to develop models of irrigation and fertilizer applications that distribute county totals as a function of crop type and weather conditions. Once such models have been developed and the NO_x models run at the scale of the Valley, validation through measurements of soil-air and canopy-air exchange of NO_x at select sites would be required. These tasks are outside the scope of this project.

Finally, it is worthwhile to note that our analysis of San Joaquin soils fluxes reflects the current management framework for the Valley, that is, there is relatively little application of fertilizer to crops during the July-August period. Any changes in management practices that lead to increased application of fertilizer during or immediately preceding this July-August time frame may lead to very significant increases in NO_x flux from soils. Thus, the importance of San Joaquin Valley agricultural soils as contributors to air quality in California cannot be assumed to be constant year to year, but rather will change as a function of the crop type, fertilizer and irrigation employed in the valley.

References

California Department of Food and Agriculture. 1994. Fertilizing Materials Tonnage Report.

Bakwin, P.S., S.C. Wofsy, S. Fan, M. Keller, S. Trumbore, and J.M. daCosta. 1990. Emissions of nitric oxide (NO) from tropical forest soils and exchange of NO between the forest canopy and atmospheric boundary layers. J. Geophys. Res. 95(D10):16755-16764.

Brady, Nyle C. (1974). The Nature and Properties of Soils, 8th Edition, New York: Macmillan Publishing Co., Inc.

Chambers, J.M. and Hastie, T.J. (1992). Statistical Models in S. New York: Chapman and Hall. (Formerly Monterey: Wadsworth and Brooks/Cole).

Cleveland, W.S., Grosse, E. and Shyu, W.M. 1992. Local regression models, In: Chambers, J.M. and Hastie, T.J. 1992. Statistical Models in S. New York: Chapman and Hall. (Formerly Monterey: Wadsworth and Brooks/Cole).

Davidson, Eric A. 1991. Fluxes of Nitrous Oxide and Nitric Oxide from Terrestrial Ecosystems. In Microbial Production and Consumption of Greenhouse Gases: Methane, Nitrogen Oxides, and Halomethanes, ed. John E. Rogers and William B. Whitman, American Society of Microbiology, Washington, D.C.

Davidson, E.A., D.J. Herman, A. Schuster, and M.K. Firestone. 1993a. Cattle grazing and oak trees as factors affecting soil emissions of nitric oxide from an annual grassland. In Agricultural Ecosystem Effects on Trace Gases and Global Climate Change. ASA Special Pub no. 55. Madison WI. Davidson, E.A. 1992. Sources of nitric oxide and nitrous oxide following wetting of dry soil. Soil Science Society of America Journal 56(1):95-101.

Davidson, E.A., P.A. Matson, P.M. Vitousek, P.A. Matson, R. Riley, , G. Garcia-Mendez, and J.M. Maass. 1993b. Process regulation of soil emissions of NO and N2O in a seasonally dry tropical forest. Ecology 74(1):130-139.

Davidson, E.A., P.A. Matson, P.M. Vitousek, R. Riley, K. Dunkin, G. Garcia-Mendez, and J.M. Maass. 1991. Soil emissions of nitric oxide in a seasonally dry tropical forest of Mexico. Journal of Geophysical Research 96:15439-15445. Davidson, E.A., and D.S. Schimel. 1995. Microbial processes of production and consumption of nitric oxide, nitrous oxide, and methane. IN: Matson, P.A. and R.C. Harriss (eds). Biogenic Trace Gases: Exchange between Soils, Sediments, Aquatic Systems and the Atmosphere. Blackwell Scientific Publishing, Cambridge.

Day, P.R. 1965. Particle fractionation and particle size analysis. In: Methods of soil analysis, physical, mineralogical properties, including statistics of measurement and sampling. American Society of Agronomy, Madison.

Eichner, M.J. 1990. Nitrous oxide emissions form fertilized soils: summary of available data. J. Environ. Quality 19:272-280.

Firestone, M.K. and E.A. Davidson. 1989. Microbial basis of NO and N₂O production and consumption in soil. In: M.O. Andreae and D.Schimel. Exchange of Trace Gases between Terrestrial Ecosystems and the Atmosphere. John Wiley and Sons, Chichester.

Hall, S.J., P.A. Matson, and P. Roth. NO_x emission from soil: Implications for Air Quality Modeling in Agricultural Regions. Annual Review of Energy and Environment, in press.

Hart, S.C., J.M. Stark, E.A. Davidson, and M.K. Firestone. 1994. Nitrogen mineralization, immobilization and nitrification. In: Methods of Soil Analysis, Part 2. Microbiological and Biochemical Properties. Soil Science Society of America, Madison.

Hutchinson, G.L. and E.A. Brams. 1992. NO vs. N₂O emissions from an NH4-amended Bermuda grass pasture. Journal of Geophysical Research 97:9889-9896.

Hutchinson, G.L. and E.A. Davidson. 1993. Processes for production and consumption og gaseous nitrogen oxides in soil. In: Agricultural Ecosystem Effects on Trace Gases and Global Climate Change.

Hutchinson, G.L. and G.P. Livingston. 1993. Use of chamber systems to measure trace gas fluxes. In: Harper, L.A., A.R. Mosier, J.M. Duxbury, and D.E. Rolston (eds), Agricultural ecosystem effects on trace gases and global climate change. American Society of Agronomy Special Publication No. 55, Madison, WI.

Jacob, D.J. and S.C. Wofsy. 1990. Budgets of reactive nitrogen, hydrocarbons, and ozone over the Amazon forest during the wet season. Jounral of Geophysical Research. 95:16737-16754.

Johansson, C. and L. Granat. 1984. Emission of nitric oxide from arable land. Tellus 36:25-37.

Keller, M. and P.A. Matson. 1994. Biosphere-atmosphere exchange of trace gases in the tropics: Evaluating the effects of land use change. In R. Prinn (ed) <u>Global Atmospheric-Biospheric Chemistry</u>, Plenum Press, NY.

Matson, P.A., C. Volkmann, K. Coppinger and W.A. Reiners. 1991. Annual nitrous oxide flux and soil nitrogen characteristics in sagebrush steppe ecosystems. Biogeochemistry 14: 1-12.

Matson, P.A., S.T. Gower, C. Volkmann, C. Billow and C.C. Grier. 1992. Soil nitrogen cycling and nitrous oxide flux in Rocky Mountain Douglas-fir forest: effects of fertilization, irrigation and carbon addition. Biogeochemistry 18: 11-117.

Matson, P.A., C. Billow, S. Hall and J. Zachariesson. 1996. Nitrogen trace gas responses to fertilization in sugar cane ecosystems. Journal of Geophysical Research 101: 18,533-18,545.

Matson, P.A. and R.C. Harriss. 1995. <u>Biogenic Trace Gases: Exchange</u> <u>between Soils, Sediments, Aquatic Systems and the Atmosphere</u>. Blackwell Scientific Publishing, Cambridge.

Melillo, J.M., P.A. Steudler, J.D. Aber, and R.D. Bowden. 1989. Atmospheric deposition and nutrient cycling. In M.O. Andreae and D. Schimel. Exchange of Trace Gases between Terrestrial Ecosystems and the Atmosphere. J. Wiley and Sons, Chichester.

Motavalli, A. R., D.W. Valentine, W. J. Parton, D. S. Ojima, D.S. Schimel, and J.A. Delgado. 1996. "CH4 and N2O fluxes in the Colorado shortgrass steppe: 1. Impact of landscape and nitrogen addition," Global Biogeochemical Cycles, Vol. 10, No. 3.

Parton, W.J., A. R. Mosier, D. S. Ojima, D. W. Valentine, D. S. Schimel, K. Weier, and A. E. Kulmala. (1996). "Generalized model for N2 and N2O production from nitrification and denitrification," Global Biogeochemical Cycles, Vol. 10, No. 3, 401-412.

Remde, A., F. Slemr and R. Conrad. 1989. Microbial production and uptake of nitric oxide in soil. FEMS Microbial Ecology 62:221-230.

Shepard, M.F., S. Barzetti and D.R. Hastie. 1991. The production of atmospheric NO and N2O from a fertilized agricultural soil. Atmo. Environ. 25:1961-1969.

Statistical Sciences. 1993. S-Plus Guide to Mathematical and Statistical Analysis, Version 3.2. Seattle: StatSci, a division of MathSoft, Inc., 1993.

Tortoso, A.C. and G.L. Hutchinson. 1990. Contributions of autotrophic and heterotrophic nitrifiers to soil NO and N₂O emissions. Appl. Environ. Microbiol. 56:1799-1805.

Turner, R.E. amd N.N. Rabalais. 1991. Changes in Mississippi River water quality this century. BioScience 41(3):140-147.

Vitousek, P.M. and P.A. Matson. 1993. Agriculture, the global nitrogen cycle, and trace gas flux. In. R.S. Oremland (Ed.) The Biogeochemistry of Global Change: Radiatively Active Trace Gases. Chapman and Hall, NY.

Williams, E.J. and E. A.Davidson. 1993. An intercomparison of two chamber methods for the determination of emission of nitric oxide from soil. Atmospheric Environment 27A:2107-2113

Williams, E.J., G.L. Hutchinson and F.C. Fehsenfeld. 1992a. NO_X and N_2O emissions from soil. Global Biogeochemical Cycles 6(4): 351-388.

Williams, E.J., A. Guenther, and F.C. Fehsenfeld. 1992b. "An inventory of nitric oxide emissions from soils in the United States," Journal of Geophysical Research, Vol. 97, 7511-7519.

Williams, E.J., D.D. Parrish, M.P. Buhr and F.C. Fehsenfeld. 1988. Measurement of soil NOx emissions in central Pennsylvannia. Journal of Geophysical Research 93:9539-9546.

List of Appendices

Appendix A. San Joaquin Valley data descriptions: point and site level parameters. (See Diskette 1 for master data file: SJVdata.txt) Appendix B. Farm Advisors and scientists/specialists interviewed and interview information on agricultural practices. Appendix C. Data on crop distribution for San Joaquin Valley from 1993 County Agricultural Commisioners report. Appendix D. Schematic of field NO_x measurement apparatus. Appendix E. Method for calculating diel characteristic curves. Appendix F. Point predictive model refitted to individual crops. Appendix G. Management model refitted to individual crops. Appendix H. Estimating Fluxes from the diel characteristic curves and example page of diel characteristic curves: xy values. (See Diskette 2 for data file: Diel.txt)

Appendix I. Deliverables from original proposal.

Diskettes:

1. San Joaquin Valley data master. File: SJVdata.txt.

2. Diel Characteristic Curves; xy values. File:Diel.txt.

Appendix A. San Joaquin Valley data descriptions: point and site level parameters. (See Diskette 1, Master data file: SJVdata.txt)

S/C*	DATA ITEM	UNITS or VALUES	DESCRIPTION
	Study Location	name	San Joaquin Valley
	Сгор	name	plant: Alfalfa, Almonds, Corn, Cotton, Grapes, Irrigated pasture, Oranges, Peaches, Sugar beets, Tomatoes
	Location	name	Firebaugh, Parlier, San Joaquin, Tranquillity, Riverdale, Mendota, Tulare, Plainview, Waukena, Sanger, Kearney, Corcoran, Lindcove, Clovis, Bonadelle Ranchos, West Side
	Irrigation	name	method: Drip, Flood, Border Check, Furrow
S	Site code	letter	site distinguished by crop, soil texture, irrigation: A,B,C,,Z
s	Туре	пате	measurement freq: Routine (1/day at midday), Diel
s	County	name	Fresno, Kings, Madera, Tulare
	Date	[mm/dd/yy]	date of data observation
s	Fertilization date	[mm/dd/yy]	last date fertilized; information provided by growers
S	Days since fert.	[days]	days since last fertilization
S	amt. last Fert(#/ac)	[lbs/acre]	amount last fertilized; information provided by growers
s	Fert type	name	11-52-0, (NH4)2SO4, CAN-17, CAN17, NH3, NH4NO3, UN32, aqua NH3, urea
	Fert method	name	injected, shanked in, side dressed, subsoil injection, subsoil shank, water run, NA's
	Annual fert(#/ac)	[lbs/acre]	information provided by growers
s	Protocol	category	extensive (<=3 visits), intensive (>=4 visits)
	Replicate	count	Replicate: 1,2,3,,10; 10 per position within a site
С	Position	category	position in field: for tree crops [canopy, open], for row crops [ridge, furrow], for pasture & alfalfa [open]
С	Time of Day	[hh:mm],[h+min/60]	military time; time of day of data observation
С	NO Flux	[ng-N/cm^2/hr]	measured via NO flux chamber
С	Chamber Temperat	[degrees C]	air temperature inside NO flux chamber
s	Air Temperature	[degrees C]	Estimated from chamber temperatures as described in section 2.2.1.1
С	Soil Temperature	[degrees C]	measured at 2 cm depth
s	Soil Type	name	name + other description, e.g. San Joaquin Sandy Loam
S	%Sand/Silt/Clay	[%/%/%]	determined by hydrometer method
s	Total C	[%C]	gravimetric, measured once during the study period
s	Total N	[%N]	gravimetric, measured once during the study period
s	рH	[pH]	site average
S	% Canopy Cover	[%length]	% of cross section between edges of rows that is under canopy
1	pos split	[%area]	relative contribution of different positions to total site area
s	Bulk density of repl.	[g/cm^3]	soil bulk density for particular replicate
S	Bulk density mean	[g/cm^3]	mean soil bulk density of 10 replicates
	Freshsoil (g)	[g]	sample weight (used in other calculations)
	Dry soil (g)	[9]	sample weight (used in other calculations)
С	%M/wet	[%wt]	field wetness at the time (10 cm deep) = 100 * (fresh wt - dry wt)/(fresh wt
С	Grav.h2o	[%wt]	gravimetric moisture = 100 * (fresh wt - dry wt)/(dry wt)
С	WFPS	[%vol]	water-filled pore space = bulkd.m*h20.grav/(1-bulkd.m/rho), rho=2.65 g/cr
С	NH4 ug/g	[ug/g]	Measured per chamber per day of observation
С	NO3 uq/q	[ug/g]	Measured per chamber per day of observation
С	NO2 uq/a	[ug/g]	Measured per chamber per day of observation
	Nit Pot ug/g/d	[ug/g/day]	nitrification potential = NO3 + NO2 production rate
	Gross nit (ug/g/d)	[ug/g/day]	gross nitrification rate
*S/C:	S-site code, C-cham	iber	3.000

Appendix B. Interview information on agricultural practices: San Joaquin county.

.

 $\langle \cdot \rangle$

Corn		;						
	Distribution	:				1		
		70% west o	county					
	30% central and east county							
	Fertilization Rate:							
		250 lb/ac						
	Fertilization	Type:		· · · · · · · · · · · · · · · · · · ·				
		UN-32						
		:	33%					
-	<u>.</u>	·····	irrigation wat	ter, spray, b	anded		· · · · · · · · · · · · · · · · · · ·	
		Aqua NH3						
			33%					
		:	shanked in	- - - 				
		Anhydrous	NH3					
			33%					
		:	bubbled in	i				
	Fertilization	Timing:		·				
		30 lb/acre	at preplant					
	:	the balance	of fertilizer a	pplied when	crop is 1 ft h	nigh		
N		planting occ	curs from earl	y to late spr	ring	i		
	Irrigation:							
	·	furrow	:					
		2 - 3 week	cycle	n 1 1 1 - Demonstration of the state of the				
Comments								
	Corn plante	d in June ma	ay be fertilized	l in July	!			
	Managemer	nt decision m	aking is by g	rower, not by	y region			
Sources:		·		·	1			
	Terry Pricha	ird, San Joac	quin farm advi	sor				
- · · · · · · · · · · · · · · · · · · ·	Roland Meye	er, U.C. Davis	<u> </u>		1			
					1			

Appendix B. Interview information on agricultural practices: San Joaquin county.

Sugar Beets	S	
	Distribution:	
	50% west county	
	50% east county	
	Fertilization Rate:	
	120 - 180 lb/ac	
	Fertilization Types:	
	NPK	
	25%	
	broadcast	
	Anhydrous NH3	
	50%	
	shanked in	
	UN-32	
	25%	
	shanked in	
	Fertilization Timing:	
(Preplant:	
	36 lb/ac of NPK	
	30 d after planting:	
1	80 - 150 lb/ac of anhydrous NH3 or UN-32	
	Irrigation:	
	furrow	
	14 day cycle	
Comments:		
-	West of 1-5 sugar beets are planted in early spring and harvested in the fall	
	East of 1-5 sugar beets are planted in May and harvested the following spring	· · · · · · · · · · · · · · · · · · ·
	Delta soils west of 1-5 are organic and receive lower N application rates	
	Mineral solis east of 1-5 receive higher in application rates	
	On west side, sugar beets are concentrated from Tracey northward	······································
0.000	On east side, sugar beets are abundant around the area of Mariposa Rd.	
Source:		
	Michael Canevari, San Joaquin farm advisor	

Appendix B. Interview information on agricultural practices: San Joaquin county.

Almonds		· · · · · · · · · · · · · · · · · · ·				i	
	Distribution:			:		1	
	50	0% in sout	nern county a	along Stanisia	aus River,	50% west side	}
	Fertilization Ra	ate:				:	
	20	00 lb/ac					· · · · · · · · · · · · · · · · · · ·
	Fertilizer Type	S:					
11	U	N-32					;
	U	rea				;	
	N	H4NO3					
	Fertilization Ti	iming:					
	6	7% April			 		:
	33	3% Augus	t				
	Irrigation:						
	fle	ood			· · · · · · · · · · · · · · · · · · ·		;
			50%	¦ 			
		!	14 - 21 day	cycle			:
	SC	olid set spr	inkler				
		י !	50%		i ! *=		
			14 - 21 day	cycle	I		
Comments:	e i se se entre sources de meseren						
	Management of	decision ma	aking is by g	rower, not re	gion		:
Source:					1	:	
	Terry Prichard	, San Joaq	uin farm advi	sor	1	:	· · · · · · · · · · · · · · · · · · ·

Appendix B. Interview information on agricultural practices: Stanislaus county.

Irrigated Pas	sture
	Distribution:
	mostly around Oakdale in a band below the hills
	some near dairies around Turlock and San Jaoguin River
	Fertilization Rate:
	40 - 50% of growers apply 30 lb/ac/yr
	50 - 60% of growers apply none
	Irrigation:
The second s	border
	10 day cycle
Comments:	
	Manure applications in pastures affiliated with dairies could be substantial
-	Irrigated pastures are planted to a grass-clover combination
Source:	
	Bill van Riet, Stanislaus farm advisor
Vegetable C	rops
	Distribution:
	west of San Joaquin River
	Fertilization Rate:
	Tomato: 150 - 180 lb/ac
	Bean: 60 lb/ac
	Pepper: 300 - 600 lb/ac
	Fertilization Type:
	Agua NH3
	> 90%
	injected
	Fertilization Timing:
	20 - 30 lb/ac preplant
	the balance at 4 - 5 weeks
	Irrigation:
	furrow
	8 - 10 day cycle
Comments:	
	Management decision making based on specific crop typeps
Source:	
	Jesus Valencia, Stanislaus farm advisor
· ····································	
Stonefruits	
	Distribution:
	Almonds: East and west of San Joaquin River
	Peaches: East of San Joaquin River
	Apricots: West of San Joaquin River
	Tree crops require well-drained soils
	Fertilization Rate:

Appendix B. Interview information on agricultural practices: Stanislaus county.

•

1

.

l

	150 - 200	lb/ac		
Fertilization	Types:			 1
	NH4NO3		:	:
Fertilization	Method:		· · · · · · · · · · · · · · · · · · ·	
	Broadcast			
Irrigation:				
	Flood	:		
	14 - 21 day	y cycle		
Source:				
Cathy Kelly,	Stanislaus	farm advisor		

Appendix B. Interview information on agricultural practices: Merced county.

Alfalfa	<u> </u>		:			
	Distribution	•				
	Distribution	25% east	25% central	50% M	iest co	
	Fertilization	Bate:		0070		
· • • • • •	1 of the 2000	20 - 30 lb/	ac	1		
	Fertilization	Types:				
	T OTTIME CALLOT	NH4SO4	1			
			50%			
			broadcast	;		
		UN-32				
		·	50%			
	· · · · · · · · · · · · · · · · · · ·	÷	broadcast	:		
· · · · · · · · · · · · · · · · · · ·	Fertilization	Timina:				·····
		planting				
	Irrigation:					
		border cheo	 ck			
		10 dav cvc	le			
Comments:		······································			 ;	
	Managemer	nt decision m	naking is by c	rower.	not by	reaion
Source:				1		
	Bill Weir, Me	erced farm a	dvisor			
		:	i			
Cotton						
	Distribution	-				
		predominar	tly west side	· ·		
	Fertilization	Rate:	-			
		150 - 180	lb/ac	:		
	Fertilization	Туре:		i		in y y an a very reg to a the labeled. Hereiner
		UN-32				
			>90%		1	
			side-dressed	ł		
	Fertilization	Timing:				
		33% winter	-			
		67% May				
	Irrigation:	1		i		
		furrow				
		10 - 14 day	/ cycle			
Source:						•
	Bill Weir, Me	erced farm a	dvisor			
				-		

Appendix B. Interview information on agricultural practices: Merced county.

Corn				:	
	Distribution	•			
		75% east, 2	25% central (county	
	Fertilization	Rate:		:	
		200 - 250	lb/ac		:
	Fertilization	Types:		:	
		Anhydrous	ΝНЗ		I I
		:	20%	:	
			shanked in		
		Aqua NH3	1		
		1	50%		
	* • • • • • • • • • • • • • • • • • • •		shanked in		
		UN-32	:		1
			30%		
			water		
	Fertilization	Timing:		:	
		30 lb/ac at	preplant		
		most of the	rest side-dre	ssed when k	nee-high
		some is ap	olied late, but	obled into irri	gation water
	Irrigation:				-
		furrow		·	
• • · · ·		10 day cycl	e		·
Comments:				·	
	Managemer	nt decision m	naking is by g	rower, not by	/ region
Source:				·	: !
	Bill Weir, Me	erced farm a	dvisor		:

~

-

1. L Appendix B. Interview information on agricultural practices: Madera county.

Cotton	· _ · · · · · · · · · · · · · · · · · · · ·						
	Distribution	:					
	• • • • • • • • • • • • • • • • • • • •	Predominar	ntly west			······································	
	Fertilization	Rate:			:		
		200 - 280	lb/ac				
	Fertilization	Type:	:				
		UN-32					
	•		side dressed				
		agua NH3	Ţ	Angen (4.000 Apr			
		• <u>•••••</u> ••••••••••••••••••••••••••••••	side dressed				
		urea	· · · · · · · · · · · · · · · · · · ·				
		¦ ∪	side dressed		· · · · · · · · · · · · · · · · · · ·		
	Fertilizaton	Timina:					
		33% winter					
		67% May					
	Irrigation:						
	······································	> 90% furro	ow				
		10 - 14 day	v cycle		4		
Source:		·	· · · · · · · · · · · · · · · · · · ·				
	Ron Vargas	, Madera farr	n advisor		,		
					1		
Grapes		-			1		
	Distribution	•					
		South of Ma	adera and wes	st of 99			
	Fertilization	Rate:					
		40 - 60 lb/a	ac		:		
	Fertilization	Types:					
		UN-32					
		NH4NO3			WE'lage against the test of south that the second second		
	Fertilization	Timing:					
		Mostly late	winter - early	spring, righ	t around fru	lit-set	
	Irrigation:						
		flood					
		3 week cyc	le		-		
Comments							
	Most of the	plantations a	are on Hanfor	d soils.	:		
	Within the la	ast 20 years,	the Madera a	nd San Joac	quin sandy l	oams, which h	nave
	iron-silica	hardpans, ha	ave been rippe	ed before pla	anting, and p	planted with g	rapes
Source:							· · · · · · · · · · · · · · · · · · ·
	George Lev	itt, Madera fa	arm advisor				
						:	1

Appendix B. Interview information on agricultural practices: Madera county.

'.

Ľ

Stonefruits			:				
	Distribution						
		Along west	side of 99	· · · · ·			
		Foothills					
	Fertilization	Rate:					
		150 - 250	lb/ac				
	Fertilization	Types:	н Т				
		UN-32					
			50%				
			Shanked in f	lood-irrigated	l soils		
		CAN-17					
			50%				
			water-run in	low-volume	irrigation		
	Fertilization	Timing:					
		UN-32 in S	pring				
	CAN-17 may be applied weekly						
	Irrigation:			1			
		Flood:					
			50%				
			12 - 14 day	cycle			
		Low-volume	ə:				
			50%	<u> </u>			
			3 - 7 day cy	cle	•		
Comments:		:					
	Older planta	tions are on	the well-drain	ned alluvial f	an sandy loar	m soils, flood	l irrigated
	Newer plant	ations are o	n the Madera-	San Joaquin	& Tujunga-G	raingeville a	ssociations
	and are o	n low-volum	e irrigation (th	ney would wa	ater-log on flo	od irrigation)
	Madera-San	Joaquin as	sociation is cla	yey, with Fe	-Si hardpan ri	pped	
	Tujunga-Gra	ingeville as	sociation is sa	ndy, with Fe-	Si hardpan ri	pped	
	Brent Holtz	may be able	e to help us lir	ie up almono	growers		:
Source:							1
	Brent Holtz,	Madera fari	m advisor				

Appendix B. Interview information on agricultural practices: Fresno county.

Sugar beets	3					
	Distribution					i
			1			
	Fertilizer Ra	tes:				
		80 - 120 lb	/ac			
	Fertilization	Type:	T			
		>90% urea				
		side dressed	1			
	Fertilization	Timing:				
		no preplant				
		most at pos	st-emergence			i
	Irrigation:				 :	
ļ		> 95% furro	w			
		10 - 14 day	cycle			
Source:			1			
	Bill Fischer,	Fresno farm	advisor			
						;
Stonefruits			:			
	Distribution	•	1		· ·	:
		Alluvial fan s	soils, well dra	ined, pH 6 -	7	
	Fertilization	Rate:				
		150 - 300	b/ac			
	Fertilization	Types:			<u>. </u>	
		NH4NO3			i	
			> 90%		<u>i</u>	-
	· · · · · · · · · · · · · · · · · · ·	-	broadcast or	flood-irrigat	ted soils	
		CAN-17	And			
			< 10%		·	
		·	water-run in	low-volume	irrigation	
	Irrigation	-				
]		Furrow:				· · · · · · · · · · · · · · · · · · ·
			> 90%			
			14 - 21 day	cycle		
		Low-volume				
			< 10%			1
	···		3 day cycle			·
Comments:		·	I			
	There may be more low-volume irrigation around Bakersfield.					
Source:	Source:					
	Scott Johnson, Kearney extension specialist					
					: ••	! #

Appendix B. Interview information on agricultural practices: Fresno county.

Cotton			:				
	Distribution						
	from Kerman - Raisin City - Caruthers on east						
to the foothills on the west.							
	Fertilization Rate:						
		180 lb/ac					
	Fertilization	Туре:	i 				
		UN-32	· ·				
			50%	······			
			side-dressed				
		Aqua NH3	:				
		l	30%				
			water run				
		Anhydrous I	NH3				
			20%				
	·		water run				
	Fertilization	Timing:	:				
		Mostly prior	to first irriga	ition			
		Some anhyo	drous NH3 is	water-run late	e season		
	Irrigation:						
		far west of	I-5: sprinkler	· ·			
		> 90% furro	<u>w</u>	· · · · · · · · · · · · · · · · · · ·	·		
		10 day cycl	e on lighter s	oils in the ea	ist		
	·····	28 day cycle	e on heavy flo	od plain soil	S		
Comments:			; 				
	Heavy clay I	oam soils ar	e abundant or	n tans along o	Coast Range	-1 :	
	About 30% of furrow irrigation is "border check", but is applied in furrows;						
	whereas border check in Kings County is applied across flat land. "Border check" is more common in lighter soils of eastern county						
	Fertilization rates are fairly constant throughout the county						
Sources		nay be intere	steu in collad	oration on m	is west side	piors	
Source.	Dan Munk	Frosno farm :	advisor	an na n			
	Dan Munk, I		auvisor				
Granes							
Grapes	Distribution	•		·		·	
	Distribution	Mostly east	and central	· · · · · · · · · · · · · · · · · · ·	1 1 1		
		some west	and contrar	<u>.</u>	! 		
	Fertilization	Bates:		· · · · · · · · · · · · · · · · · · ·			
	- ortinzation	40 - 60 lb/	ас	<u></u>			
···· ··· ··· ··· ··· ··· ··· ··· ··· ·	Fertilization	Type:					
· · · · · · · · · · · ·		> 75% UN-	32			:	
1993 1	Fertilization	Timina:		1	·		
		Spring					
	Irrigation:		:	18 ann an			
	• • • • • • • • • • • • • • • • • • •	> 75% flood	d, 2 - 3 week	cycle	:		

i

r,

n' N Appendix B. Interview information on agricultural practices: Fresno county.

	< 25% drip, 2 - 3 day cycle	
Source:		
	Michael Costello, Fresno farm advisor	i

Appendix B. Interview information on agricultural practices: Tulare county.

Citrus						
-	Distribution			· · · · · · · · · · · · · · · · · · ·		
		mostly east	county			
	Fertilization	Rate:				
		110-140 lb	/ac			
	Fertilization	Types:		, i		
		dry (NH4NO	3, CaNO3, u	rea):		
			70%			
	· · · · · · · · · · · · · · · · · · ·		mostly appli	ed from late	Jan - mid Ma	ar
-		liquid (CAN	17, UN-32):			
			30%	i 		
		·	mostly appli	ed from mid	Feb - Aug	
	Fertilization	Methods:				
		dry:	· · · · · · · · · · · · · · · · · · ·			
		·	broadcast			
		liquid:		<u> </u>		
			irrigation wa	ater		
	Fertilization	Timing:				
		through Jun	e 1:			
		·	60%	ļ 		
		after June 1	:			
		·	40%			
	Irrigation M	ethod:				
		low volume:	· ·			
			70%			
		·	4 - 7 day cy	/cle		
	· · · · · · · · · · · · · · · · · · ·	furrow and	flood:			
		i •	30%	I		
· · · · · · · · · · · ·			7 - 10 day o	cycle		
Comments:	·	:				j
	About 5% o	f acreage re	ceives about	25% of its N	l as foliar ap	plication
	Managemer	nt decision m	aking is by g	rower, not b	y region.	
Source:						
	Neal O'Conr	nell, Tulare fa	rm advisor	: ;		
				1		

Appendix B. Interview information on agricultural practices: Tulare county.

Cotton						
	Distribution					
	67% west of 99 sandy loams					
	33% east of 99 sandy loams					
	Fertilization Rate:					
	120 - 180 lb/ac					
	Fertilizaton Type:					
	UN-32 side-dressed					
	Anhydrous NH3 side-dressed					
	Fertilization Timing:					
	Early June					
	Irrigation:					
	furrow					
	2 week cycle					
Source:						
	Steve Wright, Tulare farm advisor					
	·					
Corn						
	Distribution					
	67% west of 99 sandy loams					
	33% east of 99 sandy loams					
	Fertilization Rate:					
	200 - 250 lb/ac					
	Fertilizaton Type:					
	UN-32 side-dressed					
	Anhydrous NH3 side-dressed					
	Fertilization Timing:					
	End of March through mid-July					
	Irrigation:					
	furrow					
	2 week cycle					
Source:						
	Steve Wright, Tulare farm advisor					

Appendix B. Interview information on agricultural practices: Kings county.

. L

·							
Cotton		· ·					
	Distribution	:			! 		
		throughout	county				
	Fertilization	Rate:	·				
		150 lb/ac			1		
	Fertilization	Туре:	<u> </u>				
		Anhydrous I	NH3	<u>.</u>			1
	:		75%				
		-	Shanked in		 		
		UN-32	 				
			25%				
	:	!	water				
	Fertilization	Timing:					
	· · · · · · · · · · · · · · · · · · ·	75% Anhyd	rous NH3 sha	nked in prio	<u>t to first ir</u>	rigation, late	May - early Ju
-		25% UN-32	liquid water r	un, late Jun	e - early J	uly	
	Irrigation:	· ·	·				
	·	50% furrow	<u>, 10 - 14 day</u>	cycle			
		50% border	check, 3 - 4	week cycle			
Source:		1	! !				
	Bruce Robe	rts, Kings far	m advisor		 		
		:					
Alfalfa		· · · · · · · · · · · · · · · · · · ·			: 		!
	Distribution	• •			<u>.</u>		
		seed: south	ern third				
		forage: nor	hern two-thir	ds			
	Fertilization	Rate:	i				
		none					
	Irrigation:		Ĺ				l
0		border chec	.k				
		4 week cycl	e on heavy so	pils	 		
		2 week cycl	e on light soi	s	· · · · · · · · · · · · · · · · · · ·		:
Source:							
	Bruce Robe	rts, Kings far	m advisor				<u> </u>

Appendix B. Interview information on agricultural practices: Kern county.

			· · · · · · · · · · · · · · · · · · ·	
Cotton:	•		: •	
	Fertilization	Rate:	1	l l
		200 lb/ac		
	Fertilization	Types:		
		Anhydrous	NH3	
· · · · · ·			33%	
			side dressed	
		Urea		
			33%	
			side dressed	!
		UN-32	;	
			33%	
			side dressed	
	Fertilization	Timing:		
		25% Nov - I	Feb	
	the state of the s	75% May -	June	
	Irrigation:			·
· · ·		50% furrow	1	
		50% flood		
		25% sprink	ler	
		10 - 14 day	[,] cycle	
Source:				i
	Doug Munie	r, Kern farm	advisor	
				i
Almonds		·	 	I
	Fertilization	Rate:		
		200 - 300	lb/ac	
	Fertilization	Types:	:	
		liquid		
			90%	
			surface appli	ed
		anhydrous		
			10%	
			water run	
	Fertilization	Timing:	<u>.</u>	
	-	Feb: 100 -	150 lb/ac	
		May: 40 - 6	30 lb/ac	
		Jun - Jul: 2	0 - 40 lb/ac	
		Oct: 40 - 6	0 lb/ac	
Source:				·
	Radian Surv	ey		

		Alfalfa 27457
HAY, ALFALFA	27457 A	Corn 25598
SUGARBEETS	3221 B	Cotton 266315
COTTON LINT, UPLAND	233980 C	Grapes 3905
COTTON LINT, PIMA	27835 C	Irrig Past 11000
SEED, COTTON FOR PLANTING	4500 C	Other 88118
GRAPES, RAISIN	1475 G	Prunus 10111
GRAPES, TABLE	718 G	S. beets 3221
GRAPES, WINE	1712 G	Veg. 20894
CORN FOR SILAGE	25348 N	Wheat/Bar 56330
CORN, SWEET ALL	250 N	
PASTURE, IRRIGATED	11000 P	Kings County
PASTURE, RANGE	100000 P	Wheat/Bar Com
PASTURE, MISC. FORAGE	31777 P	
ALMONDS, ALL	1907 S	S beets
ALMOND HULLS	S	Prunus Prunus
APRICOTS, ALL	251 S	
NECTARINES	2034 S	
PEACHES, CLINGSTONE	1289 S	
PEACHES, FREESTONE	2685 S	Other
PLUMS	1945 S	
BEANS, UNSPEC. DRY EDIBLE	2401 V	
BROCCOLI, FR MKT	1398 V	
BROCCOLI, PROC	V	Cotton
MELON, CANTALOUPE	925 V	Grapes
TOMATOES, FRESH MARKET	775 V	
TOMATOES, PROCESSING	11000 V	
VEGETABLES, UNSPECIFIED	4395 V	
SEED WHEAT	9309 W	
BARLEY, UNSPECIFIED	16423 W	
WHEAT ALL	30598 W	
COTTONSEED	z	
HAY, GRAIN	1238 z	
SAFFLOWER	46485 z	
FIELD CROPS, UNSPEC.	20438 z	
SEED, VEG & VINECROP	4327 z	
SEED BARLEY	1514 z	
SEED, VEG & VINECROP	137 z	
NURSERY, FLOWERS SEEDS	Z	
APPLES, ALL	502 z	
KIWIFRUIT	303 z	
OLIVES	1114 z	
PISTACHIOS	5596 z	
POMEGRANATES	340 z	
WALNUTS, ENGLISH	5797 z	
FRUITS & NUTS, UNSPEC.	327 z	

Appendix C. Data on crop distribution for San Joaquin Valley from 1993 County Agricultural Commisioners Report: Kings county.

	:	Alfalfa	76900
HAY, ALFALFA	76900 A	Citrus	103357
SUGARBEETS	3220 B	Corn	70700
COTTON LINT, UNSPEC	144600 C	Cotton	148065
SEED, COTTON FOR PLANTING	3465 C	Grapes	73580
GRAPES, RAISIN	13178 G	Irrig Past	12400
GRAPES, TABLE	35151 G	Other	137405
GRAPES, WINE	25251 G	Prunus	63915
GRAPEFRUIT, ALL	639 I	Veg	19677
LEMONS, ALL	4067 I	Wheat/Bar	70261
ORANGES, NAVEL	67777 I		
ORANGES, VALENCIAS	29257 I	Tulare Coun	tv
TANGERINES & MANDARINS	16171	Wheat/Bar	Alfalfa
CORN FOR GRAIN	14600 N	Veg	
CORN FOR SILAGE	56100 N		
PASTURE, IRRIGATED	12400 P		Citrus
PASTURE, RANGE	701000 P		
ALMONDS, ALL	10866 S		
APRICOTS, ALL	775 S		
NECTARINES	13767 S	Other	Com
PEACHES, CLINGSTONE	1376 S	Sec. 7	\sim
PEACHES, FREESTONE	9841 S		/
PLUMS	20782 S	Irria Bast	
PRUNES, DRIED	6508 S	ing Fast	Cotton
BEANS, UNSPEC. DRY EDIBLE	7970 V	Grapes	
BROCCOLI, UNSPECIFIED	2005 V		
CAULIFLOWER, UNSPECIFIED	1236 V		
CUCUMBERS	285 V		
TOMATOES, FRESH MARKET	172 V		
VEGETABLES, UNSPECIFIED	8009 V		
SEED WHEAT	4461 W		
BARLEY, UNSPECIFIED	24200 W		
WHEAT ALL	41600 W		
SILAGE	44300 z		· · · · · · · · · · · · · · · · · · ·
SORGHUM, GRAIN	1610 z		······································
FIELD CROPS, UNSPEC.	35900 z		
SEED, OTHER (NO FLOWERS)	1031 z		
APPLES, ALL	2129.z		
AVOCADOS, ALL	865 z		
CHERRIES, SWEET	244 z		
KIWIFRUIT	1802 z		
OLIVES	15238 z		
PEARS, UNSPECIFIED	632 z		
PECANS	770 z		
PERSIMMONS	893 z		
PISTACHIOS	5462 z		·····
POMEGRANATES	1129 z	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
WALNUTS, ENGLISH	25087 z		
FRUITS & NUTS, UNSPEC	313 7		

Appendix C. Data on crop distribution for San Joaquin Valley from 1993 County Agricultural Commisioners Report: Tulare county.

		Alfalfa	79569
	78568 1	Citrue	24925
	0770 B	Catton	34855
	248354 C	Grapos	72710
	29134 0	Irrig Past	10000
	23734 0		00631
GRADES TABLE	20058 G	Pripus	70452
	29038 G		0770
GRADES WINE	4495.0	S. Deels	74093
	9511	Wheat/Ba	r 69111
LEMONS ALL	2061 1	Wileabba	08111
ORANGES NAVEL	22991		_
ORANGES VALENCIAS	220011	Kern Coι Wheat/Bar	Inty Alfalfa
TANGELOS	10571		, mana
	1037 I	Veg.	Citrus
	10000 B		
PASTURE, INNIGATED	10000 F	S. beets	
ALMONDS ALL	22304/3 P	and a start of the	
	/15/4 5	Prunt	
	<u> </u>)
	1007 0	and the second second	/
	1837 5		Øotton
PEACHES, UNSPECIFIED	2189.5	Other	
	3184 5	Irria Bact	
BEANS, UNSPEC. DRY EDIBLE	6340 V	Grapes	
	1775 V		
	45290 V		
	4340 V		
MELON, UNSPECIFIED	1044 V		
PEPPERS, BELL	16/9 V		
TOMATOES, FRESH MARKET	1425 V		
TOMATOES, PROCESSING	3600 V		
	<u>3903 V</u>		
	4697 V		
BARLEY, UNSPECIFIED	22664 W		3
	44447 W		
APPLES, ALL	4985 z		
	626 z		
	2017 z		
	<u>19713 z</u>		
WALNUTS, ENGLISH	<u>1612 z</u>		
FRUITS & NUTS, UNSPEC.	2403 z		
HAY, GRAIN	6000 z		
HAY, OTHER UNSPECIFIED	3500 z		
SAFFLOWER	13510 z		
SILAGE	11000 z		
ASPARAGUS, UNSPECIFIED	613 z		
GARLIC, ALL	3938 z		
ONIONS	8789 z	· · · · · · · · · · · · · · · · · · ·	
POTATOES, IRISH ALL	<u> </u>		

!

1

,

Appendix C. Data on crop distribution for San Joaquin Valley from 1993 County Agricultural Commisioners Report: Kern county.

			Alfalfa	64000	
HAY, ALFALFA	64000 A		Corn	81600	
SUGARBEETS	20600 B		rrig Past	23700	
GRAPES, TABLE	G	(Other	62126	
GRAPES, WINE	G		Prunus	36100	
CORN FOR GRAIN	56200;N		S. beets	20600	
CORN FOR SILAGE	25400 N	1	Veg	28624	
CORN, SWEET ALL	N		Wheat	56070	
OATS FOR GRAIN	1000 O				
PASTURE, IRRIGATED	23700 P			1	
PASTURE, RANGE	144000 P				
ALMONDS, ALL	36100 S	Sa	n Joaquin C	county	-
ALMOND HULLS	S			··,	
APRICOTS, ALL	S	Wheat		Alfalfa	
PEACHES, CLINGSTONE	S	/			l. l
PEACHES, FREESTONE	S				Ĩ
BEANS, BLACKEYE (PEAS)	3380 V	Veg			ſ
BEANS, RED KIDNEY	15600 V				
LIMA BEANS, UNSPECIFIED	4726 V				Ĩ
BEANS, GARBANZO	800 V	S. beets		Com	ĺ
SEED BEANS	4118 V			Com	[
BROCCOLI, UNSPECIFIED	Z '				Ī
CAULIFLOWER, UNSPECIFIED	V	Prunus	1		ſ
CUCUMBERS	V		1		
MELON, WATER MELONS	V		Other	Irrig Past	
MELON, UNSPECIFIED	V			1 2	j
PEPPERS, BELL	V				
PUMPKINS	V				
TOMATOES, FRESH MARKET	V				
TOMATOES, PROCESSING	V				
VEGETABLES, UNSPECIFIED	V				
BARLEY, UNSPECIFIED	7070 W			:	
WHEAT ALL	49000 W				
HAY, OTHER UNSPECIFIED	15500 z				
RICE, FOR MILLING	5040 z				
SAFFLOWER	21900 z			-	
SILAGE	16700 z				
SUNFLOWER SEED	970 z				
FIELD CROPS, UNSPEC.	230 z				
SEED, MISC FIELD CROP	250 z				
POTATOES, SEED	934.z				
SEED, VEG & VINECROP	282 z				
SEED, GRASS, UNSPECIFIED	320 z	i			

Appendix C. Data on crop distribution for San Joaquin Valley from 1993 County Agricultural Commisioners Report: San Joaquin county.

Appendix C. Data on crop distribution for San Joaquin Valley from 1993 County Agricultural Commisioners Report: Madera county.

		Alfalfa	31800
HAY, ALFALFA	31800 A	Corn	12800
SUGARBEETS	780 B	Cotton	51400
COTTON LINT, UNSPEC	51400 C	Grapes	81644
GRAPES, RAISIN	25883 G	Irrig Past	20000
GRAPES, WINE	50308 G	Other	37039
GRAPES, TABLE	5453 G	Prunus	42454
ORANGES, UNSPECIFIED	4161 1	Veg.	7991
CORN FOR GRAIN	8700 N	Wheat/Bar	26300
CORN FOR SILAGE	4100 N		
PASTURE, IRRIGATED	8000 P		
PASTURE, RANGE	393000 P	Madera Co	unty
PASTURE, MISC. FORAGE	20000 P	Wheat/Bar	Alfalfa
ALMONDS, ALL	39176 S	Veg.	Com
ALMOND HULLS	S		
NECTARINES	790 S	Prunus	
PEACHES, FREESTONE	1260 S		
PLUMS	1228 S	an de la constance de la constante 🔪 👘	Cotton
BEANS, UNSPEC. DRY EDIBLE	1550 V	das setting size of the setting of	
VEGETABLES, UNSPECIFIED	6441 V	and the second second	
BARLEY, UNSPECIFIED	4300 W		
SILAGE	1050 z	Other	
COTTONSEED	Z		
HAY, GRAIN	2000 z		
WHEAT ALL	22000 W	Irrig Past	Grapes
FIELD CROPS, UNSPEC.	6441 z		
SEED, OTHER (NO FLOWERS)	1055 z		
APPLES, ALL	2250 <u>z</u>		
FIGS, DRIED	6690 z		
OLIVES	1781 z		
PISTACHIOS	16884 z		
WALNUTS, ENGLISH	981 z		
FRUITS & NUTS, UNSPEC.	2207 z		

,

		Alfalfa 75220	
HAY, ALFALFA	75220 A	Corn 50540	
SUGARBEETS	8900 B	Cotton 79200	
COTTON LINT, UNSPEC	79200 C	Grapes 14338	
GRAPES, RAISIN	1190 G	Irrig Past 80000	
GRAPES, WINE	13148 G	Other 110796	
CORN FOR GRAIN	5540 N	Prunus 76711	a a managera a contrar a contrar
CORN FOR SILAGE	45000 N	S. beets 8900	
PASTURE, MISC. FORAGE	9700 P	Veg. 46600	
PASTURE, IRRIGATED	80000 P	Wheat/Bar 11850	
PASTURE, RANGE	553000 P		
PLUMS	180 S	Merced County	
NECTARINES	203 S	Wheat/Bar Veg Alfalfa	
PEACHES, FREESTONE	1667 S	S beets	
APRICOTS, ALL	1997 S		
PRUNES, DRIED	2096 S		
PEACHES, CLINGSTONE	4049 S	Prunus	•
ALMONDS, ALL	66519 S		
ALMOND HULLS	S		
PEAS, GREEN, PROCESSING	210 V	and the second	
PEPPERS, BELL	600 V		tton
MELON, WATER MELONS	1170 V		
BEANS, GREEN LIMAS	2580 V		
LIMA BEANS, UNSPECIFIED	2850 V	Other Grapes	
BEANS, UNSPEC. DRY EDIBLE	2900 V		
MELON, UNSPECIFIED	3200 V	Irrig Past	. <u></u> ;
VEGETABLES, UNSPECIFIED	3560 V		
TOMATOES, FRESH MARKET	7430 V		
TOMATOES, PROCESSING	10900 V		
MELON, CANTALOUPE	11200 V		
KIWIFRUIT	37:z		
SORGHUM, GRAIN	60 z		
HAY, SUDAN	690 z		
OATS FOR GRAIN	2700 z		
SEED, OTHER (NO FLOWERS)	<u>3304</u> z		
FIGS, DRIED	3345 z		
SAFFLOWER	<u>3760 z</u>		
PISTACHIOS	4133 z		
FRUITS & NUTS, UNSPEC.	4352 z		
RICE, FOR MILLING	4390 z		
SWEET POTATOES	5500 z		
WALNUTS, ENGLISH	6435 z		
BARLEY, UNSPECIFIED	6590 z		
WHEAT ALL	11850 W		
HAY, GRAIN	18200 z		
SILAGE	47300 z		

Appendix C. Data on crop distribution for San Joaquin Valley from 1993 County Agricultural Commisioners Report: Merced county.

Commodity	Acres			Alfalfa	40200
SUGABBEETS	720	B		Corn	42700
GBAPES WINE	17200	G		Grapes	17200
COBN FOR SILAGE	41700	N		Irrig Past	75500
COBN FOR GRAIN	1000	N		Other	96218
PASTURE BANGE	358800	P		Prunus	88100
	75500	P		S beet	720
	70000	s		Veg	69905
PEACHES CLINGSTONE	10000	<u>s</u>		Wheat	10300
APBICOTS ALL	6600	<u>s</u>		Wileat	10300
PEACHES EBEESTONE	1400	<u>s</u> =			
NECTABINES	100	S		Stanialaua	
TOMATOES PROCESSING	12400	V		Wheat	County
BEANS GREEN LIMAS	8500	V	Ver	wheat	
IBEANS LIMAS LG DBY	8200	v	veg	, 	Com
BEANS BLACKEYE (PEAS)	7600	v	S hoot		
BEANS LIMAS BABY DBY	5000	V	S. Deel		
MELON HONEYDEW	3300	V			Grapes
BEANS LINSPECIEIED SNAP	3100	V			
MELON LINSPECIEIED	2900	V	Prunus		
PEAS GREEN PROCESSING	2500	V			/ Irrig Past
MELONI CANITAL OLIPE	2500	V	N N		
	2300	V			-
	2300	V I		Other	
MELONI WATER MELONIS	2100	V		Other	ļ
	2000	V			
	1420	<u>v</u>			K =
	1400	<u>v</u>			
	1100	V V			
TOMATOES ERECHMARKET	1175	V			
PERFOR PELL	1175	<u>v</u>			
	7400	V	·		
	400	<u>vv</u>			
	40200	A ~			
	20500				
	2000	-		· · · · · · · · · · · · · · · · · · ·	
	20800	Z			
	2900	<u></u>			
	2700	-			
	2000	<u>z</u>			
HAY, OTHER UNSPECIFIED	2000	<u>z</u>			
CHEDDIED OWEET	1/00	<u>z</u>			
	1600	<u>z</u>			
APPLES, ALL	1400	<u>z</u>			
	1300	-			
Chichie	961	<u>z</u>			
	900	2			
	380	<u>z</u>			
SEED, VEG & VINECHOP	277	Z			· · · · · · · · · · · · · · · · · · ·
	200	Z			

ť

.....

Appendix C. Data on crop distribution for San Joqauin Valley from 1993 County Agricultural Commissioners Report: Stanislaus county.

Commodity	Acres	Alfalfa	66000
	66000 A	Citrus	23218
SUGABBEETS	17000 B	Corn	24200
	338000 C	Cotto	n 377700
	3350010	Grane	s 208228
	6200 0		ast 40000
GRADES TABLE	11690 G	Other	121075
GRADES MINE	61022 G	Prupu	80586
CDADES DAISINI	125516 C	- I turida	17000
	135510.0	J. Det	209045
DANCES NAVEL	10951	Veg	+/Por 66500
ODANCES VALENCIAS	47401	whea	1/Bai 80500
OTTINGES, VALENCIAS	47421	F	- 0
	0001	Whead	Bar Alfalta
	3900 N		Com
	18000 N	Veg	
CORN, SWEET ALL	2300 N		
PASTURE, MISC. FORAGE	17300 P		
PASTURE, IRRIGATED	40000 P		
PASTURE, RANGE	850000 P	S. beets	Cotton
ALMONDS, ALL	36503 S	Prunus	
APRICOTS, ALL	829 S		
NECTARINES	12396 S		
PEACHES, CLINGSTONE	1730 S	Other	
PEACHES, FREESTONE	11634 S		
PLUMS	16065 S	Irrig Past	
PRUNES, DRIED	1429 S		Grapes
BEANS, UNSPEC. DRY EDIBLE	17900 V		
PEPPERS, BELL	1500 V		
BROCCOLI, UNSPECIFIED	6800 V		
CARROTS, UNSPECIFIED	610 V		
EGGPLANT, ALL	770 V		
LETTUCE, HEAD	18200 V		
MELON, CANTALOUPE	37000 V		
MELON, HONEYDEW	4200 V	:	
MELON, UNSPECIFIED	1750 V		
MELON, WATER MELONS	550 V		
VEGETABLES, ORIENTAL, ALL	2000 V		
TOMATOES, CHERRY	1000 V		· · · · · · · · · · · · · · · · · · ·
TOMATOES EBESHMARKET	9600 V		
TOMATOES PROCESSING	96000 V	· · · · · · · · · · · · · · · · · · ·	
VEGETABLES UNSPECIFIED	11165 V		
BABLEY UNSPECIFIED	16000 W		
	28000 W		
	22500 W		
ONIONS	22000 1		
SEED VEG & VINECPOP	22000 2		
GARLIC ALL	18/00/7		
	15700 -	· · · · · · · · · · · · · · · · · · ·	
ONTLOWER	15700 2		

Appendix C. Data on crop distribution for San Joaquin Valley from 1993 County Agricultural Commisioners Report: Fresno county.

Appendix C. Data on crop distribution for San Joaquin Valley from 1993 County Agricultural Commisioners Report: Fresno county.

HAY, GRAIN	10200 z	
RICE, FOR MILLING	7200 z	
FIELD CROPS, UNSPEC.	4270 z	
FIGS, DRIED	3319 z	
PISTACHIOS	2858 z	
WALNUTS, ENGLISH	2502 z	
APPLES, ALL	2484 z	
SEED, VEG & VINECROP	2000 z	
SEED BARLEY	1450 z	
SWEET POTATOES	1320 z	
OLIVES	1127 z	
SQUASH	940 z	
POMEGRANATES	929 z	
SEED, MISC FIELD CROP	819 z	
STRAWBERRIES, UNSPECIFIED	620 z	
FRUITS & NUTS, UNSPEC.	591 z	
PEARS, UNSPECIFIED	577 z	
KIWIFRUIT	377 z	
PERSIMMONS	313 z	
PECANS	279 z	
COTTONSEED	z	
CHRISTMAS TREES/CUT GRNS	z	
NURSERY, HERBAC. PRRNLS	z	
NURSERY, WOODY ORNAMNTALS	z	
NURSERY, NON-BRG FR, VN, NT	z	
CATTLE, BEEF BRDNG COWS	Z	
CATTLE, BEEF BRDNG BULLS	z	
CATTLE, STOCKERS, FEEDERS	<u>z</u>	
CATTLE, CALVES ONLY	Z	
CATTLE, FED STEERS, HEFRS	<u>Z</u>	
CATTLE, CULL BEEF COWS	Z	
CATTLE, DAIRY BRDNG COWS	Z	
CATTLE, CULL MILK COWS	Z	
CATTLE, VEAL CALVES	Z	
HOGS & PIGS, UNSPECIFIED	Z	
SHEEP, LAMBS	Z	
SHEEP, CULL EWES	z	
TURKEYS, UNSPECIFIED	Z	
MINK	Ζ	
POULTRY, UNSPECIFIED	Z	
MANURE	z	
MILK, MANUFACTURING	Z	· · · · · · · · · · · · · · · · · · ·
MILK, FLUID MKT	z	
WOOL	Z	
EGGS, UNSPECIFIED	Z	
APIARY PROD, HONEY	z	
APIARY PROD, BEESWAX	Z	
APIARY PROD, POLLIN. FEES	z	

{

ļ

Appendix E. Method for calculating diel characteristic curves.

The following page of plots illustrates how the diel characteristic curves were calculated, using almonds, site B, as an example. The strategy was to assume that, for a particular crop type and position, the overall shape of the diel pattern of NO flux is approximately the same on different days, but the amplitude and maximum may differ, stretching or flattening the curve. The ratio of the amplitude to the maximum was assumed to remain constant; this assumption is considered reasonable, as inspection of the data showed the amplitude of the diel flux to be approximately proportional to the maximum flux. Thus, the diel curve can be predicted if only the maximum NO flux is known for a particular day.

A. Local regression, spline, lower bounds

The first three plots (from left to right, going down the page) are of the curves fitted to diel data (here, for almonds, Site B, canopy position, different days; days 07/06/95-07/07/95 were grouped together, since these consecutive days had similar NO fluxes). The curves were fit by local regression, as explained in more detail in the text in Section 2.2.1.4. For hours without data, NO flux values were interpolated. The rules followed for interpolation were as follows:

 The NO flux is known to be periodic on daily cycles, and it is assumed that adjacent days have similar absolute NO fluxes. Therefore, repeating the loess curves from the available data in cycles of 3 consecutive days allows splining in of the missing hours.
 If the fitted loess curve is very steep, the splined NO values may drop very low, yielding an unrealistic interpolation. In such cases, the lowest predicted value from the loess fit of the data (or zero, whichever is largest) is used as a lower bound for NO flux.
 When splined values (i.e. no data taken during those hours) fall during the night-time hours of 11 pm to 5 am, the interpolated NO flux is held to the minimum of the fitted data, or zero, whichever is larger.

B. Normalization of each daily curve

Each diel curve was normalized to a range [0, 1]. These normalized curves from different days are shown plotted together on the same graph in the fourth figure. The amplitude/maximum ratio was also calculated.

C. Confidence intervals of normalized curves

The confidence intervals to the normalized curves were calculated by scaling (with the normalization of the curve) the mean confidence interval for the original curve. Overlaying these confidence intervals for different days gives a sense for how well the diel curve shapes are in agreement with each other (fifth plot).

D. Diel characteristic curve

The final characteristic diel curve for almonds, canopy, is shown in the last plot, with its propagated 95% confidence envelope. The final curve is achieved by taking the average of the normalized curves and rescaling this by the average of their amplitude/maximum ratio:

characteristic normalized NO = average normalized * ratio + 1 - ratio

Note that the curve is not merely rescaled for amplitude but also translated up so that its maximum is at 1.

Thus, to estimate diel curves for a day on which only the maximum NO flux is known, one merely multiplies the characteristic curve by the new maximum NO value and thus obtains a new, estimated diel curve.

Appendix E. Method for calculating diel characteristic curves

Locally fitted curves by date, normalized curves, normalized confidence intervals, and final characteristic curve

Appendix F. Point-predictive model refitted to individual crops. [1] "Alfalfa" [1] "sandy" [1] "open" [1] 4 Call: glm(formula = log(NO) ~ log(soiltemp) + twfps + NH4 + NO3 + NO2 + C + N + log(soiltemp) * twfps * NH4 + twfps * (NO3 + C) + NO3:C + NO2 * N + twfps:C:N + NH4:NO2:C:N, data = newdata, model = T) Deviance Residuals: Min 10 Median 30 Max -2.161946 -0.2185778 0.02156267 0.3409101 0.9980896 Coefficients: Value Std. Error t value 7.07258152 12.7237195 0.5558580 (Intercept) log(soiltemp) -1.88899759 3.5327852 -0.5347049 twfps -26.40321014 33.5158186 -0.7877835 6.34379173 14.4475986 0.4390897 NH4 NO3 -0.08612367 0.1169894 -0.7361665 NO2 -25.93129386 60.3628288 -0.4295904 С -1.11490809 0.9273963 -1.2021916 Ν 11.24323069 15.7322539 0.7146612 7.41314466 9.4661608 0.7831205 log(soiltemp):twfps log(soiltemp):NH4 -1.84323632 4.1099702 -0.4484792 twfps:NH4 14.83276565 34.3528872 0.4317764 0.1716654 -0.3511058 twfps:NO3 -0.06027273 twfps:C 2.48500463 5.2669041 0.4718151 NO3:C 0.27278001 0.3227869 0.8450778 NO2:N 409.94450362 966.2479945 0.4242643 log(soiltemp):twfps:NH4 -4.18576964 9.8158205 -0.4264309 twfps:C:N 13.70757760 74.8867463 0.1830441 NH4:NO2:C:N -5.09030220 27.4628747 -0.1853521 (Dispersion Parameter for Gaussian family taken to be 0.5613226) Null Deviance: 57.61692 on 44 degrees of freedom Residual Deviance: 15.15571 on 27 degrees of freedom Number of Fisher Scoring Iterations: 1 Analysis of Deviance Table Gaussian model Response: log(NO) Terms added sequentially (first to last) Df Deviance Resid. Df Resid. Dev Pr(Chi) NULL 57.61692 44 log(soiltemp) 1 26.43604 43 31.18088 0.0000003

42 24.25657 0.0085032 twfps 1 6.92431 NH4 1 0.61330 41 23.64327 0.4335482 NO3 1 2.95897 40 20.68431 0.0854026 39 20.66805 C.8985417 NO2 1 0.01626 38 20.57358 0.7585637 C 1 0.09447 N 1 0.52474 37 20.04883 0.4688258 log(soiltemp):twfps 1 1.69787 36 18.35096 0.1925667 log(soiltemp):NH4 1 0.03913 35 18.31183 0.8431832 twfps:NH4 1 0.02165 34 18.29019 0.8830339 twfps:NO3 1 0.40342 33 17.88677 0.5253284 twfps:C 1 1.49611 32 16.39066 0.2212709 NO3:C 1 1.05096 31 15.33969 0.3052856 NO2:N 1 0.06793 log(soiltemp):twfps:NH4 1 0.07904 30 15.27177 0.7943787 29 15.19272 0.7785971 twfps:C:N 1 0.01773 28 15.17500 0.8940823 NH4:NO2:C:N 1 0.01928 27 15.15571 0.8895540 [1] "Almonds" [1] "sandy" [1] "canopy" "open" [1] 3 Call: glm(formula = log(NO) ~ position + log(soiltemp) + twfps + NH4 + NO3 + NO2 + C + N + log(soiltemp) * twfps * NH4 + twfps * (NO3 + C) + NO3:C + NO2 * N + twfps:C:N + NH4:NO2:C:N, data = newdata, model = T) Deviance Residuals: ЗQ Min Median Max 10 -7.096909 -0.9461991 0.1431127 1.148614 3.86622 Coefficients: Value Std. Error t value (Intercept) -2.630332e-01 1.57490263 -0.16701556 position 6.069765e-01 0.14798583 4.10158507 log(soiltemp) -1.923446e-02 0.47099037 -0.04083832 twfps 4.635637e+00 3.87875482 1.19513542 NH4 4.765753e-02 0.12342521 0.38612476 NO3 8.608424e-03 0.01606890 0.53571949 NO2 -2.663277e+01 11.94526926 -2.22956611 C 5.535002e-01 0.97672261 0.56669132 N 4.245006e-01 8.99680571 0.04718348 log(soiltemp):twfps -1.068955e+00 1.13173165 -0.94453002 log(soiltemp):NH4 -5.822732e-03 0.03804803 -0.15303638 twfps:NH4 2.216576e-02 0.28531966 0.07768747 twfps:NO3 5.472907e-02 0.03194343 1.71331227 twfps:C -1.321719e+00 4.68008053 -0.28241379 NO3:C -2.466037e-02 0.02795064 -0.88228271 NO2:N 4.965828e+02 235.66658637 2.10714115 log(soiltemp):twfps:NH4 1.225929e-02 0.08803288 0.13925808 twfps:C:N -9.582614e+00 57.38735585 -0.16698128 NH4:NO2:C:N 5.281123e+01 29.99610026 1.76060314

(Dispersion Parameter for Gaussian family taken to be 2.775019)

į

Null Deviance: 1970.276 on 617 degrees of freedom Residual Deviance: 1662.236 on 599 degrees of freedom Number of Fisher Scoring Iterations: 1 Analysis of Deviance Table Gaussian model Response: log(NO) Terms added sequentially (first to last) Df Deviance Resid. Df Resid. Dev Pr(Chi) NULL 1970.276 617 position 1 20.4509 616 1949.825 0.0000061 log(soiltemp) 1 12.3610 615 1937.464 0.0004384 twfps 1 112.5945 NH4 1 0.8867 614 1824.870 0.0000000 613 1823.983 0.3463855 NO3 1 45.8441 612 1778.139 0.0000000 NO2 1 0.3855 611 1777.754 0.5346555 C 1 3.9598 610 1773.794 0.0466006 N 1 0.1170 log(soiltemp):twfps 1 10.5198 609 1773.677 0.7323216 608 1763.157 0.0011810 log(soiltemp):NH4 1 21.6741 607 1741.483 0.0000032 twfps:NH4 1 54.3841 606 1687.099 0.0000000 twfps:NO3 1 8.4023 605 1678.697 0.0037476 twfps:C 1 0.8098 604 1677.887 0.3681736 log(soiltemp):twfps:NH4 1 0.0046 [1] "-----" [1] "Corn" [1] "loamv" [1] "furrow" "ridge" [1] 3 Call: glm(formula = log(NO) ~ position + log(soiltemp) + twfps + NH4 + NO3 + NO2 + C + N + log(soiltemp) * twfps * NH4 + twfps * (NO3 + C) + NO3:C + NO2 * N + twfps:C:N + NH4:NO2:C:N, data = newdata, model = T) Deviance Residuals: Median 3Q Min 10 Max -5.500015 -0.5002014 0.122416 0.709231 2.939799 Coefficients: Value Std. Error t value (Intercept) 8.13124302 7.84858775 1.0360135 position 0.36378996 0.16648322 2.1851449 log(soiltemp) -2.23232334 1.75083755 -1.2750031 twfps -52.36787885 19.75245405 -2.6512087 NH4 -37.20196326 10.09761831 -3.6842315 NO3 -0.09952070 0.19533916 -0.5094764

NO2 0.36786493 1.00400063 0.3663991 С 1.06839891 3.80688320 0.2806492 N -26.56490180 11.84649647 -2.2424269 log(soiltemp):twfps 20.84943446 4.18954844 4.9765350 log(soiltemp):NH4 10.49978837 2.86411779 3.6659765 twfps:NH4 61.39626732 16.75569853 3.6642022 0.05974942 0.08743069 0.6833918 twfps:NO3 twfps:C -21.15602328 9.52110081 -2.2220144 NO3:C 0.07632937 0.15584085 0.4897905 NO2:N -6.07992021 8.54254056 -0.7117227 log(soiltemp):twfps:NH4 -17.32230893 4.75394114 -3.6437786 twfps:C:N 73.40762575 22.06419350 3.3270024 NH4:NO2:C:N 0.02717517 0.03104280 0.8754098 (Dispersion Parameter for Gaussian family taken to be 1.498334) Null Deviance: 880.3753 on 244 degrees of freedom Residual Deviance: 338.6234 on 226 degrees of freedom Number of Fisher Scoring Iterations: 1 Analysis of Deviance Table Gaussian model Response: log(NO) Terms added sequentially (first to last) Df Deviance Resid. Df Resid. Dev Pr(Chi) NULL 244 880.3753 position 1 9.9355 243 870.4397 0.0016212 242 519.9964 0.0000000 log(soiltemp) 1 350.4433 twfps 1 20.4140 241 499.5825 0.0000062 NH4 1 2.3799 240 497.2025 0.1229027 NO3 1 8.7042 239 488.4983 0.0031747 NO2 1 2.5522 238 485.9461 0.1101420 C 1 15.2431 237 470.7030 0.0000945 N 1 236 461.2089 0.0020613 9.4942 log(soiltemp):twfps 1 74.2854 235 386.9235 0.0000000 log(soiltemp):NH4 1 1.7968 234 385.1268 0.1801034 twfps:NH4 1 8.8215 233 376.3053 0.0029771 twfps:NO3 1 0.4420 232 375.8633 0.5061432 twfps:C 1 0.5777 231 375.2856 0.4472217 230 374.4999 0.3753975 NO3:C 1 0.7857 NO2:N 1 0.4486 229 374.0513 0.5030137 log(soiltemp):twfps:NH4 1 17.2995 228 356.7518 0.0000319 twfps:C:N 1 16.9802 227 339.7716 0.0000378 NH4:NO2:C:N 1 1.1482 226 338.6234 0.2839186 [1] "------" [1] "Cotton"

[1] "sandy" "loamy" "clayey"

[1] "furrow" "ridge"

í

Call: $glm(formula = log(NO) \sim soilcat + position + log(soiltemp) + twfps + NH4$ + NO3 + NO2 + C + N + log(soiltemp) * twfps * NH4 + twfps * (NO3 + C) + NO3:C + NO2 * N + twfps:C:N + NH4:NO2:C:N, data = newdata, model = T) Deviance Residuals: 10 Median 30 Min Max -4.784721 -0.8368273 0.07714343 1.022508 3.856622 Coefficients: Value Std. Error t value (Intercept) -14.121763780 1.936906305 -7.2908864 soilcatloamy 0.323372502 0.534518593 0.6049790 soilcatsandy 1.448246059 0.450155076 3.2172159 position 0.375803051 0.155985339 2.4092203 2.835121585 0.545443192 5.1978311 log(soiltemp) twfps -20.639782814 5.057991567 -4.0806282 NH4 -2.475875083 1.135478421 -2.1804686 NO3 0.005024431 0.008540621 0.5882981 NO2 1.596577577 2.703516439 0.5905559 2,118126031 0.807695124 2.6224326 С N 10.781686823 8.350992024 1.2910666 log(soiltemp):twfps 7.438595317 1.545364066 4.8134905 log(soiltemp):NH4 0.745508451 0.318004325 2.3443343 8.971245509 2.937293024 3.0542562 twfps:NH4 twfps:NO3 0.007643477 0.009899688 0.7720927 twfps:C -7.762329096 3.070999636 -2.5276229 NO3:C -0.009467456 0.013265581 -0.7136857 NO2:N -21.982168956 40.521043380 -0.5424877 loa(soiltemp):twfps:NH4 -2.655806265 0.850431778 -3.1228916 twfps:C:N 36.337844824 20.866300953 1.7414608 1.348786037 3.543209502 0.3806679 NH4:NO2:C:N (Dispersion Parameter for Gaussian family taken to be 2.098458) Null Deviance: 2100.872 on 486 degrees of freedom Residual Deviance: 977.8816 on 466 degrees of freedom Number of Fisher Scoring Iterations: 1 Analysis of Deviance Table Gaussian model Response: log(NO) Terms added sequentially (first to last) Df Deviance Resid. Df Resid. Dev Pr(Chi) NULL 486 2100.872 soilcat 2 116.5058 484 1984.367 0.0000000 position 1 31.0243 483 1953.342 0.0000000 1 471.6614 1481.681 0.0000000 log(soiltemp) 482 1250.896 0.0000000 twfps 1 230.7846 481 480 1142.650 0.0000000 NH4 1 108.2462 NO3 1 0.0040 479 1142.646 0.9498615

NO2 1 0.1845 478 1142.462 0.6675138 C 1 53.3808 477 1089.081 0.0000000 N 1 45.4598 476 1043.621 0.0000000 475 1019.666 0.0000010 log(soiltemp):twfps 1 23.9545 log(soiltemp):NH4 1 3.2580 474 1016.408 0.0710773 4731014.0000.12065904721012.0510.16270024711006.2010.0155828 twfps:NH4 1 2.4087 twfps:NO3 1 1.9489 twfps:C 1 5.8493 NO3:C 1 0.7697 470 1005.432 0.3803147 NO2:N 1 0.0034 469 1005.428 0.9533629 log(soiltemp):twfps:NH4 1 20.5714 468 984.857 0.0000057 twfps:C:N 1 6.6712 467 978.186 0.0097984 NH4:NO2:C:N 1 0.3041 466 977.882 0.5813337 [1] "-----[1] "Grapes" [1] "sandy" [1] "furrow" "ridge" [1] 3 Call: glm(formula = log(NO) ~ position + log(soiltemp) + twfps + NH4 + NO3 + NO2 + C + N + log(soiltemp) * twfps * NH4 + twfps * (NO3 + C) + NO3:C + NO2 * N + twfps:C:N + NH4:NO2:C:N, data = newdata, model = T) Deviance Residuals: Min 1Q Median 3Q Max -4.76598 -0.4782958 0.0637618 0.6069113 1.929435 Coefficients: Value Std. Error t value (Intercept) -0.685708491 1.084578167 -0.6322352 position -0.406627888 0.096774906 -4.2017906 0.485508203 0.311091728 1.5606593 log(soiltemp) twfps -4.230571173 4.213670963 -1.0040108 NH4 2.752168972 1.395786623 1.9717691 NO3 0.011108411 0.006536798 1.6993659 3.610543967 3.377440796 1.0690177 NO2 C -0.618592779 0.571900010 -1.0816450 N 7.546946015 5.298654717 1.4243136 log(soiltemp):twfps 0.632759194 1.173371480 0.5392659 log(soiltemp):NH4 -0.830502799 0.414464827 -2.0037956 twfps:NH4 8.596296970 3.564018157 2.4119678 twfps:NO3 0.019897114 0.007839538 2.5380468 twfps:C 8.683494959 3.732138699 2.3266807 NO3:C -0.003833573 0.011452684 -0.3347314 NO2:N -18.615132764 42.496578066 -0.4380384 log(soiltemp):twfps:NH4 -2.545197523 1.053371881 -2.4162383 twfps:C:N -59.861747700 27.724229307 -2.1591853 NH4:NO2:C:N -9.666564557 16.178666832 -0.5974883 (Dispersion Parameter for Gaussian family taken to be 0.7083266) Null Deviance: 496.3951 on 529 degrees of freedom Residual Deviance: 361.9549 on 511 degrees of freedom

Number of Fisher Scoring Iterations: 1 Analysis of Deviance Table Gaussian model Response: log(NO) Terms added sequentially (first to last) Df Deviance Resid. Df Resid. Dev Pr(Chi) NULL 529 496.3951 position 1 49.55124 528 446.8439 0.0000000 log(soiltemp) 1 2.36163 527 444.4823 0.1243519 twfps 1 29.81140 526 414.6709 0.0000000 NH4 1 0.32924 525 414.3416 0.5661042 NO3 1 15.79577 524 398.5459 0.0000706 NO2 1 10.90135 523 387.6445 0.0009609 C 1 1.22680 522 386.4177 0.2680299 N 1 3.55636 521 382.8614 0.0593176 log(soiltemp):twfps 1 3.41464 520 379.4467 0.0646205 log(soiltemp):NH4 1 1.21864 519 378.2281 0.2696283 twfps:NH4 1 0.36966 518 377.8584 0.5431906 twfps:NO3 1 4.86255 517 372.9959 0.0274458 twfps:C 1 0.94410 516 372.0518 0.3312246 NO3:C 1 0.43619 515 371.6156 0.5089678 NO2:N 1 0.23594 514 371.3796 0.6271541 513 365.4743 0.0150948 log(soiltemp):twfps:NH4 1 5.90537 twfps:C:N 1 3.26648 512 362.2078 0.0707090 NH4:NO2:C:N 1 0.25287 511 361.9549 0.6150634 [1] "Irrigated pasture" [1] "sandy" "loamy" [1] "open" [1] 2 Call: glm(formula = log(NO) ~ soilcat + log(soiltemp) + twfps + NH4 + NO3 + NO2 + C +N + log(soiltemp) * twfps * NH4 + twfps * (NO3 + C) + NO3:C + NO2 * N + twfps:C:N + NH4:NO2:C:N, data = newdata, model = T) Deviance Residuals: Min 10 Median 30 Max -4.610977 -0.6416017 0.01557415 0.7183327 3.688135 Coefficients: Value Std. Error t value (Intercept) -7.845938983 16.53069636 -0.47462846 soilcat 0.216292705 1.08636593 0.19909747 log(soiltemp) 2.042267237 4.82666743 0.42312160 twfps 5.267125353 34.96791185 0.15062739 NH4 0.098740367 0.81943020 0.12049881 NO3 0.022145647 0.18329102 0.12082232 NO2 0.416420339 6.94849918 0.05992954 C 0.138781596 1.56405372 0.08873199 N 3.929760454 15.47004505 0.25402385

log(soiltemp):twfps -1.111168100 9.63367700 -0.11534205 log(soiltemp):NH4 -0.024854616 0.23019066 -0.10797404 twfps:NH4 -0.691315433 1.60462943 -0.43082560 twfps:NO3 -0.022953490 0.06841874 -0.33548542 twfps:C 0.620709627 3.48039217 0.17834474 NO3:C -0.001092653 0.05872624 -0.01860588 NO2:N -3.858134406 35.77870652 -0.10783326 log(soiltemp):twfps:NH4 0.209974135 0.45196687 0.46457860 twfps:C:N -3.281631992 6.31491324 -0.51966383 NH4:NO2:C:N 0.022246133 0.09283679 0.23962625 (Dispersion Parameter for Gaussian family taken to be 2.863401) Null Deviance: 167.422 on 60 degrees of freedom Residual Deviance: 120.2629 on 42 degrees of freedom Number of Fisher Scoring Iterations: 1 Analysis of Deviance Table Gaussian model Response: log(NO) Terms added sequentially (first to last) Df Deviance Resid. Df Resid. Dev Pr(Chi) NULL 60 167.4220 soilcat 1 5.71613 59 161.7059 0.0168098 log(soiltemp) 1 0.93214 58 160.7738 0.3343075 twfps 1 2.36019 158.4136 0.1244673 57 NH4 1 20.18560 56 138.2280 0.0000070 NO3 1 0.43435 55 137.7936 0.5098620 NO2 1 0.00418 54 137.7894 0.9484698 C 1 3.34457 53 134.4449 0.0674272 52 134.2336 0.6457936 N 1 0.21124 log(soiltemp):twfps 1 0.12050 51 134.1131 0.7284944 log(soiltemp):NH4 1 0.02984 50 134.0833 0.8628607 twfps:NH4 1 2.10713 49 131.9762 0.1466137 48 131.8512 0.7237558 twfps:NO3 1 0.12492 twfps:C 1 8.76998 47 123.0813 0.0030623 NO3:C 1 1.04607 46 122.0352 0.3064141 NO2:N 1 0.19278 45 121.8424 0.6606129 log(soiltemp):twfps:NH4 1 0.76258 44 121.0798 0.3825232 43120.42730.419199242120.26290.6851206 twfps:C:N 1 0.65256 NH4:NO2:C:N 1 0.16442 [1] "Oranges" [1] "sandy" [1] "canopy" "open" [1] 3 Call: glm(formula = log(NO) ~ position + log(soiltemp) + twfps + NH4 + NO3 + NO2 + C + N + log(soiltemp) * twfps * NH4 + twfps * (NO3 + C) + NO3:C + NO2 * N +

÷

Coefficients:

	Value	Std. Error	t value
(Intercept)	-13.3953329	8.14847803	-1.64390612
position	-0.1935021	0.41486642	-0.46642025
log(soiltemp)	3.8250843	2.09492645	1.82587999
twfps	10.7789933	20.06347560	0.53724457
NH4	-6.6093063	7.05120429	-0.93733014
NO3	-0.1254525	0.10930321	-1.14774785
NO2	0.7303322	2.06924355	0.35294647
С	1.0775173	6.19193447	0.17401949
N	0.9730768	31.86516155	0.03053733
log(soiltemp):twfps	-3.7163540	5.57889077	-0.66614569
log(soiltemp):NH4	1.9739904	2.10691453	0.93691055
twfps:NH4	28.2681942	19.26052017	1.46767553
twfps:NO3	0.1403419	0.08709275	1.61140696
twfps:C	24.0153116	27.89703794	0.86085525
NO3 : C	0.2140853	0.39872615	0.53692313
NO2 : N	7.9731481	34.06182643	0.23407870
log(soiltemp):twfps:NH4	-7.3749437	5.48164215	-1.34538948
twfps:C:N	-417.4691349	341.17929977	-1.22360628
NH4:NO2:C:N	-28.0621431	17.87291609	-1.57009315

(Dispersion Parameter for Gaussian family taken to be 2.079862)

Null Deviance: 166.7951 on 74 degrees of freedom

Residual Deviance: 116.4723 on 56 degrees of freedom

Number of Fisher Scoring Iterations: 1 Analysis of Deviance Table

Gaussian model

Response: log(NO)

Terms added sequentially (first to last)

	Df	Deviance	Resid.	Df	Resid. Dev	Pr(Chi)
NULL				74	166.7951	
position	1	2.69110		73	164.1040	0.1009101
log(soiltemp)	1	17.24459		72	146.8594	0.0000329
twfps	1	0.31225		71	146.5472	0.5763050
NH4	1	0.83365		70	145.7135	0.3612193
NO3	1	1.09905		69	144.6145	0.2944745
NO2	1	2.47201		68	142.1425	0.1158894
С	1	0.40377		67	141.7387	0.5251502
N	1	0.03701		66	141.7017	0.8474476
log(soiltemp):twfps	1	1.11924		65	140.5825	0.2900824
log(soiltemp):NH4	1	1.33715		64	139.2453	0.2475380
twfps:NH4	1	3.33495		63	135.9104	0.0678226

twfps:NO3 1 7.70175 62 128.2086 0.0055167 twfps:C 1 0.81114 61 127.3975 0.3677828 NO3:C 1 1.16584 60 126.2316 0.2802574 NO2:N 1 1.20895 59 125.0227 0.2715394 log(soiltemp):twfps:NH4 1 1.60278 58 123.4199 0.2055094 twfps:C:N 1 1.82039 57 121.5995 0.1772673 NH4:NO2:C:N 1 5.12726 56 116.4723 0.0235529 [1] "Peaches" [1] "Sugar beets" [1] "sandy" "loamy" [1] "open" "furrow" "ridge" Call: glm(formula = log(NO) ~ soilcat + position + log(soiltemp) + twfps + NH4 + NO3 + NO2 + C + N + log(soiltemp) * twfps * NH4 + twfps * (NO3 + C) + NO3:C + NO2 * N + twfps:C:N + NH4:NO2:C:N, data = newdata, model = T)Deviance Residuals: Median 3Q Min 10 Max -1.321444 -0.4177301 -0.03896702 0.4609592 1.883339 Coefficients: Value Std. Error t value (Intercept) -2.659150696 2.731361803 -0.97356223 soilcat -1.172851946 0.784465247 -1.49509739 positionopen -3.533229493 0.498043997 -7.09421159 positionridge 0.062788743 0.144873013 0.43340538 log(soiltemp) 1.766027091 0.543339280 3.25032103 5.937138258 8.096886588 0.73326188 twfps 0.043721292 1.037676650 0.04213383 NH4 0.006716225 0.013658784 0.49171471 NO3 NO2 4.075000879 3.112434046 1.30926497 C -3.048895521 1.412734885 -2.15815122 N -5.909149474 9.317730761 -0.63418332 log(soiltemp):twfps -0.507306726 2.224462092 -0.22805816 log(soiltemp):NH4 0.028007893 0.286266111 0.09783866 twfps:NH4 2.949853674 5.524618569 0.53394703 twfps:NO3 -0.007601268 0.008139592 -0.93386352 twfps:C -8.984962265 4.920139203 -1.82616017 NO3:C -0.021325059 0.027680708 -0.77039428 NO2:N -6.294085501 49.123279362 -0.12812837 log(soiltemp):twfps:NH4 -0.940163585 1.614895242 -0.58218240 twfps:C:N 41.813922090 26.976447461 1.55001589 NH4:NO2:C:N -36.542820009 27.403678496 -1.33350054 (Dispersion Parameter for Gaussian family taken to be 0.4802536) Null Deviance: 170.458 on 123 degrees of freedom Residual Deviance: 49.46612 on 103 degrees of freedom

Number of Fisher Scoring Iterations: 1 Analysis of Deviance Table Response: log(NO) Terms added sequentially (first to last) Df Deviance Resid. Df Resid. Dev Pr(Chi) 123 170.4580 NULL soilcat 1 7.64609 122 162.8119 0.0056895 position 2 42.74773 120.0641 0.0000000 120 119 85.5478 0.0000000 log(soiltemp) 1 34.51630 twfps 1 13.92578 118 71.6220 0.0001902 NH4 1 1.98603 117 69.6360 0.1587568 NO3 1 0.74950 116 68.8865 0.3866359 64.4485 0.0351459 115 NO2 1 4.43807 C 1 11.08787 114 53.3606 0.0008689 N 1 0.00039 113 53.3602 0.9842866
 113
 53.3002
 0.3342300

 112
 53.3405
 0.8884709

 111
 53.0194
 0.5709366

 110
 52.4349
 0.4445474
 log(soiltemp):twfps 1 0.01967 log(soiltemp):NH4 1 0.32112 twfps:NH4 1 0.58452 twfps:NO3 1 0.31178 109 52.1231 0.5765869 twfps:C 1 0.08711 108 52.0360 0.7678902 10852.03600.767890210751.39220.422319910651.32430.794445710551.25980.7996329 NO3:C 1 0.64385 NO2:N 1 0.06788 log(soiltemp):twfps:NH4 1 0.06443 twfps:C:N 1 0.93973 104 50.3201 0.3323482 NH4:NO2:C:N 1 0.85400 103 49.4661 0.3554237 [1] "------" [1] "Tomatoes" [1] "loamv" [1] "furrow" "ridge" [1] 3 Call: glm(formula = log(NO) ~ position + log(soiltemp) + twfps + NH4 + NO3 + NO2 + C + N + log(soiltemp) * twfps * NH4 + twfps * (NO3 + C) + NO3:C + NO2 * N + twfps:C:N + NH4:NO2:C:N, data = newdata, model = T) Deviance Residuals: Min 1Q Median 30 Max -2.545258 -0.6149222 0.005321983 0.6187332 2.304916 Coefficients: Value Std. Error t value (Intercept) 12.69046015 8.57004397 1.48079289 position 0.05883044 0.18748418 0.31378884 -3.01906232 2.38996197 -1.26322609 log(soiltemp) twfps -31.44087938 21.08131199 -1.49140999 NH4 -1.15623885 6.16634396 -0.18750800 -0.02362091 0.06761561 -0.34934115 NO3 NO2 -8.84127171 8.73372887 -1.01231351 C -2.14772731 3.32708387 -0.64552846 N 1.38100998 18.84587310 0.07327917 log(soiltemp):twfps 9.48792262 5.66101975 1.67600946

log(soiltemp):NH4 0.31632201 1.71551343 0.18438912

twfps:NH4 14.82803734 18.82941524 0.78749325

Gaussian model

twfps:NO3	0.03625852	0.03209076	1.12987424
twfps:C	-1.24451001	14.69282728	-0.08470187
NO3 : C	0.04464490	0.11691885	0.38184517
NO2 : N	198.73089089	110.36841038	1.80061387
<pre>log(soiltemp):twfps:NH4</pre>	-4.10237143	5.25232025	-0.78105889
twfps:C:N	13.13862539	75.97176831	0.17294089
NH4:NO2:C:N	-58.27159760	31.39609248	-1.85601433

(Dispersion Parameter for Gaussian family taken to be 0.9148189)

Null Deviance: 163.2424 on 120 degrees of freedom

Residual Deviance: 93.31153 on 102 degrees of freedom

Number of Fisher Scoring Iterations: 1 Analysis of Deviance Table

Gaussian model

÷,

Response: log(NO)

Terms added sequentially (first to last)

	Df	Deviance	Resid. Df	Resid. Dev	Pr(Chi)
NULL			120	163.2424	
position	1	0.34403	119	162.8984	0.5575142
log(soiltemp)	1	11.54663	118	151.3518	0.0006787
twfps	1	34.98247	117	116.3693	0.0000000
NH4	1	0.04062	116	116.3287	0.8402767
NO3	1	4.21671	115	112.1120	0.0400278
NO2	1	1.19487	114	110.9171	0.2743491
C	1	0.21730	113	110.6998	0.6411044
Ň	1	0.16531	112	110.5345	0.6843110
log(soiltemp):twfps	1	6.47202	111	104.0625	0.0109586
log(soiltemp):NH4	1	0.63234	110	103.4301	0.4264966
twfps:NH4	1	2.47842	109	100.9517	0.1154180
twfps:NO3	1	0.22015	108	100.7316	0.6389247
twfps:C	1	0.00000	107	100.7316	0.9992068
NO3 : C	1	0.39669	106	100.3349	0.5288047
NO2 : N	1	1.86641	105	98.4685	0.1718869
<pre>log(soiltemp):twfps:NH4</pre>	1	1.88906	104	96.5794	0.1693084
twfps:C:N	1	0.11651	103	96.4629	C.7328495
NH4:NO2:C:N	1	3.15136	102	93.3115	0.0758638
[1] "					"
[1] "					"

Appendix G. Management model refitted to individual crops. 3rd-order interactions excluded Irrigated pasture not included because fertilizer type unknown. Alfalfa and peaches excluded due to too few data points. [1] "Almonds" [1] "sandy" [1] "mixedfert" [1] 4 Call: glm(formula = log(NOmax) ~ log(airtemp) + fertdt + log(airtemp) * twfps, data = newdata, model = T) Deviance Residuals: 10 Median Min 3Q Max -2.360552 -1.090174 0.0145722 0.8682951 2.766292 Coefficients: Value Std. Error t value (Intercept) 27.922884821 12.92937635 2.1596467 log(airtemp) -7.908692346 3.80644936 -2.0777085 fertdt 0.002817022 0.02277347 0.1236975 twfps -66.498191305 29.70269773 -2.2387930 log(airtemp):twfps 19.801680266 8.72122920 2.2705148 (Dispersion Parameter for Gaussian family taken to be 1.995286) Null Deviance: 75.48935 on 28 degrees of freedom Residual Deviance: 47.88688 on 24 degrees of freedom Analysis of Deviance Table Gaussian model Response: log(NOmax) Df Deviance Resid. Df Resid. Dev Pr(Chi) NULL 28 75.48935 log(airtemp) 1 13.42943 27 62.05992 0.0002477 fertdt 1 3.21107 26 58.84885 0.0731415 twfps 1 0.67580 25 58.17305 0.4110367 log(airtemp):twfps 1 10.28618 24 47.88688 0.0013403 [1] "_______" [1] "Corn" [1] "loamy" [1] "mixedfert" "NH4fert" [1] 3 Call: glm(formula = log(NOmax) ~ log(airtemp) + fertcat * fertdt + log(airtemp) * twfps, data = newdata, model = T) Deviance Residuals: Min 10 Median 30 Max -0.6949064 -0.3411285 -0.03584551 0.3251346 0.8565682

Coefficients: Value Std. Error t value (Intercept) -39.9927669 14.86389959 -2.690597 log(airtemp) 7.7088936 4.20300023 1.834141 fertcat 20.4947128 4.77930035 4.288224 fertdt 0.1344762 0.04596445 2.925656 twfps 46.5409555 28.60607848 1.626960 fertcat:fertdt -0.3232902 0.05543966 -5.831388 log(airtemp):twfps -14.5020488 8.51670709 -1.702777 (Dispersion Parameter for Gaussian family taken to be 0.2721376) Null Deviance: 83.03473 on 19 degrees of freedom Residual Deviance: 3.537789 on 13 degrees of freedom Analysis of Deviance Table Gaussian model Response: log(NOmax) Df Deviance Resid. Df Resid. Dev Pr(Chi) 19 83.03473 NULL log(airtemp) 1 50.36429 18 32.67044 0.0000000 fertcat 1 6.10025 17 26.57019 0.0135163 fertdt 1 9.33815 16 17.23203 0.0022443 twfps 1 3.29663 15 13.93541 0.0694222 fertcat:fertdt 1 9.60857 14 4.32684 0.0019367 log(airtemp):twfps 1 0.78905 13 3.53779 0.3743879 [1] "------" [1] "Cotton" [1] "sandy" "loamy" "clayey" [1] "NH4fert" "mixedfert" Call: glm(formula = log(NOmax) ~ soilcat + log(airtemp) + fertcat * fertdt + log(airtemp) * twfps, data = newdata, model = T) Deviance Residuals: Min 10 Median 30 Max -1.264332 -0.3253451 0.04534393 0.2773339 1.727372 Coefficients: Value Std. Error t value (Intercept) -17.4761792 3.73134913 -4.6836087 soilcatloamy 3.5849565 1.31640268 2.7232977 5.0663282 1.36742518 3.7050131 soilcatsandy 3.9518570 1.28737247 3.0697076 log(airtemp) fertcat 13.1782986 6.81418613 1.9339505 fertdt -0.0287368 0.01664165 -1.7268001 twfps 10.3614841 12.43734911 0.8330943 fertcat:fertdt -0.2035077 0.11635329 -1.7490501 log(airtemp):twfps -2.3181023 3.83597690 -0.6043056 (Dispersion Parameter for Gaussian family taken to be 0.4448036) Null Deviance: 71.06634 on 31 degrees of freedom Residual Deviance: 10.23048 on 23 degrees of freedom

÷.

Analysis of Deviance Table Gaussian model Response: log(NOmax) Df Deviance Resid. Df Resid. Dev Pr(Chi) NULL 31 71.06634 29 64.83009 0.0442401 soilcat 2 6.23625 log(airtemp) 1 14.62196 28 50.20813 0.0001314 fertcat 1 27.48018 27 22.72795 0.0000002 fertdt 1 7.61511 26 15.11284 0.0057881 fertdt1/.615112615.112840.005/881twfps12.715772512.397070.0993610fertcat:fertdt12.004152410.392920.1568694log(airtemp):twfps10.162442310.230480.6869238 [1] "Grapes" [1] "sandy" [1] "mixedfert" "NH4fert" [1] 3 Call: glm(formula = log(NOmax) ~ log(airtemp) + fertcat * fertdt + log(airtemp) * twfps, data = newdata, model = T) Deviance Residuals: Min 1Q Median ЗQ Max -1.172111 -0.4992582 -0.06099875 0.6069734 1.172111 Coefficients: Value Std. Error t value (Intercept) 301.226295 232.192845 1.2973108 log(airtemp) -2.678818 8.862299 -0.3022712 fertcat -291.207753 209.599110 -1.3893559 fertdt -1.656414 1.191164 -1.3905846 twfps 58.135350 86.196803 0.6744490 fertcat:fertdt 1.189771 1.3788476 1.640514 log(airtemp):twfps -16.763959 25.458313 -0.6584866 (Dispersion Parameter for Gaussian family taken to be 0.667515) Null Deviance: 24.15827 on 23 degrees of freedom Residual Deviance: 11.34776 on 17 degrees of freedom Analysis of Deviance Table Gaussian model Response: log(NOmax) Df Deviance Resid. Df Resid. Dev Pr(Chi) NULL 23 24.15827 log(airtemp) 1 0.096809 22 24.06146 0.7556935 fertcat 1 8.953944 21 15.10752 0.0027687 20 13.94324 0.2805793 fertdt 1 1.164282 19 12.72701 0.2701021 twfps 1 1.216229 fertcat:fertdt 1 1.089816 18 11.63719 0.2965119 log(airtemp):twfps 1 0.289438 17 11.34776 0.5905811

[1] "------" [1] "Oranges" [1] "sandy" [1] "NH4fert" [1] 4 Call: glm(formula = log(NOmax) ~ log(airtemp) + fertdt + log(airtemp) * twfps, data = newdata, model = T) Deviance Residuals: 107 106 108 109 110 112 111 -0.3651759 0.4696469 0.02932317 -0.1687685 0.2533953 -0.3750102 0.03719553 113 0.1193936 Coefficients: Value Std. Error t value (Intercept) 0.854119973 9.46464376 0.09024322 log(airtemp) 0.086795427 2.87574646 0.03018188 fertdt -0.007778973 0.06014702 -0.12933266 twfps -24.439225762 33.95769802 -0.71969619 log(airtemp):twfps 7.564274868 10.44812927 0.72398366 (Dispersion Parameter for Gaussian family taken to be 0.2012481) Null Deviance: 0.8111489 on 7 degrees of freedom Residual Deviance: 0.6037444 on 3 degrees of freedom Analysis of Deviance Table Gaussian model Response: log(NOmax) Df Deviance Resid. Df Resid. Dev Pr(Chi) NULL 7 0.8111489 log(airtemp) 1 0.0769690 6 0.7341799 0.7814478 fertdt 1 0.0225943 5 0.7115856 0.8805168 twfps 1 0.0023565 4 0.7092291 0.9612832 log(airtemp):twfps 1 0.1054847 3 0.6037444 0.7453445 [1] "Sugar beets" [1] "sandy" "loamy" [1] "NH4fert" "mixedfert" Call: glm(formula = log(NOmax) ~ soilcat + log(airtemp) + fertcat * fertdt + log(airtemp) * twfps, data = newdata, model = T) Deviance Residuals: 63 64 61 62 87 88 89 90 0.25041 0.240278 -0.25041 -0.240278 -0.8131631 -0.4601821 0.8131631 0.4601821 114 115 116 117

0.8400164 -0.01133392 -0.8400164 0.01133392

Coefficients:

Value Std. Error t value (Intercept) 30.5976294 371.121116 0.08244648 soilcat -21.5268881 53.771044 -0.40034350 log(airtemp) -0.7787807 29.085154 -0.02677588 fertcat -48.4117307 256.799162 -0.18851982 fertdt -0.1321044 5.393956 -0.02449118 twfps 56.3923575 283.673086 0.19879347 fertcat:fertdt 0.7249347 4.830080 0.15008751 log(airtemp):twfps -18.4655920 83.747829 -0.22049040 (Dispersion Parameter for Gaussian family taken to be 0.8495983) Null Deviance: 12.23285 on 11 degrees of freedom Residual Deviance: 3.398393 on 4 degrees of freedom Analysis of Deviance Table Gaussian model Response: log(NOmax) Df Deviance Resid. Df Resid. Dev Pr(Chi) 11 12.23285 NULL soilcat 1 1.333849 10 10.89900 0.2481216 log(airtemp) 1 3:862705 7.03630 0.0493707 9

 irtemp)
 1 3.002/00

 fertcat
 1 3.067223
 8 3.96907 0.0798858

 fertdt
 1 0.000570
 7 3.96850 0.9809459

 twfps
 1 0.420012
 6 3.54849 0.5169310

 1 0.00794
 5 3.43970 0.7415213

 fertcat:fertdt 1 0.108794 5 3.43970 0.7415213 log(airtemp):twfps 1 0.041304 4 3.39839 0.8389521 [1] "Tomatoes" [1] "loamy" [1] "NH4fert" [1] 4 Call: glm(formula = log(NOmax) ~ log(airtemp) + fertdt + log(airtemp) * twfps, data = newdata, model = T) Deviance Residuals: Min 10 Median 30 Max -1.036982 -0.3848827 0.06332942 0.3768815 0.7568117 Coefficients: Value Std. Error t value (Intercept) 20.69391692 16.99791743 1.2174384 log(airtemp) -5.40108801 3.90617281 -1.3827059 fertdt -0.02617291 0.08402222 -0.3114999 twfps -69.79900031 38.21544393 -1.8264605 log(airtemp):twfps 20.82640313 10.45921711 1.9912010

(Dispersion Parameter for Gaussian family taken to be 0.3582146)

 Null Deviance: 25.22238 on 15 degrees of freedom

 Residual Deviance: 3.940361 on 11 degrees of freedom

 Analysis of Deviance Table

 Gaussian model

 Response: log(NOmax)

 Df Deviance Resid. Df Resid. Dev

 NULL
 15

 log(airtemp)
 1

 12
 13

 20.73710
 0.0707244

 twfps
 1

 10g(airtemp):twfps
 1

 10g(airtemp)
 1

 10g(airtemp)
 1

 10g(airtemp)
 1

 10g(airtemp)
 1

 10g(airtemp)
 1

 12
 5.36064

 0.0000881
 1

 10g(airtemp):twfps
 1

 11
 3.94036

Appendix H. Estimating fluxes from the diel characteristic curves.

See Diskette 2 for the text file: DIEL.TXT, containing the xy values of the eight diel characteristic curves for:

Corn, furrow positionx = time of day [hours]Corn, ridgeGrapes, furrowgrapes, furrowy = normalized NOx [unitless,max=1]Grapes, ridgeAlmonds, canopyAlmonds, openCotton, furrowCotton, ridge

Because the curves are obtained by a combination of local regression on data and interpolation, their xy values rather than the functions that are their piecewise curve fits are provided here as tables from which users can more easily make estimations.

To make estimations of hourly or daily NOx flux, choose the curve whose crop type and position match the crop being estimated.

A. To make estimations of hourly NOx flux at a given time of day:

 Use linear interpolation to calculate the characteristic curve value y at time of day x (maximum y value is 1).
 Given a daily maximum NOx flux, M [ng-N/cm^2/hr], calculate the hourly NOx flux:

NOx flux at time x = y * M

B. To make estimations of daily NOx flux:

1. Estimate a diel curve, Y, in absolute NOx flux units [ng-N/cm^2/hr]. Given a daily maximum NOx flux, M [ng-N/cm^2/hr], for all values of y provided for the characteristic curve, calculate:

 $\mathbf{Y} = \mathbf{y} * \mathbf{M}$

2. Integrate along the estimated curve Y from x = 0 hours to 24 hours to get the total daily NOx flux. Stepsizes may be chosen at the user's discretion.
Appendix I. Deliverables for San Joaquin Valley NO_x Project.

I. Emissions Estimates

<u>1) Extrapolation Approach</u>: We will sample NO_x emissions intensively in 14 fields representing the major crop/soil/management combinations (types) in the Valley, as well extensively (one-time sampling) in other fields. From this data, we will estimate NOx emissions for the Valley by the following:

flux/type x area of type x time (modified by diel variability)

Using this approach, we can calculate flux on an hourly, daily, weekly, and monthly basis.

Limitations to the approach:

a) We assume that our sites are representative of all sites within a given type. Sampling in the extensive site will provide a test of this assumption.

b) temporal resolution issues:

- Hourly resolution will have to be estimated on the basis of several diel curves for each crop type. We cannot sample diel variability routinely.

- While we will provide excellent data on daily temporal variability for the 13 types, we cannot assume that fluxes in all the fields within each type are the same on any given day. Because irrigation and fertilization regimes will be citical in determining fluxes, we expect a portion of the spatial and temporal variability in flux across the Valley to be controlled simply by when farmers irrigate or fertilize. Given that we do not have fine resolution data on those activities, temporal and spatial distributions of those activities will have to be modelled. We do not propose to do so, but expect that the ARB emissions modellers or other consultants will do so.

2. Total fluxes as a proportion of fertilizer applied

For crops receiveing fertilization during the study period, we will calculate flux per unit of fertilizer applied. This value can then be multiplied times the fertilizer amounts utilized in those crop types during the whoe summer period. For example, if we find that 2% of fertilizer is lost as NO_x in corn crops, we can calculate total fluxes on the basis of fertilizer use.

3. Algorithm Development

We will develop equations relating NO_x flux to other variables measured in the field. We expect to develop two types of algorithms:

a)Those that require more detailed soil variables and that will be useful in process modelling frameworks.

e.g. $NO_x = f(\%WFPS)$, soil texture, soil temp, air temp, soil NO3, soil NH4, organic matter content, instantaneous nitrification rates, etc)

b) Those that can be applied directly to spatial data bases of crop type, soils and climate.

e.g. $NO_x = f(soil texture, est. soil moisture, crop type, fert amount and type)$

Limitations: We do not propose to develop simulation models of flux. For example, soil moisture itself needs to be modelled on the basis of soil texture, precip and irrigation inputs, and evapotranspiration. We do not propose to develop such models, but the data base we will provide will aid other groups in doing so.

2. Provision of Data

These data will be available in Microsoft Exel 4.0 format and will be given to the ARB after they have been quality assured in out laboratories (they will be provided no later than the date of final report).

At each NO_x measurement point:

NO_x air temp in the shade soil temp at 2 cm depth % soil water (0-10 cm increment for this and for all soil variables) % water filled pore space NH4⁺-N ug/g dry weight of soil

NO3⁻-N ug/g dry weight of soil NO2⁻-N ug/g dry weight soil position in the field (e.g., interrow, furrow, crop row, etc) proportion of plant cover date time

For each field, average values of:

soil bulk density soil texture %C and Organic matter %N time since irrigation time since fertilization type and amount of fertilizer

3. Final Report

The final report will include the following sections.

a) Executive Summary

b) Distribution of soils, crops, and management practices in the Valley and a description of our approach for selecting study sites.

c) Study site descriptions

d) Methods

e) Tabulation and presentation of results for each crop combination(including all variables listed above (part 2).

f) Discussion of results for intensive and extensive sites, limitations to data.

g) Emissions estimates using the three approaches listed above.