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ABSTRACT 

Principal sources of soil-derived fugitive dust need to be identified to reduce 
airborne PM10 in California's Central Valley. As a means to differentiate soils and 
possibly identify sources of fugitive dust, we have developed methods in our laboratory to 
produce fingerprints from microorganisms in soil. Fingerprinting methods described in 
this report are based on two classes of biochemical material, fatty acids and nucleic acids, 
which we extract from soil or dust prior to chemical analysis. Fatty acid analysis can be 
based either on phospholipid fatty acids (PLFAs), found only in cell membranes of living 
organisms, or on soil fatty acid methyl esters (SFAME) obtained from whole cells and 
nonliving biological material. Similarly, nucleic acid analysis can be based either on 
DNA sequences from individual groups of organisms or on DNA from the entire 
microbial community. PLFA or SFAME fingerprints consist of percentages of different 
fatty acids detected as peaks in gas chromatograms, while DNA fingerprints consist of 
band patterns in laboratory gels used to separate DNA fragments. Both types of 
fingerprinting methods generate multivariate data (fatty acid percentages or DNA band 
identities), which can be used in principal component analysis (PCA) to assess 
similarities among samples. Appendices in this report contain protocols for the extraction 
and analysis methods we developed. 

Approximately 300 soil samples from California's Central Valley, representing 
numerous land use categories, soil types, crops, and other variables important in 
determining sources of air-borne dust, were analyzed for their PLFA fingerprints. PCA 
plots of PLFA fingerprints under different vegetation and agricultural management 
showed a clear separation between microbial communities in poorly drained and well
drained soils. Redundancy analysis revealed that both soil texture and crop type were 
significantly correlated with variation in PLFA fingerprints across soils. The relative 
importance of environmental variables in governing the composition of microbial 
communities could be ranked in the order: soil type > time > specific farming operation 
(e.g., cover crop incorporation or sidedressing with mineral fertilizer)> management 
system > spatial variation in the field. Similar conclusions could be drawn from these 
PLFA data when they were analyzed with artificial intelligence (AI) programs in a 
research collaboration with a chemometrics laboratory. 

SFAME fingerprints, advantageous because they utilize smaller sample sizes and 
require one third of the time needed for PLFAs, were performed on a smaller subset of 
soil samples (approximately 20), because we expected their chromatograms to be less 
reliable due to overlapping peaks that were difficult to identify. SFAME differentiated 
the 20 soils similarly but not identically to PLFA. We also evaluated the similarity 
between PLFA and SFAME fingerprints of source soils and bulk dusts collected from the 
surfaces of field equipment in two locations. In both cases, PLFA fingerprints of bulk 
dust and source soils were similar. SFAME fingerprints from bulk dusts and their source 
soils were more dissimilar to each other than were PLFA fingerprints, although SFAME 
fingerprints grouped together on PCA plots. Even though these findings cannot be 
directly extrapolated to establish similarities between airborne PM10 and source soils, this 
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study provided the first step in evaluating fingerprints obtained from dust and a single
source soil. More sophisticated multivariate analysis methods, such as AI programs, will 
be needed to interpret fingerprints of dust derived from multiple sources. 

Our research on nucleic acid-based methods focused on identifying and improving 
methods to extract DNA from soil and on testing several approaches for analyzing the 
extracted DNA It was possible to extract high quality DNA from soils representing a 
wide range of properties. The RAPD (Randomly Amplified Polymeric DNA) method for 
analyzing DNA, adapted from methods developed for fingerprinting individual species, 
proved to be inadequate for fingerprinting the extraordinarily diverse microbial 
communities in soil. Although TGGE (thermal denaturing gel electrophoresis) showed 
promise as a means to generate DNA fingerprints from specific groups of soil microbes, 
more research is needed to optimize this method for fingerprinting whole-community 
DNA. Further development of DNA-based methods is needed to provide taxonomic 
explanations for differences in fatty acid fingerprints and to supplement fatty acid 
fingerprinting in cases where more specific methods are required. 

This report indicates that PLFA and SFAME fingerprinting of soil microbial 
communities will differentiate soils in a reproducible manner, although DNA 
fingerprinting requires additional development. We found that fingerprints of bulk dusts 
and their source soils were sufficiently similar to warrant adaptation of fingerprinting 
technology to PM10 studies of fugitive dust. We describe in the final section of this report 
how fingerprinting methods could be applied to PM10 samples collected on filters in the 
field. We also describe how AI programs could enhance statistical analysis of fingerprint 
data for source apportionment studies of PM10 in the field. 
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1.0 INTRODUCTION 

l. 1 Background 
Soil-derived fugitive dust often constitutes the largest fraction of PM10 reaching 

high levels1 in California's Central Valley in late summer and early fall. Soil-derived 
fugitive dust may be generated by agricultural field operations, construction activities, 
wind erosion, and traffic on unpaved roads. However, the principal source(s) of fugitive 
dust in the Central Valley have not been determined. Methods have been developed in 
our laboratory to produce fingerprints from the microorganisms present in soils as means 
to differentiate soils and possibly identify fugitive dust sources. Biological fingerprinting 
is based on the fact that soils are a habitat for complex communities of bacteria, fungi, 
protozoa, and other microorganisms, all of which contain biochemical material that can 
be extracted and analyzed. The types and relative abundances of extracted biochemicals 
represent a rich store of multivariate information that can be interpreted as a fingerprint of 
the microbial community. We have developed fingerprinting methods based on two 
classes of biochemicals, fatty acids and nucleic acids. Fatty acid analysis can be restricted 
to phospholipid fatty acids (PLFAs), found only in cell membranes of living organisms, 
or it can encompass fatty acids from whole cells and nonliving biological material in the 
case of SFAME (soil fatty acid methyl ester) analysis. Similarly, nucleic acid analysis 
can be restricted to the retrieval of DNA sequences from very narrow subgroups of 

· microorganisms or expanded to use genetic material from the entire microbial 
community. 

1.2 Objectives 
Objectives of this research were to: (1) develop PLFA, SFAME, and DNA 

fingerprinting methods for microbial communities from soils and dusts; (2) evaluate the 
reproducibility and discriminatory capabilities of fingerprints obtained from diverse 
agricultural soils in the Central Valley; (3) compare fingerprints from dusts and source 
soils; and (4) use multivariate statistical analysis to quantify similarities among 
fingerprints and to identify factors that exert significant influences on fingerprints. 

2.0 MATERIALS AND METHODS 

2.1 Collection of samples. 
Soil samples were collected from agronomic research plots (top 15 cm) on the UCD 

campus and in outlying areas. Additional soil samples were obtained from the UCD Air Quality 
Group's PM10 Project2

, which had a collection of air-dried soils from privately owned fields 

' PM 10 is particulate matter with an aerodynamic diameter of 10 microns or less, small enough to enter the human 
respiratory tract. 
2 

Air Quality Group, Crocker Nuclear Laboratory, University of California, Davis. 1994 and ongoing. Sources and 
sinks of PMI0 in California's San Joaquin Valley: A study for the U.S. Department of Agriculture, USDA Contract 
No. 94-38825-0383. 
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under different crops in the San Joaquin Valley. We also included soils from other farms and 
sites in the Central Valley, so that additional crops, soil types, and geographic locations were 
represented. 

2.1.1 SAFS soils. 
A study of seasonal, crop, and management influences on fingerprints of the same soil 

was conducted at the Sustainable Agriculture Fanriing Systems (SAFS) Project, initiated at the 
UC Davis Agronomy Fields in 1988. The soils are Reiff (coarse-loamy, mixed, non acid, 
thermic, Mollie Xerofluvent) and Yolo loams (fine-silty mixed, non acid, thermic, Typic 
Xerothent). 

The 56-plot experiment has a randomized complete block design, with crop rotations as 
split plots within each main plot for each farming system, with four replications. The farming 
systems include organic, low input, conventional four-year, and conventional two-year rotations. 
The organic system relies on organic sources of nutrients obtained from a vetch winter cover 
crop, manure, seaweed and fish powder. No pesticides are used and the plots are managed 
according to California Certified Organic Farmers requirements. The low-input system, which is 
intermediate between the organic and conventional systems, relies on vetch cover crops as a 
partial source of nitrogen but is supplemented with mineral fertilizers and limited amounts of 
pesticides. The conventional systems use only mineral fertilizers, some pesticides, and the only 
organic matter inputs are in the form of stubble and roots from the previous cash crop of wheat 
and beans. In the study cif seasonal and management effects, soils were sampled from tomato 
plots within each farming system. Samples were collected while cover crops were growing in the 
organic and low input plots (April 4), after cover crop incorporation in low input and organic 
systems and manure application to the organic plots (April 18), one week prior to (May 9) and 
one week after (May 23) mineral fertilizer sidedressing in low input and conventional systems, 
and two times later in the growing season (July 3 and July 28). In the study of crop effect on soil 
fingerprint, soils were collected in July, 1997, in all plots. In another study of seasonal changes, 
samples were collected in tomato plots throughout the year in 1995. 

2.1.2 PMJ.Q soils. 
A collection of soils sampled in the fall of 1994 for the USDA PM10 project was made 

available to us by Dr. Randy Southard. These had been sampled during harvest operations (top 
10-15 cm) from soils cropped with cotton, almond, figs, or walnut. The soils had been air-dried, 
sieved with a 2-mm sieve, and stored in cardboard cartons at ambient temperature. Particle size 
analysis data and information about the sample sites (e.g., crop, geographic location) were used 
to select samples for analysis. Sampling information and PLFA sample identification numbers 
are listed for all soils in Appendix 9-1. 

2.1.3 Bulk dust from equipment surfaces and source soils. 
Bulk dust fall (total particulates) and source soils were collected at two locations. The 

first location was a fallow field at the UC Davis Campbell Tract that was being land planed. 
Dust was collected over a period of one hour in pans taped to a horizontal bar located 
immediately above the plane ( 1 m height). Surface soils were sampled volumetrically to a depth 
of 15 cm from an area represented by one soil map unit (Reiff loam). At the Stone Land site near 
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Coalinga, bulk dust was collected on June 20, r'997, from the rear horizontal surfaces of a disker 
that had gone over the east half of Stone Section 02, the wheat crop from which had been 
harvested two days prior. Surface soils were sampled to a depth of 15 cm from two areas of the 
section which represented different soil map units, Westhaven loam and Kimberlina fine sandy 
loam. Bulk dust and source soils were air-dried and stored in cardboard cartons at ambient 
temperature. 

2.1.4 Other soils included for comparison. 
Additional agricultural soils from ongoing projects in collaboration with other labs were 

included in our analyses. These soils were sampled to depths of 10-15 cm and kept frozen until 
analysis. Soil sources included Capay clay from rice fields near Maxwell (Bossio and Scow, 
1997a,b), Biologically Integrated Farming Systems (BIFS) plots near Fresno, Long Term 
Research on Agricultural Systems (LTRAS) plots in UC Davis Agronomy fields, rotational 
management fields in Ventura County from Ben Faber, Tinker soils from pine forest area in 
Sacramento County, and fallow Rindge soils from the Delta region. In addition, samples of 
sediment from Clear Lake and of household compost were included for comparison 

2.2 PLFA extraction and analysis. 
Lipids were extracted from soil samples using a mixture of chloroform, methanol, and a 

phosphate buffer (White et al. 1979). Extracted lipids were reconstituted and separated into three 
lipid classes (neutral, glyco- and phospholipids) using silicic acid columns. The phospholipids 
were retained, dried with nitrogen, then trans-esterified to form fatty acid methyl esters. We used 
the automated Microbial Identification Diagnostic System (MIDI, Inc, Newark, NJ), which 
consists of a Hewlett Packard gas chromatograph and software for the identification of fatty 
acids. A gas chromatograph - mass spectrometer in another UCD laboratory was used for 
confirmation of fatty acid identity. The final protocol is described in Appendix 9-2. 

2.3 SFAME analysis. 
SFAME (Soil Fatty Acid Methyl Ester) was developed as an alternative method to PLFA 

analysis in order to get fingerprints from a smaller amount of soil. The final SFAME protocol is 
described in Appendix 9-3. This protocol takes approximately 1 day to prepare 16 samples in 
comparison to the 3 days required for PLFA analysis. As little as 300 milligrams of soil can be 
analyzed by SFAME, whereas approximately 5-8 grams is needed for PLFA. 

2.4 DNA-based methods. 

2.4.1 Extraction and purification of DNA from soils. 
DNA from soil microorganisms was obtained by subjecting soil samples to chemical and 

physical treatments which lyse microbial cells and allow microbial DNA to go into solution. 
These direct lysis procedures, which were adapted from Malik et al. (1994) and Zhou et al. 
(1996), involved enzyme-treatment/freeze-thaw and high-salt/heat-treatment, respectively. 
Subsequent steps to purify DNA from cellular debris and soil humic acids were chloroform 
extraction, precipitation of DNA with ethanol, and agarose gel electrophoresis of crude DNA 
extracts. Portions of gel containing DNA were excised, and residual agarose was removed with 
either a Prep-a-Gene kit (BioRad Corp., Hercules, CA) or digestion by Gelase enzyme (Epicentre 
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Technologies, Madison, WI) followed by centrifugal filtration (Micron Separations, Inc., 
Westborough, MA). DNA was quantified by measuring its absorbance at 260 nm in a Lambda IO 
UVNis spectrophotometer (Perkin-Elmer Applied Biosystems, Foster City, CA). DNA purity 
was checked by measuring absorbances at 230 and 280 nm, which indicate contamination with 
humic acids and proteins, respectively. The resultant DNA was generally of sufficient purity for 
polymerase chain reaction (PCR) amplification and restriction enzyme digestion. The protocols 
used to extract and purify DNA for TGGE analysis were adapted from Zhou et al. ( 1996) and are 
described in Appendix 9-4. 

2.4.2 PCR amplification of DNA. 
Two approaches were used to produce fingerprints from microbial community DNA 

using PCR. The first approach employed RAPDs, or Random Amplified Polymorphic DNA 
mixtures using the procedure of Malik et al. (1994). Purified DNA extracts were subjected to 
PCR amplification with random oligonucleotide primers in a GeneAmp 2400 thermal cycler 
(Perkin-Elmer Applied Biosystems, Foster City, CA). The mixtures of RAPD products from each 
DNA extract were applied to lanes in agarose gels and separated by electrophoresis (Sambrook et 
al., 1989). Gels were stained with ethidium bromide so that DNA band patterns in each lane 
could be visualized as a fingerprint, consisting of the number, location and intensity ofRAPD 
fragments in the gel. Each RAPD fingerprint was based on the different sizes of DNA fragments 
produced during PCR amplification of community DNA. 

In the second approach, we amplified purified DNA with nonrandom oligonucleotide 
primers complementary to 16S ribosomal RNA (rRNA) genes in bacteria (Pace et al., 1981). 
PCR amplification was carried out in 25-microliter reaction volumes containing the following: 5 
nanograms of purified community DNA in lX PCR buffer {500 mM KCI, 100 mM Tris-HCI, pH 
9, 1% Triton X-100); 2.5 mM MgCl2; 1.25 mM deoxyribonucleotides, IO picomole forward 
primer, IO picomole reverse primer (Table 2-1); and 1.5 Units ofTaq DNA polymerase 
(Promega Corp., Madison, WI). The GeneAmp 2400 PCR program consisted of 30 cycles of 
denaturing at 94C for 1 min; primer annealing at SSC for 1 min; and DNA extension for 72C for 
1 minute. With this approach, rRNA genes in the bacterial community DNA were amplified to 
yield a mixture of PCR product~ reflecting the taxonomic composition of the community. 

2.4.3 TGGE fingerprinting of DNA. 
A thermal gradient gel electrophoresis (TGGE) system (Heuer and Smalla, 1997) was 

constructed in our laboratory from a vertical electrophoresis rig fitted with an aluminum block, 
against which glass plates (42 cm high x 30 cm wide) containing polyacrylamide gel could be 
clamped. David Paige, in the Department of Land, Air, and Water Resources, designed the 
thermal block and temperature controlling mechanisms for the system The upper portion of the 
aluminum block contained an internal channel (8 mm diameter) through which water was 
pumped using a Neslab RTE-111 circulating water bath (Neslab Corp., Portsmouth, NH). The 
bottom portion of the block containing an electrical heating strip connected to a temperature 
controller (Model 1500, Dwyer Instruments Incorporated, Michigan City, IN). The temperatures 
of the water bath (for the cooled upper block) and the controller unit (for the hotter lower block) 
could be adjusted to provide a linear temperature gradient across the length of the gel. We 
evaluated several different denaturant and polyacrylamide concentrations, running buffer 
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concentrations, and temperature gradients in attempts to optimize band separation. We also ran 
PCR reactions using a primer set specific for ammonia-oxidizing bacteria. Gels were stained 
either with ethidium bromide or with more sensitive silver reagents (Mitchell et al., 1994) to 
visualize the bands. Gel images were recorded using a charge-coupled-device camera with the 
BP-Ml/722 TWAIN digital imaging kit (Bioimage, Ann Arbor, MI) and evaluated with 
Photofinish and GPTools image analysis software. 

We tested two sets of TGGE primers in PCR reactions with DNA samples 
extracted from PM l O soils and from bulk dust. Both primer sets successfully amplified 
DNA from the extracts. One primer set was used to produce fingerprints from the DNA 
of the whole bacterial community, while the other set was used to produce fingerprints 
from DNA of nitrifying bacteria (Table 2-1 ). Prior to running the PCR products on 
polyacrylamide gels, we calibrated the temperature gradients for separating PCR products 
from community DNA using all-bacteria primer sets and nitrifying-bacteria primer sets. 

Table 2-1. DNA sequences of primers used in PCR amplification of taxonomic genes for soil fingerprinting. 

Target group of Forward primer sequence* Reverse primer sequence References 
microorganisms (S' to 3') (5' to 3') 

All bacteria GC clarnp-CCT ACG GGA GCA GCA G CCC CGT CAA TIC CTT TGA GTT T Teske et al. 
(corresponds to E. coli positions 341-357) (corresponds to E.coli positions 907-928) (1996) 

Nitrifying GCclarnp-AGA/G AAA OCT/A GGG GAT CG CTA GCC/t TTG TAG TIT CAA ACG C Kowalchuk et 
bacteria (corresponds to E.coli positions 178-194) (corresponds to E.coli positions 637-658) al. (1997) 

*Forward primers are synthesized with a "GC clamp" on the 5' end. The GC clamp is 38 nucleotides 
long and consists of mostly guanines and cytosines (Gs and Cs). The purpose of the clamp is to improve the 
resolution of PCR fragments in denaturing gradient gel electrophoresis. The sequence of the GC clamp is 
5'- CGC CCG CCG CGC GGC GGG CGG GGC GOO GGC ACG GGG GG - 3'. 

2.5 Statistical analysis. 

2.5.1 Principal Component Analysis (PCA) and Redundancy Analysis (RDA). 
PLFA fingerprints were analyzed with CANOCO software from Microcomputer Power, 

Inc. (Ithaca, N.Y.). Mole percents of individual fatty acids were used in the analyses. Both PCA 
and RDA were used to analyze the data. Whereas PCAis useful for discerning patterns within 
the PLFA data itself, RDA can be used to test hypotheses regarding the importance of external 
variables in explaining variation in PLFA data (ter Braak, 1987). PCA describes the axes of 
maximum variability in the multivariate data set and relationships between environmental 
variables and the multivariate data can only be quantified indirectly through regression of 
environmental gradients on ordination axes. RDA is a constrained ordination technique based 
on PCA, in which ordination axes are constrained to be linear combinations of environmental 
variables (ter Braak, 1987)) to assess the relationship between environmental variables and the 
multivariate data. Thus RDA allows direct assessment of the relationship between known 

14 



environmental variables and variation in the multivariate data and the significance of the 
relationship can be tested with the Monte Carlo permutation test. 

Environmental variables analyzed with RDA included management regime, sample dates, 
field blocks, soil texture, and crop. Measures of the microbial community and soil properties, 
including microbial biomass carbon and nitrogen, substrate-induced respiration, basal respiration, 
potentially mineralizable nitrogen, soil nitrate and ammonium, and soil moisture content were 
also analyzed. In the CANOCO program, covariates can be included and thus field level spatial 
variability was accounted for by using field block as a covariate, except when it was tested as an 
environmental variable. Sample date and management regime were also included as covariables 
as noted. The Monte Carlo permutation test (ter Braak, 1990) was used to test the statistical 
significance of the relationship between environmental variables and variation in PLF A 
fingerprints. RDA results are displayed on biplots in which relationships among environmental 
variables and either treatment plots or individual fatty acids are displayed. Environmental 
variables in RDA can be either continuous (e.g., respiration rate or microbial biomass C) or in 
the form of categories. Variables which are categories, in this case management regime and 
sample date, are properly displayed as centroids (ter Braak, 1987) rather than, as for continuous 
variables, as additional axes on the biplots. Polygons surrounding the same treatments were 
drawn on biplots to facilitate interpretation. When noted, axes of biplots have been scaled so 
that their length represents the relative importance of each axis in tenns of the percent of the total 
variation in PLFA fingerprints represented by the axis. 

2.5.2 Pattern recognition and neural net analyses. 
A data set consisting of nanomole percent values of 26 PLFAs from 245 soil 

samples was sent to Dr. Phil Hopke, Clarkson University Department of Chemistry. This 
data set was analyzed with SIMCA (Soft Independent Modeling of Class Analogy), ART-
2a (Adaptive Resonance Theory-based neural network), Kohonen neural network; fuzzy 
ARTMAP, (ART predictive mapping using fuzzy logic), and BP-NN (back-propagation 
neural network.) The main goal of these analyses was to differentiate samples based on 
their crop types. 

3.0 PLFA RESULTS AND DISCUSSION 

A major objective of the first phase of research was to determine if potential 
source soils collected at numerous locations throughout California could be distinguished 
based on their PLFA fingerprints. Fig. 3-1 shows an overview of the conceptual 
framework used to guide this research. We decided it was important for regulatory 
purposes to have a solid understanding of the basis for differences observed among 
fingerprints from different soils. Without this basis, it would be easy to argue against a 
given fingerprint used to identify a particular, for example tomato, field as a source of 
PM-10. In contrast, knowing that a fingerprint has components representative of 
tomatoes in general would strengthen its validity as a fingerprint for that particular soil. 
Also, knowing which PLFAs were responsible for a particular fingerprint could be useful 
in identifying specific markers for certain soils. Thus, our approach was to ask two main 
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Fig. 3-1. Conceptual diagram of research approach for determining the environmental factors 
governing and the particular organisms contributing to PLFA fingerprints of sources of airborne dust. 
Nucleic acid-based (e.g., analysis of DNA) methods fit into the overall approach as a means for 
identifying the particular species or groups of organisms contributing to the PLFA profiles. 
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questions: What influences the fingerprint and what lipids are responsible for the 
particular pattern of a fingerprint? 

To provide a better understanding of the foundation for these fingerprints, more 
in-depth analyses were carried out on subsets of these soils. Thus, the second set of 
objectives was to determine: a) whether a given fingerprint is consistent for a particular 
soil at different times and locations within a field and under different management 
regimes, and b) how crop influences a fingerprint on the same soil. These studies were 
carried out on a single soil type at university research station field plots near UC Davis. 
A third objective was to determine how strongly crop and soil texture are related to a 
particular fingerprint. These studies were carried out at numerous locations on growers 
fields in the San Joaquin Valley. The fourth objective was to compare PLFA fingerprints 
of dust and their source soils. These studies were conducted using soil from agricultural 
fields in the northern and southern Central Valley. 

3.1. Analysis of soils from locations throughout California 

One hundred fifty soil samples were collected from numerous locations within the 
California San Joaquin valley. Samples were chosen to represent major crops within the 
valley, including crops for which the associated management practices are known to 
produce dust. Phospholipid fatty acid analyses were performed on the samples and a total 
of 28 lipids were included in the analysis. Using principal component analysis (PCA), 
the relationships among the different samples were defined. Fig. 3-2 shows that the first 
and second components explained 32% and 19%, respectively, of the variance in the data. 
Each point on the graph represents an individual soil sample. Cotton fell on the right 
hand stde of the graph, almonds on the left, and figs, walnuts and tomatoes near the 
center. Soils from the lower San Joaquin valley, called the ARB soils (including cotton, 
almonds, walnuts and figs), were distributed broadly within the top half of the graph, 
whereas soils from the vicinity of Davis (tomatoes, com, safflower, beans, wheat), in the 
west Valley near Fresno (tomatoes, cotton), and near Ventura (tomatoes), fell in the 
bottom half of the graph. The Davis, west Valley, and Ventura soils were relatively 
similar to one another, whereas the ARB soils were more widely distributed. 

Fig. 3-3 shows a plot of the distribution of specific PLFAs that were associated 
with the distribution of soils shown in Fig. 3-2. This type of plot gives information about 
which PLFAs were most significant in determining the relationships among the different 
soils samples. Specific patterns included a greater relative abundance of the fungal 
marker (18:2) on the left side of the graph (e.g., associated with almonds), greater relative 
abundance of the actinomycete markers (10Mel8:0 and 10Mel6:0) on the right side of 
the graph (associated with cotton), and a split between saturated and unsaturated fatty 
acids on the right and left side of the graph, respectively. 

The soil samples described above, all collected from well-drained agricultural 
fields, were compared to a broader set of soils which encompassed a greater range of 
physical and chemical properties. This larger set of soils, which included samples from 
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Figure 3-2. Principal Component Analysis plot of PLFA fingerprints of 150 samples of well-drained California agricultural soils representing 
different crops, management systems, locations and times of year. ARB soils from the lower San Joaquin Valley (squares) were distributed broadly 
within the top half of the graph, with cotton (light green) on the right, almonds (dark blue) on the left, and figs (yellow) and walnuts (lavender), distributed 
more in the center. Soils from the vicinity of Davis (tomatoes, corn, safflower, beans, and wheat, all coded as red circles), soils from the west Valley 
near Fresno (tomatoes, cotton, coded in green triangles), and soils near Ventura (light blue diamonds) fell within the bottom half of the graph. The Davis, 
west Valley, and Ventura sols were relatively similar to one another, whearas the ARB soils were more widely distributed. 
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rice fields during the winter fallow, Clear Lake sediment, and high organic matter soil 
from the Delta region, were reanalyzed by PCA. This new group of samples shared the 
property of being water saturated or poorly drained. In this PCA (Fig.3-4), there was a 
strong separation on the first axis between one group consisting of rice soils, Delta soils 
and lake sediment and another group consisting of the San Joaquin valley soils described 
in Fig. 3-1. The clay soils cropped with cotton fell at an intermediate point, on the first 
axis, between the San Joaquin soils and the poorly drained soils. However, the patterns 
described in Fig. 3-2 could still be discerned in Fig. 3-4 within the San Joaquin valley 
soils. 

The basis for the differences in PLFA fingerprints was further explored in specific 
subsets of the soil samples described above. We undertook this analysis to help 
determine how robust a fingerprint was for a given soil, if it was possible to develop 
predictive relationships between fingerprints and soil properties, and to help in quality 
control analyses of the analytical method. 

3.2 Sustainable Agriculture Farming Systems {SAFS) soils. 
A detailed analysis was conducted of PLFA fingerprints in soils collected from the 

Sustainable Agriculture Farming Systems (SAFS) plots at UC Davis. These plots are 
representative of farming practices typical to the Sacramento Valley and provide an 
opportunity to measure the importance of environmental and management variables on 
PLFA fingerprints on the same soil type. The main objectives were to test whether there 
was consistency in the fingerprint of a given field throughout the season, at different 
spatial locations within the field, and under different farming management practices. 
This research was co-funded by a grant from the USDA National Research Initiative. 
These results are summarized in Bossio et al. (1997). 

3.2. l. Effect of spatial variability and management system for the same soil and crop. 

PLF A fingerprints were consistent among field blocks within the same farming 
system, thus field variability represented by blocks in this study did not have a significant 
impact on the differences in the observed fingerprints. Management regime, however, 
did influence PLFA fingerprints. Organic and conventionally managed plots were 
significantly different (p<0.05) from each other on all sample dates, except July 3 when 
conventional plots were less different from the other two systems (p<0. l 0). The low 
input plots were not different from organic except on May 23, and low input was not 
significantly different from conventional plots except on April 4 and April 18. The 
amount of variation in PLFA data explained by the first two RDA axes with management 
regimes as the only environmental variables ranged from a low of 34% on May 23 to over 
50% on Apr. 18, May 9, Jul. 3, and Jul. 28. 

PLFA data were related to other more conventional measurements characterizing 
microbial populations by including these other measurements as environmental variables 
in a redundancy analysis (RDA) and testing for significant relationships With the Monte 
Carlo permutation test. Microbial biomass carbon and nitrogen, substrate induced 
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Fig. 3-4_ Principal component plot ofPLFA fingerprints of samples of both well-drained and flooded 
agricultural soils and compost, as well as lake sediment, from California. The figure includes the 
soils typical of the California Central Valley (previously shown in Fig. 2) and shows how they relate 
to a broader class of soils and sediment. The rice soils, which vary in management, time of sampling, 
group together in the left side of the graph, whereas all the well-drained agricultural soils group 
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drained soils but fall on the right side of the grouping. The differences among the valley soils visible 
in Fig. 2 are still evident even within a very diverse group of soils. 
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respiration, basal respiration, potentially mineralizable nitrogen, soil nitrate and 
ammonium levels, and soil moisture content were not consistently associated with PLFA 
fingerprints. Soil respiration rates were associated with differences in PLFA fingerprints 
early in the season but not in July. The fact that microbial biomass measures, (e.g. 
fumigation extraction, substrate induced respiration) were not associated with PLFA 
variation was expected, because the importance of biomass is eliminated from the PLF A 
data by analyzing relative abundances rather than absolute masses of fatty acids. 

The specific PLF As whose relative abundance differed most among farming 
systems and dates were analyzed in two ways. First, an RDA of all sample dates 
combined with field blocks and sample dates as covariables gave a composite average 
response of fatty acids to management treatment. In the composite analysis, each 
management treatment was significantly different (p=0.01), from all other treatments and, 
as with analysis of separate sample dates, low input fell between organic and 
conventional on the first ordination axis. On a biplot of fatty acid scores based on this 
composite analysis, a group of 5 fatty acids were strongly enriched in the organic system, 
whereas another group of 3 fatty acids had a lower relative abundance in organic plots 
when compared to conventional plots. An actinomycete indicator was most strongly 
enriched in the low input plots, and a fungal indicator was enriched in both organic and 
low input plots. 

3.2.2 Effect of season within one year for the same soil and crop. 
Differences in PLFA fingerprints among sample dates were highly significant 

(p<O.0 1) across all dates. Sample dates separated along a continuum on the first axis 
(37% of the variation) in RDA in order of their occurrence in time (Fig. 3-5). To look at 
sample dates as a single source of variation in this analysis, both field blocks and 
treatments were included as covariables. On the biplot, sample date groups are labeled on 
their centroids, the average position of all the plots from each sample date. When both 
management treatments and sample dates are included as enYironmental variables, it is 
possible to evaluate the relative magnitude of these two variables based on distance of the 
centroids for these variables on the biplot. The differences between April and July were 
larger than differences among management regimes. Over shorter time periods, e.g., 
between early and late May, the difference among sample dates is similar in magnitude to 
differences due to management. In April, differences among management treatments 
were larger than differences associated with sample dates that were only two weeks apart. 

To determine the importance of season and management on PLF A profiles within 
one soil/crop type relative to differences in another soil/crop type, the SAFS data set was 
compared to another large set of PLFA data collected from rice soils (supported by a 
grant from Ducks Unlimited to study the effects of different methods for management of 
straw disposal). Different rice straw management methods and winter flooding 
treatments had been applied in a replicated experiment to this other soil type, a Willows 
clay. When PLFA profiles from all sample dates and treatment plots of the SAFS plots 
were compared to the Willows clay soil, the cloud of points representing variation from 
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Fig. 3-5. Redundancy analysis plot of PLFA fingerprints of tomato soils collected over the growing 
season in 1995 at the SAFS plots. The first axis is constrained to time, thus the linear pattern of the 
changes is strongly correlated with time. Management system could also be distinguished within 
most of the dates, but had less of an effect on the PLFA fingerprints than did time of season. 
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season and management for each field experiment were clearly separated from the other 
soil type on a highly significant axis representing 80% of the variation in PLFA profiles 
(Fig. 3-6). Most monounsaturated fatty acids, the fungal indicator, and the actinomycete 
indicator had higher relative abundances in the SAFS soil. The Willows clay had higher 
relative abundances of most branched fatty acids, most straight chain fatty acids, and 
other JO Methyl substituted fatty acids. These results are summarized in Bossie et. al. 
(1997). 

3.2.3 Effect of year for same soil. 

Soil samples were collected from the SAFS plots at different times in 1995, 1996 
and 1997. A PCA plot of SAFS tomato soils collected over the 3 years (Fig. 3-7) show a 
relationship with time along the first axis. Samples collected early in the year fall out on 
the left side of the graph, whereas samples collected later in the season, regardless of 
year, fall on the right hand side of the graph. Although the July samples were somewhat 
similar to one another, there were differences between the 1995 and the 1996/97 samples 
as seen by their separation along the second axis. 

Fig. 3-8 shows a PCA plot of data collected for different crops and different times 
at the SAFS plots. Again a trend with time can be discerned along the first axis. Corn 
samples collected in 1995 were more similar to 1995 tomatoes than they were to corn 
samples collected in 1997. 

3.2.4 Effect of crop for the same soil. 

A comparison was made of PLFA fingerprints of tomato, corn, safflower, bean 
and wheat soils all collected from the SAFS plot on a single date in the latter part of the 
growing season in 1997. Though some crops could be distinguished from one another, 
their influence on the grouping of the soils was not as clear as in the case of the PM-10 
soils (Fig. 3-9) where crop appeared to have a stronger influence on the fingerprints than 
did soil texture. 

3.3 PMJO soils. 
PCA plots of PLFA fingerprints from 40 soils selected from the UCO Air Quality 

Group's PMJO Project are shown in Figs. 3-10 and 3-11. These soils had been sampled 
during the 1994 harvest season, analyzed for particle size distribution, and stored at 
ambient temperature in the air-dried state. We chose these soils for PLFA analyses 
because they represented different textural classes and crop types, enabling us to test 
effects of these variables on PLFA profiles. Fig. 3-10 shows a PCA plot of these soils in 
an analysis that did not include road samples. Fig. 3-11 shows a PCA plot that includes 
road samples. 

3.3.1 Relationship between crop or soil texture and PLFA fingerprint 
The quantitative relationship between crop or soil texture and PLF A fingerprints 

was determined in the lower San Joaquin Valley soils in which% sand,% silt,% clay, 
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Fig. 3-6. Principal component analysis plot of PLFA fingerprints of all SAFS tomato soils and 
Maxwell rice soils, including samples representing different management practices and time of 
sampling. The first axis explains 80% of the variance in the data. These factors contributed to 
variability of the fingerprint for each soil; however, the soils could be clearly distinguished based on 
their location. 
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Figure 3-7. Principal Component Analysis plot of PLFA fingerprints of tomato soils sampled on different dates. 
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for soils sampled in 3/95 (yellow), 4/95 (pink), 5/95 (blue), 7/95 (red), 10/95 (green), 11/95 (purple). Soils sampled from the same plots in 
July 1995, 1996, and 1997 (all in red) showed relatively consistent locations relative to the X axis from year to year. 



T~ 
\0 
N 

1~ 
♦' 

omoRd 
T 

I 

! 

I 
i 
' 

tomCON♦ 

tomORG♦ 

tomQRG
,•.-) 

tomHI 
.('•-

to 
, , 

ORG 
34% 

tomCON 
,."'-:... 

+ 
I 

N 
-._J 

1 I:-. I , I 1I ~ 7 f ·' ✓ 1W' t, I:-.. ImLOW.. •umv"-p I f ~ safORG 

Figure 3-8. Principal Component Analysis plot of PLFA fingerprints of SAPS soils under different management treatments and crops (DIFFERENT YEARS). 
PLFA fingerprints of soils under conventional (CON) and high-input (HI) management tended to be located higher on the Y axis than fingerprints from soils 
under organic (ORG) and low-input (LOW) management for most crops and sampling dates. As in Figure 3-7, soils sampled earlier in the season were 
distributed on the lefthand side of the X axis, while soils sampled later in the season showed a trend toward the right. Color codes are for sampling dates in 
4/95 (yellow), 5/95 (pink), 7/95 (blue), 8/95 (red), 7/96 (green), and 7/97 (purple). Crops are tom (tomato), cor (com), saf (safflower), bea (bean), and whe 
(wheat). 
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• ~CL6 
~CL4 ...,,_CL3 

li 
i 
i 

+ 
~3 

~2 

COTTON SITE 4 

COTTON SITE 3 

1).FSL3 

¥C6 

PC 1 40% 

/ONSITE2 

¥C10 
.C7 
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and crop type were measured. Whereas PCA visualizes the variation in the data in 
relation to the best fitting theoretical variables (components) made up of individual 
PLF As, redundancy analysis (RDA) directly relates the variation in PLF A data to specific 
environmental variables. RDA revealed that both soil texture (percentage of clay, sand or 
silt) and crop type were significantly related with the variation in the PLFA profiles 
across soils (Fig. 3-12). The diagonal axes represent the gradients of each soil particle 
and the crop names represent centroids. The distance of the points (representing soil 
samples) to either the diagonal axes or centroids represent how strongly these variables 
were correlated with the variation in the PLFA data for each sample. Overall, crop type 
was a stronger determinant of PLFA profile than soil texture. Almond and cotton soils 
were clearly segregated on the basis of the two principal components. Walnut and fig 
soils appeared to have PLFA profiles that were intermediate between those of almond and 
cotton soils, although more of these samples would need to be analyzed to verify treir 
distribution patterns. Finer-textured soils (with higher clay contents) were clearly 
segregated from medium-textured (loam) soils associated with the same crop. Medium
textured cotton soils clustered together more tightly than did the medium-textured almond 
soils. Trends in the loadings of specific PLFAs included a high relative abundance of 
markers for fungi and gram negative aerobic bacteria along the sand axis, a low relative 
abundance of saturated PLF As along the silt axis, and a high relative abundance of 
markers for gram positive (usually anaerobic) bacteria and actinomycetes along the clay 
axis. 

3.4 Quality assurance considerations. 
Total PLFA yields were determined in triplicate for seven PM10 soils of varying 

textures during a quality assurance evaluation of PLFA extraction consistency. Total 
PLFA yields ranged from 130 to 900 nanograms per gram of dry soil. The source of 
greatest variability in total PLF A yields within triplicate samples appeared to be 
contaminants that eluted from the chromatography column after fatty acid 20:0. (This 
fatty acid is the last one identified by the Sherlock Microbial Identification System, or 
MIS. Peaks before 20:0 are identified by MIS and assigned fatty acid names. Peaks after 
20:0 are not assigned names by MIS, but they provide additional data which we could 
incorporate into more comprehensive fingerprints.) We detected contamination by 
comparing the sums of PLFA peak areas before and after 20:0 across each set of triplicate 
samples. 

Tables 3-1 a and 3-1 b give the mean PLFA yields for the 7 soils before and after 20:0, 
respectively. For yields before 20:0, coefficients of variation (CVs) ranged from 2 to 
11 % (except for the cotton clay loam soil, which had a CV of 39%.) For yields after 
20:0, most CVs were much higher, indicating that the size of this fraction was much more 
variable. This variability appeared to be due to contamination by larger compounds that 
remained in the chromatography column from previous samples. Figures 3-13a and 3-
13b show the locations of fatty acid 20:0 in two PLFA profiles from replicate samples of 
the same soil. In Figure 3-13b, the peaks after 20:0 are more numerous and higher than 
those in Figure 3-13a. It appears that the PLFA extract which produced the profile in 
Figure 3-13b was contaminated, while the extract corresponding to Figure 3-13a was not. 
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Table 3-la. Ranges, means, and standard deviations of PLFA yields measured by the 
gas chromatograph before fatty acid 20:0 

Soil Range of PLFA yields Mean PLFA yield Coefficient 
(ng per gram dry soil) (± one standard of variation 

deviation) (percent) 

Clay (Location 1, cotton) 159-188 172 (± 15) 8 

Clay (Location 2, cotton) 162-182 167 (± 13) 8 

Clay loam (Cotton) 144-328 236 (± 92) 39 

Silt loam (Cotton) 169-210 189 (± 21) 11 

Loam (Cotton) 216-231 224 (± 8) 3 

Sandy loam (Cotton) 102-124 111 (± 12) 11 

Sandy loam (Almond) 590-659 632 (± 37) 6 

Table 3-Ib. Ranges, means, and standard deviations of PLFA yields measured by the 
gas chromatograph after fatty acid 20:0 

Soil Range of PLFA yields Mean PLFA yield Coefficient 
(ng per gram dry soil) (± one standard of variation 

deviation) (percent) 

Clay (Location I, cotton) 38-185 90 (± 83) 92 

Clay (Location 2, cotton) 17-88 44 (± 38) 85 

Clay loam (Cotton) 29-315 139 (± 154) 111 

Silt loam (Cotton) 21-40 31 (± 10) 31 

Loam (Cotton) 34-38 37 (± 3) 7 

Sandy loam (Cotton) 23-84 44 (±35) 79 

Sandy loam (Almond) 148-266 208 (± 59) 28 
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Fig. 3- l 3a. Gas chromatogram of typical sample showing position of last fatty acid identified in 
each sample, and normal amount of unidentified compounds. 

Fig 3-13b. Gas chromatogram of contaminated sample. The peaks to the right of the 20:0 fatty 
acid are unidentified contaminants. 
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Since contamination peaks might interfere with the naming of fatty acids that come off 
the column prior to 20:0, we are evaluating the relative positions of contaminated samples 
in PCA plots. We have also reduced the incidence of contamination fourfold by 
stoppering the sample vials with a different type of septa and changing the column liner 
more frequently. 

Large, "contaminant" peaks occurring after fatty acid 20:0 were fatty acid 20:0 
were mainly responsible for the high variability in total PLFA yields among triplicate Jab 
samples. These peaks were typically present at low, background levels in PLFA profiles 
from soils, but we did not observe them in negative controls (test reagents and water). 
These peaks did not match those produced by dissolved septa material, which we had 
suspected to be a possible contaminant. We reduced the incidence of these peaks from 
15% to less than 4% of samples tested by changing the gas chromatography (GC) 
standards, liners, and septa more frequently. Since we were not able to completely 
eliminate these peaks, we analyzed these peaks on Dr. Rick Higashi's GC-MS. He found 
that they were long-chain aliphatic compounds, which could be septa bleed or injector 
port liner residues. We addressed this by changing the solvent rinse vial more frequently 
and increasing the number of syringe rinses between injections. 

3.5 Comparison of PLFA fingerprints of dust and soil. 

Principal component analyses were performed on PLFA fingerprints of paired 
dust and soil samples from: i) the Campbell tract (CT) near Davis, CA, and ii) Westhaven 
soil (WW), Kimberlina soil (KW), and a composite dust sample (WK) at the Stone Land 
(SL) site near Coalinga (Fig. 3-14). The first and second components represent 59 and 
27%, respectively, of the variance in the data. The dust sample from the Stone Land site 
was distinctly different from its potential source soils, whereas the Campbell tract dust 
sample was very similar to its potential source soil. Evaluation of the plot of PLF A 
loadings for the principle component analysis plot shown in Fig. 3-15 revealed that high 
relative abundances of the PLFAs located in the left hand side of the graph were 
responsible for strong separation of the Stone Land dust sample (WK) from its potential 
source soils. These PLFAs included 14:0, 16:0, 18:0, 20:0, and 18:lw9c. These 
particular PLFAs are present in high amounts in plant cellular material and are not as 
abundant (dominant) in microbial tissues. 

To assess how much the plant-derived material contributed to the separation of the 
Stone Land dust and soil samples, another principle component analysis was performed 
on PLFA fingerprints, this time excluding those PLFAs associated with plant material 
(Fig. 3-16). The first and second components represent 62 and 19%, respectively, of the 
variance in the data. In this case, the differences between the Stone Land soils and dust 
samples were not as great as when the plant associated PLFAs were included in the 
analysis (e.'g., Fig. 3-14). 

These results suggested that the Stone Land dust samples were substantially 
enriched in plant material to levels far in excess of what was present in their source soils. 
This type of enrichment was not universal among dust samples as indicated by the lack of 
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Fig. 3-14. Principal component analysis plot of PLFA fingerprints of paired dust and soil samples from: i) the Campbell tract (CT) 
near Davis, CA, and ii) Westhaven soil (WW), K.imberlina soil (KW), and a composite dust sample (WK) from Stoneland, CA. The 
first and second components represent 59 and 27%, respectively, of the variance in the data. The dust sample from Stoneland was 
distinctly different from its potential source soils, whereas the Campbell tract dust sample was very similar to its potential source soil. 
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Fig. 3-15. Plot of PLFA loadings for the principal component analysis plot shown in Fig. 3-14. High relative abundances of the 
PLFAs located in the left hand side of the graph were responsible for strong separation of the Stoneland dust sample (WK) from its 
potential source soils. These PLF As are present in high amounts in plant cellular material and are not abundant in microbial tissues. 
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Fig. 3-16. Principal component analysis plot of PLFA fingerprints (removing those PLFAs associated with plant material) of paired dust 
and soil samples from: i) the Campbell tract (CT) near Davis, CA, and ii) Westhaven soil (WW), Kimberlina soil (KW), and a composite 
dust sample (WK) from Stoneland, CA. The first and second components represent 62 and 19%, respectively, of the variance in the data. 
In this plot, the differences between the Stoneland soils and dust samples were not as great as when the plant associated PLFAs were 
included in the analysis (e.g., Fig. 3-14). 



importance of these particular PLF As in the Campbell tract dust samples. One major 
difference between the two sites is that the Stone Land site is under active cultivation 
whereas the Campbell tract has been fallow for several years. 

3.6 Analysis of PLFA data by pattern recognition and neural network methods. 
PLF A analysis generates complex compositional data sets that can be analyzed in a 
variety of ways. In the past we have used ordination methods to describe the distribution 
of soil PLFA profiles across two-dimensional PCA (principal component analysis) plots. 
Although ordination methods provide qualitative information on relationships· among 
different soils, dust apportionment studies require quantitative measures that can be 
statistically tested. In light of these requirements, we enlisted the help of Dr. Phil Hopke, 
a professor of chemometrics at Clarkson University, to identify appropriate statistical 
analysis methods. We gave Dr. Hopke a data set consisting of compositional percentages 
of 26 PLFAs from 245 soil samples representing 13 different crop types or land uses. 
Hopke and associates compared three different pattern recognition methods (SIMCA, 
Kohonen, and ART-2a) for testing the strength of these differences (Table 3-2). To 
enhance statistical significance, Hopke limited the SIMCA analysis to samples 
representing the seven crop types which had at least four data points (232 samples). For 
the Kohonen and ART-2a analyses, he entered data from all 13 crop types (245 samples). 

Results from Hopke' s analyses indicated that over 90% of the data fell into 
separable classes based on crop type at the 95% confidence level. All three methods 
identified rice soils as being distinct from all other soils. SIMCA and ART-2a, but not 
Kohonen analysis, also recognized construction site samples as distinct. Although most 
other samples fell within classes comprising their respective crop types (e.g., tomato, 
cotton, almond, rotation), approximately 5% of the samples fell into other classes, 
creating classes with mixed composition at the 95% confidence level (Table 3-2). These 
results thus provide a quantitative means to evaluate relationships among soil PLFA 
profiles, and we will evaluate them further to see how other factors (i.e., soil type, farm 
management, geographic location) influenced the class distributions. Each of these three 
statistical analysis methods used by Hopke could be validly used to classify samples as a 
way of narrowing down potential single sources of dust. Kohonen and ART-2a, but not 
SIMCA, could also be applied to the problem of apportjoning multiple sources of fugitive 
dust. 

Hopke and associates also applied fuzzy ARTMAP and back progagation neural 
network techniques to analyze the same PLFA data set. These latter two methods would 
be suitable for both sample classification and source apportionment purposes. Both 
methods could clearly discriminate most soil samples based on crop type. Rice and 
tomato soil samples, which had the largest number of samples, were well separated from 
the other crop types. Crops represented by very few soil samples ( < 5) could not be as 
clearly discriminated. A manuscript describing this study by Song et al. has been 
submitted to the journal Chemometrics and Intelligent Laboratory Systems. 
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Table 3-2. Comparison of advanced multivariate analysis methods for classifying Central 
Valley soil samples 

SIMCA /Modelin2) SIMCA n>rediction) Kohonen ART-2a 

Samples analyzed 232 232 245 245 

No. of '"crop" types 
among samples 

7* 7* 13** 13** 

No. of classes identified 7 7 15 34 

Oasses having I crop type 
(pure) 

6 (86%) 3 (43%) 11 (73%) 29 (85%) 

Classes having 2 or more 
crop types (mixed) 

I (14%) 4 (57%) 4(36%) 5 (15%) 

No. of samples 
misclassified or not 
classified 

I 10 12 11 

Percentage of samples 
misclassified or not 
classified 

0.4% 4.3 4.9% 4% 

No. of crop types falling 
into 1 pure class 

6 (rice. tomato, 
fallow, construction, 

almond, rotation) 

2 (rice, fallow) 4 (rice, road, compost, 
lake) 

2 (road, lake) 

No. of crop types falling 
into 2 or more oure classes 

0 0 0 4 (rice. construction, 
comoost. oine) 

No. of crop types falling 
into I mixed class 

0 I (construction) 0 0 

No. of crop types falling 
into 2 or more classes 

I (cotton) 4 (tomato, cotton, 
almond. rotation) 

9 (tomato, cotton, 
almond, rotation, 

fallow, walnut. fig, pine, 
construction\ 

7 (tomato, cotton, 
almond, rotation, 

fallow, walnut. fig) 

* SIM CA analysis used 232 of the 245 total samples (limited to crop types with 4 or more samples). The 7 
crop types were: rice (112), tomatoes (70), fallow (4), construction (4), cotton (18), almond (11), and 
rotation (13). Number of samples in each crop type are in parentheses). 

** Kohonen and ART-2a analyses used all 245 samples from 13 different crop types: rice (112), tomato 
(70), fallow (4), construction (4), pine (2), lake (2), walnut (3), cotton (18), almond (11), road (2), fig (2), 
rotation (13), and compost (2). 
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3.7. Conclusions for PLFA analyses 

Redundancy analysis of PLFA fingerprints from SAFS soils showed that 
microbial communities in organic and conventional systems were significantly different 
throughout the season from April to July. On ordination plots, PLFA fingerprints from 
the low input usually fell between organic and conventional systems. The relative 
importance of environmental variables in governing the composition of microbial 
communities could be ranked in the order: soil type > time > specific farming operation 
(e.g., cover crop incorporation or sidedressing with mineral fertilizer)> management 
system > spatial variation in the field. Although differences could be discerned among 
management, season, crop, etc. within the SAFS soils, these differences were much 
smaller than those between the SAFS soils and cotton, almond, fig and walnut soils 
collected from the San Joaquin valley (the PM-10 set). 

4.0 COMPARISON OF PLFA AND SFAME 
Side-by-side comparisons of SFAME and PLFA analyses were made on the PM 10 soil 

set. Since SFAME extracts the majority of fatty acids present in a sample and PLFA extracts a 
subset of the total, the two methods extract different sets, and amounts, of fatty acids. We also 
evaluated the feasibility of using smaller samples sizes for SFAME analysis, since dust samples 
collected for PM10 analysis typically range from 2-3 micrograms up to 100 microgram& A 100-
microgram sample of a high-organic matter soil produced 20 detectable peaks in the SFAME 
fingerprint, which may provide sufficient information for differentiating samples. A 100-
microgram sample of a low-organic matter soil produced 10 detectable peaks, and these results 
were not reproducible. Larger sample sizes for low-organic-matter soils would be needed to 
produce more information from SFAME analysis. We used two sample sizes for SFAME 
extractions from bulk dust (100 micrograms and 100 milligrams). We found that 100 
micrograms of dust can generate enough detectable peaks for sample comparisons if we increase 
detection sensitivity with a splitless sample injection method. We also found that the 100-
milligram samples of dust were too large for SFAME analysis, because the gas chromatography 
column became overloaded and caused the detector to become nonlinear. 

We analyzed both SFAME and PLFA analyses using principal components to see 
if the two procedures give similar results (Figs. 4-1 and 4-2). Both plots showed a clear 
separation of the coarse almond soils and the fine cotton soils. The plots differed in that 
PLFA fingerprints of field replicates clustered together more tightly based on texture, 
while SFAME profiles clustered better based on crop type. In addition, the SFAME 
method was able to cluster the fig soils. This difference appears to be due to the fact that 
the SFAME method extracts lipid from both living and dead organisms as well as plant 
material, which yields a different, but similar, set of fatty acids. Within this data set it 
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appears that the SFAME method is capable of classifying samples based primarily on the 
crop and the PLFA method is more sensitive to texture. 

5.0 DNA RESULTS AND DISCUSSION 

5.1 DNA yields from soils and dusts. 
DNA yields purified from cotton soils of varying textures ranged from 0.5 to 1.8 

micrograms per gram of dry soil. DNA yields varied considerably among replicate 
samples of the same soil ( coefficients of variation as high as 40% ). This high variability 
appears to be due to differences in shearing with subsequent differences in losses of 
sheared DNA during gel purification. We did not obtain good correlation between PLFA 
and DNA yields from the same soil samples, even though we had expected that soils with 
higher PLFA yields would also have higher DNA yields. 

PLFA and DNA yields from the same PMlO soil samples did not correlate well. 
For four of the soils, we obtained approximately the same amount of purified DNA (1 
microgram per gram of dry soil), while their mean PLFA yields ranged from 100 to 600 
nanograms per gram of dry soil. The poor correlation between DNA and PLFA yields is 
probably due to differences in the two extraction methods. The PLFA method is a 
harsher chemical extraction, while the DNA method is designed to keep DNA from being 
degraded and lost during extraction and purification. Despite the fact that our DNA 
extraction procedure may not have high efficiency in recovering DNA from all soils, the 
yields are more than adequate for producing fingerprints. 

5.2 RAPD (Randomly Amplified Polymomhic DNA) analysis. 
Problems were initially encountered in standardizing RAPD analysis, because we 

obtained different results with the same DNA sample when PCR was done on two different 
thermal cyders. We purchased our own thermal cycler (Perkin-Elmer GeneAmp 2400) so that 
we could run PCR on the same machine thereafter. Other problems were due to variability in the 
amount of DNA used in the PCR reaction,. We addressed the latter problem by purchasing an 
adapter and microcuvets to hold 100-microliter sample volumes to measure DNA absorbance 
values in the UV-vis spectrophotometer. A large proportion (70-80%) of the RAPD runs were 
unsuccessful (i.e., no bands were obtained at all or smearing obfuscated band patterns). In the 
successful RAPD runs, we could see that there were distinct differences in RAPD patterns for 
Rindge, Forbes, Yolo, and Tinker soils, as well as some consistency in patterns obtained from the 
same soil or management treatment. 

In a quality assurance evaluation of fingerprint consistency, we compared 20 groups of 
RAPDs from a data set using soils from replicated agricultural plots. We were particularly 
interested in comparing fingerprints produced on different days from the same extract that was 
used as the positive control. The strongest evidence of inconsistency in RAPD fingerprints was 
the difference in the number of bands from the same extract on different days. The overall 
pattern of the bands (i.e., positions relative to each other) was usually quite consistent, such that 
bands in the simplest fingerprints were also seen at the same locations in the more complex 
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fingerprints.. Fingerprint variability is a commonly observed problem with this method (e.g., for 
typing DNA from individual species of organisms.) Thus, RAPD fingerprinting may be 
inherently too variable to be used for fingerprinting community DNA. 

5.3 PCR amplification of taxonomic genes. 
Since random-primed PCR gave variable results, we chose to use group-specific primers 

that bind to ribosomal RNA genes of specific groups of organisms. The products of these PCR 
reactions, when separated by gradient gel electrophoresis, also produced banding patterns that 
have the advantage of providing descriptive information about the organisms in the soil that gave 
rise to the retrieved gene sequences. As expected, initial TGGE band patterns from the all
bacteria PCR appeared to be much more complex than patterns from nitrifier PCR. In the latter 
part of this project, we concentrated efforts on obtaining clear, interpretable TGGE patterns from 
all-bacterial PCR. However, after running a total of 30 TGGE gels, we have yet to achieve 
effective separation of PCR products. We have also observed what are apparently PCR artifacts 
with the all-bacterial primers. One of the difficulties in obtaining interpretable band patterns is 
the large number of experimental conditions that need to be optimized. We have used 
polyacrylamide concentrations ranging from 4.5 to 7%, urea concentrations ranging from 7 to 9 
M, forrnamide concentrations from Oto 20%, and various temperature gradients, electrophoresis 
buffers, and run times. 

5.4 DNA based approaches show promise for characterization of dust sources and 
possibly dust. 

The advantage of these methods lie in their low detection limits and ability to 
confirm fatty acid results with an independent method. These approaches require three 
steps: (1) extracting DNA from soil or dust; (2) using PCR to copy gene fragments from 
the extracted DNA; and (3) separating gene fragments with gel electrophoresis to produce 
DNA fingerprints. We have found that the same DNA extraction and PCR procedures 
must be consistently applied to all samples before fingerprints from different soils and 
dusts can be compared. By using the same DNA extraction method on approximately 50 
different Central Valley soils, we obtained DNA yields ranging from 200 nanograms to 4 
micrograms per gram of dry soil. As we expected, DNA yields per gram of bulk dust 
were approximately tenfold higher than yields from their corresponding surface soils, 
because dust tends to be enriched in organic matter. Although all-bacterial TGGE 
fingerprints of DNA from bulk dust and corresponding surface soils appeared similar, the 
band patterns were too broad and poorly separated to constitute interpretable fingerprints. 
We must optimize our PCR and gel electrophoresis procedures before we can obtain 
clearly defined fingerprints and confirm the similarities between soil and dust samples. 

6.0 FUTURE WORK 

6.1 Three research modules. 
6.1.1 Adaptation of fingemrinting methods for fugitive dust monitoring. 

The next step toward applying fingerprinting methods to PMIO is to analyze 
samples representative of fugitive dust that have been airborne long enough to be 
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collected on filters. Since a key concern is whether filters can deliver sufficient material 
to generate an informative fingerprint, the first objective of continued research should be 
to determine minimum sample sizes for different fingerprinting approaches. Minimum 
sample sizes will depend on the organic matter content of dust sample, and they should be 
determined as ranges by analyzing different dusts having low and high organic matter 
contents. 

Minimum sample sizes also depend on the type of fingerprinting (Table 6-1). As 
a rule, PLFA analysis requires larger sample sizes than SFAME, while DNA analysis 
theoretically requires even less sample because of PCR' s ability to exponentially amplify 
DNA. For each type of fingerprinting, minimum sample sizes would also depend on the 
method of analysis. For PLFA and SFAME, minimum sample sizes for GC-MS and GC
_MS-MS analyses would be at least tenfold to a hundredfold lower than minimum sample 
sizes for GC alone (Table 6-2). We are determining whether we can get more information 
from small samples by increasing the peak detection sensitivity of the gas chromatograph. 
Preliminary tests with diluted standard mixtures indicate that we may increase sensitivity 
10 to 20 fold by changing the way we inject samples into the chromatograph (i.e., instead 
of a split injection, use either a splitless or pulsed splitless injection.) For DNA 
fingerprinting, PCR analysis of predominant microorganisms would require lower sample 
sizes than PCR analysis of less numerous organisms. 

The following discussion describes experimental objectives to be accomplished in 
making PLFA fingerprinting technology applicable to field monitoring of fugitive dust. 

(1) Determine minimum sample sizes for low- vs. high-organic-matter dusts. 
Organic matter content of dusts collected in California's Central Valley ranges 

from high levels for feedlot dusts to one percent for fallow agricultural dusts. The 
amount of PMIO typically found on 25-mm collection filters ranges from 50 to 800 
micrograms. Two approaches could be used to determine minimum sample sizes for 
PLF A. The first approach would be to analyze progressively fewer filters or smaller 
pieces of filters containing PM I 0. The most practical filter for our purposes appears to be 
the 25-mm Teflon filter used by the CNL Air Quality Group in IMPROVE samplers . 
(lnteragency Monitoring for Protection of Visual Environments. This type of sampler has 
a medium flow rate (16.7L per min for the PMlO module and 23.2L per min for the 
PM2.5 module) and uses EPA-certified inlets (Sierra-Anderson. IMPROVE samplers can 
be fitted with 25-mm or 47-mm-diameter Teflon filters, so that the larger filter size is an 
option if that becomes necessary. A second approach would be to analyze known weights 
.of suspended dust collected in the resuspension chamber at UCD's Crocker Nuclear 
Laboratory. It may also be helpful to size-fractionate bulk dust from the field to evaluate 
the upper limits of sample size, beyond which additional information is not as useful. 
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TABLE 6-1. Estimates of minimum sample sizes needed for fingerprinting methods. 

Method Soil (2% o.m.) Total 11articulate PMIOdust PMIOdust 
dustfi!II ( 10% o.m.) !10% o.m.) (40% o.m.) 

PLFA-GC 8g lg lg 250mg 

PLFA-GC-MS 20mg 
. 

5mg 5mg 1.5mg 

SFAME-GC 500mg 100mg 100mg 25 mg 

SFAME-GC-MS 2mg 400 µg 400µg 100 µg 

DNA-PCR I mg 200µg 200µg 50 µg 
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Table 6-2. Typical ranges of sample weights collected on PMlO filters. 

Type of filter and sampler 
Total surface 
area of filter 

{cm2} 

Effective surface 
area of filter 

(cm2l 

Air flow rate for 
PMI0 inlet 
11,~minl 

Length of 
sampling 

time 

Sample 
weights 

25-mm Teflon filter with 
IMPROVE sampler 

4.9 3.8 16.7 X 50 to 800 µg 

47-mm Teflon filter with 
IMPROVE sampler 

17.3 9.6 16.7 2.5X 125ug to 2 mg 

47-mm quartz filter with 
high-volume filtration sampler 

17.3 9.6 I 10 0.4X 125ug to 2 mg 

8 x 11" quartz filter (20 x 25 
cm) with high-volume filtration 

sampler 

568 450 (estimated) 110 18X 6 mgto 90 mg 
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(2) Evaluate reproducibility of results obtained with standard sample sizes. 
Once we establish the lower limits for sample sizes, we would need to evaluate 

reproducibility of fingerprints based on a standard sample size and storage time. First, 
reproducibility would need to be evaluated on multiple filters containing the same PMlO 
material. Point-source variability (i.e., from a single field) would also be evaluated using 
filters placed at different heights from the ground and at different locations and distances 
in the field. Temporal variability could also be studied at sites sampled daily, weekly, or 
seasonally. For these experiments, sampling locations and times should be selected on 
the basis of what is already known about PMIO (i.e., how far it travels on the average; 
how long it remains suspended; how it is distributed at different heights.) Half of the 
samples could be analyzed as unknowns to determine their relative distributions in PCA 
plots or in Al models constructed using data from the known samples. From discussions 
with Dr. Lowell Ashbaugh, a practical approach for us would be to use some of the 
samplers in CNL Air Quality Group's field sampling array. We propose to get samples 
from three modules located along one edge of the field (all are 3-meters high), which 
would give us 3 samples along a horizontal transect. There is also a vertical array (at 1, 3, 
and 9 meter heights) that could be located along the edge as well. These would be "co
located" samples to analyze spatial variability in fingerprints. "Sequential" samples to 
evaluate temporal variation could be taken from the same field the following week, 
month, etc. 

The LTRAS and Campbell Tracts at the UC Davis Agronomy Fields would be 
particularly desirable for evaluating spatial and temporal reproducibility, because they 
offer opportunities to sample dusts from a variety of crops and management systems 
within a small area having the same soil type. We could also try to locate other university 
sites for this purpose (e.g., urban sampling) for additional samples. The close proximity 
of the UCD research fields would also facilitate sampling, because we could respond 
more quickly to meteorological conditions as needed. 

(3) Test field-collected PMlO samples. 
Having established standard sample size and field collection limitations, PMIO 

samples could be collected at multiple sites on the same day and analyzed for PLFA 
fingerprints. · 

(4) Evaluate fingerprinting technology for use in source apportionment. 
In reality, airborne PMlO samples usually contain material from more than one 

source. To determine whether fingerprints can discriminate single-source PMIO from 
mixed PMlO, known combinations of distinct dust samples (e.g., urban vs. agricultural) 
could be analyzed and their fingerprints compared. Again, two approaches could be used 
to achieve this, either with varied combinations of PM IO-containing filters or with 
different relative amounts of resuspended dusts. 

6.1.2 Development of neural network analysis of fingerprint data 
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Data analyses of all the above objectives would be greatly enhanced with the use 
of artificial intelligence (Al) methodologies. Analysis of a preliminary data set with 
fuzzy ARTMAP by Dr. Phil Hopke at Clarkson University has shown that fingerprints 
based on 26 PLFAs can distinguish nonsimilar sample points that are embedded within a 
field of sample points which are similar to each other (Song et al., manuscript submitted). 
In fact, Al programs that incorporate fuzzy logic are probably the only means by which 
PLFA and SFAME data can be used for source apportionment purposes. 

6.1.3 Expansion of fingerprint databases. 
Field application of dust monitoring will also require the capability to compare 

unknown fingerprints against a database of characterized fingerprints from known 
sources. PLFA databases for Central Valley soils and dusts could be expanded to include 
more soil types, crops, and land uses so that PLFA data could be used to identify potential 
signature peaks or sets of peaks for different soils. Beginning early next year the Air 
Quality Group at CNL will make available to us the soil samples they are collecting from 
about 50 sites in the San Joaquin Valley. These samples are being collected and 
distributed to other research groups involved in the ARB Technical Support Study 12. 

7.0 SUMMARY AND CONCLUSIONS 
Analysis of lipids extracted directly from soil is a feasible method for source 

identification. We have explored two methods for analyzing lipids. Phospholipid fatty 
acid (PLFA) analysis uses only the polar fraction of the lipid extracted directly from soil. 
Soil fatty acid methyl ester (SFAME) analysis quantifies all fatty acids present. Both 
methods can generate a fingerprint for a particular soil. With the analysis of PLF As, we 
were able to differentiate many agricultural soils from numerous locations in the Central 
Valley of California. In addition, for a set of soils from the San Joaquin Valley, we were 
able to determine that crop, soil texture, and location were significant factors in 
determining which soils group together or which are different. An advantage of the 
PLFA method is the ability, in most cases, to obtain clearly isolated peaks on the 
chromatographs. Another strength of PLFA is the ability to relate measured data to an 
existing data base describing which lipids are associated with which types of organisms. 
A limitation of the PLFA method, as currently employed, is that it requires soil sample 
sizes of 1 to 8 grams and excludes some of the lipid classes from its analysis. We 
compared PLFA to SFAME analysis for the same set of soil samples. We found that 
SF AME classifies soils in a similar way to PLF A and can be performed on smaller 
samples (100-500 milligrams). PLFA or SFAME fingerprint data also could be used to 
relate bulk dust samples to their surface soils. SFAME fingerprints contain more peaks 
and would generate larger data sets if these peaks could be identified. A significant 
disadvantage of SFAME is that, because of the abundance of lipids in soil, numerous 
overlapping peaks are generated on the chromatographs, and individual peaks are difficult 
to identify with confidence. Thus, both methods have their application in the future 
development of technologies for source identification. DNA based approaches also show 
promise for characterization of dust sources and possibly dust. The advantage of DNA 
based methods lie in their low detection limits and ability to confirm fatty acid results 
with an independent method. Although all-bacterial TGGE fingerprints of DNA from 
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bulk dust and corresponding surface soils appeared similar, the bands were too poorly 
separated to constitute interpretable fingerprints. Continued attempts to optimize the PCR 
and gel electrophoresis procedures for soil community DNA are needed, and such work 
would be beneficial in the long term in providing an independent method for confirming 
fatty acid biomarkers by detecting the presence of microbial groups in soil and dust 
samples. 
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APPENDIX 9-1. List of soil samples 

U> 
\;J' ' 

PM 10 SOILS 

PM10 No. 
241 
323 
324 
325 
326 
327 
330 
331 
236 
237 
238 

-- .. 276 
277 
286 
294 
296 
433 
438 
422 
441 
442 
233 
234 
235 
405 
406 
403 
367 
437 
368 
372 
425 
395 
398 
400 
407 
402 
404 
254 
258 
268 
269 
255 
257 
261 
249 
251 

-· 
200 
202 
208 

Dale Crop PCAcode Count-, latitude Longitude Elevation Arravcode Samplino location Soil texture Soil map unit %H20 %Sand %Sill %Clay PLFA Nos. DNA Nos. 
10/17/90 Almond ACL1 Kern 35.65 119.97 196 PF8 north loam'clav loam Panoche clay loam 8.39 38.53 37.08 24.39 825-827 

Almonds ACl.2 Kem 35.67 119.9 196 PF6 20M ClaYloam Panoche clav loam'Kimberlina 4.80 24.76 38.98 36.26 483-485 88-90 
Almonds ACL3 Kem 35.67 119.9 196 PF6 30M Clay loam · Panoche clay loam/Klmberlina 4.17 24.17 40.75 35.07 496-500 91-93 
Almonds ACL4 Kem 35.67 119.9 196 PFS 40M Clavloam Panoche clav loam/Kimberlina 4,01 31.59 37.82 30.58 828-830 
Almonds ACL5 Kem 35.67 119.9 196 PF6 5S Clay loam Panoche clay loam'Kimberline 4.75 22.69 40.56 36.76 584-586 94-96 
Almonds ACL6 Kem 35.67 119.9 196 PF6 10S Clay loam Panoche claY loam'Kimbertina 3.72 25.28 41.34 33.37 
Almonds ACL7 Kem I 35.67 119.9 196 PF6 40S Clavloam Panoche clay loam/Klmbertina 5.79 29.59 38.03 32.38 831-833 
Almonds ACL8 Kem 35.67 119.9 196 PF6 R 1fl Panoche clav loam/Kimbertina 32.64 36.46 30.90 834-836 

10/16190 Almond Al1 Kem 35.67 119.97 196 PF7 . N.SOm loam Panoche clay loam 5.70 39.61 35.50 24.89 501-503 147-179 
10/16/90 Almond Al.2 Kem 35.67 119.97 196 PF7 middle loam Panoche clav loam 5.90 41.79 35.04 23.17 504-506 150.152 
10/16/90 Almond Al3 Kem 35.67 119.97 196 PF7 s.som loam Panoche clay loam 5.82 40.23 34.81 24.96 588-590 153-155 

Almonds ASL1 Kem 35.5 119.17 105 PF2 5S · sa11<~loam Driver coarse sandv loam 1.44 62.29 22.14 15.57 507-509 135-137 
Almonds ASL2 Kem 35.5 119.17 105 PF2 11N S811! ~loam Driver coarse saMV loam 1.63 60.16 23.78 16.06 510-512 138-140 
Almonds ASL3 Kem 35.5 119.17 105 PF2 29N san vloam Driver coarse sandv loam 1.41 63.73 23.32 12.95 591-593 141-143 
Almonds ASL4 Kem 35.52 119.17 105 PF3 35N sa~ ;\tloam LewkalbN/asco sandv loam 1.07 65.42 24.23 10.35 393-395 22-24 
Almonds ASL5 Kem 35.52 119.17 105 PF3 47M sa~ vloam Lewkalb/Wasco sandy loam 0.71 65.11 24.96 9.93 533-535 156-158 
Cotton CC4 Kem 35.18 119.33 90 BV2 50 elev , =ussilt elev 5.86 4.01 38.18 57.80 568-570 113-115 
Cotton CC6 Kem 35.18 119.33 90 BV2 250 clay Copus silt clay 7.60 4.18 37.65 58.16 549-551 116-118 
Cotton CC8 Kinas 36.07 119.8 62 CR1 350 claY Tulare claY 5.92 1.34 37.06 61.60 879-881 

11/8190 Cotton CC10 Kinas 36.12 119.85 61 NB1 E3(?) clay Tulare clay 0.70 32.79 66.51 844-846 
11/8190 Cotton CC7 Kinas 36.12 119.85 61 NB1 W4 l?l clay TulareclaY 0.72 34.78 64.50 847-849 
10fl0/90 Cotton CCL1 Fresno 36.25 120.05 84 BR3 row10N. clay loam lethent/Westhaven clay loarr 8.07 32.95 35.23 31.62 378-380 19-21, 100-102 
10fl0/90 Cotton CCl.2 Fresno 36.25 120.05 84 BR3 row SON. clav loam Lethent/WesthaYen clav loarr 8.59 32.24 35.62 31.94 103-105 
10fl0/90 Cotton CCL3 Fresno 36.25 120.05 84 BR3 row 125 N. clay·loam Lethent/Westhaven clay loarr 12.22 27.03 42.74 30.24 572-574 106-106 
10/2/90 Cotton CL1 Kem 35.17 118.93 106 10m loam Oklriver loam 5.11 44.72 42.88 12.40 384-366 
10/2/90 Cotton Cl.2 Kem 35.17 118.93 106 100m loam Oldriverloam 4.90 49.32 38.78 11.90 492-494 128-130 
10/2/90 Cotton CL3 Kem 35.17 118.93 106 100m loam Oldriver loam 8.70 49.55 40.59 9.85 578-560 125-127 
10/9/90 Cotton CC1 Kem 35.18 119.28 90 BV1 SOM clay Copus silt clay/Buttonwmow cla1 7.43 6.70 37.97 55.34 372.374 14-15 

Cotton CC5 Kem 35.18 119.33 90 BV2 150 clav/silt clav r.,.,us silt clav 7.29 4.26 39.93 55.81 375-377 16-18 
10/9/90 Cotton CC2 Kem 35.18 119.28 90 BV1 100M clay/sill clay Copus sllt clay/Buttonwillow cla, 7.71 6.18 39.69 54.13 486-468 97.99 
10/9/90 Cotton CC3 Kern 2,14 119.28 90 BV1 100S clav 1:nnns sit clav/Buttonwmow cla, 6.11 5.94 38.89 55.16 565-567 109-112 

Cotton CC9 Kinas 38.07 119.8 62 CR1 350 clav/slll clav Tulare elev 6.79 1.70 39.10 59.20 682-884 
10/7/90 Cotton CSiL1 Kem 35.17 116.93 106 KL3 150m silt loam Weedpalch clay loam'Lokem cla, 5.76 26.31 51.90 21.79 575.577· 122-124 
10/7/90 Cotton CSil2 Kem 35.17 118.93 106 KL3 50m silt loam W"""""lch clav loam'Lokem cla> 6.95 26.90 51.74 21.36 381-383 
10/7/90 Cotton CSiL3 Kern 35.17 118.93 106 KL3 250m silt loam Weedpalch clay loam'Lokem cla1 4.59 27.18 51.24 21.56 469-491 119-121 
10/2/90 Cotton CSL1 Kem 35.17 118.93 106 2oom SaN 111Joam Oldriverloam 2.29 63.81 24.12 12.07 417-419 131-133 
10/2/90 Cotton CSl.2 Kern 35.17 118.93 106 10m san< •loam Oldriver loam 3.22 67.39 20.80 11.81 387-369 
10/2/90 Cotton CSL3 Kem 35.17 118.93 106 200m $AN "loam Dklriver loam 2.71 66.77 30.10 '3.13 561·583 144-146 
9fl8/90 Figs FSL1 Merced 37.12 120.27 42 DE2 row 2e. column sane • loam Hanlord/Tufun!la san< •loam 2.32 66.62 24.75 8.63 552.554 174-176 
9fl8/90 Fias FSL2 Merced 37.12 120.27 42 DE2 row 12 E. column sam "loain Hanf01d/Tulunoa sa"' "loam 2.73 67.38 24.35 8.27 556-556 177-179 
9fl8/90 FiQS FS.L3 Merced 37.12 120.27 42 DE2 row 37 e. column Sin< •loam Hanford/TuiunQa san< vloam 2.28 66.60 25.79 7.62 838-840 
9fZB/90 Fias FSL3a Merced 37.12 120.27 42 DE2 row 37 W. column sa11< vloam Hanford/Tujunga san! vloam 1.81 66.67 25.64 7.69 
9/28/90 FiQS FSL4 Merced 37.12 120.27 42 DE2 row 2W. column SaN vfoam Hanford/Tulunoa san vloam 1.81 75.99 18.26 5.75 841-843 
9fl8/90 Flas FSL5 Merced 37.12 120.27 42 DE2 row 7 W. column sam •loam Hanford/Tuiunaa sani vloam 1.59 75.31 18.49 6.20 650-852 
9fl8/90 Fios FSL6 Merced 37.12 120.27 42 DE2 row 17 W. coklmn loamv sand/sl HanlortVfuiunoa sa"' k>am 1.05 75.68 18.01 6.11 876-878 
9fl8/90 Road ROAD1 Merced eas1 loamvsand Hanford/Tuiun!la sar> vloam 0.84 84.21 11.93 3.86 559-561 168-170 
9fl8/90 Road ROAD2 Merced M(middlel loamvsand Hanford/Tuiunoa san< rvloam 0.78 84.25 12.07 3.68 171-173 
10fl2/90 Walnuts WL1 Kinas 36,38 119.65 62 WH1 W.row1 loam Nord fine sandv loam 3.09 49.91 38.96 11.13 536-538 159-161 
10fl2/90 Walnuts Wl.2 Kings 36.36 119.65 62 WH1 WN.3rd row IN1 loam Nord fine sandv loam 6.48 50.40 38.79 10.80 539-541 162·164 
10fl1/90 Walnuts/orass Wl3 KinQS 36.38 119.67 76 FU1 W.20throw loam Nord fine sandv loam 15.73 51.62 39.24 8.94 543-545 165-167 



APPENDIX 9-1. List of soil samples 

V, 
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MISC. SOILS 
-

Sample Set 
Maxwell Rice Straw Study 
Maxwell Rice Straw Study 
Maxwell Rice Straw Study 
Maxwell Rice Straw Study 
Maxwell Rice Straw Study 
Maxwell Rice Straw Study 
Maxwell Rice Straw Study 
Maxwell Rice Straw Study 
Maxwell Rice Straw Study 
Maxwell Rice Straw Stud~ 
Maxwell Rice Straw Study 
Maxwell Rice Straw Study 
Maxwell Rice Straw Study 
Maxwell Rice Straw Study 
Maxwell Rice Siraw Study 
Maxwell Rice Straw Study 
Maxwell Rice Straw Study 
Maxwell Rice Straw Study 
Maxwell Rice Straw Study 
Maxwell Rice Straw Study 
Maxwell Rice Straw Study 
Maxwell Rice Straw Study 
Maxwell Rice Straw Study 
Maxwell Rice Straw Study 
Maxwell Rice Straw Study 
Maxwell Rice Straw Study 
Maxwell Rice Straw Study 
Maxwell Rice Straw Study 
Maxwell Rice Straw Study 
Maxwell Rice Straw Study 
Maxwell Rice Straw Study 
Maxwell Rice Straw Study 
Maxwell Rice Straw Study 
Maxwell Rice Straw Studv 

Sample Name 
plot 1J3 
plot3 
plot 7 
plot 8 
plot9 
plot 11 
plot 14 
plot 15 
plot 19 
plot 20 
plot22 
plot24 
plot 26 
plot 28 
plot 31 
plot 32 

plot 1F2 
plot3 
plot? 
plots 
plot9 
plot 11 
plot 14 
plot 15 
plot 19 
plot20 
plot22 
plot 24 
plot 26 
plot 28 
plot 31 
plot32 

plot 1M7 
plot3 

Date Crop 
1/3/94 Rice 
1/3/94 Rice 
1/3/94 Rice 
1/3/94 Rice 
1/3/94 Rice 
1/3/94 Rice 
1/3/94 Rice 
1/3/94 Rice 
1/3/94 Rice 
1/3/94 Rice 
1/3/94 Rice 
1/3/94 Rice 
1/3/94 Rice 
1/3/94 Rice 
1/3/94 Rice 
1/3/94 Rice 
2/2/94 Rice 
2/2/94 Rice 
2/2/94 Rice 
2/2/94 Rice 
2/2/94 Rice 
2/2/94 Rice 
2/2/94 Rice 
2/2/94 Rice 
2/2/94 Rice 
2/2/94 Rice 
2/2/94 Rice 
2/2/94 Rice 
2/2/94 Rice 
2/2/94 Rice 
2/2/94 Rice 
2/2/94 Rice 
3/7/94 Rice 
3/7/94 Rice 

Manoement Soil Texture Soil Name County Notes 
incorporated, not flooded Clay Willows Clay Colusa Field 1 

burned, not flooded Clay Willows Clay Colusa Field 1 
incorporated, winter flooded Clay Willows Clay Colusa Field 1 

burned, winter flooded Clay Willows Clay Colusa Field 1 
burned, winter flooded Clay Willows Clay Colusa Field 2 

incorporated, winter flooded Clay Willows Clay Colusa Field2 
incorporated, not flooded Clav Willows Clay Colusa Field2 

burned, not flooded Clay Willows Clay Colusa Field2 
incorporated, not flooded Clay Willows Clay Colusa Field2 

burned, not flooded Clay Willows Clay Colusa Field3 
burned, winter flooded Clay Willows Clay Colusa Field3 

incorporated, winter flooded Clay WillowsClav Colusa Field3 
incorporated, not flooded Clay Willows Clay Colusa Field4 

burned, not flooded Clay Willows Clay Colusa Field4 
burned, winter flooded Clay Willows Clay Colusa Field4 

incorporated, winter flooded Clay Willows Clay Colusa Field4 
incorporated, not flooded Clay Willows Clay Colusa Field 1 

burned, not flooded Clay Willows Clay Colusa Field 1 
Incorporated, winter flooded Clay Willows Clay Colusa Field 1 

burned, winter flooded Clay Willows Clay Colusa Field 1 
burned, winter flooded Clay Willows Clay Colusa Field2 

incorporated, winter flooded Clay Willows Clay Colusa Field2 
incorporated, not flooded Clay Willows Clay Colusa Field2 

burned, not flooded Clay Willows Clay Colusa Field2 
incorporated, not flooded Clay Willows Clay Colusa Field3 

burned, notflooded Clay Willows Clay Colusa Field3 
burned, winter flooded Clay Willows Clay Colusa Field3 

incorporated, winter flooded Clay Willows Clay Colusa Field3 
incoroorated, not flooded Clay Willows Clay Colusa Field4 

burned, not flooded Clay Willows Clay Colusa Field4 
burned, winter flooded Clay Willows Clay Colusa Field4 

incorporated, winter flooded Clav Willows Clay Colusa Field4 
incorporated, not flooded Clay WillowsClav Colusa Field 1 

burned, not flooded Clav Willows Clay Colusa Field 1 



APPENDIX 9-1. List of soil samples 

"' "' 

Samole Set Samole Name Date 
Maxwell Rice Straw Study plot 7 317/94 
Maxwell Rice Straw Study olot 8 317/94 
Maxwell Rice Straw Study olot9 317/94 
Maxwell Rice Straw Study plot 11 317/94 
Maxwell Rice Straw Study olot 14 317/94 
Maxwell Rice Straw Study plot 15 317/94 
Maxwell Rice Straw Studv plot 19 317/94' 
Maxwell Rice Straw Study . _(ll~t20_ 317/94 
Maxwell Rice Straw Study olot 22 317/94 
Maxwell Rice Straw Study ()IQ!~~ 317/94 
Maxwell Rice Straw Study pJo!~§ ... 317/94 
MaxweU Rice Straw Study_ __ plot28 317/94 
Maxwell Rice Straw Studv clot 31 317/94 
Maxwell Rice Straw~ .. _plot 32 ___ 317/94 
~a_xwell Bice ~trl!I!.~t~~y . plot 1F27 2/27/95 
Maxwell Rice Straw Study . pl<>t 2 2/27/95 
Maxwell Rice Straw Study . e!Qt 3 2/27/95 
-~~~II ~~~-Straw Study _ pJotJ 2/27/95 

... 2/27/95Maxwell Rice Straw Study plot 5 
Maxwell Rice Straw Study plot6 2/27/95 
_Ma~~~ Ric~ Straw Study eioit 2/27/95 
Maxwell Rice Straw Stooy __Plo!8 - 2/27/95 
Maxwell Rice Straw Study olot9 2/27/95 
Maxwell Rice Straw Studv Plot 10 2/27/95 
Maxwell Rice Straw Study plot 11 2/27/95 
~~~ell ~ic_e Strl!w §_t~dy plot 12 2/27/95 
Maxwell Rice Straw Study •. e!_ot 13 ..... 'ii27/95 
Maxwell Rice Straw Stooy . .. ploq~ .. 2/27/95 
Maxwell Rice Straw Study .. _()IQ!_!~ - 2/27/95 
MaxwenRlce Straw Study plot 16 2/27/95 

v2119sMaxwell Rice Straw Study olot 17 
Maxwell Rice Straw Study plot 18 2/27/95 
Maxwell Rice Straw Study olol 19 2/27/95 
Maxwell Rice Straw Study plot20 2/27/95 

.Maxwell Rice Straw Study . - (l!Q!_g!_ .. 2/27/95 
Maxwell Rice Straw Studv clot 22 2/27/95 

Crop Mangement Soil Texture Soil Name Countv Notes 

Rice incorporated, winter flooded Clay Willows~ Colusa Field 1 
Rice burned, winter flooded Clav Willows Clay Colusa Field 1 
Rice burned, winter flooded Clay WillowsClav Colusa Field 2 
Rice incorporated, winter flooded .. C)ay ·- _Will~~Q~y Colusa Field 2 
Rice incorporated, not flooded Clay WillowsClav Colusa Field 2 
Rice burned, not flooded Clav Willows Clay Colusa Field2 
Rice incorporated, not flooded Clay Willows Clay Colusa Field 3 
Rice burned, not flooded ..... _ .. .Q~~-- Willows Clay Colusa Field 3 
Rice burned, winter flooded Clav Willows Clay Colusa Field3 
Rice incorporated, winter flooded fl~y_ 'NJ!lo'N~ Qlay C_olu~a Field 3 
Rice _ inc_?~orated, not fl~o~ed (;lay '{l'JUows Clay Colusa Field 4 
Rice burned, not flooded __g~_ Willows~_ Colusa Field 4 
Rice burned, winter flooded Clay WillowsClav Colusa Field4 
Rice inc<>i:Eorated, winter floo~.E!~ 9l~y_ Willows Glay Colusa Field 4 
Rice incorpO!l!ted, wl~ter flooded Clay Willows Clay Colusa Field 1 
Rice removed, not flooded Clay 'A'i[lol'I_S Clay Colusa Field 1 

-R,ce · burned, not flooded Clay 'N)IIC>'NS Clay Colusa Field 1 
Rice · rolled, not flooded Clay Willows Clay Colusa Field 1 

- · rolled, winter flooded 
. 

Willows Clay Colusa Freiil 1Rice Ql~y -
Rice removed, winter flooded Clay Willows Clay Colusa Field 1 
Rice .incC>r~or~te~:\'lfoier ilooded Clay Willows Clay Colusa Fieid 1 
Rice burned, winter flooded __ _9J~Y ...... 

Willows Clay Colusa Field 1 
Rice burned, winter flooded . _Clay ... WillowsClav Colusa Field 2 
Rice rolled, winter flooded 

... 

Clay Willows Clay Colusa' Field 2 
~-

Rice incorporated, winter flooded. ~- Clay____ Willows Clay Colusa Field 2 
Rice removed, winter flooded Clay Willows Clay Colusa Field2 
Rice -. removed, not fiooded Clay Wjllows q1ay Colusa Field 2 
Rice-

--.-~--· -· 
_incorporated, _not flooded Clay Willows Clay Colusa Field2 

_Rice . .. burned, not flooded Cll:ly Willows Clay Colusa Field 2 --· - .. 

Rice rolled, not flooded Clay WIiiows Ciay Colusa Field 2 
-~-' 

roifed,.noi iioodedRice Clay Willows Clay Colusa Field3 
Rice removed, not flooded Clay Willows Clay Colusa Field3 
Rice incorporated, not flooded:~ ·:·_clay Willows Clay Colu~I!._ Field3 
Rice burned, not flooded Clay Willows Clay Colusa Field 3 

.. -
Rice ___ _!Q_lled, winter flooded _ 9~ Willows Clay Colusa Field3 
Rice burned, winter flooded Clay Willows Clay Colusa Field 3 



APPENDIX 9-1. List of soil samples 

Sample Set ISample Name I Date ICrop I Mangement ISoil Texture I Soil Name ICo_llnty I Notes 
Maxwell Rice Straw Study plot 23 2/27/95 Rice remobed, winter flooded Clay Willows Clay Colusa Field 3 
Maxwell Rice Straw Study plot 24 2/27/95 Rice incorporated, winter flooded Clay Willows Clay Colusa Field 3 
Maxwell Rice Straw Study plot 25 2/27/95 Rice removed, not flooded Clay Willows Clay _Colusa Field 4 
Maxwell Rice Straw Study plot 26 2/27/95 Rice incorporated, not flooded Clay Willows Clay Colusa Field 4 
Maxwell Rice Straw Study plot 27 2/27/95 Rice rolled, not flooded Clay Willows Clay Colusa Field 4 
Maxwell Rice Straw Study plot 28 2/27/95 Rice burned, not flooded Clay Willows Clay Colusa Field 4 
Maxwell Rice Straw Study plot 29 2/27/95 Rice removed, winter flooded Clay Willows Clay _Colusa Field 4 
Maxwell Rice Straw Study plot 30 2/27/95 Rice rolled, winter flooded Clay Willows Clay Colusa Field 4 
Maxwell Rice Straw Study plot 31 2/27/95 Rice burned, winter flooded Clay Willows Clay Colusa Field 4 
Maxwell Rice Straw Study plot 32 2/27/95 Rice incorporated, winier flooded Clay Willows Clay Colusa Field 4 
Maxwell Rice Straw Study plot 1 A 1 0 4/10/95 Rice Incorporated, winter flooded Clay Willows Clay Colusa _Field ! 
Maxwell Rice Straw Study plot 2 4/10/95 Rice removed, not flooded Clay Willows Clay Colusa Field 1 
Maxwell Rice Straw Study plot 3 4/10/95 Rice burned, not flooded Clay Willows Clay Colusa Field 1 
~~~e_ll f!i~e ~tr~~ Stu~_ _ _ pl9.!_4 . __ 4/10/95 Rice _.. _ . rolled, not flooded .. _9111y Willol'I~ g@y g~usa Field 1 
Maxwell Rice Straw Study plot 5 4/10/95 Rice rolled, winter flooded Clay Willows Clay Colusa Field 1 
Maxwell Rice Straw Study plot 6 4/10/95 Rice removed, winter flooded _ Clay Willows Clay Colus_a_ £ield l. 
Maxwell Rice Straw Study plot 7 4/10/95 Rice incorporated, winter flooded Clay Willows Clay Colusa .E~~ 1 
Maxwell Rice Straw Study _ plot 8 4/10/95 Rice _ burned, winter flooded __ -~-!~L _~illo~~-Clay Col~a_ fle.~ ~ 
Maxwell Rice Straw Study plot 9 4/10/95 Rice burned, winter flooded Clay Willows Clay Colusa Field 2 

~ IM_al<VleU ~i~!_~l!!ll'!.§!J~Y pl~t 1O _ 4/10/9~ _B)c~ __ r~led, v,,J~!e_r_l!o~~ed - · Clay Willows Clay Colusa Field 2 
Maxwell Rice Straw Study plot 11 4/10/95 Rice incorporated, winter flooded Clay Willows Clay__ Colusa_ fiE!_lc!_~ 
Maxwell Rice Straw Study plot 12 4/10/95 Rice removed, winter flooded Clay Willows Clay Colusa Field 2 
Maxwell Rice Straw Study plot 13 4/10/95 Rice removed, not flooded Clay Willows Clay Colusa Field 2 
Maxwell Rice Straw Study plot 14 4/10/95 Rice incorporated, not flooded Clay Willows Clay Colusa Field 2 
Maxwell Rice Straw Study plot 15 4/10/95 Rice burned, not flooded Clay Willows Clay Colusa Field 2 
Maxwell Rice Straw Study plot 16 4/10/95 Rice rolled, not flooded Clay Willows Clay Colusa Field 2 
Maxwell Rice Straw Study plot 17 4/10/95 Rice rolled, not flooded Clay Willows Clay Colusa Field 3 
Maxwell Rice Straw Study plot 18 4/10/95 Rice removed, not flooded Clay Willows Clay Colusa Field 3 
Maxwell Rice Straw Study plot 19 4/10/95 Rice incorporated, not flooded Clay Willows Clay Colusa Field 3 
Maxwell Rice Straw Study plot 20 4/10/95 Rice liurned, nolflooded __ G_lay Willows Clay _Colusa_ Field 3 
Maxwell Rice Straw Study plot 21 4/10/95 Rice rolled, winter flooded ___ .Q_l!iY_ .. Willows Clay _Col_ll~~ _Fielcl_1 
Maxwell Rice Straw Study plot 22 4/10/95 Rice burned, winter flooded Clay Willows Clay Colusa Field 3 
~~~~II f3iC.8. -~!_r~~ ~!!:'cl_Y. plot 2.~ . 4/!0!~~- ..Bic.~ _r:!!_rn_~ved, winter floo~9.d Clay Willows Clay Colusa Field 3 
Maxwell Rice Straw Study ..... plot 24 ___ 4/10/95 Rice Incorporated, winter flooded . _Ql§ly . 'll'illol'ls Clay Colusa Fi~l<l 3 
Maxwell Rice Straw Study __ p1Qt~5 .4!!0/95 . Rice_ removed, not flooded ... .91e1y \YJUows Clay Colusa Field 4 
Maxwell Rice Straw Study plot 26 4/10/95 Rice Incorporated, not flooded Clay Willows Clay Colusa Field 4 



27 
28 
29 
30 
31 
32 

APPENDIX 9-1. List of soil samples 

Sample Set Sample Name Date Croo Mangement Soil Texture Soil Name Countv Notes 
Maxwell Rice Straw Studv olot 4/10/95 Rice rolled, not flooded Clav WillowsClav Colusa Field 4 
.Maxwell Rice Straw Study 
Maxwell Rice Straw Studv 

plot 
plot 

4/10/95 
4/10/95 

Rice 
Rice 

burned, not flooded ~.. 
removed, winter flooded 

-_yj§'__ -- ~illowsClay_ Colusa 
Clav WillowsCla~ Colusa 

Field 4 
Field 4 

Maxwell Rice Straw Study plot 4/10/95 Rice rolled, winter flooded Clay WillowsCla~ Colusa Field 4 
Maxwell Rice Straw Studv 
Maxwell Rice Straw Study 

plot 
Plot 

4/10/95 
4/10/95 

Rice 
Rice 

burned, winter flooded 
incoroorated, winter flooded 

Clav WillowsCla~ Colusa 
Clav WillowsClav Colusa 

Field 4 
Field 4 

U\ 
·-J 
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MISC.SOILS -- ~----- - -- -

Soil Texture- . Soil Name- -cour1iv_, · · Notes - -
Sample Set Sample Name Date Crop Manaement 

LTRAS 1-5B Tomato conventional Silt Loam Yolo silt loam Yolo conventional 
LTRAS 7-9B Tomato conventional Silt Loam Yolo siltloam Yolo conventional 

-
LTRAS 8-BA Tomato organic Silt Loam Yolo silt loam Yolo organic 
LTRAS 1-2A Tomato organic Silt Loam Yolo silt loam Yolo organic 

U.C.D. Student Farm YOLO1 8/1/95 Fallow fallow Silt Loam Yolo silt loam Yolo Fallow agricultural 
U.C.D. Student Farm YOL02 8/1/95 Fallow fallow Silt Loam Yolo silt loam Yolo Fallow agricultural 

Sacramento Delta (Rio Vista) Rindge1 Fallow fallow PeaVMuck Rindge Sac'to Organic Matter Content >40% 
Sacramento Delta (Rio Vista) Rindae2 Fallow fallow PeaVMuck Rindge Sac'to Organic Matter Content >40% 

Mace Ranch Construction (Davis) mace Grass Construction construction Yolo grassy area 
Mace Ranch Construction (Davis) Mace Unplowed Construction construction Yolo unplowed area 
Mace Ranch Construction (Davis) Mace Construction Construction construction Yolo topsoil removed 

- -- ----
plowedarea. ~~~~ _R_~nch Constructionl~~~s) .__ Mace Plowed Construction construction Yolo 

4/1/94-
·----- -----

·Forbes 
. ··-------·-·--· 

Auburn Vicinity F10-1 Pine forest Placer pine forest 
Auburn Vicinity F20-1 4/1/94 Pine forest Forbes Placer pine forest 

Clear Lake Sediment SED'MNTH0 5/1/97 Lake sediment lake sediment Lake lake sediment 
------

Clear Lake Sediment SED'MNTH10 5/1/97 Lake sediment lake sediment Lake lake sediment 
BIFS . B1 1/23/97 Spinich Organic Fresno Farm A, manure 
BIFS B2 1/23/97 Spinich Oraanic Fresno Farm A, manure 
BIFS B3 1/23/97 Spinich Organic Fresno Farm A, manure 
BIFS B4 1/23/97 Fallow Conventional Fresno Farm A, conv. rota!. 

.. - ·- ···- -- ----- - -

Conventional -·BIFS B5 1/23/97 Fallow Fresno Farm A, conv. rotat. 
----·--·· .. --- ·------- ---.-- -- . -

BIFS B6 1/23/97 Fallow Conventional Fresno Farm B, conv. rota!. 
... -···----- . --·- - .. --·····-· 

1T2mf ·· Fallow Faim B, conv. rota!. _BIFS B7 Conventional Fresno 
-·-· -~----·-

BIFS BB 1/23/97 Barlev Cover Organic Fresno Farm C, cover crop 
BIFS B9 1/23/97 Fallow Conventional Fresno f~rm C, f~llow conv. 

.. 

EiiFs - ----· --------····-- .. 
. -· Organic .____ B10 1/23/97 Barley-Vetch Fresno Farm_ D, cover crop

-----··-··-- -· ··- -- -·-···--. -·- . ----
Fresno 'BIFS B11 1/23/97 Fallow Conventional Farm D, fallow conv. 

COMPOST Yard Compost Yolo Yard compost 
COMPOST Kitchen Compost Yolo Kitchen compost--- --- - - . ------ - ---- -- --

Carpenteria Organic Farm (FABER) Organic Cover Crop wl GrazingF1 Rotation Ventura 
- ----- -- ----- -- ------ .. 

Carpenteria Organic Farm (FABER) F2 Rotation ___Qrg!Qic __ - Ventura ..... Cover CrC>pJ)nly 
Carpenteria Organic Farm (FABER) ·-

--· --- ... -- -----·-
. fo_,.,_ergr~p-~ g~rnpostF3 Rotation . , _ .. Orgfa11iC. Ventura .i:-.r ·- - - --

Carpenteria Organic Farm (FABER) Rotation Organic Ventura Cover Crop wl Comp_ost .... ·---- ---- - ···- -··--···- --

Carpenteria Oraanic Farm (FABER) F5 Rotation Organic___ Ventura Cover Crop Only
.•. --· --------~---- ··-

Carpenteria Organic Farm (FABER) F6 Rotation Organic Ventura Cover Crop w/ Grazina 
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Samole Set Sample Name Date 
Carpenteria Oraanic Farm (FABER F7 
Carpenteria Organif Farm (FAEll:R) FB 
Carpenteria OrQanic Farm (FABER) F9 

Nematode Farming Experiment NFX oct +S+ 1 Oct-95 
Nematode Farmina Experiment NFX oct +S+)2 Oct-95 
Nematode Farming Exoeriment (NFX oct(--- 1 Oct-95 
Nematode FarmingEPeriment(NFX) . - oct~·-)_2 - - - Oct-95 
Nematode Farming Experimenf(NFX) oct -w+)1 Oct-95 
Nematode Farmina Experiment NFX oct -w+ 2 Oct-95 
Nematode Farming Experiment NFX nov +S+ 1 Nov-95 
Nematode Farming Exoeriment NFX' nov +S+ 2 Nov-95 
Nematode Farming Experiment INFX nov ••• 1 Nov-95 
Nematode Farming Experiment NFX nov ••• 2 Nov-95 
Nematode Farming Experiment NFX nov -w+ 1 Nov-95 
Nematode Farmina Experiment NFX nov -w+ 2 Nov-95 
Nematode Farmina Exoeriment NFX mar +S+ 1 Mar-96 
Nematode Farming Experiment NFX mar +S+ 2 Mar-96 
Nematode Farmina Experiment NFX mar ••• 1 Mar-96 
-~ema_t9d.~Jarming Experiment (NF~). _ mar(-··)2 Mar-96 
Nematode Farming Experiment NFX) mar ·W+ 1 · Mar:·gs 
Nematode Farming Experiment NFX mar ·W+ 2 Mar-96 
Nematode Farming Experiment NFX apr -s+)1 Apr-96 
Nematode Farming Experiment NFX apr -s+)2 Apr-96 
Nematode Farming Experiment NFX apr -s+)1 Apr-96 
Nematode Farming Experiment NFX apr -s+)2 Apr-96 
Nematode Farming Experiment NFX apr -w-)1 Apr-96 
Nematode Farming Exneriment NFX apr -w-)2 Apr-96 
Nematode Farming Experiment (NFX) apr -w-)3 Apr-96 
Nematode Farmlrlg_l;_xp_~rlm_11nt (NFX) ~e!(~_-}j_ _!\pr-96 

WET-UP 0DC1 
WET-UP 0DC2 
WET-UP 0DO1 
WET-UP 0DO2 

. -·--· . ... 
0s61 · 

. . 

WET-UP -- -------•·-···- .. -·- ---··· - - . 

WET-UP 0SC2 
WET-UP oscif 

Crop Manaement Soil Texture Soil Name County Notes 
Rotation Organ~-- Ventura Cover Crop w/ Grnzing___-- -
Rotation Organic Ventura Cover Crop Only 
Rotation Oraanic Ventura Cover Crop w/ Compost 
Rotation silt loam Yolo silt loam Yolo 

·-
Rotation silt loam Yolo silt loam Yolo 
Rotation silt loam Yala siltloam Yolo ---
Rotation silt loam Yolo silt loam Yolo 
Rotation sill loam Yoio siff loam Yolo 
Rotation silt loam Yolo silt loam Yolo 
Rotation silt loam Yolo silt loam Yolo 
Rotation silt loam Yolo silt loam Yolo 
Rotation silt loam Yolo silt loam Yolo 
Rotation silt loam Yolo silt loam Yolo 

--··---· .. ·--- --·--·- - - •-· ,. 

Rotation silt loam Yolo silt loam Yolo 
Rotation silt loam Yolo silt loam Yolo 
Rotation silt loam Yolo silt loam Yolo 
Rotation silt loam Yolo silt loam Yolo 
Rotation silt loam Yolo silt loam Yolo 
Rotation silt loam Yolo silt loam Yolo 
Rotation silt ioam Yolo silt loam Yolo ---
Rotation silt loam Yolo silt loam Yolo-- ---------------
Rotation silt loam Yolo silt loam Yolo 

- Yolo siltloam -- Yolo·- -- - . ---- - .. 

Rotation silt loam 
---- ---------- - ----- -------- -------

Rotation silt loam Yolo silt loam Yolo - ------·---- ... 

Yolo silt loamRotation silt loam Yolo 
Rotation 

-------
silt loam - Yolo silt loam Yolo ... 

Rotation silt loam Yolo silt loam Yolo 
-----·-·--· - - -· -- - -

Rotation silt loam Yolo silt loam Yolo 
- - --· ··- -

' silt loam·· Yolo silt loamRotation Yolo 
-Tomatc, ·· organic slltloam Yolo slit loam Yolo 5-15cm Depth 
Tomato organic ellt loam Yoloellt loam Yolo 5-1 Scm Depth 
Tomato organic slit loam Yolo silt loam Yolo 5-15cm Depth 
Tomato _org_~nic silt loam Yolo silt loam Yolo 5-1 Scm Depth 
Tomato sl1ifoam Yolo siit ioam_. -~g_a_nic . Yolo 0-Scm Depth 

. ----~-·-
Yoio silt loam Yolo ....Tomato organic silt loam 0-5cm Depth 

Tomato ori:ianic silt loam Yolo silt loam Yolo 0-Scm Depth 
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Sample Name Date Crop Manaement Soil Texture Soil Name Countv Notes 
4/4/95TOM-O 4/8/95 Tomato organic silt loam Yolo sillloam Yolo Average of 4 Plots (Individual Replications are plotted in Figure #? 
4/4/95TOM-L 4/8/95 Tomato low input silt loam Yolo sillloam Yolo -~~rag!! of 4f_lots Qndividual Replications are plotted in FigurE! II'? _-----
4/4/95TOM-C 4/8/95 Tomato conventional silt loam Yolo siltloam Yolo t1:ve!~ge of 4 eIots !Individual Rep~cations are plotted in Figure#? 

4/1 B/95TOM-O . 4iTal§s Tomato ----organic - . -
- silt loam Yolo silt loam Yolo Average of 4 Plots (Individual Replications are plotted in Figure#? 

4/18/95TOM-L 4/18/95 Tomato low input silt loam Yolo silt loam Yolo -~~e of 4 Plots (Individual Replications aie plotted in FigtJr~ I!_? 
4/1 B/95TOM-C 4/18/95 Tomato conventional silt loam Yolo silt loam Yolo Average of 4 Plots Individual Replications are plotted in Figure#? 
5/9/95TOM-0 5/9/95 Tomato organic silt loam Yolo silt loam Yolo Average of 4 Plots Individual Replications are plotted in Figure#? 
5/9/95TOM-L 5/9/95 Tomato low input silt loam Yolo silt loam Yolo Averaae of 4 Plots (Individual Replications are plotted in Fioure #? 
5/9/95TOM-C 5/9/95 Tomato conventional silt loam Yolo silt loam Yolo Average of 4 Plots Individual Replications are plotted in Figure#? 
5/23/95TOM-O 5/23/95 Tomato organic silt loam Yolo silt loam Yolo Average of 4 Plots Individual Replications are plotted in Figure #? 
5/23/95TOM-L 5/23/95 Tomato low input silt loam Yolo silt loam Yolo Average of 4 Plots {Individual Replication_s are plotted in Figure #? _---- ----
5/23/95TOM-C 5/23/95 Tomato conventional silt loam Yolo sillloam Yolo .Average of 4 Plots (Individual Replications are plotted in fig~r~-~ 
7/3/95TOM-O 7/3/95 Tomato organic silt loam Yolo silt loam Yolo Average of 4 Plots Individual Replications are plotted in Figure#? 
7/3/95TOM-L 7/3/95 Tomato low input silt loam Yolo silt loam Yolo Average of 4 Plots Individual Replications are plotted in Figure#? 
7/3/95TOM-C 7/3/95 Tomato conventional silt loam Yolo silt loam Yolo Average of 4 Plots (Individual Replications are plotted in Figure#? 

7/2B/95TOM-O 7/28/95 Tomato oroanic silt loam Yolo silt loam Yolo Averaoe of 4 Plots Individual Replications are plotted in Figure #? 
7/28/95TOM-L 7/28/95 Tomato low input silt loam Yolo silt loam Yolo Averaae of 4 Plots Individual Replications are plotted in Figure #? 
7/28/95TOM-C 7/28/95 Tomato conventional silt loam Yolo silt loam Yolo Average of 4 Plots Individual Replications are plotted in Figure #? 

96TOM-O 7/8/96 Tomato organic silt loam Yolo silt loam Yolo Average of 3 Plots 
96TOM-L 7/8/96 Tomato low input silt loam Yolo silt loam Yolo Average of 3 Plots 
96TOM-C 7/8/96 Tomato conventional 4 vear rotation silt loam Yolo siltloam Yolo Averaoe of 3 Plots 
96TOM-H 7/8/96 Tomato conventional 2 year rotation silt loam Yolo silt loam Yolo Average of 3 Plots 

. -----------·-- - -- ---- ----- --- -
97TOM-O 7/28/97 Tomato oroanic silt loam Yolo silt loam Yolo Average of 3 Plots 
97TOM•L 7/28/97 Tomato low input silt loam Yolo snt loam Yolo Averaae of 3 Plots 
97TOM-C 7/28/97 Tomato conventional 4year rotation silt loam Yolo silt loam Yolo Average of 3 Plots 
97TOM-H 7/28/97 Tomato conventional 2vear rotation silt loam Yolo silt loam Yolo Average of 3 Plots ---··-- - -- --
97COR-O 7/28/97 Com organic silt loam Yolo silt loam Yolo Averaae of 3 Plots 
97COR-L 7/28/97 Com low input silt loam Yolo silt loam Yolo Average of 3 Plots 
97COR-C 7/28/97 Com conventional 4 year rotation silt loam Yolo silt loam Yolo Average of 3 Plots-- -· ..------ -· --· ----. 
97COR-H 7/28/97 Com conven~!Jal 2year_rot~?~- silt loam Yolo silt loam Yolo ~ver~ge ~f ~ eIots 

---- -- ---------- ------- ------ ·----
97SAF-O 7/28/97 Safflower organic silt loam Yolo silt loam Yolo Average of 3 Plots 

----- ---- -·-- ----
97SAF-L 7/28/97 Safflower low Input silt loam Yolo silt loam Yolo Average of 3 Plots 
97SAF-C 7/28/97 Safflower conventional 4year rotation silt loam Yolo silt loam Yolo Average of 3 Plots 

- --- - - ---------- -- -·---· -
97SAF-H 7/28/97 Safflower conventional 2 year rotation silt loam Yolo silt loam Yolo Average of 3 Plots 

-- -- ·····--------- ---- ----- ---- --
97BEA-O 7/28/97 Bean organic silt loam Yolo silt loam Yolo Average of 3 Plots 

--· - ----- -· - Yolo- - - --- ------ -- -------
97BEA-L 7/28/97 Bean __ low inP!JI _____ .. silt loam Yolo silt loam ~ve~ge of 3 Plots 

--
97BEA-C- - 7/28/97 -Beari 

----------. ----·-·--·---
Yoloconvention~I ~ year rotation silt loam Yolo silt loam Average of 3 Plots 

97BEA-H ·1,28/97 Bean conventional 2 year rotation silt loam vcifo sliiloam Yolo Averag! of 3 Plots -- 97WHE:H 7/28/97 Wheat conv1intional 2 vear rotation silt loam Yolo silt loam Yolo Averaoe of 3 Plots 
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Samole Set SamoleName Date Croo Manaement Soil Texture Soil Name Countv Notes 

~------ WET-UP --------
WET-UP 

0SO2 Tomato organicf------------
conventional 
conventional 

silt loam-04------·--
silt loam 

Yolo silt loam 
Yolo silt loam 
Yolo silt loam 

Yolo 
Yolo 

. O:Scm D~th 
5-15cm Depth

-· ---- .. --------
5-1 Scm Depth 

1DC1 Tomato 
WET-UP 1DC2 Tomato silt loam Yolo 
WET-UP 1DO1 Tomato conventional silt loam Yolo silt loam Yolo 5-15cm Depth 
WET-UP 1002 Tomato conventional silt loam Yolo siltloam Yolo 5-1 Scm Depth 
WET-UP 1sc1 Tomato conventional sill loam Yolo silt loam Yolo 0-Scm Depth 
WET-UP 
WET-UP 

1SC2 Tomato conventional silt loam Yolo silt loam Yolo 0-Scm Depth
-··--

1S01 Tomato organic silt loam Yolo silt loam Yolo 0-Scm Depth 
WET-UP 1S02 Tomato oraanic silt loam Yolo silt loam Yolo 0-Scm Depth 
WET-UP 24DC1 Tomato conventional 

conventional 
silt loam Yolo silt loam 

Yolo siltloam 
Yolo 5-15cm Depth 

-- ------vofo·-. 5-1 Scm DepthWET-UP 24DC2 Tomato silt loam 
WET-UP 24D01 Tomato organic silt loam Yolo silt loam Yolo 5-1 Scm Depth 

~-- WET-UP 
WET-UP 

24D02 Tomato organic silt loam Yolo silt loam 
Yolo silt loam 

Yolo --.~15cm Depth ___ 
0-Scm Depth24SC1 Tomato conventional silt loam Yolo 

WET-UP 24SC2 Tomato conventional silt loam Yolo silt loam Yolo 0-Scm Depth 
WET-UP 24S01 Tomato organic silt loam Yolo silt loam Yolo 0-Scm Depth 
WET-UP 24S02 Tomato organic silt loam Yolo silt loam Yolo . ·- --· _q-scm Depth 

Campbell Tract CT-A Fallow silt loam Yolo silt loam Yolo 
Campbell Tract CT-B Fallow silt loam Yolo silt loam Yolo 
Campbell Tract CT·C Fallow silt loam Yolo silt loam Yolo 
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PROTOCOL FOR PHOSOPHOLIPID FATTY ACID (PLFA) ANALYSIS OF 
SOIL SAMPLES 

Overview. 
Analysis of PLFAs provides insight into the structure and status of the soil microbial community. 
Phospholipids are quickly degraded upon the death of a microorganism. Fatty acids derived from 
phospholipids represent the potentially viable members of a community. Soil lipids are extracted 
directly from the sample. Phospholipids are separated from the other lipid classes for analysis by gas 
chromatography. 

Sample precautions. 
Sample contamination can be reduced by proper laboratory practices. Reagents are of the highest grade 
possible e.g. pesticide grade solvents. All procedures are carried out in either Teflon or glass. Rinse 
labware with hexane prior to use. Fatty acids from oils on the skin may appear in the analysis. Never 
directly handle samples or anything that will come in contact with the sample. Use nitrile gloves at all 
times. They are more resistant to the solvents used than latex, or most other common glove materials. 
Keep samples frozen (-20° C or lower) until ready for analysis. Avoid thawing and refreezing of 
samples. 

Personal safety. 
Read the material safety data sheet for all reagents used. Work in an approved fume hood and wear 
gloves. 

Reagents and Supplies 
Glacial acetic acid (for 1.0 M Acetic Acid) 
Acetone 
Chloroform 
Hexane 
Methanol 
Methyl Nonadecanoate (recommend internal standard for GC) 
Nano-Pure® water, or equivalent 
Potassium phosphate, dibasic (for 0.05 M phosphate buffer) 
Sodium hydroxide pellets (for 0.2 M KOH in MeOH) 
Toluene 
Silica gel solid phase extraction cartridges, 500mg, 3 ml 
Disposable Pasteur pipette, 5¾ inch and 9 inch 
11 mm GC vial, Teflon lined crimp top cap, 250 ml insert 
Disposable Micro-Pipettor glass tubes 
¼ Disposable vials with Teflon lined caps 
99.9995% Pure hydrogen, helium and air for GC 
99.99% Pure nitrogen for sample evaporation 

Equipment and Instrumentation 
35 ml Teflon centrifuge tubes 
Shaker 
Centrifuge 
125 ml separatory funnels with Teflon stopcocks 
13x100mm test tubes with Teflon lined phenolic caps 
l0x50mm test tubes with Teflon lined phenolic caps 
Sample drying apparatus 
Solid phase extraction cartridge rack 
Water bath 
Freezer 
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50-250 µl Digital Micro-Pipettor with glass capillary tubes?? 
IO ml x 1 ml pipette 
l ml x 0.1 ml pipette 
GC vial crimper 
Gas chromatograph with: 

flame ionization detector 
25 M x 0.20 mm I.D. x ??mm 
autosampler 
chromatography and peak identification software 

Procedure 
Use 35 ml Teflon centrifuge tubes that have been washed, dried, and rinsed with hexane. 
For 8 grams, dry weight, of soil for an analysis: 

8.0 x (l + 0) = Mass of moist soil to be weighed out. 
Bring total H2O in the initial extraction to 5 ml using PO4 buffer, while accounting for the soil's water 
content. The volume of water in the soil is equal to the mass of moist soil minus the 8 grams of dry soil, 
based on l gram/ l ml. Subtract amount of water in soil from 5 ml of P buffer to determine the amount 
used in the centrifuge tube. 
Example of Calculation: Soil "X" is at 16% soil moisture content, 

8 x 1.16 = 9.28 grams of moist soil and 3.72 ml of P buffer required. 
Extraction 
1) Add total of 5 ml of P buffer (see above, be sure to account for soil moisture content), plus 6 

ml of CHC'3 and 12 ml of MeOH. 
2) Shake for 2 hours. 
3) Centrifuge at 2500 rpm for 10 min. at 25° C. 
4) Decant to separatory funnel. 
5) Add 23 ml of Extractant (CHC'3:MeOH:Buffer in a 1:2:0.8 ratio) to soil remaining in tube, 

vortex. 
6) Shake for½ hour. 
7) Add 12 ml of CHCl3 and 12 ml of P buffer to sep funnel (Add this while waiting for step# 6). 
8) Centrifuge at 2500 rpm for 10 min. at 25° C. 
9) Decant this to the same sep funnel. 
10) Shake sep funnel for 2 minutes. 
11) Let stand overnight for separation. 
12) Clean centrifuge tubes: Fill half full with water, cap, vortex, dispose of soil in waste. Wash 

tubes with soap and hot water, rinse w/ hot tap 5x, DI 5x, nanopure 3x. 
Next Day 
l) Drain bottom layer from sep funnel into large diameter long glass test tubes . 
2) Evaporate with N2 at 30° - 32° C in water bath. 

Conditioning Solid Phase Extraction cartridges (SPE\. Transfer of lipids. and Fractionation 
1) Use 10x50mm test tubes for SPE fraction collection. 
2) Add 3 ml of CHCl3to condition column. 
3) Transfer lipids with four (4X) 250µ1 transfers of CHCl3, using digital micro-pipetor. 
4) Add5mlofCHC13. 
5) Add 10 ml of Acetone. 
6) Change collection tubes. 
7) Add 5 ml of MeOH, Be sure to save this fraction. 
8) Evaporate with N2 at 32° C in water bath. 

Transesterification 
1) Add 1 ml of 1:1 MeOH:Toluene, and 1 ml of 0.2 M KOH, to the dried sample. Vortex. 
2) Heat at 37 ° for 15 min. in the water bath. 
3) After heating, add 0.3ml of 1.0 M acetic acid, then 2 ml of hexane, then 2 ml of nanopure 

water, then cap and shake for 10 minutes on low setting. 
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4) Remove the upper layer to small disposable screw top vials. 
5) Repeat the 2 ml of Hexane, shake for another IO minutes. 
6) Remove this upper layer and add it to the first hexane fraction. 
7) Dry with N2• (No water bath required). 

Preparation for GC 
1) Use small crimp seal G.C. vials with inserts. 
2) Transfer (Use and save glass pipettes) with two 75 µl additions of 19:0 internal standard. The 

concentration of the internal standard depends on the expected concentration of fatty acids in 
your sample. Recommend 25ng/µl. 

3) Purge with N2 and seal. 
4) Store sealed G.C. vials in the freezer until analysis. 
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APPENDIX 9-3 

PROTOCOL FOR SOIL FATTY ACID 
METHYL ESTER (SFAME) ANALYSIS OF SOIL SAMPLES 

Overview. 
The diversity within the soil ecosystem can be used as a source of a soil's fingerprint. The information used 
for this fingerprint is based on the biological component of soil. Microorganisms and plant residues are 
intimately tied together and form the active portion of a soil's carbon pool. Direct extraction of this pool 
and analysis of the chemically modified compounds can be performed on samples of limited mass. 
Sample precautions. 
Sample contamination can be reduced by proper laboratory practices. Reagents are of the highest grade 
possible e.g. pesticide grade solvents. All procedures are carried out in either Teflon or glass. Rinse labware 
with hexane prior to use. Fatty acids from oils on the skin may appear in the analysis. Never directly handle 
samples or anything that will come in contact with the sample. Use nitrile gloves at all times. They are more 
resistant to the solvents used than latex, or most other common glove materials. Keep samples frozen (-200 
C or lower) until ready for analysis. Avoid thawing and refreezing of samples. 
Personal safety. 
Read the material safety data sheet for all reagents used. Work in an approved fume hood and wear gloves. 
Reagents and Supplies 
Hexane 
Methanol 
Methyl-tert-buytl ether (MTBE) 
Methyl Nonadecanoate (recommend internal standard for GC) 
Nano-Pure& water, or equivalent 
Potassium hydroxide pellets 
6.0 N Hydrochloric acid 
Sodium chloride 
Disposable Pasteur pipette, S¾ inch and 9 inch 
11 mm GC vial, Teflon lined crimp top cap, 250 µl insert 
Disposable Micro-Pipettor glass tubes 
¼ oz. disposable vials with Teflon lined caps 
99.9995% Pure hydrogen, helium and air for GC 
99.99% Pure nitrogen for sample evaporation 
Equipment and Instrumentation 
SO ml Teflon centrifuge tubes 
Shaker 
Centrifuge 
Sample drying apparatus 
Water bath 
Hot Plate 
Freezer 
50-250 µl Digital Micro-Pipettor 
10 ml x 1 ml pipette 
1 ml x 0.1 ml pipette 
GC vial crimper 
Gas chromatograph with: 

flame ionization detector 
25 M x 0.20 mm l.D. x 0.33 µm 
autosampler 
chromatography and peak identification software 

Procedure (based on 500 mg samples) 
Sawnification 
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I) Add 1.0 ml of3.75N Alkaline methanol, tighten caps. 
2) Vortex 5-10 seconds. 
3) Place in 100°C water bath for 5 minutes. Ensure methanol is not boiling. 
4) Remove and vortex for 5-10 seconds. Check tightness of caps. 
5) Place in !00°C water bath for additional 25 minutes. 
6) Remove and place in room temperature water bath. 
Methylation 
I) Add 2.0 ml of 3.25N Acidic methanol. 
2) Cap and vortex 5- 10 seconds. 
3) Place in 80°C water bath for IO minutes. 
4) Remove and place in room temp water bath. 
Extraction 
I) Add 1.25 ml of hexane MTBE mix ( 1: 1). 
2) Gently shake for IO minutes. 
3) Centrifuge for 10 minutes at 2000 R.P.M. 
4) Remove upper layer to disposable glass vial. 
5) Repeat steps I through 4. 
Transfer to GC vial 
I) Evaporate sample with nitrogen. 
2) Transfer with two 75 µl transfers using the internal standard. 
3) Purge with nitrogen and cap. 
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APPENDIX 9-4 

PROTOCOLS FOR DNA EXTRACTION AND PURIFICATION 
FROM SOIL SAMPLES 

I. DNA EXTRACTION 

Materials: Autoclaved Oak Ridge tubes (40-ml polypropylene screw-capped); Falcon tubes (50-mL 
polypropylene conical); 65C water bath; shaker incubator @ 37C; sterile stir sticks; high-speed centrifuges 
(eg., Sorvall RC 5C and Eppendorf microcentrifuge 5415). 

Reagents: Sterile extraction buffer (100 mM sodium phosphate, pH 8; 100 mM NaEDTA; 100 mM Tris 
base, pH 8; 1.5 M NaCl; 1 % CTAB) at a final pH of 8; proteinase K (10 mg/ml); 20% sodium dodecyl 
sulfate (SDS); isopropanol; mixture of chloroforrn:isoamyl alcohol at a ratio of 24: 1; Tris-EDTA (TE) 
buffer; Nanopure water filtered through 0.2-micron filter; all solutions should be autoclaved prior to use to 
destroy nucleases that could degrade DNA. 

Procedure: 
I. Weigh out approximately S grams soil (wet weight) into Oak Ridge tube.3 (Determine moisture content 
on separate subsamples, so that DNA yields can be calculated per gram dry soil.) 

2. Add 13.S ml extraction buffer and 50-microliters proteinase K solution to each tube. Shake tubes 
horizontally at 37C @ 200-225 rpm. This step is intended to remove soil nucleases.) 

3. Add 1.5 ml 20% SDS to sample. Place tube in 65C water bath for 2 hours, mixing the contents every 
15-20 min by inverting the tube. Once SDS is added, the sample should be mixed gently to avoid shearing 
the DNA. 

4. Centrifuge the sample @ 6000 x g for 10 min at room temperature. Transfer supernatant to a 50-ml 
Falcon tube. Add 4.5 ml fresh extraction buffer to the pellet and resuspend soil by stirring gently with a 
sterile stick. Add 0.5 ml SDS after the pellet is resuspended. 

S. Heat the sample again at 65C for IS min. Then, repeat Step 4, transferring the second supernatant to the 
tube containing the first supernatant. 

6. Heat the sample again for 15 min. Then, centrifuge the sample @ 12,000 x g and add the third 
supernatant to the first two. 

7. Determine the volume of pooled supernatant and add an equal volume of chloroforrn:isoamyl alcohol. 
Centrifuge the tube to separate the phases, and transfer the aqueous layer to a fresh tube. 

8. Add 0.6 volume isopropanol to the aqueous extract and mix. Allow the mixture to stand at room 
temperature for I hour or overnight. 

9. Centrifuge the sample @ 12,000 x g at room temperature and carefully remove the supernatant to discard 
it. The brown pellet contains DNA and soil humic materials. 

10. Allow pellet to dry (either by vacuum or in a laminar flow hood). Rinse the pellet with cold 70% 
ethanol. Resuspend pellet in 50-100 microliters of TE buffer. This crude extract is ready to be purified. 

' A sample of 0.1 gram soil can also be extracted in a 2-ml microcentrifuge tube. Adjust volumes of all 
reagents accordingly. 
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II. DNA PURIFICATION 

Materials: Electrophoresis chamber and power source; UV light box; razor blades; sterile microcentrifuge 
tubes; water baths at 70C and 45C; centrifuge; ultracentrifugal filter units (I 00,000 molecular weight cutoff, 
Micron Separations, Inc., Westborough, MA). 

Reagents: Low-melting SeaPlaque agarose (FMC BioProducts, Rockland, ME); Tris-acetate-EDTA buffer 
(TAE), pH 8; ethidium bromide staining solution (0.5 micrograms per ml); DNA molecular weight marker; 
brom-phenol blue loading dye; agarase enzyme (Epicentre Technologies, Inc., Madison, WI). 

Procedure: 
I. Prepare a I% SeaPlaque agarose gel with wells large enough to accommodate volumes of crude extracts. 

2. Add loading dye to extracts and carefully load into the wells. Run electrophoresis at low to moderate 
voltage until the brown humic materials have migrated a sufficient distance from the wells. 

3. Stain gel in ethidium bromide solution for 10-15 minutes. Destain in Nanopure water for 10 min. 
Examine gel under low-intensity UV light. High molecular weight DNA will typically migrate only a few 
millimeters from the wells. 

4. Excise the gel bands containing DNA with a razor blade, place in tared tube, and determine gel weight. 

5. Follow manufacturer's instructions on use of agarase enzyme to digest gel (e.g., melt gel, add buffer and 
temper at 45C, add enzyme and digest at 45C for 1-2 hours). 

6. Add digested mixture to the top of a filter unit and spin the unit in a centrifuge according to the 
manufacturer's instructions to wash and concentrate the DNA solution on the filter. 

7. Remove the DNA solution from the filter by pipetting and quantitate the DNA by measuring its 
absorbance at 260 nm. Calculate absorbance ratios at 260/280 nm and 260/230 nm to evaluate 
contamination by proteins and humic materials, respectively. 
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Appendix 9-5 

PROTOCOL FOR DNA FINGERPRINTING BY VERTICAL TGGE ANALYSIS 

I. Prepare gel mold. Prepare a mold for the polyacrylamide gel by clamping together 2 glass plates (0.2 
cm x 42 cm long x 32 cm wide) separated by I-mm-thick Teflon spacers placed at the bottom and on 
the sides. This mold will hold approximately 120 ml of gel. 

2. Make polyacrylamide gel. Prepare 140 ml of gel solution containing 5% acrylamide, 8 M urea 
(denaturant), and 0.035% ammonium persulfate in 0.5X Tris-borate-EDTA buffer. Use an acrylamide 
stock solution containing 40% acrylamide:bisacrylamide (ratio of the mixture is 37.5:l). Immediately 
prior to pouring the gel into the mold, add 60 microliters ofTEMED (N') to catalyze polymerization. 
Mix the solution carefully to avoid air bubbles. Draw the solution into the barrel of a 50-ml syringe, 
place the tip of the syringe at the top of the mold between the glass plates, and slowly introduce the 
solution into the mold. Seal the top of the gel with a comb or another spacer. Allow the gel to cure for 
at least one hour. 

3. Set up electrophoresis unit. After the gel has cured in the mold, remove the bottom spacer from the 
gel. Place the mold upright in the electrophoresis unit with the notched glass plate toward the back 
facing the upper buffer reservoir. Use silicone sealant between the glass plate and the reservoir to 
prevent leakage of the buffer. Place plexiglass sheet against the front of the mold and clamp these 
securely onto the electrophoresis unit. Add 0.5X TBE electrophoresis buffer (45 mM Tris-borate, pH 
8, and 1 mM EDT A) to the upper and lower buffer reservoirs of the unit. Make sure that air has been 
removed from the bottom of the gel mold by using a syringe and bent needle to expel air. Adjust the 
set point temperature for the heating strip in the lower part of the aluminum block (e.g., 70C) with the 
digital temperature controller (switches set to vertical gradient). Adjust the set point temperature of the 
circulating water bath for the cooling channel in the upper part of the block (e.g., 36C). Allow at least 
15 minutes for the temperature gradient to be established. Check temperatures of block with 
thermocouples and recorder. 

4. Load samples onto the gel. Remove comb from the top of the gel and check buffer level in upper 
reservoir. Add xylene cyanol dye to the PCR mixtures and load sufficient volumes to obtain 200 ng 
DNA per well. 

5. Perform electrophoresis under constant voltage. Connect the unit to the power source to run at 5V 
per cm gel length (approximately 400 V total). Continue electrophoresis until the xylene cyanol dye is 
slightly lower than the bottom of the temperature gradient (approximately 10 hours). 

6. Remove gel from mold Disconnect the unit from the power source, remove the gel mold from the 
unit, and place the mold on a horizontal support. Pry off and remove one of the glass plates. Trim gel 
to desired size. 

7. Develop gel fingerprint. Stain the gel in either ethidium bromide solution for photography under 
ultraviolet illumination, or with silver-staining reagents for photography under visible light. 
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Appendix 9-6 

SUMMARY OF PATTERN RECOGNITION ANALYSIS OF FATTY ACID DATA 

Philip K. Hopke and Xin-Hua Song 

Department of Chemistry, Clarkson University, Potsdam, NY 13699-5810 

Data description 

There are a total of 245 soil samples analyzed. Each sample is characterized by 26 fatty acids 

that represent the most abundant phospholipid fatty acids (PLFAs) found in microorganisms. The 

units of the data are nanomole percent PLF A per gram dry soil. The soil samples are connected with 

different crops. The identified crop types are listed in Table 1. 

Methods 

The main goal was to separate different crops related to the soil samples. Two neural 

network methods, the adaptive resonance theory - based neural network (ART-2a) (Hopke and Song, 

1997; Xie et al., 1994) and the Kohonen neural network (Hopke and Song, 1997; Wienke et al., 

1994), have been used to treat this data set. Both neural networks can be used to perform an 

unsupervised pattern recognition examination in which similar soil samples should be grouped 

together based on the PLFA composition information. In the ART-2a neural network, an adjustable 

vigilance parameter is used to control the classification resolution. Through the resonance 

mechanism, the ART-2a can adaptively detect the novel events. In the Kohonen neural network, the 

high-dimensional data are mapped onto a two-dimensional map through a learning process. 

Combined with the minimal spanning tree (MST) technique, the Kohonen neural network can provide 

a visual map representing different classes. In this map, the soil samples with similar PLFA 

compositions are located in the near neighborhood. 

To give the 26 PLFA variables possibly equal weight in the classification, the data were 

transformed to have zero mean and unit variance (z-transformation) followed by the range scaling 

which made all values belonging to a given PLFA variable lie between O and 1 with respect to the 

range between the smallest and the largest values. 

Results 

With an appropriate vigilance parameter (0.95), the ART-2a neural network produced 

satisfactory classification results that are shown in Table 2. In this case, 34 classes were obtained, of 
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which 29 classes correspond to the pure crops. These 29 classes of pure crops have been very nicely 

separated from each other. Although there are 5 mixed classes (a, b, c, d, e) that contain 2 or more 

types of crops, they are only a minor part of the total samples. Actually, mixed class c can 

approximately be assigned as the class of crop rotation, because only 1 cotton sample is mixed with 

the other 11 crop rotation samples. It has been noted that the samples of the same type crop can be 

classified into more than one pure subgroup. For example, the 112 rice samples were classified into 

4 subgroups, with the number of samples in each subgroup 46, 32, 33 and 1, respectively. However, 

the trained weight matrix of ART-2a can be used to do some diagnostics for the classes, because each 

weight vector represents the centroid of a class. In this study, the measure of the angle between two 

weight vectors has been used to indicate the closeness between them. The results show that, in the 

rice case, the 4 subgroups mentioned above are closest to each other. In the cas~ of other crops, the 

similar results have also been obtained. 

After the trial and error experience, it was found that 15 x 15 is a proper size of the Kohonen 

neural network for mapping the present data set. Figure 1 shows the classification results in the 

Kohonen map where the number in each neuron position indicates the number of samples activating 

the corresponding neuron. Figure 2 shows the crop type No. in the Kohonen map where the crop 

type No. is the same as in Table 1. Here, there are 5 mixed neurons as indicated by the capital 

letters, A, B, C, D and E. These 5 neurons were activated by the samples of two crop types. Figure 

3 shows the minimal spanning tree (MST) connecting all of the active neurons. The MST tree forms 

the shortest connection graph under the restriction that closed connections are forbidden. Then 

classification can be made based on the following criterion: the connection between the active neurons 

with the first largest distance is firstly separated, the connection with the second largest distance is 

secondly separated, and so on. This process is repeated until a reasonable classification resolution is 

achieved regarding the separation of different crops. The final classification map with frames 

representing different classes is shown in Figure 4. There are 15 classes identified by the Kohonen 

neural network - MST technique. Class a corresponds to tomato. Class bis road. Class c is a mixed 

group with samples from crop rotation, cotton and pine. Class d is cotton plus fallow, but cotton is 

dominant. Class e is rice. Class f is fallow. Class g is tomato plus walnut. Class h is crop rotation 

plus cotton, with the crop rotation dominant. Class i is almond plus fig. Class j is pine. Class k is 

compost. Class I is almond. Class m is another group of cotton. Class n is construction. Class o is 

lake. In addition, there are a very minor number of samples spread over the map that either belong 

to a mixed class or are not classified to any major class. It can be seen that most of the samples have 

been clearly separated in terms of the crop types. 
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Conclusions 

Two neural networks, the adaptive resonance theory - based neural network (ART-2a) and the 

Kohonen neural network, have been used to treat the PLFA data from soil samples. The results show 

that the crop types related to most of the soil samples have been successfully separated from each 

other. 
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Table 1. Identified crop types 

Crop type Crop Name The number of 
No. samples 

1 rice 112 
2 tomato 70 
3 fallow 4 
4 construction 4 
5 pine 2 
6 lake 2 
7 walnut 3 
8 cotton 18 
9 almond 11 
10 road 2 
11 fig 2 
12 crop rotation 13 
13 compost 2 
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Table 2. Classification results for the fatty acid data by ART-2a (p_max=0.95) 

Classified crop The number of samples in classes 

rice 
tomato 
fallow 
construction 
pine 
lake 
walnut 
cotton 
almond 
road 
fig 
crop rotation 
compost 
mixed class a 
mixed class b 
mixed class c 
mixed class d 
mixed class e 

46, 32, 33, I 
20, 9, 35, 1, 1 
2 
1, 1, 1, 1 
1, 1 
2 
1 
3, 3, 2, 2, 2 
5, 3 
2 

2 
1, 1 
4 (cotton) + 1 (fig) 
4 (tomato) + 2 (fallow) + 1 (walnut) 
11 ( crop rotation) + 1 ( cotton) 
3 (almond) + 1 (fig) 
1 (walnut) + 1 (cotton) 
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Figure captions: 

Figure l. Kohonen map with the number of samples activating the corresponding neurons. 

Figure 2. Kohonen map with the crop type Nos. connected with the active neurons. There are 5 
mixed neurons as indicated by the capital letters, A, B, C, D and E. 
A---Crop type Nos. 5 and 8. 
B---Crop type Nos. 2 and 4. 
C---Crop type Nos. 2 and 7. 
D---Crop type Nos. 7 and 8. 
E---Crop type Nos. 4 and 12. 

Figure 3. The minimal spanning tree connecting the active neurons. 

Figure 4. Classification map with frames representing different classes. 
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