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ABSTRACT 

This paper summarizes epidemiological evidence of health effects of particulate air 

pollution. Acute exposure to elevated levels of particulate air pollution has been associated 

with increased cardio-pulmonary mortality, increased hospitalization for respiratory disease, 

exacerbation of asthma, increased incidence and duration of respiratory symptoms, declines 

in lung function, and restricted activity. Small deficits in lung function, higher risk of 

chronic respiratory disease and symptoms, and increased mortality has also been associated 

with chronic exposure to respirable particulate air pollution. Health effects have been 

observed at levels common to many U.S. cities and at levels below current U.S. National 

Ambient Air Quality Standards. Although the biological mechanisms involved are poorly 

understood, recent epidemiological evidence supports the hypothesis that respirable 

particulate air pollution is an important risk factor for respiratory disease and cardio­

pulmonary mortality. 
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While it can be argued that individual studies of daily mortality and particulate air 

pollution may be confounded by unmeasured or inadequately modelled covariates, taken 

together it is unlikely that such confounding could be consistently acting in all these studies. 

Daily changes in weather are expected to be associated with both air pollution and mortality, 

that is they are potential confounders. All the recent studies attempted to control for the 

effects of weather. Almost all of the studies allowed for non-linear relationships with 

weather factors in the analysis. The estimated particulate pollution effects are not sensitive 

to the inclusion of seasonal controls using approaches such as including seasonal indicator 

variables, including sine and cosine terms, using non-parametric smoothing techniques, or 

prefiltering the data. Similar particulate pollution effects have been observed in studies from 

both warm and cold climates, from both dry and humid locations, and from areas where 

particulate concentrations peak in both the summer and winter. For a comparison of these 

studies see Schwartz (1994e). 

These studies further suggest that the observed particulate pollution effects are not 

confounded by associations with SC>i, or 0 3• Effects observed in locations with winter 

peaking of particulate concentrations, when ozone concentrations are low and not a potential 

confounding factor are similar to effects in summer peaking areas. Most of the studies 

examined SO2• The relationship between mortality and particulates was generally 

independent of SC>i, while the SO2 relationship disappeared when particles were considered. 

In the Utah Valley (Pope, 1992) and Santa Clara (Fairley, 1990), SOi concentrations were 

low, yet the estimated PM10 effects were similar to other effects observed in study areas with 

higher SO2 concentrations. 
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Exacerbation of asthma 

Evidence from the hospital admissions and emergency visit studies suggests that 

exposures to particulate air pollution may be directly associated with asthma attacks. Several 

investigators have considered less severe asthmatic attacks as reported by panels of asthma 

patients. Studies of asthmatics in the Los Angeles area (Whittemore and Korn 1980), The 

Netherlands (Roemer, Hoek, and Brunekreef 1993) and in Denver, Colorado (Ostro et al. 

1991) reported asthmatic attacks associated with particle exposures. Bronchodilator use has 

also been evaluated as a measure of exacerbation of asthma in a panel of asthmatics in The 

Netherlands (Roemer, Hoek, Brunekreef 1993) and in Utah Valley (Pope et al. 1991). Based 

on the reported results of these studies the estimated percent increase in asthma attacks or use 

of bronchodilator associated with a 10 µ.g/m3 increase in PM10 range from 1.1 % to 12% with 

a weighted mean of approximately 3.0%. 

Respiratory symptoms 

The use of daily diaries to record respiratory symptoms is an inexpensive method of 

evaluating acute changes in respiratory health status. In a commonly applied study design, 

panels of schoolchildren recorded the presence of specific respiratory symptoms in these 

daily diaries. Symptom reports are often aggregated into upper respiratory symptoms 

(including such symptoms as runny or stuffy nose, sinusitis, sore throat, wet cough, head 

cold, hay fever, and burning or red eyes) and lower respiratory symptoms (including 

wheezing, dry cough, phlegm, shortness of breath, and chest discomfort or pain). In 

addition, cough, the most frequently reported symptom, is often analyzed separately. 

Studies of upper and lower respiratory symptoms had been conducted in Utah Valley 

(Pope et al. 1991; Pope and Dockery 1992), The Netherlands (Hoek and Brunekreef 1993, 

1994), a study of six U.S. cities (Schwartz et al 1994), and Southern California (Ostro et al. 
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between PM10 and grade school absences of children in Utah Valley, Utah. Lagged pollution 

effects of up to several weeks were observed for both restricted activity in adults and in 

school absences. 

CHRONIC HEALTH EFFECTS 

Early cross-sectional studies suggested chronic health effects of particulate air 

pollution. For example, Martin (1964) reported that in the Greater London region overall 

annual respiratory mortality (as opposed to episodic mortality) was significantly related to 

smoke (or particulate pollution) levels. Holland & Reid (1965) made a cross-sectional 

comparison of British male postal employees in London and in smaller country towns, where 

levels of SOz and particulate pollution were about half those in the metropolis. Accounting 

for cigarette smoking levels, significant decrements of FEV1 in London employees compared 

to those in the provinces were reported. More recent cross-sectional studies of air pollution 

have also reported associations between particulate pollution and respiratory symptoms, lung 

function and mortality rates (Table 3). 

Population-based (ecologic) mortality studies 

Since the early 1970s, several studies have evaluated the mortality effects of exposure 

to particulate air pollution using population-based (ecologic) cross-sectional study designs 

(Chappie and Lave, 1982). These studies observed that on the average, mortality rates tend 

to be higher in cities with higher fine or sulfate particulate pollution levels than those with 

lower levels. Formal regression modeling techniques to evaluate cross-sectional differences 

in air pollution and mortality and to control for other ecologic variables was used. In an 

attempt to control for other risk factors, population average values for demographic variables 

and other factors such as smoking rates, education levels, income levels, poverty rates, 
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housing density and others were often included in the regression models. The basic 

conclusions from the population-based cross-sectional studies include: 1) Mortality rates are 

associated with air pollution; 2) Mortality rates are most strongly associated with fine or 

sulfate particulate matter; 3) An average mortality effect of 3 to 9 percent of total mortality 

can be estimated. 

Although these population-based cross-sectional studies suggest that air pollution 

contributes to human mortality, the studies have been largely discounted for several reasons. 

One reason seems to simply be that the size of the association, if taken literally, suggests that 

as much as 3 to 9 percent of urban mortality in the U.S. is associated with particulate air 

pollution. Given that air pollution levels in the U.S. on the average are considered relatively 

-
low, such a large mortality effect seems implausible. 

A more explicit limitation of the cross-sectional population-based studies is a 

prevailing concern that the observed association was due to confounding. Because of their 

ecologic design, these population-based cross sectional studies could not directly control for 

individual differences in cigarette smoking and other risk factors. They could only try to 

control for them by using population-based averages--making potential confounding a 

concern. Furthermore, the strength of the relationship between mortality and particulate 

pollution was often sensitive to model specification, socio-economic, demographic, and other 

risk factors included in the analysis, and the choice of study areas included in the analysis. 

Chronic differences in lung function 

There have been several recent studies that have evaluated associations between 

measures of lung function (FVC, FEVi, PEF) and particulate pollution levels. These studies 

include analysis of children's lung function data from the Harvard six-city study, analysis of 

data from both the first and second National Health and Nutrition Examination Surveys 
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In all of these studies, statistically significant associations were observed between 

particulate air pollution and respiratory symptoms. Particulate air pollution was most 

consistently associated with bronchitic symptoms. The results suggest that a 10 µ.g/m3 

increase in PM10 was typically associated with a 10 to 25 percent increase in bronchitis or 

chronic cough. 

Prospective cohort mortality studies 

Well designed prospective cohort mortality studies can provide some of the most 

compelling evidence about health effects because they can directly control for individual 

differences in age, sex, cigarette smoking, and other risk factors. Because prospective 

cohort studies of mortality involve collecting large amounts of information on a large number 

of people and following them prospectively for long periods of time, they are costly and time 

consuming. Currently there are only a few large prospective cohort studies that evaluate 

mortality effects of air pollution at levels common to U.S. urban areas. 

One of these prospective cohort studies involved a 14 to 16 year prospective follow­

up of 8,111 adults living in six U.S. cities (Dockery et al. 1993) TSP, PM10, PM2_5, S04 , 

H+, S02, N02, and 0 3 levels were monitored. The data were then analyzed using survival 

analysis, including multivariate Cox proportional hazards regression modeling. Although 

TSP concentrations dropped over the study period, fine particulate and sulfate pollution 

concentrations were relatively constant. The most polluted city was Steubenville, the least 

polluted cities were Topeka and Portage. The Cox proportional hazards model was used to 

estimate adjusted mortality-rate ratios. Mortality risks were most strongly associated with 

cigarette smoking, but after controlling for individual differences in age, sex, cigarette 

smoking, body mass index, education, and occupational exposure, differences in relative 

mortality risks across the six cities were strongly associated with differences in pollution 
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significant associations were also found using fine particulate matter as the index of air 

pollution. Mortality due to other causes was not significantly associated with pollution 

levels. The association between air pollution and all-cause and cardiopulmonary mortality 

was observed for both men and women and for smokers and non-smokers. 

SUMMARY AND CONCLUSIONS 

Numerous studies have reported that acute exposure to elevated levels of particulate 

air pollution is associated with changes in various human health endpoints including: 1) 

increased mortality, especially cardio-pulmonary mortality; 2) increased hospitalization for 

respiratory disease; 3) exacerbation of asthma; 4) increased incidence and duration of 

respiratory symptoms; 5) declines in lung function; and 6) restricted activity. Acute health 

effects were observed at levels common to many U.S. cities including levels well below 

current U.S. National Ambient Air Quality Standards. The studies generally observed that 

health effects increase monotonically with pollution levels, often with a near linear dose­

response relationship. Furthermore these studies suggests a coherence or cascade of 

associations across various health endpoints (Bates 1992). 

Studies have also observed human health effects associated with chronic exposure to 

respirable particulate air pollution. Population-based (ecologic) cross-sectional studies that 

evaluated spatial distributions of mortality and air pollution have observed associations 

between mortality and sulfate or fine particulate pollution. These population-based studies 

have been criticized partly because they were not able to control directly for individual 

differences in cigarette smoking and other risk factors. Recent studies that could adjust for 

individual differences in other risk factors, however, have observed that long-term exposure 

to respirable particulate air pollution was associated with small deficits in lung function and 
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higher risk of chronic respiratory disease and symptoms. Furthermore, two recent 

prospective cohort studies have observed increased mortality risks associated with air 

pollution--even after directly controlling for individual differences in age, sex, race, cigarette 

smoking, and other risk factors. 

Although the biological linkages remain poorly understood, the results of the acute 

and chronic exposure studies are complementary. In all epidemiologic studies there is the 

concern that the observed association is due to confounding, that is, that it results from a risk 

factor that is correlated with both exposure and mortality but is not adequately controlled for 

in the study design and analysis. Important potential confounders in cross-sectional studies 

such as unaccounted for differences in occupational exposure or socio-economic variables, 

are not likely to be confounders in daily time-series studies because such factors are unlikely 

to change daily in correlation with air pollution levels. The fact that daily time-series studies 

and cross-sectional studies observe qualitatively coherent associations between respirable 

particulate pollution and mortality, further supports the hypothesis that this pollution is an 

important risk factor for respiratory disease and cardio-pulmonary mortality. 
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Table 1. Summary of selected acute (daily time-series) mortality studies. 

% increase in Mortality per 
Mean• 10 µg/m3 increase in PM10 (95% CI) 

Study Area Farticulate PM10 Total Respiratory Cardiovascular& Period Reference Measure (µg/m3) 

Santa Clara, CA 
1980-82, 84-86 

Philadelphia PA 
1973-80 

Fairley 1990 

Schwartz & 
Dockery 1992 

Coefficient of 
Haze 

TSP 
(2-day mean) 

I 

35 

•40 

. 0.8 
(0.2, 1.5) 

1.2 
(0.7, 1.7) 

3.5 
(1.5, 5.6) 

3.3 
(0.1, 6.6) 

0.8 
(0.1, 1.6) 

1.7 
(1.0, 2.4) 

Utah Valley, UT 
1985-89 

Pope et al 
1992 

PM10 
(5-day mean) 

47 1.5 
· (0.9, 2.1) 

3.7 
(0.7, 6.7) 

1.8 
(0.4, 3.3) 

Birmingham, AL 
1985-88 

Schwartz 
1993 

PM10 

(3-day mean) 
48 1.0 

(0.2, 1.9) 
1.5 

(-5.8, 9.4) 
1.6 

(-0.5, 3.7) 

...... 
u, 
0\ 

Cincinnati, OH 
1977-82 

Schwartz 
1994 

TSP 42 1.1 
(0.5, 1.7) 

2.7 
(-0.9, 6.6) 

1.4 
(0.5, 2.4) 

St. Louis, MO 
1985-86 

Dockery 
et al 1992 

PM10 

(Prev. Day) 
28 1.5 

(0.1, 2.9) 
NA NA 

Kingston, TN 
1985-86 

Dockery 
et al 1992 

PM10 

(Prev. Day) 
30 1.6 

(-1.3, 4.6) 
NA NA 

Detroit, MI 
1973-82 

Schwartz 
1991 

TSP 48 1.0 
(0.5, 1.6) 

NA NA 

Steubenville, OH 
1974-84 

Schwartz & 
Dockery 1992 

TSP 61 0.7 
(0.4, 1.0) 

NA NA 

Sao Paulo, Brazil 
1990-91 

Saldiva 
et al. 1994 

PM10 

(2-day mean) 
82 1.2b 

(0.7, 1.7) 
NA NA 

•conversions to PM10 assumed that: PM10 = 0.55 * TSP and PM10 = CoH/0.55 (for more detail on the calculations see Dockery 
and Pope 1994). 
bin the Sao Paulo study mortality counts were only for the elderly (65 + years of age). 

https://CoH/0.55
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Particulates, Oxidants & Chronic Disease 

ABSTRACT 

A cohort of 6340 non-smoking California Seventh-day Adventists (SDAs) who had 

resided within 5 miles of their present residence for the past 10 years have been followed since 

1977 for: incidence of cancer and myocardial infarction (M.I.) through 1982, development of 

definite symptoms of, and increasing severity of, airway obstructive disease (AOD), chronic 

bronchitis, and asthma through 1987, and all natural cause mortality through 1987. Cumulative 

ambient concentrations of specific pollutants have been estimated for study participants from 

1967 to 1987 by interpolating monthly statistics from statewide air monitoring stations to zip 

codes of residence and work location. Statistics include excess concentrations and exceedance 

frequencies above a number of cutoffs as well as mean ambient concentration and mean ambient 

concentration adjusted for time spent indoors. Indoor sources or nitrogen (NOz), and of 

particulate pollution such as environmental tobacco smoke, both at home and at work, as well 

as occupational dusts and fumes, have been adjusted for in multivariate statistical models. 

Particulates included total suspended particulates (TSP), monitored from 1973-1987; inhalable 

particulates less than 10 microns in diameter (PMlO), estimated from site/seasonal specific 

regressions on TSP for 1973-1987; fine particulates less than 2.5 microns in diameter estimated 

from airport visibility data for 1967-1987; and suspended sulfates (S04), monitored from 1977-

1987. A direct measure of visibility, and gaseous pollutants-ozone, sulfur dioxide (S00, and 

(NOz) monitored from 1973-1987 were also included in analyses. 

No statistically significant associations between any of the disease outcomes studied and 

N02 or S02 were found in this cohort. None of the pollutants studied showed statistically 

c: \abbey94\tox.icol2.doc Mays. 1994 
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significant associations with all natural cause mortality or incidence of all malignant neoplasms 

in males. Statistically significant associations were observed between elevated ambient 

concentrations of one or more particulate pollutants and each of the other disease outcomes. In 

addition, ozone was significantly associated with increasing severity of asthma, and with the 

development of asthma in males. Multipollutant analyses indicated that none of the associations 

between particulate pollutants and disease outcomes were due to correlations with gaseous 

pollutants studied except possibly for PM2.5 and increasing severity of asthma, which could be 

due to a correlation with ozone. Observed associations between disease outcomes and PM2.5 

or PM10 could be biased towards the null because of increased measurement error due to their 

indirect methods of estimation. 

c:\abbey94\toxico12.doc: May 5, 1994 
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INTRODUCTION 

In recent years prospective studies have begun to study the association of long-term 

ambient concentrations of air pollutants and development of chronic disease. (Comstock, 1973; 

Rokaw, 1980; Detels, 1987; Dockery, 1989; EPA, 1984, 1986; Ferris, 1973,1976; 

Iedrychowsky, 1988; Krzyzanowski, 1990; Lebowitz, 1993; Van der Landa, 1981; Carrozzi, 

1993). Most studies have dealt with respiratory disease, though Dockery et al, (1993) studied 

all natural cause mortality. Few studies have been able to address the effects of many different 

pollutants on a wide range of disease outcomes. A cohort of 6,340 non-smoking Seventh-day 

Adventists (SDAs) who had resided within 5 miles of their 1976 residence for the past 10 years 

have been followed since 1977 to ascertain the incidence of all malignant neoplasms and 

myocardial infarction (Ml) through 1982, the development of definite symptoms of airway 

obstructive disease (AOD), chronic bronchitis, and asthma through 1987, and all natural cause 

mortality through 1986. Cumulative ambient concentrations of five specific particulate air, and 

three gaseous, pollutants have been estimated for study participants from 1967 to 1987 by 

interpolating monthly statistics from air monitoring stations statewide to zip codes of residence 

and work location. Previous papers (Abbey, 1989, 199la,b; 1993a,b,c; 1994a,b,c; Euler, 1987; 

1988, Hodgkin, 1984; Mills, 1991; 1993a,b;) have reported on associations between ambient 

concentrations of air pollutants and development of different chronic diseases in this cohort and 

compared the findings with other studies. The effects of occupational exposures (Greer, 1993) 

and environmental tobacco smoke (Robbins, 1993) have also been addressed. 

c: \abbcy94\toxico12. doc May 5, 1994 
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For both multiple logistic and multiple linear regressions, gender, age, and education 

were forced into all models. Stepwise selection procedures were used to select statistically 

significant covariates (p < .05) from a large number of candidate covariates which included -

years smoked prior to 1977,1 years lived with a smoker, years worked with a smoker, years of 

dust exposure at work for models relating health effects to particulate pollutants, years of fume 

exposure at work for models relating health effects to gaseous pollutants, frequency of childhood 

colds, and definite symptoms of AOD before age of 16. Unless otherwise stated the term 

"statistically significant" will refer to the 2-tailed .05 level of statistical significance. The .05 

level of statistical significance has not been used as an absolute criteria. Strong disease/pollutant 

associations which did not achieve the .05 level of statistical significance (possibly due to a small 

number of incident cases and lack of statistical power) will be described in the results below. 

For incidence of MI, cancer, and all natural cause mortality Cox proportional hazards 

regression models were used. Further details on the epidemiological and statistical methods used 

are given by Abbey (1993a) and Mills (1991). 

For each health outcome, multipollutant analyses compared different pollutants on the 

strength of association achieved by each pollutant in multivariate health effects regression 

models. The scale/invariant measure of strength of association used was the estimated regression 

coefficient for the pollutant divided by its standard error, or equivalently the computed level of 

statistical significance of the regression coefficient. Comparisons between pollutants were made 

for the mean concentration index as well as the most statistically significant of the exceedance 

frequency or indices. For many outcomes only one or two pollutants were associated with the 

c:\abbey94\1oxicol2 .doc Mays, 1994 

174 



Particulates, Oxidants & Chronic Disease 

health outcome and it was clear which pollutant showed the strongest relationship. For other 

pollutants stepwise regression procedures were used to allow mean concentrations of the different 

pollutants to compete for entry in the model, if mean concentration for one of the pollutants was 

significantly associated with the health outcome. If this was not the case the most statistically 

significant of the exceedance frequency statistics for each pollutant were allowed to compete for 

entry in the model. In both situations gender, age, and education, and the covariates found lo 

be significant from the single pollutant analyses were first forced into the model; then the two 

pollutants were allowed to compete for entry. Comparisons between TSP, ozone, S04, and 

PMIO were made on the entire cohort. Comparisons with each of these pollutants and PM2.5 

were restricted to the subcohort living in the vicinity of airports for which PM2.5 estimates were 

available. 

RESULTS 

Table 2 gives relative risks and 95 % confidence intervals (Cls) for selected increments 

of ambient concentrations. Increments for either an exceedance frequency index or mean 

concentration were chosen to be within the range experienced by the cohort. For TSP, PMIO, 

S04 , and ozone, the increment was expressed in terms of the most statistically significant of the 

various indices -- mean concentration or exceedance frequencies above the different cutoffs. For 

PM2.5 the increment was expressed in terms of mean concentrations since it was felt that 

exceedance frequencies were not reliable because of discreetness due to estimating PM2.5 from 

visibility. Airport visibility is measured using sightings of markers at a few discreet distances 

from airport control towers. Some cells in Table 2 contain the entry "not done." Possible 

c:\abbey94\toxicol2.doc May 5, 1994 
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associations between S04 and cancer incidence were not analyzed since S04 was monitored only 

since 1977 and it was felt that this did not allow sufficient lag time for cancer incidence. 

Statistical analyses to study associations of PM2.5 and visibility with respiratory cancer 

incidence and incidence of MI were not conducted due to an insufficient number of study 

participants living in the vicinity of airports for which airport visibility measures and PM2.5 

estimates were available. 

For the prospective data collected since 1977, no statistically significant associations were 

seen between any of the health outcomes studied and SC>i or N02 (Abbey, 199la; 1993a,c Mills, 

1993c). This result remained true when ambient concentrations were adjusted to reflect time 

spent indoors and when the regression estimates of personal exposure for N02 were used. No 

associations were observed between long term cumulations of any of the ambient pollutants 

studied and incidence of all malignant neoplasms in males, or all natural cause mortality. 

Relative risks and confidence intervals for these two outcomes as associated with elevated TSP 

and ozone have been reported previously. (Abbey, 1991a; 1993c, Mills 1993c) Relative risks 

for these two health outcomes for all pollutants studied were close· to, or less than, one. The 

null relative risk of one was well within all 95% confidence intervals. Incidence of MI was 

significantly associated only with exceedance frequencies above 6 µ.g/rri3 ofS04 (Abbey, 1993b ). 

No associations were observed between visibility and health outcomes except for mean visibility 

and increasing severity of asthma symptoms and mean visibility and incidence of all malignant 

neoplasms in females. These observed associations with visibility, however; were not as 
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statistically significant as those with PM2.5 and were likely the result of the correlation between 

PM2.5 and visibility. 

Table 3 gives the cutoffs for which exceedance frequencies show statistical significance 

and the results of the multipollutant analyses. Pollutants in parenthesis in Table 3 indicated that 

the observed association with a health outcome could be due instead to an association of the 

pollutant in parenthesis and the health outcome, as the pollutant in parenthesis showed a stronger 

association. 

TSP showed the strongest associations of any of the pollutants with development of AOD, 

and chronic bronchitis, as well as increasing severity of symptoms for AOD, and chronic 

- ... 
bronchitis. For asthma, TSP, ozone, and S04 , were close competitors, (see ozone and S04 

sections below). TSP was statistically significantly associated with incidence of all malignant 

neoplasms in females, but not males. When analyses were restricted to the airport sub-cohort 

for which estimates of PM2.5 were available, TSP remained statistically significantly associated 

with incidence of all malignant neoplasms in females but the association was not as strong as for 

PM2.5. From Table 3 it can been seen that ambient concentrations of TSP in excess of 60 

µ.g/m3 were associated with increasing severity of AOD symptoms. Ambient concentrations of 

TSP in excess of 100 µ.g/m3 were associated with many of the health outcomes. 

Ozone was highly significantly associated with development of asthma in males but not 

females. This relationship does not appear to be a surrogate relationship. The relative risk for 

a 1 pphm increase in mean concentration of ozone was 3.12, (95% CI: 1.61, 5.85), (Greer, 

1993). In non-gender specific analyses exceedance above 10 pphm of ozone showed a trend 
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association (p = .056) with development of asthma. Ozone was more strongly associated with 

development of asthma than TSP when mean concentrations of the two pollutants were allowed 

to compete for entry in the models but was less strongly related when the most significant 

exceedance frequency statistic of each pollutant was used, i.e., TSP in excess of 200 µg/rrr 

showed a stronger association with development of asthma than ozone in excess of 10 pphm. 

Mean concentration of ozone and exceedance frequencies for the two lowest cutoffs, 10 pphm 

and 12 pphm, show statistical significance when associated with increasing severity of asthma. 

For increasing severity of asthma, stepwise linear regression showed that mean concentration 

of ozone enters in preference to mean concentration of TSP. However, in another stepwise 

multiple linear regression; the F to enter for exceedance frequencies in excess of 200 µg/m3 TSP 

was tied with the F to enter for exceedance frequencies in excess of IO pphm of ozone. Ozone 

showed a strong trend association with respiratory cancer incidence. Due to· the small number 

of incident cases, only 17, this association was not statistically significant. Future research will 

investigate lower cutoffs of ozone as well as 8-hour averages. 

SO4 was statistically significantly associated with development of asthma and this 

association was stronger than that for TSP or ozone when the covariate, "possible symptoms in 

1977" was not included in the model. Analyses based on the entire respiratory symptoms cohort 

indicated that the relationship between SO4 and increasing severity of AOD symptoms may 

instead be due to TSP and the correlation between SO4 and TSP. When analyses were restricted 

to the airport sub-cohort, however, SO4 was more strongly associated with increasing severity 

of AOD symptoms than any of the other pollutants including TSP. 
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caution. The primary purpose of Table 3 is to show that statistically significant associations 

between disease outcomes and particulate pollutants have been observed in this cohort at ambient 

levels in excess of ambient concentrations which frequently occur in urban areas of California, 

and that these associations appear not to be surrogate relationships solely due to correlations with 

gaseous pollutants, which were monitored during the time period of this study. 

Estimated ambient concentrations ofpollutants for study_ participants were averaged over 

different time periods before being used in analyses. The stepwise selection procedures used 

in forming the regression models were allowed to select the most statistically significant time 

period. The previous papers from this study show which time period for each pollutant was 

most significantly related to each health outcome. Except for SO4 and PM2.5 the time period 

1973-1977 was used as a surrogate for the time period 1966-1977 as· many more monitoring 

stations were available for the latter time period. SO4 was monitored only since 19_77. PM2.5 

was estimated from airport visibility data since 1966. Sensitivity analyses showed that results 

using either time period agreed closely. Cox proportional hazards regression models, which 

were used for incidence and mortality, where date of event was available, used an average of 

the pollutant from 1973 through data of event or risk set (time dependent models) as well as the 

average from 1973 through March 1977, (fixed time models). Sensitivity analyses indicated 

concurrence between the two types of models. 

Our respiratory symptoms complex of chronic bronchitis included chronic productive 

cough (with sputum) as well as cough only. Development of definite symptoms of chronic 

bronchitis was statistically significantly associated with elevated ambient concentrations of TSP, 

c:\abbey94\to.x.icol2.doc Mays, 1994 

181 





Particulates, Oxidants & Chronic Disease 

cities in years 8-16 of follow-up. We only had 10 years of mortality follow-up available for 

present analyses on our cohort. This may explain the discrepancy. 

We observed an elevated risk of all malignant neoplasms in females but not in males as 

associated with TSP and PM2.5. A similar result has been observed in an epidemiological study 

in Israel (Biger, personal communication, 1991). Experiments in rats have shown that particulate 

matter in diesel exhaust fumes have a greater impact on lung tumor formation in females than 

males especially at the highest concentration levels (Mauderly, 1987). Fine particulates often 

contain the most toxic compounds (e.g., trace metals, acid sulfates, organics, etc.) (Ozkaynak, 

1987). Females have been shown to have a greater deposition fraction than males of fine 

particles in the lungs (Kim, 1994). 

The increased risk of respiratory cancer associa~ with elevated ozone in our cohort is 

consistent with some animal studies. Dillon (1992) showed that ozone was mutagenic in 

Salmonella. Ozone has been shown to be carcinogenic in mice though not in rats. (Hassett, 

1985; Last, 1987; NTP Technical Report, 1993). Our findings of elevated risks of asthma and 

respiratory cancer as associated with ozone is consistent with a significantly increased 

standardized incidence ratio oflung cancer observed in asthmatics in Finland (Vesterinin, 1993), 

and a very slightly elevated, but not statistically significant standardized morbidity ratio found 

for respiratory tract cancer in asthmatics in Sweden (Kallen, 1993). 

Ozone was significantly associated with development of asthma in males but not in 

females. T-test between males and females in our cohort showed that males were outdoors 

significantly more than females during the high ozone season of June through September (Greer, 
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1993). Ozone is highly volatile and not stable in the indoor environment This may explain the 

gender discrepancy with respect to development of asthma. 

We found ozone to be associated with asthma and asthmatic symptoms but not chronic 

bronchitis. This pattern of relationships has been observed in other studies (von Mutius et al., 

1992; Viegi et al., 1991; Krzyzanowski et al, 1990; Lippmann, 1989). Chronic bronchitis and 

chronic obstructive pulmonary disease (COPD) appear to be associated much more with reducing 

type (PM-SOJ atmospheres (Sunyer et al., 1993; Lebowitz, 1983; Ware, 1980; ATS, 1978; 

Colley & Holland, 1967). Our findings that TSP and PMIO are more strongly associated with 

development of and an increasing severity of symptoms of overall AOD and chronic bronchitis 

than other pollutants are consistent with these findings. However, in our study SO4 was strongly 

associated with development of asthma as well as increasing severity of AOD. 

Lung function parameters such as post bronchodilator response as well as !ability indices 

from home peak flow diary data have recently been collected on 1,500 members of our cohort. 

An additional 10 years of cancer incidence data is being collected on the entire cohort as well 

as an additional six years of mortality. Ambient air pollution indices are being updated on the 

cohort through 1993. These updated indices will include monitored PMl0, available on a 

statewide basis since 1987. New indices for ozone are being computed which include 8 hour 

averages and exceedance frequencies and excess concentrations for two new lower cutoffs, 6 and 

8 pphm. Analyses of these new data may provide answers to some of the questions raised from 

current findings. 
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Footnote (page #8) 

Many SDAs join the church later in life and have smoked before becoming an 

SDA; any individuals who reported smoking since 1977 were excluded. 
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Table 1 Pairwise Correlations of Estimated Mean 1977-1987 Concentrations or Ambient 

Pollutants for Members or the AIISMOG Respiratory Symptoms Cohort 

(n = 3914t 

TSP PMlO" PM2.5c so, oz SO2 NO2 

TSP 1 .95 .86 .69 .72 .61 .46 

PMlOb ... 1 .89 .72 .76 .64 .52 

PM2.5c ... . .. 1 .30 .62 .47 .25 
l 

so, . . . . .. ... 1 .57 .60 .63 

oz . . . . . . ... . .. 1 .38 .36 

S02 . . . . . . ,... . .. .. 1 .85 

N02 . . . . . . . . . . .. ... . .. 1 

a Correlations between PM2.5 and other ambient concentrations are computed only for 1977-1986 

for individuals living in the vicinity of nine California airports, n = 1868. Correlations of other 

pollutants are computed for the entire cohort, n = 3914, April 1977 - April, 1987. 

b PMlO was indirectly estimated from TSP using site/seasonal regression equations. 

c PM2.5 was indirectly estimated from airport visibility data. 
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Introduction 

Since the late 1970s, rates of asthma morbidity and mortality have 

increased strikingly in the United States, with African-Americans being 

disproportionately affected (Sly 1988; Evans et al. 1987; Weiss et al. 

1990). Although asthma prevalence is only somewhat greater among African 

Americans than among whites, rates of morbidity and mortality are markedly 

higher. Part of the racial differences in rates are likely due to 

conditions associated with poverty (Wissow 1988). Various social and 

environmental factors, including exposure to indoor and outdoor pollutants 

and allergens, have been postulated as explanations of these asthma trends 

(Weiss, 1993). To date, however, little research has been conducted to 

determine the effects of environmental factors, such as air pollution, on 

asthma among African Americans. 

Epidemiologic evidence indicates that ozone and particulate matter 

are associated with exacerbations of asthma (Schwartz et al., 1993; 

Thurston et al., 1992; Pope, 1991). Most epidemiologic studies have 

relied on measurement of airborne particles other than PMl0 (particulate 

matter less than 10 microns in diameter), the current metric for the 

National Ambient Air Quality Standard for particulate matter in the United 

States. In most areas, particulate matter is measured only every sixth 

day. The lack of daily data on ambient levels of PMl0 has impeded 

epidemiologic research, while the complex and heterogeneous nature of 

particulate matter has discouraged clinical efforts to study its effects 

in the laboratory. Although results of several epidemiologic studies 

suggest that ambient ozone is associated with exacerbations of asthma, 

the results from controlled exposure studies are mixed, especially at low 

effective doses (Kreit et al., 1989; Koenig et al., 1985; Linn et al. , 

1978). 

In this paper, we report results of a pilot study of the respiratory 

health of a sentinel group of asthmatic children in relation to several 

ambient pollutants in Southern California. The results suggest that 

relatively low ambient levels of both PMl0 and ozone are associated with 

shortness of breath among this population of African-American children. 

Data and Methodology 
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levels of pollen from grasses, trees and weeds, and specific molds, such 

as alternaria and cladosporium). Levels of pollens and molds exhibited 

very distinct peaks and were not correlated with either PMlO or ozone 

concentrations. Temperature, humidity, and levels of pollens and molds 

were considered both e.s continuous variables _and as binary variables 

indicating extremes. Specifically, we examined the effect of a given 

variable being in the top 25, 10, and 5 percent of all such measurements. 

As indicated in Figure 2, the levels of molds (and pollen, not displayed) 

peaked at the end of the study period. In general, there appeared to be 

only minimal confounding among the pollutants, pollens, and molds. Table 

2 details the distribution of the levels of air pollutants, pollens, 

molds, and three of the weather variables. 

Statistical Methods 

In a panel design study each person can serve as his or her own 

control. The data set therefore will provide substantial degrees of 

freedom and a reduced potential for confounding and covariation among 

explanatory variables. 

Three different levels of analysis were conducted for each of the 

six binary response variables indicating daily symptoms: the prevalence 

(i.e., the likelihood of a symptom on a given day) of cough, shortness of 

breath and wheeze, and the likelihood of an incident attack, for any of 

these three asthma symptoms, that might extend over several days. In the 

first analysis, qualitative in nature, the group rate of symptoms (e.g., 

the proportion of the sample reporting cough on a given day) was analyzed. 

This was undertaken in order to detect general patterns in the data, to 

determine the form of the dose-response relationship, to narrow down the 

list of candidate pollution and meteorologic variables, to examine 

patterns of residuals for autocorrelation, and to search for influential 

data points. 

Next, all of the individual observations were pooled and examined by 

logistic regressions based on the generalized estimating equations (GEE) 

proposed by Liang and Zeger (1986). This method generates robust 

estimators regardless of the specification of the covariance matrix and 

corrects for the repeated measure design of the study. Thus, the standard 

error of the regression estimate is adjusted for the fact that responses 

203 





the sensitivity of the results to alternative regression specifications, 

we reported the odds ratios and confidence intervals as additional 

variables were added to the model. Potential interactions among the 

included variables were also examined. 

RESULTS 

1. Pooled analysis 

With the exception of the reporting of a symptom or a cold on the 

previous day, most of the variables were not associated with the reporting 

of asthma symptoms. Of the pollutants, PMlO and ozone were associated 

with shortness of breath but not with any other symptom. Accordingly, 

shortness of breath was the only symptom examined in subsequent models. 

The generalized estimating equations included a one-period autocorrelation 

correction that effectively reduced the serial correlation of the 

residuals. Table 3 shows the association of shortness of breath with PMlO 

and ozone concentrations as additional covariates are added to the model 

specification. As explanatory variables, the basic model includes a 

binary variable indicating the presence of shortness of breath on the 

previous day, a binary variable for respiratory infection on the previous 

day, and one air pollution variable, either PMlO or ozone. Shortness of 

breath had a statistically significant association with both ozone (OR -

1.40, 95%CI - 1.14 - 1.72 evaluated at the mean ozone level) and PMlO (OR 

- 1. 58, 95%CI - 1. OS - 2. 38 evaluated at the mean PMlO level). Having a 

respiratory infection on the previous day was statistically associated 

with shortness of breath (p < 0.05). Transforming the pollution variables 

into log terms only slightly improved the association of shortness of 

breath with PMlO and had no impact on its association with ozone. 

Contemporaneous exposures of ozone and PMlO were more associated with 

symptoms than were the lagged versions of these variables. Therefore, in 

subsequent analyses, we used untransformed same-day exposures of pollution 

in the regression specifications. When children were assigned exposures 

based on either the average of the three fixed-site monitors or the 

monitor closest to their residence, the significance of the associations 

with PMlO and ozone did not change. 

When continuous values of temperature, pollens and molds were added 

to the model, only temperature was associated with shortness of breath (p 
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- .10). This association was unchanged when temperature extremes (i.e. , 

days with the highest 10% maximum temperatures, greater than 82° F) were 

added to the model. Although the binary variables representing the 

extreme values for molds were not statistically significant, a binary 

variable indicating the 5% of days with highest levels of molds (i.e. , 

days on which more than 2,000 spores per cubic meter were recorded) was 

kept in subsequent models because the t-statistic was close to one. The 

inclusion of these variables did not affect either the magnitude or 

significance of the coefficient for PMlO. The statistical significance of 

ozone dropped slightly (p < 0.05) probably because of the covariation 

between ozone and temperature. 'When we added the variable indicating a 

previous day with a cold back into the model, the pollution results were 

not altered, although in the specification with ozone, temperature was now 

more significant (p < 0.05). There did not appear to be any interactions 

between pollutants or between pollution and either temperature or molds. 

Among the individual demographic variables, the frequency of symptom 

reporting did not vary on the basis of sex, but frequency did increase as 

age and family income increased. 

For the subsample of the population with moderate or severe asthma, 

shortness of breath was associated with both PMlO and ozone but the 

magnitude of the effect was similar to the group as a whole. Finally, the 

beginning of an asthma episode was associated with ozone (p < 0.05) (OR• 

1.60, 95%CI - 1.01-2.58) but not PMlO (p > 0.10) (OR - l.06,95%CI - 0.61-

1. 84). 

2. Individual-level analysis 

As expected, many children were excluded from this part of the 

analysis because of low symptom rates or too few days of response, leaving 

only 41 subjects. Again, no association was found between any time­

varying factors, including air pollution, and either cough or wheeze. 

However, shortness of breath was associated with both PMlO (p < 0.01) (OR 

- 2.42, 95XCI - 1.76-4.68) and ozone (p - 0.06) (OR- 1.51, 95%CI - 0.98-

2.32). Also, the beginning of an incident attack (or episode) of 

shortness of breath was associated with ozone, but not PMlO. Finally, to 

compare the models, we reran the pooled analysis using the same subsample 

of 41 subjects and found both ozone and PMlO to be associated with 
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approach, in which each individual served as his or her own control, no 

other factor is likely to be correlated with both outdoor air pollution 

and shortness of breath. Although this approach is based on a more 

sensitive subgroup of the sample (those reporting enough symptom days or 

total days so that the individual logistic regressions could converge) it 

suggests that there are some children who are especially sensitive to air 

pollution, especially PMlO. 

The biologic validity of the consistent statistical relationship 

between PMlO, ozone, and reported shortness of breath would be 

strengthened by finding similar associations with wheezing. However, 

individual perceptions of shortness of breath may occur in relation to a 

sensation of chest tightness with or without audible wheezing. This seems 

to be the case with our study population: reporting a shortness or breath 

and chest tightness were strongly associated (r • 0.42; p < 0.0001). 

In general, the impact of air pollution on this population of 

African-American children in Los Angeles with asthma appears significant. 

At the mean levels of pollution, we detected a 50 percent increase in the 

reporting of shortness of breath. For a 10 µg/m 3 change in PMlO, this 

amounts to about a 9 percent increase in symptoms. 
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Table 1. Demographic and Socioeconomic Characteristics of Children who 
Completed Diaries (n = 83). 

Characteristics Categories Percent (%) 

Age Distribution (years) 7-8 33.7 
9-10 37.3 
11-12 28.9 

Sex Female 32.5 
Male 67.5 

Annual Household Income < $10,000 20.8 
$10-25,000 24.7 
$25-40,000 24.7 
$40-70,000 23.4 
> $70,000 6.5 

Asthma Severity Mild 28.9 
Moderate 53.0 
Severe 18.1 

Use Inhaled Steroids Yes 27.7 
No 72.3 

Use any Anti-inflammatory Medicine Yes 45.8 
No 54.2 

Recruitment Site Kaiser West L.A. 18.1 
Kaiser Inglewood 28.9 
King-Drew Med. Center 9.6 
Children's Hospital, L.A. 8.4 
Asthma Camps 34.9 
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ABSTRACT 

We examined the association between exposure to PM10 air 

pollution and daily mortality in Utah County, Utah for 1985-92. We 

confirmed the previous finding that exposure to fine particulate 

air pollution (particulate diameter of~ 10 µm) in amounts of 50+ 

µg/m3 increased daily mortality by 3%. The potential importance of 

this observation led us to test the association more rigorously by 

assessing rate ratios (RR) of PM10 for year, season, and location 

at time of death. For individual years there was no statistically 

significant association between increased mortality and exposure to 

PM10 air pollution. The strongest mortality effect was seen in the 

spring, not the winter. The largest numeric contribution to excess 

mortality was from individuals age 75+ dying in hospital, and the 

largest RR was for individuals ages 15-59 dying at home primarily 

of cancer. These findings do not support a causal association 

between exposure to PM10 air pollution and daily mortality. 
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INTRODUCTION 

Daily exposure to fine particulate air pollution of average 

diameter 10 µ or less (PM10 ) has been associated with increased 

mortality within a few days of exposure after controlling for 

relevant weather variables (Schwartz, 1991; Schwartz and Dockery, 

1992a; Schwartz and Dockery, 1992b; Schwartz, 1993; and Pope et 

al., 1992). The excess mortality was greatest among those dying 

from cardiopulmonary diseases, and was present at levels of air 

pollution below the current National Ambient Air Quality Standard. 

These studies have assumed uniform exposure to air pollution within 

a city or county, regardless of where the death occurred. However, 

many people die in hospitals or nursing homes rather than at home, 

and it is questionable if these individuals are uniformly exposed 

to the same level of PM10 • None of the previous studies have 

determined whether the association differed by location at time of 

death, or was uniform across seasons and the years studied. The 

failure to find a consistent mortality effect across time or by 

location would suggest that the excess mortality attributed to air 

pollution was the result of confounding by other factors such as 

weather, or effect modification by an unknown factor. 

Because of the potential impact of this association on the 

public health, this study tested the association between exposure 

to PM10 air pollution and excess mortality more rigorously than 

previous studies. The study objectives were: (1) to examine the 

excess mortality associated with exposure to fine particulate air 

pollution by age groups and location at time of death; ( 2) to 

examine the causes of death associated with PM10 exposure by age 
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group, location at time of death, and by year and season; (3) and 

to examine the annual and seasonal variation of the PM10 effect on 

daily mortality. 
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County always occurred during the winter, and were always 

associated with low temperature and high humidity. 

Age groups are categorized as <l, 1-14, 15-59, 60-74, and 75+. 

Location at time of death was defined as a hospital death if it 

occurred in one of the four hospitals serving the county. A 

nursing home death if it occurred in one of the nursing homes 

located in the county, and "home" if the death occurred outside of 

a nursing home or hospital. Based on the death certificate, 98.2% 

of deaths outside a hospital or nursing home occurred at home. 

Since the number of deaths ranged from Oto 10 with the mean 

of 2.52 and the variance of 2.68, the data were analyzed using a 

Poisson regression model. The generalized estimating equation 

(GEE) approach, previously used in the analysis of daily mortality 

and air pollution (e.g., Schwartz et al., 1992), was not used since 

there is very little correlation among death counts. For example, 

Lag 1 to 60 autocorrelations were all in the range of -0.05 and 

0.05. Consequently, daily death counts were assumed to be 

independent and were analyzed using the standard Poisson regression 

program available in EGRET (SERC 1991). Daily minimum temperature 

was entered as a continuous variable, while PM10 was entered as a 

dichotomous variable using 50 µg/m3 as a cutoff (i.e., 1 if above 

50 and O otherwise). Justification for this dichotomy comes from 

the dose-response relationship ( see Figure 1) • A linear time trend 

was included as a continuous variable to adjust for an increase or 

decrease in background mortality rates over the years. 
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Variations in PM10 effect by season are present in Table 4. 

The largest number of excess deaths occurred during spring (April, 

May, June), followed by winter (January, February, March). 

Causes of death were divided into three broad categories 

(respiratory, cardiovascular and other), and RRs of PM10 ~ 50 µg/m3 

were calculated for each cause as well as by year of death and 

season of death ( see Tables 3 and 4) . Overall the RRs for 

cardiovascular deaths were similar to the RRs for pulmonary deaths; 

however, this varied within each year. The RR for respiratory 

deaths was highest in 1986 and 1987 when PM10 levels were quite low, 

was below 1 in 1988, a year with high PM10 , and was 1. 0 in 1990, the 

year when PM10 leyels were the highest. The PM10 effect for 

respiratory causes of death was strongest in the spring with an RR 

of 1.47, while that for cardiovascular causes was greatest in the 

winter (RR=1. 22) . When the data were examined by season and 

location at time of death, the strongest PM10 effect was found for 

deaths at locations other than hospital or nursing home (RR=l.33 

for spring, and 1.21 for winter), follo~ed by deaths occurring in 

hospital (RR=l.09 for spring and 1.05 for winter). (See Table 5.) 
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DISCUSSION AND CONCLUSION 

This study examined the association between PM10 and daily 

mortality in greater detail than previously published studies to 

assess the causality of the association. The lack of a consistent 

association for any calendar year, and in the lower RR for the 

winter season calls into question the causality of the association. 

This study confirmed the findings previously reported by Pope 

et al. (1992) of excess mortality in Utah County associated with 

fine particulate air pollution. The coefficients obtained from for 

this study are in agreement with those of the previous study, but 

the standard errors are slightly bigger. Problems in the 

calculation of standard error in such studies have been reported 

previously (Mori et al., 1994). 

No previous study has examined the PM10 effeet by the location 

at time of death. Our findings suggest an effect for those age <1-

59 who died at home (n=366), but these deaths were principally due 

to "other" than respiratory causes such as sudden infant death 

syndrome and cancer. The largest overall contribution to the 

excess deaths was from those age 75+ who died in the hospital 

(n=1585). There is no information on PM10 levels in the hospital 

compared to PM10 levels at home or outdoors. Hospital ventilation 

systems usually draw in outside air, condition it, and then pass it 

to the wards. The airflow is generally from patient rooms to the 

corridors. No information is available for PM10 levels in intensive 

care units, patients on respirators, in isolettes or receiving 
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supplemental oxygen, making it difficult to draw conclusions 

regarding the effect of outside PM10 levels on hospital mortality. 

Excess mortality was not present every year, and excess deaths 

from respiratory disease, the cause believed to be most strongly 

influenced by exposure, followed a pattern independent ofPM10 

overall excess mortality by year. Further, this study found no 

effect of PM10 exposure at levels of less than 50 µg/m3 contrary to 

findings from previous studies (Schwartz, 1993). 

The lack of an association in certain years raises a question 

about the causal nature of air pollution and subsequentPM10 

mortality. The lack of association (RR=l.0) in 1987 might be 

explained by a "threshold effect" where so many days of high PM10 

exposure is necessary before a mortality effect occurs. PM10 levels 

in 1987 were the lowest of all the years studied. However, this 

explanation cannot account for the lack of association in 1991 

(RR=l.0) and 1992 (RR=l.01) when PM10 levels were as high as any 

recorded in 1985, the year with the highest RR (RR=l.20). Nor can 

this explanation account for the RR in 1990 (RR=l.20), a year that 

had the second lowest PM10 levels after 1987. 

The RRs for season are also perplexing. The highest levels of 

PM10 were reported in the winter (January and February), but the 

strongest effect occurs during the spring (RR=l.13), followed by 

winter (RR=l.08). There is no effect seen in the six months from 

July to December (RR=0.90 and 0.97). When RRs were calculated for 

each month the strongest effect occurred in May. 

The cause of death was assigned by the State of Utah, and no 

effort was made to check its accuracy or recode the death 
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Table 4. Risk Ratio of PM10 ~ 50 µg/m3 by Cause of Death and Season' 

Respiratory Cardiovascular Other Total 

Season N RR (95% C.I.) N RR (95% C. I.) N RR (95% C.I.) N RR (95% C. I.) 

Winter 201 1.141(0.8382,1.554) 904 1.215(1.049,1.408) 771 0.930(0.799,1.083) 1876 1.078(0.975,1.191) 

Spring 186 1.471(0.874,2.477) 774 1.116(0.843,1.477) 82~ 1.072(0.810,1.418) 1782 1.131(0.940,1.361) 

Summer 155 0.669(0.344,1.303) 716 1.029(0.795,1.332) 776 0.821(0.615,1.097) 1647 0.904(0.752,1.087) 

Fall 167 0.826(0.521,1.308) 817 0.899(0.734,1.10) 836 1.063(0.881,1.281) 1820 0.966(0.847,1.102) 

Total 709 1.034(0.855,1.248) 3211 1.134(1.039,1.238) 3205 0.947(0.864,1.039) 7125 1.039(0.978,1.104) 

N 
w ...... 

'From April 7, 1985 - December 31, 1992. Estimated by Poisson regression model adjusted 

for year, age and temperature. 

https://0.899(0.734,1.10


Table 5. Risk Ratio of PM10 ~ 50 µg/m 3 by Location of Death and Season5 

Hospital Nursing Home Home+ Other Total 

Season N RR (95% C.I.) N RR (95% C. I.) N RR (95% C.I.) N RR (95% C. I.) 

Winter 911 1.048(0.908,1.209) 451 1.004(0.820,1.228) 514 1.207(0.994,1.465) 1876 1.078(0.975,1.191) 

Spring 863 1.085(0.832,1.415) 394 0.969(0.627,1.479) 525 1.329(0.964,1.830) 1782 1.131(0.940,1.361) 

Summer 752 0.811(0.615,1.069) 372 1.044(0.708,1.537) 523 0.955(0.692,1.318) 1647 0.904(0.752,1.087) 

Fall 919 0.975(0.810,1.174) 395 0.955(0.720,1.267) 506 0.960(0.749,1.230) 1820 0.966(0.847,1.102) 

Total 3445 1.015(0.930,1.106) 1612 1.028(0.905,1.166) 2068 1.092(0.976,1.220) 7125 1.039(0.978,1.104) 

N 
w 
N 

5From April 7, 1985 - December 31, 1992. Estimated by Poisson regression model adjusted 

for year, age and temperature. 
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Center for Health Statistics for the years 1974 to 1984 inclusive. Deaths due to accidents 

were excluded. There are two mortality data sets that can be analyzed. The first, which we 

call 'total' mortality, consists ofall deaths ( excluding accidents) occurring in the SMSA. 

The other, which we call 'restricted' mortality, consists ofall deaths (again excluding 

accidents) occurring in the SMSA among individuals who are classified as being residents 

of the SMSA. It is clear that the restricted mortality data form a subset of the total 

mortality data. It is not quite clear from their paper which mortality data were used by 

Schwartz and Dockery in their analysis. We were told by Schwartz (personal 

communication) that they used restricted mortality. When we compared the distribution of 

mortality counts with the distribution reported in their paper it was clear that neither 

mortality data set was identical to the data analyzed by them. However, the distribution of 

the restricted mortality was closer to the distribution reported in that paper. See figure 1. 

Air pollution data were obtained from the Aerometric Information Retrieval 

Service of the Environmental Protection Agency. Table 1 shows the percentile distribution 

of the TSP readings in the Steubenville area during the period of observation. It is clear 

from that table that this distribution is in good agreement with that reported in Schwartz 

and Dockery. Between 1974 and 1978, sulfur dioxide measurements were made in two 

distinct ways. A continuous monitoring system, which reported hourly measurements was 

introduced in 1974. In addition, measurements were also available from an integrated gas 

bubbler sampler, which was run until 1978. Thus, the sulfur dioxide measurement series 

over the period covered by the analysis consists of either the continuous or the gas bubbler 

measurements prior to and including part of 1978, and continuous measurements 

thereafter. We label the two resulting series of measurements as C-C (to indicate that the 

continuous monitor was used for the entire period 1974-1984) and GB-C (to indicate that 

the gas bubbler was used from 1974 to 1978 and the continuous monitor thereafter). 

Because of problems with the newly introduced continuous monitoring system, Schwartz 
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and Dockery thought it preferable to use the GB-C series in their analyses. As can be seen 

from table 1, the percentile distributions ofboth sulfur dioxide series correspond quite 

closely to the distribution reported by them, with the C-C series distribution being virtually 

identical to the distribution in their paper. We used both the GB-C series and the C-C 

series in our analyses. 

Information on daily weather was obtained from the National Oceanic and 

Atmospheric Administration weather station at the Pittsburgh airport. Summary statistics 

for the weather variables were quite similar to those reported by Schwartz and Dockery. 

Methods of analysis: The data were analyzed using the method ofPoisson regression. The 
--· 

regression model included an intercept term and additional terms for the weather and 

pollution related variables of interest. The parameters ofthe model were estimated by 

maximizing the likelihood. Because daily mortality counts from day to day are likely to be 

correlated, the method ofPoisson regression may not yield consistent estimates of 

variances. A recent method, introduced by Liang and Zeger (1986) can then, in principle, 

be used for estimating the parameters and obtaining robust standard errors for these 

estimates. This, so called generalized estimating equation (GEE) approach, introduces a 

working correlation matrix to describe the correlations among the observations. Liang and 

Zeger showed that, providing the sample size is large enough, the choice of the working 

correlation matrix does not affect the consistency ofthe estimates. We examined the auto­

correlation function ofthe mortality data in Steubenville and found, to our surprise, that 

there was no evidence that mortality counts on any two days were correlated (see figure 

2). Thus, we believe that it is unnecessary to use the GEE approach. In fact, the GEE 

approach may yield misleading results for this data set, as is discussed below. However, in 

an effort to confirm published results we used GEE with various working covariance 

matrices in addition to straight Poisson regression for the analyses of the Steubenville 
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data. In order to compensate for possible extra-Poisson variation in the data, we computed 

a 'sandwich' estimator (see expression 7 in Zeger and Liang, (1986)) for the variance when 

using Poisson regression. We found, however, that this 'robust' estimate ofvariance was 

comparable to the 'naive' estimate ofthe variance obtained from Poisson regression. 

Finally, a few words on the use of GEE for the analyses ofmortality counts are in 

order because this method has now been applied to many different data sets. This 

approach was introduced for the analyses ofcorrelated longitudinal data. Correlations in 

the data are addressed by way of a working covariance matrix, and if the sample size is 

large enough (i.e. asymptotically) the method yields consistent estimates ofthe parameters 

and the standard errors even if the choice of the working covariance matrix was not 

particularly accurate to begin with. However, for any given (finite) data set a reasonable 

choice of the working covariance matrix is always to be preferred to one that is clearly 

inappropriate. In the context of correlated mortality counts, sample size refers, not to the 

size of the population, but to the number of independent years of observation. Schwartz 

and Dockery used an exchangeable covariance structure for their analysis. This choice of 

working correlation matrix is clearly inappropriate because it assumes, for example. that 

mortality counts on January 1 and December 31 ofa given year are correlated to the same 

extent as the mortality counts on January 1 and January 2 of that year, and that mortality 

counts on December 31 of that year and January 1 of the next year are not correlated. In 

fact, if full year mortality is to be analyzed, then mortality over the entire period of 

observation should be considered to be a single time series. There is little justification for 

treating single years as independent units ofobservation. If seasonal mortality is analyzed, 

on the other hand, then the assumption of independence would appear to be justified: 

mortality in the summer of 1979 can be considered to be independent ofthe mortality of 

the summer of 1978. But even if analysis is performed by season, there is a sample size 

problem in the use of GEE with these data. For the asymptotic results to hold, the number 
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result is in good agreement with the result reported in Schwartz and Dockery ( 1992a, their 

table 2). 

We found that the effect ofTSP is greatly attenuated when sulfur dioxide is 

included in the model. With full mortality, we find, as shown in table 2 and figure 3 that 

there is a substantial attenuation of the TSP effect when both TSP and sulfur dioxide are 

included in the model, the estimated parameter for TSP decreasing from 0.029 (s.e = 

0.011) to 0.018 (s.e. =0.013). Ifinstead ofusing the full mortality data, we use restricted 

mortality (used by Schwartz and Dockery in their analysis) and the GB-C sulfur dioxide 

series, we get essentially the same results. The attenuation of the TSP coefficient is not as 

large, however (the estimated parameter drops from 0.031, s.e. =0.012, to 0.025, s.e = 

0.014). This is in contrast to the conclusion of Schwartz and Dockery who say, "When 

both sulfur dioxide and particulates were included in the model simultaneously, 

particulates remained significant (P = 0.000300 ± 0.000128), with little reduction in its 

estimated coefficient, while sulfur dioxide was insignificant (P = 0.0059 ± 0.0048) with a 

substantial attenuation in the estimated effect." If, however, GEE with an exchangeable 

correlation structure is used with restricted mortality and the GB-C sulfur dioxide series, 

both TSP (estimated coefficient= 0.026; s.e. =0.019) and sulfur dioxide (estimated 

coefficient= 0.042; s.e. =0.071) are statistically insignificant. When the C-C sulfur 

dioxide series is used, we can reproduce the finding of Schwartz and Dockery (TSP is 

significantly associated with mortality and sulfur dioxide is not), as is shown in figure 4. In 

summary, we can reproduce Schwartz and Dockery's results only ifwe use the C-C sulfur 

dioxide series, a series that they explicitly state they did not use because of measurement 

error problems. 

We also analyzed the mortality data by season. We defined the seasons as follows: 

Winter: December, January, February; Spring: March, April, May; Summer: June, July, 
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August; Fall: September, October, November. The results ofthe analysis using both full 

and restricted mortality and the GB-C sulfur dioxide series are shown graphically in figure 

3. It is quite clear from this figure that the introduction ofsulfur dioxide into the model 

attenuates the coefficient for TSP, and vice versa We also found a significant effect of 

temperature in Fall and in Winter, mortality being highest on the coldest days (lowest 

quintile of temperature). In Summer, mortality is highest on hot days (highest quintile of 

temperature), however the coefficient is not statistically significant. With the C-C series of 

sulfur dioxide measurements, the effect ofTSP is stronger, whether or not sulfur dioxide 

is included in the model. Sulfur dioxide, however, appears to have a protective effect in 

Summer (statistically significant if GEE is used). Thus, the use ofthe C-C series does lead 

to some rather unexpected results. 

A comparison of figures 3 and 4 shows that the choice of sulfur dioxide series used 

in the analyses makes a rather large difference to the results. The use of the C-C series 

leads to results that are much closer to those obtained by Schwartz and Dockery. 

DISCUSSION: Regression analyses of the mortality data reveal that by far the most 

important term in the regression is the intercept. Thus, the weather and pollution variables 

explain only a very small fraction of the daily deaths. In view ofthe smallness of the 

effects we are trying to detect, robustness of results is ofgreat importance. The 

Steubenville results are not robust, however. This is particularly disturbing in view of the 

fact that the restricted mortality is a subset of the total mortality data set and differs from 

it only to the extent of about 0.4 deaths per day on average. Similarly, the GB-C and C-C 

sulfur dioxide series are identical between mid-1978 and 1984, and as table 1 indicates the 

distribution of the two series is similar. This fact suggests that the results ofthe analyses 

are rather sensitive to measurement errors. The results depend, as well, on whether 
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Poisson regression or GEE is used for the analysis. For the reasons discussed above, we 

do not believe that GEE should be used for analyses of these data. 

Taken together, the results of the Steubenville analyses are consistent with weak 

associations between weather and air pollution and mortality. However, in view ofthe 

instability of the results, consistency with the results ofanalyses in other cities must be 

sought before any firm conclusions can be drawn. Certainly, it would be premature on the 

basis of these data to single out any single component ofair pollution as being responsible. 

In this report we have considered only two ofthe six criteria pollutants and have shown 

that introduction of the second pollutant into a regression model results in an attenuation 

of the coefficient of the first. There is little a priori reason for excluding the other criteria 

pollutants from the analysis. Future research efforts should be directed at investigating 

combinations of pollutants. 

The role of weather needs to be better investigated as well. Our results suggest 

that pollutants and season may interact. Kalkstein ( 1991) has suggested that synoptic 

categories ofweather, which take into account many more weather variables than 

considered in current analyses, may be more strongly associated with mortality than single 

weather variables. We are currently investigating these ideas in Steubenville. In particular 

it would be ofgreat interest to consider synoptic categories for weather together with the 

criteria pollutants in a single regression model. Such an analysis should ideally be 

performed in a metropolitan area with a large number ofdaily deaths, and with many years 

of observation. If daily mortality counts are correlated, then both the GEE approach and 

bootstrap methods should be used for the construction ofconfidence intervals. 

Finally, although we attempted to assemble and analyze a data set identical to the 

data analyzed by Schwartz and Dockery, we were not entirely successful in our efforts. 

244 



Although we went to the same primary data sources, we were unable to duplicate exactly 

either the mortality or the pollution data sets. Ifthe differences in our results are due to 

the small differences in the data analyzed, they reinforce a point made earlier, namely that 

the results of these analyses are not robust to small perturbations ofthe data. 
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Table 1: Percentile distributions of sulfur dioxide and total suspended particulates (TSP). Refer 
to the text for definitions ofGB-C and C-C. S - D refers to the distributions reported in Schwartz 
and Dockery (1992). 

SULFUR DIOXIDE (ppb) PERCENTILE DISTRIBUTION 

10 25 50 75 90 Mean 

GB-C 7 13 23 39 58 28.8 

C-C 7 12 23 38 56 28.6 

S-D 7 12. 23 38 55 28 

TSP (microe:rams per cubic meter) PERCENTILE DISTRIBUTION 

10 25 50 75 90 Mean 

This 38 58 93 144 212 113 
study 

S-D 36 56 91 139 209 111 
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Table 2: Results ofPoisson regression analysis ofthe Steubenville total mortality data set using 

the covariates used in a previous analysis (Schwartz and Dockery, 1992a). Indicator variables for 

winter and spring ( defined in text). Hot and humid defined as 24-hour mean temperature > 21.1 °C 

and mean dew point temperature> 18.3 ° C. Coefficient for TSP represents effect ofan increase 

of I 00µg/m3 in the previous day's mean. Coefficient for SO2 represents effect ofan increase of 

l00ppb in previous day's mean. Individual years were controlled for in the analysis by indicator 

variables. 

VARIABLE COEFFICIENT (S.E) RELATIVE RISK (95% C.I.) 

Intercept 1.174 (0.032) 

TSP 0.018 (0.013) 1.018 (0.992 - 1.044) 

SO2 0.072 (0.048) 1.072 (0.978 - 1.181) 

Winter 0.080 (0.022) 1.080 (1.038 - 1.130) 

Spring 0.020 (0.021) 1.020 (0.979 - 1.063) 

Hot and humid 0.023 (0.042) 1.023 (0.942- 1.11 I) 
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Figure 1: Distribution ofdaily mortality in the Steubenville SMSA between 1974 and 1984. For 

definitions of 'full' and 'restricted' see text. 
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Figure 2: Autocorrelation function of the daily total mortality series in Steubenville. Correlation 

between mortality counts on days separated by various lag times is shown. Thus, correlation for a 

lag of Ois I, indicating that the mortality count on any given day is perfectly correlated with itself 

The small negative correlation at lag I indicates that the mortality counts on any two consecutive 

days are estimated to have a small negative correlation. The dotted lines represent the 95% 
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Philadelphia was analyzed because: (1) the city has a large enough 

count of daily deaths for a meaningful daily mortality analysis, 

and ( 2) daily data on particulate matter and other critical 

pollutants are available for analysis from sources such as EPA. 

Other investigators who have analyzed Philadelphia data are 

Wyzga (1978) and Schwartz and Dockery (1992a). our analysis of the 

Philadelphia data differs from these earlier analyses in several 

ways. First, we consider a greater number of years of data. Wyzga 

analyzed the data from 1957 to 1966, and Schwartz and Dockery from 

1973 to 1980, as compared to our analysis which considers the data 

from 1973 to 1990. Also our analysis examines a greater complement 

of variables. Schwartz and Dockery examined sulfur dioxide and 

particulate matter; Wyzga looked at only average coefficient of 

haze (COH). As stated above, we investigated sulfur dioxide, 

ozone, and particulate matter. Finally, we subjected the data to 

a larger battery of statistical analyses than were applied by 

previous investigators in the literature. Wyzga analyzed the data 

using a regression model; Schwartz and Dockery used the Poisson 

model. 

DATA 

Data on mortality which included the age, the race, and the 

gender of the descendant and the place of death, the date of death, 

and the cause of death by ICD code (International Classification of 
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included: daily so2 (part of 1973, 1974-1990), daily o3 (part of 

1973, 1974-1990), and total suspended particulates (TSP) (1973-

1990). The few days for which there were missing data were 

excluded from the analysis. The distributions of TSP, so2 , o3 , 

maximum temperature, mean humid, dewpoint, and daily mortality by 

age are summarized in Table l. Distributions of daily mortality by 

cause of death are given in Table 2. The correlations among daily 

mortality for people 65 and older, previous day's air pollutants, 

and previous day's weather factors are given in Table 3. 

Several observations can be made from examining the distribu­

tions of the variables in the study (Table 1). To begin with, the 

levels of particulate matter in Philadelphia probably were in 

compliance with or close to attainment of the National Ambient Air 

Quality Standards for particulate matter. The 95 percentile level 

of TSP levels was 12o µg /m3 , which is well below the annual 

National Ambient Air Quality Standard of 260 µg/m3 up until 1987. 

Furthermore, a more detailed examination of the data shows that 

almost all of the higher levels in the study came from the period 

of the 1970s. For example, the number of days with TSP levels over 

150 µg/m 3 is 33 from 1973-1974, 29 from 1975-1979, and only 5 from 

1980-1990. 
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The problem of separating out the pollution effects from the 

weather effects was further complicated by the fact that some 

weather variables were highly correlated with each other as well as 

with pollutant variables. For instance, maximum temperature and 

dewpoint were correlated at the O. 92 level; dewpoint and mean 

humidity at the 0.54 level; TSP and maximum temperature at 0.26; 

and ozone with maximum temperature at 0.64. 

Finally, the three pollutants considered in the study were 

also highly correlated with each other. TSP and sulfur dioxide 

were correlated at the 0.57 level; ozone and sulfur dioxide were 

correlated at the -0.26 level; and ozone and TSP at 0.18. All of 

these levels were significant at the .01 level or lower. 

METHODS 

Several statistical models exist for analyzing the association 

between daily mortality and air pollution. Ostro (1984) and Kinney 

and Ozkaynak {1991) applied a regression model to deviations of 

moving averages of daily mortality. Hatzakis et al. (1986) used a 

trigonometric model first to fit the monthly average daily mor­

tality, and used a regression model on the residuals. Shumway et 

al. (1988) used a regression model on total mortality and a non­

linear regression on smoothed mortality. Fairley (1990) used the 

Poisson-square root regression models on daily mortali_ty. Finally, 

Schwartz (1991, 1993), Schwartz and Dockery (1992a,b), Dockery et 
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a logarithmic transformation and a square root transformation. To 

adjust for additional time trends in the data, we used deviations 

from moving averages (7, 15, and 29 days) , deviations from averages 

of that day of the year, and deviations from trigonometric curves. 

In the model, the current and previous day's pollutant 

variables and several weather variables (such as temperature, dew­

point, and relative humidity) were always considered to be 

continuous. On the other hand, following the lead of other in­

vestigators (e.g. Schwartz and Dockery), we defined the indicated 

variables such as "cold day," days in which the maximum temperature 

was in the lower 5% percentile (or less than 31 degrees; see Table 

l) • "Hot days," "humid days," and "hot-humid days" were defined in 

a similar manner. Other indicated variables were year, which was 

incorporated to adjust for long-term changes in daily mortality, 

and season. In some analyses a continuous variable -- "day of 

year" -- was used to adjust for time trends within a year. The 

data were also stratified by season and analyzed separately. 

Lastly, following the lead of previous studies, in some 

analyses the average of two days• air quality was used, and in 

other analyses just the previous day's levels were considered. 

Instead of using "barometric pressure" as a variable directly, the 

increase (or decrease) in barometric pressure from the previous day 

( a-barometric) was used because the 6'-barometric pressure, which is 

significant in many models, was found to be more highly correlated 
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with daily deaths than the individual daily pressure values 

themselves. For the same reason, we used the difference in pre­

cipitation. 

FINDINGS 

The Influence of Season 

The significance of the association between pollutants and 

mortality varied by age, by season, and by the number of pollutants 

in the model. The results from the Poisson regression with loga­

rithm transformation analysis for the group 65 and older and for 

the group under 65 are given in Table S. For the group 65 and 

older, the t-value of TSP ranged from -0.02 (in winter, when TSP 

and so2 are incorporated into the model) to 2.83 (also in winter), 

(see Table 5). TSP was a statistically significant predictor of 

mortality only in the winter and only in a model where no other 

pollutants were considered; the associated coefficient is 0.0005. 

Regarding the other seasons, there is no indication of a TSP 

effect. The t-values in the summer ranged from 0.48 to 1.72; in 

the spring from 0.60 to 0.98; and in the fall from 0.93 to 0.99. 

TSP was never a significant predictor of mortality in the under-65 

age group. Similarly, there was much variation in the predictive 

power of other pollutants in the seasonal analyses. 
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Analysis by Cause of Death 

Total suspended particulates (TSP) was never a statistically 

significant predictor of mortality in any of our analyses by cause 

of death (Table 6). In the analysis of individuals 65 and older, 

the t-values of TSP were always positive for cancer and pneumonia; 

the t-values of TSP for CVD were consistently negative; and the 

t-values of TSP for COPD were mixed. The t-value of TSP for COPD 

was positive in the models where two or more pollutants were 

considered, but it was negative in the model where TSP alone was 

analyzed. In the analysis of the under-65 age group, the t-values 

of TSP for pneumqpia and other disease were always negative, and 

the t-values of TSP for cancer, CVD, and COPD were mixed. 

Averaging Time Considered in the Analysis 

Different investigators have used different pollution level 

averaging assumptions. For example, in Schwartz (1991) daily 

mortality was compared to previous day's pollution levels; in 

Schwartz and Dockery (1992a) the mean of pollution in the previous 

day and the current day was used as the indicator; in Schwartz 

(1993) the mean of the current and the previous two days was used; 

in Pope et al. (1992) the mean of the current day and the previous 

four days was used. In our analysis of the data, we looked at the 

average from 1 to 4 days (Table 7). 
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In the analysis, the coefficients and their associated 

t-values are highest in the model using the mean of two days as the 

indicator. In the analysis where two days' weather is incorpor­

ated, the t-value of TSP is 2.21, 1.31 in the one-day analysis, and 

0.38 or 1.02 in the three-day analyses. In addition, the t-values 

are also much higher in the two-day analysis even when one or two 

pollutants are considered. We do not know which pollutant 

averaging time is most desirable, but it is important to consider 

averaging time when comparing results across studies. 

The Influence of Statistical Models 

As we discussed earlier, a host of statistical models were 

applied to the data (Table 4). Also, three sets of analyses were 

examined: TSP, so2 , and were incorporated into the model; TSPo3 

and so2 were used; and TSP alone was considered. The resulting 

t-values from these analyses (in the case where two days' weather 

variables were incorporated into the model) are given in Table 8 

(65 and older) and Table 9 (under 65). Analyses of these tables 

show that: 

1. The significance of a pollutant predictor of daily mortality 

changes from model to model. For example, in the group 65 and 

older, the t-value of TSP varies from 0.1 to 6.6. 
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analysis of eighteen years of Philadelphia data, the results varied 

by season, the cause of death, the number of pollutants in the 

model, the model used to analyze the data, and whether or not 

interactions between pollution variables and weather were con­

sidered. 

Even in the models with the greatest explanatory power, 18% of 

variations in daily mortality could be explained, with weather 

variables and seasonality being the strongest predictors. In 

analyses using weather alone, a.bout 14% of variations in daily 

mortality could be explained, but in models using pollution alone, 

less than 5% could be explained. Also in a two-stage analysis 

where weather variables are forced into the model and pollution is 

left to explain the residual, pollution accounts for less than 1% 

of the variation. 

Further complicating the issue is the fact that the pollution 

variables and the weather variables are all highly correlated with 

each other, making it difficult to separate out the effect of one 

pollution variable from another and the effect of weather from 

pollution. Thus it is difficult to say with any degree of cer-

tainty whether those significant associations between TSP and daily 

mortality observed in our analyses are real or surrogate behavior 

for some other pollutants or weather variables. 
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Second, the analysis by season showed no consistent signifi­

cant association between TSP and mortality. For older people 

(i.e., 65+), this relationship was significant only in winter in 

the case where other pollutants were not considered in the 

equation. In contrast, for younger people (i.e., under 65), the 

relationship was significant only in the spring in the case where 

other pollutants were not considered. In both cases (i.e., for 

older and younger subjects), TSP was insignificant where more than 

one pollutant was taken into account. 

Third, analyses broken down by causes of death indicate that 

if anything, TSP is negatively correlated with CVD (for the 65 and 

older group), the disease category with the greatest number of 

deaths in our analysis. In addition, TSP is negatively correlated 

with other causes of death, but the associations are never statis­

tically significant. caution should be followed in overinterpret­

ing the death by cause results because cause of death data are 

ultimately based on death certificates -- information that can be 

notoriously misleading. 

In summation, a comprehensive analysis of the Philadelphia 

data does not point to a clear association between daily mortality 

and particulate matter or to any other pollutant. For almost every 

result suggesting a positive association between particulate levels 
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and daily mortality, there are negative or nonsignificant results 

pointing the other way. It would therefore be incorrect to con­

clude from a single regression analysis of the Philadelphia data 

that "X" number of deaths can be assigned to each incremental 

increase of particulate matter (or any other type of pollutant). 

our analysis also raises some important issues regarding the 

appropriate methods for analyzing air pollution daily mortality 

data in the future. First, a determination should be made about 

the most desirable method for analyzing such data. Following the 

lead of others, we have used Poisson models, regression models, and 

autoregressive mod.els, and arrived at results ranging from positive 

to negative associations. Each of the models that we used has its 

strengths and weaknesses. In the future, more work should be done 

to develop optimum models for analyzing mortality data and new 

approaches should be explored. 

Second, a determination should be made about the number of 

days of pollution and weather measurements to be taken into account 

in the analysis. As was shown in Table 8, the significance of the 

predictive power of TSP on mortality is highly dependent on the 

number of pollution days in the model. 

Our analyses clearly indicate that results are data- and 

model-dependent. Moreover, it is unclear which statistical model 

generates the most definitive results. Results vary by the model 
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choice, pollution variable choice, season, and cause. A simple 

conclusion on the association between daily mortality and air 

pollution based on a specified model might be biased. 
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DISTRIBUTION OF DAILY MORTALITY, 

TABLE 1 

POLLUTANTS*, AND WEATHER FACTORS (1973-1990) 

5\ 10\ 25\ SO\ 75\ 90\ 95\ HEAN 
STANDARD 

DEVIATION 

N 

~ 

TSP (µg) 

so2 (ppb) 

(ppb)o3 

HXTP °F 

HNHUHID 

DEWP °F 

DAILY 
DEATH <65 

DAILY 
DEATH .e65 

32 

4.10 

1.82 

31 

43.75 

10.00 

12 

24 

37 

5.89 

3.54 

37 

48.88 

16.75 

13 

26 

48 

8.93 

8.33 

48 

56.88 

28.50 

16 

30 

64 

13.91 

17.08 

63 

66.00 

44.25 

19 

35 

83 

21.80 

28.43 

78 

74.17 

59.17 

22 

40 

105 

31.83 

39.36 

84 

80.38 

66.42 

26 

45 

120 

39.46 

46.83 

86 

83.29 

70.17 

28 

48 

68.51 

16.98 

19. 77 

64.06 

67.01 

42.90 

19.06 

35.15 

27.91 

11.87 

14.35 

18.88 

13.41 

19.04 

5.03 

7.13 

* The air quality data is the average of values across Philadelphia. 
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TABLE 2 

DISTRIBUTION OF CAUSE-SPECIFIED DAILY MORTALITY COUNTS 

IN PHILADELPHIA COUNTY, 1973-1990 

' 

CAUSE MORTALITY, DEATHS/DAY* 5\ 10\ 25\ 50\ 75\ 90\ 95\ Mean Std 

Cancer 

Age <65 years 

Age i!:65 years 

2 

3 

3 

4 

4 

6 

5 

5 

7 

10 

9 

12 

10 

13 

5.66 

7.76 

2.42 

2.91 

CVD 

Age <65 years 

Age ~65 years 

2 

10 

2 

12 

3 

14 

5 

17 

7 

21 

8 

24 

10 

26 

5.22 

17.58 

2.43 

4.76 

Pneumonia 

Age <65 years 

Age i!:65 years 

0 

0 

0 

0 

0 

0 

0 

1 

1 

2 

1 

3 

2 

4 

0.38 

1.31 

0.64 

1.23 

COPD 

Age <65 years 

Age i!:65 years 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

1 

2 

1 

l 

0.23 

0.75 

0.48 

0.96 

Other 

Age <65 years 

Age i!:65 years 

3 

3 

4 

4 

5 

6 

7 

8 

9 

10 

12 

12 

13 

13 

7.58 

7.75 

3.03 

3.04 



TABLE 3 

PEARSON CORRELATION COEFFICIENTS OF THE PREVIOUS DAY'S AIR FACTORS 

AND DAILY MORTALITY (AGE ~65) (1973-1990) 

S02- __Q3_ ~ HXTI> OEW11_ HNHUMII! 

DEATH• 0.119+ -0.143+ 0.051+ -o.2a3+ -0.263+ -0.005 

-0.260+ 0,566+ -0.248+ -0.264+ -0.035+S02 

0,179+ 0.635+ 0.488+ -0.161+03 

N 
-...J 

o. 262+ o. 211 + 0.046+°' TSP 

HXTP 0.921+ 0.201+ 

0,535+DEWP 

• Deaths daily mortality for persons age ~65. 

+ Statistically significant (p-value = <0.01) 





TABLE 5 

THE t-VALUES* IN THE SEASONAL ANALYSIS 
MODEL: POISSON-LOG 

FACTORS: YEAR, DAY OF SEASON, TWO DAYS' WEATHER 

GE 
>65 <65 

SEASON TSP TSP** 

Fall 0.99 0.49 1.29 -1.16 2.75 -0.15 
Winter 0.05 2.55 0.92 0.65 0.45 o.oo 
Spring 0.60 0.84 2.73 0.76 -0.26 -0.38 
summer Q.48 -0.53 2.67 0.05 2.56 -0.34 

Fall 1).93- 0.45 -0.76 2.09 
Winter -0.02 2.68 0.01 1.02 
Spring 0.51 0.58 0.77 -0.23 
summer 1.59 -0.94 0.79 1.92 

Fall 1.19 0.68 
Winter 2.83 0.96 

Spring 0.98 2.04 

Summer 1.72 1.89 

* All t-values in this analysis could be considered subject to 
standard normal distribution because the degree of freedom is 
higher than thousands. 

** Blank means the pollution is not considered in the model. 
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TABLE 6 

THE t-VALUES OF POLLUTANTS IN THE ANALYSIS BY CAUSE 
MODEL: POISSON-SQUARE ROOT 

FACTORS: YEAR, DAY OF SEASON, TWO DAYS' WEATHER 

AGE 
>65 <65 

CAUSE TSP TSP** 

Cancer 0.67 -0.73 0.20 -0.88 1.36 l.79 
CVD -l.74 1.73 3.97 -0.46 1.37 2.32 
Pneumonia 0.88 -0.40 0.65 -1.19 1.44 -0.03 
COPD 0.08 -0.64 0.06 0.14 -0.69 -1. 62 
Other -0.07 l.82 1.45 -0.56 -0.18 1.21 

Cancer 0.93 -l.06 -0.48 0.76 
CVD -0.74 0.56 0.12 0.65 
Pneumonia 0.61 0.53 -1.18 1.41 
COPD 0.23 -0.66 -0.07 -0.63 
Other -0.04 l.53 -0.60 0.05 

Cancer 0.39 0.14 
CVD -0.24 1.36 
Pneumonia 1.12 -0.82 

COPD -0.37 -0.65 
Other 0.89 -0.36 

* All t-values in this analysis could be considered subject to 
standard normal distribution because the degree of freedom is 
higher than thousands. 

** Blank means the pollution is not considered in the model. 
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TABLE 7 

t-VALUES OF POLLUTANT INDICATORS GENERATED 
BY DIFFERENT AVERAGING TIME ANALYSES 

MODEL: POISSON-LOG 
AGE ~65 

MQDfil! SIMULTANEOUS AtLALYSIS 
TSP S02 03 TSP ONLY 

MP1(2)* 1. 31 3.49 3.81 4.24 

MP2(2) 2.21 3.59 4.34 5.97 
N 
CX) 
0 

MP3(2) 0.38 1.98 3.07 3.0 

MP4(2) 0.20 1.56 2.35 2.44 

MP3(3) 1.02 1.72 3.96 3.45 

MP4(4) 1.19 1.38 3.82 3.46 

* MPx(y) stands for mean pollution of current and prior (x-1) days with y days• weather. 
For example, MP1(2) is prior day's pollution with 2 days• weather. 



t-VALUES OF POLLUTANTS IN 

TABLE 8 

DIFFERENT STATISTICAL MODELS: AGE ~65 

MQdtl__ 

PL 

TSP 

1.2 

S02 

3.4 

03 

3.8 

POLLUTANTS.IN_THE_MOQEL 

TSP 

1.9 

S02 

2.4 

Tsp_ 

4.0 

PSR 1.3 3.5 3.7 2.0 2.6 4.3 

N 
ex, 
I-' 

AR(6) 

RFT 

2.4 

o.e 

3.8 

3.0 

5.8 

3.2 

3.6 

1.5 

2.7 

1.9 

6.6 

3.1 

RDY 1.4 1.6 3.1 2.0 0.8 3.1 

RDM(7)* 0.1 1.6 1.7 0.3 1.0 1.0 

ROM(lS) 0.6 2.2 2.8 0.9 1.6 2.4 

RDM(29) 1.1 2.1 3.3 1.7 1.1 3.2 

• 7, 15, 29 = 7, 15, or 29-day moving average. 



TABLE 9 

t-VALUES OF POLLUTANTS IN DIFFERENT STATISTICAL MODELS: AGE <65 

POLLUTANTS IN THE MODEL 

Model 

PL 

TSP 

-0.04 

so2 

2.33 

03 

1.67 

TSP 

0.09 

S02 

1.96 

_TSP 

1.92 

PSR 0.04 2.75 1. 73 0.23 2.30 2.43 

AR6 1.11 3.00 -1.06 -1.90 -0.94 -0.66 

N 
00 
N 

RFT 

ROY 

-0.11 

-0.15 

2.45 

1.38 

1.52 

1.40 

-0.50 

0.02 

1.89 

0.96 

1.33 

1.32 

RDM(7) * -1.34 2.10 1.65 -1.55 1.97 -0.06 

RDM(15) -0.55 1.69 1.97 -0.61 1.50 0.73 

RDM(29) 1.09 2.11 -1.73 -4.89 4.46 -2.25 

* 7, 15, 29 = 7, 15, or 29-day moving average. 
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INTRODUCTION 

There have been several studies published since 1990 that have reported 

statistically significant and quantitatively similar associations between daily numbers of 

deaths and gravimetric particulate matter concentrations, either PM10 (mass 

concentrations of particles with aerodynamic diameters less than 10 µm) or TSP (total 

suspended particulate mass concentration), in metropolitan areas (Schwartz, 1991; 

Schwartz and Dockery, 1992a, 1992b; Dockery, Schwartz, and Spengler, 1992; Pope, 

Schwartz, and Ransom, 1992; Schwartz, 1993). It is remarkable that consistent results 

have been obtained in diverse cities that vary in population, weather patterns, and 

levels of co-pollutants. The quantitative consistency of the reported associations, and 

their coherence with epidemfologic studies of morbidity outcomes, have led Schwartz 

to conclude that the effects of low-level airborne particle exposures on mortality are 

likely to be causal (Schwartz, 1993). 

This body of results has been viewed by many with skepticism. Primary among 

the concerns raised has been the lack of biological plausibility. It is difficult to 

understand how a 10 µg/m3 increase in PM10 levels could result in about a 1% increase 

in daily deaths in a city, as would be implied from the data. Further, there are no 

animal toxicology data for particulate matter that suggest significant biological 

mechanisms that could account for health effects at the low levels of exposure 

encountered in the population-based studies. The other principal concern has been that 

the results might be due to an artifact of the complex and specialized statistical methods 

utilized in most of the recent literature on this topic. 

Time series studies of daily mortality and air pollution use a variety of complex 

statistical methods designed to address the special character of serial data. Because 

many of the statistical methods employed are relatively new and specialized, they are 

fully understood by few analysts and even fewer users of time-series results. In 

addition, there is currently no firm consensus among analysts as to which statistical 
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A final issue relates to the distribution of the residual variability in mortality that 

remains after the model is fit. Because death is a discrete event, daily mortality counts 

will tend to have a Poisson distribution rather than the normal Gaussian distribution 

that is assumed in most standard analyses. It has been argued that methods which 

assume Poisson residuals are therefore necessary (Schwartz, 1993). On the other hand, 

when the mean is large, a Poisson process will be nearly Gaussian. It is not yet clear 

how much difference this issue makes in practice. 

This paper evaluates the sensitivity of mortality /PM10 relationships over a range 

of statistical approaches to the four issues introduced above. Rather than attempting to 

dictate the single, most valid set of methods, we pose the question, "how much 

difference does it make to the results when the full range of commonly used methods 

are tested"? The sensitiyity analysis was performed using data from Los Angeles 

county for the period 1985-1990, the period during which PM10 data first became 

available. 

METHODS 

Daily counts of total deaths which occurred in Los Angeles County in the period 

January 1, 1985 to December 31, 1990 were obtained from National Center for Health 

Statistics death certificate tapes. Deaths due to accidents and suicides and non-resident 

deaths were excluded from the total counts, yielding the daily death count variable 

used in the analyses reported here. PM10, 03, and CO data collected in Los Angeles 

county were obtained in digital form from the US. Environmental Protection Agency's 

Aerometric Information and Retrieval System (AIRS). 24-hr average PM10 

concentrations, collected every 6 days, were taken from 4 monitoring sites. Daily 

maximum 1-hr 03 and CO levels were obtained from 8 sites each. The multiple site 

data for each pollutant were averaged after filling missing values using a multiple 

regression algorithm. Missing values that were filled in this way represented 7%, 3%, 
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sine and cosine variables gave somewhat larger PM10 relative risks. There was some 

indication from these latter results that the mortality /PM10 association was stronger in 

summer than in winter. As a whole, however, the PM10 relative risks exhibited a 

substantial consistency across a range of alternative methods aimed at controlling the 

cyclic behavior of the data. 

Among the cyclic control methods we explored, three yielded DW statistics 

above 1.8: the model that included 10 sine and cosine variables, and the two models 

restricted to the summer season. On the basis of these results, we chose to employ the 

10 sine/cosine model as the basic approach for cyclic control in all the models discussed 

below. 

Regressions with varying levels of control for temperature and relative humidity 

(none; same-day; extensive lagged variables) all yielded similar results (Table 1 and 

Figure 2), although the PM10 relative risk, and statistical significance, was reduced 

somewhat with the more extensive weather controls. 

Regression models that included alternative pollutants (PM10, lag 1 03, or CO) 

all yielded significant (or nearly so) relative risks for the individual pollutants (Table 1 

and Figure 3). In bivariate regressions (i.e., regressions including PM10 and one other 

pollutant), results were more variable. With both PM10 and 03 in the model, the PM10 

relative risk was essentially unchanged (RR=l.05), while the 03 relative risk dropped to 

one. This suggests that the 03 effect on mortality, if any, is weaker than that of PM10. 

The correlation of the slope estimates for 03 and PM10 was -0.5, indicating a substantial 

collinearity in these two pollutants when included simultaneously in the model. In 

contrast to the situation for 03, the relative risks for both PM10 and CO dropped 

somewhat when both were included in the model, suggesting a similar strength of 

association with mortality for the two pollutants. There was a moderate collinearity in 

the slope estimates for these two pollutants (slope correlation= -0.4). Overall, the range 
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of PM10 relative risks observed in these alternative models (1.03 - 1.05) again 

demonstrated a rather mild degree of sensitivity. 

Finally, we evaluated the sensitivity of mortality /PM10 associations under 

differing assumptions about functional form and residual distributions (Table 1 and 

Figure 4). Three approaches were used: ordinary least squares (assumes a linear 

relationship and normally distributed errors with constant variance), log-linear 

regression (assumes an upward curving relationship between mortality and PM10 and 

normally distributed errors with variance that increases in proportion to level of 

mortality), and Poisson regression (same assumptions as log-linear except that errors 

are assumed to be Poisson distributed). No difference was observed in the PM10 

relative risks from the three models. 

DISCUSSION AND CONCLUSIONS 

We have evaluated the sensitivity of daily mortality /PM10 associations to a 

range of analytical methods in a newly developed 6-year data set from Los Angeles 

county. We found that the estimated proportional increase in daily mortality associated 

with a 100 µg/m3 increase in PM10 concentration (or relative risk) fell generally 

between 1.03 and 1.05, regardless of the method used. These results indicate that 

sensitivity to methods was low in this data set. 

These results for Los Angeles represent the first independent confirmation of the 

mortality /particulate matter associations reported for PM10 and TSP in the recent series 

of papers by Schwartz and colleagues. The PM10 relative risk (RR) we obtained for Los 

Angeles (1.05) is somewhat smaller than those reported previously in Utah Valley 

(RR=l.16) by Pope and colleagues (1992), St. Louis, MO (RR=l.16) by Dockery and 

colleagues (1992), and Birmingham, AL (RR=l.11) by Schwartz (1993). Two of those 

studies used multi-day averages of PM10 as the exposure metric, which may have 

yielded a larger effect by picking up both same-day and lagged PM10 effects. We were 
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Table 1. Descriptive Statistics, Overall and by Season 

Period Statistic Deaths 
(per day) 

PM10 
(µg/m3) 

03 
(ppb) 

co 
(ppm) 

T 
(Deg. F) 

RH 
(%) 

All Mean 

Std. Dev. 

Range 

153 

20 

113-224 

58 

23 

15-177 

70 

41 

3-201 

4.7 

2.9 

1-13 

70 

7 

54-98 

70 

16 

14-97 

Nov-Feb Mean 169 61 36 7.4 67 63 

Std. Dev. 20 29 20 2.7 7 20 

Range 132-224 15-177 3-100 2-13 54-88 14-97 

Jun-Sep Mean 143 60 101 2.8 73 77 

Std. Dev. 12 18 37 1.5 4 8 

Range- 116-179 20-116 21-201 1-8 63-87 49-90 
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No control 

Seasonal dummy variables 

4 sine/cosine waves 

10 sine/cosine waves 

Winter 
Summer 

Winter + 4 sine/cosine 
Summer + 4 sine/cosine 
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Relative Risk 

Figure 1. PM10 relative risks and 95% confidence intervals obtained with alternative 

methods to control for temporal cycles. All models included same-day temperature and 

relative humidity as covariates. Relative risks were computed for a 100 µg/m3 increase 

in PM10 concentration. 

I 
I ,,_______--1No covariates 
I 

I 

Same day T & RH ,...---■ ----t 

Extensive covariates t--+--■---

0.95 1 1.05 1.1 1.15 
Relative Risk 

Figure 2. PM10 relative risks and 95% confidence intervals obtained with varying levels 

of weather controls. All models included 10 sine/cosine functions as covariates. 

Relative risks were computed for a 100 µg/m3 increase in PM10 concentration. 
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Abstract 

Studies of community air pollution must deal with a complex mixture of substances, for 

which the available data on concentrations and their distributions vary greatly in completeness 

and accuracy. The monitoring database available for some pollutants (such as suspended par­

ticulate matter) far exceeds that available for others (such as carbon monoxide or nitrogen 

dioxide) in terms of spatial and temporal coverage. Little or no routine monitoring data are 

available on aeroallergens or on particles classified by size and chemistry, for example. In addi­

tion, the relationships between outdoor air concentrations and personal exposures vary by 

chemical species. This paper addresses the concern that the availability and quality of observed 

data may limit the validity of the conclusions that can be derived from retrospective studies. 

The basic assumptions of multiple regression analysis, the statistical tool most commonly 

used to study the effects of air quality on health, are reviewed. We show by data simulation 

and by numerical experiments with mortality and air quality data from Philadelphia that dif­

ferences in the reliability of exposure estimates can be critical in the implied relationships be­

tween correlated variables in multiple (joint) regressions. Further, measurement error obscures 

the true degree of collinearity that may actually be present. Finally, we consider how nonlinear 

transformations can affect judgments about the relative importance of the variables considered. 

While models based on linear pollution relationships may be facile and may be convenient in 

characterizing effects, we have no assurance that they are in fact correct. Resolution of these 

issues will require better population-based air quality monitoring data as well as laboratory 

studies appropriate to characterizing the nature of the implied biological responses to the mix­

tures and concentrations that currently comprise community air quality. 

This research was sponsored by the Electric Power Research Institute. 
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INTRODUCTION 

Background. The observational or "ecological" epidemiological study is one study design that 

can be used to study irreversible endpoints such as mortality or hospitalization. At current air 

quality levels in the United States, even the severest air pollution health effects are considered 

"weak" from a statistical perspective (Wynder, 1987), because they generally involve individual 

risk ratios less than 1.5. Thus, strict adherence to statistical requirements is required in order 

to derive even valid qualitative conclusions. However, because large populations may be ex­

posed to the risks associated with community air pollution, the findings of such observational 

studies may be important from the perspectives of public health and environmental policy. 

Observational studies are intended to deduce relationships between population health 

responses and environmental characteristics. There are often two inter-related objectives: to 

identify associations between specific diseases and specific agents, and to define the concomitant 

dose-response functions and/or "safe" concentration levels. "Safe" levels may be used to estab­

lish ambient air quality standards, and dose-response functions are needed to estimate the 

economic or health benefits that might accrue from new policies to control emissions. In 

general, there is no longer interest in a study outcome that only shows that air pollution may be 

"harmful to health." Such harm has been unequivocably established by the air pollution episodes 

of past decades (Lipfert, 1994a) and by the many laboratory experiments that have followed. 

Current interest centers on the details of relationships between air pollution and biological 

responses; this requires separating the effects of collinear pollutants and determining the func­

tional forms of dose-response functions, including whether no-effect thresholds are present. At 

the risk of pedantry, we first review some of the fundamental concepts involved in deducing 
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such relationships from experimental data. Much of the following material and notation follows 

that of Snedecor and Cochran (I 967). 

METHODOLOGICAL ISSUES 

Statistical Methods. Statisticians have devised many ways to study relationships embodied in a 

data set. All of them involve comparing a calculated statistic with a range of values that would 

be expected to occur just to chance (random) variation. If the statistic falls outside of this 

range, it is said to be "significant" and we then look for explanations for this behavior. The 

limits of chance variation are established from the distributional properties associated with the 

statistic, such as those of the Poisson or Gaussian (normal) distributions. It follows that certain 

assumptions must be met for such comparisons to be valid. Sometimes one or more variables 

must be mathematically transformed in order to meet these requirements. 

For large cities, the data describing community health responses to air pollution may be 

treated as quasi-continuous, rather than as categorical. The most common measures of associa­

tion are correlation and regression. Tests of significance with respect to the existence of a 

relationship, using either (bivariate) regression or correlation, require only that the dependent 

variable be normally distributed. This test compares either the regression slope (b) or the cor­

relation coefficient (r) with zero. When r is not zero and we wish to establish its confidence 

limits (for the purpose of model comparison, for example), both variables must be normally dis­

tributed. 

However, the bivariate situation is rare in studies of practical interest, in part because 

the effects of interest are weak. and thus there are always intervening variables that could con­

found the outcome if not controlled. As a result, multiple regression is usually required, with 
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epidemics. For comparisons between communities, we must add factors that describe !if estyle 

and basic health status differences, including smoking habits, education, diet, exercise, occupa­

tional exposure, selective migration, among others. However, there are also certain non­

physiological factors that have been shown to contribute, even though biological explanations 

may be lacking; some of these are variations according to the day of the week, changes in 

meteorology, and even proximity to the decedent's birthday (Blakeslee, 1992) and cultural 

beliefs (Blakeslee, I 993 ). Differences in the "pace of life" have been implicated in differences 

in health status among communities (Levine, 1990). 

In addition, if the effects of air pollution are to be considered on a physiological (rather 

than psychological) basis, we must estimate actual exposures to pollution. This exposure will 

vary with the daily activity patterns of the subjects and the nature of all the micro­

environments to which they are exposed each day. The only data we have on air pollution 

across an entire community are the measurements routinely collected from fixed-base monitor­

ing stations, which will have varying relationships to these microenvironments depending on the 

pollutant, time of day, and the age and health status of the subject, among other factors. The 

relationships between air monitoring data and the actual exposures of subjects constitute poten­

tial sources of bias and of errors in the independent variables. The effects of such errors will 

be addressed subsequently. 

Because we cannot account for all factors that may deterministically affect health out­

comes, our model is not in fact described by Eq. [I], but by 

[2] 

where the xk represent factors that cannot be measured or for which suitable data are not avail-
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able, and e' represents that portion of Y that is distributed independently of xr···xn and xk. By 

omitting the xk which describe part of the "true" relationship, we find that we have not es­

timated the values of the b1....b that are needed, but instead the value of 
0 

[3] 

where bik is the regression coefficient of xk on xr Relation [3] describes a situation that is often 

referred to as "confounding." The fact that the relationships of most interest here are usually 

weaker than the relationships among independent variables can make the potential errors in­

volved in [3] important.* However, note that according to [3], for a variable to confound, it 

must be correlated with both health outcome (bk) and pollution (bik). Since most pollutants are 

correlated with one another, and usually to a degree stronger than their correlations with health, 

any (unmeasured) pollutant with a known or suspected effect on health qualifies as a potential 

confounder with respect to the attempt to estimate effects specific to any other pollutant. 

Also, any criteria pollutant must be deemed a priori to have the potential for adverse health ef­

fects. 

Lack of independence of the x
1 

is the rule rather than the exception in observational 

studies. Health is affected by weather and by pollution; pollution affects weather and vice 

versa, and there are exogenous factors (such as day-of-week activity and emission patterns) that 

affect both health and pollution. Given this state of affairs, the errors involved in selecting an 

For example, in Los Angeles (Kinney and Ozkaynak, 1991) after adjustment for seasonality, the 
maximum correlation between any of four air pollutants and daily mortality was 0.13 while the 
correlations among the pollutants were in the range 0.43 to 0.88. 
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inappropriate model can be much larger than the statistical confidence limits derived from a 

particular model (Lipfert, I 994b ), especially for large data sets. The prudent investigator will 

thus compare results obtained from a range of models, variables, and transformations for each 

new application. 

Study Designs and Collinearity. The most common study designs involve either following a 

fixed population over time (the time-series study) or contrasting many populations over space at 

a fixed time (the cross-sectional study). In both designs, collinearity among pollutants is to be 

expected and has been observed. With time-series studies, all pollutants tend to respond to the 

same weather perturbations, since emissions tend to be steady over time (secondary pollutants 

such as ozone may be an exception). With cross-sectional studies, commonality of pollutants 

emitted by the same types of sources creates collinearity. In both cases, the use of a limited set 

of fixed air monitoring stations can involve sufficient uncertainties so as to mask the true de­

gree of exposure collinearity and thus to make it impossible to determine the "responsible" pol­

lutants with certainty. In all cases, the relationships among pollutants (and between pollutants 

and weather variables for time-series studies) are stronger than the relationships between pollu­

tion and health, which can make control of collinear variables crucial. 

Effects of Measurement Errors. Actual (personal) exposures to air pollution are impractical to 

measure directly in populations large enough to have adequate statistical power in observational 

studies. The difference between measured concentrations and actual exposures may be expected 

to vary from day to day and by pollutant species. Some pollutants are distributed more 

uniformly throughout a community than others, and some penetrate into indoor environments 

more readily than others. Thus, we expect that errors in estimating exposure will vary by pol-
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I. Confounding variables must be accounted for. If the model does not include all 

intercorrelated pollutants known to affect health, the regression coefficient for 

any one pollutant must be regarded as also including the effects of the omitted 

components of the pollutant mixture. This caution also applies to non-pollutant 

variables which may be correlated with pollution, such as ambient temperature. 

2. For the pollutants for which measurements are available, comparisons among 

species must be made in such a way that the errors in exposure estimates are ap­

proximately equal. This requires a common basis for averaging time, for ex­

ample. If data from a network of monitors are averaged, roughly the same num­

ber of stations should be used on all days and for all species. 

3. The model must be appropriate to the physiological scenario. If peak exposures 

are thought to be more important than average exposures, nonlinear pollutant 

transformations should be investigated. If it is reasonable to expect a lag be­

tween exposure and response, a range of different lag structures should be inves­

tigated, including effects accumulated over the lag period and the possibilities of 

different lag structures for different pollutants, diseases, and age groups. If 

chronic effects are suspected, allowance must be made for the latency period re­

quired for development of the disease in question. 

4. Depending on the outcomes of the preceding steps, an iterative procedure may be 

required to identify the most important pollutants and to estimate each of their 

separate contributions to the health outcome with an optimum model. 

5. The regression model assumptions must be observed. This may include trans­

forming the dependent variable to achieve normality and checking the regression 

residuals for heteroscedasticity. 
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We solve this relationship for the regression coefficients and their standard errors using 

ordinary least-squares methods. In the simulations performed, the a priori assumed values of B
1 

and B are unity. We assume that the pollutants P and P emanate from a common source or
2 1 2 

group of sources and thus are highly correlated in ambient air, even though they may not be 

measured at the same times and places. However, the relationships between monitored con­

centrations (the observed values in this case) and actual population exposure differ; additional 

(random) variance is present in the distribution of the values of P2• We designate the unobserv­

able value of this pollutant as P (true) and the actual measurements as P (measured). Thus P2 2 2 

meas. = P
2 

true + measurement error (em) and our operational regression model is 

[5] 

where B
2

' is the regression coefficient as determined in the presence of measurement error. In 

this sense, the measurement error term em may be thought of as the differential sum (P2 vs. P )1 

of instrument and analytical error, spatial representativeness of the monitor network, effects of 

missing data, differences in lag structure of response, and differences in personal exposure rela­

tive to monitored concentrations. The magnitudes (but not the existence) of most of these ef­

fects are unknown. 

Simulations were performed for 7 different combinations (referred to hereafter as 

"cases") of relative measurement error and assumed collinearity between P1 and the true value of 

P
2

, using 20 trials each. Each trial produces statistics for 5 different regressions, as discussed 

below. Crossplots are presented across regressions, with each trial constituting an "observation." 

Twenty trials were deemed sufficient to define average regression coefficients and t values, but 

are undoubtedly insufficient to completely define their distributions. The first of these simula-
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which were defined as I.0 in the formulation of the model; however, because of the col­

linearity, these coefficients are not significant and thus would likely be disregarded if they oc­

curred with real data (in the absence of a priori information on the "true" model). In addition, 

the regression coefficients derived in the bivariate case (Regressions No. 1 and 2, one pollutant 

at a time) are inflated to essentially twice the expected value, since the effect of both pollutants 

is picked up by the single pollutant entered into the model. With measurement error, the coef­

ficient for P2(meas) is biased low with respect to that for P2'true), as expected. 

We see from Table 2 that the regression coefficient for P1 is essentially unchanged from 

the bivariate case when regressed jointly with P
2 

in the presence of measurement error 

(Regression No. 5), while the joint coefficient for P
2 

has become nil, even though the basic un­

derlying relationship assigns equal weight to both P and P2. Thus the "standard" multiple1 

regression procedure yields an inflated coefficient for the pollutant with the lower measurement 

error and essentially zero for the pollutant with higher measurement error. These results con­

firm Cochran's earlier (1970) prediction, which was also based on numerical examples, that 

"interpretation of the B/ as if they were B
1 

can be quite misleading .... " (typesetter: set Greek 

beta for B). 

Figure 3 compares the t values for P1 for the two joint regressions. When regressed 

jointly with the "true" P
2

, P loses significance, on average, because of collinearity. However,1 

when P1 is regressed jointly with P2 in the presence of increased measurement error, P loses1 

less significance and its regression coefficients are virtually unchanged from the bivariate case 

(Figure 4). Note that all but one of the P1 regression coefficients in Figure 4 exceeds the a 

priori or "true" value ( 1.0). 

The corresponding t-value information for P
2 

is given in Figure 5. In both cases, P
2 

lost 

significance in most of the 20 trials. A plot of the joint regression coefficients for P
1 

versus P2 
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showed a negative relationship (Figure 6); a negative coefficient for one variable contributes to 

a more strongly positive value for the other. 

Sensitivity Simulations. Additional simulation cases were performed in the same way to explore 

the robustness of these findings. These results (cases 2-6) are given in Table 3 along with the 

baseline result from Table 2 (case I), in terms of the coefficients from Regression No. 5, the 

joint regression of mortality on P1 and P (meas). There were little or no changes in the2 

bivariate regression coefficients for these simulations. 

Note that the regression coefficients tend to sum to the correct value of 2.0 in all 7 cases, but 

that the proper split (I: I) is approached only in simulation case 5. In this case, the introduced 

measurement error is small and the regression on P1 and P (meas) is essentially the same as on2 

P and P2(true). Note also that some of the simulation cases feature very modest amounts of1 

pollutant collinearity and that biased coefficients still result from the joint regressions. Addi­

tional sensitivity runs (not shown) established that modest levels (relative to the error in P
2

) of 

measurement error in P1 had no effect on these findings. 

NUMERICAL EXPERIMENTS WITH 1973-80 PHILADELPHIA MORTALITY DATA 

Data on mortality, weather, and air pollution (TSP, S0
2

, and ozone) as measured in 

Philadelphia (Li and Roth, 1994) were used to further explore the ramifications of measure­

ment errors in stepwise multiple regressions, but based on real instead of simulated data. The 

hypothesis here is that taking indoor/outdoor exposure relationships into account will add to the 

existing variance of the pollution terms, but in unknown ways. We created modified but non-
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WHAT IS THE CORRECT SHAPE OF THE DOSE-RESPONSE FUNCTION? 

Most models employ linear specifications for the pollution terms; use of the logarithm of 

response in a log-linear model is tantamount to assuming an exponential form for the pollutant 

dose-response function. Table 4 presents bivariate correlations between six different pollutants 

and summer respiratory hospital admissions in Southern Ontario (Wyzga and Lipfert, 1993) for 

different functional forms. These results are for the entire year, adjusted for day of week and 

seasonality and lagged 3 days. The table shows that selection of the most "important" pollutant 

cannot be made independently of knowledge of the shape of the dose-response function. The 

differences in linear models are small, but we see that coefficient of haze (COH), S0
2

, and so._2-

show slightly higher associations when concave-downward functions are used (square root, log), 

while ozone and to a lesser extent TSP seem to point towards concave upward functions (square, 

exponential). The latter are more in keeping with the notion of pollution thresholds or log­

linear models. N0
2 

is seen to be indeterminant in this regard. 

Table 5 compares beta coefficients (because they are nondimensional) for the logarithms 

of daily mortality in Philadelphia ( 1973-80), for the same functional forms. Data are shown for 

the 3 pollutants available in this study, taken jointly and separately, for 2 age groups. In 

general, functional form makes more difference in joint regressions than in separate regressions. 

We see some commonality with Table 4, in that S02 performs better with square root and log 

models (this was also the case over a much larger range of S0
2 

values in the former East Ger­

many [Spix et al., 1993]), and TSP performs better with the exponential and square functions. 

Ozone is seen to be indeterminate in joint regressions, but to indicate concave-upward functions 

in separate regressions. 

We conclude from these data that it is necessary to know the appropriate form of a 
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dose-response function before the "best" pollutant can be selected with confidence. 

CONCLUDING DISCUSSION 

This paper has reviewed the basic assumptions of multiple regression analysis, which are 

undoubtedly familiar to most readers and certainly to all practitioners. However, it is also com­

mon to overlook some of these concepts in the search to derive meaning from data. Certainly, 

peak-hour concentrations have been used with linear model specifications, nonlinear responses 

are rarely examined, and the effects of measurement error have been largely ignored. 

We show by simulation and by numerical experiments that differences in the reliability 

of exposure estimates can be critical in the relationships between correlated variables in multiple 

(joint) regressions and thus in the identification of the "best" variables. Thus, epidemiological 

studies of community air pollution should recognize these inherent limitations in formulating 

their conclusions. Assignment of the total effect to the most statistically significant pollutant 

under such conditions appears to be fraught with the potential for error. Joint regressions of 

correlated variables will yield unbiased estimates of the "true" effects only when their relative 

levels of measurement (or exposure) error are similar. Further, even if the relative measure­

ment errors are similar, if collinearity is severe, neither variable will appear to be significant 

even though their true effects are real. However, unless it can be shown (exogenously) that the 

effects of the omitted pollutant(s) are negligible, regressing each pollutant variable individually 

under these conditions will almost certainly overstate its effect. A research or pollution control 

program based on such findings would also appear to have a high potential for misdirection. 

Finally, nonlinear transformations and the choice of pollutant metric can affect judg­

ments about the relative importance of competing pollutants. While models with linear pollution 
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Table 1 - Means and Standard Deviations (Baseline) 

Variable Mean Std. Dev. 

D 38.6 4.7 
P1 6.1 0.93 
P2 (true) 7.6 0.94 
P2 (meas) 7.6 1.18 
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Table 2 Baseline Regression Statistics 

-------- separate -------------- -------- joint --------

Regress. # 1 2 3 4 5 

Statistic D vs P1, true2 D vs P meas
112

Bl 1.88 1.06 1.88 

sigmaB1 0.45 2.1 0.78 

t 4.47 0.6 2.94 

B2 I.SI 1.07 0.85 -0.01 

sigmaB2 0.46 0.27 2.1 0.5 

t 4.46 3.21 0.48 0.0 

R2 0.17 0.17 0.098 0.17 0.185 

Std error of est. 4.18 4.18 4.37 4.18 4.17 

note to typesetter: set Greek sigma for "sigma" 
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Case# 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

Table 3 Summary of Simulation Results for the Joint Regression 

of Mortality on P1 and P2meas. 

Pollutant Correlations Average Regression Coefficients 

P ,P true P ,P2meas P P2meas1 2 1 1 

0.96 0.75 1.88 -0.01 

0.84 0.75 1.71 0.33 

0.90 0.84 1.75 0.36 

0.96 0.91 2.04 -0.08 

0.72 0.65 1.08 0.87 

0.66 0.29 1.76 0.18 

0.50 0.27 1.52 0.56 
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Table 4 - Bivariate Correlations of Respiratory Hospital Admissions ln Southern Ontario, 

1979-85, Adjusted for Season and day of Week, with Various Air Pollutants and Functional 

Forms of the Pollutant Dose-Response Function 

Pollutant linear 

N02 0.038 

COH 0.034 

so=4 0.034 

03 0.029 

S02 0.026 

TSP 0.021 

Function 

exponential square 

0.024 0.038 

0.032 0.030 

0.027 0.029 

0.053 0.042 

0.011 0.017 

0.018 0.020 

square root natural log 

0.037 0.033 

0.036 0.037 

0.035 0.033 

0.020 0.008 

0.029 0.032 

0.018 0.012 
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Table 5 - Beta Regression Coefficients for Philadelphia (Logarithm) Mortality and Air Pollu­

tion in Joint and Separate Regressions for Various Functional Forms (n=2459). 

A. Deaths at Ages < 65 

LINEAR EXP SQUARE SQ ROOT LOG 

joint TSP 0.0375 0.0509 0.0525 0.0311 0.0359 
regr S02 0.049 0.0417 0.0389 0.0551 0.0522 

03 0.022 0.0182 0.012 0.0317 0.022 

sep 
regr 

TSP 0.068 0.075 0.074 0.065 0.062 
- so2 _ 0.071 0.071 0.066 0.072 0.07 

0.021 0.021 0.021 0.019 0.00503 

B. Deaths at Ages 65+ 

LINEAR EXP SQUARE SQ ROOT LOG 

joint 
regr 

0.0736 0.0832 0.0967 0.0629 0.0566 
0.0835 0.0731 0.0493 0.0991 0.104 

0.0688 0.0684 0.0619 0.0704 0.0795 

sep 
regr 

0.133 0.134 0.134 0.128 0.0121 

0.14 0.135 0.117 0.145 0.14 
0.077 0.082 0.086 0.053 0.05 

Covariates include date, dew point, hot days, mean temperature, and change in barometric pres­

sure. 
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Figure 2. Relationships among the coefficient t values for the 20 trials of the baseline simula­

tion, bivariate regressions. T values from regressions 2 and 3 are plotted against the t value for 

regression 1, for each trial. Source: Lipf ert, 1994a. 

6 

N 5 

l ◄ 
a 3
1 
~ 2 

1 

• 
"true" variable 

0 

measured variable 

l
C 

·•··•-··--•·-·•-••·· \ C C C 

p < 0.05 undwtying relatlcnehlp 

7 

6 • 

I 
w/ "true" 2nd poll. 

5 0 

w/ meas. 2nd poll. 
4 CCC 

:, 0 0 0 

.§. 3... 0 Co r!!I 

i 2 0 ~ 
• • •

8. 1 ■ ■ ■ ■ 

a ■ 
0 --·-· 1 • 

-1 underlying relationship ■ 

... 
■-2 ■ 

-3 
0 1 2 3 4 6 6 7 

t value for pollutant 1 (bivariate) 

Figure 3. Relationships among the P1 t values for the 20 trials of the baseline simulation. T 

values from regressions 4 and 5 are plotted against the t value for regression 1, for each trial 

Source: Lipf ert, 1994a. 
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Figure 4. Relationships among the regression coefficients for P1 for the baseline simulation 

Coefficients from regression 5 (joint with P2(meas) are plotted against the (bivariate) coefficient 

value for regression I, for each trial. Source: Lipfert, 1994a. 

Figure 5. Relationships among the P2 t values for the 20 trials of the baseline simulation. T 

values from regressions 4 and 5 are plotted against the t value for regression 2, for each trial. 

Source: Lipf ert, 1994a. 
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Figure 6. Relationships among the coefficient t values for the 20 trials of the baseline sim ula­

tion. T values for P1 from regressions 4 and S are plotted against the t value for for P , for 
2

each trial. Source: Lipf ert, 1994a. 
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