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Abstract 
This study developed and utilized a method based on intake fraction for evaluating 
inequality in exposure to fine particulate matter (PM2.5). The method utilizes a spatial 
database built from a reduced-complexity chemical transport model and census data for 
groups of different ages, income levels, and race/ethnicity. Given information on 
location and emission rates of PM2.5 or precursor emissions (NOX, SO2, NH3, or VOCs), 
one can calculate, for a specific source, the amount of PM2.5 inhaled by the total 
population and exposure differences among demographic groups. Applying this method 
to an inventory of anthropogenic emissions sources in California shows differences in 
per-capita exposure concentration of up to 15% by income and 35% by race-ethnicity. 
The two top sources of exposure, on-road vehicles and industrial activity, contribute 
most to exposure concentration disparity by race-ethnicity in absolute terms. Some 
minor sources, such as petroleum refining and outdoor emissions from commercial 
cooking, result in higher percentages of exposure differences among demographic 
groups. Patterns in exposure disparity vary among population groups, with some source 
categories most severely affecting one particular group. This impact-oriented evaluation 
of emission sources can help decision makers to screen emission-reduction targets for 
further investigation in order to achieve environmental justice goals. 
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Executive Summary
Background
Long-term exposure to PM2.5 increases the risk of heart disease, lung disease, stroke, 
and numerous other health problems. Improving public health by reducing levels of 
PM2.5 is a goal shared by policymakers and community leaders in California. Although 
policies in California have effectively reduced PM2.5 pollution, not all communities have 
benefitted equally from improvement in air quality. Seeking a more equitable distribution 
of benefits is a matter of environmental justice (EJ). 

Policymaking guided by environmental justice principles aims to find pollution reduction 
strategies that specifically benefits groups that are most vulnerable to air pollution 
health risks due to high exposure levels and other socioeconomic factors. EJ-oriented 
policy making also aims to involve members of vulnerable communities in the decision-
making process. 

The first EJ policy goal, is to reduce emissions from sources with a disproportionate 
impact on low-income groups, racial-ethnic minority groups, or other communities with 
lower socioeconomic status. Determining which sources to target requires highly 
technical research. A vast array of sources contribute to PM2.5 concentrations, resulting 
in a complex spatial pattern of pollution. Once pollutants enter the atmosphere they are 
subjected to complex physical and chemical processes that transport and/or transform 
them into the PM2.5 concentrations measured at air quality monitoring stations. To trace 
local air pollution back to its source requires sophisticated modeling based on complex 
Chemical Transport Models (CTM).1 A second EJ policy goal is to involve members of 
affected communities in the decision-making process. Making the results of technical 
modeling more accessible to a lay audience helps facilitate community engagement. 

Objectives and Methods
In this project we develop a methodology to aid EJ-oriented decision making for PM2.5 
reduction. The method uses a reduced-form air pollution model that requires much less 
computational power than a traditional CTM, allowing for both high spatial resolution 
and broad geographic coverage and allowing for many repeated model runs to evaluate 
the effects of a large set of emission source categories. A key model output is the intake 
fraction (iF) metric,2 which integrates both air pollution modeling and demographic data 
into a single summary value. The iF database we produced can be used to directly 
calculate PM2.5 intake3 for each demographic group from emissions data. We apply this 
model to a subset of the 2014 US National Emissions Inventory for California and the 
surrounding areas and perform sector-by-sector analysis to identify categories of 
sources (e.g. passenger vehicles, refineries, power plants) that contribute to higher 
exposure rates for disadvantaged and minority communities. 

1 Some determination of pollution sources can be made with a chemical analysis of PM2.5 components, 
but this approach provides less detailed source specifications and is not easily scaled up to an analysis of 
a large number of communities.
2 The fraction of emissions emitted by a specific source that are inhaled by the population 
3 Total amount of an air pollutant emitted by a specific source that is inhaled by the population 
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Results 
The modeling results find that groups of lower socioeconomic status – non-white, low-
income, low educational attainment, or linguistically isolated groups – systematically 
experience higher PM2.5 exposure concentrations from all emissions categories in 
California. On average, white populations experience 18% lower PM2.5 exposure 
concentrations than the population average, while Hispanic, black, and Asian 
populations experience and 17%, 15%, and 6% higher-than-average exposure 
concentrations, respectively. Exposure concentration in the lowest income group is 15% 
higher than in the highest income group. We find that while exposure concentration 
varies by income within a racial-ethnic group, the within-group variation is generally 
small compared to the differences among racial-ethnic groups 

Comparing intake attributable to different emission source categories, we find that 
industry and on-road vehicles are the two highest-impact sectors in California, each 
contributing 24% of total PM2.5 exposure concentration. Both sources disproportionately 
impact non-white and low-income groups. A ranking of sector-specific impacts highlights 
subsectors that may be potentially effective targets for emission reductions to lower 
exposure concentration levels for specific groups: metals manufacturing for Asian and 
black communities, waste disposal and incineration for Hispanic and Asian 
communities, and petroleum refining for black communities. Some minor sectors 
showed high disparity in impacts – for example, outdoor emissions from commercial 
cooking, agriculture, and off-road mobile sources – with mixed effects among different 
racial-ethnic, income, and other socioeconomic groupings. 

The iF database showed high spatial heterogeneity and a significant difference between 
population-weighted and emissions-weighted iFs, emphasizing the importance of 
emissions location in determining their health impact. In subsets of the spatial data, we 
see distinct intraurban patterns in iF by racial-ethnic category, demonstrating that the iF 
tool is sensitive to localized demographic differences. This is true for tall stack precursor 
emissions as well as primary emissions. We demonstrate a visualization technique that 
combines total emissions and source-specific iF to highlight sectors with a large total 
impact and high potential for exposure disparity reduction. 

Conclusions 
This work presents a comprehensive analysis of sector-specific PM2.5 impacts from an 
EJ-perspective, including all anthropogenic sources and covering the entire state of 
California. The rankings of major and minor sectors by total impact and exposure 
concentration disparity can inform research and policy priorities. The iF database 
produced from this modeling can also be applied to emissions data compiled by other 
agencies or organizations and can serve as an accessible means for groups with more 
limited technical capacity to explore the EJ impacts of different sources of PM2.5. The 
ongoing application of the iF database with new emissions data or with a more targeted 
focus on specific demographics can continue to serve both public agencies and 
community groups hoping to improve air quality, public health, and environmental 
justice in California. 
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Introduction 

Public Health and PM2.5 Exposure Metrics 
Exposure to fine particulate matter (particles with aerodynamic diameter ≤ 2.5 µm, or 
PM2.5) increases the risk of a range of adverse health outcomes. Risks for chronic or 
recurring health problems include increased rates of asthma attacks in sensitive 
individuals, reduced lung development and increased asthma rates in children, and 
increased hospital visits for respiratory problems (Meng et al., 2010; Patel et al., 2009). 
Chronic exposure also increases the risk of death from respiratory infections, heart 
attack, lung cancer, stroke, and obstructive lung diseases such as emphysema (Burnett 
et al., 2014; Krewski, 2009; Laden et al., 2006). 

Restrictions on emissions from PM2.5 sources have succeeded in reducing ambient 
PM2.5 concentrations in California in the past two decades. However, these reductions 
have not benefitted all communities equally. Low-income communities and communities 
of ethnic or racial minorities in California are still exposed to higher-than-average levels 
of PM2.5 (Marshall, 2008; Marshall et al., 2014; Su et al., 2012). Reducing this exposure 
disparity is an aspect of environmental justice (EJ), i.e., a fair distribution of 
environmental benefits or risks across all groups of people. In accordance with AB 
2312, California Air Resources Board (CARB) seeks to include EJ considerations in 
setting emission control priorities, selecting emission control targets based on both (i) 
reducing aggregate population exposures and (ii) reducing disparity in impacts by race-
ethnicity, income or socioeconomic status. This additional criterion introduces the need 
for additional metrics describing the impacts of emission sources and source categories 
on exposure and health. 

The health impact of a PM2.5 source is determined by the amount that it contributes to 
exposure, not the total mass it emits. This is largely a function of location: a ton of PM2.5 
emitted in the middle of a city, increasing pollution levels for millions, is a much greater 
concern for public health than a ton of PM2.5 released in a remote location. The metrics 
of intake and intake fraction help describe emission sources on terms most relevant to 
public health. The intake metric, in units of mass per time, describes the total amount of 
PM2.5 from a source that is ultimately inhaled. Intake is calculated cumulatively across 
an entire exposed population. Intake fraction (iF) is a unitless metric that normalizes 
intake to emissions rates, describing the intake that results from a single unit of 
emissions. Both intake and iF are calculated for a defined population, which may be as 
broad as the entire population within a specific air basin or as specific as the group of 
passengers waiting at a bus stop. Calculating an array of intake and iF values for a 
given source based on its impact on different demographic groups provides a basis for 
evaluating control measures from both an intake and EJ perspective. 

Methods for Developing iF Values
The iF concept, which links source emissions to population exposures, had been 
described as other terms, including “exposure efficiency,” in publications starting in the 
mid-1980s until the 2002 work by Bennett and colleagues formalized the term “intake 



fraction” (Bennett et al., 2002; Evans et al., 2002). Intake fraction quantifies the 
efficiency of a source in causing PM2.5 exposure; reducing a ton of emissions from 
source with a high iF provides greater reductions of exposure than the same amount of 
emission reduction from a source with a lower iF. The utility of the iF metric is 
documented in the literature and iF has been recommended as one of the best-practice 
indicators for the exposure impacts of particulate matter (Evans et al., 2002; Hauschild 
et al., 2013; Lai et al., 2011). A panel of scientific experts and stakeholders, organized 
by the European Joint Research Centre, reviewed and evaluated a wide set of metrics 
as candidates for a set of ISO standard indicators for life-cycle assessment. Intake 
fraction was found to be the best indicator for evaluating the health impacts of 
particulate matter based on the completeness of its scope, its environmental relevance, 
its scientific robustness, its transparency and reproducibility, and its applicability 
(Hauschild et al., 2013). In California, CARB has successfully used iF to inform 
programs and facilitate source control prioritizations (Marshall and Nazaroff, 2002; 
2004). The 2005 findings of Marshall and Behrentz regarding high iF values of self-
pollution from school buses motivated and supported CARB’s school bus retrofit 
programs (Marshall and Behrentz, 2005). 

Intake fractions may be highly specific or highly generic, depending on research goals. 
At one extreme are iFs estimated for a single source at a single location at a specific 
time, e.g., the exposure at a bus stop to diesel PM from municipal buses during rush 
hour or exposure to bus emissions during transport (Marshall and Behrentz, 2005; Xu et 
al., 2015). Less specific iFs, estimated using mechanistic models, may represent a 
category of sources in a specific area, e.g., ground-level sources of primary PM2.5 within 
a chosen city or county (Greco et al., 2007; Marshall et al., 2006). At the other extreme 
are intentionally generic “archetypical” iFs used in life cycle assessments that draw from 
multiple modeling studies to provide values that can be extrapolated to similar 
circumstances (Fantke et al., 2017; Humbert et al., 2009, 2011). It is desirable to use 
more specific iFs when possible, as there is high variability among iFs in different 
locations due to both population distribution and meteorological patterns. Intake fraction 
values can vary by orders of magnitude among sources, source categories, and source 
locations (Apte et al., 2012; Fantke et al., 2017; Marshall and Nazaroff, 2004). 

Mechanistic models provide the means to calculate intake fraction for many sources in a 
single study using consistent methodology. The simplest modeling framework is a one-
compartment box model that assumes uniformly distributed emissions and pollution 
removal via advection (Apte et al., 2012; Marshall et al., 2005). These require very little 
input data and provide rough estimates of primary pollutant iF within the modeled 
compartment. Other studies have estimated intake fraction using variety of more 
complex mechanistic models (Lamancusa et al., 2017; Marshall et al., 2014; Tainio et 
al., 2014), including steady-state plume models (e.g. AERMOD), non-steady-state 
plume models (e.g. CALPUFF), and Eulerian chemical transport models (e.g. WRF-
Chem, CMAQ). These models integrate more complex meteorological patterns and 
photochemistry, allowing the calculation of iFs of precursor species along with primary 
PM2.5, providing coverage over a larger spatial domain, and in some cases also 
providing higher spatial resolution. However, complex models rely on detailed 

2 



meteorological inputs and a spatially explicit emissions inventory. The uncertainty of 
these inputs is compounded with the uncertainty inherent in the model. Poor quality or 
highly uncertain inputs can make the sophistication of the model irrelevant, but high-
quality input data may not be available in some situations. Another disadvantage of 
complex models is that running such models requires substantial training and is 
computationally expensive, often requiring access to a research-scale computing 
cluster. The computational intensity limits the scale at which these models can be run, 
restricting it to a smaller high-resolution domain (e.g., 1 km2 grid cells within a single 
city) or a low-resolution larger domain (e.g., 150 km2 grid cells within an entire country). 

Source-Receptor modeling grew from the desire to apply a reduced-form model derived 
from more complex atmospheric chemistry modeling that could be used quickly and 
required fewer inputs. This modeling method uses source-receptor (S-R) matrices, 
multidimensional data tables that contain the predicted change in PM2.5 concentration 
(units: μg m-3) resulting at any location from a unit of emission increase or decrease 
(units: tons y-1) in one specified location. The meteorology and atmospheric chemistry 
are built into the S-R matrix so it can be used as a stand-alone tool for estimating 
concentration surfaces and iF. Well-cited iF studies have used S-R models derived from 
AERMOD and the Climatological Regional Dispersion Model (Greco et al., 2007; 
Lobscheid et al., 2012). Source-Receptor modeling has the advantage of providing 
values with a fair degree of specificity over a wide range of source locations, as well as 
emissions source categories if it is paired with an emissions inventory. This study 
employs a source-receptor modeling approach, described in detail in the methods 
section. 

Although there are very few semi-empirical studies that provide benchmark iF values to 
be used to validate or adjust model-based estimates, the range of iF values included 
within the overall body of iF research can serve as a broad indicator of whether a given 
model is producing reliable iF estimates. A collection of these values is included in 
Appendix A and compared with our results in the results section of this report. 

Intake, iF, and Environmental Justice 
A small but growing body of literature presents EJ impacts of emissions alongside 
intake and iF for particulate matter in California. We present a limited review of results 
from five such studies (Cushing et al., 2016; Marshall et al., 2006, 2014; Nguyen et al., 
2018; Su et al., 2012). Most of these have focused on one or more discrete areas within 
the state (air basins or counties) and used diesel particulate matter (DPM) or traffic-
related air pollution as the pollutants of interest. 

In 2006, Marshall et al. reported that per-person DPM intake in the South Coast Air 
Basin was higher for non-whites and for individuals in low-income households than for 
the population as a whole in the South Coast Air Basin. The 2012 work of Su and 
colleagues investigated pollution exposure and environmental justice in three California 
counties: Alameda, Los Angeles, and San Diego. Using a statistical technique that 
compares the observed distribution of exposure against a hypothetical “equality line,” 
they found that within-county inequality was highest for diesel PM exposure throughout 
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the domain, but inequality followed a less consistent pattern across counties for total 
PM exposure. 

The 2014 analysis by Marshall, Swor, and Nguyen divided diesel burning into five 
subcategories, including four mobile sources and one stationary source category, and 
considered environmental justice impacts in the South Coast Air Basin. They found that 
there are potential trade-offs among the goals of reducing intake, targeting high-iF 
sources, and seeking outcomes that improve EJ; their findings indicated that while 
reductions in train emissions are optimal for iF and EJ, reductions from off-road mobile 
sources rate higher for overall intake reduction. 

Complementing these peer-reviewed journal articles, a detailed report was published in 
2015 evaluating the EJ impacts of California’s cap-and-trade program (Cushing et al. 
2016). This report found that the co-emitted PM10 at major GHG-emitting facilities 
tended to impact neighborhoods with lower-income residents and a higher share of 
people of color. Some of these facilities maintained or increased localized pollution and 
purchased out-of-state offset credits, losing potential EJ co-benefits of the policy. This 
case study demonstrates the importance of considering multiple metrics to meet policy 
goals. 

The location of emissions from a source category are as important for EJ outcomes as 
they are for iF, but the spatial pattern of EJ metrics may vary substantially from that for 
iF. Sites that rank high in iF may rank lower in impacts on exposure disparity (Nguyen et 
al., 2018). For example, emissions from a location near a medium-density, low-income 
neighborhood may have a lower iF than the same amount of emissions in a high-
density, high-income urban neighborhood. However, the lower-iF emissions have a 
higher EJ impact because they disproportionately affect a low-income neighborhood. By 
considering an array of metrics, decision-makers can identify emissions reductions that 
are effective at improving EJ and reducing overall exposure. 

The iF Database: Screening Tool for Policy and Environmental Justice Issues
Source-specific intake and iF metrics have great potential to reveal existing inequality in 
PM2.5 exposure concentrations among demographic groups and inform future pollution 
control policy. This report describes the creation and application of a methodology that 
focused on intake and iF. This methodology can provide several advantages relevant to 
public health decision-making: 

1. Broad coverage with high spatial resolution
The iF tool is a spatial database – an organized collection of data tables that are 
indexed to spatial locations. The spatial locations are arranged in a grid that 
covers an area of 1296 km by 960 km, including California and parts of the 
surrounding states. Grid cells are variably sized based on population density, so 
the spatial resolution in urban areas is 1 km2. This allows the tool the breadth to 
evaluate intake throughout the entire state rather than in select counties, and the 
detail to evaluate within-county and within-city differences in intake fraction. 
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2. Inclusion of PM2.5 precursors
Emission sources contribute to PM2.5 in two ways: direct emissions of PM2.5 
(primary PM2.5) and emissions of chemicals that form PM2.5 in the atmosphere, 
known as precursor species. Primary PM2.5 is emitted 100% in the particle phase. 
Precursor species include ammonia (NH3), sulfur dioxide (SO2), oxides of 
nitrogen (NOX), and volatile organic compounds (VOCs). These species are 
emitted as gases and form particle-phase PM2.5 via physical or chemical 
reactions. The major reactions for NH3, SO2, and NOX result in 
particle-phase ammonium sulfate ((NH4)2SO4) and ammonium nitrate (NH4NO3).4 

Previous studies of EJ impacts in California have focused on DPM or other 
primary particulate emissions, which proves a major limitation to a 
comprehensive comparison of impacts among sources: the majority of ambient 
PM2.5 is composed of secondary aerosol species, and most source categories 
contribute more to exposure concentrations via precursor emissions than via 
primary emissions (Bell et al., 2007). We include the four major precursor 
species in our database and investigate the importance of different species in the 
impacts of different source categories. 

3. Detailed demographic categories
For the sake of simplicity, studies often present results along simplified 
demographic divides, e.g., white vs. nonwhite or highest vs. lowest income. This 
tool provides the flexibility to make more detailed comparisons among five 
racial/ethnic categories, five income quartiles, five age group categories, two 
additional groups associated with lower socioeconomic status, and SB 535 
Disadvantaged Communities as determined by the CalEnviroScreen 3.0 
environmental health screening tool (Faust et al. 2017). In addition, it separates 
each racial category by income level so that the tool can show the interaction 
between income and race-ethnicity in exposure levels. 

4. Application to comprehensive inventory of anthropogenic emissions
To demonstrate this methodology, we apply it to the 2014 US EPA National 
Emissions Inventory, grouped into 11 sector categories containing 59 
subcategories. Intake and iF for each subcategory are calculated for each 
demographic group, allowing a rich analysis of sector-specific impacts across 
socioeconomic groups. 

This screening tool is designed to provide a rapid assessment of disparity in PM2.5 
exposure concentration. Because it runs based on pre-calculated chemical transport 

4 In our discussion of intake and intake fraction we refer to particulate species resulting 
from each gaseous species separately, as pNH4 (particulate ammonium), pSO4 
(particulate sulfate), and pNO3 (particulate nitrate). Volatile organic compounds (VOCs) 
include an array of carbon-containing chemicals that are emitted in the gas phase but 
undergo physical processes (condensation) and/or complex reactions and chemical 
transformations in the atmosphere that then cause them to condense into the particle 
phase. We refer to the particle-phase species resulting from VOC emissions as 
secondary organic aerosol (SOA). 
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modeling parameters, it requires a small fraction of the computing power required for a 
more complex model (Tessum et al., 2017). It is accessible as a spatial database, so 
use of this tool requires a limited degree of expertise. More complex analyses can be 
automated using a scripting language (e.g., MATLAB, R, Python), but do not depend on 
an additional program to run. However, simplicity of use requires simplifying 
assumptions that limit model accuracy compared to more complex models. The strength 
of this tool is its ability to compare the relative effects of emissions from different areas 
or sources, and it is designed to complement but not replace existing complex models 
for calculating total PM2.5 concentrations or absolute PM2.5 exposure concentration. 
Model uncertainty and limits on model precision should be taken into account when 
interpreting small differences among groups or emission sources in model output. In this 
light, the database and results presented should be considered as a guiding tool for 
identifying high-impact sources and generating hypotheses that can be further 
investigated with other assessment methods. 
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Methods 

The Intervention Model of Air Pollution (InMAP)
The Intervention Model of Air Pollution (InMAP) is a reduced-complexity alternative to 
comprehensive chemical transport models (CTMs). It operates by modeling annual-
average changes in primary PM2.5 concentration directly emitted from sources and 
secondary PM2.5 concentrations attributable to annual changes in precursor emissions. 
InMAP uses pre-processed physical and chemical information from the output of a 
state-of-the-science CTM (i.e., WRF-Chem) and a variable spatial resolution 
computational grid to perform simulations that are several orders of magnitude less 
computationally intensive than comprehensive model simulations. Typical state-of-the-
science CTMs create a three-dimensional Eulerian grid and simulate changes in 
pollutant concentration in each cell at a high temporal resolution (<1 hour) based on 
physical transport via wind flow and plume rise, emissions, physical removal 
mechanism (e.g., deposition), and interdependent nonlinear physicochemical 
transformation pathways. InMAP uses time-averaged transport and reaction rates in its 
algorithms for emissions, plume rise, transport, transformation, and removal of 
atmospheric pollution. To reduce computational intensity, the algorithms are in some 
cases simplified as compared to similar algorithms in a comprehensive CTM. 

InMAP takes as an input a previously generated data file containing information on 
meteorological and background parameters to provide transport and reaction rates. In 
this case results generated at 12 km resolution from WRF-Chem v3.4 based on year 
2005 inputs (Tessum et al., 2015). InMAP uses a set of emergent atmospheric 
properties generated as model outputs (Tessum et al. 2015, Supplemental Information 
Table 1) to inform the parametric equations used in each grid cell for advection, mixing, 
chemistry, and deposition (Tessum et al., 2017). Due to nonlinear dynamics in the 
transformation of gaseous to aerosol species, concentration estimates for secondary 
species are sensitive to base-year concentrations and have higher errors and biases 
than primary PM2.5, as discussed in Appendix B. 

Instead of solving for pollutant concentrations at specific points in time using temporally 
explicit input data as CTMs does, InMAP directly estimates annual average pollutant 
concentrations using annual average input data and numerical integration. This 
simplification reduces the computational intensity of running InMAP and produces 
metrics relevant to exposure and health risk calculations (annual average PM2.5 
exposure concentration). Model limitations due to this assumption are explained in 
Tessum et al. 2017: 

Many of the chemical and physical processes important to the fate and transport 
of air pollution vary with the time of day and the season. A steady-state, annual-
average model risks being unable to represent the results of these temporally 
explicit phenomena. InMAP mitigates this potential limitation by using temporally 
explicit information wherever possible when calculating annual average input 
properties. For instance, the gas-phase oxidation of SO2 to SO2−	 is represented 
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as the product of the SO2 concentration and a reaction rate constant, but the 
reaction rate constant has a non-linear 15 dependence on temperature and on the 
concentration of hydroxyl radical (HO*), both of which are temporally variable. To 
represent the formation of particulate SO4 (pSO4), InMAP needs an annual 
average rate constant. To capture some of the effects of temporal variability, 
instead of calculating the rate constant using annual average values for 
temperature and HO*, we instead use temporally explicit temperatures, solar 
radiation intensities, and HO* concentrations to then calculate rate constants for 
every hour during the year, and then take the average of these 8760 rate-
constant values. Thus, the reaction rate InMAP uses for a given grid cell is an 
annual-average rate, not a rate calculated using annual-average values for input 
parameters. 

InMAP uses the annual average reaction rates and meteorological data to model the 
concentrations resulting from any given emissions inventory, including inventories for a 
smaller subset of the model domain or inventories from different years. These 
emissions inventories must be spatially explicit, specifying emissions amounts and 
locations, and stack parameters if appropriate. The emissions shapefile may specify 
emissions at a single location or at many locations. This study used the most recent 
comprehensive national emissions inventory available from the U.S. EPA, compiled for 
the year 2014 (U.S. EPA 2014). 

The performance of InMAP has been validated against four commonly used models: 
WRF-Chem, a full chemical transport model; COBRA and AP2 (Air Pollution Emission 
Experiments and Policy), two reduced-complexity models based on a Source-Receptor 
Matrix framework; and EASIUR (Estimating Air pollution Social Impacts Using 
Regression), a reduced-complexity model produced using regression analysis on 
multiple CTM runs (Gilmore et al., 2019; Tessum et al., 2017). A comparison of outputs 
across models has shown satisfactory agreement for all pollutant species considered for 
this project. 
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Figure 1: InMAP model domain for California. 

The largest grid cells, used to cover sparsely populated regions, have an area of 2,304 
km2 (48 km per side). In densely populated urban areas, the resolution is increased, 
with the finest resolution being one cell per km2. Variable grid sizing provides 
computational efficiency and greater power to distinguish effects among city 
neighborhoods. 

InMAP models the concentration of PM2.5 resulting from five pollutant categories: 
primary PM2.5 and four precursor gaseous species: oxides of nitrogen (NOx), sulfur 
dioxide (SO2), ammonia (NH3), and volatile organic carbon species (VOCs). 
Concentrations are modeled for 21,705 variably sized grid cells covering the state of 
California and portions of the surrounding states, shown in Figure 1. The size of each 
grid cell is determined based on population density. The largest grid cells, used to cover 
sparsely populated regions, have an area of 2,304 km2 (48 km per side). In densely 
populated urban areas, the resolution is increased, with the finest resolution being one 
cell per km2. The algorithm ensures that no grid cell larger than 1 km2 has a total 
population of greater than 20,000 people and that no grid cells larger than 1 km2 contain 
a census block group with population density greater than 2,500 people/km. As shown 
in Figure 2, a subset of the national grid centered on the Bay Area of California, the 
algorithm used to create this grid leads to most urbanized areas having much of their 
land area covered with 1 km2 grid cells. Variable grid sizing provides computational 
efficiency and greater power to distinguish effects among city neighborhoods. 
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Figure 2: Inset of the InMAP domain for the San Francisco Bay Area. 

This figure illustrates the increased model resolution in urban areas. Light grey areas 
with black labels indicate US Census-defined urban areas. The smallest of the dark 
grey grid cells are 1 km2 in area. 

Source-Receptor Matrix
To calculate iF and other EJ metrics we rely on an intermediate product of the InMAP 
model called the Source-Receptor (S-R) matrix. The source-receptor relationships 
included in the S-R matrix quantify the marginal change in concentration at each 
receptor site resulting from a unit increase of emissions at the source site. In other 
words, if primary PM2.5 emissions at a specified source grid cell (S, illustrated in Figure 
3) were to increase by 1 kg per year, the S-R matrix would provide the resulting change 
in annual average concentration (units: µg/m3) at any receptor grid cell (R), including the 
source grid cell itself. If the total emissions change at S is known, the change in 
concentration at each R can be scaled up or down linearly. In addition to changes in 
concentration with primary PM2.5 emissions, the relationships included in the S-R matrix 
cover changes in pNH4 concentration per unit NH3 emitted, pSO4 concentration per unit 
SO2 emitted, pNO3 concentration per unit NOX emitted, and SOA concentration per unit 
VOC emitted. 
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Figure 3: Illustration of Source-Receptor Matrix. 

We use the InMAP capability to efficiently calculate the results of marginal emission 
changes to perform the many repeated model simulations required to create a S-R 
matrix. Each simulation assumes an emissions change of 1 short ton per year of each 
pollutant in a single location, and then evaluates the resulting change in PM2.5 
concentration in every location within the domain. The S-R matrix includes the per-unit 
change in PM2.5 concentration for each of the five pollutants at three effective plume 
heights5 and 21,705 emission locations. To reduce computational cost, this method 
makes the simplifying assumption that the impacts of unit emission change of PM2.5, 
VOCs, SO2, NOx, and NH3 on ambient PM2.5 concentrations are independent of each 
other. This means that the model does not adjust secondary PM2.5 formation rates 
based on changes in emissions of other precursor species, which could lead to 
modeling error in some cases (e.g., the interaction between NOX concentrations and 
pNH4 formation (Schiferl et al., 2014)). This limitation is discussed further in Appendix B. 

5 Ground level and low stack, 0-57 meters; medium and high stack, 57-140 meters; and 
high elevation plume emissions, above 760 meters. It is rare that plume heights fall 
between high stack and high elevation plume; in those cases, model values are based 
on a linear interpolation between high and low elevation values. 
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Demographic Data
Environmental justice issues can occur on several dimensions: by race-ethnicity, by 
income level, by age group, and by other factors that lead to differences in 
socioeconomic status. In this work we include a wide range of demographic groups to 
identify specific subgroups most affected by different sectors, and to allow users of this 
tool to select specific groups of interest to them. The total population and population 
share of each demographic group are provided in Table 1. 

Demographic data were obtained for the year 2016 from the American Community 
Survey: 5-Year Data [2012-2016], downloaded from the National Historical 
Geographical Information System (NHGIS), a service that curates US Census and 
census-based data (nhgis.org). Wherever possible, demographic data resolution is at 
the block group level (the level above the smallest unit, census blocks, in the 
geographic hierarchy). The size of block groups relative to the InMAP grid is shown in 
Figure 4. Block group data includes race-ethnicity, age, education, and income data. 
County-level data were used for income levels within racial-ethnic groups and linguistic 
isolation, defined as the share of the population reporting that household members 
spoke English less than “very well.” 

A final population group is included based on the CalEnviroScreen 3.0 tool (Faust et al., 
2017). This tool uses twelve pollution burden metrics and eight population characteristic 
metrics to rank communities within California by degree of vulnerability to environmental 
injustice. The highest-ranking groups are designated as SB 535 Disadvantaged 
Communities. Two of the pollution burden metrics used in CalEnviroScreen are PM2.5 
and Diesel PM levels, so it is expected that this analysis will show elevated per-capita 
PM2.5 intake and population-weighted exposure concentration within Disadvantaged 
Communities. CalEnviroScreen statistics are reported at the census tract level (the level 
above block groups in the census geographic hierarchy). The total population of block 
groups within tracts identified by CalEnviroScreen as SB 535 Disadvantaged 
Communities compose the “Disadvantaged Communities” category. Although impacts in 
this category may be further divided by race-ethnicity, age, and income, that level of 
detail was not included in this analysis. 
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Table 1: Summary of 2016 American Community Survey demographic data within the 
modeling domain. 

Group Total population % of total 
Total 42,748,417 

Racial-ethnic groups White1 17,207,869 40.3% 
Hispanic 15,956,888 37.3% 
Asian1 5,518,299 12.9% 
Black1 2,404,572 5.6% 
Other Race2 1,660,788 3.9% 

Age groups Under 5 2,758,101 6.5% 
Under 18 10,101,687 23.6% 
Over 25 28,322,235 66.3% 
Women of Childbearing 
Age3 

9,401,850 22.0% 

65 and over 5,597,726 13.1% 
85 and over 741,749 1.7% 

Income Quintiles Q1: < $25,000 8,278,553 19.4% 
Q2: $25k - $45k 7,324,192 17.1% 
Q3: $45k - $75k 8,731,699 20.4% 
Q4: $75k - $125k 9,063,866 21.2% 
Q5: > $125,000 9,117,258 21.3% 

Other groups Linguistic Isolation 7,592,076 17.8% 
Under High School Level of 
Education 

4,794,092 11.2% 

Disadvantaged 
Communities 

9,742,626 22.8% 

1 The white, black, and Asian categories include only non-Hispanic identifying 
individuals in those categories. 
2 The “other race” racial-ethnic category includes non-Hispanic multiracial, Native 
American, Pacific Islander, and other races not otherwise specified. 
3 Childbearing age is considered to be between the ages of 18 and 49 

Table 2: Racial-ethnic composition of each income quintile. 

Q1 Q2 Q3 Q4 Q5 
White 2,826,268 2,467,318 3,290,095 3,865,778 4,758,410 

Hispanic 3,381,470 3,485,794 3,894,334 3,280,991 1,914,299 
Asian 888,291 645,729 936,705 1,234,834 1,812,740 
Black 748,835 447,519 462,060 429,598 316,561 

Other Race 348,760 289,636 344,655 349,451 328,285 
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Table 3: Share of racial-ethnic group in each income quintile* 

% Q1 % Q2 % Q3 % Q4 % Q5 
White 16.4% 14.3% 19.1% 22.5% 27.7% 

Hispanic 21.2% 21.8% 24.4% 20.6% 12.0% 
Asian 16.1% 11.7% 17.0% 22.4% 32.8% 
Black 31.1% 18.6% 19.2% 17.9% 13.2% 

Other Race 21.0% 17.4% 20.8% 21.0% 19.8% 
*Rows sum to 100% 

Joining Census Data to InMAP Model
Figure 4 shows an example of the size and spatial arrangement of census block groups 
compared with the InMAP modeling grid in SF area. Because several block groups 
overlap each grid cell and most block groups were not fully contained by one grid cell, 
we used an area-weighting approach to assign population counts to each grid cell. We 
calculated the share of the area of each block group contained in all overlapping grid 
cells, applied that proportion to the population within the block group and assigned the 
resulting share of the population to the grid cell. Data validation was performed to 
assure that all population was assigned to a grid cell and that no block groups were 
double counted. 

Figure 4: InMAP grid overlaying census block groups in the San Francisco area. 
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EJ Metric Calculation 
The two metrics relevant for overall population exposure in this analysis are iF and 
intake, described in Table 4. The first metric, intake, is defined here as the total mass of 
PM2.5 emitted by a given source that is inhaled each day by the entire exposed 
population. An intake of 380 grams per day would mean that emissions of a particular 
pollutant from a particular source category result in 380 grams of PM2.5 being inhaled 
throughout the entire modeling domain. 

Table 4: Metrics for population exposure. 

Metric Equation Example 
(1) Intake: the total amount of an air 
pollutant emitted by a specific source 
that is inhaled by the population per day 

This study assumes a constant 
breathing rate of 14.5 m3 d-1, or 5,292.5 
m3 yr-1 

, 

������ = ( �*�* 
*-. 

Ci, concentration (µg m-3) for 
person i 
n, number of people 
Qi, breathing rate (m3 yr-1) for 
person i 

380 g d-1 

(2) Intake fraction: the fraction of 
emissions emitted by a specific source 
that are inhaled by the population 

Intake fraction is dimensionless but 
conventionally reported in parts per 
million (ppm). If a source has an intake 
fraction of 1 ppm then one millionth of 
the mass emitted from that source is 
inhaled, or one milligram is inhaled per 
kilogram emitted. 

,
1

�� = � 
( �*�* 
*-. 

Ci, concentration (µg m-3) for 
person i 
n, number of people 
Qi, breathing rate (m3 yr-1) for 
person i 
E, total emissions (ton yr-1) 

15 ppm 

Calculation of intake from an S-R matrix is illustrated in Figure 5. Intake from source 
location S for a single receptor location R is calculated by modeling the annual average 
concentration of PM2.5 (units: µg/m3) in R attributable to emissions (units: metric 
ton/year) in S. That concentration is multiplied by the size of the total population within 
that grid cell6 and the average annual volume of air breathed by each individual (units: 
m3/ year). The result is the total mass of emissions inhaled in R from emissions in S. 
The total intake for S is the sum of intake in all receptor locations (21,705 total R cells). 
The intake calculation for a specific subpopulation proceeds the same way, but the size 
of the subpopulation within the cell is substituted for the total population. 

6 Using census-based grid cell population counts to calculate intake and intake fraction 
relies on the assumption that a person’s exposure is determined by their residence 
address. In reality, personal daily exposure may include intake that occurs while 
commuting, at work, and at locations of other daily activities. 
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Figure 5: Illustration of intake calculation from an S-R matrix. 

The second metric, iF, is used to compare the relative importance of sources in terms of 
the impact caused by each ton emitted from a given source. An iF of 15 ppm, for example, 
would mean that 15 grams of PM2.5 are inhaled for every million grams of primary PM2.5 
or precursor pollutant emitted. A higher iF means that per mass emitted, the portion 
inhaled is greater and thus results in a greater impact on exposure concentration per 
mass emitted. For primary PM2.5 an iF of 1 ppm means that one milligram of PM2.5 is 
inhaled for each kilogram of PM2.5 emitted. For precursor species an iF of 1 ppm means 
that for each kilogram of the precursor gas emitted (VOC, NH3, NOX, or SO2), one 
milligram of particulate matter formed from that gas is inhaled (SOA, pNH4, pNO3, or 
pSO4). 

The iF calculation from the S-R matrix proceeds in a similar way as the intake 
calculation, with one change in the units. The concentration in R is expressed as µg/m3 

per unit emissions in S. Absent an S-R matrix, iF can also be calculated by dividing the 
intake metric described above by the total mass of emissions from a specific source. 

The data needs for calculating iF are the S-R matrix and a map of the population 
distribution. To calculate intake, a spatially explicit emissions inventory is also required. 
The inventory must include that location of each point source, and for non-point 
sources, e.g. motor vehicles, estimate the approximate spatial distribution of the 
emissions. “Approximate spatial distribution” refers to the fact that for non-point sources, 
proxy variables are used in place of exact measurements of emissions-generating 
activity. In the case of mobile sources, for example, total emissions based on state- or 
county-level fuel consumption data may be distributed throughout the domain based on 
a combined weighting of location characteristics such as road type, total miles of road 
within an area, and average traffic counts. 
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I:f Ci x Popi 

I:f Popi 

I:~Ci x Ei 

I:~Ei 

The EJ metrics included in Table 5 are derived from the intake metric calculated for 
different demographic groups. The first, total intake difference, compares the total intake 
for one population group against another. Intake difference is not normalized for 
population size, so intake for a larger population will likely be higher than for a smaller 
population even if intake is higher for individual members of the smaller population. 
Population-normalized or per-capita metrics are recommended for comparisons among 
differently sized groups (including most racial-ethnic and age-based categories). The 
second, third, and fourth metrics are population normalized and calculated by 
comparing a specific group against the value for the total population. Per-capita intake 
difference is calculated directly from intake values divided by population size and is 
given in units of mass per time. Per-capita exposure concentration and exposure 
concentration difference are given in more intuitive units of mass per volume, 
comparable to air quality standards. It may be calculated by dividing annual intake by 
the per-capita annual breathing rate of 5292.5 m3/year. Relative percent difference 
expresses the difference in per-capita intake (or exposure concentration) between two 
groups, or one group and the total population, relative to the per-capita intake (or 
exposure concentration) of the total population. Emission sources with low total per-
capita intake may still be useful targets for EJ goals if the relative percent difference is 
high. 

Two additional metrics used throughout the report are the population-weighted average 
and the emissions-weighted average. Population-weighted average is calculated as the 
sum of the product of grid-cell population and the value to be averaged, divided by the 
sum of the population of all grid cells, or 

where N is the total number of grid cells, Popi is the population of grid cell i, and Ci is the 
value of interest (iF, concentration, etc.) in that grid cell. Similarly, emissions-weighted 
average is calculated as the sum of the product of grid-cell emissions and the value to 
be averaged, divided by the sum of the emissions of all grid cells, 

where N is the total number of grid cells, Ei is the emissions in grid cell i, and Ci is the 
value of interest. 
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Table 5: Metrics for environmental justice analysis. 

Metric Equation Example 
(1) Intake difference: ������ ���������� 400 g d-1 

the absolute difference ,8 ,; 

in intake between two = ( �*7 �* − ( �*:�* 
specific demographic *-. *-. 
groups (group of CiG, CiO, annual average concentration (g m-3) 
interest and control). that person i within the group of interest (iG) and 

within another control group (iO) are exposed to 
nG, nO, number of people in group of interest 
(iG) and control group (iO) 
Qi, breathing rate (m3 d-1) for person i, assumed 
equal across groups 

(2) Per-capita intake 
difference: the 
absolute difference in 
mean per-capita intake 
between a specific 
demographic group 
and the mean per-
capita intake for the 
total population. 

��� − ������ ������ ���������� 
,8 ,?∑ ∑*-. �*7�* *-. �*>�* = −�7 �> 

CiG, CiT, annual average concentration (µg m-3) 
that person i within the group of interest (iG) and 
within population as a whole (iT) are exposed to 
nG, nT, number of people in group of interest (G) 

and total population (T) 
Qi, breathing rate (m3 d-1) for person i, assumed 
equal across groups 

10 µg d-1 

(3) Per-capita 
exposure 
concentration 
difference: the 
absolute difference in 
population-weighted 
average exposure 
concentration between 
a specific demographic 
group and the total 
population. 

�������� ���������� 
,8 ,?∑ ∑*-. �*7 *-. �*>= −�7 �> 

CiG, CiT, annual average concentration (µg m-3) 
that person i within the group of interest (iG) and 
within population as a whole (iT) are exposed to 
nG, nT, number of people in group of interest (G) 

and total population (T) 
Qi, breathing rate (m3 d-1) for person i, assumed 
equal across groups 

0.5 µg/m3 

(4) Relative percent 
difference 

|�I7 − �JK|��� = � 
25% 

µCG, mean per-capita intake in comparison 
group 
µVP, mean per-capita intake in specified 
vulnerable population 
µ, population mean per-capita intake 
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Emissions Data 
To calculate total intake and sector-specific impacts we use the most recent US EPA 
National Emissions Inventory. A description of sources included in each category and a 
summary of source-specific emissions is provided in Appendix C. Emissions data are 
available in a spatially explicit file format (ArcGIS shapefiles) with all sources assigned 
to specific point coordinates (longitude and latitude pairs). Area sources are 
represented in the NEI files as a grid of point coordinates. Emissions shapefiles were 
projected to match the InMAP model datum and coordinate reference system. 
Emissions were allocated to each grid cell using a point-in-polygon joining technique. 
When an emissions source point fell on the boundary between one or more grid cells, 
emissions were divided equally among those grid cells to avoid double-counting of 
emissions. 

Tool Limitations 
This methodology relies on simplifying assumptions used to improve model efficiency, a 
reduced scope of emissions input data, and simplifying assumptions in calculating 
exposure concentration. The results are recommended for use as a screening-level 
analysis for investigating the relative magnitude of disparities from different sources, 
sectors, and release environments. However, due to modeling limitations, we advise 
against the use of this data for certain other types of analyses. These results are not a 
substitute for more complex modeling of total PM2.5 concentrations and exposure 
concentrations. The source-receptor matrix simplifies meteorology and atmospheric 
physicochemical transformation rates, which limits the accuracy of absolute PM2.5 
concentration values. The rate of transformation of precursors to secondary PM2.5 is 
derived from a fixed baseline and is not adjusted based on changes to the emissions 
inventory. While the assumption has a small effect for minor perturbations in emissions, 
uncertainty increases for large changes. This tool’s performance in predicting absolute 
concentrations is only fair compared to more complex models, and limits to the 
modeling domain result in systematic underestimation of exposure concentration due to 
long-range transport (See Appendix B). 

The model uses annual average modeling parameters, so it does not produce time-
resolved results. While this tool works well with annual emissions estimates, it is not 
recommended that the tool be used with seasonal or time-varying emissions data, or to 
analyze short-term high concentration events. This tool assumes exposure 
concentration levels based only on place of residence. Estimates do not account for 
activity patterns (time spent traveling, at work, etc.) that affect the exact locations and 
microenvironments where an individual is exposed to PM2.5 throughout the day. The 
model does not support time-resolved concentrations, so it is not appropriate to apply 
time-varying activity patterns or diurnal variation in breathing rate. This simplification 
increases uncertainty in exposure concentration estimates, although other studies have 
found that activity patterns and breathing rate cause a relatively small change in 
estimates of individual exposure to Diesel PM2.5 (Marshall et al., 2006). It was not within 
the scope of this project to account for indoor/outdoor concentration ratios which may 
differ among buildings of different type and age and may be relevant to exposure 
disparity. 
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Example Application of iF Database to Evaluate Environmental Justice Concerns 
To illustrate the use of the iF spatial database, we use the hypothetical example of a 
facility (point source) located in Richmond, California, shown in Figure 6. 

Figure 6: Location of example facility in Richmond, in the north east Bay Area (left) and 
the location of the facility within the iF grid (right). 

Step 1: Assemble emissions inventory
The first step in using the iF tool is to evaluate the total annual emissions from the 
source of interest. For our example, we assume that the facility generates 258 metric 
tons of VOCs and 1.4 metric tons of primary PM2.5 per year, emitted at a low height 
(between ground level and a height of 57 m). 

Note on units: iF values are reported in units of ppm, which translates to 1 µg inhaled 
per 1 g emitted, or 1 g inhaled per metric ton emitted. For simplicity, emission values 
should be converted to metric units before iF values are applied (conversion: 
1 US ton = 0.9072 metric tons). In addition, population-weighted concentration values 
are based on annual intake. To calculate concentrations correctly, emission values 
should express total annual emissions from the sources of interest. 

Step 2: Align emissions location with iF grid
The iF values applied to the emissions source must correspond to the source location. 
For our point source example, we use the coordinates of the facility generating the 
emissions (see Figure 6). The process is more complex for non-point sources that are 
spread over an area that covers multiple grid cells. In that case, the user must 
determine the share of emissions that occur in each grid cell and either perform the 
intake calculation for each cell or calculate a weighted average iF based on the 
proportion of emissions in each cell. This can be accomplished using GIS tools or 
automated using a scripting language. 

Step 3: Look up relevant iF values for pollutant species and height
As described above, iF is highly pollutant- and height-specific. Our example facility 
emits both primary PM2.5 and VOCs at the lowest height category (< 57 m). Based on 
these details, the relevant values from the iF database are those shown in Table 6. The 
iF for the total population is the sum of the iF values for the full set of 
race-ethnicity categories. The magnitude of the iF for each group depends on the size 
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of the total population within that group and the proximity of communities within each 
group to the emissions location. The iF of primary PM2.5 is higher and more strongly 
dependent on the population in close proximity to emissions. We observe in this table 
that the iF for SOA from VOC emissions is of similar magnitude for White and Hispanic 
populations, reflecting the size of both populations in the wider Bay Area, while the 
primary PM2.5 iF is higher for the Hispanic population, due to the demographic make-up 
of the neighborhoods directly surrounding the refinery. 

Table 6: Ground-level iF values for facility in Richmond. 

Total White Black Asian Hispanic/Latinx Other 
VOC 0.23 0.08 0.03 0.03 0.08 0.01 
Primary PM2.5 6.2 1.9 0.8 0.9 2.3 0.3 

Step 4: Calculate intake and population-weighted metrics
Intake for each population category is calculated by multiplying VOC emissions by VOC 
iF, primary emissions by primary iF, and adding together the results. Here, the values 
have been converted to units of grams per day. This value is the cumulative intake of 
the whole population: on average, a total of 0.19 grams of PM2.5 is inhaled per day or 
69.4 grams inhaled per year. To calculate the population-weighted average exposure 
concentration, divide the annual intake by the breathing rate (5292.5 m3 per year) and 
the size of the population (see Table 1). 

The population-weighted average exposure concentration values in row two vary by 
demographic group based on the proximity of the source to where people of different 
races/ethnicities live. When values are normalized by population size, we see that 
per-capita exposure concentrations in minority groups (e.g., Black) is higher than in 
larger groups (e.g., White and Hispanic), even though total intake is lower. The final 
results show that on the whole, the refinery results in higher intake for the Hispanic 
population than for any other group. Per-capita, however, we see that black, Asian, and 
Other Race communities are exposed at higher rates than either white or Hispanic 
populations. The results shown in the final row of the table combine the effects of 
different pollutant species, so they reflect both the local emissions inventory and iF 
values for the area. 

Table 7: Example impact metrics for Richmond facility. 

Total White Black Asian Hispanic Other 

Intake (g/day) 

Pop. wtd avg. exposure
concentration (ng/m3) 

Total difference 

% difference 

0.19 

0.31 

-

-

0.06 

0.25 

-0.06 

-19% 

0.02 

0.64 

0.34 

109% 

0.03 

0.35 

0.04 

14% 

0.07 

0.29 

-0.01 

-5% 

0.01 

0.42 

0.11 

35% 
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Results 

Summary of IF Database
The complex spatial patterns of iF for different pollutants and populations in the iF 
database are critical for evaluating source impacts and are also difficult to describe 
succinctly. We offer several summary descriptions of iF values within the database so 
that a user may better understand and interpret the results of iF-based modeling. More 
in-depth iF summary metrics are presented in Appendix D. 

Three of the main sources of variation in iF are, in general order of importance, 
(1) the pollutant species, either primary or precursor: the iF for primary PM2.5 is 
generally more sensitive to local population density resulting in steeper spatial 
gradients, while precursor iFs show more gradual changes in space. 
(2) the population density near the source location: for all species, iF values are highest 
in dense urban areas and lowest in rural or unpopulated areas. 
(3) the height at which the pollutant is emitted: increased stack height generally results 
in iF values that are lower and less sensitive to local population density. 

A summary of population-weighted average iF values across the entire modeling 
domain for the total population is provided in Table 8, including the mean, median, and 
interquartile range (IQR) which reports the 25th and 75th percentile values. Population-
weighting is often chosen as the best metric for summarizing iFs (Fantke et al., 2017; 
Humbert et al., 2009). Care should be taken in understanding the purpose of 
population-weighting in the iF context, as iF is a metric specific to a pollution source and 
not to the population exposed. Population weighting makes the assumption that the 
distribution of emissions is roughly equivalent to the distribution of the population; this 
assumption may not hold for some source categories, such as agriculture or electricity 
generation. Additional population-weighted iF values specific to each demographic 
group are included in Appendix D, as well as population-weighted mean per-capita 
values. These may be used to calculate the change in intake resulting from a generic, 
distributed increase or decrease in emissions, as well as the relative percent difference 
among demographic groups following that change. 

Primary PM2.5 emissions have the highest population-weighted iF, as primary emissions 
contribute directly to local pollution levels. The mean primary PM2.5 iF value of 12 ppm 
falls within the range of values reported in the literature for the United States: 2 to 16 
ppm overall, and 4 to 25 for urban areas (see Appendix A). Precursor species iFs are 
1/10th to 1/20th the magnitude of primary PM2.5 iFs, with the exception of NH3. For both 
pNO3/NOX and pSO4/SO2, mean values in the model fell within the range of values cited 
in other studies, 0.05 to 0.22 ppb for NOX and 0.3 to 1.3 ppb for SO2. Values for NH3 are 
considered more uncertain than other precursor iFs due to base year sensitivity issues 
(see note on page 6). Few studies include iF values for NH3, but the one comparison 
value of 1.9 ppm suggests that our estimates may be high but are the correct order of 
magnitude (Humbert et al., 2011). Intake fractions based on formation of SOA from 
VOC emissions were not found in the literature. 

22 



Elevated emissions have significantly lower population-weighted iF values, as high 
emission plumes travel away from high population areas before they descend to 
breathing height. The mean iF values for primary PM2.5 and NH3 are greater than 
median values, indicating that there are some areas where the iF of these pollutants is 
atypically high due to a combination of meteorological, chemical, and demographic 
factors. 

Table 8: Population-weighted iF summary values (ppm) for the total population. 

Height7 Mean Median 25th 

percentile 
75th 

percentile 

Primary PM2.5 Height 1 12 9.3 4 17 
Height 2 4.5 2.8 1.3 7.2 
Height 3 1 0.68 0.36 1.7 

VOC/SOA Height 1 0.48 0.43 0.22 0.66 
Height 2 0.19 0.14 0.076 0.3 
Height 3 0.049 0.041 0.022 0.074 

NH3/pNH4 Height 1 5.6 3.8 1.4 8.4 
Height 2 2.2 1.2 0.52 3.6 
Height 3 0.53 0.31 0.18 0.91 

NOX/pNO3 Height 1 0.44 0.41 0.2 0.6 
Height 2 0.19 0.17 0.09 0.27 
Height 3 0.055 0.055 0.028 0.078 

SO2/pSO4 Height 1 0.85 0.61 0.22 1.4 
Height 2 0.88 0.61 0.23 1.4 
Height 3 0.41 0.3 0.14 0.69 

----
----
----
----
----

Emissions-weighted summary iF values are shown in Table 9. This weighting is based 
on the spatial data associated with emissions included in the US EPA National 
Emissions Inventory, and reflects the spatial distribution of pollutants aggregated across 
all source categories. This spatial weighting differs from population weighting: for some 
source categories, emissions occur in remote areas far from population centers. For this 
reason, emissions-weighted iF values are lower than population-weighted values. 
Emissions-weighted average iFs for each emissions sector and subsector are included 
in Appendix D. These source-specific metrics are useful for comparing which source 
categories tend to pollute more in highly populated areas and thus have a greater effect 
on public health. They may also be used to calculate the change in state-wide intake 
that might be expected from a reduction in emissions from a specific source category. 
Source- and demographic-specific iF values are not reproduced in print but are 
available in the accompanying spreadsheet referenced in Appendix E. These values 
may be used to calculate the state-wide EJ impacts of emissions changes from specific 
source categories. 

7 Height 1: ground level and low stack emissions (0-57m), Height 2: medium and high 
stack emissions (57-140m), Height 3: high plume emissions (>760m). 
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Table 9: Emissions-weighted iF summary values (ppm) for the total population. 

Height8 Mean Median 25th 

percentile 
75th 

percentile 
Primary PM2.5 Height 1 6 2.4 0.49 8.9 

Height 2 2.5 0.9 0.24 2.8 
VOC/SOA Height 1 0.35 0.27 0.068 0.55 

Height 2 0.16 0.097 0.049 0.27 
NH3/pNH4 Height 1 1.2 0.42 0.27 0.6 

Height 2 2.5 1.5 0.49 4.4 
NOX/pNO3 Height 1 0.27 0.16 0.036 0.44 

Height 2 0.11 0.076 0.017 0.16 
SO2/pSO4 Height 1 0.39 0.16 0.066 0.44 

Height 2 0.53 0.21 0.057 0.47 

Table 10: Emissions-weighted iF (ppm) by income quintile 

Income Income Income Income Income Height7 Total Q1 Q2 Q3 Q4 Q5 
Primary PM2.5 Height 1 1.3 1.1 1.2 1.2 1.1 6 

Height 2 0.51 0.44 0.52 0.52 0.48 2.5 
VOC/SOA Height 1 0.071 0.061 0.072 0.072 0.068 0.35 

Height 2 0.031 0.027 0.032 0.033 0.032 0.16 
NH3/pNH4 Height 1 0.25 0.22 0.26 0.26 0.25 1.2 

Height 2 0.48 0.42 0.51 0.53 0.52 2.5 
NOX/pNO3 Height 1 0.056 0.048 0.055 0.056 0.052 0.27 

Height 2 0.022 0.019 0.023 0.024 0.022 0.11 
SO2/pSO4 Height 1 0.072 0.063 0.077 0.082 0.089 0.39 

Height 2 0.1 0.093 0.11 0.11 0.11 0.53 
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8 Height 1: ground level and low stack emissions (0-57m), Height 2: medium and high 
stack emissions (57-140m). Although a plume-rise algorithm was integrated into the 
source-specific concentration modeling, it was not used for calculating these emission-
weighted averages so iFs for high-elevation plume emissions (>760 m) are not included 
here. 
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Table 11: Emissions-weighted iF (ppm) by racial-ethnic group 

Height White Hispanic Asian Black Other Total 

Primary PM2.5 Height 1 1.9 2.6 0.85 0.42 0.21 6 
Height 2 0.78 1.1 0.34 0.16 0.082 2.5 

VOC/SOA Height 1 0.12 0.15 0.048 0.023 0.012 0.35 
Height 2 0.052 0.068 0.021 0.0097 0.0052 0.16 

NH3/pNH4 Height 1 0.41 0.55 0.17 0.075 0.041 1.2 
Height 2 0.78 1.1 0.36 0.14 0.075 2.5 

NOX/pNO3 Height 1 0.092 0.12 0.034 0.017 0.0095 0.27 
Height 2 0.039 0.048 0.013 0.0062 0.0039 0.11 

SO2/pSO4 Height 1 0.14 0.15 0.058 0.024 0.014 0.39 
Height 2 0.17 0.23 0.074 0.034 0.018 0.53 

--------
11 l~I _ 

-------~I -
Intake Fraction Differences by Demographic Group
The iF for the total population can be broken down by population divisions such as 
income quintile (Table 10) and race-ethnicity (Table 11). Intake fraction values for 
population subgroups are included in the iF spatial database and are used to calculate 
the EJ metrics described in Table 5. The iF for a specific group depends on the total 
size of that population. Because the size of the population is consistent across income 
quintiles, the total magnitude of iFs shown in Table 10 is also consistent. In contrast, the 
iF for some racial-ethnic minority groups – Asian, black, and other races – is 
considerably lower than for larger groups – white and Hispanic (see Table 1) 

Differences in iFs among demographic groups are also driven by factors beyond the 
size of the population. Emissions-weighted iFs for people of different races and 
ethnicities, income level, or other SES groups also differ if people in those groups tend 
to live closer to emission sources. To isolate the effect of emissions proximity, we 
control for population size. We calculate the per-capita iF value for each group by 
dividing the emissions-weighted mean by the size of the population of that group. Table 
12 and Table 13 show the difference in per-capita emissions-weighted mean iF of each 
group relative to the value for the total population. There is a moderate trend across 
income quintiles shown in Table 12. For most pollutants, per-capita iF decreases with 
an increase in income, reflecting a closer proximity to pollution sources in lower income 
brackets. The trend is stronger for racial-ethnic groups. The major non-white 
populations (excluding “Other Race”) show higher per-capita iF values for most 
pollutants, indicating that more emissions occur near those populations than near 
others. 
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Primary PM2.5 Height 1 -19% 15% 9% 23% -9% 
Height 2 -22% 21% 6% 15% -15% 

VOC/SOA Height 1 -16% 14% 7% 16% -10% 
Height 2 -16% 16% 4% 10% -14% 

NH3/pNH4 Height 1 -18% 18% 3% 7% -14% 
Height 2 -22% 22% 12% -3% -22% 

NOX/pNO3 Height 1 -15% 16% -2% 14% -9% 
Height 2 -12% 16% -9% 0% -9% 

SO2/pSO4 Height 1 -11% 5% 16% 10% -5% 
Height 2 -19% 17% 8% 15% -11% 

9 Height 1: ground level and low stack emissions (0-57m), Height 2: medium and high 
stack emissions (57-140m). Although a plume-rise algorithm was integrated into the 
source-specific concentration modeling, it was not used for calculating these emission-
weighted averages so iFs for high-elevation plume emissions (>760 m) are not included 
here. 
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Table 12: Relative percent difference in emissions-weighted per-capita iF (% difference 
from total population per-capita iF) by income quintile 

Income Income Income Income Income Height9 
Q1 Q2 Q3 Q4 Q5 

Primary PM2.5 Height 1 9% 5% 1% -3% -10% 
Height 2 5% 4% 2% -1% -10% 

VOC/SOA Height 1 7% 4% 1% -2% -8% 
Height 2 3% 2% 1% 0% -5% 

NH3/pNH4 Height 1 5% 2% 1% -1% -6% 
Height 2 -1% 0% 1% 1% -1% 

NOX/pNO3 Height 1 8% 4% 1% -2% -9% 
Height 2 2% 3% 2% 1% -7% 

SO2/pSO4 Height 1 -4% -4% -3% 0% 8% 
Height 2 2% 2% 2% 0% -6% 

Table 13: Relative percent difference in emissions-weighted per-capita iF (% difference 
from total population per-capita iF) by racial-ethnic group 

Height White Hispanic Asian Black Other 



iF 
units: ppm 

>20 

15 

10 

5 

0 

White Hispanic 

Asian Black 

Localized IF Patterns 
The summary statistics provided above integrate the wide-scale spatial patterns in the 
iF database, but the database also includes more localized patterns of iF driven by 
fine-scale differences in population density of different races, income groups, or other 
EJ-relevant groupings. These patterns are most apparent when viewing the iF database 
at a relatively fine spatial scale in highly populated areas. Figure 7 shows the 
heterogeneity of ground-level, primary PM2.5 iF for different racial-ethnic groups within 
the greater Los Angeles area. The highest iF values occur in densely populated central 
Los Angeles, and these are driven mostly by localized exposure in Black and Hispanic 
communities who make up the majority of residents in that area. Intake fraction at the 
periphery of the urban core is lower by ~50%, although there are localized peaks near 
smaller population centers. Often these peaks appear across groups, but some are 
most dramatic for a single race-ethnicity. 

Figure 7: Intake fraction in Los Angeles for ground-level emissions of primary PM2.5. 

Patterns for primary PM2.5 can be further compared against iF patterns for elevated 
emissions of NOX, shown in Figure 8. The iF values shown are not specific to a single 
emissions source category, but apply to any source of emissions of that species and in 
that location. Absolute iF values are much lower for NOX, they show shallower gradients 
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iF 
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from the urban core to surrounding areas, and exhibit less distinct localized differences 
among races/ethnicities. Based on this contrast in patterns, we can expect that highly 
localized sources of primary PM2.5 are more likely to result in high exposure 
concentration disparity among races/ethnicities than sources of NOX. However, even 
elevated precursor emissions do have the potential to cause exposure concentration 
disparity. 

Figure 8: Intake fraction in Los Angeles for formation of particulate NO3 from emissions 
of NOX at an elevation of 57 – 140 meters. 
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Visual Representation of Intake Calculation from Emissions and IF 
The basic calculation underlying the sector-specific impact analysis that follows this 
section is: iF × Emissions = Intake. Figure 9 provides a visual representation of that 
calculation, integrating both ground-level and elevated emissions. Each panel 
corresponds to either primary PM2.5 or a precursor pollutant. The total intake for a 
pollutant is the sum of the intake contributions from each emission sector, shown as 
colored rectangles. For each sector’s rectangle, the width of the base indicates the total 
mass of annual emissions from the sector. The height indicates the iF for that sector, 
determined by the spatial distribution of sector emissions. The product of the base 
(emissions) and height (iF), the area of the rectangle, represents the total intake from 
that sector.10 

A sector may result in high intake if either its emissions or iF are high. As one example, 
total emissions of primary PM2.5 from the industrial sector (panel A, rectangle shown in 
green) are greater than emissions of primary PM2.5 from on-road mobile sources 
(rectangle shown in orange), shown by the greater width of the green rectangle relative 
to the orange one. However, the iF for on-road mobile sources is much higher than for 
the industrial sector because driving tends to occur most in areas with high population 
density. As a result, the total intake from on-road mobile source primary PM2.5 
emissions is higher than that from the industrial sector (146 and 100 kilograms, 
respectively). As another example, the agricultural sector is the dominant source of NH3 
emissions (panel C, rectangle shown in teal), but has a lower iF than most other 
sectors. Agriculture causes greater intake of particulate NH4 than any other source, but 
a small increase in mobile-source or industrial emissions would cause more intake than 
a large increase in agricultural emissions. 

10 The scale of the axes is different for each panel, so the area of a sector’s rectangle in 
one panel should not be compared with the area of a rectangle in another panel. 
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Figure 9: Area charts showing total population intake of PM2.5 from each emitted 
species as the product of annual sector ground-level emissions and sector-specific iF. 

The total population intake of PM2.5 from each source and precursor is equal to the area 
of that sector’s rectangle. The scale varies among panels, so the area of a source in 
one panel should not be compared with that source in another. In each chart, the 
sectors are sorted from lowest to highest iF. This order varies by sector. 
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Sector-Specific Environmental Justice Impacts 

Effects across all sectors 
In the sector-by-sector analysis we examine the relative impact of each category on the 
total population as well as disparity by race-ethnicity, income, age, and other 
socioeconomic factors. Figure 10 shows the population-weighted average exposure 
concentration for each major demographic group, represented as the sum of exposure 
concentrations from each of the 11 sectors. These exposure concentration values 
combine both primary and precursor emissions. The exposure concentration level for 
the total population is included in the top bar and marked with a vertical grey line so that 
subgroup values could be easily compared against the average. At the beginning of 
each individual sector description we include a copy of the top bar and highlight the 
relevant sector to place that sector within the context of total exposure concentration 
levels. 

Figure 10: Contribution of all sectors to population-weighted average exposure 
concentration for different demographic categories. 

The overall population-weighted average exposure concentration from anthropogenic 
emissions in the modeling domain is 6.78 µg/m3 of PM2.5.11 Disadvantaged Communities 
experience the highest average exposure concentrations, in line with the PM2.5 and 

11 These exposure concentration values are useful for comparing the relative 
importance of different sources, but do not reflect the total population-weighted PM2.5 
exposure in California, as this analysis does not include natural sources of PM2.5 (e.g., 
wildfires, biogenic VOC emissions, sea salt), nor does it include the long-range 
transport of anthropogenic pollution from beyond the bounds of the model domain. 
Monitoring data from 2014 indicates that annual average PM2.5 concentrations in 
California air basins ranged from 4.0-22.8 µg/m3, with an average of 10.9 µg/m3 across 
all basins. 
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DPM exposure criteria used by the CalEnviroScreen 3.0 tool (Faust et al. 2017). These 
communities experience higher average impacts from every sector, resulting in 45% 
higher average exposure concentrations compared with the average for the total 
population. The highest overall exposure concentration disparity results from the 
industrial sector, followed by on-road mobile sources, and the highest relative disparity 
results from the natural gas and petroleum sector (see Table 17 and Table E8). 

Among races and ethnicities, Hispanic and black populations are most exposed, and 
Asian population exposure concentration also exceeds the overall average. There is a 
linear decrease in total exposure concentration by income quintile, although the 
difference is less marked than among racial groups. Younger segments of the 
population tend to be more exposed than the elderly. Both lower educational status and 
linguistic isolation are associated with higher exposure concentrations. 

The sectors that contribute most to population exposure concentrations across 
demographic groups are on-road mobile sources and the industrial sector, each 
contributing 24% to average population exposure concentration. The industrial sector 
emits more than twice the mass of primary PM2.5 and NH3 than on-road sources but has 
iF values for PM2.5 and NH3 of 6 ppm and 4 ppm, respectively, compared with 10 ppm 
and 5 ppm for on-road mobile sources, resulting in a magnified effect from the on-road 
mobile source sector. In addition, the large total on-road NOX emissions result in 
substantial additional PM2.5, despite the lower iF for NOX compared to other precursors 
(see Appendices C and D). This specific case illustrates the importance of integrating 
multiple pollutants and using source-specific iFs when comparing sector contributions to 
population exposure concentration. The third largest contributor is the agricultural 
sector, contributing 20% to average exposure concentration. Agriculture generates 90% 
of total anthropogenic NH3 emissions, which drives its high ranking. Residential and off-
road mobile sources contribute 9% and 7% respectively. Total emissions by off-road 
mobile sources are comparable to on-road sources, but their distance from highly 
populated areas results in substantially lower exposure concentrations. The final six 
sectors contribute 5% or less to total population exposure concentration. 

Table 14 and Table 15 show the relative difference in exposure concentrations among 
races and income quintiles by sector. Average exposure concentration among the white 
population is lower for all categories, ranging from 7% to 25% below average. The 
reverse is true for the Hispanic population, with exposure concentrations ranging from 
3% to 23% above average. Exposure concentration disparity is most dramatic for the 
black population, with some minor categories like off-road mobile sources, natural gas 
and petroleum, and outdoor emissions from commercial cooking resulting in exposure 
concentrations 30% to 40% higher than the population average. Exposure concentration 
disparity by sector is mixed for the Asian population, and those in the “other race” group 
tend to be less exposed than the population average. PM2.5 exposure concentration 
decreases with an increase in income for all sectors except residential sources of 
outdoor emissions (e.g., woodstoves, fireplaces, and lawn and garden equipment). 
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Table 14: Difference in population-weighted exposure concentration to PM2.5 by race-
ethnicity (units: µg/m3, relative percent difference). 

Average ∆ White ∆ 
Hispanic ∆ Asian ∆ Black ∆ Other 

Agriculture 1.37 -13% 16% -4% 5% -11% 
Construction 0.28 -12% 11% 0% 21% -6% 

Cooking 0.15 -21% 14% 16% 30% -8% 
Elec. Gen 0.06 -15% 18% -5% 9% -11% 

Fugitive Dust 0.21 -7% 10% -13% 20% -7% 
Industrial 1.64 -25% 23% 12% 10% -18% 

Miscellaneous 0.12 -20% 18% 9% 13% -12% 
Nat. Gas & Petr. 0.22 -23% 19% 3% 42% -8% 

Off road Mob. Srcs 0.50 -21% 14% 14% 30% -9% 
On road Mob. Srcs 1.65 -19% 18% 5% 18% -12% 

Residential 0.58 -9% 3% 14% 12% -3% 
Grand Total 6.78 -18% 17% 6% 15% -12% 

Table 15: Difference in population-weighted exposure concentration to PM2.5 by income 
category (units: µg/m3, relative percent difference) 

Average ∆ Q1 ∆ Q2 ∆ Q3 ∆ Q4 ∆ Q5 
Agriculture 1.37 6% 3% 1% -1% -8% 

Construction 0.28 7% 7% 4% -2% -13% 
Cooking 0.15 8% 6% 2% -3% -11% 
Elec. Gen 0.06 4% 3% 1% -1% -10% 

Fugitive Dust 0.21 11% 10% 6% -3% -19% 
Industrial 1.64 5% 3% 2% -1% -8% 

Miscellaneous 0.12 9% 3% 0% -3% -8% 
Nat. Gas & Petr. 0.22 8% 4% 2% -2% -12% 

Off road Mob. Srcs 0.50 7% 1% -1% -3% -4% 
On road Mob. Srcs 1.65 10% 5% 1% -3% -10% 

Residential 0.58 1% -1% -1% -1% 2% 
Grand Total 6.78 7% 3% 1% -2% -8% 

Relative exposure concentration disparity for age groups and other SES groups are 
shown in Table 16 and Table 17. Those over the age of 65 and 85 tend to be less 
exposed than the population as a whole at a fairly consistent level of 5-10% across 
sources. This is desirable, as those of advanced age are more susceptible to the 
chronic health effects of PM2.5 exposure. Women of childbearing age are more exposed 
than the population average, presenting a possible concern for adverse prenatal and 
neonatal health effects, but the elevation in exposure concentration is minor. The two 
additional markers for low socioeconomic status, adults over 25 with less than a high 
school education and linguistic isolation (households self-reporting as speaking English 
less than “very well”), are both associated with higher PM2.5 exposure concentrations. 
Disparity rates for those with less than a high school education are larger than for any 
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other demographic group apart from Disadvantaged Communities. Disparity rates by 
linguistic isolation are lower for some sources, but notably high for industrial sources 
and the natural gas and petroleum sector. 

Table 16: Difference in population-weighted exposure concentration to PM2.5 by age 
category (units: µg/m3, relative percent difference) 

Average ∆ Age
under 5 

∆ Age
under 

18 

∆ 
Women 
of child 
bearing 

age 

∆ Age
over 65 

∆ Age
over 85 

Agriculture 1.37 2% 2% 2% -6% -5% 
Construction 0.28 3% 1% 3% -7% -7% 

Cooking 0.15 1% -2% 5% -8% -7% 
Elec. Gen 0.06 2% 0% 2% -4% 0% 

Fugitive Dust 0.21 5% 3% 3% -7% -10% 
Industrial 1.64 2% 1% 4% -8% -6% 

Miscellaneous 0.12 1% -1% 5% -8% -5% 
Nat. Gas & Petr. 0.22 2% 1% 4% -8% -7% 

Off road Mob. Srcs 0.50 1% -1% 5% -8% -4% 
On road Mob. Srcs 1.65 3% 0% 5% -9% -5% 

Residential 0.58 0% -2% 3% -4% -1% 
Grand Total 6.78 2% 0% 4% -8% -5% 

Table 17: Difference in population-weighted exposure concentration to PM2.5 by other 
socioeconomic status categories (units: µg/m3, relative percent difference) 

Average 
∆ 

Less than HS 
education 

∆ Linguistic
Isolation 

∆ 
Disadvantaged
Communities 

Agriculture 1.37 16% 9% 41% 
Construction 0.28 11% 1% 13% 

Cooking 0.15 16% 7% 21% 
Elec. Gen 0.06 13% 6% 35% 

Fugitive Dust 0.21 11% -5% 15% 
Industrial 1.64 22% 16% 59% 

Miscellaneous 0.12 19% 13% 55% 
Nat. Gas & Petr. 0.22 18% 16% 70% 

Off road Mob. Srcs 0.50 16% 12% 52% 
On road Mob. Srcs 1.65 18% 11% 53% 

Residential 0.58 3% 6% 11% 
Grand Total 6.78 17% 11% 45% 

Similar tables – the absolute intake difference and relative percent difference by 
demographic group – are tabulated separately for each sector in Appendix E. 
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The interaction between race-ethnicity and income in total exposure concentration level 
is illustrated in Figure 11. The colored icon indicates the average exposure 
concentration for the given racial-ethnic group from sector and the gray icons indicate 
the exposure concentration at different income quintiles within that racial-ethnic group. 
Overall, we see that the distribution of exposure concentrations across income quintiles 
within a race-ethnicity is smaller than the distribution of exposure concentrations among 
races/ethnicities; White populations are less exposed to PM2.5 regardless of income 
level, and Black populations are more exposed regardless of income level, as are 
Hispanic populations for every source except fugitive dust. This pattern is less 
consistent for the Asian population, in which higher income groups are less exposed 
than the population average while lower income groups are more exposed. For some 
minor sectors, the exposure concentration range by income is wide for some racial-
ethnic groups. 

Figure 11: All-sector relative percent differences in population-weighted average PM2.5 
concentration compared to total population average, shown by race-ethnicity (colored 
circle icons) and by each income quintile in each racial-ethnic category (gray square 
icons). 
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Agriculture 

The agriculture sector contains 7 subcategories: fertilizer application, agriculture-
specific industrial processes, livestock production, off-road mobile agricultural 
equipment, pesticide application, and tilling. PM2.5-related emissions in this overall 
category are dominated by ammonia (NH3). Agriculture is also a significant source of 
VOCs, NOX, and primary PM2.5. Agricultural emissions are modeled primarily as area 
sources based on land-use designations, with some livestock waste subcategories 
modeled as point sources. 

Figure 12: Agricultural sector: contribution of sector categories to population-weighted 
average exposure concentration for different demographic groups. 

The agricultural sector is the third-largest contributor to population-weighted average 
exposure concentration (20%). The dominant source of PM2.5 is livestock, followed by 
industrial processing and fertilizer application. Among races and ethnicities, the 
Hispanic group is most disproportionately exposed to agricultural PM2.5, with the 
greatest exposure concentration disparity resulting from livestock production. The 
highest relative disparity occurs among people of color from industrial agriculture 
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processes. Disparity by income category is minor, as is disparity by age. Among all 
demographic groups, disadvantaged communities experience the highest average 
exposure concentration from the agriculture sector. 

Income quintiles within racial-ethnic groups play a stronger role in exposure 
concentration within the agricultural sector than in other sectors. Those in the highest 
income quintile for Hispanic, Asian, and black populations are markedly less exposed to 
agricultural sources than those in lower quintiles. This pattern does not occur within the 
white or “other race” populations. 

Figure 13: Agricultural sector: relative percent differences in population-weighted 
average PM2.5 concentration compared to total population average for categories. 

Exposure concentration difference by racial-ethnic group is shown as colored circle 
icons, and exposure concentration for income quintiles within in each racial-ethnic 
category are shown as gray square icons. 
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Construction 

The construction sector is divided into five categories: off-road mobile construction 
equipment, fugitive emissions during road construction, fugitive dust from other 
construction activities, demolitions, and site preparation. The sector is a minor 
contributor to the population-weighted average exposure concentration (4%). The 
dominant source of exposure concentration within the construction sector is off-road 
mobile construction equipment, followed by fugitive dust from road construction and 
other sources. The contribution of site preparations and demolitions are sufficiently 
negligible that they are not visible in Figure 14. Black and Hispanic populations are 
more highly exposed than other races and ethnicities across all construction sector 
categories, with the exposure concentration disparity for the Black population greater 
than for any other demographic group. Exposure concentration is lower among higher 
income quartiles and the aged population, and higher for those with less than a high 
school education and Disadvantaged Communities. 

Figure 14: Construction sector: contribution of construction sector categories to 
population-weighted average exposure concentration for different demographic groups. 
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Within each racial-ethnic group, those in high-income categories are least exposed. 
Demolitions and site preparation caused high relative exposure concentration disparity 
for some race-income groups, but the absolute magnitude of this disparity is negligible. 

Figure 15: Construction sector: relative percent differences in population-weighted 
average PM2.5 exposure concentration compared to total population average for 
categories. 

Exposure concentration difference by racial-ethnic group is shown as colored circle 
icons, and exposure concentration for income quintiles within in each racial-ethnic 
category are shown as gray square icons. 
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Cooking 

This category includes the contribution of commercial cooking emissions to ambient 
outdoor PM2.5 concentrations. This category includes two types of activities: charbroiling 
and frying. Cooking creates emissions of both primary PM2.5 and VOCs. Emissions in 
this category are modeled as an area source based on county-level assessment of the 
number of restaurants and the level of charbroiling and frying activity at each restaurant. 

As a sector, cooking is a minor contributor to population-weighted average exposure 
concentration (2%), but its impacts are of a magnitude comparable to many individual 
categories within the industrial or off-road mobile sector. Cooking disproportionately 
affects Hispanic, Asian, and black populations, and causes comparable exposure 
concentration disparity for those with less than a high school education and 
Disadvantaged Communities. 

Figure 16: Cooking: contribution to population-weighted average exposure 
concentration for different demographic groups. 

Higher income populations on the whole experience lower cooking-related PM2.5 
exposure concentration, but income categories within racial-ethnic groups show less 
consistent effects: higher income groups in white and “other race” populations 
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experience higher exposure concentrations than other income groups, while the 
opposite is true for Asian and black populations. 

Figure 17: Cooking: relative percent differences in population-weighted average PM2.5 
concentration compared to total population average. 

Exposure concentration difference by racial-ethnic group is shown as colored circle 
icons, and exposure concentration for income quintiles within in each racial-ethnic 
category are shown as gray square icons. 
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Electricity Generation 

Electricity generation sources are categorized by the type of fuel used by the facility: 
coal (of varying grades), residual oil, distillate oil, natural gas, process gas, landfill gas, 
and various minor fuel types contained in an “other” category. Electricity generation 
facilities are point sources that emit both at ground-level and in elevated stacks. 

The electricity generation sector is the smallest contributor to population-weighted 
average exposure concentration (1%). This result stands in contrast with patterns 
observed for the whole of the continental United States, as electricity generation in the 
eastern US tends to be more emissions intensive. Within the sector, natural gas 
electricity generation is the dominant source of exposure concentration, and results in 
higher exposure concentrations for Hispanic and black populations as well as 
Disadvantaged Communities. 

Figure 18: Electricity generation: contribution of sector categories to population-
weighted average exposure concentration for different demographic groups. 
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As shown in Figure 19, PM2.5 exposure concentrations from natural gas emissions, the 
highest-impact electricity generation source, shows much greater variation due to 
race/ethnicity than income level. Some other electricity-generating sources show high 
relative differences in exposure concentration for some categories (e.g., process gas), 
but contribute a negligible amount to total exposure concentration disparity. 

Figure 19: Electricity generation: relative percent differences in population-weighted 
average PM2.5 concentration compared to total population average for categories. 

Exposure concentration difference by racial-ethnic group is shown as colored circle 
icons, and exposure concentration for income quintiles within in each racial-ethnic 
category are shown as gray square icons. 
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Fugitive Dust 

Fugitive road dust includes resuspended primary PM2 emissions from paved and 
unpaved roads and road sanding/salting. Fugitive dust from other sources, including 
construction and agriculture, are included within subsections of those sectors. Fugitive 
dust is a minor contributor to the population-weighted average exposure concentration 
(3%). This sector serves as a clear example of the importance of proximity to population 
exposure concentration: fugitive dust from paved roads contributes only 40% to total 
fugitive dust emissions but causes 80% of total exposure concentration from the 
category. Paved roads result in 10% higher exposure concentration for the Hispanic 
population and 20% higher exposure concentration for the black population, while 
unpaved roads result in 20% higher exposure concentration for the white population and 
lower exposure concentration among all other racial-ethnic groups. High income is 
associated with lower exposure concentrations across all races and ethnicities. 

Figure 20: Fugitive dust: contribution of fugitive dust categories to population-weighted 
average exposure concentration for different demographic groups. 
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Figure 21: Fugitive dust: relative percent differences in population-weighted average 
PM2.5 concentration compared to total population average. 

Exposure concentration difference by racial-ethnic group is shown as colored circle 
icons, and exposure concentration for income quintiles within in each racial-ethnic 
category are shown as gray square icons. 
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Industrial Sources 

Industrial emission sources include a variety of types of facilities and several different 
types of processes in the extraction, manufacturing, storage, and distribution of 
materials such as minerals, metals, biofuels, wood products, textiles, organic solvents, 
and cement. This category also includes emissions that result from the manufacture of 
secondary products derived from these materials. The 10 subcategories for industrial 
sources are organized broadly by the processes involved in industrial activity: surface 
mining and stone quarrying (non-metal); fuel combustion; metals processing; chemical 
and allied product manufacturing; solvent utilization; transport, storage and marketing of 
materials (TSM); waste disposal and incineration; and other miscellaneous industrial 
processes. Two specific materials of interest -- cement/concrete and cogeneration 
facilities -- are considered separately. 

Figure 22: Industrial sector: contribution of industrial sector categories to population-
weighted average exposure concentration for different demographic groups. 

The industrial sector matches on-road mobile sources as the top contributor to 
population-weighted average exposure concentration (24%). Within the sector, the 
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category of waste disposal and incineration causes the largest impact, followed by fuel 
combustion, other activity, solvent utilization, and TSM. This sector results in substantial 
exposure disparity for Disadvantaged Communities, which experience average 
exposure concentrations 59% higher than the population as a whole. Chemical 
manufacturing, fuel combustion, and TSM result in 71%, 64%, and 111% higher 
exposure concentrations in Disadvantaged Communities. Pollution from the industrial 
sector results in 23% higher exposure concentration for the Hispanic population, 22% 
higher exposure concentration for those with less than a high school education, and 
59% higher exposure concentration for Disadvantaged Communities. The absolute 
exposure concentration difference for these three categories is higher for the industrial 
sector than for any other sector, including on-road mobile sources. Asian and black 
populations and linguistically isolated populations are exposed >10% more than the 
population-weighted average. 

The major sources of exposure concentration disparity in the industrial sector -- fuel 
combustion, waste disposal, TSM, and the other processes category -- are all elevated 
for Hispanic, Asian, and black populations, but the magnitude of the difference is 
consistently highest for the Hispanic population, lower for the black population, and 
least for the Asian population. The exception is waste disposal, for which the black 
population experiences lower than average exposure concentration. Several minor 
categories follow differing patterns: metals processing results in much higher relative 
exposure concentrations for Asian, black, and “other race” populations than for any 
other category, and surface mining results in higher exposure concentration for white, 
black, and “other race” populations. While patterns by income follow the typical 
decrease in exposure concentration with increase in income, the pattern is reversed for 
waste disposal and varies further for income categories within racial-ethnic groups. 
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Figure 23: Industrial sector: relative percent differences in population-weighted average 
PM2.5 concentration compared to total population average. 

Exposure concentration difference by racial-ethnic group is shown as colored circle 
icons, and exposure concentration for income quintiles within in each racial-ethnic 
category are shown as gray square icons. 
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Miscellaneous 

This category includes various sources of fuel combustion that did not fit into other 
sectors: fuel combustion for commercial processes, fuel used in engine testing, and 
several generic/unspecified source categories. Miscellaneous emission sources are a 
minor contributor to population-weighted average exposure concentration (2%). These 
sources do not contribute to high rates of exposure disparity for most demographic 
groups, although Disadvantaged Communities experience 55% higher exposure 
concentrations from these sources than the average population. These sources cause 
moderately higher impacts among Hispanic, Asian, and black populations and lower-
income groups, ranging from 9% to 18% higher. As shown in Figure 25, the variation 
among income groups within racial-ethnic categories is moderate for Asian and White 
communities but is small for the other categories. 

Figure 24: Miscellaneous sources: contribution to population-weighted average 
exposure concentration for different demographic groups. 
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Figure 25: Miscellaneous sources: relative percent differences in population-weighted 
average PM2.5 concentration compared to total population average. 

Exposure concentration difference by racial-ethnic group is shown as colored circle 
icons, and exposure concentration for income quintiles within in each racial-ethnic 
category are shown as gray square icons. 
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Natural Gas and Petroleum 

The natural gas and petroleum industry is considered separately from other industrial 
activity because it is a major contributor to VOC emissions and is of particular interest 
for environmental justice concerns. The categories included in this sector are oil and 
gas production; petroleum refining; petroleum transport, storage, and marketing (TSM); 
and asphalt manufacturing. This sector is a minor contributor to population-weighted 
average exposure concentration (3%), and compared with other industrial sector 
categories it ranks fifth. However, the relative exposure differences from this category 
are substantial. Disadvantaged communities experience 70% higher exposure 
concentrations from this category than the population as a whole, with 102% higher 
exposure from refinery operations. This sector also has a disproportionate impact on the 
black population and to a lesser degree the Hispanic population, as well as those with 
less than a high school education and the linguistically isolated population. 

Figure 26: Natural gas and petroleum: contribution to population-weighted average 
exposure concentration for different demographic groups. 
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The relative impacts of the natural gas and petroleum industry are higher for the black 
population than any other, particularly from refinery activities. Counter-intuitively, 
exposure disparity from refinery operations is greater for higher-income sections of the 
black community, while the opposite is true for oil & gas development. More generally, 
exposure concentration patterns by income are inconsistent within and across racial-
ethnic groups, with no consistent income patterns within the Hispanic and Asian 
populations. 

Figure 27: Natural gas and petroleum: relative percent differences in population-
weighted average PM2.5 concentration compared to total population average. 

Exposure concentration difference by racial-ethnic group is shown as colored circle 
icons, and exposure concentration for income quintiles within in each racial-ethnic 
category are shown as gray square icons. 
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Off-Road Mobile Sources 

This sector includes emissions from a diverse range of mobile equipment that operate 
off-road. They include three major means of passenger and goods transport – aircraft, 
marine, and rail – as well as a variety of industrial, commercial, and recreational 
equipment powered by diesel, gasoline, or an alternative fuel. Several categories of off-
road mobile sources are accounted for in other sectors: equipment used for agriculture 
or construction are featured in their respective sections, and lawn and garden 
equipment are featured in the residential section. 

Figure 28: Off-road mobile sources: contribution to population-weighted average 
exposure concentration for different demographic groups. 

Off-road mobile sources are the fifth-largest contributor to population-weighted average 
exposure concentration (7%). Emissions from off-road mobile sources are of 
comparable magnitude to on-road mobile sources, but the more remote location of off-
road emissions decreases the resulting exposure concentration. Exposure 
concentrations are higher than average for Hispanic, Asian, and black populations. The 
difference for the Hispanic population is driven by rail emissions, while the difference for 
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the Asian population is driven by marine and gasoline vehicles, and the difference for 
the black population is driven by aircraft. High exposure concentration in Disadvantaged 
Communities is driven equally by rail and aircraft, followed by other diesel and gasoline 
sources. The variation in exposure disparity rates among income categories within 
racial-ethnic groups is small relative to differences between groups. Exposure 
concentrations from off-road sources are not consistently higher for low-income 
categories, and exposure concentrations from marine sources are higher for the highest 
income category across all racial-ethnic groups. 

Figure 29: Off-road mobile sources: relative percent differences in population-weighted 
average PM2.5 concentration compared to total population average. 

Exposure concentration difference by racial-ethnic group is shown as colored circle 
icons, and exposure concentration for income quintiles within in each racial-ethnic 
category are shown as gray square icons. 
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On-Road Mobile Sources 

On-road mobile sources include light-, medium- and heavy-duty vehicles used for 
passenger transport, goods transport, and municipal services. This sector accounts for 
tailpipe, brake, and tire-wear emissions from mobile sources as well as fugitive VOC 
emissions at fueling stations. On-road mobile sources are the largest contributor to NOX 
emissions in the modeling domain, and a major contributor to primary PM2.5 and VOCs. 

Figure 30: On-road mobile sources: contribution to population-weighted average 
exposure concentration for different demographic groups. 

On-road mobile sources are matched with the industrial sector as the top contributor to 
population-weighted average exposure concentration (24%). Exposure concentration 
from this sector is strongly dominated by gasoline passenger vehicles and diesel heavy-
duty vehicles. The average exposure concentration for Disadvantaged Communities is 
53% higher than for the population as a whole. Both Hispanic and black populations 
experience approximately 20% higher exposure concentration from both of these 
categories compared with the population average. Asian populations experience 10% 
higher exposure concentration from gasoline passenger vehicles but slightly lower-than-
average exposure concentration from diesel heavy-duty vehicles. Exposure 
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concentration is inversely related to income level among the population as a whole, but 
patterns are mixed for income categories within racial-ethnic groups. 

Figure 31: On-road mobile sources: relative percent differences in population-weighted 
average PM2.5 concentration compared to total population average. 

Exposure concentration difference by racial-ethnic group is shown as colored circle 
icons, and exposure concentration for income quintiles within in each racial-ethnic 
category are shown as gray square icons. 
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Residential Sources 

Residential emissions sources include burning of wood, natural gas, and other fuels; 
residential solvent use; and lawn and gardening equipment. This sector is the fourth-
largest contributor to population-weighted average exposure concentration (9%), but 
contributes less to exposure disparity than the other sectors. The dominant sources of 
exposure concentration within this category are residential natural gas use and wood 
fireplaces, followed by lawn & gardening equipment and solvent use. This sector results 
in 11% higher exposure concentrations for Disadvantaged Communities compared to 
the population as a whole, but some sources offset others: outdoor emissions from 
residential natural gas burning result in 43% higher exposure concentrations for 
Disadvantaged communities, while woodstoves result in substantially lower exposure. 
Overall, this sector has only a slightly higher impact for some racial-ethnic groups 
(Hispanic and Asian), but exposure concentration disparity varies substantially by 
emissions source category. As shown in Figure 33, natural gas, lawn & garden, and 
solvent use all disproportionately expose Hispanic and black populations, while the 
reverse is true for wood fireplace emissions. 

Figure 32: Residential sector: contribution to population-weighted average exposure 
concentration for different demographic groups. 
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Figure 33: Residential sector: relative percent differences in population-weighted 
average PM2.5 concentration compared to total population average. 

Exposure concentration difference by racial-ethnic group is shown as colored circle 
icons, and exposure concentration for income quintiles within in each racial-ethnic 
category are shown as gray square icons. 
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Discussion 
This report presents a new methodology for deriving source-specific EJ metrics for 
screening-level policy analysis. The reduced-complexity model we use provides several 
novel aspects to this analysis. First, it allows both high spatial resolution and broad 
geographic coverage. We see from the analysis of iFs that this high spatial resolution is 
important for detecting differences in intake and exposure concentration among different 
demographic groups due to small-scale variation in race-ethnicity and income levels, a 
finding that also been shown in other studies (Su et al. 2015, Paolella et al. 2018). The 
geographic breadth of the modeling provides a spatial database of intake metrics that 
can be applied consistently across all regions of the state of California, in contrast to 
previous studies that used more geographically restricted modeling and only provided 
comparisons among a select group of regions. The computational efficiency of the 
reduced-form model also allows for many repeated model runs, enabling us to analyze 
intake and EJ impacts for a detailed and comprehensive set of emission sources. This 
level of detail reveals several source-specific patterns that would not have emerged 
from an analysis of broader emission categories, and it provides a set of source-specific 
iF values that can be applied in future studies connecting reductions in sector emissions 
with reductions in intake for different communities and demographic groups. 

Findings From the iF Spatial Database
The database of metrics available from this project can facilitate intake and EJ analysis, 
either simplified or highly detailed, by translating emissions changes into health-relevant 
metrics. For a rough approximation of state-wide intake changes resulting from state-
level emission control measures, population-weighted iF values12 can be multiplied with 
the proposed emission changes, in line with methods described by Humbert et al. 2011, 
giving the state-scale intake differences by race-ethnicity, income, etc. This calculation 
may be useful for a first-level estimate of impacts when the geographic distribution of 
emissions changes and specific target sector is unknown. For a state-wide reduction of 
emissions from a specific source category (e.g., waste disposal, industrial solvent use, 
on-road passenger vehicles, etc.), source-specific iF values13 can be used to calculate 
the total expected reduction of PM2.5 intake from a proposed emissions change. The EJ 
implications of that emissions reduction can be analyzed by considering the difference 
in per-capita intake changes among the demographic groups of interest.14 

Another major analytical use of the iF database is to compare the efficiency of control 
strategies by source and by pollutant. The variation of iF among source categories 
reflects a substantial sector-to-sector difference in the potential to reduce PM2.5 
exposure through reductions of primary or precursor emissions: on-road mobile 
sources, construction, and outdoor emissions from commercial cooking and residential 
sources all have an outsized effect on PM2.5 exposure concentrations due to their 

12 Appendix D, Table D2 – D3 
13 Table D10 
14 Age-, race-ethnicity-, and income-specific iF values by source category are not 
reproduced in print but are available in the accompanying spreadsheet described in 
Appendix F. 
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proximity to urban areas. In contrast, pollution associated with electricity generation and 
agriculture has a lower impact on exposure concentrations relative to emissions levels. 
Impacts of different sectors also vary by the share of pollution emitted as precursors in 
addition to primary PM2.5. Primary PM2.5 contributes more to overall PM2.5 intake than 
any other pollutants, but in combination precursor species account for the majority of 
PM2.5 intake, given their significantly greater emissions rates. This balance is visually 
demonstrated at the broad level in Figure 9, which ranks sector categories and shows 
intake for the total population. A more detailed analysis of the state-wide exposure 
concentration change for specific demographic groups and subsectors can be 
conducted with the source- and demographic-specific iF values provided in the 
accompanying spreadsheet, and policymakers can pair these iF values with emission 
control cost estimates to identify cost-efficient options from an array of potential 
emission control strategies. However, intake and EJ metrics calculated from population-
or emissions-weighted average values are broad estimates to be used as guideline 
values, and cost-effectiveness estimates of specific emission control measures should 
be verified with more complex modeling. 

Some additional conclusions can be drawn from summary statistics and maps of the iF 
database, which broadly characterize spatial and pollutant-specific patterns: iF is 
consistently highest for primary PM2.5 and lower for precursors, consistent with patterns 
reported in the literature. Considering the interquartile range of values (25th to 75th 

percentile values), we see population-weighted values vary by 200% to 400% between 
upper and lower quartiles, indicating the wide range of conditions in communities across 
California. Furthermore, emissions-weighted upper and lower quartiles span an order of 
magnitude, reflecting the fact that the emissions sources are not distributed in 
proportion to population density, leading to substantial variation in sector-specific iFs 
(Appendix D). This shows that a spatially explicit iF database provides a stronger basis 
for comparing sector impacts than archetypal or summary values. For regional-scale 
emission reductions it is more appropriate to use spatially explicit iF values included in 
the spatial database, following the example provided on pages 20-21 of the methods 
section. 

In addition to more accurately representing sector impacts, using a model with high 
spatial resolution in highly populated areas is critical in the identification of 
environmental justice issues. Su et al. identified significant within-county and 
within-neighborhood variation in environmental risk from diesel PM exposure (Su et al., 
2012). This pattern is not well characterized by population-weighted summary statistics 
of iF but appears clearly in iF maps of urban areas (Figure 7 and Figure 8). Ground-
level iF for primary PM2.5 – analogous to DPM – is highly sensitive to demographic 
heterogeneity, in line with the findings of Su et al. Furthermore, localized difference in iF 
across racial-ethnic categories is also apparent in elevated emissions of precursor 
species, although these have weaker gradients and less sensitivity to high-resolution 
population patterns. This shows how within a single county there may be highly effective 
emission reduction targets for EJ goals. 
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Although we only highlighted two pollutants in Los Angeles, the database could be used 
to look at other counties or air basins and consider a wider range of pollutants. 

Sector-Specific Environmental Justice Impacts
The fundamental finding of the sector-specific environmental justice analysis is that 
groups of lower socioeconomic status – non-white, low-income, low educational 
attainment, or linguistically isolated groups – systematically experience higher PM2.5 
exposure concentration from all emissions categories. This finding reinforces the 
conclusions of earlier studies and indicates that there are still major environmental 
justice issues to confront in PM2.5 control strategies in California. A more detailed review 
of the results shows that the magnitude of exposure concentration disparity varies by 
source category. Two of the highest-impact sectors – industrial and on-road mobile 
sources – are also major contributors to exposure concentration disparity by race-
ethnicity and income group. These are both clear targets for emission reductions 
measures, and the breakdown of impacts by subsector categories suggests possible 
reduction strategies within the sector. Some minor sectors show a high relative percent 
difference in exposure concentrations for low-income or non-white groups – these may 
also be useful targets, as a small emissions reduction would provide more benefits for 
exposure concentration equality. For many of these minor sectors, patterns vary 
substantially among demographic groups. 

The findings of this study align with the results of earlier work, both in the overall 
magnitude of disparity and demographic patterns. Marshall et al. (2006) estimated that 
within the South Coast Air Basin, the white population experienced 15% lower DPM 
exposure, while Hispanic, Black, and Asian/Pacific Islander populations experienced 
20%, 15%, and 10% higher exposure. Our findings are similar, even when including the 
population of the whole state and secondary PM in the calculation: 18% lower PM2.5 
exposure concentration among the white population, and 17%, 15%, and 6% higher 
exposure concentrations among Hispanic, Black, and Asian populations. Su et al. 
(2012) also observed significant patterns of inequality in DPM exposure for non-white 
communities. In contrast with our results, Su et al. observed that patterns of inequality in 
total PM2.5 were much weaker. We find that non-diesel sources that predominately 
produce secondary PM2.5 are among the largest contributors to exposure concentration 
disparity—for example, on-road gasoline vehicles, petroleum refining, transport and 
storage of industrial materials, and livestock production. 

The relative importance of race-ethnicity vs. income in exposure concentration disparity 
is often considered in EJ studies. Su et al. (2012) found that patterns of inequality based 
on poverty level were similar to those based on race-ethnicity but noted that there is 
significant correlation between the two variables. We account for this correlation by 
dividing each racial-ethnic group by income level and noting how patterns differ when 
comparing the highest income quartile across all races vs. the lowest (Figure 11 and 
similar figures within subsector analyses). The broad conclusion is that while exposure 
concentration varies by income within a racial-ethnic group, the within-group variation is 
generally small compared to the differences among racial-ethnic groups; in other words, 
the high-income segment of a non-white group is typically still exposed to higher PM2.5 
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concentrations than the low-income segment of the white group. This generally matches 
findings that racial-ethnic divides in exposure still exist when controlling for income 
(Clark et al., 2017). 

Summary and Conclusions
This project demonstrates a new methodology for conducting a screening-level analysis 
to estimate the impacts in exposure concentration and EJ-relevant disparity levels from 
changes in both primary and precursor emissions from different sectors. While this 
report presents the central findings from this modeling work, this work also produced a 
highly detailed set of iF, intake and EJ metrics, available in the appendices and 
accompanying data files, that allow further investigation of the relative magnitudes of 
public health benefits of different control measures. Summary statistics of state-wide iF 
values – population- or emissions-weighted averages – provide the basis for comparing 
the efficiency of different control measures at reducing exposure concentration levels for 
different demographic groups. However, the spatial database of iF values provides a 
stronger basis for calculating the effects of regionally-targeted emissions reductions. 
Within the iF database we found strong spatial variation in iF for different demographic 
groups and for both primary and precursor species, suggesting that a high-resolution, 
spatially explicit database is required to adequately characterize exposure concentration 
differences among different populations. 

The strength of this screening tool is to show how all major sectors contribute to 
exposure concentration disparity, to provide a comparison of the relative contribution to 
exposure concentration from different sources within a sector, and to compare levels of 
exposure concentration disparity among demographic groups. However, model 
limitations should be considered when interpreting these results. The concentration 
values presented do not represent total population exposure to PM2.5 (see Appendix B). 
Because simplifying assumptions limit the precision of exposure concentration 
estimates, in cases where differences in modeled exposure concentration are very 
small, those differences may only reflect model uncertainty and not a meaningful pattern 
in exposure concentrations. The influence of secondary PM2.5 is critical for comparing 
among sources, but due to uncertainties in secondary PM2.5 formation rates, the relative 
impact of sources dominated by single precursor species (e.g., agriculture) should be 
interpreted with care. This tool is not designed to definitively quantify PM2.5 exposure 
concentration but instead to complement other research tools, aiding policy 
development by identifying potential high-impact targets for emission control and 
suggesting fruitful avenues for more complex modeling. 

In applying a reduced-complexity model to the 2014 emissions inventory, we find 
significant disparity in PM2.5 exposure concentration by race, income category, and 
other socioeconomic indicators. We find that the major sources of PM2.5 exposure 
concentration within the domain – the industrial sector and on-road mobile sources– are 
also the major sources of exposure concentration disparity by race and income. There 
is no single culprit for exposure concentration disparity: among major emissions sectors, 
different emissions categories have differential effects by racial-ethnic, income, or other 
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grouping. Some minor categories also have outsized impacts on single demographic 
groups. This suggests that (1) a cross-sector approach to emission control is necessary 
to address EJ issues, and (2) particular groups may find it beneficial to identify specific 
localized sources within a sector category that pollute their community. 

Recommendations for Further Research 
The iF spatial database and source-specific impact estimates created for this project 
provide a rich, complex source of information that can be analyzed among many 
dimensions beyond the state-wide source ranking analysis chosen for this report. The 
source-specific EJ metrics described here are applicable at the state level; the creation 
of region-specific sets of EJ metrics was beyond the scope of this report. However, the 
spatial database of iF values provides the means to create a similar ranking of sources 
from a regional emissions inventory; region-specific analyses may reveal that local 
patterns of exposure concentration disparity vary from those observed in the state as a 
whole. Although the population data used to calculate iF would not be limited to the 
given region, and thus the total intake values would be overestimated, the source 
rankings and relative rates of disparity would be generally indicative of more localized 
conditions. Additionally, the Source-Receptor matrix created for this report is available 
by request and may be used to directly model concentration changes. Taking 
advantage of the spatial aspect of the tool, future use may also include generating maps 
of per-capita statistics to identify regions of the state where sources contribute most to 
exposure concentration disparity or exposure concentrations in particular communities. 

Other future steps for this model may include an update to the baseline CTM input, 
addressing the change in secondary PM2.5 formation rates that occur as a result of 
reductions in emissions of precursor species. As an extension, sensitivity of the model 
to large or small perturbations in precursor emissions could be informed by a limited set 
of additional CTM runs with varied emissions inputs. 
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Glossary of Terms, Abbreviations, and Symbols 

Abbreviation 
Used 
CTM Chemical Transport Model 
DPM Diesel particulate matter 
EJ Environmental Justice 
iF Intake Fraction 
NEI US EPA National Emissions Inventory 
NH3 Ammonia 
NOX Oxides of nitrogen 
PM2.5 Fine particulate matter (particles with an aerodynamic diameter ≤ 2.5 

µm) 
RCM Reduced-complexity model 
SOA Semi-volatile organic aerosol 
SO2 Sulfur dioxide 
SOX Oxides of sulfur, including sulfur dioxide 
TSM Transport, storage, and marketing 
VOC Volatile organic compound 
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	Abstract 
	This study developed and utilized a method based on intake fraction for evaluating 2.5). The method utilizes a spatial database built from a reduced-complexity chemical transport model and census data for groups of different ages, income levels, and race/ethnicity. Given information on 2.5 or precursor emissions (NOX, SO, NH, or VOCs), 
	inequality in exposure to fine particulate matter (PM
	location and emission rates of PM
	2
	3

	2.5 inhaled by the total population and exposure differences among demographic groups. Applying this method to an inventory of anthropogenic emissions sources in California shows differences in per-capita exposure concentration of up to 15% by income and 35% by race-ethnicity. The two top sources of exposure, on-road vehicles and industrial activity, contribute most to exposure concentration disparity by race-ethnicity in absolute terms. Some minor sources, such as petroleum refining and outdoor emissions f
	one can calculate, for a specific source, the amount of PM

	Executive SummaryBackground
	2.5 increases the risk of heart disease, lung disease, stroke, and numerous other health problems. Improving public health by reducing levels of 2.5 is a goal shared by policymakers and community leaders in California. Although 2.5 pollution, not all communities have benefitted equally from improvement in air quality. Seeking a more equitable distribution of benefits is a matter of environmental justice (EJ). 
	Long-term exposure to PM
	PM
	policies in California have effectively reduced PM

	Policymaking guided by environmental justice principles aims to find pollution reduction strategies that specifically benefits groups that are most vulnerable to air pollution health risks due to high exposure levels and other socioeconomic factors. EJ-oriented policy making also aims to involve members of vulnerable communities in the decision-making process. 
	The first EJ policy goal, is to reduce emissions from sources with a disproportionate impact on low-income groups, racial-ethnic minority groups, or other communities with lower socioeconomic status. Determining which sources to target requires highly 2.5 concentrations, resulting in a complex spatial pattern of pollution. Once pollutants enter the atmosphere they are subjected to complex physical and chemical processes that transport and/or transform 2.5 concentrations measured at air quality monitoring st
	technical research. A vast array of sources contribute to PM
	them into the PM
	1 

	Objectives and Methods
	2.5 reduction. The method uses a reduced-form air pollution model that requires much less computational power than a traditional CTM, allowing for both high spatial resolution and broad geographic coverage and allowing for many repeated model runs to evaluate the effects of a large set of emission source categories. A key model output is the intake fraction (iF) metric,which integrates both air pollution modeling and demographic data into a single summary value. The iF database we produced can be used to di
	In this project we develop a methodology to aid EJ-oriented decision making for PM
	2 
	calculate PM
	3 

	Results 
	The modeling results find that groups of lower socioeconomic status – non-white, low-income, low educational attainment, or linguistically isolated groups – systematically 2.5 exposure concentrations from all emissions categories in 2.5 exposure concentrations than the population average, while Hispanic, black, and Asian populations experience and 17%, 15%, and 6% higher-than-average exposure concentrations, respectively. Exposure concentration in the lowest income group is 15% higher than in the highest in
	experience higher PM
	California. On average, white populations experience 18% lower PM

	Comparing intake attributable to different emission source categories, we find that industry and on-road vehicles are the two highest-impact sectors in California, each 2.5 exposure concentration. Both sources disproportionately impact non-white and low-income groups. A ranking of sector-specific impacts highlights subsectors that may be potentially effective targets for emission reductions to lower exposure concentration levels for specific groups: metals manufacturing for Asian and black communities, wast
	contributing 24% of total PM

	The iF database showed high spatial heterogeneity and a significant difference between population-weighted and emissions-weighted iFs, emphasizing the importance of emissions location in determining their health impact. In subsets of the spatial data, we see distinct intraurban patterns in iF by racial-ethnic category, demonstrating that the iF tool is sensitive to localized demographic differences. This is true for tall stack precursor emissions as well as primary emissions. We demonstrate a visualization 
	Conclusions 
	2.5 impacts from an EJ-perspective, including all anthropogenic sources and covering the entire state of California. The rankings of major and minor sectors by total impact and exposure concentration disparity can inform research and policy priorities. The iF database produced from this modeling can also be applied to emissions data compiled by other agencies or organizations and can serve as an accessible means for groups with more 2.5. The ongoing application of the iF database with new emissions data or 
	This work presents a comprehensive analysis of sector-specific PM
	limited technical capacity to explore the EJ impacts of different sources of PM

	Introduction 
	2.5 Exposure Metrics 
	Public Health and PM

	Exposure to fine particulate matter (particles with aerodynamic diameter ≤ 2.5 µm, or 2.5) increases the risk of a range of adverse health outcomes. Risks for chronic or recurring health problems include increased rates of asthma attacks in sensitive individuals, reduced lung development and increased asthma rates in children, and increased hospital visits for respiratory problems (Meng et al., 2010; Patel et al., 2009). Chronic exposure also increases the risk of death from respiratory infections, heart at
	PM

	2.5 sources have succeeded in reducing ambient 2.5 concentrations in California in the past two decades. However, these reductions have not benefitted all communities equally. Low-income communities and communities of ethnic or racial minorities in California are still exposed to higher-than-average levels 2.5 (Marshall, 2008; Marshall et al., 2014; Su et al., 2012). Reducing this exposure disparity is an aspect of environmental justice (EJ), i.e., a fair distribution of environmental benefits or risks acro
	Restrictions on emissions from PM
	PM
	of PM

	2.5 source is determined by the amount that it contributes to 2.5 emitted in the middle of a city, increasing pollution levels for millions, is a much greater 2.5 released in a remote location. The metrics of intake and intake fraction help describe emission sources on terms most relevant to public health. The intake metric, in units of mass per time, describes the total amount of 2.5 from a source that is ultimately inhaled. Intake is calculated cumulatively across an entire exposed population. Intake frac
	The health impact of a PM
	exposure, not the total mass it emits. This is largely a function of location: a ton of PM
	concern for public health than a ton of PM
	PM

	Methods for Developing iF Values
	The iF concept, which links source emissions to population exposures, had been described as other terms, including “exposure efficiency,” in publications starting in the mid-1980s until the 2002 work by Bennett and colleagues formalized the term “intake 
	The iF concept, which links source emissions to population exposures, had been described as other terms, including “exposure efficiency,” in publications starting in the mid-1980s until the 2002 work by Bennett and colleagues formalized the term “intake 
	fraction” (Bennett et al., 2002; Evans et al., 2002). Intake fraction quantifies the 2.5 exposure; reducing a ton of emissions from source with a high iF provides greater reductions of exposure than the same amount of emission reduction from a source with a lower iF. The utility of the iF metric is documented in the literature and iF has been recommended as one of the best-practice indicators for the exposure impacts of particulate matter (Evans et al., 2002; Hauschild et al., 2013; Lai et al., 2011). A pan
	efficiency of a source in causing PM


	Intake fractions may be highly specific or highly generic, depending on research goals. At one extreme are iFs estimated for a single source at a single location at a specific time, e.g., the exposure at a bus stop to diesel PM from municipal buses during rush hour or exposure to bus emissions during transport (Marshall and Behrentz, 2005; Xu et al., 2015). Less specific iFs, estimated using mechanistic models, may represent a 2.5 within a chosen city or county (Greco et al., 2007; Marshall et al., 2006). A
	category of sources in a specific area, e.g., ground-level sources of primary PM

	Mechanistic models provide the means to calculate intake fraction for many sources in a single study using consistent methodology. The simplest modeling framework is a one-compartment box model that assumes uniformly distributed emissions and pollution removal via advection (Apte et al., 2012; Marshall et al., 2005). These require very little input data and provide rough estimates of primary pollutant iF within the modeled compartment. Other studies have estimated intake fraction using variety of more compl
	Mechanistic models provide the means to calculate intake fraction for many sources in a single study using consistent methodology. The simplest modeling framework is a one-compartment box model that assumes uniformly distributed emissions and pollution removal via advection (Apte et al., 2012; Marshall et al., 2005). These require very little input data and provide rough estimates of primary pollutant iF within the modeled compartment. Other studies have estimated intake fraction using variety of more compl
	PM

	meteorological inputs and a spatially explicit emissions inventory. The uncertainty of these inputs is compounded with the uncertainty inherent in the model. Poor quality or highly uncertain inputs can make the sophistication of the model irrelevant, but high-quality input data may not be available in some situations. Another disadvantage of complex models is that running such models requires substantial training and is computationally expensive, often requiring access to a research-scale computing cluster.
	2 
	2 


	Source-Receptor modeling grew from the desire to apply a reduced-form model derived from more complex atmospheric chemistry modeling that could be used quickly and required fewer inputs. This modeling method uses source-receptor (S-R) matrices, 2.5 concentration (units: μg m) resulting at any location from a unit of emission increase or decrease (units: tons y) in one specified location. The meteorology and atmospheric chemistry are built into the S-R matrix so it can be used as a stand-alone tool for estim
	multidimensional data tables that contain the predicted change in PM
	-3
	-1

	Although there are very few semi-empirical studies that provide benchmark iF values to be used to validate or adjust model-based estimates, the range of iF values included within the overall body of iF research can serve as a broad indicator of whether a given model is producing reliable iF estimates. A collection of these values is included in Appendix A and compared with our results in the results section of this report. 
	Intake, iF, and Environmental Justice 
	A small but growing body of literature presents EJ impacts of emissions alongside intake and iF for particulate matter in California. We present a limited review of results from five such studies (Cushing et al., 2016; Marshall et al., 2006, 2014; Nguyen et al., 2018; Su et al., 2012). Most of these have focused on one or more discrete areas within the state (air basins or counties) and used diesel particulate matter (DPM) or traffic-related air pollution as the pollutants of interest. 
	In 2006, Marshall et al. reported that per-person DPM intake in the South Coast Air Basin was higher for non-whites and for individuals in low-income households than for the population as a whole in the South Coast Air Basin. The 2012 work of Su and colleagues investigated pollution exposure and environmental justice in three California counties: Alameda, Los Angeles, and San Diego. Using a statistical technique that compares the observed distribution of exposure against a hypothetical “equality line,” they
	In 2006, Marshall et al. reported that per-person DPM intake in the South Coast Air Basin was higher for non-whites and for individuals in low-income households than for the population as a whole in the South Coast Air Basin. The 2012 work of Su and colleagues investigated pollution exposure and environmental justice in three California counties: Alameda, Los Angeles, and San Diego. Using a statistical technique that compares the observed distribution of exposure against a hypothetical “equality line,” they
	the domain, but inequality followed a less consistent pattern across counties for total PM exposure. 

	The 2014 analysis by Marshall, Swor, and Nguyen divided diesel burning into five subcategories, including four mobile sources and one stationary source category, and considered environmental justice impacts in the South Coast Air Basin. They found that there are potential trade-offs among the goals of reducing intake, targeting high-iF sources, and seeking outcomes that improve EJ; their findings indicated that while reductions in train emissions are optimal for iF and EJ, reductions from off-road mobile so
	Complementing these peer-reviewed journal articles, a detailed report was published in 2015 evaluating the EJ impacts of California’s cap-and-trade program (Cushing et al. at major GHG-emitting facilities tended to impact neighborhoods with lower-income residents and a higher share of people of color. Some of these facilities maintained or increased localized pollution and purchased out-of-state offset credits, losing potential EJ co-benefits of the policy. This case study demonstrates the importance of con
	2016). This report found that the co-emitted PM
	10 

	The location of emissions from a source category are as important for EJ outcomes as they are for iF, but the spatial pattern of EJ metrics may vary substantially from that for iF. Sites that rank high in iF may rank lower in impacts on exposure disparity (Nguyen et al., 2018). For example, emissions from a location near a medium-density, low-income neighborhood may have a lower iF than the same amount of emissions in a high-density, high-income urban neighborhood. However, the lower-iF emissions have a hig
	The iF Database: Screening Tool for Policy and Environmental Justice Issues
	Source-specific intake and iF metrics have great potential to reveal existing inequality in 2.5 exposure concentrations among demographic groups and inform future pollution control policy. This report describes the creation and application of a methodology that focused on intake and iF. This methodology can provide several advantages relevant to public health decision-making: 
	PM

	1. Broad coverage with high spatial resolution 
	The iF tool is a spatial database – an organized collection of data tables that are 
	indexed to spatial locations. The spatial locations are arranged in a grid that 
	covers an area of 1296 km by 960 km, including California and parts of the 
	surrounding states. Grid cells are variably sized based on population density, so 
	the spatial resolution in urban areas is 1 km. This allows the tool the breadth to 
	2

	evaluate intake throughout the entire state rather than in select counties, and the 
	detail to evaluate within-county and within-city differences in intake fraction. 
	2. 2.5 precursors
	Inclusion of PM

	2.5 in two ways: direct emissions of PM2.5 2.5) and emissions of chemicals that form PM2.5 in the atmosphere, 2.5 is emitted 100% in the particle phase. ), sulfur dioxide (SO), oxides of X), and volatile organic compounds (VOCs). These species are 2.5 via physical or chemical , SO, and NOX result in )SO) and ammonium nitrate (NHNO).Previous studies of EJ impacts in California have focused on DPM or other primary particulate emissions, which proves a major limitation to a comprehensive comparison of impacts 
	Emission sources contribute to PM
	(primary PM
	known as precursor species. Primary PM
	Precursor species include ammonia (NH
	3
	2
	nitrogen (NO
	emitted as gases and form particle-phase PM
	reactions. The major reactions for NH
	3
	2
	particle-phase ammonium sulfate ((NH
	4
	2
	4
	4
	3
	4 
	PM

	3. Detailed demographic categories
	For the sake of simplicity, studies often present results along simplified demographic divides, e.g., white vs. nonwhite or highest vs. lowest income. This tool provides the flexibility to make more detailed comparisons among five racial/ethnic categories, five income quartiles, five age group categories, two additional groups associated with lower socioeconomic status, and SB 535 Disadvantaged Communities as determined by the CalEnviroScreen 3.0 environmental health screening tool (Faust et al. 2017). In a
	4. Application to comprehensive inventory of anthropogenic emissions 
	To demonstrate this methodology, we apply it to the 2014 US EPA National Emissions Inventory, grouped into 11 sector categories containing 59 subcategories. Intake and iF for each subcategory are calculated for each demographic group, allowing a rich analysis of sector-specific impacts across socioeconomic groups. 
	2.5 exposure concentration. Because it runs based on pre-calculated chemical transport 
	This screening tool is designed to provide a rapid assessment of disparity in PM

	In our discussion of intake and intake fraction we refer to particulate species resulting (particulate ammonium), pSO(particulate nitrate). Volatile organic compounds (VOCs) include an array of carbon-containing chemicals that are emitted in the gas phase but undergo physical processes (condensation) and/or complex reactions and chemical transformations in the atmosphere that then cause them to condense into the particle phase. We refer to the particle-phase species resulting from VOC emissions as secondary
	4 
	from each gaseous species separately, as pNH
	4 
	4 
	(particulate sulfate), and pNO
	3 

	modeling parameters, it requires a small fraction of the computing power required for a more complex model (Tessum et al., 2017). It is accessible as a spatial database, so use of this tool requires a limited degree of expertise. More complex analyses can be automated using a scripting language (e.g., MATLAB, R, Python), but do not depend on an additional program to run. However, simplicity of use requires simplifying assumptions that limit model accuracy compared to more complex models. The strength of thi
	for calculating total PM

	Methods 
	The Intervention Model of Air Pollution (InMAP)
	The Intervention Model of Air Pollution (InMAP) is a reduced-complexity alternative to comprehensive chemical transport models (CTMs). It operates by modeling annual-2.5 concentration directly emitted from sources and 2.5 concentrations attributable to annual changes in precursor emissions. InMAP uses pre-processed physical and chemical information from the output of a state-of-the-science CTM (i.e., WRF-Chem) and a variable spatial resolution computational grid to perform simulations that are several order
	average changes in primary PM
	secondary PM
	-

	InMAP takes as an input a previously generated data file containing information on meteorological and background parameters to provide transport and reaction rates. In this case results generated at 12 km resolution from WRF-Chem v3.4 based on year 2005 inputs (Tessum et al., 2015). InMAP uses a set of emergent atmospheric properties generated as model outputs (Tessum et al. 2015, Supplemental Information Table 1) to inform the parametric equations used in each grid cell for advection, mixing, chemistry, an
	than primary PM

	Instead of solving for pollutant concentrations at specific points in time using temporally explicit input data as CTMs does, InMAP directly estimates annual average pollutant concentrations using annual average input data and numerical integration. This simplification reduces the computational intensity of running InMAP and produces 2.5 exposure concentration). Model limitations due to this assumption are explained in Tessum et al. 2017: 
	metrics relevant to exposure and health risk calculations (annual average PM

	Many of the chemical and physical processes important to the fate and transport of air pollution vary with the time of day and the season. A steady-state, annual-average model risks being unable to represent the results of these temporally explicit phenomena. InMAP mitigates this potential limitation by using temporally explicit information wherever possible when calculating annual average input properties. For instance, the gas-phase oxidation of SOto SOis represented 
	2 
	2
	−. 

	as the product of the SOconcentration and a reaction rate constant, but the 15 dependence on temperature and on the concentration of hydroxyl radical (HO), both of which are temporally variable. To 
	2 
	reaction rate constant has a non-linear 
	*

	represent the formation of particulate SO(pSO), InMAP needs an annual 
	4 
	4

	average rate constant. To capture some of the effects of temporal variability, instead of calculating the rate constant using annual average values for temperature and HO, we instead use temporally explicit temperatures, solar radiation intensities, and HOconcentrations to then calculate rate constants for 
	* 
	* 

	every hour during the year, and then take the average of these 8760 rate-constant values. Thus, the reaction rate InMAP uses for a given grid cell is an annual-average rate, not a rate calculated using annual-average values for input parameters. 
	InMAP uses the annual average reaction rates and meteorological data to model the concentrations resulting from any given emissions inventory, including inventories for a smaller subset of the model domain or inventories from different years. These emissions inventories must be spatially explicit, specifying emissions amounts and locations, and stack parameters if appropriate. The emissions shapefile may specify emissions at a single location or at many locations. This study used the most recent comprehensi
	The performance of InMAP has been validated against four commonly used models: WRF-Chem, a full chemical transport model; COBRA and AP2 (Air Pollution Emission Experiments and Policy), two reduced-complexity models based on a Source-Receptor Matrix framework; and EASIUR (Estimating Air pollution Social Impacts Using Regression), a reduced-complexity model produced using regression analysis on multiple CTM runs (Gilmore et al., 2019; Tessum et al., 2017). A comparison of outputs across models has shown satis
	Figure
	Figure 1: InMAP model domain for California. 
	The largest grid cells, used to cover sparsely populated regions, have an area of 2,304 km(48 km per side). In densely populated urban areas, the resolution is increased, with the finest resolution being one cell per km. Variable grid sizing provides computational efficiency and greater power to distinguish effects among city neighborhoods. 
	2 
	2

	2.5 resulting from five pollutant categories: 2.5 and four precursor gaseous species: oxides of nitrogen (NOx), sulfur ), ammonia (NH), and volatile organic carbon species (VOCs). Concentrations are modeled for 21,705 variably sized grid cells covering the state of California and portions of the surrounding states, shown in Figure 1. The size of each grid cell is determined based on population density. The largest grid cells, used to cover sparsely populated regions, have an area of 2,304 km(48 km per side)
	InMAP models the concentration of PM
	primary PM
	dioxide (SO
	2
	3
	2 
	2
	2 
	2 
	2 

	Figure
	Figure 2: Inset of the InMAP domain for the San Francisco Bay Area. 
	This figure illustrates the increased model resolution in urban areas. Light grey areas with black labels indicate US Census-defined urban areas. The smallest of the dark grey grid cells are 1 kmin area. 
	2 

	Source-Receptor Matrix
	To calculate iF and other EJ metrics we rely on an intermediate product of the InMAP model called the Source-Receptor (S-R) matrix. The source-receptor relationships included in the S-R matrix quantify the marginal change in concentration at each receptor site resulting from a unit increase of emissions at the source site. In other words, if primary PM2.5 emissions at a specified source grid cell (S, illustrated in Figure 
	3) were to increase by 1 kg per year, the S-R matrix would provide the resulting change in annual average concentration (units: µg/m) at any receptor grid cell (R), including the source grid cell itself. If the total emissions change at S is known, the change in concentration at each R can be scaled up or down linearly. In addition to changes in 2.5 emissions, the relationships included in the S-R matrix concentration per unit NHemitted, pSOconcentration per unit emitted, pNOconcentration per unit NOX emitt
	3
	concentration with primary PM
	cover changes in pNH
	4 
	3 
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	2 
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	Figure
	Figure 3: Illustration of Source-Receptor Matrix. 
	We use the InMAP capability to efficiently calculate the results of marginal emission changes to perform the many repeated model simulations required to create a S-R matrix. Each simulation assumes an emissions change of 1 short ton per year of each 2.5 concentration in every location within the domain. The S-R matrix includes the per-unit 2.5 concentration for each of the five pollutants at three effective plume heightsand 21,705 emission locations. To reduce computational cost, this method 2.5, , NOx, and
	pollutant in a single location, and then evaluates the resulting change in PM
	change in PM
	5 
	makes the simplifying assumption that the impacts of unit emission change of PM
	VOCs, SO
	2
	3 
	other. This means that the model does not adjust secondary PM
	modeling error in some cases (e.g., the interaction between NO
	pNH
	4 

	Ground level and low stack, 0-57 meters; medium and high stack, 57-140 meters; and high elevation plume emissions, above 760 meters. It is rare that plume heights fall between high stack and high elevation plume; in those cases, model values are based on a linear interpolation between high and low elevation values. 
	5 

	Demographic Data
	Environmental justice issues can occur on several dimensions: by race-ethnicity, by income level, by age group, and by other factors that lead to differences in socioeconomic status. In this work we include a wide range of demographic groups to identify specific subgroups most affected by different sectors, and to allow users of this tool to select specific groups of interest to them. The total population and population share of each demographic group are provided in Table 1. 
	Demographic data were obtained for the year 2016 from the American Community Survey: 5-Year Data [2012-2016], downloaded from the National Historical Geographical Information System (NHGIS), a service that curates US Census and census-based data (). Wherever possible, demographic data resolution is at the block group level (the level above the smallest unit, census blocks, in the geographic hierarchy). The size of block groups relative to the InMAP grid is shown in Figure 4. Block group data includes race-e
	nhgis.org

	A final population group is included based on the CalEnviroScreen 3.0 tool (Faust et al., 2017). This tool uses twelve pollution burden metrics and eight population characteristic metrics to rank communities within California by degree of vulnerability to environmental injustice. The highest-ranking groups are designated as SB 535 Disadvantaged 2.5 and Diesel PM levels, so it is expected that this analysis will show elevated per-capita 2.5 intake and population-weighted exposure concentration within Disadva
	Communities. Two of the pollution burden metrics used in CalEnviroScreen are PM
	PM

	Table 1: Summary of 2016 American Community Survey demographic data within the modeling domain. 
	Group Total population % of total 
	Total 42,748,417 Racial-ethnic groups White1 17,207,869 40.3% Hispanic 15,956,888 37.3% Asian1 5,518,299 12.9% Black1 2,404,572 5.6% Other Race2 1,660,788 3.9% Age groups Under 5 2,758,101 6.5% Under 18 10,101,687 23.6% Over 25 28,322,235 66.3% Women of Childbearing Age3 9,401,850 22.0% 65 and over 5,597,726 13.1% 85 and over 741,749 1.7% Income Quintiles Q1: < $25,000 8,278,553 19.4% Q2: $25k -$45k 7,324,192 17.1% Q3: $45k -$75k 8,731,699 20.4% Q4: $75k -$125k 9,063,866 21.2% Q5: > $125,000 9,117,258 21.3%
	White 2,826,268 2,467,318 3,290,095 3,865,778 4,758,410 Hispanic 3,381,470 3,485,794 3,894,334 3,280,991 1,914,299 Asian 888,291 645,729 936,705 1,234,834 1,812,740 Black 748,835 447,519 462,060 429,598 316,561 Other Race 348,760 289,636 344,655 349,451 328,285 
	Table 3: Share of racial-ethnic group in each income quintile* 
	% Q1 
	% Q2 
	% Q3 
	% Q4 
	% Q5 
	White 16.4% 14.3% 19.1% 22.5% 27.7% Hispanic 21.2% 21.8% 24.4% 20.6% 12.0% Asian 16.1% 11.7% 17.0% 22.4% 32.8% Black 31.1% 18.6% 19.2% 17.9% 13.2% Other Race 21.0% 17.4% 20.8% 21.0% 19.8% *Rows sum to 100% 
	Joining Census Data to InMAP Model
	Figure 4 shows an example of the size and spatial arrangement of census block groups compared with the InMAP modeling grid in SF area. Because several block groups overlap each grid cell and most block groups were not fully contained by one grid cell, we used an area-weighting approach to assign population counts to each grid cell. We calculated the share of the area of each block group contained in all overlapping grid cells, applied that proportion to the population within the block group and assigned the
	Figure
	Figure 4: InMAP grid overlaying census block groups in the San Francisco area. 
	EJ Metric Calculation 
	The two metrics relevant for overall population exposure in this analysis are iF and intake, described in Table 4. The first metric, intake, is defined here as the total mass of 2.5 emitted by a given source that is inhaled each day by the entire exposed population. An intake of 380 grams per day would mean that emissions of a particular 2.5 being inhaled throughout the entire modeling domain. 
	PM
	pollutant from a particular source category result in 380 grams of PM

	Table 4: Metrics for population exposure. 
	Metric 
	Metric 
	Metric 
	Equation 
	Example 

	(1) Intake: the total amount of an air pollutant emitted by a specific source that is inhaled by the population per day This study assumes a constant breathing rate of 14.5 m3 d-1, or 5,292.5 m3 yr-1 
	(1) Intake: the total amount of an air pollutant emitted by a specific source that is inhaled by the population per day This study assumes a constant breathing rate of 14.5 m3 d-1, or 5,292.5 m3 yr-1 
	 𝑖𝑛𝑡𝑎𝑘𝑒 =  𝐶𝑄  Ci, concentration (µg m-3) for person i n, number of people Qi, breathing rate (m3 yr-1) for person i 
	380 g d-1 

	(2) Intake fraction: the fraction of emissions emitted by a specific source that are inhaled by the population Intake fraction is dimensionless but conventionally reported in parts per million (ppm). If a source has an intake fraction of 1 ppm then one millionth of the mass emitted from that source is inhaled, or one milligram is inhaled per kilogram emitted. 
	(2) Intake fraction: the fraction of emissions emitted by a specific source that are inhaled by the population Intake fraction is dimensionless but conventionally reported in parts per million (ppm). If a source has an intake fraction of 1 ppm then one millionth of the mass emitted from that source is inhaled, or one milligram is inhaled per kilogram emitted. 
	1𝑖𝐹 = 𝐸  𝐶𝑄  Ci, concentration (µg m-3) for person i n, number of people Qi, breathing rate (m3 yr-1) for person i E, total emissions (ton yr-1) 
	15 ppm 


	Calculation of intake from an S-R matrix is illustrated in Figure 5. Intake from source location S for a single receptor location R is calculated by modeling the annual average concentration of PM2.5 (units: µg/m) in R attributable to emissions (units: metric ton/year) in S. That concentration is multiplied by the size of the total population within that grid celland the average annual volume of air breathed by each individual (units: m/ year). The result is the total mass of emissions inhaled in R from emi
	3
	6 
	3

	Using census-based grid cell population counts to calculate intake and intake fraction relies on the assumption that a person’s exposure is determined by their residence address. In reality, personal daily exposure may include intake that occurs while commuting, at work, and at locations of other daily activities. 
	6 

	Figure
	Figure 5: Illustration of intake calculation from an S-R matrix. 
	The second metric, iF, is used to compare the relative importance of sources in terms of the impact caused by each ton emitted from a given source. An iF of 15 ppm, for example, 2.5 are inhaled for every million grams of primary PM2.5 or precursor pollutant emitted. A higher iF means that per mass emitted, the portion inhaled is greater and thus results in a greater impact on exposure concentration per 2.5 an iF of 1 ppm means that one milligram of PM2.5 is 2.5 emitted. For precursor species an iF of 1 ppm 
	would mean that 15 grams of PM
	mass emitted. For primary PM
	inhaled for each kilogram of PM
	that for each kilogram of the precursor gas emitted (VOC, NH
	3
	2
	milligram of particulate matter formed from that gas is inhaled (SOA, pNH
	4
	3
	pSO
	4

	The iF calculation from the S-R matrix proceeds in a similar way as the intake calculation, with one change in the units. The concentration in R is expressed as µg/mper unit emissions in S. Absent an S-R matrix, iF can also be calculated by dividing the intake metric described above by the total mass of emissions from a specific source. 
	3 

	The data needs for calculating iF are the S-R matrix and a map of the population distribution. To calculate intake, a spatially explicit emissions inventory is also required. The inventory must include that location of each point source, and for non-point sources, e.g. motor vehicles, estimate the approximate spatial distribution of the emissions. “Approximate spatial distribution” refers to the fact that for non-point sources, proxy variables are used in place of exact measurements of emissions-generating 
	The EJ metrics included in Table 5 are derived from the intake metric calculated for different demographic groups. The first, total intake difference, compares the total intake for one population group against another. Intake difference is not normalized for population size, so intake for a larger population will likely be higher than for a smaller population even if intake is higher for individual members of the smaller population. Population-normalized or per-capita metrics are recommended for comparisons
	3

	Two additional metrics used throughout the report are the population-weighted average and the emissions-weighted average. Population-weighted average is calculated as the sum of the product of grid-cell population and the value to be averaged, divided by the sum of the population of all grid cells, or 
	Figure
	i is the population of grid cell i, and Ci is the value of interest (iF, concentration, etc.) in that grid cell. Similarly, emissions-weighted average is calculated as the sum of the product of grid-cell emissions and the value to be averaged, divided by the sum of the emissions of all grid cells, 
	where N is the total number of grid cells, Pop

	Figure
	i is the emissions in grid cell i, and Ci is the value of interest. 
	where N is the total number of grid cells, E

	Table 5: Metrics for environmental justice analysis. 
	Metric 
	Metric 
	Metric 
	Equation 
	Example 

	(1) Intake difference: 
	(1) Intake difference: 
	𝑖𝑛𝑡𝑎𝑘𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 
	400 g d-1 

	the absolute difference 
	the absolute difference 
	  

	in intake between two 
	in intake between two 
	=  𝐶 𝑄 −  𝐶𝑄 

	specific demographic 
	specific demographic 
	  

	groups (group of 
	groups (group of 
	CiG, CiO, annual average concentration (g m-3) 

	interest and control). 
	interest and control). 
	that person i within the group of interest (iG) and within another control group (iO) are exposed to nG, nO, number of people in group of interest (iG) and control group (iO) Qi, breathing rate (m3 d-1) for person i, assumed equal across groups 

	(2) Per-capita intake difference: the absolute difference in mean per-capita intake between a specific demographic group and the mean per-capita intake for the total population. 
	(2) Per-capita intake difference: the absolute difference in mean per-capita intake between a specific demographic group and the mean per-capita intake for the total population. 
	𝑝𝑒𝑟 − 𝑐𝑎𝑝𝑖𝑡𝑎 𝑖𝑛𝑡𝑎𝑘𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒  ∑ 𝐶𝑄 ∑ 𝐶𝑄 = −𝑛 𝑛 CiG, CiT, annual average concentration (µg m-3) that person i within the group of interest (iG) and within population as a whole (iT) are exposed to nG, nT, number of people in group of interest (G) and total population (T) Qi, breathing rate (m3 d-1) for person i, assumed equal across groups 
	10 µg d-1 

	(3) Per-capita exposure concentration difference: the absolute difference in population-weighted average exposure concentration between a specific demographic group and the total population. 
	(3) Per-capita exposure concentration difference: the absolute difference in population-weighted average exposure concentration between a specific demographic group and the total population. 
	𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒  ∑ 𝐶 ∑ 𝐶 = −𝑛 𝑛 CiG, CiT, annual average concentration (µg m-3) that person i within the group of interest (iG) and within population as a whole (iT) are exposed to nG, nT, number of people in group of interest (G) and total population (T) Qi, breathing rate (m3 d-1) for person i, assumed equal across groups 
	0.5 µg/m3 

	(4) Relative percent difference 
	(4) Relative percent difference 
	|𝜇 − 𝜇|𝑅𝑃𝐷 = 𝜇 
	25% 

	TR
	µCG, mean per-capita intake in comparison 

	TR
	group 

	TR
	µVP, mean per-capita intake in specified 

	TR
	vulnerable population 

	TR
	µ, population mean per-capita intake 


	Emissions Data 
	To calculate total intake and sector-specific impacts we use the most recent US EPA National Emissions Inventory. A description of sources included in each category and a summary of source-specific emissions is provided in Appendix C. Emissions data are available in a spatially explicit file format (ArcGIS shapefiles) with all sources assigned to specific point coordinates (longitude and latitude pairs). Area sources are represented in the NEI files as a grid of point coordinates. Emissions shapefiles were 
	Tool Limitations 
	This methodology relies on simplifying assumptions used to improve model efficiency, a reduced scope of emissions input data, and simplifying assumptions in calculating exposure concentration. The results are recommended for use as a screening-level analysis for investigating the relative magnitude of disparities from different sources, sectors, and release environments. However, due to modeling limitations, we advise against the use of this data for certain other types of analyses. These results are not a 
	substitute for more complex modeling of total PM
	physicochemical transformation rates, which limits the accuracy of absolute PM
	concentration values. The rate of transformation of precursors to secondary PM

	The model uses annual average modeling parameters, so it does not produce time-resolved results. While this tool works well with annual emissions estimates, it is not recommended that the tool be used with seasonal or time-varying emissions data, or to analyze short-term high concentration events. This tool assumes exposure concentration levels based only on place of residence. Estimates do not account for activity patterns (time spent traveling, at work, etc.) that affect the exact locations and 2.5 throug
	microenvironments where an individual is exposed to PM
	estimates of individual exposure to Diesel PM

	Example Application of iF Database to Evaluate Environmental Justice Concerns 
	To illustrate the use of the iF spatial database, we use the hypothetical example of a facility (point source) located in Richmond, California, shown in Figure 6. 
	Figure
	Figure 6: Location of example facility in Richmond, in the north east Bay Area (left) and the location of the facility within the iF grid (right). 
	Step 1: Assemble emissions inventory
	The first step in using the iF tool is to evaluate the total annual emissions from the source of interest. For our example, we assume that the facility generates 258 metric 2.5 per year, emitted at a low height (between ground level and a height of 57 m). 
	tons of VOCs and 1.4 metric tons of primary PM

	: iF values are reported in units of ppm, which translates to 1 µg inhaled per 1 g emitted, or 1 g inhaled per metric ton emitted. For simplicity, emission values should be converted to metric units before iF values are applied (conversion: 1 US ton = 0.9072 metric tons). In addition, population-weighted concentration values are based on annual intake. To calculate concentrations correctly, emission values should express total annual emissions from the sources of interest. 
	Note on units

	Step 2: Align emissions location with iF grid
	The iF values applied to the emissions source must correspond to the source location. For our point source example, we use the coordinates of the facility generating the emissions (see Figure 6). The process is more complex for non-point sources that are spread over an area that covers multiple grid cells. In that case, the user must determine the share of emissions that occur in each grid cell and either perform the intake calculation for each cell or calculate a weighted average iF based on the proportion
	Step 3: Look up relevant iF values for pollutant species and height
	As described above, iF is highly pollutant-and height-specific. Our example facility 2.5 and VOCs at the lowest height category (< 57 m). Based on these details, the relevant values from the iF database are those shown in Table 6. The iF for the total population is the sum of the iF values for the full set of race-ethnicity categories. The magnitude of the iF for each group depends on the size 
	As described above, iF is highly pollutant-and height-specific. Our example facility 2.5 and VOCs at the lowest height category (< 57 m). Based on these details, the relevant values from the iF database are those shown in Table 6. The iF for the total population is the sum of the iF values for the full set of race-ethnicity categories. The magnitude of the iF for each group depends on the size 
	emits both primary PM

	of the total population within that group and the proximity of communities within each 2.5 is higher and more strongly dependent on the population in close proximity to emissions. We observe in this table that the iF for SOA from VOC emissions is of similar magnitude for White and Hispanic populations, reflecting the size of both populations in the wider Bay Area, while the 2.5 iF is higher for the Hispanic population, due to the demographic make-up of the neighborhoods directly surrounding the refinery. 
	group to the emissions location. The iF of primary PM
	primary PM


	Table 6: Ground-level iF values for facility in Richmond. 
	Total White Black Asian Hispanic/Latinx Other VOC 0.23 0.08 0.03 0.03 0.08 0.01 Primary PM2.5 6.2 1.9 0.8 0.9 2.3 0.3 
	Step 4: Calculate intake and population-weighted metrics
	Intake for each population category is calculated by multiplying VOC emissions by VOC iF, primary emissions by primary iF, and adding together the results. Here, the values have been converted to units of grams per day. This value is the cumulative intake of 2.5 is inhaled per day or 
	the whole population: on average, a total of 0.19 grams of PM

	69.4 grams inhaled per year. To calculate the population-weighted average exposure concentration, divide the annual intake by the breathing rate (5292.5 mper year) and the size of the population (see Table 1). 
	3 

	The population-weighted average exposure concentration values in row two vary by demographic group based on the proximity of the source to where people of different races/ethnicities live. When values are normalized by population size, we see that per-capita exposure concentrations in minority groups (e.g., Black) is higher than in larger groups (e.g., White and Hispanic), even though total intake is lower. The final results show that on the whole, the refinery results in higher intake for the Hispanic popu
	Table 7: Example impact metrics for Richmond facility. 
	Table
	TR
	Total 
	White 
	Black 
	Asian 
	Hispanic 
	Other 

	Intake (g/day) Pop. wtd avg. exposureconcentration (ng/m3) Total difference % difference 
	Intake (g/day) Pop. wtd avg. exposureconcentration (ng/m3) Total difference % difference 
	0.19 0.31 --
	0.06 0.25 -0.06 -19% 
	0.02 0.64 0.34 109% 
	0.03 0.35 0.04 14% 
	0.07 0.29 -0.01 -5% 
	0.01 0.42 0.11 35% 


	Results 
	Summary of IF Database
	The complex spatial patterns of iF for different pollutants and populations in the iF database are critical for evaluating source impacts and are also difficult to describe succinctly. We offer several summary descriptions of iF values within the database so that a user may better understand and interpret the results of iF-based modeling. More in-depth iF summary metrics are presented in Appendix D. 
	Three of the main sources of variation in iF are, in general order of importance, 
	(1) 
	(1) 
	(1) 
	2.5 is generally more sensitive to local population density resulting in steeper spatial gradients, while precursor iFs show more gradual changes in space. 
	the pollutant species, either primary or precursor: the iF for primary PM


	(2) 
	(2) 
	the population density near the source location: for all species, iF values are highest in dense urban areas and lowest in rural or unpopulated areas. 

	(3) 
	(3) 
	the height at which the pollutant is emitted: increased stack height generally results in iF values that are lower and less sensitive to local population density. 


	A summary of population-weighted average iF values across the entire modeling domain for the total population is provided in Table 8, including the mean, median, and interquartile range (IQR) which reports the 25and 75percentile values. Population-weighting is often chosen as the best metric for summarizing iFs (Fantke et al., 2017; Humbert et al., 2009). Care should be taken in understanding the purpose of population-weighting in the iF context, as iF is a metric specific to a pollution source and not to t
	th 
	th 

	2.5 emissions have the highest population-weighted iF, as primary emissions 2.5 iF value of 12 ppm falls within the range of values reported in the literature for the United States: 2 to 16 ppm overall, and 4 to 25 for urban areas (see Appendix A). Precursor species iFs are 1/10to 1/20the magnitude of primary PM2.5 iFs, with the exception of NH. For both /NOX and pSO/SO, mean values in the model fell within the range of values cited X and 0.3 to 1.3 ppb for SO. Values for NHare considered more uncertain tha
	Primary PM
	contribute directly to local pollution levels. The mean primary PM
	th 
	th 
	3
	pNO
	3
	4
	2
	in other studies, 0.05 to 0.22 ppb for NO
	2
	3 
	(see note on page 6). Few studies include iF values for NH
	3

	Elevated emissions have significantly lower population-weighted iF values, as high emission plumes travel away from high population areas before they descend to 2.5 and NHare greater than median values, indicating that there are some areas where the iF of these pollutants is atypically high due to a combination of meteorological, chemical, and demographic factors. 
	breathing height. The mean iF values for primary PM
	3 

	Table 8: Population-weighted iF summary values (ppm) for the total population. 
	Height7 Mean Median 25th percentile 75th percentile Primary PM2.5 Height 1 12 9.3 4 17 Height 2 4.5 2.8 1.3 7.2 Height 3 1 0.68 0.36 1.7 VOC/SOA Height 1 0.48 0.43 0.22 0.66 Height 2 0.19 0.14 0.076 0.3 Height 3 0.049 0.041 0.022 0.074 NH3/pNH4 Height 1 5.6 3.8 1.4 8.4 Height 2 2.2 1.2 0.52 3.6 Height 3 0.53 0.31 0.18 0.91 NOX/pNO3 Height 1 0.44 0.41 0.2 0.6 Height 2 0.19 0.17 0.09 0.27 Height 3 0.055 0.055 0.028 0.078 SO2/pSO4 Height 1 0.85 0.61 0.22 1.4 Height 2 0.88 0.61 0.23 1.4 Height 3 0.41 0.3 0.14 0
	Emissions-weighted summary iF values are shown in Table 9. This weighting is based on the spatial data associated with emissions included in the US EPA National Emissions Inventory, and reflects the spatial distribution of pollutants aggregated across all source categories. This spatial weighting differs from population weighting: for some source categories, emissions occur in remote areas far from population centers. For this reason, emissions-weighted iF values are lower than population-weighted values. E
	Height 1: ground level and low stack emissions (0-57m), Height 2: medium and high stack emissions (57-140m), Height 3: high plume emissions (>760m). 
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	Table 9: Emissions-weighted iF summary values (ppm) for the total population. 
	Height8 Mean Median 25th percentile 75th percentile 
	Height 1 
	2.5 
	Primary PM

	6 
	2.4 
	0.49 
	8.9 
	Height 2 2.5 0.9 0.24 2.8 VOC/SOA Height 1 0.35 0.27 0.068 0.55 Height 2 0.16 0.097 0.049 0.27 
	NH3/pNH4 Height 1 1.2 0.42 0.27 0.6 Height 2 2.5 1.5 0.49 4.4 
	NOX/pNO3 Height 1 0.27 0.16 0.036 0.44 Height 2 0.11 0.076 0.017 0.16 
	SO2/pSO4 Height 1 0.39 0.16 0.066 0.44 Height 2 0.53 0.21 0.057 0.47 
	Table 10: Emissions-weighted iF (ppm) by income quintile 
	Height7 Income Q1 Income Q2 Income Q3 Income Q4 Income Q5 Primary PM2.5 Height 1 1.3 1.1 1.2 1.2 1.1 Height 2 0.51 0.44 0.52 0.52 0.48 VOC/SOA Height 1 0.071 0.061 0.072 0.072 0.068 Height 2 0.031 0.027 0.032 0.033 0.032 NH3/pNH4 Height 1 0.25 0.22 0.26 0.26 0.25 Height 2 0.48 0.42 0.51 0.53 0.52 NOX/pNO3 Height 1 0.056 0.048 0.055 0.056 0.052 Height 2 0.022 0.019 0.023 0.024 0.022 SO2/pSO4 Height 1 0.072 0.063 0.077 0.082 0.089 Height 2 0.1 0.093 0.11 0.11 0.11 
	Total 
	6 
	2.5 0.35 0.16 1.2 2.5 0.27 0.11 0.39 0.53 
	Height 1: ground level and low stack emissions (0-57m), Height 2: medium and high stack emissions (57-140m). Although a plume-rise algorithm was integrated into the source-specific concentration modeling, it was not used for calculating these emission-weighted averages so iFs for high-elevation plume emissions (>760 m) are not included here. 
	8 

	Height White Hispanic Asian Black Other Total Primary PM2.5 Height 1 1.9 2.6 0.85 0.42 0.21 6 Height 2 0.78 1.1 0.34 0.16 0.082 2.5 VOC/SOA Height 1 0.12 0.15 0.048 0.023 0.012 0.35 Height 2 0.052 0.068 0.021 0.0097 0.0052 0.16 NH3/pNH4 Height 1 0.41 0.55 0.17 0.075 0.041 1.2 Height 2 0.78 1.1 0.36 0.14 0.075 2.5 NOX/pNO3 Height 1 0.092 0.12 0.034 0.017 0.0095 0.27 Height 2 0.039 0.048 0.013 0.0062 0.0039 0.11 SO2/pSO4 Height 1 0.14 0.15 0.058 0.024 0.014 0.39 Height 2 0.17 0.23 0.074 0.034 0.018 0.53 
	Table 11: Emissions-weighted iF (ppm) by racial-ethnic group 
	Table 11: Emissions-weighted iF (ppm) by racial-ethnic group 


	Intake Fraction Differences by Demographic Group
	The iF for the total population can be broken down by population divisions such as income quintile (Table 10) and race-ethnicity (Table 11). Intake fraction values for population subgroups are included in the iF spatial database and are used to calculate the EJ metrics described in Table 5. The iF for a specific group depends on the total size of that population. Because the size of the population is consistent across income quintiles, the total magnitude of iFs shown in Table 10 is also consistent. In cont
	Differences in iFs among demographic groups are also driven by factors beyond the size of the population. Emissions-weighted iFs for people of different races and ethnicities, income level, or other SES groups also differ if people in those groups tend to live closer to emission sources. To isolate the effect of emissions proximity, we control for population size. We calculate the per-capita iF value for each group by dividing the emissions-weighted mean by the size of the population of that group. Table 12
	Table 12: Relative percent difference in emissions-weighted per-capita iF (% difference from total population per-capita iF) by income quintile 
	Height9 Primary PM2.5 Height 1 9% 5% 1% -3% -10% Height 2 5% 4% 2% -1% -10% VOC/SOA Height 1 7% 4% 1% -2% -8% Height 2 3% 2% 1% 0% -5% NH3/pNH4 Height 1 Height 2 NOX/pNO3 Height 1 Height 2 SO2/pSO4 Height 1 Height 2 5% 2% 1% -1% -6% -1% 0% 1% 1% -1% 8% 4% 1% -2% -9% 2% 3% 2% 1% -7% -4% -4% -3% 0% 8% 2% 2% 2% 0% -6% 
	Income Income Income Income Income Q1Q2 Q3 Q4 Q5 
	Table 13: Relative percent difference in emissions-weighted per-capita iF (% difference from total population per-capita iF) by racial-ethnic group 
	Height White Hispanic Asian Black Other 
	Primary PM2.5 Height 1 -19% 15% 9% 23% -9% Height 2 -22% 21% 6% 15% -15% VOC/SOA Height 1 -16% 14% 7% 16% -10% Height 2 -16% 16% 4% 10% -14% NH3/pNH4 Height 1 -18% 18% 3% 7% -14% -22% 22% 12% -3% -22% -15% 16% -2% 14% -9% -12% 16% -9% 0% -9% -11% 5% 16% 10% -5% -19% 17% 8% 15% -11% Height 2 NOX/pNO3 Height 1 Height 2 SO2/pSO4 Height 1 Height 2 
	Figure
	Height 1: ground level and low stack emissions (0-57m), Height 2: medium and high stack emissions (57-140m). Although a plume-rise algorithm was integrated into the source-specific concentration modeling, it was not used for calculating these emission-weighted averages so iFs for high-elevation plume emissions (>760 m) are not included here. 
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	Localized IF Patterns 
	The summary statistics provided above integrate the wide-scale spatial patterns in the iF database, but the database also includes more localized patterns of iF driven by fine-scale differences in population density of different races, income groups, or other EJ-relevant groupings. These patterns are most apparent when viewing the iF database at a relatively fine spatial scale in highly populated areas. Figure 7 shows the 2.5 iF for different racial-ethnic groups within the greater Los Angeles area. The hig
	heterogeneity of ground-level, primary PM

	Figure
	2.5. 
	Figure 7: Intake fraction in Los Angeles for ground-level emissions of primary PM

	2.5 can be further compared against iF patterns for elevated X, shown in Figure 8. The iF values shown are not specific to a single emissions source category, but apply to any source of emissions of that species and in X, they show shallower gradients 
	2.5 can be further compared against iF patterns for elevated X, shown in Figure 8. The iF values shown are not specific to a single emissions source category, but apply to any source of emissions of that species and in X, they show shallower gradients 
	Patterns for primary PM
	emissions of NO
	that location. Absolute iF values are much lower for NO

	from the urban core to surrounding areas, and exhibit less distinct localized differences among races/ethnicities. Based on this contrast in patterns, we can expect that highly 2.5 are more likely to result in high exposure X. However, even elevated precursor emissions do have the potential to cause exposure concentration disparity. 
	localized sources of primary PM
	concentration disparity among races/ethnicities than sources of NO


	Figure
	from emissions X at an elevation of 57 – 140 meters. 
	Figure 8: Intake fraction in Los Angeles for formation of particulate NO
	3 
	of NO

	Visual Representation of Intake Calculation from Emissions and IF 
	The basic calculation underlying the sector-specific impact analysis that follows this section is: iF × Emissions = Intake. Figure 9 provides a visual representation of that calculation, integrating both ground-level and elevated emissions. Each panel 2.5 or a precursor pollutant. The total intake for a pollutant is the sum of the intake contributions from each emission sector, shown as colored rectangles. For each sector’s rectangle, the width of the base indicates the total mass of annual emissions from t
	corresponds to either primary PM
	sector.
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	A sector may result in high intake if either its emissions or iF are high. As one example, 2.5 from the industrial sector (panel A, rectangle shown in 2.5 from on-road mobile sources (rectangle shown in orange), shown by the greater width of the green rectangle relative to the orange one. However, the iF for on-road mobile sources is much higher than for the industrial sector because driving tends to occur most in areas with high population 2.5 emissions is higher than that from the industrial sector (146 a
	total emissions of primary PM
	green) are greater than emissions of primary PM
	density. As a result, the total intake from on-road mobile source primary PM
	respectively). As another example, the agricultural sector is the dominant source of NH
	3 
	sectors. Agriculture causes greater intake of particulate NH
	4 

	The scale of the axes is different for each panel, so the area of a sector’s rectangle in one panel should not be compared with the area of a rectangle in another panel. 
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	2.5 from each emitted species as the product of annual sector ground-level emissions and sector-specific iF. 
	Figure 9: Area charts showing total population intake of PM

	2.5 from each source and precursor is equal to the area of that sector’s rectangle. The scale varies among panels, so the area of a source in one panel should not be compared with that source in another. In each chart, the sectors are sorted from lowest to highest iF. This order varies by sector. 
	The total population intake of PM

	Sector-Specific Environmental Justice Impacts 
	Effects across all sectors 
	In the sector-by-sector analysis we examine the relative impact of each category on the total population as well as disparity by race-ethnicity, income, age, and other socioeconomic factors. Figure 10 shows the population-weighted average exposure concentration for each major demographic group, represented as the sum of exposure concentrations from each of the 11 sectors. These exposure concentration values combine both primary and precursor emissions. The exposure concentration level for the total populati
	Figure
	Figure 10: Contribution of all sectors to population-weighted average exposure concentration for different demographic categories. 
	Figure 10: Contribution of all sectors to population-weighted average exposure concentration for different demographic categories. 


	The overall population-weighted average exposure concentration from anthropogenic emissions in the modeling domain is 6.78 µg/mDisadvantaged Communities 2.5 and 
	3 
	of PM2.5.
	11 

	experience the highest average exposure concentrations, in line with the PM

	These exposure concentration values are useful for comparing the relative 2.5 2.5 (e.g., wildfires, biogenic VOC emissions, sea salt), nor does it include the long-range transport of anthropogenic pollution from beyond the bounds of the model domain. Monitoring data from 2014 indicates that annual average PM2.5 concentrations in California air basins ranged from 4.0-22.8 µg/m, with an average of 10.9 µg/macross all basins. 
	11 
	importance of different sources, but do not reflect the total population-weighted PM
	exposure in California, as this analysis does not include natural sources of PM
	3
	3 

	DPM exposure criteria used by the CalEnviroScreen 3.0 tool (Faust et al. 2017). These communities experience higher average impacts from every sector, resulting in 45% higher average exposure concentrations compared with the average for the total population. The highest overall exposure concentration disparity results from the industrial sector, followed by on-road mobile sources, and the highest relative disparity results from the natural gas and petroleum sector (see Table 17 and Table E8). 
	Among races and ethnicities, Hispanic and black populations are most exposed, and Asian population exposure concentration also exceeds the overall average. There is a linear decrease in total exposure concentration by income quintile, although the difference is less marked than among racial groups. Younger segments of the population tend to be more exposed than the elderly. Both lower educational status and linguistic isolation are associated with higher exposure concentrations. 
	The sectors that contribute most to population exposure concentrations across demographic groups are on-road mobile sources and the industrial sector, each contributing 24% to average population exposure concentration. The industrial sector 2.5 and NHthan on-road sources but has 2.5 and NHof 6 ppm and 4 ppm, respectively, compared with 10 ppm and 5 ppm for on-road mobile sources, resulting in a magnified effect from the on-road X emissions result in 2.5, despite the lower iF for NOX compared to other precur
	emits more than twice the mass of primary PM
	3 
	iF values for PM
	3 
	mobile source sector. In addition, the large total on-road NO
	substantial additional PM
	of total anthropogenic NH
	3 

	Table 14 and Table 15 show the relative difference in exposure concentrations among races and income quintiles by sector. Average exposure concentration among the white population is lower for all categories, ranging from 7% to 25% below average. The reverse is true for the Hispanic population, with exposure concentrations ranging from 3% to 23% above average. Exposure concentration disparity is most dramatic for the black population, with some minor categories like off-road mobile sources, natural gas and 
	tend to be less exposed than the population average. PM

	2.5 by race-ethnicity (units: µg/m, relative percent difference). 
	Table 14: Difference in population-weighted exposure concentration to PM
	3

	Table
	TR
	Average 
	∆ White 
	∆ Hispanic 
	∆ Asian 
	∆ Black 
	∆ Other 

	Agriculture 
	Agriculture 
	1.37 
	-13% 
	16% 
	-4% 
	5% 
	-11% 

	Construction 
	Construction 
	0.28 
	-12% 
	11% 
	0% 
	21% 
	-6% 

	Cooking 
	Cooking 
	0.15 
	-21% 
	14% 
	16% 
	30% 
	-8% 

	Elec. Gen 
	Elec. Gen 
	0.06 
	-15% 
	18% 
	-5% 
	9% 
	-11% 

	Fugitive Dust 
	Fugitive Dust 
	0.21 
	-7% 
	10% 
	-13% 
	20% 
	-7% 

	Industrial 
	Industrial 
	1.64 
	-25% 
	23% 
	12% 
	10% 
	-18% 

	Miscellaneous 
	Miscellaneous 
	0.12 
	-20% 
	18% 
	9% 
	13% 
	-12% 

	Nat. Gas & Petr. 
	Nat. Gas & Petr. 
	0.22 
	-23% 
	19% 
	3% 
	42% 
	-8% 

	Off road Mob. Srcs 
	Off road Mob. Srcs 
	0.50 
	-21% 
	14% 
	14% 
	30% 
	-9% 

	On road Mob. Srcs 
	On road Mob. Srcs 
	1.65 
	-19% 
	18% 
	5% 
	18% 
	-12% 

	Residential 
	Residential 
	0.58 
	-9% 
	3% 
	14% 
	12% 
	-3% 

	Grand Total 
	Grand Total 
	6.78 
	-18% 
	17% 
	6% 
	15% 
	-12% 


	2.5 by income category (units: µg/m, relative percent difference) 
	Table 15: Difference in population-weighted exposure concentration to PM
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	Table
	TR
	Average 
	∆ Q1 
	∆ Q2 
	∆ Q3 
	∆ Q4 
	∆ Q5 

	Agriculture 
	Agriculture 
	1.37 
	6% 
	3% 
	1% 
	-1% 
	-8% 

	Construction 
	Construction 
	0.28 
	7% 
	7% 
	4% 
	-2% 
	-13% 

	Cooking 
	Cooking 
	0.15 
	8% 
	6% 
	2% 
	-3% 
	-11% 

	Elec. Gen 
	Elec. Gen 
	0.06 
	4% 
	3% 
	1% 
	-1% 
	-10% 

	Fugitive Dust 
	Fugitive Dust 
	0.21 
	11% 
	10% 
	6% 
	-3% 
	-19% 

	Industrial 
	Industrial 
	1.64 
	5% 
	3% 
	2% 
	-1% 
	-8% 

	Miscellaneous 
	Miscellaneous 
	0.12 
	9% 
	3% 
	0% 
	-3% 
	-8% 

	Nat. Gas & Petr. 
	Nat. Gas & Petr. 
	0.22 
	8% 
	4% 
	2% 
	-2% 
	-12% 

	Off road Mob. Srcs 
	Off road Mob. Srcs 
	0.50 
	7% 
	1% 
	-1% 
	-3% 
	-4% 

	On road Mob. Srcs 
	On road Mob. Srcs 
	1.65 
	10% 
	5% 
	1% 
	-3% 
	-10% 

	Residential 
	Residential 
	0.58 
	1% 
	-1% 
	-1% 
	-1% 
	2% 

	Grand Total 
	Grand Total 
	6.78 
	7% 
	3% 
	1% 
	-2% 
	-8% 


	Relative exposure concentration disparity for age groups and other SES groups are shown in Table 16 and Table 17. Those over the age of 65 and 85 tend to be less exposed than the population as a whole at a fairly consistent level of 5-10% across sources. This is desirable, as those of advanced age are more susceptible to the 2.5 exposure. Women of childbearing age are more exposed than the population average, presenting a possible concern for adverse prenatal and neonatal health effects, but the elevation i
	Relative exposure concentration disparity for age groups and other SES groups are shown in Table 16 and Table 17. Those over the age of 65 and 85 tend to be less exposed than the population as a whole at a fairly consistent level of 5-10% across sources. This is desirable, as those of advanced age are more susceptible to the 2.5 exposure. Women of childbearing age are more exposed than the population average, presenting a possible concern for adverse prenatal and neonatal health effects, but the elevation i
	chronic health effects of PM
	less than “very well”), are both associated with higher PM

	other demographic group apart from Disadvantaged Communities. Disparity rates by linguistic isolation are lower for some sources, but notably high for industrial sources and the natural gas and petroleum sector. 

	2.5 by age category (units: µg/m, relative percent difference) 
	Table 16: Difference in population-weighted exposure concentration to PM
	3

	Table
	TR
	Average 
	∆ Ageunder 5 
	∆ Ageunder 18 
	∆ Women of child bearing age 
	∆ Ageover 65 
	∆ Ageover 85 

	Agriculture 
	Agriculture 
	1.37 
	2% 
	2% 
	2% 
	-6% 
	-5% 

	Construction 
	Construction 
	0.28 
	3% 
	1% 
	3% 
	-7% 
	-7% 

	Cooking 
	Cooking 
	0.15 
	1% 
	-2% 
	5% 
	-8% 
	-7% 

	Elec. Gen 
	Elec. Gen 
	0.06 
	2% 
	0% 
	2% 
	-4% 
	0% 

	Fugitive Dust 
	Fugitive Dust 
	0.21 
	5% 
	3% 
	3% 
	-7% 
	-10% 

	Industrial 
	Industrial 
	1.64 
	2% 
	1% 
	4% 
	-8% 
	-6% 

	Miscellaneous 
	Miscellaneous 
	0.12 
	1% 
	-1% 
	5% 
	-8% 
	-5% 

	Nat. Gas & Petr. 
	Nat. Gas & Petr. 
	0.22 
	2% 
	1% 
	4% 
	-8% 
	-7% 

	Off road Mob. Srcs 
	Off road Mob. Srcs 
	0.50 
	1% 
	-1% 
	5% 
	-8% 
	-4% 

	On road Mob. Srcs 
	On road Mob. Srcs 
	1.65 
	3% 
	0% 
	5% 
	-9% 
	-5% 

	Residential 
	Residential 
	0.58 
	0% 
	-2% 
	3% 
	-4% 
	-1% 

	Grand Total 
	Grand Total 
	6.78 
	2% 
	0% 
	4% 
	-8% 
	-5% 


	2.5 by other socioeconomic status categories (units: µg/m, relative percent difference) 
	Table 17: Difference in population-weighted exposure concentration to PM
	3

	Table
	TR
	Average 
	∆ Less than HS education 
	∆ LinguisticIsolation 
	∆ DisadvantagedCommunities 

	Agriculture 
	Agriculture 
	1.37 
	16% 
	9% 
	41% 

	Construction 
	Construction 
	0.28 
	11% 
	1% 
	13% 

	Cooking 
	Cooking 
	0.15 
	16% 
	7% 
	21% 

	Elec. Gen 
	Elec. Gen 
	0.06 
	13% 
	6% 
	35% 

	Fugitive Dust 
	Fugitive Dust 
	0.21 
	11% 
	-5% 
	15% 

	Industrial 
	Industrial 
	1.64 
	22% 
	16% 
	59% 

	Miscellaneous 
	Miscellaneous 
	0.12 
	19% 
	13% 
	55% 

	Nat. Gas & Petr. 
	Nat. Gas & Petr. 
	0.22 
	18% 
	16% 
	70% 

	Off road Mob. Srcs 
	Off road Mob. Srcs 
	0.50 
	16% 
	12% 
	52% 

	On road Mob. Srcs 
	On road Mob. Srcs 
	1.65 
	18% 
	11% 
	53% 

	Residential 
	Residential 
	0.58 
	3% 
	6% 
	11% 

	Grand Total 
	Grand Total 
	6.78 
	17% 
	11% 
	45% 


	Similar tables – the absolute intake difference and relative percent difference by demographic group – are tabulated separately for each sector in Appendix E. 
	The interaction between race-ethnicity and income in total exposure concentration level is illustrated in Figure 11. The colored icon indicates the average exposure concentration for the given racial-ethnic group from sector and the gray icons indicate the exposure concentration at different income quintiles within that racial-ethnic group. Overall, we see that the distribution of exposure concentrations across income quintiles within a race-ethnicity is smaller than the distribution of exposure concentrati
	races/ethnicities; White populations are less exposed to PM

	Figure
	2.5 concentration compared to total population average, shown by race-ethnicity (colored circle icons) and by each income quintile in each racial-ethnic category (gray square icons). 
	2.5 concentration compared to total population average, shown by race-ethnicity (colored circle icons) and by each income quintile in each racial-ethnic category (gray square icons). 
	Figure 11: All-sector relative percent differences in population-weighted average PM



	Agriculture 
	Figure
	The agriculture sector contains 7 subcategories: fertilizer application, agriculture-specific industrial processes, livestock production, off-road mobile agricultural 2.5-related emissions in this overall ). Agriculture is also a significant source of X, and primary PM2.5. Agricultural emissions are modeled primarily as area sources based on land-use designations, with some livestock waste subcategories modeled as point sources. 
	equipment, pesticide application, and tilling. PM
	category are dominated by ammonia (NH
	3
	VOCs, NO

	Figure
	Figure 12: Agricultural sector: contribution of sector categories to population-weighted average exposure concentration for different demographic groups. 
	Figure 12: Agricultural sector: contribution of sector categories to population-weighted average exposure concentration for different demographic groups. 


	The agricultural sector is the third-largest contributor to population-weighted average 2.5 is livestock, followed by industrial processing and fertilizer application. Among races and ethnicities, the 2.5, with the greatest exposure concentration disparity resulting from livestock production. The highest relative disparity occurs among people of color from industrial agriculture 
	The agricultural sector is the third-largest contributor to population-weighted average 2.5 is livestock, followed by industrial processing and fertilizer application. Among races and ethnicities, the 2.5, with the greatest exposure concentration disparity resulting from livestock production. The highest relative disparity occurs among people of color from industrial agriculture 
	exposure concentration (20%). The dominant source of PM
	Hispanic group is most disproportionately exposed to agricultural PM

	processes. Disparity by income category is minor, as is disparity by age. Among all demographic groups, disadvantaged communities experience the highest average exposure concentration from the agriculture sector. 

	Income quintiles within racial-ethnic groups play a stronger role in exposure concentration within the agricultural sector than in other sectors. Those in the highest income quintile for Hispanic, Asian, and black populations are markedly less exposed to agricultural sources than those in lower quintiles. This pattern does not occur within the white or “other race” populations. 
	Figure
	Figure 13: Agricultural sector: relative percent differences in population-weighted 2.5 concentration compared to total population average for categories. 
	Figure 13: Agricultural sector: relative percent differences in population-weighted 2.5 concentration compared to total population average for categories. 
	average PM



	Exposure concentration difference by racial-ethnic group is shown as colored circle icons, and exposure concentration for income quintiles within in each racial-ethnic category are shown as gray square icons. 
	Construction 
	Figure
	The construction sector is divided into five categories: off-road mobile construction equipment, fugitive emissions during road construction, fugitive dust from other construction activities, demolitions, and site preparation. The sector is a minor contributor to the population-weighted average exposure concentration (4%). The dominant source of exposure concentration within the construction sector is off-road mobile construction equipment, followed by fugitive dust from road construction and other sources.
	Figure
	Figure 14: Construction sector: contribution of construction sector categories to population-weighted average exposure concentration for different demographic groups. 
	Figure 14: Construction sector: contribution of construction sector categories to population-weighted average exposure concentration for different demographic groups. 


	Within each racial-ethnic group, those in high-income categories are least exposed. Demolitions and site preparation caused high relative exposure concentration disparity for some race-income groups, but the absolute magnitude of this disparity is negligible. 
	Figure
	Figure 15: Construction sector: relative percent differences in population-weighted 2.5 exposure concentration compared to total population average for categories. 
	Figure 15: Construction sector: relative percent differences in population-weighted 2.5 exposure concentration compared to total population average for categories. 
	average PM



	Exposure concentration difference by racial-ethnic group is shown as colored circle icons, and exposure concentration for income quintiles within in each racial-ethnic category are shown as gray square icons. 
	Cooking 
	Figure
	This category includes the contribution of commercial cooking emissions to ambient 2.5 concentrations. This category includes two types of activities: charbroiling and frying. Cooking creates emissions of both primary PM2.5 and VOCs. Emissions in this category are modeled as an area source based on county-level assessment of the number of restaurants and the level of charbroiling and frying activity at each restaurant. 
	outdoor PM

	As a sector, cooking is a minor contributor to population-weighted average exposure concentration (2%), but its impacts are of a magnitude comparable to many individual categories within the industrial or off-road mobile sector. Cooking disproportionately affects Hispanic, Asian, and black populations, and causes comparable exposure concentration disparity for those with less than a high school education and Disadvantaged Communities. 
	Figure
	Figure 16: Cooking: contribution to population-weighted average exposure concentration for different demographic groups. 
	Figure 16: Cooking: contribution to population-weighted average exposure concentration for different demographic groups. 


	2.5 exposure concentration, but income categories within racial-ethnic groups show less consistent effects: higher income groups in white and “other race” populations 
	2.5 exposure concentration, but income categories within racial-ethnic groups show less consistent effects: higher income groups in white and “other race” populations 
	Higher income populations on the whole experience lower cooking-related PM

	experience higher exposure concentrations than other income groups, while the opposite is true for Asian and black populations. 

	Figure
	2.5 concentration compared to total population average. 
	2.5 concentration compared to total population average. 
	Figure 17: Cooking: relative percent differences in population-weighted average PM



	Exposure concentration difference by racial-ethnic group is shown as colored circle icons, and exposure concentration for income quintiles within in each racial-ethnic category are shown as gray square icons. 
	Electricity Generation 
	Figure
	Electricity generation sources are categorized by the type of fuel used by the facility: coal (of varying grades), residual oil, distillate oil, natural gas, process gas, landfill gas, and various minor fuel types contained in an “other” category. Electricity generation facilities are point sources that emit both at ground-level and in elevated stacks. 
	The electricity generation sector is the smallest contributor to population-weighted average exposure concentration (1%). This result stands in contrast with patterns observed for the whole of the continental United States, as electricity generation in the eastern US tends to be more emissions intensive. Within the sector, natural gas electricity generation is the dominant source of exposure concentration, and results in higher exposure concentrations for Hispanic and black populations as well as Disadvanta
	Figure
	Figure 18: Electricity generation: contribution of sector categories to population-weighted average exposure concentration for different demographic groups. 
	Figure 18: Electricity generation: contribution of sector categories to population-weighted average exposure concentration for different demographic groups. 


	2.5 exposure concentrations from natural gas emissions, the highest-impact electricity generation source, shows much greater variation due to race/ethnicity than income level. Some other electricity-generating sources show high relative differences in exposure concentration for some categories (e.g., process gas), but contribute a negligible amount to total exposure concentration disparity. 
	As shown in Figure 19, PM

	Figure
	Figure 19: Electricity generation: relative percent differences in population-weighted 2.5 concentration compared to total population average for categories. 
	Figure 19: Electricity generation: relative percent differences in population-weighted 2.5 concentration compared to total population average for categories. 
	average PM



	Exposure concentration difference by racial-ethnic group is shown as colored circle icons, and exposure concentration for income quintiles within in each racial-ethnic category are shown as gray square icons. 
	Fugitive Dust 
	Figure
	Fugitive road dust includes resuspended primary PM2 emissions from paved and unpaved roads and road sanding/salting. Fugitive dust from other sources, including construction and agriculture, are included within subsections of those sectors. Fugitive dust is a minor contributor to the population-weighted average exposure concentration (3%). This sector serves as a clear example of the importance of proximity to population exposure concentration: fugitive dust from paved roads contributes only 40% to total fu
	Figure
	Figure 20: Fugitive dust: contribution of fugitive dust categories to population-weighted average exposure concentration for different demographic groups. 
	Figure 20: Fugitive dust: contribution of fugitive dust categories to population-weighted average exposure concentration for different demographic groups. 


	Figure
	Figure 21: Fugitive dust: relative percent differences in population-weighted average 2.5 concentration compared to total population average. 
	Figure 21: Fugitive dust: relative percent differences in population-weighted average 2.5 concentration compared to total population average. 
	PM



	Exposure concentration difference by racial-ethnic group is shown as colored circle icons, and exposure concentration for income quintiles within in each racial-ethnic category are shown as gray square icons. 
	Industrial Sources 
	Figure
	Industrial emission sources include a variety of types of facilities and several different types of processes in the extraction, manufacturing, storage, and distribution of materials such as minerals, metals, biofuels, wood products, textiles, organic solvents, and cement. This category also includes emissions that result from the manufacture of secondary products derived from these materials. The 10 subcategories for industrial sources are organized broadly by the processes involved in industrial activity:
	Figure
	Figure 22: Industrial sector: contribution of industrial sector categories to population-weighted average exposure concentration for different demographic groups. 
	Figure 22: Industrial sector: contribution of industrial sector categories to population-weighted average exposure concentration for different demographic groups. 


	The industrial sector matches on-road mobile sources as the top contributor to population-weighted average exposure concentration (24%). Within the sector, the 
	The industrial sector matches on-road mobile sources as the top contributor to population-weighted average exposure concentration (24%). Within the sector, the 
	category of waste disposal and incineration causes the largest impact, followed by fuel combustion, other activity, solvent utilization, and TSM. This sector results in substantial exposure disparity for Disadvantaged Communities, which experience average exposure concentrations 59% higher than the population as a whole. Chemical manufacturing, fuel combustion, and TSM result in 71%, 64%, and 111% higher exposure concentrations in Disadvantaged Communities. Pollution from the industrial sector results in 23

	The major sources of exposure concentration disparity in the industrial sector --fuel combustion, waste disposal, TSM, and the other processes category --are all elevated for Hispanic, Asian, and black populations, but the magnitude of the difference is consistently highest for the Hispanic population, lower for the black population, and least for the Asian population. The exception is waste disposal, for which the black population experiences lower than average exposure concentration. Several minor categor
	Figure
	Figure 23: Industrial sector: relative percent differences in population-weighted average 2.5 concentration compared to total population average. 
	Figure 23: Industrial sector: relative percent differences in population-weighted average 2.5 concentration compared to total population average. 
	PM



	Exposure concentration difference by racial-ethnic group is shown as colored circle icons, and exposure concentration for income quintiles within in each racial-ethnic category are shown as gray square icons. 
	Miscellaneous 
	Figure
	This category includes various sources of fuel combustion that did not fit into other sectors: fuel combustion for commercial processes, fuel used in engine testing, and several generic/unspecified source categories. Miscellaneous emission sources are a minor contributor to population-weighted average exposure concentration (2%). These sources do not contribute to high rates of exposure disparity for most demographic groups, although Disadvantaged Communities experience 55% higher exposure concentrations fr
	Figure
	Figure 24: Miscellaneous sources: contribution to population-weighted average exposure concentration for different demographic groups. 
	Figure 24: Miscellaneous sources: contribution to population-weighted average exposure concentration for different demographic groups. 


	Figure
	Figure 25: Miscellaneous sources: relative percent differences in population-weighted 2.5 concentration compared to total population average. 
	Figure 25: Miscellaneous sources: relative percent differences in population-weighted 2.5 concentration compared to total population average. 
	average PM



	Exposure concentration difference by racial-ethnic group is shown as colored circle icons, and exposure concentration for income quintiles within in each racial-ethnic category are shown as gray square icons. 
	Natural Gas and Petroleum 
	Figure
	The natural gas and petroleum industry is considered separately from other industrial activity because it is a major contributor to VOC emissions and is of particular interest for environmental justice concerns. The categories included in this sector are oil and gas production; petroleum refining; petroleum transport, storage, and marketing (TSM); and asphalt manufacturing. This sector is a minor contributor to population-weighted average exposure concentration (3%), and compared with other industrial secto
	Figure
	Figure 26: Natural gas and petroleum: contribution to population-weighted average exposure concentration for different demographic groups. 
	Figure 26: Natural gas and petroleum: contribution to population-weighted average exposure concentration for different demographic groups. 


	The relative impacts of the natural gas and petroleum industry are higher for the black population than any other, particularly from refinery activities. Counter-intuitively, exposure disparity from refinery operations is greater for higher-income sections of the black community, while the opposite is true for oil & gas development. More generally, exposure concentration patterns by income are inconsistent within and across racial-ethnic groups, with no consistent income patterns within the Hispanic and Asi
	Figure
	Figure 27: Natural gas and petroleum: relative percent differences in population-2.5 concentration compared to total population average. 
	Figure 27: Natural gas and petroleum: relative percent differences in population-2.5 concentration compared to total population average. 
	weighted average PM



	Exposure concentration difference by racial-ethnic group is shown as colored circle icons, and exposure concentration for income quintiles within in each racial-ethnic category are shown as gray square icons. 
	Off-Road Mobile Sources 
	Figure
	This sector includes emissions from a diverse range of mobile equipment that operate off-road. They include three major means of passenger and goods transport – aircraft, marine, and rail – as well as a variety of industrial, commercial, and recreational equipment powered by diesel, gasoline, or an alternative fuel. Several categories of off-road mobile sources are accounted for in other sectors: equipment used for agriculture or construction are featured in their respective sections, and lawn and garden eq
	Figure
	Figure 28: Off-road mobile sources: contribution to population-weighted average exposure concentration for different demographic groups. 
	Figure 28: Off-road mobile sources: contribution to population-weighted average exposure concentration for different demographic groups. 


	Off-road mobile sources are the fifth-largest contributor to population-weighted average exposure concentration (7%). Emissions from off-road mobile sources are of comparable magnitude to on-road mobile sources, but the more remote location of off-road emissions decreases the resulting exposure concentration. Exposure concentrations are higher than average for Hispanic, Asian, and black populations. The difference for the Hispanic population is driven by rail emissions, while the difference for 
	Off-road mobile sources are the fifth-largest contributor to population-weighted average exposure concentration (7%). Emissions from off-road mobile sources are of comparable magnitude to on-road mobile sources, but the more remote location of off-road emissions decreases the resulting exposure concentration. Exposure concentrations are higher than average for Hispanic, Asian, and black populations. The difference for the Hispanic population is driven by rail emissions, while the difference for 
	the Asian population is driven by marine and gasoline vehicles, and the difference for the black population is driven by aircraft. High exposure concentration in Disadvantaged Communities is driven equally by rail and aircraft, followed by other diesel and gasoline sources. The variation in exposure disparity rates among income categories within racial-ethnic groups is small relative to differences between groups. Exposure concentrations from off-road sources are not consistently higher for low-income categ

	Figure
	Figure 29: Off-road mobile sources: relative percent differences in population-weighted 2.5 concentration compared to total population average. 
	Figure 29: Off-road mobile sources: relative percent differences in population-weighted 2.5 concentration compared to total population average. 
	average PM



	Exposure concentration difference by racial-ethnic group is shown as colored circle icons, and exposure concentration for income quintiles within in each racial-ethnic category are shown as gray square icons. 
	On-Road Mobile Sources 
	Figure
	On-road mobile sources include light-, medium-and heavy-duty vehicles used for passenger transport, goods transport, and municipal services. This sector accounts for tailpipe, brake, and tire-wear emissions from mobile sources as well as fugitive VOC X 2.5 and VOCs. 
	emissions at fueling stations. On-road mobile sources are the largest contributor to NO
	emissions in the modeling domain, and a major contributor to primary PM

	Figure
	Figure 30: On-road mobile sources: contribution to population-weighted average exposure concentration for different demographic groups. 
	Figure 30: On-road mobile sources: contribution to population-weighted average exposure concentration for different demographic groups. 


	On-road mobile sources are matched with the industrial sector as the top contributor to population-weighted average exposure concentration (24%). Exposure concentration from this sector is strongly dominated by gasoline passenger vehicles and diesel heavy-duty vehicles. The average exposure concentration for Disadvantaged Communities is 53% higher than for the population as a whole. Both Hispanic and black populations experience approximately 20% higher exposure concentration from both of these categories c
	On-road mobile sources are matched with the industrial sector as the top contributor to population-weighted average exposure concentration (24%). Exposure concentration from this sector is strongly dominated by gasoline passenger vehicles and diesel heavy-duty vehicles. The average exposure concentration for Disadvantaged Communities is 53% higher than for the population as a whole. Both Hispanic and black populations experience approximately 20% higher exposure concentration from both of these categories c
	-

	concentration is inversely related to income level among the population as a whole, but patterns are mixed for income categories within racial-ethnic groups. 

	Figure
	Figure 31: On-road mobile sources: relative percent differences in population-weighted 2.5 concentration compared to total population average. 
	Figure 31: On-road mobile sources: relative percent differences in population-weighted 2.5 concentration compared to total population average. 
	average PM



	Exposure concentration difference by racial-ethnic group is shown as colored circle icons, and exposure concentration for income quintiles within in each racial-ethnic category are shown as gray square icons. 
	Residential Sources 
	Figure
	Residential emissions sources include burning of wood, natural gas, and other fuels; residential solvent use; and lawn and gardening equipment. This sector is the fourth-largest contributor to population-weighted average exposure concentration (9%), but contributes less to exposure disparity than the other sectors. The dominant sources of exposure concentration within this category are residential natural gas use and wood fireplaces, followed by lawn & gardening equipment and solvent use. This sector result
	Figure
	Figure 32: Residential sector: contribution to population-weighted average exposure concentration for different demographic groups. 
	Figure 32: Residential sector: contribution to population-weighted average exposure concentration for different demographic groups. 


	Figure
	Figure 33: Residential sector: relative percent differences in population-weighted 2.5 concentration compared to total population average. 
	Figure 33: Residential sector: relative percent differences in population-weighted 2.5 concentration compared to total population average. 
	average PM



	Exposure concentration difference by racial-ethnic group is shown as colored circle icons, and exposure concentration for income quintiles within in each racial-ethnic category are shown as gray square icons. 
	Discussion 
	This report presents a new methodology for deriving source-specific EJ metrics for screening-level policy analysis. The reduced-complexity model we use provides several novel aspects to this analysis. First, it allows both high spatial resolution and broad geographic coverage. We see from the analysis of iFs that this high spatial resolution is important for detecting differences in intake and exposure concentration among different demographic groups due to small-scale variation in race-ethnicity and income
	Findings From the iF Spatial Database
	The database of metrics available from this project can facilitate intake and EJ analysis, either simplified or highly detailed, by translating emissions changes into health-relevant metrics. For a rough approximation of state-wide intake changes resulting from state-level emission control measures, population-weighted iF valuescan be multiplied with the proposed emission changes, in line with methods described by Humbert et al. 2011, giving the state-scale intake differences by race-ethnicity, income, etc.
	12 
	13 
	the total expected reduction of PM
	groups of interest.
	14 

	Another major analytical use of the iF database is to compare the efficiency of control strategies by source and by pollutant. The variation of iF among source categories 2.5 exposure through reductions of primary or precursor emissions: on-road mobile sources, construction, and outdoor emissions from commercial cooking and residential 2.5 exposure concentrations due to their 
	reflects a substantial sector-to-sector difference in the potential to reduce PM
	sources all have an outsized effect on PM

	Appendix D, Table D2 – D3 Table D10 Age-, race-ethnicity-, and income-specific iF values by source category are not reproduced in print but are available in the accompanying spreadsheet described in Appendix F. 
	12 
	13 
	14 

	proximity to urban areas. In contrast, pollution associated with electricity generation and agriculture has a lower impact on exposure concentrations relative to emissions levels. Impacts of different sectors also vary by the share of pollution emitted as precursors in 2.5. Primary PM2.5 contributes more to overall PM2.5 intake than any other pollutants, but in combination precursor species account for the majority of 2.5 intake, given their significantly greater emissions rates. This balance is visually de
	addition to primary PM
	PM

	Some additional conclusions can be drawn from summary statistics and maps of the iF database, which broadly characterize spatial and pollutant-specific patterns: iF is 2.5 and lower for precursors, consistent with patterns reported in the literature. Considering the interquartile range of values (25to 75percentile values), we see population-weighted values vary by 200% to 400% between upper and lower quartiles, indicating the wide range of conditions in communities across California. Furthermore, emissions-
	consistently highest for primary PM
	th 
	th 

	In addition to more accurately representing sector impacts, using a model with high spatial resolution in highly populated areas is critical in the identification of environmental justice issues. Su et al. identified significant within-county and within-neighborhood variation in environmental risk from diesel PM exposure (Su et al., 2012). This pattern is not well characterized by population-weighted summary statistics of iF but appears clearly in iF maps of urban areas (Figure 7 and Figure 8). Ground-2.5 –
	level iF for primary PM

	Although we only highlighted two pollutants in Los Angeles, the database could be used to look at other counties or air basins and consider a wider range of pollutants. 
	Sector-Specific Environmental Justice Impacts
	The fundamental finding of the sector-specific environmental justice analysis is that groups of lower socioeconomic status – non-white, low-income, low educational 2.5 exposure concentration from all emissions categories. This finding reinforces the conclusions of earlier studies and indicates that there are still major environmental 2.5 control strategies in California. A more detailed review of the results shows that the magnitude of exposure concentration disparity varies by source category. Two of the h
	attainment, or linguistically isolated groups – systematically experience higher PM
	justice issues to confront in PM

	The findings of this study align with the results of earlier work, both in the overall magnitude of disparity and demographic patterns. Marshall et al. (2006) estimated that within the South Coast Air Basin, the white population experienced 15% lower DPM exposure, while Hispanic, Black, and Asian/Pacific Islander populations experienced 20%, 15%, and 10% higher exposure. Our findings are similar, even when including the 2.5 exposure concentration among the white population, and 17%, 15%, and 6% higher expos
	population of the whole state and secondary PM in the calculation: 18% lower PM
	total PM
	produce secondary PM

	The relative importance of race-ethnicity vs. income in exposure concentration disparity is often considered in EJ studies. Su et al. (2012) found that patterns of inequality based on poverty level were similar to those based on race-ethnicity but noted that there is significant correlation between the two variables. We account for this correlation by dividing each racial-ethnic group by income level and noting how patterns differ when comparing the highest income quartile across all races vs. the lowest (F
	the high-income segment of a non-white group is typically still exposed to higher PM

	concentrations than the low-income segment of the white group. This generally matches findings that racial-ethnic divides in exposure still exist when controlling for income (Clark et al., 2017). 
	Summary and Conclusions
	This project demonstrates a new methodology for conducting a screening-level analysis to estimate the impacts in exposure concentration and EJ-relevant disparity levels from changes in both primary and precursor emissions from different sectors. While this report presents the central findings from this modeling work, this work also produced a highly detailed set of iF, intake and EJ metrics, available in the appendices and accompanying data files, that allow further investigation of the relative magnitudes 
	The strength of this screening tool is to show how all major sectors contribute to exposure concentration disparity, to provide a comparison of the relative contribution to exposure concentration from different sources within a sector, and to compare levels of exposure concentration disparity among demographic groups. However, model limitations should be considered when interpreting these results. The concentration 2.5 (see Appendix B). Because simplifying assumptions limit the precision of exposure concent
	values presented do not represent total population exposure to PM
	in exposure concentrations. The influence of secondary PM
	among sources, but due to uncertainties in secondary PM
	interpreted with care. This tool is not designed to definitively quantify PM

	In applying a reduced-complexity model to the 2014 emissions inventory, we find 2.5 exposure concentration by race, income category, and 2.5 exposure concentration within the domain – the industrial sector and on-road mobile sources– are also the major sources of exposure concentration disparity by race and income. There is no single culprit for exposure concentration disparity: among major emissions sectors, different emissions categories have differential effects by racial-ethnic, income, or other 
	In applying a reduced-complexity model to the 2014 emissions inventory, we find 2.5 exposure concentration by race, income category, and 2.5 exposure concentration within the domain – the industrial sector and on-road mobile sources– are also the major sources of exposure concentration disparity by race and income. There is no single culprit for exposure concentration disparity: among major emissions sectors, different emissions categories have differential effects by racial-ethnic, income, or other 
	significant disparity in PM
	other socioeconomic indicators. We find that the major sources of PM

	grouping. Some minor categories also have outsized impacts on single demographic groups. This suggests that (1) a cross-sector approach to emission control is necessary to address EJ issues, and (2) particular groups may find it beneficial to identify specific localized sources within a sector category that pollute their community. 

	Recommendations for Further Research 
	The iF spatial database and source-specific impact estimates created for this project provide a rich, complex source of information that can be analyzed among many dimensions beyond the state-wide source ranking analysis chosen for this report. The source-specific EJ metrics described here are applicable at the state level; the creation of region-specific sets of EJ metrics was beyond the scope of this report. However, the spatial database of iF values provides the means to create a similar ranking of sourc
	Other future steps for this model may include an update to the baseline CTM input, 2.5 formation rates that occur as a result of reductions in emissions of precursor species. As an extension, sensitivity of the model to large or small perturbations in precursor emissions could be informed by a limited set of additional CTM runs with varied emissions inputs. 
	addressing the change in secondary PM
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	Glossary of Terms, Abbreviations, and Symbols 
	Some determination of pollution sources can be made with a chemical analysis of PM2.5 components, but this approach provides less detailed source specifications and is not easily scaled up to an analysis of a large number of communities.The fraction of emissions emitted by a specific source that are inhaled by the population 
	1 
	2 

	Total amount of an air pollutant emitted by a specific source that is inhaled by the population 
	3 

	Abbreviation Used 
	Abbreviation Used 
	Abbreviation Used 

	CTM 
	CTM 
	Chemical Transport Model 

	DPM 
	DPM 
	Diesel particulate matter 

	EJ 
	EJ 
	Environmental Justice 

	iF 
	iF 
	Intake Fraction 

	NEI 
	NEI 
	US EPA National Emissions Inventory 

	NH3 
	NH3 
	Ammonia 

	NOX 
	NOX 
	Oxides of nitrogen 

	PM2.5 
	PM2.5 
	Fine particulate matter (particles with an aerodynamic diameter ≤ 2.5 µm) 

	RCM 
	RCM 
	Reduced-complexity model 

	SOA 
	SOA 
	Semi-volatile organic aerosol 

	SO2 
	SO2 
	Sulfur dioxide 

	SOX 
	SOX 
	Oxides of sulfur, including sulfur dioxide 

	TSM 
	TSM 
	Transport, storage, and marketing 

	VOC 
	VOC 
	Volatile organic compound 






