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2 Abstract 

Environmental health researchers, practitioners, advocates, and policy-makers are increasingly 
concerned about the origins and persistence of health disparities in California. Scientific research 
indicates that the inequitable distribution of health is linked to environmental and social conditions 
combined with underlying vulnerability factors that put people at “risk of risks” (Phelan et al., 2010). 
This combination of environmental hazard exposures and socioeconomic stressors has been 
described as a form of double jeopardy (Institute of Medicine, 1999) that disproportionately impacts 
vulnerable groups, particularly communities of color and the poor, immigrants and linguistically 
isolated groups.  Although the importance of cumulative impacts may be theoretically obvious, the task of 
measuring and quantifying these impacts is challenging because data on interactions among these 
exposures are unavailable, information on place- and population-specific exposures is lacking, and 
validated models relating exposure to health effects for multiple chemicals and nonchemical stressors do 
not exist (Sexton, 2012). However, spatial screening allows decision-makers to identify areas that are 
over-burdened with environmental hazards and that are socially vulnerable so that communities might be 
targeted for regulatory and policy action to improve environmental conditions and protect public health.  
The Environmental Justice Screening Method (EJSM) facilitates such mapping of cumulative impacts 
using multiple health, environmental and social vulnerability measures organized along diverse 
categories. This project extended the original EJSM to create additional metrics, including indicators of 
climate change vulnerability, and increased cumulative impacts screening coverage from its initial focus 
on Southern California and the San Francisco Bay Area, to all California regions. In addition, we 
integrated our work with OEHHA on drinking water into our final maps, which are presented here.  
Methodological improvements include data updates, corrections of facility and sensitive land use 
locations in data provided by CARB, a more streamlined method for developing the land use base 
maps, and an approach to assessing area-level proximity to environmental hazards that reduces data 
processing time and enhances flexibility for implementing different buffers and scoring approaches. 

We present maps of the EJSM scores for eight California regions, including intermediate scores for 
each category of cumulative impact (e.g. hazard proximity and sensitive use; health risk and 
exposure; social and health vulnerability; climate change vulnerability; drinking water quality) and total 
cumulative impact. Comparisons of cumulative impact scores derived using regional versus state 
quintile distributions indicate that different geographic definitions for deriving scores affect screening 
results. Although the EJSM is flexible enough to allow for comparisons of cumulative impact scores 
across different study areas (e.g., within regions or across the state) we favor a regional application of 
scoring because generally land use planning, industrial and transportation development, and 
environmental regulation are regionally rooted and require regionally specific interventions to reduce 
hazard exposures or to address social and health vulnerability factors.  In addition, statewide scoring 
can mask important within-region inequities.  Nevertheless, there may be certain policy and decision-
making contexts when statewide distributions for scoring may be appropriate for larger scale impacts such 
as climate change vulnerability.   

Spatial screening methods such as the EJSM are critical tools that can help decision-makers advance 
environmental justice goals by more efficiently targeting efforts and resources to remediate 
cumulative impacts, environmental inequities, and focus regulatory action at the neighborhood level.  
As environmental health science develops a better understanding of cumulative impacts, standard 
approaches in risk assessment may need to change and be harmonized with cumulative impact 
screening methods to assure the protection of public health. 
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3 Introduction 

Although environmental regulations for pollutants in air, water, soil, food, and other sources have been 
effective in controlling community exposures to some environmental hazards, they do adequately address 
multiple pollutants from diverse sources or incorporate nonchemical stressors and health vulnerabilities. 
Health disparities that disproportionately affect minority and low-income populations may enhance the 
effects of environmental chemicals. Cumulative exposures to environmental stressors, against a 
background of vulnerability, can result in heightened health risks and impacts across a population. 
Although the importance of cumulative impacts may be theoretically obvious, the task of measuring and 
quantifying these impacts is enormously challenging;  indeed, quantifying cumulative risk from chemical 
and nonchemical stressors is impractical or impossible in most real-world situations because data on 
interactions among these exposures are unavailable, information on place- and population-specific 
exposures is lacking, and validated models relating exposure to effect for multiple chemicals and 
nonchemical stressors do not exist (Sexton, 2012). Therefore, a key challenge for decision-makers is to 
reconcile these data gaps with the pressing need to proactively address and reduce potential cumulative 
impacts and environmental health disparities among diverse communities.   

Spatial screening allows decision-makers to identify areas that are over-burdened with environmental 
hazards and that are socially vulnerable so that communities might be targeted for regulatory and policy 
action to improve environmental conditions and protect public health.  The key to this approach is the use 
of geographic information systems (GIS) mapping to integrate chemical and nonchemical stressors, 
vulnerability, and background risk factors in a semi-quantitative manner. The Environmental Justice 
Screening Method (EJSM) facilitates such mapping and spatial screening of cumulative impacts using 
multiple health, environmental and social vulnerability measures organized along diverse categories.  
During its first iteration, the EJSM included three main categories of metrics: (1) hazard proximity and land 
use; (2) estimated air pollution exposure and health risk; (3) social and health vulnerability (Sadd et al., 
2014, 2011). At the request of the California Air Resources Board (CARB), this project sought to extend 
the original EJSM to create additional metrics, including indicators of climate change vulnerability, and to 
extend coverage from its initial focus on Southern California and the San Francisco Bay Area, to all 
California regions. CARB also requested that two community workshops be conducted to provide 
opportunities to review results with community residents and environmental justice advocacy and 
public health organizations and to collect feedback for inclusion in the final project report.  It was also 
requested that the Project manager be trained concurrently with the researchers in EJSM data 
preparation, analysis and scoring, to monitor and help beta test the different modules of the EJSM as 
they were developed. CARB also requested that we conduct a final presentation/workshop at CARB 
in Sacramento for interested agency staff, similar to the one at the conclusion of the original 2010 
project. Finally, CARB asked that transfer of the data and programming used in this project to CARB 
take place as the data become completed and finalized.   

This report describes how we completed project deliverables, including how we addressed logistical 
and methodological challenges along the way; we also discuss additional products from our work that 
were beyond the scope of our contract, and present the final results of our EJSM analysis.  We 
conclude with a short discussion of the implications this work, and potential synergies with emerging 
initiatives within CARB and Cal-EPA more broadly.   
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4 Methods 

4.1 Development of Land Use Base Map  

The EJSM involved a four-step process: (a) conduct an initial GIS spatial assessment to create a 
detailed land use base map to isolate the land use types (i.e. residential and "sensitive" uses) used in 
the analysis to follow; (b) apply GIS techniques to appropriately summarize the resulting 
environmental hazard proximity indicators for all census tracts; (c) integration of the resulting tract 
level scores with tract level data on other indicators of environmental and social stressors, including 
estimated air pollution exposure and/or health risk, climate change vulnerability, drinking water 
quality, and social and health vulnerability; (d) a cumulative ranking based on all the tract-level 
indicators that is then presented visually.  

The first step in this process entailed acquiring parcel level spatial data files with accompanying land 
use attribute information for each county in California.  This information was used to identify 
cumulative impact (CI) land uses as a step in constructing the CI polygons for EJSM scoring.  The 
base map for the state is constructed by integrating specified residential and sensitive land use 
classes as classified by CARB (CARB, 2005) This approach focuses cumulative impact screening on 
areas with land uses where people reside or locations hosting schools, hospitals, day care centers, 
parks and other sensitive receptor locations. Areas that are, for example, strictly industrial or 
commercial or undeveloped open space are not included in the base map. 

For most counties, land use code attribute information was acquired at the parcel level. However, for 
some counties, such as Mariposa, the data was not available or had inadequate use code information 
for many individual parcels.  To address this problem, we developed an interim CI land use spatial 
data layer using the rough descriptions available, and then supplemented this information with NLCD 
data to further correct land use for these areas.  Similarly, some counties used inconsistent definitions 
of use code. For example, in Merced and Stanislaus counties, parcels composed primarily of 
agricultural land but with a small area with residential buildings were classified as “rural residential” in 
the same way as small parcels in rural areas dominated by residential structures. In order to avoid 
over-representing farm fields as residential land, we use the NLCD to identify and filter out land that 
did not fit our residential criteria.  Finally, some parcel data had use code detail available in which 
case we utilized NLCD and regional government land use information (e.g. from the Sacramento Area 
Council of Governments (SACOG)) to make these interpretations better and more accurate.  The 
extra processing done for these data refinements in the development of the land use layer and CI 
polygons is codified in our ModelBuilder programming.   

We also validated the use of NLCD to replace our more complex and integrative approach of using 
county parcel data for generating our land use base maps for the EJSM.  The NLCD is the highest 
spatial resolution (30M grid cells) land cover data available and it is updated by the US Geological 
Survey every six years.  The results of this validation process comparing approaches to derive the 
base land use maps are shown in Supplement A. 

To geographically link the land use base map with tract-level metrics of environmental and 
social/health vulnerability, the residential and sensitive land use polygons were intersected using a 
GIS procedure with census block polygons from the 2010 Census, to create a base map composed of 
neighborhood-sized cumulative impact (CI) polygons, each with a known land use class and attribute 
key to attach census information. 
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4.2 Hazard Proximity and Sensitive Land Use Layer Updates 

The first step required to score the proximity of hazards to analysis involved attaching to each of the 
Table 1: Environmental Hazard and Sensitive Land Use Indicators 

Indicator Description Data Source 

Environmental Hazard 

Large industrial 
facilities 

Includes facilities emitting 
>25,000 metric tons of 
CO2‐equivalent (CO2e) and 
facilities emitting > 10 tons of 
particulate matter and/or toxic 
air contaminants per year. 

Provided by CARB: Greenhouse Gas Inventory 
Database 

CA Emission Inventory Development and Reporting 
System (CEIDARS) 

Small area source 
emitters 

Includes auto body and paint 
shops, gas stations, permitted 
hazardous waste facilities 

Provided by CARB: California Dept. of Toxic 
Substances Control (auto paint and body shops, and 
hazardous waste); County Departments of Weights and 
Measures (gas stations) 

Large area emitters Railroads and railyards, 
airports, intermodal distribution 
facilities 

Facilities of Interest Database provided by CARB 

Traffic Volume Major roadways and freeways CA DPH-EHIB 

Sensitive Land Use 

Schools Public and private pre-college 
schools and related eduational 
facilities 

A Dept of Education 2011; SCAG 2008; ABAG 2005; 
SANDAG 2009 SACOG 2014; county tax parcel use 
codes 2010 

Childcare facilities Licensed childcare and daycare 
facilities 

County tax parcel use codes 2010, 2011; State of 
California Licensing Division, 2011; Dun and Bradstreet 
by NAICS code 624410, 2011 

Playgrounds, parks and 
recreation centers 

Improved parks and playgrounds 
with grounds and facilities used 
in children's sports, and other 
outdoor play activities; does not 
include open space, hiking or 
biking paths, or similar 
unimproved parkland. 

Regional planning agencies (SCAG 2008; Association 
of Bay Area Governments (ABAG) 2005; San Diego 
Association of Governments (SANDAG) 2009; 
Sacramento Area Council of Governments (SACOG) 
2014); geocoded locations from addresses from Dun 
and Bradstreet by NAICS codes 621491 and 524114, 
2009: California Spatial Information Library 2010; 
county tax parcel use codes 2010 

Residential 
neighborhoods 

Areas described as in use or 
zoned for residential uses, 
ranging from low density  single 
family detached, to higher 
density multifamily, to mobile 
home parks, etc. 

Regional planning agencies (SCAG 2008; Association 
of Bay Area Governments (ABAG) 2005; San Diego 
Association of Governments (SANDAG) 2009; 
Sacramento Area Council of Governments (SACOG) 
2014); geocoded locations from addresses from Dun 
and Bradstreet by NAICS codes 621491 and 524114, 
2009: California Spatial Information Library 2010; 
county tax parcel use codes 2010 

Healthcare or senior 
housing facility 

Residential care and living 
facilities dedicated or limited to 
serving the elderly (age >64). 

Regional planning agencies (SCAG 2008; Association 
of Bay Area Governments (ABAG) 2005; San Diego 
Association of Governments (SANDAG) 2009; 
Sacramento Area Council of Governments (SACOG) 
2014); geocoded locations from addresses from Dun 
and Bradstreet by NAICS codes 621491 and 524114, 
2009: California Spatial Information Library 2010 

Page 10 of 41 



 

 

 

CI polygons on our regional base map a set of hazard proximity indicators and then summarizing 
these to create scores at the tract level. 

Table 1 shows the hazard and sensitive land use indicators and their data sources that we used to 
derive the environmental hazards and sensitive land use scores. Locational data were verified and 
corrected as needed using a tiered approach, which is described in detail in Supplement B. 

Each CI polygon—consisting of either a residential or sensitive land use—was scored as follows: We 
applied the ArcGIS Point Distance procedure, which measures the distance between two points (in 
this case CI polygon centroids and the point hazard location), rather than a buffer distance approach, 
which measures the distance between a point and a polygon boundary (used in our first iteration of 
the EJSM and described in detail elsewhere) (Sadd et al., 2011). This newer approach has several 
advantages over the old one. The Point Distance method significantly reduce data processing time 
because it runs quickly and is done only once, and provides much greater flexibility to score using 
any conceivable buffer distance and strategy, which helps facilitate sensitivity analyses. For purposes 
of the EJSM, we currently use a 3000 foot threshold, which works well for smaller CI polygons.  
However, in less urbanized locations and in places with large areas of a single land use, CI polygons 
tend to be much larger, making the Point Distance tool less effective. To remedy this, we divided 
these larger CI polygons into smaller ones using a 1000 foot statewide grid (or “fishnet”) which is 
intersected with the large CI polygons. We then used the centroid to generate a table specifying the 
distance between the CI polygon centroid and point hazard.  To address the different areas of each 
CI polygon we added the radius of a circle with the equivalent area to the CI polygon to each of the 
distance bands, which enables the identification of facilities or other emission sources within 1000, 
2000, and 3000 feet of a CI polygon. Figures 1A-C provide a visual example of this process. 
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The Point Distance Tool measures the 
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Figure 1A. Application of Point Distance Tool to Develop Hazard Proximity Indicators  

Figure 1B. Different CI polygon sizes complicate application of Point Distance Tool 
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Figure 1C. Point Distance Tool Compared to Buffer Approach 

Figure 1D. Aggregating from Block to Tract using Population Weights 
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We evaluated this method in several counties and decided to also add the step of eliminating any 
new polygons (after the intersect) with areas < 100 square feet, because the spatial precision of the 
hazard and sensitive land use data are not adequate enough to warrant keeping these small 
polygons, and such a small area is not relevant from a land use perspective.  Overall, the 
combination of these point-distance and fishnet techniques ran very quickly (about 3 hours to 
process) for the statewide data layer and generated approximately 4 million CI polygons. This GIS 
approach is also advantageously nimble in terms of facilitating sensitivity analyses that allow for 
changes in distance bands and integration of new data, where appropriate. 

The number and type of hazardous land uses (represented as point or area features, such as airports 
and railroad tracks) were calculated for every CI polygon; we then applied a distance-weighted 
scoring procedure where the influence of the hazards on the sum attached to the CI polygon 
diminishes with distance as those areas with closer proximity to numerous air quality hazards are 
assumed to be more highly impacted. The distance-weighted hazard count for each CI polygon was 
derived with the following formula: 

(W<1000ft*H<1000ft) + (W1000-2000ft*H1000-2000ft) + (W>2000-3000ft * H>2000ft-3000ft) 

Where H is the hazard, and W is the distance weight (weights = 1 for <1000 ft; 0.5 for 1000-2000 ft; 
and 0.1 for >2000-3000 ft). 

We added to the distance-weighted hazard proximity counts a binary dummy variable indicating 
whether the CI polygon was residential land or a non-residential sensitive land use CI polygon.  
Sensitive land uses included, CI polygons with a school, playground childcare center, park or health 
care facility. A tract-level hazard proximity score was then calculated by combining the hazard 
proximity and sensitive land use measures and then attaching to each CI polygon a population weight 
derived from assigning population using the underlying intersection of census block data and polygon 
land area. We then weighted the scores to derive a census tract average count for hazard 
proximity/sensitive land uses. (Figure 1D). Finally, a quintile ranking from 1 (low) to 5 (high) was 
applied to derive a tract-level score which integrates the presence of both sensitive and hazardous 
land uses. 

4.3 Health Risk and Exposure Layer Updates:   

Similar to the first iteration of the EJSM, this category includes updated metrics of the ambient air 
pollution concentrations and health risk indicators associated with modeled TRI emissions and air 
toxics exposures all calculated at the census tract level. Specifically we integrated the following 
indicators (Table 2); 1) toxicity weighted hazard scores for air pollutant emissions averaged for 2007-
2010 from Toxic Release Inventory facilities included in the U.S. EPA‘s Risk Screening Environmental 
Indicators (RSEI), estimated at the census tract level using a Gaussian-plume fate-and-transport 
model (US EPA, NO); 2) estimated cumulative estimated lifetime cancer risk associated with ambient 
air toxics exposures from mobile and stationary sources for 2005 derived by integrating US EPA’s 
National Air Toxics Assessment (NATA) data and cancer potency values from California’s Office of 
Environmental Health Hazard Assessment (Cal-EPA, ND; US EPA, ND);  tract-level estimates of 
cumulative respiratory hazard derived from the 2005 National Air Toxics Assessment (NATA) and 
OEHHA Reference Exposure Levels (RELs)(Cal-EPA, ND); tract-level ambient concentration 
estimates interpolated from the CARB statewide criteria air pollutant monitoring network for PM2.5 
averaged for 2009–2011 and ozone exceedances, defined as sum of the portion of the daily 
maximum 8 hour concentration over the California standard of  0.070 ppm averaged over 2009-11. 
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For this new EJSM iteration, we also added an indicator for agricultural pesticide use in pounds per 
square meter, averaged for 2009-2011. 

Table 2: Exposure and Health Risk Indicators 

Indicator Description Data Source Year 

Toxicity-weighted air 
pollution 
concentrations from 
large industrial 
facilities (TRI) 

Includes facilities required to 
report industrial emissions to 
EPA’s Toxic Release inventory.  
Estimates are averaged across 
4 years. 

US EPA’s Risk Screening 
Environmental Indicators (RSEI) 

2007-10 

PM2.5 concentrations Annual average concentration 
estimates interpolated to tract 
level from CARB air monitors. 
Averaged over three years 

CARB 2009-11 

Ozone exceedances Annual sum of the portion of the 
daily max 8 hour concentration 
over CA standard of  0.070 ppm 
averaged over three years 

CARB 2009-11 

Lifetime cancer risk 
from air toxics 

Estimates cancer risks 
associated with modeled 
estimates of ambient air toxics 
categorized as known, probable 
or possible carcinogens 

US EPA’s National Air Toxics 
Assessment 

Cancer Potencies from OEHHA 

NATA 2005 

OEHHA 2012 

Chronic respiratory 
hazard from air toxics 

Estimates respiratory hazard 
associated with modeled 
estimates of ambient air toxics 
based on a hazard ratio derived 
using RELs 

US EPA’s National Air Toxics 
Assessment 

RELs from OEHHA 

NATA 2005 

OEHHA 2012 

Pesticide Use Average annual number of 
pounds of pesticide applied in 
pounds/m2 

Pesticide Use Reporting System, 
compiled by the Environmental 
Health Investigations Branch of 
CDPH 

2009-11 

Intermediate scores for each health risk and exposure metric were calculated based on their quintile 
distribution rankings (with scores ranging from 1–5) for all tracts in a study area (state or region). As 
these health risk and exposure metrics are at the tract level, each CI polygon receives the metric 
score for its host census tract and the ranking is done at the tract level. For example, a tract in the 
least impacted 20% for each of the six exposure and health risk metrics (PM2.5 concentration, ozone 
exceedance, estimated cumulative cancer risk and respiratory hazard for air toxics, toxicity-weighted 
pollutant emissions from RSEI, and pesticide use) would receive a total health risk and exposure 
score of 6 (6 metric scores of 1), whereas a tract that ranked in the highest quintile for all six metrics 
would have a total exposure and health risk score of 30 (6 metric scores of 5). These total 
intermediate scores are then re-ranked into quintiles by tract to derive the final score for this air 
pollution exposure/health risk category, which ranges from 1 to 5. 

4.4 Social and Health Vulnerability Layer Updates:   

We updated all of the tract level demographic metrics using five year estimate of the American 
Community for the years 2008-2012. We also expanded the voter turnout metric to include an 
average percent of the votes cast among all registered voters averaged for the 2004, 2006, 2008, and 
2010 general elections (Table 3). 
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Intermediate social and health vulnerability indicator scores were calculated using the same quintile 
distribution and normalization technique employed for the health risk and exposure indicators, above, with 
scores ranging from 1 to 5. To ensure that social and health vulnerability scores were not distorted by 
missing data or based upon anomalously small populations, tracts with fewer than 50 people and those 
with fewer than six indicator values were not scored. Some of these tracts had already been eliminated in 
the hazard proximity scoring phase owing to having no residential land. To insure comparability between 
tracts with all metrics and those tracts missing 1 to 4 metrics, we summarized the ranks for the individual 
metrics and then calculated a score based on dividing that sum by the number of non-missing metrics. 

Table 3: Health and Social Vulnerability Indicators 

Indicator Description Data Source Year 

Social Vulnerability Indicators 
Racial/ethnic make-up  % residents of color American Community 

Survey (ACS) 
2008-12 

Poverty rate % residents living below twice 
the national poverty level 

ACS 2008-12 

Homeownership % of residents living in rented 
households 

ACS 2008-12 

Housing Value median housing value ACS 2008-12 

Potential Biological Vulnerability Indicators 
Age of residents % residents <5 years old ACS 2008-12 

% of residents > 65 years old ACS 2008-12 
Birth outcomes % of preterm and small-for-

gestational age infants 
California Dept of 
Public Health 

2006-2012 

Civic Engagement Capacity Indicators 
Linguistic isolation % pop. >age 4 in households 

where no one  >age 15 speaks 
English well 

ACS 2008-12 

Voter Turnout % votes cast among all 
registered voters averaged for 
2004, 2006, 2008, 2010 general 
elections 

California Secretary of 
State (CA Secretary of 
State, ND) 

2004, 
2006, 
2008, 
2010 

4.5 New Climate Change Vulnerability Layer 

For this new iteration of the EJSM, we developed a novel category of metrics to address the issue of 
climate vulnerability. Research, including our own, indicate that climate change is having a 
disproportionate impact on the health of poor communities and communities of color in the US 
(Shonkoff et al., 2011; Jesdale et al., 2013; English et al., 2013). At the same time, industrial and 
vehicular sources of the greenhouse gases (GHGs) and other climate-forcing pollutants are also 
disproportionately located in low income communities of color. Mitigation efforts to combat climate 
change in California have the potential to deliver substantial co-benefits to the health of 
disadvantaged communities by reducing the hazardous air pollutants that are emitted from these 
sources during the combustion of fossil fuels. Other types of mitigation projects, some of which are 
funded through the Greenhouse Gas Reduction Fund, and that include initiatives related to urban 
planning and forestry, public transportation, household energy efficiency or renewable energy 
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generation, can also offer co-benefits to low income households in the forms of neighborhood 
greenspace, employment and savings on energy expenditures. However, very few analytic 
frameworks exist for integrating equity into the design and assessment of climate policy in order to 
capture the co-benefits of better environmental quality in disproportionately impacted communities. 
The integration of climate change vulnerability metrics into the EJSM can support efforts to 
systematically highlight those communities in the state that are likely to benefit most from adaptation 
and mitigation efforts going forward.  Moreover, adding the climate change vulnerability category to 
the EJSM provides a foundational analytic framework for understanding of the scope and scale of 
changes in health equity that result from climate change mitigation polices and track the extent to 
which mitigation efforts maximize health co-benefits for the most vulnerable populations.  Accordingly 
we integrated indicators of heat island risk, projected changes in temperature, and additional 
measures of social isolation and lack of mobility into the climate change vulnerability category (Table 
4). Intermediate climate change vulnerability indicator scores were calculated using the same quintile 
distribution and normalization technique described above, with scores ranging from 1 to 5.   

Given the health risks associated with wildfires and their increasing frequency and intensity in 
California (Holstius et al., 2012), we also examined the viability of  integrating using CalFire data to 

Table 4: Climate Change Vulnerability Indicators 

Indicator Description Data Source Year 

Heat Island Risk Indicators 

Tree Canopy % of area covered by tree 
canopy 

NLCD 2012 

Impervious Surface % of area covered by 
impervious surface 

NLCD 2012 

Temperature change indicators 
Projected maximum 
temperature 

Projected max monthly 
temperature average 2050-
2059 

National Center for Atmospheric 
Research, downscaled Community 
Climate System Model, scenario B1, 
ensemble average & Cal ADAPT 

2011 

Projected change in 
maximum monthly 
temperature 

Change in projected max 
monthly temperature 
(2050-2059) – (2000-2009) 

National Center for Atmospheric 
Research, downscaled Community 
Climate System Model, scenario B1, 
ensemble average & Cal ADAPT 

2011 

Projected change in 
warm nights 

Change in degree-days of 
warm nights (19°C) 

National Center for Atmospheric 
Research, downscaled Community 
Climate System Model, scenario B1, 
ensemble average & Cal ADAPT 

2011 

Social Isolation Indicators 

Isolated elderly 
residents 

% of elderly residents living 
alone 

ACS 2008-12 

Mobility % of residents owning a car ACS 2008-12 
develop a metric of wildfire risk. However, the CalFire dataset had severe limitations, including low 
spatial resolution (1/8°), little variation from one spatial data point to another, and no definition of risk  
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for urban areas or cultivated lands.  Moreover, local risk of fire is a poor proxy for the actual effects on 
populations due to widespread exposures to air pollution from wildfire smoke.  Therefore, we chose 
not to add this metric into the climate vulnerability category.  If we are able to locate improved 
modeled estimates that better integrate air quality impacts at a finer geographic resolution and with a 
broader geographic scope that includes urban areas, we will likely add a wildfire risk metric in the 
future. 

4.6 New Drinking Water Layer 

Communities struggling with access to safe drinking water in the US typically face a composite 
burden related to both exposure to contamination and the ability to cope adequately. This burden is 
based, among other things, on vulnerability of the physical infrastructure and weak managerial and 
financial capacity (Balazs and Ray, 2014).  Assessing the cumulative impacts of these burdens is 
critical from a public health perspective. Based on our previous empirical research (Balazs et al., 
2011, 2012), an assessment of what data sources are readily available, and consultation with 
environmental justice groups working on drinking water, we created a composite drinking water 
quality metric that includes: Potential exposure to high levels of contaminants, and compliance with 
monitoring standards, and/or degree of missing data.  Exposure to contaminants captures the 
potential health risks from drinking contaminated water, particularly at levels that exceed the 
maximum contaminant levels (MCLs) for 17 compounds.  Monitoring compliance captures the extent 
to which the system meets minimum monitoring requirements of the Safe Drinking Water Act and/or 
lacks data on specific contaminants.  We also integrated visual indicators in our water quality maps 
(using hatch marks) of Technical, Managerial and Financial (TMF) Capacity of Community Water 
Systems (CWS) and Physical Vulnerability of a CWS’s water sources, although these were not folded 
into the drinking water quality scores. TMF capacity is one measure of system-level vulnerability, 
indicating overall system sustainability.  Given data availability, we measured it with a proxy variable 
based on the estimated population served by the system.  Physical vulnerability captures how 
vulnerable the water system is to shortages based on the source of water and how many total 
sources of supply the system has (if on groundwater). 

To derive a tract-level rank of cumulative impacts of drinking water at a regional and statewide level, 
we followed three main steps: 1) using existing estimated water system geographies in order to 
estimate system-and tract-level measures, 2) calculating system-level measures of contamination 
and compliance, 3) estimating tract-level measures based on the system-level measures.  The first 
step involved three main components. First, we used estimated boundaries of community water 
systems (CWSs) derived from OEHHA’s compilation of the Environmental Health Investigation 
Branch’s Tracking Program and a method of estimating boundaries developed by OEHHA. In 
essence, two types of public community water system geographies are scored: CWSs with known 
boundaries (1,562 systems covering 33.7 million people), and CWSs with estimated boundaries 
(1429 systems covering 1.3 million people). Second, we used estimated boundaries of areas not 
served by CWSs, also developed by OEHHA.  Here, township grids were used as the geographic 
boundary and unit of analysis to derive our drinking water for these populations.  For areas of the 
state not covered by CWSs, a 6x6 mile grid of townships is used to define areas where people are 
likely to be drinking well water (approximately 1.5 million people). (Note that ~.6 million people are not 
assigned water quality because they are not within a township that has a groundwater sample.)  
Together, we used OEHHA’s aerial weights for the contribution of a water system or township to a 
tract. Here, both sets of boundaries were intersected with 2010 US census block boundaries.  The 
area for each system-block portion was calculated. The proportion of that system contained within the 
block (the aerial weight) was then used to calculate an aerially-weighted population contribution for 
that tract. As an example, if 100% of one system is contained in one block, the block’s entire 
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population is counted. If 50% of a system covers a block, then 50% of the population gets counted 
when deriving weights. 

System-level (i.e. at CWS or township level) metrics are summarized in Table 5. Two types of data 
were used to determine if a water system had a monitoring and reporting burden.  First, we used 
monitoring and reporting violations as tracked in the PICME database, from 2005-2013. For each 
system, we determined whether the system had received: any “monitoring and reporting” (M&R) 
violations for 4 key contaminants: arsenic, nitrate, perchlorate and TCR.  These contaminants were 
included because of the nature of their monitoring/waiver requirements.  Inorganic contaminants have 
to be monitored at least once every 9 years, even if they have a waiver.  All other contaminants— 
organic VOCs, organic non-VOCs, radiological and DBPs can be given continual waivers. If a system 
has a waiver, it doesn’t have to keep monitoring for the contaminant. Without knowing which systems 
have which waivers, it is not possible to indicate which systems should have been monitoring.  
Therefore, the 4 inorganic contaminants are used as a general proxy for how well the system is in 
compliance with monitoring requirements.  The fact that arsenic, nitrate and TCR are among the top 
contaminants across the state, is a second reason why we focused on these contaminants. 

Potential exposure to contaminants was determined for the following analytes (Arsenic, Barium, 
Benzene, Cadmium, Carbon Tetrachloride, Lead, Mercury, MTBE, Nitrate, Perchlorate, PCE, Radium 
226, TCE, THMs, TCR, Toluene and Xylene ) using a time-weighted average for each contaminant of 
interest for each water system.  Water quality data was obtained from CDPH’s Water Quality 
Monitoring database (WQM) for the years of 2005-2013.  A similar time-weighted average is used to 
calculate water quality in townships, using water quality characterizing groundwater in the local basin.  
Inclusion criteria for contaminants was based on the percentage of water systems that had water 
quality information for specific contaminants. If more than 80% of systems had water quality data for 
that contaminant, the contaminant was included. This resulted in the inclusion of 17 key 
contaminants. Since Total Coliform is only assessed for presence or absence, a system was given a 
binary value of 0 or 1 if it had received a maximum contaminant level (MCL) violation for Total 
Coliform during the study period.  If a block has no contaminant information for a particular 
contaminant, it was not used to assess the population-weighted average for that contaminant. The 
tract-level contaminant average is divided by its corresponding MCL. If data was missing for the tract, 
a regional-average was used for that contaminant’s tract-level average; for TCR a 1 or 0 is added 
whether the tract had at least one MCL violation. The sum of each of these “MCL ratios” is then taken 
to create a total sum of ratios.  Intermediate scores for drinking water quality were calculated using a 
quintile distribution and normalization technique with scores ranging from 1 to 5.  In addition, we used 
hatch marks on the water quality maps to also indicate systems that were considered vulnerable due to a 
lack technical, managerial and financial capacity, physical vulnerability due to few water sources and 
compliance with testing and reporting requirements. 
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Table 5: Derivation and Scoring of Drinking Water Quality Indicators 

Drinking water At the system level: Captures potential average exposure given CDPH’s WQM Water Quality 
contaminants time-weighted average during a 9-year compliance cycle. Data, calculated as time-weighted 
(potential health Calculated for 17 contaminants Arsenic, Barium, Benzene, average for each contaminant 
risks from Cadmium, Carbon Tetrachloride, Lead, Mercury, MTBE, Nitrate, for 9-year compliance period: 
drinking Perchlorate, PCE, Radium 226, TCE, TTHMs, Toluene, Xylene 2005-2013 
contaminated 
drinking water) 

and Total Coliform (this is a binary—whether system had TCR 
MCL violation or not) 

At the tract level: For each contaminant, a population-weighted 
aerial average of the 9-year average is calculated for each tract. 
If a block has no contaminant information for a said 

OEHHA’s compiled “Water 
Boundary Layer”+ townships 
calculations (see 
CalEnviroScreen for more 
information) 

contaminant, it is not used to assess the population-weighted 
average for that contaminant. *The tract-level average is divided 
by the contaminant’s MCL. If data is missing for the tract, a 
regional-average is inserted for that contaminant’s tract-level 
average; for TCR a 1 or 0 is added whether the tract had at 
least one MCL violation. The sum of each of these “MCL ratios” 
is then taken to create a total sum of ratios.  

Using EHIB Tracking Program’s 
data, Version 1 included only: 
Calculated for nitrate, arsenic, 
uranium, Atrazine, TCE, PCE and 
Total Coliform, TTHMs 

TMF Capacity At the system level: TMF is calculated using a categorical WQM dataset (# of people 
(measure of variable based on population served of water system. served) 
system-level Townships are given the highest TMF score (=4), since 
vulnerability, populations not served by CWSs are assumed to be very 
indicator of vulnerable in this regard. *If data is missing for the system, it is 
overall system left blank, different from TPC variable below.   
sustainability) 

At the tract level: Aerial-weighted average TMF is calculated 
across systems in the tract.  *If data is missing for the tract, a 
regional-average is inserted for that tract.   

Combined Step 1: At the system-level: TMF + Physical Vulnerability + PICME dataset (# of Monitoring & 
Vulnerability Compliance Burden are added together to produce a range Reporting violations) 
(TMF+Physical+ from 2-13. *Systems that had blanks for TMF or Physical 
Compliance Vulnerability are filled in by the regional system-level average. OEHHA’s water quality data 
Burden) This allows all systems to receive a vulnerability score that then 

gets aggregated to the tract-level. Note the regional average is 
not population-weighted. 

Step 2 at the tract level: a) % of population drinking from a high 
vulnerability (score of 8-10) or very high vulnerability (score of 
11-13) CWS divided by total CWS population in a tract is 
calculated, b) % of population drinking from a township is 
calculated in a tract 

Step 3 at the tract level: 90th percentile for parts a & b above is 
calculated. Binary variable is created if tract is in 90th percentile 
for either a or b (in Step 2) 

(whether the system had any 
missing water quality data for a 
specific contaminant) 

Page 20 of 41 



 

 

 

 

 

 
 

 
 
 
 

I 
0 

I 
50 100 

O ego, 

Northern 
C.llfornla 

I 
200 MIies 

N • 
tJtsti 

SCAG 

\. 
SANDAG 

5 Results 

We present maps of the EJSM scores for eight regions which are demarcated in Figure 2 (San 
Francisco Bay Area, Southern California, San Diego, San Joaquin, Sacramento, Central Coast, 
Northern California). We also showed cumulative impact scores for (Figures 3-18). Maps display 
both intermediate scores (e.g. mapped distributions for each of hazard proximity and sensitive use; 
health risk and exposure; social and health vulnerability; climate change vulnerability; drinking water 
quality) and total cumulative impact scores across all and subsets of the five dimensions.  We also 
provide a comparison of cumulative impact scores derived using regional versus state quintile 
distributions to derive intermediate and final scores.  Although the EJSM is flexible enough to allow for 
comparisons across different study areas (e.g., within regions or across the state) we tend to favor a 
regional application of scoring because generally land use planning, industrial and transportation 
development, and environmental regulation are regionally rooted and require regionally specific 
interventions to reduce hazard exposures or to address social and health vulnerability factors.  In addition, 
statewide scoring can mask important within-region inequities (See Figures 3A-D for SF Bay Area and 
Figures 8A-D for San Diego, for example) which can make these areas fall below the regulatory radar 
screen. At minimum, we recommend examining cumulative impact scores within regions using both 
regional and statewide distributions to derive quintile scores for each EJSM dimension.  There may be 
certain policy and decision-making contexts when statewide distributions for scoring may be appropriate 
for larger scale impacts such as climate change vulnerability, while other environmental hazards that are 
more locally driven require a regional scoring approach to effectively elucidate areas that may require 
targeted regulatory attention.   

Figure 2: Regions Analyzed for the EJSM 
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Figure 3A-F: SF Bay Area EJSM Intermediate and Cumulative Impact Scores (Regional Scoring) 
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Figure 4A-D: SF Bay Area Cumulative Impact Score Comparing Regional versus State Scoring (with and without Climate 
Change Vulnerability) 
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Figure 5A-F: Southern CA EJSM Intermediate and Cumulative Impact Scores (Regional Scoring) 
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Figure 7A-F: SANDAG EJSM Intermediate and Cumulative Impact Scores (Regional Scoring) 
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Figure 9A-F: San Joaquin Valley EJSM Intermediate and Cumulative Impact Scores (Regional Scoring)  
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Figure 10A-D: San Joaquin Valley Cumulative Impact Score Comparing Regional versus State Scoring (with and without 
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Figure 14A-D:  Central Coast Cumulative Impact Score Comparing Regional versus State Scoring (with and without 
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Figure 15A-F: Eastern Sierra EJSM Intermediate and Cumulative Impact Scores (Regional Scoring)  
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Figure 16A-D:  Eastern Sierra Cumulative Impact Score Comparing Regional versus State Scoring (with and without 
Climate Change Vulnerability) 
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Figure 17A-F: Northern California EJSM Intermediate and Cumulative Impact Scores (Regional Scoring)  
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Figure 18A-D:  Northern California Cumulative Impact Score Comparing Regional versus State Scoring (with and without 
Climate Change Vulnerability) 

Page 37 of 41 



 

  
 

 
 
 

Total Cl Score 
by Census Tract 

3 

6 
7 
6 
9 
10 
11 
12 
13 
14 
1!I 
.. __ 

-.,--,--r-,-
0 !K> lOO 200.,.._ 

Total Cl Score 
with Water Quality 
by Census Tract 

• 
5 
e 
I 
8 
9 

10 
11 
12 
13 
14 
15 .. 
16 
17 
18 
19 
20 

0 &O 100 

. .. 

'100 ..... 

Cumulative Impact ~core 
caIIrornia, Statewide Scorn:11! 

t; 

• 

• . • 

Cumulative Impact Score 
with Water Ql!al1ty 

• Callforma. Statewide ~g 

• 

• • 

Total Cl score w1tn 
CCV by Census Tract 

6 

7 
8 
9 
10 
11 
12 
13 ,. 
15 

.. 
16 
17 
18 
19 
20 

Total Cl Score 
with CCV and 
Water Quality 
by Cenaus Tract 

6 
6 
7 
8 

• 10 
11 
12 
13 
14 
15 
16 
11 
18 
19 
20 
21 
22 
23 ,. 
25 

. .. 

,OOMdCS 

Cumulative Impact Scora with 
Cltmate Change Vulnerablltly 

• Caltforp,a. Statewide Scamlg 

• 

• . • 

Cumulative Impact Score 
with CCV and Water QwaII1y 

_, Califormtl, Statewide Scdnflg 

• 

• . • 
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Page 38 of 41 



 

 

  

 

 

 

 
 

 
 
 

 

 

 
  

 
 

 

5.1 Comparison with Other Screening Approaches 

 Although systematic comparisons between the EJSM and other screening tools, such as OEHHA’s 
CalEnviroScreen (CES) and Cumulative Environmental Assessment (CEVA) developed by London 
and colleagues at UC Davis, show many similarities in both approach and data metrics used, some 
notable differences and similarities are worth mentioning.  First, although there is considerable 
overlap in some of the data inputs and metrics in all three screening methods, only the EJSM 
systematically incorporates sensitive and residential land use for the development of its base maps 
and its approach to exposure (by proximity) estimation.  This orients regulatory attention more toward 
populated areas and less toward areas that are dominated by industrial and commercial  
land uses and enables a more granular (higher spatial resolution) evaluation of hazard proximity.  
This method also allows for areas and uses not scored to be "masked off" in final thematic maps, 
improving the interpretation of spatial patterns of scores which can be complicated by the presence of  

Table 6: Scoring Approaches in EJSM, CES and CEVA 

EJSM 
1. Scoring procedure 

 Linear quintile ranking of each metric within the 5 cumulative categories 
 Each quintile score is summed and re-ranked to derive a total quintile score for 

each cumulative impact category 
 Final cumulative impact score is derived by summing all category scores 

2. Approach is open-ended to accommodate additional indicators and allow for new 
categories 
3. Preferred scoring strategy is regional, although method accommodates statewide 
scoring as well 

CES 
1. Indicator categories are multiplied to yield a continuous, open-ended score 
2. Scores are grouped into percentiles (1-20) with same number of tracts in each value 
category 
3. Statewide scoring only 

CEVA 
1. 3x3 scoring matrix (1-9) with separate axes for impact and vulnerability 
2. Scores applied to specific regions. 

large census polygons with low scores dominating non-urban parts of the State.  Second, EJSM uses 
a greater number of indicator metrics than either of the other two approaches, which both increases 
its potential utility and reduces the influence of any single metric on the final score.  Third, EJSM is 
the only screening approach that includes a layer with metrics on climate change vulnerability.  This 
element could be potentially useful to guide decision-making regarding future investments in climate 
change mitigation strategies so that funds are more targeted toward neighborhoods that have higher 
risks of heat islands or more dramatic changes in projected temperature, for example.   

The three screening approaches use different scoring methods, shown in Table 6. EJSM is 
distinctive in that its scoring approach results in the frequency distribution of scores following a bell 
shaped distribution, which means that outlier tracts are likely to be fewer than in CES.   
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6 Additional Activities 

We finalized the programming of our scoring approach in ArcGIS Model Builder and SPSS to 
automate the processing and scoring of metrics.  These scripts were provided to CARB staff.  We 
also finalized the translation of SPSS programming into SAS, a task that was not one of the 
deliverables for this contract, but which we agreed to provide to CARB staff to enhance the use of our 
EJSM scoring routines by SAS programmers at the Agency.   

The research team held one in-person stakeholder meeting on January 16th 2015 and a webinar on 
May 13th 2015 to share the final results of our EJSM analysis.  The January meeting was hosted by 
the Program on Environmental and Regional Equity at the University of Southern California, and was 
attended by 32 people from agencies, such as US EPA, SCQAMD, and the Los Angeles Department 
of Health, staff from non-governmental organizations, and university researchers. CARB staff 
attended as well. In addition to presenting the final version of the EJSM, we also outlined 
improvements in the methods and final steps before completion of the project.  We also discussed 
scoring comparisons using statewide versus regional quantiles and provided comparisons with results 
for CES. Feedback on the work was positive and some stakeholders had suggestions for additions to 
the hazard proximity layer, including locations of oil wells, and sites of non-conventional oil 
exploration, dairies and other sites.  While adding these metrics is beyond the purview of this 
contract, our team is considering the viability of folding these data sources into the EJSM, including 
assessing the resources required to verify the locational accuracy of new datasets.  Our final 
stakeholder meeting on May 13th was a webinar, hosted by CARB in Sacramento, to accommodate 
participants who were unable to travel. The meeting was well attended, with over 109 people in 
attendance remotely and 25 of whom were in the audience. 

In addition to this report, we are preparing a manuscript for publication to highlight the key results 
from our new statewide analysis of the EJSM.  Potential journal outlets include:  Environmental 
Health Perspectives, Environmental Health or International Journal for Environmental and Public 
Health Research. We are prioritizing open-access journals for this manuscript to enable this work to 
be available to diverse audiences.  In addition, we are collaborating with CARB staff to co-author 
another paper, currently in preparation, to apply the EJSM to analyze spatial patterns of temporal 
changes in air quality in the state.   

7 Conclusion 

The National Environmental Justice Advisory Committee, EJ advocates, and community 
organizations have long argued that scientists and regulatory agencies should incorporate the 
cumulative impacts of environmental and psychosocial stressors when ranking the priorities for 
regulatory enforcement activities instead of using the traditional chemical-by-chemical and source-
specific assessments of potential health risks of environmental hazards, which do not reflect the 
multiple environmental and psychosocial stressors faced by vulnerable communities. These 
stakeholders have voiced their concern and have called for additional methods to consider and 
include cumulative impacts in developing regulatory and enforcement priorities. Regulatory agencies 
have responded to this need by embracing the National Research Council’s call for the development 
of “cumulative risk frameworks” within their scientific programs and enforcement activities.  

Spatial screening methods such as the EJSM have become key tools that can help decision-makers 
advance environmental justice goals by more efficiently targeting efforts and resources to remediate 
cumulative impacts, environmental inequities, and focus regulatory action at the neighborhood level. 
All too often, the burden of proof is placed on communities to demonstrate the cumulative impacts of 
environmental and social stressors and push for action. Cumulative impact screening such as the 
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EJSM provides environmental policy and programs with a more proactive approach that removes this 
burden from vulnerable communities so that those without an active environmental justice movement 
or capacity for civic engagement can also receive regulatory attention and protection.  CARB’s 
ongoing support of the development of the EJSM has facilitated the leveraging of our method to 
develop other key regulatory tools, such as CalEnviroScreen (OEHHA, 2016) and now US EPA’s 
EJSCREEN (US EPA).  During this contract period, all members of our research team have 
collaborated in different ways with both Cal-EPA and US EPA to provide advice, feedback, data, and 
methodological input into development these other regulatory screening tools which now being 
applied in innovate ways address cumulative impacts, for example to guide the implementation of 
SB535 and direct investments of Greenhouse Gas Reduction Fund monies generated through 
California’s cap-and-trade program.  Ultimately, as environmental health science develops a better 
understanding of cumulative impacts, standard approaches in risk assessment may need to change 
and be harmonized with cumulative impact screening methods to assure the protection of public 
health. Environmental and social stressors clearly converge in disadvantaged communities, and tools 
to measure these impacts are needed for improved decision-making to advance environmental 
equity. The use of cumulative impact screening approaches such as the EJSM increases the 
likelihood that disadvantaged communities may receive critical attention, improving existing 
conditions and reducing future harm. 
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Supplement A: Using the National Land Cover Dataset (NLCD) with the EJSM. 

One of the primary challenges of this project was producing geospatial data files on land use 
statewide, for construction of the CI Polygon layer, that are consistent and comparable. Land 
use information varies in quality, availability, and classification on a variety of geographic 
scales. To accomplish this, tax parcel information was used for many counties and portions of 
counties lacking quality land use information.  Parcel records include use codes, which 
describe the current and allowed (by zoning) uses for each parcel, and parcel data is 
commonly used to automate or impute land use.  However, among these various counties, 
there is an inconsistent definition of use code that made it difficult to produce an equivalent 
dataset for each county. The most obvious example is the classification of parcels composed 
primarily of agricultural land but with a small area with residential buildings as “rural 
residential”, the same as small parcels in rural areas dominated by the residential structures. 
This was a particular problem in Merced and Stanislaus counties.  In order not to over-
represent farm fields as residential land, we use the 2011 National Land Cover Dataset (NLCD  
http://www.mrlc.gov/nlcd2011.php) to correct this type of problem identify and filter out land 
that did not fit our criteria.  This extra processing is codified in the ModelBuilder programming 
that we used for preparing CI polygons, and was provided to CARB in the data transfer at the 
end of the project. In addition, the Project Manager has seen how this process works. 

In spite of the best efforts of both CARB staff and our research team, we were unable to 
acquire tax parcel data with use codes for four counties – Trinity and Plumas (Northern 
California Region), and Amador and Alpine (Eastern Sierra Region).  These are very sparsely 
populated counties with very little exposure to environmental hazards.  For these counties we 
used the NLCD 2011 land cover data, classes 21-24, to create CI Polygon layers, which were 
subsequently validated by checking a random sample against the aerial imagery in Google 
Earth Pro. Sensitive land uses were identified by address geocoding and confirmation in 
Google Earth Pro.  We also used this technique to correct large rural or agricultural parcels in 
other counties and have confidence in its utility and accuracy.  It also represents an excellent 
way to update land use data in the future. 

Our contract also included a test of using NLCD land cover data alone in the EJSM process. 
To do this, we completed processing the NLCD 2011 land cover data for the SCAG region, an 
area with very high quality and reliable land use information that we understand well.  By 
converting rasters to vector layers (both polygons representing grid cells, and grid cell centers 
as points) for land cover classes 22, 23 and 24 (see Figures SA1 and 2, below). This land 
use layer was compared the SCAG 2008 land use geospatial data, using Google Earth Pro 
imagery. As can be seen in the two maps below for a portion of the Moreno Valley in 
Riverside County, the NLCD land use classes 22 and 23 do a very good job replicating the 
SCAG land use data. 

This comparison demonstrated that in urban and suburban areas, land cover class 21 does not 
replicate residential or sensitive land uses well. We also performed a crosswalk using the grid 
cell centers (points) to assign a census block identifier to each grid cell, and identified grid cells 
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that represent sensitive, rather than residential, land uses by spatially joining our various 
sensitive land use data layers with the grid cells.  The grid cell centers were then used to 
calculate hazard proximity metrics as with CI polygons, and the SCAG region EJSM metrics 
and scores were recalculated, to determine the impact of using NLCD land use data on scores 
derived. 

This test revealed that there is little variation in EJSM scores calculated using the NLCD data 
vs. those calculated using the more standard SCAG 2008 land use information, as can be 
seen in the EJSM maps for Los Angeles and Riverside Counties, below (Figures C through H).  
Note that in areas of high EJSM scores, the variation is particularly low, indicating that using 
NLCD to update land use information in future iterations of the EJSM is both viable and would 
deliver significant savings in time and effort updating the EJSM going forward. 

Testing the grid-data format was completed for the SCAG region as demonstration of its 
success and utility. The results were reported to CARB as part of the October 24, 2014 
meeting and research presentation, and the data provided as part of the deliverables. 

Figure SA.1. CI polygons derived from SCAG 2008 land use geospatial data layer for a 
portion of Riverside County. 
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Figure SA 2: NLCD land use rasters corresponding to classes 22, 23, and 24.   
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Figure SA.3. EJSM total score for Los Angeles County calculated using CI Polygons 
constructed using SCAG 2008 land use geospatial data. 
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Figure SA4. EJSM total score for Los Angeles County calculated using CI Polygons 
constructed using NLCD 2011. 
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Figure SA5. Net change EJSM total score calculated using NLCD land use classes 
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Figure SA6. EJSM total score calculated for Riverside County using CI Polygons 
constructed using SCAG 2008 land use geospatial data. 
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Figure SA.7. EJSM total score calculated for Riverside County using CI Polygons 
constructed using NLCD 2011 
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Figure SA.8. Net change EJSM total score calculated using NLCD land use classes 
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Supplement B: Locational accuracy of point source facility datasets 

The original contract included the task of geocoding and error checking the CARB dataset of 
facilities required to report under the AB2588 “toxic hot spots: program, and using these 
facilities in the EJSM hazard proximity calculation.  After completing this task in August 2013, 
we were asked to instead substitute it with a new GIS data layer - the “Facilities of Interest 
(FOI)” that was compiled by CARB staff because the Agency considers these facilities emitting 
criteria air pollutants and air toxics to better reflect significant threats to health from air pollution 
exposure than does AB2588, which has quite broad reporting requirements resulting in a large 
percentage of its facilities emitting very low air toxics loads and, thereby, complicating the 
inherent assumption of the EJSM method that considers all of these facilities equal in terms of 
exposure impact on nearby communities.  AB2588 also contains a very large number of facility 
locations, with numerous challenges to locating them accurately. 

The FOI is a subset of the facility emission inventory data extracted from CARB’s two primary 
emission inventory databases: the Greenhouse Gas (GHG) Mandatory Reporting database, 
and the California Emission Inventory Development and Reporting Systems (CEIDARS) 
database. CEIDARS contains the emission estimates for both the criteria and toxic air 
pollutants and includes the AB2588 facilities. The GHG database includes large facilities that 
must report under mandates from the AB32 Climate Change program emit significant 
quantities of air toxics as co-pollutants.  The FOI layer and facilities is a work in progress, and 
is based on a draft set of parameters used to identify the facilities that account for the majority 
of the reported point-source emissions of GHGs, criteria pollutants, and air toxics.  In keeping 
with the design philosophy requirements of the EJSM, all the data included in the FOI layer are 
publicly available. 

A working version of the FOI was delivered to us with point locations provided by CARB.  We 
conducted a preliminary evaluation of the locational accuracy and breadth of FOI, and 
compared it to the original AB2588 dataset to assess the extent to which they captured 
different facility types and any systematic differences. Details of this facility comparison 
evaluation were discussed extensively in our Q3 report.  After more consultation with CARB 
staff regarding the results of our evaluation, they agreed to provide the research team with 
industry-wide data layers that included auto-body shops and gas stations to extend the FOI 
data layer to include the types of facilities identified as requiring distance buffers for separation 
from sensitive land uses in the CARB guidance on land use and air pollution sources (CARB, 
2005). We believed that these additional facility categories were important to integrate, based 
on our prior ground-truthing work in the Bay Area and Southern California.  We received these 
industry-wide data layers in late March 2014 and integrated them along with the FOI data into 
the EJSM as a preliminary draft to visualize the revised results in our hazard proximity layer 
with these new facility datasets. 

After extensive evaluation of the locational accuracy of FOI and the industry-wide datasets, the 
research team discovered problems with the locational accuracy of a significant portion of the 
facilities included in the FOI dataset, with errors ranging from hundreds of feet to several miles. 
CARB staff worked further on the FOI dataset to check and correct facility locations, and sent a 
revised version of FOI for use in this project.   
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We checked all FOI locations using a variety of validation methods, including internet searches 
to verify facility information, and Google Earth Pro to visually inspect each reported location, 
and its geocoding capability for address matching.  This allowed us to verify (and, in some 
cases, correct) the locations of some facilities. There are surely many reasons for these 
inaccuracies, among these are the practice of expressing facility locations using geographic 
coordinates with only three significant digits of precision, rather six or seven digits required for 
accurate positioning, and obtainable using industry standard address matching GIS layers. 
The layer also included a considerable number of sites that could not be address geocoded 
due to missing addresses, address information that is not geographically specific enough for 
mapping, or address errors. 

Because the location error rate appeared to be significantly high, and the amount of apparent 
error often equaled or exceeded the distance buffers used in determining hazard proximity, the 
decision was made jointly with CARB for the research team to error-check the entire FOI layer 
and make appropriate corrections.  This was accomplished using Google Earth Pro on 
duplicate datasets. The FOI shapefile was converted to .kml Placemarks, which were checked 
individually (one by research staff at USC, the other by staff at Occidental College) using the 
facility name and/or address search capability, tax parcel information overlays, and aerial 
imagery provided within Google Earth Pro.  In this way, each point location was validated and 
relocated as needed; using either actual facilities or parcel centers as the corrected location. 
The resulting location-checked shapefile was sent to CARB and was used to develop the 
EJSM scores reported in this report. 

Based on the results of FOI location correction, we also checked and corrected the DTSC 
hazardous waste facility point shapefile provided by the OEHHA CalEnviroScreen team for 
incorporation into the EJSM hazard proximity score.  This file also had a high error rate, with 
16% of sites located inaccurately within the 1000 to 3000 foot range, and 4.2% inaccurate by 
more than 3000 feet (see Figure SB.1 and Table SB.1, below). It also contained two 
duplicate sites, and four facilities that could not be found or verified using Google Earth Pro 
and other internet searches. It is also important to note that many of these facilities are very 
large, and representing them as points in calculating proximity metrics will result in error and 
misclassification. It would be best to measure proximity using distance from the boundary of 
these large facilities, and our testing found this had a significant effect on the hazard proximity 
score. We automated these facilities as polygons, and included them in the data provided to 
CARB. These polygons and location corrections were also sent to OEEHA. 

The locational accuracy of the industry-wide facilities data provided by CARB (auto paint and 
body shops, gas stations) were also checked using a 10% random sample of each dataset to 
examine error rate and degree. The >1000 ft error rates for gas stations (3%) and auto paint 
and body shops (5.5%) were much lower than hazardous waste and FOI facilities.  We elected 
not to correct these entire datasets because (a) of the very large number of sites (9682 and 
3701); (b) the fact that these are mostly urban businesses with geocodable street addresses 
gave us more confidence in the accuracy of the dataset overall, and (c) we lacked the 
resources under this contract to correct these large datasets. 

The California Department of Toxic Substances Control lists 17 permitted hazardous waste 
handling facilities and generators located in the San Joaquin Valley.  Ground truth validation 
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demonstrated significant locational error for most of these sites, with most locations off by well 
over 100 meters (see Table SB1 and Figures SB-1). 

Figure SB.1. California Department of Toxic Substances Control permitted hazardous 
waste handling facilities and generators located in the San Joaquin Valley showing 
selected location corrections. 
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Table SB.1. Summary of locational error for California Department of Toxic Substances 
Control permitted hazardous waste handling facilities and generators located in the San 
Joaquin Valley.   

EPA_ID PROJECT NAME ADDRESS CITY 
Error 
(m) 

CA2890090002 

LAWRENCE LIVERMORE 
NATIONAL LAB - SITE 
300 

CORRAL HOLLOW 
RD TRACY 12,764 

CAD990794133FORWARD LANDFILL 9999 S AUSTIN RD STOCKTON 11,705 

CA1570024504 
EDWARDS AIR FORCE 
BASE 5 E POPSON AVE EDWARDS 1,519 

CA4170024414 
OCCIDENTAL OF ELK 
HILLS INC 

28590 HIGHWAY 
119 TUPMAN 1,500 

CAD980813950CRANE'S WASTE OIL INC 
16095 HIGHWAY 
178 WELDON 614 

CAT000646117 

CHEMICAL WASTE 
MANAGEMENT INC 
KETTLEMAN 

KETTLEMAN HILLS 
LDFL HWY 41 

KETTLEMAN 
CITY 478 

CAL000190816 
RIVERBANK OIL 
TRANSFER, LLC 5300 CLAUS RD RIVERBANK 238 

CAL000282598 
BAKERSFIELD 
TRANSFER INC 

1620 E 
BRUNDAGE LN BAKERSFIELD 231 

CA2170023152 
NAVAL AIR WEAPONS 
STATION CHINA LAKE 

1 
ADMINISTRATION 
CIR RIDGECREST 188 

CAD982446882 
EVERGREEN OIL INC 
FRESNO 

4139 N VALENTINE 
AVE FRESNO 144 

CAD066113465 SAFETY-KLEEN 3561 S MAPLE AVE FRESNO 115 
CAD981429715KEARNEY-KPF 1624 E ALPINE AVESTOCKTON 107 

CAL000102751 
WORLD OIL - SAN 
JOAQUIN LLC 

14287 E MANNING 
AVE PARLIER 99 

CAT080010606 

BIG BLUE HILLS 
PESTICIDE CONT 
DISPOSAL 

10 MILES NORTH 
OF COALINGA COALINGA 76 

CAD982435026 
KW PLASTICS OF 
CALIFORNIA 

1861 SUNNYSIDE 
CT BAKERSFIELD 34 

CAT080010283 
EPC WESTSIDE 
DISPOSAL FACILITY 26251 HIGHWAY 33FELLOWS 33 

CAD980675276 
CLEAN HARBORS 
BUTTONWILLOW LLC 

2500 WEST 
LOKERN RD BUTTONWILLOW 21 
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