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Abstract 

This project used detailed vehicle-level data to explore the entire process of household vehi-

cle choice, holdings, and usage for the light duty fleet in California–the largest contributor 

to transportation emissions. By using cutting-edge statistical approaches grounded in eco-

nomic modeling, we have advanced the understanding of how consumers make decisions that 

influence the evolution of the vehicle fleet in California. We find that there are important 

differences across households in the sensitivity of travel and vehicle choice to the price of 

gasoline. We are the first to estimate a “portfolio effect” in household vehicle purchases, 

where attributes of one car affect the revealed desired choice of another. Results show that 

this effect influences the turn-over of the fleet, and potentially erodes energy savings from 

fuel economy standards. Finally, we develop a new model of vehicle choice and driving 

that incorporates key features of the decision-making process of forward-looking consumers. 

These innovations provide important insights into the effects of policies to further reduce 

transportation emissions in California. 

i 



Executive Summary 

Background. California has long been a leader in transportation policies to reduce smog-

forming and particulate matter emissions, and more recently has positioned itself as a leader 

in policies to reduce greenhouse gas emissions from transportation. These policies have made 

dramatic progress in reducing ambient air pollution and improving human health, and have 

the potential to help address the imminent threat of global climate change. Yet much remains 

to be accomplished. California has set a goal of an 80 percent reduction in greenhouse gases 

by 2050, a bold target, with a significantly longer outlook than the federal government uses in 

federal policy development. To reach such an ambitious target requires a suite of regulations 

and other strategies such as incentives to reduce multiple pollutants and induce innovation in 

vehicle technology, while at the same time being targeted to be as cost-effective as possible. 

Each of the research projects described in this report tests hypotheses that will enhance our 

understanding of the dynamics of the vehicle market and directly inform the next iteration 

of transportation emissions abatement policies in California. 

Objectives and Methods. The empirical aspect of the project advances our understanding 

of vehicle choice, holdings, and usage for the light duty vehicle fleet in California. The 

objective is to test three hypotheses. First, we hypothesize that households that own multiple 

vehicles have a preference for diversity in vehicle attributes that are correlated with fuel 

economy. Second, we hypothesize that an increase in gasoline prices (whether from market 

forces or through public policy) will affect vehicle scrappage decisions, new vehicle purchase 

decisions, and miles traveled. Finally, we hypothesize that the persistence of observed vehicle 

ownership is due to the transaction frictions associated with buying and selling vehicles.1 

If true, the vehicle choice becomes a dynamic optimization problem that includes not only 

what car to buy, but when to buy it. 

In order to test the household-level hypotheses, we first needed to generate a dataset that 

tracks household vehicle ownership over time. We developed a detailed algorithm for con-

verting the VIN-level DMV registration record dataset with names and addresses (housed at 

ARB) into a household- and premise-level dataset that was free from identifying household 

information. Cleaning and generating the data for this study was a major contribution of 

this project, and the dataset can now be used by other researchers at ARB. 

1”Transaction frictions” are any unobserved costs incurred by buyers and sellers when trying to consu-
mate a transaction. These could include search costs, hassle costs, disutility of negotiating with used car 
dealerships, etc.”. 
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To test the first and second hypotheses we use a variety of regression-based approaches. To 

estimate household portfolio preferences2 , we narrow our focus to two-car households that 

replace one of their cars with another during the period 2000-2007 in California. This allows 

us to isolate a thought exercise that then informs our empirical strategy. We deploy a novel 

approach to a) exploit random variation that leads to one of the two cars in the portfolio 

being dropped/sold, and to b) exploit random variation in the fuel economy of the car that 

is kept. The richness of our data also allow us to identify these portfolio preferences using 

within-household variation. 

To further test the second hypothesis we examine the relationship between gasoline prices 

and local criteria pollutant reductions in California from 1996-2010. We hypothesize that 

emissions from vehicles decrease differently in response to high gasoline prices across vehi-

cles and locations. If true, an optimal gasoline tax that accounts for differences between 

households would differ from one that does not. 

For the final contribution, we construct a cutting-edge dynamic discrete choice model of 

vehicle purchases that allows us to retrieve consumer preference and market parameters. 

The model is solved by finding parameters that allow our model predictions to match what 

we observe in the data. The model then serves multiple purposes. The estimated transaction 

friction parameter provides information about the search, matching, behavioral and other 

costs of buying and selling cars in the marketplace. It is possible then to perturb one or 

more variables to examine how key statistics evolve over time under different counterfactual 

scenarios. For example, we can increase fuel economy or the gasoline price and examine how 

the composition of the vehicle fleet and derived demand for gasoline change. 

Results. Results show that emissions from high-emission vehicles decrease more when gaso-

line prices are high, highlighting important differences across households. Under these con-

ditions, an optimal gasoline tax that accounts for differences across households will be higher 

than one that does not, and will also be far more effective (though still falling short of an 

optimal tax imposed directly on the pollutants themselves). The household portfolio work 

documents the importance of portfolio interactions when considering overall household gaso-

line consumption. When a kept car is more fuel efficient, demand in the rest of the portfolio 

for less fuel efficient cars increases. 

Taken together, these results demonstrate how variants in policies intended to reduce tailpipe 

2We define the household vehicle “portfolio effect” as the impact that changing fuel economy of one car 
has on the desired fuel economy of another car in that household’s portfolio. 
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emissions can lead to very different outcomes. In the context of multi-car households, the 

portfolio preferences that we uncover imply that fuel economy standards will generate coun-

tervailing forces in subsequent years. In the context of gasoline taxes, it is important to 

account for household differences in the sensitivity of travel and vehicle choice to the price of 

gasoline. Bringing together rich micro-datasets and cutting-edge methodologies has allowed 

us to reach fresh insights on these important topics. 

Conclusions. We have developed a new dataset that tracks the household vehicle portfolio 

over several years. We have developed methods to estimate the size of the household portfolio 

effect. We find that households exhibit a preference for fuel-economy diversity in their 

vehicle portfolio, which has implications for the effectiveness of fuel economy standards. 

We also describe how different responses to changes in gasoline prices can inform optimal 

gasoline taxes. Finally, we have designed and built a dynamic discrete choice model of vehicle 

purchase and sale decisions at the household level. There are several next steps. Perhaps 

the most exciting and important will be to enrich the dynamic discrete choice model and 

deploy it to forecast the California vehicle fleet evolution under alternate policy scenarios. 

iv 



1 Introduction 

California has long been a leader in transportation policies to reduce smog-forming and par-

ticulate matter emissions, and more recently has positioned itself as a leader in policies to 

reduce greenhouse gas emissions from transportation. These policies have made dramatic 

progress in reducing ambient air pollution and improving human health, and have the po-

tential to help address the imminent threat of global climate change. Yet much remains to 

be accomplished. California has set a goal of an 80 percent reduction in greenhouse gases 

by 2050, a bold target, with a significantly longer outlook than the federal government uses 

in federal policy development. To reach such an ambitious target requires a suite of regu-

lations and other strategies to reduce multiple pollutants and induce innovation in vehicle 

technology, while at the same time being targeted to be as cost-effective as possible. 

The project objectives are to develop a dataset and analysis to test a series of hypotheses 

and develop new methodologies for understanding the evolution of the vehicle fleet in light 

of different policy approaches to reduce emissions and improve human health. Our three hy-

potheses are the following. First, we hypothesize that an increase in gasoline prices (as one 

would experience when exposed to an increase in the gasoline tax) will affect vehicle scrap-

page decisions, new vehicle purchase decisions, and miles traveled. Testing this hypothesis 

is important for understanding how changing gasoline prices influences the vehicle fleet and 

environmental outcomes. Second, we hypothesize that households that own multiple vehicles 

have a preference for diversity in vehicle attributes that are correlated with fuel economy. 

For example, if a household owns an highly fuel-efficient vehicle, will they be more likely 

to buy another fuel-efficient vehicle in their next purchase or would they diversify and buy 

a less-efficient vehicle? If the latter, then policies to improve fuel efficiency of new vehicles 

in the fleet may have the unintended consequence of leading to increased demand for less-

efficient vehicles in the future, with implications for gasoline demand and emissions. Finally, 

we hypothesize that the persistence of observed vehicle ownership is due to the transaction 

frictions associated with buying and selling vehicles. Understanding how the turnover of ve-

hicles in the fleet occurs–and is influenced by policy–is important for forecasting the future 

evolution of the vehicle fleet and associated emissions. 

The work undertaken in this project relates to an extensive literature in economics and 

transportation (Mannering and Winston, 1985; Esteban and Shum, 2007; Stolyarov, 2002; 

Adda and Cooper, 2000; Schiraldi, 2011; Bento et al., 2009; Wakamori, 2016; Cernicchiaro 

and de Lapparent, 2015; Busse et al., 2013). Because each of the three hypotheses involves a 
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distinctly different, although somewhat overlapping, sets of references, we cover the related 

literature in each of the sections of this report and the appendices (the two appendices have 

full introductions each). It should be noted that we follow standard assumptions in the 

literature throughout, and in fact, go beyond the literature in some parts of the report. 

For example, our work on the second hypothesis goes beyond the literature by focusing on 

the entire household vehicle portfolio, rather than on individual vehicles treated as separate 

decision-makers. In our work on the third hypothesis–the dynamic discrete choice model–we 

focus on the standard assumption of individual vehicles being controlled by separate decision-

makers in order to focus on the effect of transaction costs, pushing the methodological frontier 

in a different direction. 

This project provides key policy-relevant deliverables, including an algorithm for developing a 

household-level dataset, an analysis demonstrating the importance of the household portfolio 

for vehicle choice decisions, an analysis examining how the complex relationship between 

driving and gasoline prices is mediated and its implications for the air quality, and a complete 

dynamic discrete choice model of vehicle choice and usage of the California fleet. The project 

uses cutting-edge statistical approaches to shed new light on important questions about the 

evolution and usage of the vehicle fleet and is providing a new dataset and tool for use in 

future analyses of the effects of changes in fuel prices or policies. 

There are seven discrete, yet inter-related, tasks that make up Part B this project.3 The 

tasks build from the beginning, going from dataset development to analysis to writing. 

The first task–TASK B.1–involves merging, cleaning, and preparing a full dataset covering 

the years 1998 to 2011 of vehicle purchases and holdings from the California Department of 

Motor Vehicles, as well as driving behavior from the vehicle-level odometer readings taken 

during smog checks managed by the California Bureau of Automotive Repair. One key 

aspect of this combined dataset is that we appended a detailed vehicle information number 

(VIN) decoder to determine the characteristics and fuel economy of all vehicles in the dataset 

(matched by VIN). The VIN decoder was a commercial decoder from DataOne, Inc that was 

improved upon by dedicated research assistant work. The combined dataset provides a 

complete picture of the California light duty fleet and the amount it is driven over most of 

a decade. 

The second task–TASK B.2–converts the dataset from a vehicle-level dataset to a household-

level dataset. The household-level dataset includes anonymous identifiers for households, 

3Part A is “Factors Related to Voluntary Choice of Low Vehicle Ownership and Usage”. 
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allowing for rigourous and informed analysis of household-level decisions at the scale of the 

entire state. To develop the household-level identifier, we worked closely with staff at ARB 

to develop an algorithm for designing households that accounts for some of the challenges 

in the data, such as multi-family dwellings. The complete anonymized dataset includes all 

residential light-duty vehicles and their driving, as well as a household identifier. This unique 

dataset forms the foundation for the modeling in all of the following tasks. 

The third task–TASK B.3–explores summary statistics to analyze the composition and driv-

ing behavior of the vehicle fleet in California over the years in our dataset. This task provides 

the underpinning knowledge necessary before any more complex statistical analysis. Without 

initial exploration and understanding of the data, correct interpretation of results is impos-

sible. For this task, we examined a variety of statistics to better understand the vehicle 

fleet. In particular, we realized through our explorations the importance of the household 

portfolio for vehicle choice decisions. This led to a rigorous and careful analysis, using a 

novel approach, of the effect of the other vehicles in a household portfolio for the decision of 

what the next car to buy will be. 

The fourth task–TASK B.4–rigorously examines how vehicles in California respond to changes 

in the gasoline price (or the price of driving) and how this differs with vehicle attributes. 

This task involved econometric analysis of driving decisions which unearthed remarkable dif-

ferences across vehicle types. For example, the analysis revealed that much heavier and less-

efficient vehicles were substantially more responsive to gasoline price changes than smaller 

and more efficient vehicles. The work on this task extensively explored the full policy impli-

cations of this heterogeneity. 

The fifth task–TASK B.5–involves designing, coding, and running a joint vehicle choice and 

usage model (using Matlab). The model developed for this task uses a computationally 

intensive dynamic discrete choice modeling approach, which is considered cutting-edge in 

the economic literature. There are numerous advantages to this more intensive modeling 

approach, including a more careful modeling of forward-looking consumers who can make 

decisions with the forecast of their future vehicle options in mind. The approach also notably 

includes transactions costs, or transaction frictions, which mediate the evolution of the ve-

hicle fleet. Transaction costs or frictions are the very real search and information costs that 

deter consumers from buying or selling their car every year to get the car that is optimal for 

them at any given time period. Modeling these transaction frictions allows for a more careful 

analysis of the evolution of the vehicle fleet over time as consumers buy, sell, and replace 

vehicles. Such a model is at the research frontier, with very few successful implementations 
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in the literature (Schiraldi, 2011, see, e.g.,), and none examining the California fleet. 

The sixth task–TASK B.6–performs robustness checks, simulations, and forecasts using the 

dynamic discrete choice model. Using the model, we have been exploring the parameter 

space and testing a variety of assumptions to better understand the model fit. We have 

also performed some cursory simulations and forecasts. Going forward, we look forward to 

further conversations with ARB for guidance on which counterfactual policy simulations will 

be most relevant for decision-making. 

The final task–TASK B.7–is to write this final report. 

Some of our key conclusions are as follows. We find evidence that households value diversifi-

cation in the vehicle portfolio. The greater is the fuel economy of the kept car, the lower the 

fuel economy of the purchased car. Increases in the fuel economy of the kept car reduces the 

probability the household purchases a car in the lower quartile of gallons per mile, while such 

increases reduce the probability the household buys a car in the upper quartile. Changes in 

gasoline prices affect the preferences for diversification in intuitive ways. As gasoline prices 

increase, the effect of the fuel consumption of kept vehicle and the probability of buying a 

car in the lower quartile of fuel consumption becomes even more positive. In contrast, as 

gasoline prices increase, the effect of the fuel consumption of kept vehicle and the probability 

of buying a car in the upper quartile of fuel consumption becomes even more negative. 

To gauge the importance of the portfolio effect, we use our results to estimate the net effect 

of an increase in the fuel economy of the kept vehicle. We calculate the decrease in the 

fuel economy of the newly purchased vehicle when we increase the fuel economy of the kept 

vehicle by 10, 25, and 50 percent, across gasoline prices of $2.00, $3.00, and $4.00. These 

calculations suggest that the portfolio effect can have large consequences on the net effect a 

one-time increase in fuel economy. The fuel savings from increasing the fuel economy of the 

kept vehicle are eroded from the resulting decrease in fuel economy of the newly purchased 

vehicle. 

Our analysis of how VMT changes in response to gasoline prices leads to several policy 

implications. A uniform gasoline tax that imposes the same tax on all vehicles does a poor 

job of addressing the market failure from pollution externalities. The dirtiest vehicles are 

not taxed enough, and many clean vehicles are over-taxed. This is true even when the 

uniform tax is calculated taking the correlation between emissions and VMT sensitivities 

into account. The roughly 50 percent increase in the tax level from a uniform gasoline tax 

correctly abates more emissions from the dirtiest vehicles, but also over-taxes the cleanest 
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vehicles by a larger amount. The welfare benefits of the uniform gasoline tax are around 10% 

higher than those from a näıve tax, but still fall far short of the benefits from an optimal 

tax linked to actual vehicle emissions. Furthermore, there are enough differences in the per-

gallon damage that even a tax targeting broad groups leaves a substantial portion of societal 

loss. 

The research findings and modeling tool developed will provide insight into how consumers 

have responded and may respond to current and future California Air Resources Board 

vehicular policies, such as new emission standards and incentives. Additionally, this tool can 

be used to improve statewide vehicular and emission inventories used to support of policy 

development. The remainder of this report goes into detail in describing our methodology 

and findings from pursuing each of these tasks. Throughout, we refer back to these tasks to 

clarify how our work helped meet them. From this project, we have two completed working 

papers, which are attached as appendices. The first explores the influence of the household 

portfolio on the evolution of the vehicle fleet. The second demonstrates the differences across 

vehicle types in the driving responsiveness to gasoline prices and its implications for policy 

and air quality. In addition, we are providing ARB with our code for the working dynamic 

discrete choice model, which is explained in detail in Section 4. 

2 Household Portfolio Preferences 

2.1 Data Sources 

TASK B.1 and TASK B.2 were to “merge, clean and prepare the full dataset” and to “convert 

the dataset from a vehicle-level dataset to a household-level dataset”. These tasks took much 

longer than the initial project timeline projected, primarily due to a change in rules about 

accessing data from the California Department of Motor Vehicles. The rule change delayed 

receipt of the household-level data by roughly two years, and made necessary additional tasks 

by the investigator team that were beyond the scope of the project proposal. Nonetheless, 

we currently have a dataset of household-level vehicle purchase and usage data for Califor-

nia. This is a novel and extremely valuable platform for investigating issues relating to the 

evolution of the vehicle fleet and transportation emissions. 

A majority of vehicle-owning households in California own multiple cars. In this part of the 

project we study them. In particular, we ask the question “do the attributes of one car in a 
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household vehicle portfolio affect the desired attributes for the car to be purchased next?” 

The overwhelming majority of academic research on vehicle demand considers purchase 

decisions to be independent across cars, thus implicitly assuming “no” as the answer to the 

question. That is, we ignore any potential correlations between vehicle choices in households 

that own more than one car. The primary reason for such a narrow focus has been a lack 

of availability of data on household-level vehicle ownership. In this project, we overcome 

those data obstacles, consider a thought exercise that allows us to ask a well-defined research 

question, and develop an empirical strategy that addresses key potential confounding factors. 

The cornerstone of our dataset is the universe of California vehicle registration records that 

occurred from 2001-2007. The DMV dataset includes every vehicle registered under the 

residential designation code. In California every vehicle must be registered annually. Each 

record includes the registrant’s US Census block group identifier, the 17-digit vehicle identi-

fication number (VIN) that uniquely identifies the vehicle, that year’s registration date, the 

date when the vehicle was last sold, transaction price, and various other information. This 

information allows us to construct a household-level panel dataset vehicle ownership. 

Basic vehicle attributes (e.g. horsepower, weight, etc) are available via a VIN decoder that 

we purchased from DataOne Software. We augment the decoder to include vehicle fuel 

economy, which is available from the US Environmental Protection Agency. Odometer read-

ings are available for each VIN from the Bureau of Automotive Repair (BAR) whenever 

the vehicle is sold and upon receiving biannual Smog Check certification. We use odome-

ter readings, along with Smog Check dates, to calculate a rate of vehicle usage.4 We thus 

have an average measure of miles traveled by each vehicle and, by extension, each household 

for each year in our sample. The coarseness of these data are not optimal for examining 

high-frequency effects of VMT-switching between vehicles in response to changes in gasoline 

prices. Nonetheless, gasoline prices are a variable of interest in this study, since they affect 

the household’s optimal portfolio of vehicle fuel economy. Our gasoline price data are from 

the Oil Price Information Service (OPIS) and the U.S. Department of Energy, Energy Infor-

mation Administration. These data are at the county-month level. The full dataset contains 

many millions of observations, and we use randomly drawn subsamples of the dataset for each 

of the data explorations and analyses for computational feasibility (the size of the dataset 

for each will be clear in the results tables). 

4For example, if the odometer increases by X miles between Smog Check instance one and Smog Check 
instance two, and the number of days between these Smog Checks is Y, the daily average VMT during that 
period is X/Y . 
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We merge these data sources together to have a full dataset at the vehicle level. This data 

merging was done at the lowest level of disaggregation possible. 

2.2 Methodology 

TASK B.3 was to “Explore the summary statistics to analyze the composition and driving 

behavior of the vehicle fleet in California.” These explorations led to our realization of the 

importance of household vehicle portfolio preferences. We thus went even beyond the scope 

of the task in providing a full analysis and working paper on household portfolio preferences. 

For this analysis, consider two-car households that replace one of their cars with another. 

Our research question asks: do households that own multiple vehicles have a preference for 

diversity in vehicle attributes that are correlated with fuel economy? 

The ideal experiment for our research question would randomly assign which vehicle is 

“kept”, perturb its fuel economy randomly, and then observe the relationship between the 

fuel economy of this kept vehicle and the fuel economy of the newly-acquired vehicle. Since 

this ideal experiment is obviously not possible, our identification strategy must overcome two 

sources of endogeneity stemming from the non-random assignment of the kept vehicle. The 

first is the choice of which vehicle to replace. Since the household preference for particular 

features of a multi-car portfolio will directly inform the decision of which car to keep or drop, 

there is an identification challenge in estimating the portfolio itself using observational data. 

The second is related to the presence of unobserved household preferences. Household fixed 

effects can address time invariant unobserved preferences, but there would still be a concern 

if these preferences change over time. We expect that these time-varying preferences would 

generate a positive correlation between the fuel economy of the kept and newly-acquired 

vehicles. 

We use two sets of instrumental variables5 to account for these potential sources of bias. 

The first set of instruments are derived from the observation that changes in the relative 

price of cars in a portfolio systematically affect the probability that the lowest fuel economy 

car is dropped. We discuss and present three instruments that rely on this feature of the 

choice setting, with our preferred instrument being deviations in expectation of the change 

in relative vehicle prices at the time when the kept car was initially purchased. The second 

instrument is the gasoline price at the time of the purchase of the kept vehicle. A number 

5A valid “instrumental variable” is a special variable that provides us with independent variation, thereby 
allowing us to separate a causal effect from a correlation. 
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of papers (Klier and Linn (2010), Busse et al. (2013), Gillingham (2011)) have shown that 

vehicle purchase behavior is influenced by contemporaneous gasoline prices. Given the results 

of this literature, we would expect that the fuel economy of the kept vehicle is influenced 

by the gasoline price at the time of that purchase—something we confirm in our own data. 

We argue that the instrument provides independent variation because, after controlling for 

current gasoline prices, we would not expect past gasoline prices to influence the choice of 

the new vehicle. 

The model of household choice that underpins our empirical approach allows for any number 

of household decision-makers. Different households will operate differently with respect to 

vehicle choice. In some households, each household member may exercise autonomy over 

the choice of one vehicle but not another. In other households, a single decision-maker may 

make all vehicle choices. Our empirical approach is robust to either of these models. It would 

be an interesting research question to be able to identify which of these models dominates, 

and what implications that may have for transportation policy. However, we do not have 

sufficient information to examine this feature of the setting. 

2.2.1 Regression Specifications 

The basic regression strategies examine the relationship that fuel economy of the kept car 

has on the chosen fuel economy of the bought car. The dependent variable is thus either 

fuel economy of the bought car itself (fit
b ), or quartile indicators of that variable. Regressors 

of interest include gasoline price at the time of purchase, fuel economy of kept car (fit
k), 

and their interaction. In addition, we include a term, 1{Δfkd > 0}, that distinguishes 
which car was dropped from the initial portfolio, the low- or high-GPM car. Specifically, 

Δfkd = fk − fd in our main specification, such that 1{Δfkd > 0} = 1 indicates that the carit it 

with the lower fuel economy in the initial portfolio is kept. 

Most of the regression results that follow are retrieved from estimating a linear model of the 

probability of purchasing vehicles in a given MPG quartile. For ease of exposition of the 

results, and to allow our focus to rest on what happens in the top and bottom quartile, we 

combine vehicles in the 2nd and 3rd quartiles are into a single category, “med”. The baseline 

specification is � � 
gas gas Pr q(fit

b ) = s = β0 + βgpit + βf fit
k + βgf pit × fit

k + βdf 1{Δfkd > 0} + αX Xit
k + εit (1) 
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� � 
where the dependent variable, Pr q(fit

b ) = s , equals one if fit
b falls within the range of 

quartile s ∈ {1, med, 4}. We also estimate a continuous model where the dependent variable 
is fit

b , keeping the rest of the specification as presented in equation 1. Fuel economy of 

the vehicles bought (b) and kept (k) by household i in time t are denoted fit
b and fit

k; i’s 
gas contemporaneous gas price in t is pit , whereas Pit

gas k is the price of gasoline at the time 

household i purchased the car that it keeps in time t. Control variables, denoted Xit, include 

vehicle attributes (e.g. class, make, value, age), nonparametric time controls (year and 

month-of-year fixed effects) and household/demographic (household fixed effects and county-

level unemployment). 

The IV specifications deploy instruments for the indicator of the kept vehicle’s rank in fuel 

economy within the portfolio (1{Δfkd > 0}), the kept vehicle fuel economy (fit
k), and the 

interaction of gas price and fuel economy (pgas × fk). In each specification, we instrument it it 

using the gas price at the time the kept vehicle was purchased (P gask ) and that gas priceitk 
gas ×P gaskinteracted with the current gas price (p ). We augment this set of instruments withit itk 

the instruments based on vehicle price differences that were briefly described in Section 2.2 

on identification to estimate the following system of endogenous variables: 

h i0 
gas 

1{Δfkd > 0}= fk p × fkZit it it it 

We now describe the vehicle price difference instruments precisely. In “Price Difference” 

specification, we include the difference in the current resale value of the kept and sold ve-

hicles (ΔP kd = P k − Pit
d) as an additional instrument. The “Price Difference-in-Difference”it it 

specification uses the change in value for the kept and dropped vehicles between the point 

the vehicle was purchased and the current time period: ΔΔP kd = (P k − Pi
k 
0) − (P d − Pi

d 
0).it it it 

The third instrument, which we call “Price Deviation Difference-in-Difference”, is con-

structed from the deviation of the difference between the kept and dropped vehicles relative 

to their expected deprecation rates at the time of the kept car purchase. For each of the kept 

and dropped vehicle we estimate the households expectation of annual vehicle depreciation 

using depreciation of similar vehicles over the previous five years. Specifically, for vehicle 
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make m and model year y, and value Vm,y,t in year t, the expected depreciation is6 

! 1 
5 5Y Vm,y−s+1,t−s+1 − Vm,y−s,t−s

E[Depm,y,t] = (2)
Vm,y−s,t−s s=1 

We can then calculate the deviation from this expected depreciation rate for each car in the 

portfolio, and construct the “Price Deviation Difference-in-Difference” instrument. Assum-

ing vehicle j has resale value Pj,t in year t, this is: 

ΔΔVit
kd = (Pit

k − E[Depit
k ] · Pi,t

k 
−1) − (Pit

d − E[Depit
d ] · Pi,t

d 
−1) (3) 

The set of three price difference instruments is W = {ΔP kd , ΔΔP kd , ΔΔV kd}. The firstit it it 

stage thus consists of the following system of three equations for each of the instruments 

w ∈ W : 

Zw gas + θP P gas k gas gas 
it = Γ0 + Γgp it it × p (4)itk 

+ Γggp itkX 
Γdc1[CLASSdropped + it = sc] 

dc∈CLASS 

+Γww + ΘXit + Ξit 

2.3 Results 

Work completed in this section helps to fulfill tasks B.1, B.2, B.3 and B.4. 

The inquiry into household portfolio preferences is set against a backdrop of fuel economy 

standards that reduce the fuel intensity of new cars that are introduced into the vehicle fleet. 

Figure 1 shows deviations in GPM over time in the top (Q4 – most fuel intense) and bottom 

(Q1 – least fuel intense) quartiles, along with the overall trend in GPM. The overall trend is 

a decrease in fuel intensity, and this trend is concentrated in gains in the lowest fuel-intensity 

quartile. 

We now present summary statistics that describe the data sample. Table 1 displays the 

6As a more concrete example, for a household in year t = 2005 owning a 2002 Honda Civic, the expected 
depreciation is the geometric mean annual depreciation rate of 2001 Hondas in 2004, 2000 Hondas in 2003, 
1999 Hondas in 2002, etc. 
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Figure 1: Fuel Intensity (GPM) by Quartile: 2001-2007 
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Note: The sample is restricted to 2-car households in California from 2001-2007 

number of households that we observe in our data for each portfolio size. As may be expected, 

roughly 80 percent of households with a vehicle have either one or two cars in 2001. This 

proportion decreases over time to under 75 percent in 2007. A careful reader may notice that 

2003 appears to be somewhat of an outlier. This is due to a data anomaly that occurred 

between DMV and ARB when the 2003 data were transferred. 

Table 2 displays annual vehicle transaction counts and prices, disaggregated into new and 

used vehicles over the sample period. There are roughly twice as many used vehicle trans-

actions as new, and the price is substantially lower. Used cars sell on average for roughly 40 

percent of the price of new cars during the sample period. 

The evolution of household vehicle holdings is an important object of interest for this portion 

of the project. Table 3 shows the distribution of household portfolio transitions. Specifically, 

rows indicate the number of cars in year t, and columns indicate the number of cars in t + 1. 
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Table 1: Household Counts by Portfolio Size (2001-2007) 

Starting Portfolio Size 
Year 1 2 3 4+ 

2001 4,962,495 3,138,834 1,243,919 687,866 
2002 4,764,964 2,926,856 1,221,290 718,505 
2003 3,546,316 2,691,691 1,208,954 762,423 
2004 4,606,020 2,987,746 1,348,035 929,202 
2005 4,820,915 2,897,862 1,427,858 1,127,923 
2006 4,665,743 2,950,685 1,453,703 1,203,075 
2007 4,547,914 2,956,868 1,471,489 1,259,903 

Counts of households by portfolio type in the specified year who are also observed in the following year. 
Counts limited to households owning 5 or fewer vehicles in the specified year. Years represent DMV 

reregistration years and run from November 1 of the preceding year to October 31 of the specified year. 

Table 2: Vehicle Transaction Count and Mean Price by Year 

Transactions Mean Price 
All New Used All New Used 

2001 5,146,345 1,752,687 3,393,658 15,648 26,273 10,160 
2002 5,762,748 1,880,544 3,882,204 16,145 27,127 10,825 
2003 5,597,974 1,706,393 3,891,581 16,641 28,643 11,378 
2004 3,687,894 1,598,261 2,089,633 19,521 29,669 11,760 
2005 5,936,541 1,870,007 4,066,534 17,348 29,164 11,915 
2006 5,650,834 1,737,790 3,913,044 17,687 30,200 12,130 
2007 5,428,151 1,661,434 3,766,717 18,226 31,450 12,393 

Count of the number of vehicle transactions and mean transaction price by year. Years represent DMV 
reregistration years and run from November 1 of the preceding year to October 31 of the specified year. 

Vehicles are classified as new if they are the current model year or the preceding model year with less that 
500 miles reported on the odometer at the time of registration. Mean prices computed using the reported 

sale price in the vehicle registration. 

The table represents all possible household transitions. The large mass on diagonals indicates 

that many households do not increase or decrease the number of cars that they register from 

year to year. It is also clear from Table 3 that a wide range of portfolio transitions occur in 

any given year. 

While the main focus of this paper is to examine the complementarity of vehicle attributes 

within a multi-car household portfolio, one might also be curious about the distribution 
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Table 3: Number of Unique Households by Portfolio Size 

Start 
Portfolio Size 1 

End Portfolio Size 
2 3 4+ 

1 
2 
3 
4+ 

7,262,111 
1,172,278 
168,745 
35,810 

1,360,594 
4,632,425 
849,703 
141,618 

187,558 
839,546 
2,169,948 
381,226 

75,150 
259,098 
675,040 
1,489,926 

Each cell represents the count of unique households from 2001 to 2007 observed to have the starting 
portfolio size shown in each row and the ending portfolio size shown in the column. These counts provide a 

measure of the number of households providing identifying variation in each portfolio cell. A single 
household may appear in multiple cells if their portfolio changes over time but is counted at most once in 
each cell. For example, two-car household that replaces one car every year would add one to the count of 
the (2,2) cell. If instead, that household adds a third vehicle in 2004 and returns to a two-car portfolio in 
2006 it would add one to the count of the (2,2) cell, one to the count of the (2,3) cell, one to the (3,3) cell, 
and one to the count of the (3,2) cell. Each household may have zero, one, or multiple vehicle transactions 

during this time period. 

of fuel intensity across households.7 Figure 2 plots a heat map that represents the choice 

of fuel intensity of kept and bought cars across all households in our two-car replacement 

sample. Darker shading reflects a higher proportion of households, and it can thus be seen 

that households tend to locate close to the 45 degree line. This indicates a general desire 

for similar fuel intensity of cars within a household. This is a strong motivating factor for 

pursuing the empirical strategy that we do. Changes within a household capture the portfolio 

preferences that are relevant for our policy counterfactuals. 

The regressions that follow are estimated using a sample of two-car households that replace 

one of their cars, a sample which we call “2x2 replacement households”.8 While other 

transitions are certainly interesting, two-car replacement households provide the cleanest 

experiment. Households increasing the number of cars in their portfolio are likely to be 

experiencing an unobserved development that increases their demand for transportation (e.g. 

having a baby). Furthermore, it is unclear how to characterize the channels through which 

the portfolio of households with more than two cars affects replacement decisions. Does a 

portfolio effect for those households operate via the highest-VMT kept car, or the newest? 

7This is what is referred to in Appendix A as the “type” effect. 
8We define a household as replacing one vehicle if the starting (in year t) and ending (in year t+1 or t+2) 

portfolios differ by one vehicle. The household may conduct multiple vehicle transactions, as long as one of 
the two vehicles appears in both the starting and ending portfolios. We do not consider households where 
both vehicles in the two-vehicle portfolio change as the relative timing of each purchase becomes important 
for defining the portfolio at the time of each vehicle’s purchase. 
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Figure 2: Fuel Intensity of Kept and Bought Cars: 2001-2007 

Note: The sample is restricted to 2-car households in California from 2001-2007 

Or must the portfolio effect be defined in a higher dimension? Given that no clear answer 

exists to these questions, we choose the simple path of focusing on the two-car replacement 

households. 

We are also interested in the composition of the household multi-car portfolio. Table 4 shows 

the frequency of vehicle class pairs in the two-car household portfolio when replacement 

occurs. Rows indicate the class of the kept vehicle, and rows indicate the class of the bought 

vehicle. The most common class pairs generally include at least one car, with Car-Truck 

being the highest frequency. It is also common for Cars to be paired with SUVs. Of non-Car 

households, Luxury-Luxury and SUV-Truck are the most common. Already, Table 4 reveals 

that households generally prefer a portfolio comprised of different vehicle classes over one 

with the same classes. However, we must dig deeper to discover whether the preference for 

diversification extends to other vehicle attributes. 
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Table 4: Transaction Counts 

BOUGHT 
SUV XUV Car Luxury Truck 

KEPT 

SUV 
XUV 
Car 
Luxury 
Truck 

43,402 
8,586 
106,628 
64,616 
76,317 

18,666 
8,364 
63,625 
40,864 
38,037 

103,296 
31,795 
376,459 
134,461 
223,284 

58,127 
18,782 
105,209 
101,743 
67,378 

62,167 
15,685 
187,849 
70,719 
106,285 

Count of transactions for the specified ending portfolio type. Counts limited to the preferred specification 
estimation sample. 

When we deploy the regression methodology with instrumental variables, as described in 

Section 2.2, we find evidence that households value diversification in fuel economy (or, per-

haps more accurately, in vehicle attributes that are correlated with fuel economy). The 

greater is the fuel economy of the kept car, the lower the fuel economy of the purchased car. 

We show this using both a continuous measure of fuel economy, as well as by estimating 

the probability a household purchases a vehicle in the upper and lower quartiles of the fuel 

economy distribution. Increases in the fuel economy of the kept car reduces the probability 

the household purchases a car in the lower quartile of gallons per mile, while such increases 

reduce the probability the household buys a car in the upper quartile. Changes in gasoline 

prices affect the preferences for diversification in intuitive ways. As gasoline prices increase, 

the effect of the fuel consumption of kept vehicle and the probability of buying a car in the 

lower quartile of fuel consumption becomes even more positive. In contrast, as gasoline prices 

increase, the effect of the fuel consumption of kept vehicle and the probability of buying a 

car in the upper quartile of fuel consumption becomes even more negative. 
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Table 5: Regression Estimates - New Vehicle Purchases 

(a) Panel A: Bought Vehicle Continuous GPM Measure 

Price Diff Price DiD Price Deviation DiD 
(1) (2) (3) 

Gas Price ($/ gal) 0.052 0.031 0.032 
(0.009)** (0.009)** (0.010)** 

Kept GPM 1.525 0.731 0.349 
(0.398)** (0.413) (0.426) 

Gas Price × Kept GPM -0.991 -0.584 -0.596 
(0.177)** (0.170)** (0.191)** 

Δ GPM > 0 -0.001 0.001 0.000 
(0.001) (0.001) (0.001) 

(b) Panel B: Bought Vehicle 1st GPM Quartile 

(1) (2) (3) 

Gas Price ($/ gal) -0.731 -0.228 -0.977 
(0.342)* (0.322) (0.447)* 

Kept GPM -3.671 15.711 -22.396 
(15.081) (14.315) (18.676) 

Gas Price × Kept GPM 13.608 3.929 17.943 
(6.505)* (6.092) (8.498)* 

Δ GPM > 0 -0.086 -0.119 -0.055 
(0.033)** (0.031)** (0.045) 

(c) Panel C: Bought Vehicle 2nd/3rd GPM Quartile 

(1) (2) (3) 

Gas Price ($/ gal) -1.110 -1.570 -0.290 
(0.546)* (0.585)** (0.547) 

Kept GPM -63.774 -85.723 -8.027 
(22.248)** (27.381)** (23.113) 

Gas Price × Kept GPM 21.483 30.147 6.316 
(10.398)* (11.107)** (10.386) 

Δ GPM > 0 0.129 0.156 0.063 
(0.046)** (0.050)** (0.055) 

(d) Panel D: Bought Vehicle 4th GPM Quartile 

(1) (2) (3) 

Gas Price ($/ gal) 1.841 1.798 1.267 
(0.488)** (0.518)** (0.457)** 

Kept GPM 67.445 70.011 30.424 
(19.470)** (24.383)** (19.583) 

Gas Price × Kept GPM -35.091 -34.076 -24.259 
(9.290)** (9.832)** (8.677)** 

Δ GPM > 0 -0.042 -0.037 -0.008 
(0.040) (0.043) (0.043) 

N 440,809 429,369 348,368 
Cragg-Donald stat 145.88 141.44 91.34 
Household FE Yes Yes Yes 
IV for Kept Vehicle Base+ΔP riceDiD3 Base+P riceDiD3 Base+ValueDiD 
Subsample New New New 

Standard errors robust to heteroskedasticity shown in parentheses. 
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Table 6: Regression Estimates - Used Vehicle Purchases 

(a) Panel A: Bought Vehicle Continuous GPM Measure 

Price Diff Price DiD Price Deviation DiD 
(1) (2) (3) 

Gas Price ($/ gal) 0.045 0.027 0.057 
(0.018)* (0.013)* (0.022)** 

Kept GPM 1.086 0.234 1.532 
(0.806) (0.504) (0.909) 

Gas Price × Kept GPM -0.874 -0.523 -1.090 
(0.349)* (0.245)* (0.421)** 

Δ GPM > 0 0.008 0.008 0.007 
(0.001)** (0.001)** (0.001)** 

(b) Panel B: Bought Vehicle 1st GPM Quartile 

(1) (2) (3) 

Gas Price ($/ gal) 4.200 3.076 3.081 
(1.137)** (0.772)** (1.117)** 

Kept GPM 207.785 118.514 109.659 
(50.188)** (30.916)** (46.832)* 

Gas Price × Kept GPM -80.034 -58.007 -58.326 
(21.792)** (14.729)** (21.382)** 

Δ GPM > 0 -0.546 -0.484 -0.489 
(0.061)** (0.046)** (0.065)** 

(c) Panel C: Bought Vehicle 2nd/3rd GPM Quartile 

(1) (2) (3) 

Gas Price ($/ gal) -11.152 -7.979 -9.952 
(2.535)** (1.605)** (2.671)** 

Kept GPM -485.343 -251.088 -332.787 
(111.819)** (65.004)** (111.180)** 

Gas Price × Kept GPM 213.213 151.329 189.695 
(48.602)** (30.613)** (51.132)** 

Δ GPM > 0 0.582 0.432 0.544 
(0.134)** (0.094)** (0.151)** 

(d) Panel D: Bought Vehicle 4th GPM Quartile 

(1) (2) (3) 

Gas Price ($/ gal) 6.952 4.902 6.871 
(1.618)** (1.033)** (1.836)** 

Kept GPM 277.558 132.574 223.128 
(71.442)** (41.549)** (76.125)** 

Gas Price × Kept GPM -133.179 -93.323 -131.369 
(31.022)** (19.698)** (35.146)** 

Δ GPM > 0 -0.035 0.052 -0.055 
(0.085) (0.060) (0.103) 

N 500,882 461,425 364,909 
Cragg-Donald stat 39.99 42.48 38.93 
Household FE Yes Yes Yes 
IV for Kept Vehicle Base+ΔP riceDiD3 Base+P riceDiD3 Base+ValueDiD 
Subsample Used Used Used 

Standard errors robust to heteroskedasticity shown in parentheses. 
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Tables 5 and 6 present the baseline regression results from new and used car purchases, 

respectively. The left-most column in each tables corresponds to estimates using the Price 

Difference IV; column 2 presented estimates using the Price DiD IV; and, finally, Column 

3 is our preferred specification, deploying the Price Deviation DiD IV from Equation 4. 

The four panels correspond to the continuous dependent variable regression (Panel A), the 

linear probability model (LPM) on the highest fuel economy quartile purchases (Panel B), 

the linear probability model on second and third fuel economy quartile purchases combined 

(Panel C), and the linear probability model on purchases of cars in the lowest fuel economy 

quartile (Panel D). 

To more clearly understand the effect of key covariates, we now present and discuss their 

marginal effects (Table 7). First we discuss marginal effects of gasoline prices on the fuel 

economy of new and used cars, followed by the marginal effects of kept car GPM on bought 

car GPM. 
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Table 7: Marginal Effect of Kept Vehicle MPG on Bought Vehicle GPM - Preferred Specifi-
cation 

(a) Panel A: Bought Vehicle Continuous GPM Measure 

All New Used 
Current Gas Price (1) (2) (3) 

Gas Price = 2.00/gal -0.819 -0.843 -0.648 
(0.140)** (0.202)** (0.242)** 

Gas Price = 3.00/gal -1.393 -1.438 -1.738 
(0.235)** (0.283)** (0.453)** 

Gas Price = 4.00/gal -1.966 -2.034 -2.828 
(0.369)** (0.438)** (0.840)** 

(b) Panel B: Bought Vehicle 1st GPM Quartile 

(1) (2) (3) 

Gas Price = 2.00/gal -12.832 13.490 -6.992 
(6.902) (8.860) (13.288) 

Gas Price = 3.00/gal -32.442 31.433 -65.318 
(11.113)** (12.649)* (23.234)** 

Gas Price = 4.00/gal -52.051 49.376 -123.643 
(17.249)** (19.646)* (42.632)** 

(c) Panel C: Bought Vehicle 2nd/3rd GPM Quartile 

(1) (2) (3) 

Gas Price = 2.00/gal 71.753 4.605 46.603 
(13.300)** (11.011) (30.426) 

Gas Price = 3.00/gal 156.553 10.922 236.297 
(21.807)** (15.438) (55.240)** 

Gas Price = 4.00/gal 241.353 17.238 425.992 
(33.967)** (23.899) (102.010)** 

(d) Panel D: Bought Vehicle 4th GPM Quartile 

(1) (2) (3) 

Gas Price = 2.00/gal -58.920 -18.095 -39.611 
(9.487)** (9.058)* (20.474) 

Gas Price = 3.00/gal -124.111 -42.355 -170.980 
(15.808)** (12.538)** (37.907)** 

Gas Price = 4.00/gal -189.302 -66.614 -302.349 
(24.757)** (19.569)** (70.180)** 

Marginal effect of the current gasoline price on the probability a household purchases a vehicle in the GPM 
quartile specified in table section header. Delta method standard errors robust to heteroskedasticity shown 

in parentheses. *,**,*** denote results significant at the 10%, 5%, and 1% levels, respectively. 
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Marginal effects of kept car GPM provide a direct representation of the portfolio effect. 

We present marginal effects of kept car fuel economy for new and used cars (and pooled) 

at different gasoline prices in Table 7. Note that both the level of the coefficients within 

each bought car GPM quartile, and the gradient of these coefficients with respect to the 

gas price, are important. Positive coefficients reflect an increasing probability of buying in 

a given quartile as kept car GPM increases (becomes less fuel efficient). 

The overall story is clear: households exhibit a preference for GPM diversification in their 

portfolio, and that preference increases as the gas price rises. This can be seen clearly in the 

overall results presented in panel A, where negative coefficients imply an increased demand 

for buying a fuel efficient car as kept-car fuel efficiency decreases. A similar narrative holds 

when examining the high- and low-GPM bought car quartiles. Households buy new cars in 

the lowest GPM quartile (high fuel economy) with a higher probability as their kept car fuel 

economy decreases. Furthermore, this preference increases as the gas price rises. On the 

other hand, households have a lower probability of buying fuel inefficient new cars as kept 

car GPM increases, and this preference also increases as the gas price rises. 

The situation for used cars is qualitatively similar. The negative coefficient on the marginal 

effects on 1st GPM quartile implies that the probability of buying a used, highly efficient 

car decreases in kept-car GPM at this gas price. We presume that this reflects a supply-side 

effect: households with fuel efficient used cars are less likely to sell them when gas prices are 

high, thus shifting upwards along the demand curve for this type of car. 

In the full paper you can find a full discussion of the implications of this appetite for portfolio 

diversity. Intuitively, it implies that a policy that exogenously increases the fuel economy 

of new vehicles will, at the time when those cars are the “kept” cars, induce households 

to purchase less efficient second vehicles than they otherwise would have. We quantify 

this prediction in counterfactual simulations. We conjecture that the kept vehicle in a 2-

car portfolio becomes 10 percent more efficient, and use the coefficients retrieved from our 

empirical exercise to simulate how much of the gasoline savings from the efficiency increase 

are eroded by the portfolio effect. The results for both new and used cars are large. Roughly 

half (or slightly more) of the anticipated gains from the kept car efficiency increase are 

eroded by the portfolio effect. While one cannot draw a direct link between this effect and 

fuel economy standards, the results demonstrate how powerful the portfolio effect can be. 
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3 Cobenefits of Gasoline Taxes 

TASK B.4 was to “rigorously examine how vehicles in California with different characteristics 

respond differently to changes in gasoline price and vehicle greenhouse gas emissions”. We 

fulfill this task through the work attached in complete paper form in appendix B.9 

3.1 Data Sources 

Our empirical setting is the California personal transportation market. We bring together 

a number of large data sets. Our analysis is primarily based upon the universe of emis-

sions inspections from 1996 to 2010 from Californias vehicle emissions testing program, the 

Smog Check Program, which is administered by the California Bureau of Automotive Repair 

(BAR). A vehicle appears in the data for a number of reasons. First, vehicles more than 

four years old must pass a Smog Check within 90 days of any change in ownership. Second, 

in parts of the state (details below) an emissions inspection is required every other year as 

a pre-requisite for renewing the registration on a vehicle that is six years or older. Third, 

a test is required if a vehicle moves to California from out-of-state. Vehicles that fail an 

inspection must be repaired and receive another inspection before they can be registered 

and driven in the state. There is also a group of exempt vehicles. These are: vehicles of 

1975 model-year or older, hybrid and electric vehicles, motorcycles, diesel-powered vehicles, 

and large natural-gas powered trucks. 

These data report the location of the test, the unique vehicle identification number (VIN), 

odometer reading, the reason for the test, and test results. We decode the VIN to obtain 

the vehicles make, model, engine, and transmission. Using this information, we match the 

vehicles to EPA data on fuel economy. Because the VIN decoding is only feasible for vehicles 

made after 1981, our data are restricted to these models. We also restrict our sample to 1998 

and beyond, given large changes that occurred in the Smog Check Program in 1997. This 

yields roughly 120 million observations. 

The Smog Check data report measurements for NOx and HCs in terms of parts per million 

and CO levels as a percentage of the exhaust, taken under two engine speeds. As we are 

interested in the quantity of emissions, the more relevant metric is a vehicles emissions per 

9We will refer to this work as “ours”, acknowledging that it was performed by a subset of the project 
Investigators. 

21 



mile. We convert the Smog Check emissions readings into emissions per mile using conversion 

equations developed by Sierra Research for the California Air Resources Board in Morrow 

and Runkle (2005). The conversion equations are functions of both measurements of all 

three pollutants, vehicle weight, model year, and truck status. 

As part of our simulation exercise, we also use data obtained from CARFAX Inc. to es-

timate scrappage decisions. These data contain the date and location of the last record 

of the vehicle reported to CARFAX for 32 million vehicles in the Smog Check data. This 

includes registrations, emissions inspections, repairs, import/export records, and accidents. 

Because the CARFAX data include import/export records, we are able to correctly classify 

the outcomes of vehicles which are exported to Mexico as censored, rather than scrapped, 

thus avoiding the issues identified in Davis and Kahn (2011). 

For a subset of our Smog Check data, we are able to match vehicles to households using 

confidential data from the California Department of Motor Vehicles (DMV). These data 

track the registered address of the every vehicle in the state, with one address given for each 

year. We use the registration information to attach demographic information on income 

from U.S. Census data. The DMV data were only available for the years 2000 to 2008. 

For a portion of our analysis, we use data from the 2009 National Highway Transportation 

Survey, which contains information on household vehicles, annual VMT, and household 

income for a sample of households.Finally, we use gasoline prices from EIAs weekly California 

average price series to construct average prices between inspections. 

3.2 Methodology 

The basic methodology here is to use California smog check inspection data to estimate how 

the usage and emissions from different vehicle types responds to changes in gasoline prices. 

We then use this relationship to estimate the effectiveness of gasoline taxes in reducing local 

pollutants: carbon monoxide (CO), hydrocarbons (HCs), and nitrogen oxides (NOx). This 

exercise assumes a symmetry in response to prices caused by movements in the gasoline 

price and those caused by changes in a hypothetical gasoline tax.10 One caveat in this 

analysis is that while we use the best conversion equations we are aware of (developed by 

10Li et al. (2014) present evidence that consumers respond more to gasoline taxes than to market-based 
changes in gasoline prices. However, due to an absence of natural experiments that change gasoline taxes, 
we rely on price fluctuations as the source of identifying variation. 
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Sierra Research for ARB), using VMT data to estimate gasoline consumption and emissions 

does require further assumptions. For example, consumer driving behavior can affect both 

on-road fuel economy and emissions profiles. This can include factors such as the average 

speed, braking behavior, and cold starts. We are not aware of a reason why the results 

should be systematically skewed using the average values that were developed for ARB, but 

we recognize that on-road real-world driving conditions may differ and additional work could 

be done to further refine this mapping from VMT to emissions. 

In this work we distinguish between “first-best” and “second-best” optimal tax regimes. 

The first-best earns its name by setting taxes on all pollutants such that the level of the tax 

equals the level of marginal damages. For example, this would imply setting a tax on carbon 

dioxide equal to the social cost of carbon, and separate taxes on criteria pollutants (again 

equal to their marginal damage). A second-best tax in the vehicle setting would be a tax 

on gasoline. It is not generally first-best optimal, since it does not equate the tax level with 

marginal social damages. 

In the case of the local pollution externalities of driving, the relationship between the second-

best optimal gasoline tax and the first-best Pigouvian emissions tax depends on three em-

pirical relationships: the distribution of pollution externalities across vehicles; the extent to 

which gasoline prices affect the implicit demand for pollution; and the correlation between 

vehicle-specific demand responses and externality levels. If vehicles do not differ in their sen-

sitivity of vehicle miles traveled (VMT) to gasoline prices—an object that we hereafter call 

the “VMT elasticity”—the second-best optimal (hereafter “SBO”) gasoline tax will simply 

be the average per-gallon externality across all vehicles. However, if price responsiveness and 

externalities are correlated, Diamond (1973) shows that the SBO gasoline tax will be the 

weighted average of vehicle per-gallon externalities, where the weights are the price deriva-

tives of the vehicle-specific gasoline demand curves. In our empirical work, we allow for 

the VMT elasticity to vary depending on a vehicle’s emissions per mile traveled, which we 

observe. 

An important empirical result in our paper is that we find that vehicle-level emissions are 

correlated with vehicle-specific VMT elasticities; dirtier vehicles are more price responsive. 

Using detailed vehicle-specific data on miles driven, we show a positive correlation between 

criteria pollutant emissions and the VMT elasticity (in absolute value) holds for all three 

pollutants for which we have data: carbon monoxide (CO), hydrocarbons (HCs), and ni-

trogen oxides (NOx). VMT elasticities are also positively correlated with greenhouse gas 

emissions and vehicle weight. 
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These correlations drive a wedge between the SBO gasoline tax associated with emissions and 

what we call the “naive” tax, which we define as the the tax based only on the unweighted -

average externality across vehicles. We show the SBO gasoline tax is larger, on the order 

of 50 percent, than the naive gasoline tax in each of the years of our sample. However, 

we also show that even when instituting the SBO gasoline tax, the tax performs poorly 

in eliminating DWL, and only marginally better than the naive gasoline tax. Across our 

sample, we estimate the SBO gasoline tax eliminates only 30 percent of DWL associated 

with the pollutants studied. 

We investigate three sources of the documented heterogeneity, which are not necessarily 

mutually exclusive. First, it may be driven entirely by a vintage effect. That is, older 

vehicles are both more responsive to changes in gasoline prices and have higher emissions. 

Second, it might be driven by differences in the incomes of consumers that drive dirtier versus 

cleaner vehicles.11 Third, it may result from households shifting which of their vehicles are 

driven in the face of rising gasoline prices. 

To investigate whether it is simply a vintage effect, we redefine the quartiles based on the 

distribution of emissions within vintage and calendar year bins. We split vehicles into three 

age categories: 4 to 9 years old, 10 to 15 years old, and 16 to 27 years old. We are able to 

group a subsample of our Smog Check vehicles into households using our registration data 

from California DMV. Because of the process used to identify households in these data, this 

subsample likely draws more heavily from households residing in single-family homes. 

3.2.1 Regression Specifications 

We estimate how changes in gasoline prices affect decisions about vehicle miles traveled 

(VMT), and how this elasticity varies with vehicle characteristics. For each vehicle receiving 

a biennial smog check, we calculate average daily miles driven and the average gasoline price 

during the roughly two years between smog checks. Obviously vehicle owners with more fuel 

efficient vehicles will respond less to changes in the per-gallon gasoline price, and to abstract 

from this we specify the elasticity with respect to the price in dollars per mile (DPM), by 

dividing the average per gallon price by fuel economy in gallons per mile. Thus, the price 

faced by each vehicle’s owner will vary both with the exact period in between Smog Checks, 

and with the specific vehicles’ fuel economy. We then allow the elasticity to vary based on 

11West (2004) also documents a positive correlation between income and emissions. She does not separately 
estimate elasticities, however. 
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the emissions of the vehicle. We begin by estimating: 

ln(V MTijgt) = β ln(DP Mijgt) + γDtruck + ωtime + µt + µj + µg + µv + εigt (5) 

where i indexes vehicles, j vehicle-types, g geographic locations, t time, and v vehicle age, or 

vintage. DP Mijgt the average gasoline price per mile faced by vehicle i between time t and 

the date of the previous smog check, Dtruck is an indicator variable for whether the vehicle is 

a truck, time is a time trend, and εigt is a residual.12 Our baseline specification assumes that 

gasoline prices are exogenous to individual driving decisions. Such an assumption is common 

in the literature, as gasoline prices are largely driven by movements in the world price of 

crude oil, which saw dramatic changes during the 2000s for reasons unrelated to driving 

choices in California.13 However, we have also estimated our main analyses instrumenting 

for DPM with the Brent Crude oil price, and we obtain very similar results. 

We begin by including demographic characteristics by the zip code of smog checks, and year 

and vintage fixed effects. We then progressively include finer vehicle-type fixed effects by 

including make, then make/model/model-year/engine, and finally individual vehicle fixed 

effects. We also differentiate the influence of gasoline prices by vehicle attributes related 

to the magnitude of their negative externalities—criteria pollutants, CO2 emissions, and 

weight. 

We allow the VMT elasticity to vary with the magnitude of our externalities in two ways. 

For both approaches, we begin by ranking vehicles within each calendar year by their emis-

sions per mile of NOx, HCs, CO, fuel economy, or vehicle weight in pounds. In one set of 

specifications we split vehicles up by the quartile of these variables and allow each quartile 

to have a separate β. In another set, we include a linear interaction of the percentiles of 

these variables and the log of gasoline prices in dollars per mile. 

3.3 Results 

Results from this portion of the project contribute to fulfilling TASK B.4. 

Tables 8 shows our results, focusing on NOx. Moving from left to right along the columns, 

12The fuel economy in gallons per mile used to calculate our DPM variable uses the standard assumption 
that 45 percent of a vehicle’s miles driven are in the city and 55 percent are on the highway. This is the 
standard approach used by the EPA for combined fuel economy ratings. 

13See, for example, Busse et al. (2013) (BKZ). 
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Models 1 to 6 correspond to different control variables, as demonstrated by the presence of 

coefficients or by the fixed effects noted in the table itself. The changes from Models 1 to 5 

illustrates the importance of controlling for vehicle-type fixed effects. Initially, the average 

elasticity falls from -0.265 to -0.117 when including fixed make effects, but then rises when 

including finer detailed vehicle fixed effects. Our final specification includes individual vehicle 

fixed effects yielding an average elasticity of -0.147.14 In Model 6 we examine heterogeneity 

with vehicle fixed effects. Model 6 includes interactions with quartiles of NOx, as in Model 

3. The VMT elasticity for the cleanest vehicles, quartile one, is positive at 0.041, while the 

VMT elasticity for the dirtiest vehicles is twice the average elasticity at -0.288. To put these 

numbers in context, the average per-mile NOx emissions of a quartile one vehicle is 0.163 

grams, while the average per-mile NOx emissions of a quartile four vehicle is 1.68 grams. 

We find similar patterns across the other externalities. The range of the estimated VMT 

elasticities is somewhat larger when using quartiles of HCs and CO emissions compared to 

NOx, with the dirtiest quartiles around -0.30 and the cleanest around 0.05. For CO2 the 

cleanest vehicles are those with the highest fuel economy, and here we see the least fuel-

efficient vehicles having a VMT elasticity of -0.183, compared to -0.108 for vehicles with 

fuel economy in the highest quartile. We observe some heterogeneity in the VMT elasticity 

across vehicle weights as well, although it is smaller than the other externalities. 

14Our average elasticity is larger than that found in Hughes et al. (2008) reflecting the longer run nature 
of their elasticity. 
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3.3.1 The Source of the Heterogeneity 

While the SBO gasoline tax is not (necessarily) affected by the mechanism behind the het-

erogeneity, it is of independent interest to investigate the mechanism.15 We investigate three 

sources, which are not necessarily mutually exclusive. First, it may be driven entirely by 

a vintage effect. That is, older vehicles are both more responsive to changes in gasoline 

prices and have higher emissions. Second, it might be driven by differences in the incomes 

of consumers that drive dirtier versus cleaner vehicles. Third, it may result from households 

shifting which of their vehicles are driven in the face of rising gasoline prices. 

To investigate whether it is simply a vintage effect, we redefine the quartiles based on the 

distribution of emissions within vintage and calendar year bins. We split vehicles into three 

age categories: 4 to 9 years old, 10 to 15 years old, and 16 to 27 years old. 

Table 9 reports the results for heterogeneity over NOx emissions.
16 These results suggest 

that while vintage is a factor in the externality-based heterogeneity, it is not the only source 

or even the most important source. While middle-aged and older vehicles are more elastic 

than new vehicles on average, within age bin there is still substantial heterogeneity. For 

new vehicles, the difference between the dirtiest and cleanest quartiles is two thirds of the 

range for the whole sample. Middle-aged vehicles have three quarters as much range, and 

the oldest vehicles, 16 years and older, have a range nearly as large as for the whole sample. 

15In the presence of other second-best policies, this need not be the case. We abstract away from those 
issues here. 

16Results for the other four externality types are quite similar. 
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We are able to group a subsample of our Smog Check vehicles into households using our 

registration data from California DMV. Because of the process used to identify households 

in these data, this subsample likely draws more heavily from households residing in single-

family homes. Given this selection and the fact that the sample period differs from our 

base specification, it is not surprising that we find average elasticities that differ from those 

presented above. 

Table 10 presents the results from this subsample. For this sample, we construct two addi-

tional variables meant to capture the household stock of vehicles. The variable “Higher MPG 

in HH” equals one if there is another vehicle in the household whose MPG rating places it 

in a higher quartile than the vehicle in question. Likewise, the variable “lower MPG in HH” 

equals one if there is another vehicle in the household whose MPG rating places it in a lower 

quartile than the vehicle in question. 

If households shift usage from low-MPG vehicles to high-MPG vehicles, we would expect 

“Higher MPG in HH” to be negative and “Lower MPG in HH” to be positive. Column 2 of 

Table 10 adds these variables to our base specification. The point estimates suggest that a 

vehicle in the highest fuel economy quartile belonging to a household that also has a lower 

fuel economy vehicle has an elasticity greater than a third lower. We cannot reject the null 

hypothesis that the sum of the interactions with quartile four and “Higher MPG in HH” is 
17zero. 

17The sum of the two vehicle-stock variables is positive, but because lower fuel efficient vehicles are driven 
more earlier in the sample, the elasticities are not comparable in terms of what they imply for total miles 
driven. 
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For this same sample of vehicles, we also use U.S. Census information based on zip-code of 

residence to categorize owners into income quartiles. We interact these quartiles with the log 

of DPM to see if differences in elasticities exist. Column 3 of Table 10 adds these interaction 

terms. There is some evidence that higher-income consumers are less elastic. However, the 

emissions quartile effects persist; vehicles in the bottom quartile remain nearly three times 

more sensitive even after accounting for income differences. 

Our Smog Check data report the zip code of the testing station the vehicle visited. For our 

more general sample, we also use this information to construct measures of income. Table 

11 compares these results with the DMV data. We find similar differences in the elasticities, 

despite the smaller average elasticity. 

Table 11: VMT Elasticity by Income Quartile, 2000-2008 

40% Sample of HHs HHs, with HH FE 10% Sample of VINs 

ln(DPM) * HH Income Q1 

ln(DPM) * HH Income Q2 

ln(DPM) * HH Income Q3 

ln(DPM) * HH Income Q4 

-0.0659∗∗ 

(0.0197) 
-0.0706∗∗∗ 

(0.0142) 
-0.0588∗∗∗ 

(0.0165) 
-0.0461∗∗ 

(0.0151) 

-0.0560∗∗∗ 

(0.00560) 
-0.0591∗∗∗ 

(0.00555) 
-0.0451∗∗∗ 

(0.00552) 
-0.0316∗∗∗ 

(0.00553) 

-0.0524∗ 

(0.0216) 
-0.0559∗ 

(0.0237) 
-0.0679∗ 

(0.0261) 
-0.0527 
(0.0274) 

Year Fixed Effects Yes Yes Yes 
Vintage Fixed Effects 
Demographics 
Vehicle Fixed Effects 

Yes 
Yes 
Yes 

Yes 
Yes 
No 

Yes 
Yes 
Yes 

Observations 7549359 7549359 2489373 
R-squared 0.112 0.165 0.107 
∗ p < 0.05, ∗∗ p < 0.01 

Notes: Each observation is a vehicle’s Smog Check inspection. Dependent variable is the log of average 
daily vehicle miles travelled since the previous inspection. DPM represents the average gasoline price over 
the period since the previous inspection, converted to dollars per mile by dividing by vehicle fuel economy 
Quartiles MPG and Household Income are based on rankings within the calendar year in which the Smog 
Check occurs. Standard errors clustered by vehicle make reported in parentheses. 
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3.3.2 Efficiency of the second best optimal gasoline tax 

In this section, we consider the efficiency of using a SBO gasoline tax to abate the externalities 

caused by driving, specifically those resulting from emissions of NOx, HCs, and CO. We begin 

by calculating both the naive and SBO gasoline tax, and then compare the remaining DWL 

left over from these second-best taxes to the optimal outcome obtained by a vehicle-specific 

Pigouvian tax on emissions. 

Second best optimal gasoline tax 

We calculate the naive tax per gallon of gasoline as the simple average of the externality per 

gallon caused by all vehicles on the road in California in a particular year. We value the 

externalities imposed by NOx and HCs using the marginal damages calculated by Muller 

and Mendelsohn (2009), based on the county in which each vehicle has its smog check.18 

The damages calculated by Muller and Mendelsohn (2009) are ideal for this purpose, as they 

use an integrated assessment model to capture how a marginal unit of NOx or HCs emitted 

in one location causes damages throughout the United States, both directly and through 

the formation and removal of ozone and particulate matter. For CO, we use the median 

marginal damage estimate from Matthews and Lave (2000). 

Let the marginal damage per gram of pollutant p in county c be θc
p, with emissions rates in 

grams per mile by vehicle i of �pi . Then the externality per mile of vehicle i, Ei is: 

= θHC · �HC + θNOx · �NOx + θCO · �CO Ei c i c i c i (6) 

The naive tax in year y will then be: 

NyX1 Ei
τnaive(y) = , (7)

Ny MPGii=1 

where Ny denotes the number of vehicles on the road in year y, and MPGi denotes the fuel 

economy rating of vehicle i. In practice, since the stock of vehicles represented in the Smog 

Check data in any given year will be less than the total stock of vehicles in the vehicles fleet, 

we weight each Smog Check observation by the frequency with which vehicles of the same 

18Note that the values used in this paper differ from those used in the published version of Muller and 
Mendelsohn (2009). The published values were calculated using incorrect baseline mortality numbers that 
were too low for older age groups. Using corrected mortality data increases the marginal damages substan-
tially. We are grateful to Nicholas Muller for providing updated values, and to Joel Wiles for bringing this 
to our attention. 
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vintage and class appear in the California fleet as a whole. 

We calculate the SBO gasoline tax, taking into account the heterogeneity in both levels of 

the externality and the responsiveness to gasoline prices. We estimate a regression similar 

to Equation (5), but allowing the elasticity of VMT with respect to DPM to vary over all 

our dimensions of heterogeneity. Let the group-specific elasticity for vehicle i be βi
q , where 

q indexes cells by HC emissions, NOx emissions, CO emissions, MPG, weight, and age, with 

the externalities again in quartiles by year. Further, let the average price per gallon and 

the quantity of gasoline consumed per year in gallons in year y be Pi
y and Qy

i , respectively. 

Then the optimal tax in year y will be P P 
∂Uh − α0 h i=6 h ∂αi i 

τ ∗ (y) = P , (8)
α0 h h 

with 
Qy 

α0 i 
i = −βi

q · , (9)
P y 
i 

and 
∂Uh Ei 

= . (10)
∂αi MPGi 

Table 12 shows the naive and SBO taxes for each year from 1998 to 2008. The naive tax 

would be 61.2 cents per gallon of gasoline consumed in 1998, while the SBO tax is 86 cents, 

39 percent higher. The ratio of the naive and SBO gasoline tax increases even as the level 

of the externalities declines over time. From 2002 on, the SBO gasoline tax is at least 50 

percent larger than the naive tax in each year. 

We also account for vehicle owners’ decisions to scrap their vehicles to the extent these are 

affected by gasoline prices. The full paper appendix discusses the details and results of this 

exercise. To summarize, we allow gasoline price to affect scrappage decisions, and allow this 

to vary over emissions profiles and vintages. We find that the main source of heterogeneity 

occurs across vintages; specifically, increases in gasoline prices increase the hazard rate of 

very old vehicles, but decrease the hazard rate of middle-aged vehicles. Because emissions of 

criteria pollutants are positively correlated with age, this has the effect of decreasing criteria 

pollutants, although the aggregate effect is small. 

Welfare with Uniform Taxes 

We have shown that because of the correlation between elasticities and externality rates, the 

SBO gasoline tax is much higher than the naive tax calculated as the average of per-gallon 
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Table 12: Average and Marginal Pollution Externality 

Average Externality (¢/gal) Marginal Externality (¢/gal) 

1998 61.48 91.27 
1999 54.78 81.62 
2000 48.55 74.31 
2001 40.96 64.29 
2002 34.18 54.09 
2003 28.77 46.89 
2004 24.31 39.26 
2005 21.25 33.95 
2006 18.61 29.52 
2007 16.23 25.81 
2008 14.36 22.84 

Notes: Average Externality is the simple average of damages from emissions of criteria 
pollutants produced by each car in each year, divided by fuel usage. We refer to a tax 
on the average externality as the “naive tax”. The marginal externality is computed as 
the weighted average of externality per gallon, using the negative slope of the vehicle’s 
demand curve as the weight. A tax on the marginal externality is the SBO gasoline 
tax. Both calculations also weight vehicles by the frequency with which vehicles of the 
same vintage and class appear in the California fleet as a whole. Dollar figures inflation 
adjusted to year 2008. 

externalities. We now turn to the question of how much the SBO gasoline tax improves 

welfare beyond what is achieved by the naive tax. We note again that even the optimal 

uniform tax is still a second-best policy.19 Because of the heterogeneity in externality levels, 

the most polluting vehicles will be taxed by less than their external costs to society, leaving 

remaining DWL. Vehicles that are cleaner than the weighted average will be taxed too much, 

overshooting the optimal quantity of consumption and creating more DWL. 

In each of the following analyses, we compare the remaining DWL resulting from the local 

pollution externality with both the naive and SBO gasoline tax to the DWL without any 

additional tax. 

3.3.3 Simulation Results 

We begin by approximating the ratios of DWL with and without the taxes using our data 

to simulate the change in miles driven and thus in gasoline consumption from a tax. Let 

milesyi be the actual average miles per day traveled by vehicle i between its last smog check 

19We have also repeated the analysis under the assumption that policy makers adopt the second-best 
optimal VMT tax. The degree of DWL that remains is only slightly reduced. 
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��� ��� ��� ������� ����

ˆand the current one, observed in year y, and let milesi
y
(τ ) be the miles per day that a vehicle 

would travel if the average price of gasoline were raised by a tax of $τ per gallon that is fully 

passed through to consumers. We approximate DWL as a triangle, such that the ratio of 

interest is: 

yP ˆ1 milesi
y −milesi (τ ) Ei· · − τi 2 MPGi MPGi 

r(τ) = EiyP ˆmilesy −milesi ( )
1 i MPGi Ei· · i 2 MPGi MPGi 

The fully optimal tax would have a ratio of 0, while a tax that actually increased the DWL 

from gasoline consumption would be greater than 1. Table 13 shows these ratios for various 

taxes. The first two columns show ratios for a statewide tax based on the average and 

marginal externalities, respectively, of all vehicles in California in each year. Deadweight 

loss from the naive tax averages 72.8 percent of DWL with no additional tax over the sample 

period, and rises over time as the fleet becomes cleaner. The SBO gasoline tax is little better, 

averaging 69.8 percent of DWL with no tax during our sample period.20 

Is it even possible to effectively abate local pollution externalities using a tax on gasoline, or 

is there too much idiosyncratic variation in externality levels for this to be possible? That is, 

if hypothetically the tax were allowed to vary by groups observable to policymakers, would 

the SBO uniform tax perform better? Obviously, this may be politically infeasible depending 

on how the groups are defined and impractical to implement. The purpose of this analysis 

is to explore the nature of the failure of the uniform gasoline taxes. 

The remaining columns of Table 13 show remaining deadweight loss from the naive and SBO 

forms of taxes by groups. The marginal damages from Muller and Mendelsohn (2009) are 

designed to vary at the county level, and within California they vary substantially across 

counties, due to both baseline emissions levels and the extent to which population is exposed 

to harmful emissions. As such, a county-specific tax on emissions might be expected to target 

externality levels more precisely. The third and fourth columns of Table 13 shows the DWL 

ratios for a naive and SBO gasoline tax computed this way, and it turns out there is relatively 

20In unreported results, we also used Census income to analyze the regressivity of the two gasoline taxes. 
We find, consistent with Poterba (1991), that the taxes are initially progressive through the lowest income 
deciles, but then become regressive. We also find that, while the tax expense for lower income consumers 
is a larger share of their income, lower income consumers pay a smaller share of the externality that they 
generate. High income consumers pay more in taxes than the externality that they generate, while low 
income consumers pay less in taxes due to fact that lower income consumers, on average, drive vehicles with 
higher emissions rates and thus reduce their miles traveled more in response to a gasoline tax. 
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Table 13: Ratios of DWL with Tax to DWL With No Tax 

Statewide Tax County-Level Taxes Vintage Tax County/Vintage Tax Total DWL 

Naive SBO Naive SBO Naive SBO Naive SBO $ 

1998 
1999 
2000 
2001 
2002 
2003 
2004 
2005 
2006 
2007 
2008 

0.616 
0.636 
0.635 
0.690 
0.700 
0.716 
0.746 
0.766 
0.801 
0.817 
0.838 

0.568 
0.577 
0.583 
0.627 
0.675 
0.699 
0.740 
0.762 
0.796 
0.817 
0.836 

0.573 
0.592 
0.587 
0.649 
0.652 
0.661 
0.699 
0.723 
0.762 
0.780 
0.805 

0.523 
0.529 
0.532 
0.582 
0.625 
0.643 
0.693 
0.718 
0.757 
0.780 
0.802 

0.348 
0.330 
0.320 
0.348 
0.348 
0.316 
0.313 
0.319 
0.338 
0.328 
0.331 

0.341 
0.325 
0.317 
0.345 
0.346 
0.314 
0.312 
0.318 
0.337 
0.327 
0.331 

0.296 
0.269 
0.253 
0.281 
0.284 
0.248 
0.246 
0.250 
0.272 
0.259 
0.264 

0.290 
0.265 
0.251 
0.279 
0.283 
0.247 
0.245 
0.250 
0.271 
0.357 
0.264 

196466745.4 
158104024.8 
131221907.6 
100426398.8 
76704235.2 
58869860.6 
42633365.5 
27431776.9 
20756466.1 
15589665.8 
12340287.7 

Average 0.724 0.698 0.680 0.653 0.331 0.329 0.266 0.273 76413157.7 

Notes: DWL with no tax calculated based on the difference in emissions from imposing a tax equal to the actual 
externality per gallon consumed by a particular car. SBO tax computed as the weighted average of externality per 
gallon, using the negative slope of the vehicle’s demand curve as the weight. All taxes also weight vehicles by the 
frequency with which vehicles of the same vintage and class appear in the California fleet as a whole. 

little improvement. In other words, county-by-county variation in emissions and elasticities 

does not explain the failure of a single, uniform tax to remove a substantial amount of 

deadweight loss. The average ratios over our sample are 0.680 for the naive tax and 0.653 

for the optimal uniform tax. 

Since emissions rates are highly correlated with vintage, another approach would be to allow 

taxes to vary by the age of the vehicle.21 The fifth and sixth columns of the table show this, 

and here we see a substantial improvement: 0.331 for the naive tax and 0.329 for a SBO 

gasoline tax. Combining these and having the tax vary by both vintage and location, shown 

in the last two columns, reduces the ratios to 0.266 and 0.273, respectively. 

This analysis shows two striking results. First, a SBO gasoline tax does a terrible job of 

addressing the market failure from pollution externalities. The dirtiest vehicles are not taxed 

enough, and many clean vehicles are over-taxed. This is true even when the uniform tax 

is calculated taking the correlation between emissions and VMT elasticities into account. 

The roughly 50 percent increase in the tax level from a SBO gasoline tax correctly abates 

21Such a system could be built within the Smog Check Program, with vehicle-specific taxes based on 
mileage since the previous test. 
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more emissions from the dirtiest vehicles, but also over-taxes the cleanest vehicles by a larger 

amount. The welfare benefits of the SBO gasoline tax are around 10% higher than those from 

a naive tax, but still fall far short of the benefits from a true Pigouvian tax linked to actual 

vehicle emissions. The number of vehicles for which the uniform tax overshoots is remarkable. 

Table 14 shows the proportion of vehicle-years over the 11 years of our sample for which each 

tax overshoots. Because the distribution of emissions is so strongly right skewed, the naive 

uniform tax overshoots for more than 72 percent of vehicles, and the optimal uniform tax 

for even more. Second, there is enough heterogeneity in the distribution of the per-gallon 

externality that even a tax targeting broad groups leaves a substantial portion of DWL. 

Table 14: Proportion of Vehicles for which a Uniform Tax Overshoots the Optimal Tax 

Mean 

Naive Tax on Fleet Average Externality 0.724 
SBO Tax on Fleet Marginal Externality 0.803 
Naive Tax on County Average Externality 0.714 
SBO Tax on County Marginal Externality 0.793 
Naive Tax on Vintage Average Externality 0.708 
SBO Tax on Vintage Marginal Externality 0.733 
Naive Tax on County/Vintage Average Externality 0.673 
SBO Tax on County/Vintage Marginal Externality 0.718 

N 36023471 

Proportion of vehicles over the period 1998-2008 whose VMT would be 
lower than optimal under the indicated tax. We assume that the tax is 
adjusted each calendar year to reflect changes in the average or marginal 
externality 

The variance and skewness in the distribution of externality per gallon causes a uniform tax 

to be less efficient than might otherwise be expected. Figure 3 shows this clearly, plotting the 

kernel density of the externality per gallon in 1998 and 2008, with vertical lines indicating the 

naive tax and the optimal tax, respectively. The long right tail of the distribution requires 

that either tax greatly exceed the median externality. 

We next examine how the optimal uniform tax would compare to the optimal vehicle-specific 

tax if the distribution became less skewed. That is, how would a uniform tax perform 

if the right tail of the distribution—the oldest, dirtiest vehicles—were removed from the 

road? This could be achieved directly from a Cash for Clunkers-style program, or indirectly 

through tightening emissions standards in the Smog Check Program. Sandler (2012) shows 

that vehicle retirement programs are not cost-effective in reducing criteria emissions, and 

possibly grossly over pay for emissions; however the overall welfare consequences of this sort 
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Figure 3: Distribution of externality per gallon—vertical lines indicate naive and marginal 
uniform tax 

of scheme may be more favorable if they improve the efficiency of a uniform gasoline tax. 

Table 15 shows the ratios of DWL with the SBO gasoline tax to DWL with no tax with 

increasing proportions of the top of the externality distribution removed. Removing the top 

1 percent increases the DWL reduction from 30 percent to 38 percent of the total with no 

tax. Scrapping more of the top end of the distribution improves the outcome further. If 

the most polluting 25 percent of vehicles were removed from the road and the SBO gasoline 

tax was imposed based on the weighted externality of the remaining 75 percent, this would 

remove 58.3 percent of remaining DWL. Of course, the practical complications of scrapping 

this large a proportion of the vehicle fleet might make this cost-prohibitive. 
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4 Dynamic Model of Vehicle Choice 

A major component of this project is the extensive methodological development involved in 

creating a dynamic model of vehicle choice and driving. This work fulfills TASK B.5, which 

is to “design, code, and run the joint vehicle choice and usage model.” The following lays 

out the basics of the model and discusses how we coded and implemented it in Matlab. This 

model follows, and in some respects even extends the cutting edge of dynamic discrete choice 

modeling applied to vehicles in economics. 

Recall that a basic motivation for a dynamic model is that the evolution of the light duty fleet 

is determined by decisions consumers make about when to buy a vehicle and which vehicle 

to buy. These decisions are governed by consumer expectations of improvements in vehicle 

technologies and gasoline prices, as well frictions in the market, such as search costs or other 

transaction costs. In short, by including the dynamics of the decision process, we can better 

capture the very real factors that influence consumer decisions of whether to buy and sell, 

when to buy and sell, and what car to buy and sell. These factors will unquestionably be 

important for the evolution of the fleet, and are not yet well-understood. 

In our framework, the light duty vehicle fleet is comprised of vehicles owned by households. 

Households decide about whether to keep the vehicles that we currently own or whether to 

sell or scrap them, and also whether to purchase a different vehicle. The backdrop to these 

decisions is an ever changing landscape of vehicle technology. On one hand, cars currently 

existing as part of the fleet are in a process of depreciation, in the sense that we are becoming 

less valuable to households (and in the market) over time. This change in their value occurs 

for two primary reasons. First, conditional on all of the other cars in the fleet, using one’s 

vehicle (or even just letting it age without use) causes it to lose productive value. Second, 

there is a constant stream of new vehicles emerging and available for purchase. Technological 

change allows these new cars to be of superior quality (or lower price) than older vintages. 

The interplay between the household preferences, depreciation of the existing car holdings, 

and the emergence of new vehicle models is what ultimately determines the evolution of the 

fleet, and is what we will model. 
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4.1 Model 

Consider a household with a single vehicle. In any given time period (e.g., in any given 

year), consumers have several choices: 

• Buy a new car. 

• Sell a car. 

• Replace a car (i.e., buy and sell). 

• Keep their car. 

Of course, many households in California have more than one vehicle. However, we would 

expect most households to have a primary decision-maker for each vehicle. For example, each 

partner in a couple may have a separate car. There may also be a car for each teenage child. 

This observation lends itself to a computationally tractable approach where we model each 

vehicle separately, since each has its own decision-maker. This is an important simplification, 

for it allows us to model two-car households just like two one-car decision-makers. The other 

vehicle in the household fleet could influence each decision-maker’s utility through a dummy 

variable following our analysis of the household portfolio; this is an additional feature that 

could very feasibly be added to the model in the future. With our assumption, we can 

expeditiously model only one vehicle being sold, replaced, or bought at a time. 

This assumption overcomes both computational and conceptual challenges. In fact, virtually 

every dynamic discrete choice model of car demand we are aware of makes this very assump-

tion (Mannering and Winston, 1985; Esteban and Shum, 2007; Stolyarov, 2002; Adda and 

Cooper, 2000; Schiraldi, 2011; Cernicchiaro and de Lapparent, 2015). The reason for this 

assumption is that it dramatically decreases the size of the choice set, and avoids the curse of 

dimensionality. For example, if a household has three cars and there are 80 cars on the mar-

ket they could choose from, then there are millions of possible combinations that are possible 

decisions (e.g., one combination would be replace car 1 with car X and keep the other two, 

while another combination would be replace car 1 with car X, replace car 2 with car Y, and 

sell the third without replacement). This would be computationally infeasible to solve for a 

large dataset in a reasonable amount of time, even with considerable computational power. 

One could make further assumptions to attempt to make headway on allowing for there 

to be some relationship between the portfolio of a household. One way to do it would be 
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to assume that one of the vehicles (e.g., the oldest or the one with the highest odometer 

reading) is the one to be replaced or sold, while the other vehicles in a household are kept. 

We explored this path extensively and determined that there is enough heterogeneity in 

which vehicle is sold that the assumption would be a poor one and would not help the fit 

of the model substantially. We decided that we would actually be better off treating each 

vehicle as a separate decision-maker. Another possible approach would be to treat each 

vehicle as a separate decision-maker, but allow the utility of that decision-maker for any 

given vehicle type to be determined by the class of the other vehicles in the household. We 

deem this as a more promising approach. This approach would also align nicely with our 

evidence above demonstrating a “portfolio effect” guiding the evolution of the vehicle fleet 

(in fact, the empirical results on the portfolio effect above indicate the degree of the bias 

that might come about from ignoring any portfolio effects). However, it would increase the 

computational complexity of the model, albeit much more modestly. While this increase in 

the computational complexity led us to hold off on this addition for this report. This path of 

exploration is on the methodological frontier and while we made significant strides forward, 

it is a challenging endeavor and we see this as a valuable direction for future research to 

push the frontier beyond what any one has done. 

4.1.1 Household utility 

Each household will make a choice among those options above based on what provides 

the greatest expected utility. In each time period, a household i receives utility from the 

vehicles we have. In our model, cars can be viewed as bundles of attributes. Some examples 

of attributes are vehicle price, class, vintage (age), fuel economy, horsepower, weight, and 

brand (make). We refer to the characteristics of car j in time t as Xjt. Note that Xjt must be 

indexed by time in order to include vintage and price (which changes due to depreciation) in 

the set of relevant characteristics. In our modeling, we focus on vehicle age and vehicle class 

as the key characteristics. Each vehicle class and model year is associated with a different 

fuel economy , which is then applied in our calculations. 

Household i also has characteristics that are relevant for the decision. For example, there is 

heterogeneity across households in income yi and driving V MTi. Of course, households also 

differ in the current vehicle stock that we hold, which is captured in Xjt for each vehicle j. 

Let MPGjt denote the fuel economy of vehicle j at time t. We then denote the total amount 
gas gas spent on gasoline over the time period as gijt = V MTit · pt /MP Gjt, where pt is the price 

of gasoline at time t. Repair costs are not currently included due to a lack of reliable data 
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on the costs of repairs.22 Should such data be available, they could be readily included. 

A key component of the dynamic model is what is called the “flow utility”, or the period-

t utility. This is the utility received during time period t by the household for making a 

certain decision. We model the period-t utility for a household i with car k in time period t 

as follows: 

uikkt = Xktθi
x − giktθi

p + �ikkt Keep, including k = 0 

ui0jt = Xjtθi
x − gijtθ

p + �i0jt Buyi 

uik0t = pktθ
p − τi + �ik0t Sell, k 6= 0i 

uikjt = Xjtθi
x − gijtθi

p − pjtθi
p + pktθi

p − τi + �ikjt Replace, including k = 0, ∀j ∈ Jt 

(11) 

The first term, uikkt, indicates the flow utility when the household begins with vehicle k and 

chooses to keep vehicle k. It also refers to the situation where the household does not own a 

vehicle and chooses to continue not owning a vehicle. The equation states that the household 

receives utility from the attributes of the car (through Xktθi
x), loses utility from paying for 

gasoline (other maintenance costs could be added into this with little difficulty), and has 

a random idiosyncratic component to utility that is unobserved to the econometrician and 

depends on the car, time period, and household. 

The second term, ui0jt, indicates the flow utility when a household chooses to add a vehicle j 

to the household portfolio. Households receive utility based on the attributes of the vehicle, 

lose utility from the cost of the gasoline to run the vehicle, and an unobserved idiosyncratic 

component. 

The third term, uik0t, indicates the flow utility when the household begins with vehicle k 

and chooses to sell that vehicle and not buy another one. This is obviously only possible 

when the decision-maker has a vehicle to start. The household will no longer receive utility 

from the attributes of the vehicle, but will receive utility from the payoffs from selling the 

vehicle (pkt). θi
p can be thought of as the marginal utility of money and we model this as a 

quadratic in income θi
p = σ1i + σ2iyi + σ3iyi 

2 . The household will also bear a transaction cost 

ti, which captures the cost to the household of finding a buyer. Just as before, there is also 

an idiosyncratic component. 

22To the extent that repair costs are correlated with fuel costs, e.g., because more driving means more 
repairs, our fuel cost coefficients will capture both fuel costs and repair costs. 
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The last term, uikjt, indicates the flow utility when the household begins with vehicle k and 

replaces that vehicle with vehicle j. Here there is utility from the attributes of vehicle j, a 

loss in utility from the gasoline purchased to run vehicle j, the cost of purchasing vehicle j, 

and the payoff from selling vehicle k. Again, there is a transaction cost and idiosyncratic 

component. 

4.1.2 Value function 

A key aspect of a dynamic discrete choice model is that the household makes decisions based 

on both the current period utility (flow utility) and the expectation of what utility will be in 

the future based on the decision made today. Another way to think about it is that dynamic 

discrete choice models incorporate the “option value” (which we will use interchangeably 

with “continuation value”) associated with the choices that made today. If a household 

delays its purchase this year, it may not own the “best” car today, but it preserves the 

option to buy a “better” car next year. On the other hand, it can choose to replace its car 

today, upgrading to the current model that best meets its needs; but it is likely committing 

to own that car for several years (since subsequent technologies will not provide as much 

incremental benefit beyond this year’s new car than we would have beyond the car that was 

replaced). 

The “value function” captures the current period utility and the future utility, recognizing 

that the consumer will continue to make decisions to maximize their utility. This expected 

future utility is often called the “continuation value,” so the value function is the sum of the 

current period utility and the continuation value. For simplicity, we will drop the t subscript 

here on out and denote the next period’s value with a prime, but note that each of the 

equations going forward applies in each time period. To illustrate, the value function for 

household i that has chosen to keep vehicle k is given by: 

V̂i(k, �) = uikk + βE[V̂ 
i(k

0, �0)|k, �]. 

This shows that the value function is the sum of the current period utility plus the continua-

tion value, which is the expectation of future utility in the case where the household chooses 

to keep. Of course, the household can also choose to replace their vehicle with another 

vehicle or purge the vehicle from their household portfolio without replacing. Thus, for a 

household that currently has vehicle k, the value function can be written as: 
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n 
V̂i(k, �) = max uikk + βE[V̂ 

i(k
0, �0)|k, �], 

1[k 6= 0] · (uik0 + βE[V̂ 
i(0, �

0)|0, �]), o 
max{uikj + βE[V̂ 

i(j
0, �0)|j, �]}

j∈J 

In the above equation, the first term shows the decision to keep the vehicle k, the second 

shows the decision to purge the vehicle, and the third shows the decision to replace vehicle k 

with vehicle j. If we define k ∈ {0, 1, ...}, then this equation also subsumes the “buy” option 

for a household adding a car, since the replace decision can be thought of replacing no car 

with a car. 

For analytical convenience, we can also transform the value function to pull out the cost of 

purchasing vehicle k: 

V̄ 
i(k, �) = V̂ 

i(k, �) − pkθi
p . 

Then plugging in from above, we can rewrite the value function as follows: 

n 
V̄i(k, �) = max Xkθi

x − (pk − βE[p 0 k])θi
p − gikθi

p + �ikk + βE[V̄ 
i(k

0, �0)|k, �], 

1[k 6= 0] · (−τi + �ik0 + βE[V̄ 
i(0, �

0)|0, �]), o 
max{Xj θi

x − (pj − βE[p 0 j ])θi
p − gij θi

p − τi + �ijk + βE[V̄ 
i(j

0, �0)|j, �]} (12)
j∈J 

4.1.3 Logit inclusive value 

An increasingly popular approach used in the literature on dynamic discrete choice modeling 

is to define a single “logit inclusive value” that captures the expected utility of a given choice 

in a parsimonious manner, which eases the computational burden and yet still includes the 

key features that influence decision-making. As a preliminary, we define the “net augmented 
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utility” in order to simplify notation: 

φij = Xj θ
x − (pj − βE[pj 

0 ])θp − gij θ
p 

i i i 

The net augmented utility is the net utility in a given time period for household i with 

vehicle j that includes the expected depreciation of the vehicle (pj − βE[pj 
0 ]). Once this is 

defined, we can move on to the logit inclusive value: 

nX o 
δi = ln exp(φij − τi + βE[V̄ 

i(j
0, �0)|j, �] 

j∈J 

By plugging φ and δ into equation (12) and integrating over the Logit error � we then can 

rewrite the value function in a much more tractable form: Z 
¯Vi(φik, δi) = Vi(k, �)d� (13) 

An implication of this formulation of the value function and the assumption of Type I 

extreme value logit errors is that we have an analytical formulation for the probability of 

each decision: 

exp(φik + βE[Vi(φ
0 , δi 

0)|φik, δi])
P (di = Keep |φik, δi) = ik 

exp(Vi(φik, δi)) 
exp(−τi + βE[Vi(φ

0 , δ0)|φi0, δi])
P (di = Sell |φik, δi, k =6 0) = i0 i 

Vi(φik, δi) 
exp(φij − τi + βE[Vi(φ

0 
ij , δi 

0)|φij , δi])
P (di = Replace |φik, δi) = 

Vi(φik, δi) 

Recall that the replace decision can subsume the “Buy” decision, so all possible decisions 

are accounted for here. 

4.1.4 Transitions 

This dynamic model has two key state variables that evolve over time: the logit inclusive 

value and the net augmented utility. In fact, one of the primary advantages of using the logit 
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inclusive value approach is to reduce the state space. The transitions for these two variables 

are given by: 

δ0 i = γ1i + γ2iδi + νi 

φ0 ij = ρ1i + ρ2iφij + ρ3iδi + µij . 

Here νi and µij are error terms. 

4.1.5 Summary of key equations 

To summarize, these are the following key equations of the dynamic discrete choice model: 

φijt = Xjtθi
x − (pjt − βE[pjt+1])θi

p − gijtθi
p 

gas V MTit · pt gijt = 
MPGjt 

θp 2 
i = σ1i + σ2iyi + σ3iyi nX o 
= ln exp(φijt − τi + βE[Vi(φijt+1, δit+1)|φijt, δit]δit 

j∈Jt 

δit+1 = γ1i + γ2iδit + νit 

φijt+1 = ρ1i + ρ2iφijt + ρ3iδit + µijt n 
Vi(φikt, δit) = ln exp(φikt + βE[Vi(φikt+1, δit+1)|φik, δit])+ 

1[k 6= 0] · exp(−τi + βE[Vi(φi0t+1, δit+1)|φi0t, δit])+ o 
exp(δit) 

exp(φikt + βE[Vi(φikt+1, δit+1)|φik, δit])
P (di = Keep |φikt, δit) = 

exp(Vi(φikt, δit)) 
exp(−τi + βE[Vi(φi0t+1, δit+1)|φi0t, δit])

P (di = Sell |φikt, δit, k =6 0) = 
Vi(φikt, δit) 

exp(φijt − τi + βE[Vi(φijt+1, δit+1)|φijt, δit])
P (di = Replace |φikt, δit) = 

Vi(φikt, δit) 
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4.1.6 Solving the model 

Since this model has probabilities for the different decisions households can make and we 

observe the actual decisions, we can solve the model using maximum likelihood with a nested 

fixed point algorithm, following the standard in the literature (e.g., see Rust (1985)). We 

have coded the model in Matlab and are using the standard Matlab solvers (e.g., fminunc) 

to solve the model. 

To take the model to the data, we must convert the data to a suitable form. We make a 

series of further refinements to the data for this purpose. To further clarify, we model the 

following transitions for different households: 

• Decision-makers that started with No Car 

– 0 → 0 

– 0 → 1 

• Decision-makers that started with 1 Car 

– 1 → 0 

– 1 → 10 

– 1 → 1 

This parsimonious summary captures all possibilities. For example, consider a two car 

household that wants to buy a third car. The third car must go to a new decision-maker 

(e.g., a teenager) and thus there will be two decision-makers that started with one car and 

decided to keep, and a third decision-maker that started with zero cars and added a car. It 

thus follows that we determine households that made the 0 → 0 decision based on whether 

the household later or earlier in the data sample purchases a car. We consider households 

that never had a car as outside of the relevant sample. Some households that later entered 

the sample or earlier entered the sample may have moved in or out of California. We have 

acquired data from R.L. Polk that allow us to determine who these households are and can 

account for them. 

In the data sample, some households have the same vehicle portfolio for most years, but 

seem to have gap years when we are missing from the sample. In these (relatively unusual) 

cases, we deem this a data issue and impute the missing observations based on those from 

the adjacent years. 
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4.2 Results 

Recall that the purpose of this model is to improve our understanding of the evolution of the 

vehicle fleet and how transaction frictions can affect this evolution. The results presented here 

should be considered illustrative. They are estimated on the Department of Motor Vehicles 

and Bureau of Automotive Repair dataset covering the years 2001-2007 and modified for 

the purposes of this analysis. Specifically, to ease the computational burden, we took a 

10% subsample randomly drawn from all years and from throughout California. We also 

arranged the data so that they are in the form of a repeated cross-sectional dataset, with 

each observation being a vehicle that is treated as a separate decision-maker. We can see 

the basic features of the data we are using in the following table of transitions that occur in 

each year (Table 16). 

Table 16: Transitions that occur over a year 

Transition Count Percent 

0 → 1 (Buy) 565,443 10.04 
1 → 0 (Sell) 173,115 3.07 
1 → 1 (Keep) 3,502,168 62.21 
1 → 1’ (Replace) 319,367 5.67 
0 → 0 (Stay out) 1,069,857 19.00 

Total 5,629,950 100.00 

This table shows that most transitions are cars that are kept (i.e., retained to the next 

period). But there are a large number of households that stay out of the market or buy in 

any given year. We determine the households who “stay out” based on whether household 

has a vehicle at any point in time over 2002-2008. 

To demonstrate that we have successfully completed the coding and debugging of the dy-

namic model, there are hundreds of possible results that could be presented. For brevity, we 

only present a few of the results. We will begin simply by presenting the coefficients from 

estimating the model (standard errors can be calculated either from analytical/numerical 

derivatives or using a bootstrap approach). In order to characterize heterogeneity in both 

income and driving behavior, we categorized the dataset into four bins based on Census block 
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group household income and VMT and then run the model separately on each bin. The first 

bin has below-median income and below-median VMT, the second has below-median income 

and above-median VMT, and so on. The average income for the below-median income is 

$67,123 and for the above-average income is $182,930. The average VMT for the below-

median VMT is 25 miles per day, while the average VMT for the above-median VMT is 75 

miles per day. 

To illustrate, we present the coefficients from the first bin (below-median income and below-

median VMT) and the fourth bin (above-median income and above-median VMT). These 

results are shown in Table 17. 

Table 17: Model Estimation Coefficient Results 

Variable Bin 1 Bin 4 

Variable low-low high-high 

Vehicle age -0.09 -0.12 
Car dummy 3.40 4.03 
Luxury car dummy 4.90 5.50 
SUV dummy 4.67 5.29 
Luxury SUV dummy 4.64 4.69 
Truck dummy 4.65 4.91 
Van dummy 4.75 5.35 
Vehicle cost -0.13 -0.05 
Gasoline price -3.22 -1.30 
Transaction cost -7.41 -7.87 

Note: XUVs are the omitted class dummy. 

One can interpret these results as indicating how each of these variables influences utility, so 

the magnitudes are not important here, but are very important for model fit and counterfac-

tuals. However, the relative magnitudes of the vehicle class dummies and the signs of all of 

the variables can be examined and these results are quite sensible. Consumers get less utility 

from older vehicles. Consumers get more utility from SUVs and trucks than cars, which is 

consistent with the much higher purchase prices of these vehicles. Consumers also get more 

utility from luxury cars and SUVs than the non-luxury versions. Higher prices for vehicles 

reduce utility, as do higher gasoline prices. The transaction cost is negative (implying a cost) 

51 



and is larger for wealthier, high-VMT consumers than for poorer, low-VMT consumers. The 

vehicle cost and gasoline price are also less important for wealthier, high-VMT consumers, 

as one might expect. These exact coefficients are less important than the conditional choice 

probabilities (CCPs), which tell us what the probability of a transition is given the current 

state. These CCPs will be examined below. 

But first, to demonstrate the importance of the transaction cost–a key feature in our model– 

we also estimate a version of the model where we fix the transaction costs to be zero. Table 

18 shows results from the model runs without transaction costs, which can be compared to 

the results in the previous table. 

Table 18: Model Estimation Coefficient Results 

No Trans Costs 

Variable Bin 1 Bin 4 

Variable low-low high-high 

Vehicle age 0.033 0.019 
Car dummy -6.473 -6.776 
SUV dummy -7.692 -7.426 
Truck dummy -7.890 -8.367 
Van dummy -8.291 -8.093 
Vehicle cost -0.437 -0.862 
Gasoline price -2.350 -0.621 
Transaction cost – – 

Observations 3.2m 

Comparing the results without transaction costs in the last two columns of Table 18 to those 

with transaction costs demonstrations just how important including transaction costs is to 

estimating sensible coefficients. Without transaction costs we see that many of the signs 

flip and relative magnitudes make much less sense. Thus, it is not even worth interpreting 

the results without transaction costs. These runs without transaction costs were performed 

without the luxury vehicle dummies, but results with the luxury vehicle dummies would be 

similarly problematic. 

A common way to explore the model fit in dynamic discrete choice models is to compare the 

modeled CCPs to the observed choices being made. For example, if we see 60% of consumers 
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Figure 4: Conditional Choice Probabilities for Transitions for Bin 1 

Figure 5: Conditional Choice Probabilities for Transitions for Bin 1 

We next present a series of figures that illustrate the model fit over the key transitions in the 

data (note that it is called a “transition” because we are referring to shifting or transitioning 

from one state–such as the state of having vehicle X–to another state–such as having another 

vehicle Y). In each of these figures, we present what we see in the actual data, our model 

fit and the model fit without transaction costs. The first figure, Figure 4, shows the CCPs 

for the replace, keep, and sell option for Bin 1 (below-median income and below-median 

VMT). The second, Figure 5, shows the CCPs for the buy and stay out of the market (0 → 

0) options for Bin 1. The third, Figure 6, shows the CCPs for the replace, keep, and sell 
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Figure 6: Conditional Choice Probabilities for Transitions for Bin 4 

Figure 7: Conditional Choice Probabilities for Transitions for Bin 4 

option for Bin 4 (above-median income and above-median VMT). The last, Figure 7, shows 

the CCPs for the buy and stay out (0 → 0) options for Bin 4. The figures for the other two 

bins are similar to these. 

The results in these figures are encouraging and demonstrate a working model that does a 

reasonable job at matching the CCPs for some of the most important decisions. Where it 

performs worst is for selling decisions–it slightly under-estimates selling and over-estimates 

buying. Yet it largely captures the primary features of the data. Even more notably, the 
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model fit is quite a bit better when transaction costs are included than when they are not 

included. Consider the buy decision for consumers in Bin 1. The prediction with transaction 

costs is not too far from the actual data, while the prediction without transaction costs is 

far off. The same is true for stay out and is very true for sell. The reason for this is intuitive: 

transaction costs provide a friction in the market that captures real search and other costs 

that prevent consumers from simply turning over their car every year in order to get a car 

that is a better match for their preferences. 

These figures from our simulation strongly demonstrate the importance of including trans-

action costs and also demonstrate that the model is working and that there is a reasonable 

model fit. Of course, the model fit can still be further improved. One promising next step 

is to include a transaction cost whenever a consumer is selling a vehicle. This would help 

the model better fit the sell and replace decisions, which are two of the decisions that are 

the furthest off from the data (the buy and stay out decisions very closely match the data). 

Further refinements of the class variable may also help improve the model fit. However, the 

bottom line is that we have a working model, estimating sensible coefficients, that can be 

further refined in order to run policy-relevant policy counterfactuals. 

4.3 Policy Counterfactual 

For the purposes of this final report, we run one illustrative policy counterfactual. The 

counterfactual that we run increases the price of low fuel economy vehicles relative to high 

fuel economy vehicles. This has similarities to a feebate policy (i.e., a fee on low fuel economy 

vehicles and rebate on high fuel economy vehicles). It also mimics the effect of a fuel economy 

standard for under a fuel economy standard there will be a shadow price on low fuel economy 

vehicles that is much greater than on higher fuel economy vehicles. In both cases, the relative 

prices of the vehicles are adjusted by the policy. See Gillingham (2013) for further discussion 

of the relationship between the two policy instruments. 

The steps for running the counterfactual are as follows. First we run the model, estimating 

the coefficients based on the data in the years 2001-2006. Then we use those coefficients 

and change the observed vehicle prices to a new set of vehicle prices that are adjusted by 

the policy. Specifically, the exact policy counterfactual we run increases the price of low 

fuel economy vehicles by $1,000 (for this counterfactual, high fuel economy vehicles are not 

changed in absolute price, but become relatively more attractive). Then we calculate the 
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CCPs going forward.23 With the CCPs, we can then examine the decisions that consumers 

make, including decisions that govern the evolution of the light duty vehicle fleet and emis-

sions. We predict forward to 2007 and run the counterfactual that year. 

After these steps, we have a set of results to be explored. The CCPs themselves are one set 

of results, and these are seen below: 

Figure 8: Conditional Choice Probabilities for Counterfactual 

These CCPs demonstrate that the counterfactual works in the direction expected: after an 

increase in new vehicle prices, there is a decrease in households choosing to replace a vehicle 

and an increase in vehicles being kept. Similarly, there is an increase in households choosing 

to keep their vehicle. When the price of new vehicles increases, this is exactly the effect one 

would anticipate. 

Another set of important results is the effect of the policy on purchases of new low fuel 

economy vehicles. The results indicate that these purchases decline by 13%, as evidenced by 

a 13% lower transition probability to these vehicles in each year. With an average vehicle 

price for low fuel economy vehicles of $26,183 and an increase in price of $1,000, this implies 

an elasticity of 3.4, which is within the range in the literature for substitution elasticities 

for different classes of vehicles (Berry et al., 1995). One could then make calculations of the 

effect on emissions if this was desired. 

23For these results we do not re-compute the nested fixed point in order to save computational time, so 
these results may not be precisely correct, but they should be very close. 
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5 Summary and Conclusions 

Each of the three main contributions of “Empirical Estimation of Household Vehicle Purchase 

and Usage Decisions” (Part B of this project) significantly advances our understanding of 

household vehicle choice. They each draw upon multiple datasets and deploy novel method-

ological techniques that place this work on the frontier of academic and policy research. The 

first two contributions are each complete manuscripts. The third is a complete model of 

the household vehicle choice that draws upon methods that are at the frontier of economic 

modeling. 

The paper titled “The Household Vehicle Portfolio: Implications for Emissions Abatement 

Policies” (co-authored by James Archsmith, Ken Gillingham, Chris Knittel, and David Rap-

son) implements a thought experiment that examines the two-car household replacement 

decision. The instrumental variables approach closely mimics a setting in which one car is 

randomly kept, and its fuel economy randomly increased by some small amount. This allows 

for a rigorous estimate of the effect of kept-car fuel economy on the subsequent purchase of 

the replacement vehicle. This thought experiment is tested on a novel dataset that tracks 

household vehicle ownership in California 2001-2007. The dataset itself is a significant contri-

bution to current and future research, and the results are both economically and statistically 

meaningful. 

Several key findings emerge. Households exhibit an overall preference for diversity in two-car 

vehicle portfolios, both when acquiring a new car or a used car. This channel operates in 

the opposite direction to improvements in fuel economy of cars that are kept by households 

during replacement events. The portfolio effect can erode the final fuel savings from a one-

time increase in fuel economy; our simulations indicate that a significant portion of the fuel 

savings from increasing fuel economy can be lost by a resulting decrease in a lower fuel 

economy of the newly purchased car due to the portfolio effect. The portfolio effect would 

also have strong effects on the used car market. For example, if there is higher demand for 

lower fuel economy cars after a one-time change in new vehicle fuel economy, the portfolio 

effect would increase demand for used gas guzzlers, slowing the retirement of these vehicles. 

We also explore how this portfolio effect interacts with gasoline prices. As gasoline prices 

increase, the probability of buying a highly efficient car (lowest quartile of fuel consumption) 

increases, as expected. But we also find that the effect of the fuel consumption of the 

kept vehicle is also stronger, so if a household currently has a low-efficiency vehicle, it is 

more likely to buy a high-efficiency vehicle when gasoline prices increase. In contrast, when 
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gasoline prices increase, the probability of buying one of the least-efficient cars decreases and 

so does the portfolio effect. So if a household currently has a high-efficiency vehicle, it is less 

likely to buy a low-efficiency vehicle when gasoline prices increase. More generally, we also 

find that owners of fuel-efficient cars are less likely to buy cars in the middle quartiles of fuel 

economy as gasoline prices rise, whereas owners of low fuel economy cars are more likely to 

buy a middle-quartile car. 

The paper titled “The Welfare Impact of Second Best Uniform-Pigouvian Taxation: Ev-

idence from Transportation” (co-authored by Chris Knittel and Ryan Sandler) examines 

local criteria pollutant reductions that accompany gasoline taxes. The analysis shows that 

vehicle-level emissions are correlated with vehicle-specific VMT elasticities. An important 

implication follows: emissions from dirtier vehicles are more responsive to gasoline prices 

than emissions from fuel efficient vehicles. Policymakers should therefore consider the pres-

ence of heterogeneity when determining optimal tax levels. The second-best optimal gas tax 

is approximately 50 percent larger than the naive gas tax that neglects this heterogeneity. 

However, the authors also find that the second-best optimal tax falls significantly short of the 

benefits that would be achieved by the first best (a direct tax on the pollutants themselves). 

The SBO eliminates only 30 percent of the welfare loss associated with tailpipe emissions. 

This work also shows that a hypothetical gasoline tax could vary based on vehicle vintage 

and county to better account for the externalities. This is because emissions rates are highly 

correlated with vintage and differ by location. Further it shows that to increase the fairness 

of gasoline taxes to tackle criteria air pollution, one approach might be to remove highly-

polluting vehicles from the road either through a vehicle scrappage program or by tightening 

emissions standards in the Smog Check program. For example, the findings indicate that 

if the most polluting 25 percent of vehicles were removed from the road and the standard 

uniform gasoline tax was imposed on the remaining, this would reduce net welfare losses 

by 58.3 percent. This is particularly relevant because the data clearly show that poorer 

households have more-polluting cars and pollute more in total, despite driving fewer miles 

than richer households. More broadly, older and polluting vehicles were seen to be driven 

less. Such vehicles may be more likely to be driven by poorer households, but they are found 

in households throughout all income brackets. One key conclusion emerging from this work 

is that standard uniform gasoline taxes are not the most efficient policy tool to reduce vehicle 

emissions in a place like California where the most polluting vehicles that are driven the most 

disproportionately contribute to emissions. Another is that gasoline taxes used to control 

emissions are actually more regressive than a tax that directly addresses the emissions. 
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Finally, a major contribution of this work comes in the form of a new tool for understanding 

vehicle choice and the evolution of the vehicle fleet in California. We describe and esti-

mate a dynamic discrete model of vehicle choice. The model more closely captures the ac-

tual decision-making process of consumers who are forward-looking and recognize that their 

choices today impact future choices. The novel feature that operationalizes the forward-

looking nature of the consumer choice is the presence of transaction frictions. Economists 

widely believe that search and matching frictions, along with other behavioral considerations, 

will make it costly for buyers to find their desired product and for sellers to find a good match 

for cars that they have in stock. Discrete choice models of vehicle choice typically do not 

include this feature. These frictions are important in the California vehicle market since 

they alone can rationalize the strong persistence of vehicle ownership. The model that we 

have developed may be used to forecast changes in the vehicle fleet in response to a variety 

of common policies, and we present one illustrative counterfactual along these lines. 

The research findings and modeling tool developed will provide insight into how consumers 

have responded and may respond to current and future California Air Resources Board 

vehicular policies, such as new emission standards and incentives. Additionally, this tool can 

be used to improve statewide vehicular and emission inventories used to support of policy 

development. 

6 Recommendations 

There are several natural next steps on this research agenda. One opportunity is to refine 

the dynamic model and use it to simulate additional counterfactual policy scenarios. There 

are two extensions of the household portfolio preferences work that may be seen as natural 

follow-on work. Given the strength of the household preference for diversity, a natural 

question is how households relate to electric vehicles and fuel cell vehicles as part of their 

portfolio. How relevant are range considerations when household select their complementary 

vehicles? To what extent do households shift VMT across cars in their portfolio? In order to 

answer questions relating to VMT, higher-frequency data on VMT must become available. 

It would be beneficial to researchers if there were a standard way to collect VMT annually, 

or even electronically at higher frequency. 
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Abstract 

This paper quantifies the extent to which multi-car households exhibit preferences for a 

diversified vehicle portfolio. We deploy a novel identification strategy to examine how an exoge-

nous change in the fuel economy of a kept vehicle affects a household’s choice of a second vehicle 

purchased. This has potential implications for the relative long-run effectiveness of greenhouse 

gas abatement initiatives such as fuel economy standards and a price on carbon. Results indicate 

a strong preference for a diverse portfolio in fuel-economy. They highlight the importance of 

our instrumental variables approach and the pitfalls that arise when using between-household, 

rather than within-household, variation. Our results imply that the portfolio effect will exert a 

strong force that may erode a substantial portion of expected gasoline savings from higher fuel 

economy standards. 
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1 Introduction 

Understanding the demand patterns for vehicles is important for a number of policy issues, most 

notably fuel economy standards or gasoline taxes on vehicle choice. Empirical models used to 

analyze the costs and benefit of such policies have typically assumed away the multi-vehicle nature 

of many households. That is, these models assume that consumers choose only only vehicle; or, 

alternatively, that the choice of each vehicle in a household is independent of the others. 

There are likely to be two sources of interdependence. The first is that households vary in 

their “type.” This source of dependence is implicitly captured in empirical models that allow for 

variation in the willingness to pay for vehicle attributes. For example, the choice of fuel economy 

across vehicles within a household will be positively correlated for a household that particularly 

values horsepower. An alternative source of interdependence exists if households have a taste for 

diversification. In this case, a household endowed with a high horsepower vehicle will favor a more 

fuel-efficient second vehicle. 

The presence of this second form of interdependence can alter the predictions from policy coun-

terfactuals. For example, suppose a policy were to increase the chosen fuel economy of vehicles for 

a given household at time t. Counterfactual predictions based on models that assume independence 

would generate a naive measure the fuel economy benefits. If households prefer diversification, the 

actual fuel economy benefit from the policy across the entire household portfolio would be smaller, 

as the fuel economy of the next vehicle purchased would fall. 

In this paper, we use panel data on the portfolio of vehicles within a household to estimate 

how a household’s choice of vehicle depends on the other vehicles owned by the household. In 

particular, our data track the portfolio of vehicles, for a particular household, over time. Our 

empirical strategy estimates how the fuel economy of a newly-added vehicle depends on the fuel 

economy of the vehicle already held by the household. Our identification strategy relies both on 

the richness of the panel, which allows us to control for household-level fixed effects, as well as a 

novel instrumental variables approach to control for the endogeneity of the fuel economy of the 

existing vehicle. 

The ideal experiment for our research question would randomly assign the “kept” vehicle to 

households in the market for a new or used vehicle and then observe the relationship between the 

fuel economy of this kept vehicle and the fuel economy of the newly-acquired vehicle. Since this 

ideal experiment is obviously not possible, our identification strategy must overcome two sources of 

endogeneity stemming from the non-random assignment of the kept vehicle. The first is the choice 

of which vehicle to replace. Since the household preference for particular features of a multi-car 

portfolio will directly inform the decision of which car to keep or drop, there is an identification 

challenge in estimating the portfolio itself using observational data. The second is related to the 

presence of unobserved household preferences. Household fixed effects can address time invariant 

unobserved preferences, but there would still be a concern if these preferences change over time. 
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We expect that these time-varying preferences would generate a positive correlation between the 

fuel economy of the kept and newly-acquired vehicles. 

We employ two sets of instruments to account for these potential sources of bias. The first set of 

instruments are derived from the observation that changes in the relative price of cars in a portfolio 

systematically affect the probability that the lowest fuel economy car is dropped. We discuss 

and present three instruments that rely on this feature of the choice setting, with our preferred 

instrument being deviations in expectation of the change in relative vehicle prices at the time when 

the kept car was initially purchased. The second instrument is the gasoline price at the time of 

the purchase of the kept vehicle. A number of papers (Klier and Linn (2010), Busse et al. (2013), 

Gillingham (2011)) have shown that vehicle purchase behavior is influenced by contemporaneous 

gasoline prices. Given the results of this literature, we would expect that the fuel economy of the 

kept vehicle is influenced by the gasoline price at the time of that purchase—something we confirm 

in our own data. We argue that the instrument satisfies the exclusion restriction because after 

controlling for current gasoline prices, we would not expect past gasoline prices to influence the 

choice of the new vehicle. This, we grant, rests on the assumption that consumers are not using 

this past gasoline price in the formation of the expected gasoline prices and we have adequately 

controlled for serial correlation in the residuals. 

We find evidence that households value diversification. The greater is the fuel economy of the 

kept car, the lower the fuel economy of the purchased car. We show this using both a continuous 

measure of fuel economy, as well as by estimating the probability a household purchases a vehicle 

in the upper and lower quartiles of the fuel economy distribution. Increases in the fuel economy of 

the kept car reduces the probability the household purchases a car in the lower quartile of gallons 

per mile, while such increases reduce the probability the household buys a car in the upper quartile. 

Changes in gasoline prices affect the preferences for diversification in intuitive ways. As gasoline 

prices increase, the effect of the fuel consumption of kept vehicle and the probability of buying a 

car in the lower quartile of fuel consumption becomes even more positive. In contrast, as gasoline 

prices increase, the effect of the fuel consumption of kept vehicle and the probability of buying a 

car in the upper quartile of fuel consumption becomes even more negative. 

To gauge the importance of the portfolio effect, we use our results to estimate the net effect of 

an exogenous increase in the fuel economy of the kept vehicle. We calculate the decrease in the fuel 

economy of the newly purchased vehicle when we increase the fuel economy of the kept vehicle by 

10, 25, and 50 percent, across gasoline prices of $2.00, $3.00, and $4.00. These calculations suggest 

that the portfolio effect can have large consequences of the net effect a one-time increase in fuel 

economy; between 75 to 95 percent of the fuel savings from increasing the fuel economy of the kept 

vehicle are eroded from the resulting decrease in fuel economy of the newly purchased vehicle. 

The remainder of the study proceeds as follows. The next section describes the household 

vehicle choice problem and outlining a simple theoretical model (Section 2). We then describe our 

datasets, the restrictions that determine the sample used for our empirical tests, our identification 
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strategy and empirical approach (Section 3). We then present our results and their economic 

importance (Section 4). We conclude with a brief discussion of the implications for policymakers 

and empiricists (Section 5). 

2 Context and Model 

We begin by developing a simple economic framework to fix ideas and motivate our empirical work. 

Consider a household who has a vehicle and is considering adding a second vehicle. They may have 

just sold their second car, or they may be adding a new car to the household’s vehicle portfolio. 

For simplicity, ignore the outside option of not purchasing a second vehicle. Consider a standard 

discrete choice framework with a random utility model. The household is the decision-maker in 

this framework; we abstract from issues of within-household bargaining. 

Let the characteristics of a vehicle be given by the vector θV , where V ∈ {A, B, ...} is the vehicle 
type. Vehicle types may be defined broadly, such as the class of vehicle (e.g., SUV or small car), 

or at a finer level, such as at the make-model level. Suppose the household has a vehicle of type A 

to start. 

The household receives utility based on the characteristics of each type of vehicle, and may 

also receive utility from having a diversity of vehicles, which allows them to optimize their use of 

the vehicles (e.g., use the larger one for hauling goods and the more efficient one for the longer 

commutes). Let the contribution to utility from the diversity of the portfolio be given by ΓV1,V2 , 

where V1 and V2 are the vehicles types for the first and second car respectively. 

The indirect utility for household i starting with a vehicle of type A and purchasing a vehicle 

of type B is thus given as: 

AB u = f(θA) + f(θB) + ΓAB − α(pA1 + pB2) + �i,i 

where f(.) is a function that converts characteristics into consumer utility, and pV j is the remaining 

“present value lifetime ownership cost” for a vehicle of type V and order in the household j, where 

j = 1 refers to the vehicle the household already holds and j = 2 refers to the new vehicle. 

To understand the present value lifetime ownership cost, note that for pB2 the ownership cost 

includes the purchase price in addition to the future costs of fuel and maintenance, while for 

pA1 the ownership cost is just the future fuel and maintenance costs. These can be thought of as 

expectations based on the future expected driving of each of the vehicles, which need not necessarily 

be the same across vehicle types. α is the marginal utility of money. 

In making the choice of which vehicle type to buy for the second vehicle, the household will 
ABcompare ui to the utility from all other options. For example, suppose the household with vehicle 

of type A already is considering the option of buying another vehicle of type A. The utility uAA 
i 

would then be given by: 
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AA u = f(θA) + f(θA) + ΓAA − α(pA1 + pA2) + εi.i 

This equation allows for ΓAA, although this might plausibly be assumed to be 0, for there may 

be no added utility from having a diverse portfolio if a household buys two of the same type of 

vehicle. One story for why ΓAA > 0 would be that by having two of the same type of vehicle, 

the household receives additional utility by showing peers that they identify with a particular type 

(e.g., two hybrids showing the household is eco-friendly or two pickups showing the household is 

“tough”). 

2.1 Implications for vehicle choice 

This paper is about how consumers choose their portfolio of vehicles. In other words, in this simple 

setting, it is about how the kept vehicle (i.e., vehicle 1 in this setting) influences the choice of the 

second vehicle. 

Continuing the thought experiment where the consumer can only choose options A and B for 

the second vehicle, we can consider the conditions under which A or B is chosen. Specifically, the 
AB AAhousehold chooses portfolio AB rather than AA if ui > ui , which is equivalent to (assuming 

ΓAA = 0) 

f(θB) + ΓAB − αpB2 > f(θA) − αpA2. (2.1) 

This simple inequality indicates that the household will choose B when the net utility of the 

vehicle characteristics, lifetime ownership cost, and portfolio effect from B dominate the net utility 

of the vehicle characteristics and lifetime ownership cost from A. Rewritten differently, we have 

ΓAB > f(θA) − f(θB ) + α(pB2 − pA2) 

This states that if the added utility from having a portfolio is greater than the difference in utility 

from the characteristics of the two types of vehicles plus the difference in the lifetime ownership 

cost of purchasing the vehicles of the two types (converted to utility terms), then the household 

will choose a vehicle of type B. In other words, B will be chosen if a positive effect from portfolio 

diversity is larger than the household “type” effect due to the household valuing the characteristics 

and lifetime ownership cost. This can be rephrased as an empirically testable prediction: 

The portfolio effect will dominate if we observe the household choosing vehicle B when the first 

vehicle is A (as in the setting described so far), but the “type” effect will dominate if we observe 

the household choosing vehicle A when the first vehicle is also A. 

This simple model provides further insight on the decision process. Let g(.) be the distribution 

of utilities in the population. Then the simple choice between A and B for the new vehicle, the 

choice probabilities are given as follows: 
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Z 
PrAB = I(uAB > 0)I(uAB > uAA)dg(u), 

uZ 
PrAA = I(uAA > 0)I(uAA > uAB )dg(u). 

u 

2.2 Changes in choice with gasoline price or fuel economy standards 

This simple model also lends itself to a set of policy-relevant comparative statics. 

Changes in Gasoline Prices 

Consider a permanent increase in gasoline prices, with perfect foresight of this change. This 

will imply that pB2 and pA2 will change based on the relative fuel economy of the two vehicle types. 

Such a change in the market will have two effects: 

1. Direct Effect: The probability of the choosing the higher fuel economy vehicle will increase. 

2. Indirect Effect: The relative prices of new vehicles in equilibrium will change, so that higher 

fuel economy vehicles will increase in price relative to others. 

The indirect effect will work in the opposite direction as the direct effect, and depending on the 

marginal utility of income α, may even dominate. We will see the net of these two effects in the 

empirics. 

Changes in Fuel Economy Standards 

Consider the implementation of fuel economy standards. These will have a short-run and long-

run effect. The long-run effect is through changing the direction of innovative activity by automobile 

manufacturers. The short-run effect would imply changing the relative prices of vehicles of different 

fuel economies, consistent with fuel economy standards putting a shadow price on fuel economy. 

Focusing only on the short-run effect, this would imply that pB2 and pA2 would change, so that the 

higher fuel economy vehicle would be relatively less expensive. This would have a similar effect to 

the “direct effect” from a permanent gasoline price change. 

3 Data and Identification 

The cornerstone of our dataset is the universe of California vehicle registration records that oc-

curred from 2001-2007.1 The DMV dataset includes every vehicle registered under the residential 

designation code. In California every vehicle must be registered annually. Each record includes 

the registrant’s US Census block group identifier, the 17-digit vehicle identification number (VIN) 

that uniquely identifies the vehicle, that year’s registration date, the date when the vehicle was 

1We thank the California Department of Motor Vehicles (DMV) for making these data available for research. 
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last sold, and various other information. This information allows us to construct a household-level 

panel dataset vehicle ownership. 

Basic vehicle attributes (e.g. horsepower, weight, etc) are available via a VIN decoder that we 

purchased from DataOne Software. We augment the decoder to include vehicle fuel economy, which 

is available from the US Environmental Protection Agency. Vehicle-miles traveled are available for 

each VIN whenever the vehicle is sold and upon receiving biannual Smog Check certification. We 

thus have a average measure of miles traveled by each vehicle and, by extension, each household for 

each year in our sample. The coarseness of these data are not optimal for examining high-frequency 

effects of VMT-switching between vehicles in response to changes in gasoline prices. Nonetheless, 

gasoline prices are a variable of interest in this study, since they affect the household’s optimal 

portfolio of vehicle fuel economy. Our gasoline price data are at the county-month level. 

3.1 Describing the Sample 

In each year households are characterized by the starting and ending number of vehicles in their 

portfolio. In year t a household’s starting portfolio size N s is the number of vehicles registered 

in that year. If the household registers exactly N s vehicles in year t + 1 or t + 2 then the ending 

portfolio size Ne in year t is N s . If the number of vehicle registered in years t + 1 and t + 2 are 

identical, but not equal to N s then the ending portfolio size is the number of vehicles registered in 

the later years.2 

[Table 1 about here] 

Table 1 shows the distribution of household portfolio transitions. Specifically, rows indicate the 

number of cars in year t, and columns indicate the number of cars in t + 1. The table represents all 

possible household transitions. The large mass on diagonals indicates that many households do not 

increase or decrease the number of cars that they register from year to year. A careful interpretation 

of “0” is necessary: a household with 0 cars is not in our dataset, so transitions from 0 occur when 

a Californian household without a car in t registers one in t+1, or with observationally-equivalence, 

a household moves to California from another state. Similarly, transitions to 0 occur either when 

a household sells all of its registered cars, or if it exits the data via a move to another state or a 

dissolution of the household. 

Many of the regressions that follow are estimated using a sample of two-car households that 

replace one of their cars, a sample which we call “2x2 replacement households”.3 While other 

2We examine one and two years in the future as a household that may register more cars in one year than they ever 
owned simultaneously. For example, consider a household that owns two cars in year t. In year t + 1 they re-register 
both previously owned vehicles ans the registrations expire. Then, toward the end of the year, they sell one vehicle 
and replace it with a new one (which requires registration of the new vehicle). This household has registered three 
unique vehicles in year t + 1 but only ever owned two at any given time. In year t + 2, barring the purchase of yet 
another new vehicle, the household would return to registering two vehicles. 

3We define a household as replacing one vehicle if the starting (in year t) and ending (in year t + 1 or t + 2) 
portfolios differ by one vehicle. The household may conduct multiple vehicle transactions, as long as one of the two 
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transitions are certainly interesting, two-car replacement households provide the cleanest experi-

ment. Households increasing the number of cars in their portfolio are likely to be experiencing an 

unobserved development that increases their demand for transportation (e.g. having a baby). Fur-

thermore, it is unclear how to characterize the channels through which the portfolio of households 

with more than two cars affects replacement decisions. Does a portfolio effect for those households 

operate via the highest-VMT kept car, or the newest? Or must the portfolio effect be defined in a 

higher dimension? Given that no clear answer exists to these questions, we choose the simple path 

of focusing on the two-car replacement households. 

Table 2 shows summary stats for all 2x2 replacement households, including segmentation based 

on the fuel economy of the bought car. Households that purchase relatively fuel efficient vehicles 

(gallons per mile quartile 1) tend to keep relatively fuel efficient cars as well. The converse is 

true for households buying fuel inefficient vehicles, suggesting that households may have an overall 

preference for either high- or low-GPM cars. 

[Table 2 about here] 

Many analyses that follow examine use quartile of fuel economy to describe bought and sold 

cars. The GPM cutoffs are presented in Table 3, along with their corresponding MPG analogs. 

[Table 3 about here] 

3.2 Identification 

To understand the challenges associated with identifying the portfolio effect, we consider a thought 

exercise. For a given two-car household that replaces one of its vehicles, we would like to know 

the effect that randomly dropping one of the cars and exogenously perturbing fuel economy of 

the “kept” car has on the choice of fuel economy of the “bought” car. That is, we would like to 

randomly assign one car to be the “kept” car, and to randomly assign it a fuel economy (fk) to see 

how changes in fk affect the household’s observed choice of f b , the GPM of the car purchased. This 

is what we mean when we refer to the “portfolio effect”. There are two identification challenges 

to operationalizing this thought experiment to retrieve an estimate of the portfolio effect in our 

observational dataset. We propose instrumental variables to address each. 

Identification Challenge 1: Which Vehicle to Keep? As described earlier, our sample 

isolates two-car households that replace one of their cars with another. In general, the choice of 

which car to keep is endogenous and many potential stories could be told about preferences and 

conditions that would lead to one or the other of the cars being kept. Such a choice is inconsistent 

with our thought experiment of randomly assigning the household its fk . However, our data offer 

several appealing instrumental variables. 

vehicles appears in both the starting and ending portfolios. We do not consider households where both vehicles in 
the two-vehicle portfolio change as the relative timing of each purchase becomes important for defining the portfolio 
at the time of each vehicle’s purchase. 
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A valid instrument will provide exogenous variation in the process that determines which of 

the household vehicles is kept and which is replaced. The exclusion restriction requires that the 

instrument affect the household’s choice of f b only indirectly, through the choice of which car to 

keep. We assert that variation in the price differential between the kept and dropped car contains 

such identifying variation. There are three functions of the price differential that we use. For 

exposition, let P k and P d be the average retail value of the kept and dropped cars, respectively, att t 

the time when the car is dropped (t). The first candidate instrument is the price difference at time 

t: ΔP kt = P k − Pt
d . One might be concerned that attributes of the car that are correlated witht 

both the choice of which car to drop and the price difference, which would violate the exclusion 

restriction. 

The second instrument is the change in price differences between time t and time 0, when the 

kept car was purchased. That is ΔΔP kd = (P k − P d) − (P k − P0 
d). To the extent that market t t 0 

forces are exogenous to portfolio preferences, this instrument has promise. However, one may 

be concerned that the change in relative prices was expected by the buyer in time t, and thus 

potentially correlated with preferences in time t as well. 

The third candidate instrument addresses the above concerns by extracting only the portion 

variation in the price difference-in-difference that deviates from expectations. We assume that 

households form expectation using lagged 1-, 3-, and 5-year depreciation rates at the make-model-

modelyear level, and project these into the future. Deviations from these projections are what we 

refer to as the “deviation difference-in-difference”. We find it difficult to come up with a violation 

of the exclusion restriction for this instrument. Recall that the concern is that a correlation exists 

between portfolio preference exhibited in the initial purchase of the kept car and the instrument. 

Relying on an instrument using market-level changes in relative prices that arise only after the 

purchase of the kept car would be problematic only if those market level changes were correlated 

with individual household preferences over the vehicle portfolio. 

[Figure 1 about here] 

Figures 1 (a)-(c) display the reduced form relationship between these price differentials and the 

probability of dropping the least expensive car in the initial portfolio. Each of the instruments 

appears to have power. Since the relationships are non-linear, in our estimation we deploy them as 

third-order polynomials in their respective first stages. 

Identification Challenge 2: Omitted Variables. The household’s choice of fk may be 

influenced by many factors that are unobservable to the researcher. These may include unobserved 

car attributes that are correlated with GPM (e.g. safety via weight) or unobserved household 

attributes (e.g. features of commutes). Of particular interest in our setting is fuel economy, and 

the confounding effect that unobservables may have on fk . To address this identification challenge, 

we follow an instrumental variable approach and control for time-invariant household preferences 

via household fixed-effects. 
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Our preferred instrument for addressing omitted variables is the price of gasoline at the time 
gas of the kept car purchase, pitk 
. Both theory and evidence (e.g. BKZ) demonstrate that households 

consider future operating costs of the vehicle in their purchase decision. Changes in California 

gasoline prices are exogenous with respect to the household choice, vary extensively over the time 

period of our data, and alter the expected lifecycle cost of vehicles according to each vehicle’s fuel 

efficiency. Based on this logic, when gasoline prices are high at the time of the kept car purchase, 

we would expect the household to purchase a more fuel efficient car than when gasoline prices are 

low (as also demonstrated in BKZ). The price of gasoline at the time of the kept car purchase thus 

provides exogenous variation in the potentially endogenous variable of interest, fk . 

Recall that the relationship between fk and f b is theoretically ambiguous. A preference for 

diversification in the household portfolio will lead to a negative correlation, but complementarity 

between attributes associated with fuel economy may lead to a positive correlation. By extension, 
gas the relationship between pitk 
and f b may also appear to be positive or negative. 

The reduced form relationship between the instrument and our outcome variable of interest, f b , 

is presented in Figures 2a and 2b. Many factors influence a consumer’s choice of vehicle attributes, 

including f b , so a plot of the raw data reveals little about the underlying relationship between our 

variables of interest. Instead, we present the variables after partialing out other covariates. The 
gas x-axis and y-axis are the residuals retrieved from regressing pitk 
and f b , respectively, on covariates. 

[Figures 2a and 2b about here] 

A clear relationship emerges. For new cars, we observe a lower (conditional) f b at higher levels 

of (conditional) pgas . The relationship is most clear in the Kernel regression line. The relationshipitk 
gas is reversed for used cars: a higher (conditional) f b is observed at lower levels of (conditional) pitk 
. 

For the purposes of our empirical approach, what is important here is that we observe a relationship 

between the instruments and the outcome variable of interest, which (if you believe the exclusion 

restriction) implies a strong first-stage. 

Further Consideration: Within-Household Variation. We further refine our identifi-

cation strategy to address potential concerns that first-order household preferences for cars with 

high (or low) fuel economy may overwhelm our ability to identify the potentially second-order 

preference for a diversified fuel economy portfolio. The richness of our panel dataset allow us to 

deploy household fixed effects to control for time-invariant unobservable preferences such as this. 

The importance of these controls can be seen via a simple example. Suppose that there are two 

types of households. They both prefer a diverse vehicle portfolio, but one (say household A) has an 

overall preference for gas guzzlers and the other (household B) for fuel efficiency. Examining each 

household’s portfolio may reveal that household A holds cars that are both in the highest GPM 

quartile, whereas household B holds cars that are both in the lowest GPM quartile. Were we to 

randomly remove one of the cars from each portfolio, they would each be left with a car in the GPM 

quartile of their preference. They would also be likely to purchase a new car that is also in that 
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GPM quartile. On the surface, it would appear as though the households have a low preference for 

a diversified vehicle portfolio. However, that may be a false conclusion. Were we to examine GPM 

within the preferred quartile, we may discover that the household prefers diversification within that 

range. Using household fixed effects as controls allows our empirical approach to reveal the true 

impact of an exogenous marginal change in the fuel economy of the kept vehicle on the (marginal) 

fuel economy of the vehicle purchased. 

Identifying household fixed effects requires observing at least two transactions per household, 

which imposes a restriction on our viable sample. Figures 3a - 3b present histograms of the 

number of transactions per household under various sample restrictions. It reveals that, while 

many households must be excluded to estimate specifications with household fixed effects, we are 

still left with approximately 235,000 households in the IV specification that includes household 

fixed effects. 

[Figures 3a to 3b about here] 

3.3 Regression Specifications 

The basic regression strategies examine the relationship that fuel economy of the kept car has on 

the chosen fuel economy of the bought car. The dependent variable is thus either fuel economy 

of the bought car itself (f b ), or quartile indicators of that variable. Regressors of interest includeit 

gasoline price at the time of purchase, fuel economy of kept car (fk), and their interaction. Init 

addition, we include a term, 1{Δfkd > 0}, that distinguishes which car was dropped from the 

initial portfolio, the low- or high-GPM car. Specifically, Δfkd = fk − fit
d in our main specification, it 

such that 1{Δfkd > 0} = 1 indicates that the car with the lower fuel economy in the initial portfolio 

is kept. 

Most of the regression results that follow are retrieved from estimating a linear model of the 

probability of purchasing vehicles in a given MPG quartile. For ease of exposition of the results, 

and to allow our focus to rest on what happens in the top and bottom quartile, we combine vehicles 

in the 2nd and 3rd quartiles are into a single category, “med”. The baseline specification is � � 
gas gas Pr q(fit

b ) = s = β0 + βgpit + βf fit
k + βgf pit × fit

k + βdf 1{Δfkd > 0} + αX Xit
k + εit (3.1) 

� � 
where the dependent variable, Pr q(f b , equals one if f b falls within the range of quartileit) = s it 

s ∈ {1, med, 4}. We also estimate a continuous model where the dependent variable is fitb , keeping 

the rest of the specification as presented in equation 3.1. Fuel economy of the vehicles bought (b) 

and kept (k) by household i in time t are denoted f b and fit
k; i’s contemporaneous gas price in t isit 

gasp , whereas P gas k is the price of gasoline at the time household i purchased the car that it keeps it it 

in time t. Control variables, denoted Xit, include vehicle attributes (e.g. class, make, value, age), 

nonparametric time controls (year and month-of-year fixed effects) and household/demographic 

(household fixed effects and county-level unemployment). 
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The IV specifications deploy instruments for the indicator of the kept vehicle’s rank in fuel 

economy within the portfolio (1{Δfkd > 0}), the kept vehicle fuel economy (fit
k), and the interaction 

gas of gas price and fuel economy (pit × fit
k). In each specification, we instrument using the gas price 

at the time the kept vehicle was purchased (P gask ) and that gas price interacted with the current itk 
gas × P gaskgas price (p ). We augment this set of instruments with the instruments based on vehicle it itk 

price differences that were briefly described in Section 3.2 on identification to estimate the following 

system of endogenous variables: 

h i0 
gas Zit = fit

k pit × fit
k 

1{Δfkd > 0} 

We now describe the vehicle price difference instruments precisely. In “Price Difference” 

specification, we include the difference in the current resale value of the kept and sold vehicles 

(ΔPit
kd = Pit

k − Pit
d) as an additional instrument. The “Price Difference-in-Difference” specifica-

tion uses the change in value for the kept and dropped vehicles between the point the vehicle was 

purchased and the current time period: ΔΔP kd = (P k − P k ) − (P d − P d ).it it i0 it i0 

The third instrument, which we call “Price Deviation Difference-in-Difference”, is constructed 

from the deviation of the difference between the kept and dropped vehicles relative to their expected 

deprecation rates at the time of the kept car purchase. For each of the kept and dropped vehicle 

we estimate the households expectation of annual vehicle depreciation using depreciation of similar 

vehicles over the previous five years. Specifically, for vehicle make m and model year y, and value 

Vm,y,t in year t, the expected depreciation is4 

! 1 Y5 5
Vm,y−s+1,t−s+1 − Vm,y−s,t−s

E[Depm,y,t] = (3.2)
Vm,y−s,t−s s=1 

We can then calculate the deviation from this expected depreciation rate for each car in the port-

folio, and construct the “Price Deviation Difference-in-Difference” instrument. Assuming vehicle j 

has resale value Pj,t in year t, this is: 

ΔΔVit
kd = (Pit

k − E[Depit
k ] · Pi,t

k 
−1) − (Pit

d − E[Depdit] · Pi,t
d 
−1) (3.3) 

The set of three price difference instruments is W = {ΔPit
kd , ΔΔP kd , ΔΔVit

kd}. The first stageit 

4As a more concrete example, for a household in year t = 2005 owning a 2002 Honda Civic, the expected 
depreciation is the geometric mean annual depreciation rate of 2001 Hondas in 2004, 2000 Hondas in 2003, 1999 
Hondas in 2002, etc. 
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thus consists of the following system of three equations for each of the instruments w ∈ W : 

gas + θP P gas k gas gas Zw = Γ0 + Γgp × p (3.4)it itk it + Γggpit itkX 
dropped + Γdc1[CLASSit = sc] 

dc∈CLASS 

+Γww + ΘXit + Ξit 

4 Results 

The objective of this section is to present and justify our empirical approach, illuminate the effect 

of key variables on the choice of bought car fuel economy, and present some simple counterfactual 

analyses that demonstrate the policy-relevance of our findings. The section is comprised of two 

main parts. 

First, we show results from various regression specifications. This allows us to demonstrate 

the importance of our instrumental variables approach and the inclusion of household fixed effects, 

both of which qualitatively alter key coefficient estimates. We then present marginal effects of gas 

prices and kept car fuel economy on bought car fuel economy, which reveals interesting features of 

household preferences for a diversified portfolio. 

In the second subsection, we present results from counterfactual analyses. Specifically, we 

exogenously perturb the fuel economy of the kept vehicle, which is roughly what a successful fuel 

economy standard would do.5 We observe the extent to which potential gasoline consumption 

reductions are either magnified or eroded due to portfolio considerations will become apparent. 

4.1 Regressions and Marginal Effects 

Tables 4 and 5 present the baseline regression results from new and used car purchases, respectively. 

The left-most column in each tables corresponds to estimates using the Price Difference IV from 

Equation ??. Column 2 presented estimates using the Price DiD IV shown in Equation ??. Finally, 

Column 3 is our preferred specification, deploying the Price Deviation DiD IV from Equation 3.4. 

The four panels correspond to the continuous dependent variable regression (Panel A), the linear 

probability model on the highest fuel economy quartile purchases (Panel B), the linear probability 

model on second and third fuel economy quartile purchases combined (Panel C), and the linear 

probability model on purchases of cars in the lowest fuel economy quartile (Panel D). 

[Tables 4 and 5 about here] 

Looking across the columns of Table 4 and 5 the specifications are robust to the specific choice 

of instruments. First stage power decreases from left to right as the instruments discard more 
5A fuel economy standard will cause new car buyers to purchase more fuel efficient cars, on average. The question 

of interest in this counterfactual is whether and to what extent this effects the desired choice of fuel economy in the 
next vehicle purchase. 
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information contained in the relative resale prices of the kept and dropped vehicles. However, even 

our preferred instrument results in a powerful first stage; the Cragg-Donald minimum eigenvalue 

statistic from the system of first-stage IV regressions is reported below the table, and it reflects a 

very strong first stage for both new and used cars. 

The inclusion of Δfkd is important, reflecting the difference between dropping the lower- or 

higher-GPM vehicle in the portfolio. In Panel B, for example, a negative coefficient on Δfkd would 

indicate that, for households dropping their fuel-efficient (low-GPM) car, a larger the difference 

between GPM in their initial portfolio leads the household to buy a low-GPM replacement with 

more likelihood (i.e. the household replaces the dropped car with a car of like kind). In Panel 

D, the logic is identical, but the sign is reversed: a positive coefficient on Δfkd implies the fuel 

economy of the replacement car is higher than the kept car if the dropped car fuel economy was 

also higher. 

The coefficients on Δfkd are thus important litmus tests for the LPM results. If we were to 

find that households encouraged to drop their Prius due to unexpected change the relative value of 

vehicles in their portfolio generally then replaced it with a Hummer, that would be suspicious. This 

simple example provides a thought exercise for understanding the important role of household fixed 

effects. When the regression is identified using across-household variation, the evidence indicates 

that households will tend towards replacing their dropped car with one that is qualitatively similar 

in GPM to the kept car. In this way, there appear to be some households that prefer fuel efficiency 

and others that prefer gas guzzlers (presumably due to power, comfort, safety, etc). It is only when 

we look within the household that the portfolio effect of interest is seen. Despite the possibility 

that some households prefer low- or high-GPM cars in general, there appears to be a preference for 

diversity in GPM within that band. 

To more clearly understand the effect of key covariates, we now present and discuss their 

marginal effects (Tables 6 to 7). First we discuss marginal effects of gasoline prices on the fuel 

economy of new and used cars, followed by the marginal effects of kept car GPM on bought car 

GPM. For readers preferring a graphical representation, these are shown in Figures 4 to 7. 

[Tables 6 and 7 about here] 

[Figures 4 - 7 about here] 

The effect of gasoline prices on bought car GPM is quite heterogeneous across both new and 

used cars, and across kept car GPM quartiles. New car GPM is relatively unaffected by changes in 

gasoline prices, although there is an decrease in the probability of buying a car in the highest-GPM 

quartile (fuel inefficient) as gas prices rise. Surprisingly, the probability of buying a new car in 

the top quartile of fuel efficiency does not increase with gasoline prices. There are a multitude 

of effects on the probability of used car purchases across the distribution, however. This should 

not be surprising, given the equilibrium effects that gas prices induce on both the the supply- and 

demand-sides of the market. 
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Note that the continuous regressions (Panel A) shroud heterogeneous marginal effects that 

occur across the distribution. There does appear to be a little desire for a diversified portfolio 

when examining the marginal gas price effect on high- and low-GPM quartile used car purchases. 

Households with fuel efficient kept cars are more likely to purchase another high fuel-economy car 

as gas prices rise; similarly, households that keep a car in the lowest fuel economy quartile are less 

likely to buy a fuel efficient car as gas prices rise. Demand for middle-quartile GPM cars responds 

in an opposite way. Owners of fuel efficient cars are less likely to buy middle-quartile GPM cars as 

gas prices rise, whereas owners of low fuel economy cars are more likely to buy a middle-quartile 

GPM car. The results for low fuel-economy used purchases reflect the general equilibrium effects 

mentioned above. As gas prices rise, households that keep a fuel efficient car are more likely to 

buy a gas guzzler, as result that indicates supply-side effects in the used market outweigh demand 

effects. On the other hand, households that keep a fuel-inefficient car are less likely to buy another 

one as gas prices rise. 

Marginal effects of kept car GPM provide a more direct representation of the portfolio effect. 

We present marginal effects of kept car fuel economy for new and used cars (and pooled) at different 

gasoline prices in Table 7. Note that both the level of the coefficients within each bought car GPM 

quartile, and the gradient of these coefficients with respect to the gas price, are important. Positive 

coefficients reflect an increasing probability of buying in a given quartile as kept car GPM increases 

(becomes less fuel efficient). 

The overall story is clear: households exhibit a preference for GPM diversification in their 

portfolio, and that preference increases as the gas price rises. This can be seen clearly in the overall 

results presented in panel A, where negative coefficients imply an increased demand for buying a fuel 

efficient car as kept-car fuel efficiency decreases. A similar narrative holds when examining the high-

and low-GPM bought car quartiles. Households buy new cars in the lowest GPM quartile (high 

fuel economy) with a higher probability as their kept car fuel economy decreases. Furthermore, this 

preference increases as the gas price rises. On the other hand, households have a lower probability 

of buying fuel inefficient new cars as kept car GPM increases, and this preference also increases as 

the gas price rises. 

The situation for used cars is qualitatively similar. The negative coefficient on the marginal 

effects on 1st GPM quartile implies that the probability of buying a used, highly efficient car 

decreases in kept-car GPM at this gas price. We presume that this reflects a supply-side effect: 

households with fuel efficient used cars are less likely to sell them when gas prices are high, thus 

shifting upwards along the demand curve for this type of car. 

4.2 Counterfactuals (Preliminary) 

The results presented above provide a platform for examining how preferences over the house-

hold portfolio may affect energy conservation resulting from popular environmental policies. In 

particular, we view these results as particularly informative about long-run impacts of fuel econ-
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omy standards, such as Corporate Average Fuel Economy (CAFE) standards in the United States. 

CAFE affects the suite of cars available for purchase, and their purchase prices. Once these cars 

become part of a household’s vehicle portfolio, the change in attributes (relative to no CAFE stan-

dard) may influence the subsequent choice of vehicle purchased. In particular, if households exhibit 

a preference for diversification in their portfolio, increasing the fuel efficiency of their kept car will 

lead to a less fuel efficient second-car purchase. 

The counterfactuals that we describe here examine the net effect of an exogenous decrease of 10% 

and 25% in the kept car GPM (i.e. a fuel efficiency increase) on predicted gasoline consumption. 

The net effect includes changes in gasoline consumption relating to use of the (now more efficient) 

kept car, but also changes in gasoline consumption relating to the use of the bought car whose GPM 

is influenced via the portfolio effect that we estimate above. Throughout the exercise, we assign 

cars the vehicle-miles traveled (VMT) that are observed in our dataset. We do not adjust these 

to account for a rebound effect, although in reality, one may exist.6 Notice that this implies the 

only changes in gasoline consumption that we estimate will occur due to changes in the (extensive 

margin) choice of bought car fuel economy that are induced via the portfolio effect. It may well be 

the case that there is a first-order effect of gas prices on bought car GPM, but we seek to isolate 

only the portfolio effect in this exercise. 

[Tables 8 and 9 about here] 

Turning to Table 8, first note the observed gas consumption of the kept and bought vehicles. 

Each is estimated to consume approximately 550 gallons of gasoline per year (the product of VMT 

and vehicle GPM). Changes in kept car GPM do have a large effect; a 10% decrease in kept car 

GPM mathematically reduces kept car gas consumption by 10%, as can be seen in the top rows 

at each gas price level. The increases in bought car gas consumption reflect the portfolio effect. 

It is immediately apparent that these effects are quite large, and that the majority of gasoline 

conservation enjoyed by a kept car GPM improvement are eroded by the household’s response via 

the choice of lower bought car fuel economy. Indeed, our estimates predict that the portfolio effect 

offsets about two thirds of the fuel savings from increasing the kept vehicle’s fuel economy. 

The story is qualitatively similar when the bought car is used instead of new. Table 9 reveals 

that households purchasing used cars have, on average, lower gasoline consumption associated with 

the vehichle added to the portfolio, but slightly higher gasoline consumption with the kept vehicle. 

The exogenous GPM changes associated with the kept car are 67% offset by the portfolio effect. 

These results are quite startling and, if true, have unfortunate implications for the effectiveness 

of fuel economy standards as a way to reduce gasoline consumption. While it is clear that these 

portfolio effects cannot be directly applied to a fuel economy standard, the magnitude of the 

portfolio response implies that strong forces will be at work, particularly in the used car market, 

6As fuel economy changes it, in turn, alters the cost per mile traveled. Consumers faced with this change in 
relative prices may choose a different VMT. See Borenstein (2015) and Gillingham et al. (2016) for more on the 
rebound effect. 
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which is not covered by CAFE. Increased demand for used, fuel inefficient cars will occur as a 

result of increased efficiency from CAFE. The increase in demand will lead used gas guzzlers to be 

more valuable, and thus more slow to be retired from the fleet (similar to the effect documented in 

Jacobsen and van Benthem (2015). 

Conclusions 

The effects of a number of polices applied the light duty vehicle market depend crucially on vehicle 

choice patterns. Typically empirical estimates of vehicle choice assume that the vehicle choices 

within a household are made independently. We provide show evidence that this assumption does 

not hold. 

Using panel data on the portfolio of vehicles within a household, and a novel instrumental 

variables approach, we find evidence that households value diversification; exogenous increases in 

the fuel economy of the kept car lowers the fuel economy of the purchased car. We show this using 

both a continuous measure of fuel economy, as well as by estimating the probability a household 

purchases a vehicle in the upper and lower quartiles of the fuel economy distribution. Increases in 

the fuel economy of the kept car reduces the probability the household purchases a car in the lower 

quartile of gallons per mile, while such increases reduce the probability the household buys a car 

in the upper quartile. 

We also find that gasoline prices affect the preferences for diversification in intuitive ways. As 

gasoline prices increase, the effect of the fuel consumption of kept vehicle and the probability of 

buying a car in the lower quartile of fuel consumption becomes even more positive. In contrast, as 

gasoline prices increase, the effect of the fuel consumption of kept vehicle and the probability of 

buying a car in the upper quartile of fuel consumption becomes even more negative. 

To understand the economic important of this taste for diversification, we use our results to 

estimate the net effect of an exogenous increase in the fuel economy of the kept vehicle. These 

calculations suggest that the portfolio effect can have large consequences of the net affect a one-

time increase in fuel economy; between 75 to 95 percent of the fuel savings from increasing the fuel 

economy of the kept vehicle are eroded from the resulting decrease in fuel economy of the newly 

purchased vehicle. 
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Table 1: Number of Unique Households by Portfolio Size 

Start 
Portfolio Size 1 

End Portfolio Size 
2 3 4+ 

1 
2 
3 
4+ 

7,262,111 
1,172,278 
168,745 
35,810 

1,360,594 
4,632,425 
849,703 
141,618 

187,558 
839,546 
2,169,948 
381,226 

75,150 
259,098 
675,040 
1,489,926 

Each cell represents the count of unique households from 2001 to 2007 observed to have the starting portfolio size 
shown in each row and the ending portfolio size shown in the column. These counts provide a measure of the 
number of households providing identifying variation in each portfolio cell. A single household may appear in 
multiple cells if their portfolio changes over time but is counted at most once in each cell. For example, two-car 

household that replaces one car every year would add one to the count of the (2,2) cell. If instead, that household 
adds a third vehicle in 2004 and returns to a two-car portfolio in 2006 it would add one to the count of the (2,2) 
cell, one to the count of the (2,3) cell, one to the (3,3) cell, and one to the count of the (3,2) cell. Each household 

may have zero, one, or multiple vehicle transactions during this time period. 

Table 2: Summary Statistics - 2x2 Replacement Households 

All Bought GPM Bought GPM Bought GPM 
Households Qtile 1 Qtile 2 or 3 Qtile 4 

N Households 1,452,896 392,168 768,517 413,367 

N Transactions 2,004,312 491,010 1,003,044 510,258 

Mean Transactions/HH 1.34 1.24 1.24 1.23 
Std. dev (0.676) (0.504) (0.612) (0.491) 

Median Transactions/HH 1.00 1.00 1.00 1.00 
IQR [2.00 - 1.00] [1.00 - 1.00] [1.00 - 1.00] [1.00 - 1.00] 

Median Bought GPM 0.05 0.04 0.05 0.07 
IQR [0.04 - 0.06] [0.04 - 0.04] [0.05 - 0.05] [0.06 - 0.07] 

Median Kept GPM 0.05 0.05 0.05 0.05 
IQR [0.05 - 0.06] [0.04 - 0.06] [0.05 - 0.06] [0.05 - 0.06] 

Median Bought MPG 20.23 26.01 19.97 15.19 
IQR [17.20 - 22.60] [23.80 - 27.80] [18.80 - 21.20] [14.20 - 16.20] 

Median Kept MPG 19.97 20.59 19.88 19.55 
IQR [17.20 - 22.00] [17.80 - 23.20] [17.30 - 21.80] [16.80 - 21.50] 
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Table 3: Distribution of observed fuel economy 

Percentile 
Gallons per Mile 

(GPM) 
Miles Per Gallon 

(MPG) 

25th Percetile 
Median 
75th Percentile 

0.045 
0.052 
0.059 

22.0 
19.3 
17.0 
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Table 4: Regression Estimates - New Vehicle Purchases 

(a) Panel A: Bought Vehicle Continuous GPM Measure 

Price Diff Price DiD Price Deviation DiD 
(1) (2) (3) 

Gas Price ($/ gal) 0.052 0.031 0.032 
(0.009)** (0.009)** (0.010)** 

Kept GPM 1.525 0.731 0.349 
(0.398)** (0.413) (0.426) 

Gas Price × Kept GPM -0.991 -0.584 -0.596 
(0.177)** (0.170)** (0.191)** 

Δ GPM > 0 -0.001 0.001 0.000 
(0.001) (0.001) (0.001) 

(b) Panel B: Bought Vehicle 1st GPM Quartile 

(1) (2) (3) 

Gas Price ($/ gal) -0.731 -0.228 -0.977 
(0.342)* (0.322) (0.447)* 

Kept GPM -3.671 15.711 -22.396 
(15.081) (14.315) (18.676) 

Gas Price × Kept GPM 13.608 3.929 17.943 
(6.505)* (6.092) (8.498)* 

Δ GPM > 0 -0.086 -0.119 -0.055 
(0.033)** (0.031)** (0.045) 

(c) Panel C: Bought Vehicle 2nd/3rd GPM Quartile 

(1) (2) (3) 

Gas Price ($/ gal) -1.110 -1.570 -0.290 
(0.546)* (0.585)** (0.547) 

Kept GPM -63.774 -85.723 -8.027 
(22.248)** (27.381)** (23.113) 

Gas Price × Kept GPM 21.483 30.147 6.316 
(10.398)* (11.107)** (10.386) 

Δ GPM > 0 0.129 0.156 0.063 
(0.046)** (0.050)** (0.055) 

(d) Panel D: Bought Vehicle 4th GPM Quartile 

(1) (2) (3) 

Gas Price ($/ gal) 1.841 1.798 1.267 
(0.488)** (0.518)** (0.457)** 

Kept GPM 67.445 70.011 30.424 
(19.470)** (24.383)** (19.583) 

Gas Price × Kept GPM -35.091 -34.076 -24.259 
(9.290)** (9.832)** (8.677)** 

Δ GPM > 0 -0.042 -0.037 -0.008 
(0.040) (0.043) (0.043) 

N 440,809 429,369 348,368 
Cragg-Donald stat 145.88 141.44 91.34 
Household FE Yes Yes Yes 
IV for Kept Vehicle Base+ΔP riceDiD3 Base+P riceDiD3 Base+ValueDiD 
Subsample New New New 

Standard errors robust to heteroskedasticity shown in parentheses. 
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Table 5: Regression Estimates - Used Vehicle Purchases 

(a) Panel A: Bought Vehicle Continuous GPM Measure 

Price Diff Price DiD Price Deviation DiD 
(1) (2) (3) 

Gas Price ($/ gal) 0.045 0.027 0.057 
(0.018)* (0.013)* (0.022)** 

Kept GPM 1.086 0.234 1.532 
(0.806) (0.504) (0.909) 

Gas Price × Kept GPM -0.874 -0.523 -1.090 
(0.349)* (0.245)* (0.421)** 

Δ GPM > 0 0.008 0.008 0.007 
(0.001)** (0.001)** (0.001)** 

(b) Panel B: Bought Vehicle 1st GPM Quartile 

(1) (2) (3) 

Gas Price ($/ gal) 4.200 3.076 3.081 
(1.137)** (0.772)** (1.117)** 

Kept GPM 207.785 118.514 109.659 
(50.188)** (30.916)** (46.832)* 

Gas Price × Kept GPM -80.034 -58.007 -58.326 
(21.792)** (14.729)** (21.382)** 

Δ GPM > 0 -0.546 -0.484 -0.489 
(0.061)** (0.046)** (0.065)** 

(c) Panel C: Bought Vehicle 2nd/3rd GPM Quartile 

(1) (2) (3) 

Gas Price ($/ gal) -11.152 -7.979 -9.952 
(2.535)** (1.605)** (2.671)** 

Kept GPM -485.343 -251.088 -332.787 
(111.819)** (65.004)** (111.180)** 

Gas Price × Kept GPM 213.213 151.329 189.695 
(48.602)** (30.613)** (51.132)** 

Δ GPM > 0 0.582 0.432 0.544 
(0.134)** (0.094)** (0.151)** 

(d) Panel D: Bought Vehicle 4th GPM Quartile 

(1) (2) (3) 

Gas Price ($/ gal) 6.952 4.902 6.871 
(1.618)** (1.033)** (1.836)** 

Kept GPM 277.558 132.574 223.128 
(71.442)** (41.549)** (76.125)** 

Gas Price × Kept GPM -133.179 -93.323 -131.369 
(31.022)** (19.698)** (35.146)** 

Δ GPM > 0 -0.035 0.052 -0.055 
(0.085) (0.060) (0.103) 

N 500,882 461,425 364,909 
Cragg-Donald stat 39.99 42.48 38.93 
Household FE Yes Yes Yes 
IV for Kept Vehicle Base+ΔP riceDiD3 Base+P riceDiD3 Base+ValueDiD 
Subsample Used Used Used 

Standard errors robust to heteroskedasticity shown in parentheses. 
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Table 6: Marginal Effect of Gasoline Price on Bought Vehicle GPM - Preferred Specification 

(a) Panel A: Bought Vehicle Continuous GPM Measure 

All New Used 
Kept Vehicle GPM (1) (2) (3) 

25th Pctile GPM (0.045) 0.00410 0.00453 0.00717 
(0.00111)** (0.00147)** (0.00290)* 

Median GPM (0.052) 0.00041 0.00070 0.00015 
(0.00031) (0.00058) (0.00054) 

75th Pctile GPM (0.058) -0.00317 -0.00302 -0.00666 
(0.00090)** (0.00121)* (0.00254)** 

(b) Panel B: Bought Vehicle 1st GPM Quartile 

(1) (2) (3) 

25th Pctile GPM (0.045) 0.15223 -0.16149 0.42954 
(0.05208)** (0.06575)* (0.14765)** 

Median GPM (0.052) 0.02598 -0.04597 0.05401 
(0.01608) (0.02728) (0.03124) 

75th Pctile GPM (0.058) -0.09651 0.06611 -0.31032 
(0.04205)* (0.05472) (0.13038)* 

(c) Panel C: Bought Vehicle 2nd/3rd GPM Quartile 

(1) (2) (3) 

25th Pctile GPM (0.045) -0.62143 -0.00311 -1.32956 
(0.10266)** (0.08032) (0.35277)** 

Median GPM (0.052) -0.07545 0.03756 -0.10822 
(0.03161)* (0.03294) (0.07349) 

75th Pctile GPM (0.058) 0.45426 0.07702 1.07671 
(0.08235)** (0.06653) (0.31155)** 

(d) Panel D: Bought Vehicle 4th GPM Quartile 

(1) (2) (3) 

25th Pctile GPM (0.045) 0.46920 0.16460 0.90003 
(0.07463)** (0.06636)* (0.24244)** 

Median GPM (0.052) 0.04947 0.00841 0.05421 
(0.02210)* (0.02574) (0.04896) 

75th Pctile GPM (0.058) -0.35774 -0.14313 -0.76639 
(0.06005)** (0.05475)** (0.21349)** 

Marginal effect of the current gasoline price on the probability a household purchases a vehicle in the GPM quartile 
specified in table section header. Delta method standard errors robust to heteroskedasticity shown in parentheses. 

*,**,*** denote results significant at the 10%, 5%, and 1% levels, respectively. 
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Table 7: Marginal Effect of Kept Vehicle MPG on Bought Vehicle GPM - Preferred Specification 

(a) Panel A: Bought Vehicle Continuous GPM Measure 

All New Used 
Current Gas Price (1) (2) (3) 

Gas Price = 2.00/gal -0.819 -0.843 -0.648 
(0.140)** (0.202)** (0.242)** 

Gas Price = 3.00/gal -1.393 -1.438 -1.738 
(0.235)** (0.283)** (0.453)** 

Gas Price = 4.00/gal -1.966 -2.034 -2.828 
(0.369)** (0.438)** (0.840)** 

(b) Panel B: Bought Vehicle 1st GPM Quartile 

(1) (2) (3) 

Gas Price = 2.00/gal -12.832 13.490 -6.992 
(6.902) (8.860) (13.288) 

Gas Price = 3.00/gal -32.442 31.433 -65.318 
(11.113)** (12.649)* (23.234)** 

Gas Price = 4.00/gal -52.051 49.376 -123.643 
(17.249)** (19.646)* (42.632)** 

(c) Panel C: Bought Vehicle 2nd/3rd GPM Quartile 

(1) (2) (3) 

Gas Price = 2.00/gal 71.753 4.605 46.603 
(13.300)** (11.011) (30.426) 

Gas Price = 3.00/gal 156.553 10.922 236.297 
(21.807)** (15.438) (55.240)** 

Gas Price = 4.00/gal 241.353 17.238 425.992 
(33.967)** (23.899) (102.010)** 

(d) Panel D: Bought Vehicle 4th GPM Quartile 

(1) (2) (3) 

Gas Price = 2.00/gal -58.920 -18.095 -39.611 
(9.487)** (9.058)* (20.474) 

Gas Price = 3.00/gal -124.111 -42.355 -170.980 
(15.808)** (12.538)** (37.907)** 

Gas Price = 4.00/gal -189.302 -66.614 -302.349 
(24.757)** (19.569)** (70.180)** 

Marginal effect of the current gasoline price on the probability a household purchases a vehicle in the GPM quartile 
specified in table section header. Delta method standard errors robust to heteroskedasticity shown in parentheses. 

*,**,*** denote results significant at the 10%, 5%, and 1% levels, respectively. 
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Table 8: Net Effect of Kept Vehicle GPM Changes on Gasoline Consumption, New Vehicles 

(a) 10% Reduction in Kept Vehicle GPM 

Vehicle 

Observed Gasoline 

Consumption (gal/yr) 

Change in Gasoline Consumption (%Δ Kept vehicle gallons) 

Price Diff Price DiD Price Deviation DiD 

Kept 537.64 -10.00 -10.00 -10.00 

Bought 555.34 5.07 

(1.13) 

4.13 

(0.95) 

6.94 

(1.67) 

Total 1,092.98 -4.93 

(1.13) 

-5.87 

(0.95) 

-3.06 

(1.67) 

(b) 25% Reduction in Kept Vehicle GPM 

Vehicle 

Observed Gasoline 

Consumption (gal/yr) 

Change in Gasoline Consumption (%Δ Kept vehicle gallons) 

Price Diff Price DiD Price Deviation DiD 

Kept 537.64 -25.00 -25.00 -25.00 

Bought 555.34 12.67 

(2.82) 

10.32 

(2.37) 

17.34 

(4.19) 

Total 1,092.98 -12.33 

(2.82) 

-14.68 

(2.37) 

-7.66 

(4.19) 

Predicted average change in fuel consumption resulting from an exogenous decrease in kept vehicle GPM of 10% 

(e.g., from 27.5 MPG to 30.6 MPG) or 25% (e.g., from 27.5 MPG to 36.7 MPG) for new vehicle purchases. Change 

in fuel economy expressed as percentage of annual gasoline consumption of the kept vehicle. Standard errors 

computed using the delta method shown in parentheses. 
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Table 9: Net Effect of Kept Vehicle GPM Changes on Gasoline Consumption, Used Vehicles 

(a) 10% Reduction in Kept Vehicle GPM 

Vehicle 

Observed Gasoline 

Consumption (gal/yr) 

Change in Gasoline Consumption (%Δ Kept vehicle gallons) 

Price Diff Price DiD Price Deviation DiD 

Kept 569.12 -10.00 -10.00 -10.00 

Bought 537.29 6.18 

(1.42) 

6.15 

(2.12) 

6.66 

(2.28) 

Total 1,106.41 -3.82 

(1.42) 

-3.85 

(2.12) 

-3.34 

(2.28) 

(b) 25% Reduction in Kept Vehicle GPM 

Vehicle 

Observed Gasoline 

Consumption (gal/yr) 

Change in Gasoline Consumption (%Δ Kept vehicle gallons) 

Price Diff Price DiD Price Deviation DiD 

Kept 569.12 -25.00 -25.00 -25.00 

Bought 537.29 15.44 

(3.55) 

15.38 

(5.29) 

16.64 

(5.69) 

Total 1,106.41 -9.56 

(3.55) 

-9.62 

(5.29) 

-8.36 

(5.69) 

Predicted average change in fuel consumption resulting from an exogenous decrease in kept vehicle GPM of 10% 

(e.g., from 27.5 MPG to 30.6 MPG) or 25% (e.g., from 27.5 MPG to 36.7 MPG) for used vehicle purchases. Change 

in fuel economy expressed as percentage of annual gasoline consumption of the kept vehicle. Standard errors 

computed using the delta method shown in parentheses. 
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Figure 1: Instrumental Variables Reduced Form Relationships 

(a) Price Difference IV 
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(b) Price DiD IV (c) Price Deviation DiD IV 
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All 2x2 households. Probabilities conditional on a vehicle purchase (new or used) estimated within $1,000 bins. Binomial 95% confidence intervals shown in 
dashed lines. Values of the instruments in the Price Difference IV and Price DiD IV less than or greater than zero perfectly predict the least valuable vehicle in 

the portfolio and graphs are shown for the absolute value of these variables. 
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Figure 2: Reduced form relationship: Gas price at time of kept car purchase 

(a) New Vehicle Purchases 
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(b) Used Vehicle Purchases 
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Plot of the reduced-form relationship between gasoline price at the time of kept vehicle purchase and the fuel 
economy (in GPM) of the purchased vehicle. Both variables are partialed of all other regression covariates. Graphs 
are limited to the 1st through 99th percentiles of residual kept vehicle gasoline price. Excludes observations where 
the household fixed effect perfectly predicts the outcome. Blue line is a kernel regression with Epanechnikov kernel 
and bandwidth 0.1. The gray band is the 95% confidence interval using the same kernel and bandwidth. The green 
line is the linear relationship estimated using OLS. Red circles are mean residuals for each 0.005 in kept vehicle 
GPM. The size of each circle is proportional to the number of observations used to compute the mean residual. 
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Figure 3: Number of Transactions per 2x2 Replacement Household 

(a) Full Sample 

1,017,037

347,198

65,800
19,378 2,982 450 51

0
20

0,
00

0
40

0,
00

0
60

0,
00

0
80

0,
00

0
1,

00
0,

00
0

# 
H

ou
se

ho
ld

s

1 2 3 4 5 6 7 8
# Portfolio Changes per Household

(b) IV Sample 
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Distribution of the total number of observed vehicle transactions for each household from 2001 to 2007 for (a) the 
full sample of 2x2 replacement households and (b) households for which the data support deploying our IVs. In 
specifications including household fixed effects the fixed effect perfectly predicts the decision of a household if it 

only engages in one transaction. Other model parameters are identified by households engaging in multiple 
transactions from 2001 to 2007. 

29 



---- ----~ 
-- -----------------------

---------- §2 -----=--== ll! fi1N P4E5am ___ -- --- ---

30 

Figure 4: Marginal Effect of Gasoline Price, New Vehicles 

(a) Price Difference IV 
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Figure 5: Marginal Effect of Gasoline Price, Used Vehicles 

(a) Price Difference IV 
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Figure 7: Marginal Effect of Kept Vehicle GPM, Used Vehicles 
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Abstract 

A basic tenet of economics posits that when consumers or firms don’t face the true social 
cost of their actions, market outcomes are inefficient. In the case of negative externalities, 
Pigouvian taxes are one way to correct this market failure, where the optimal tax leads agents 
to internalize the true cost of their actions. A practical complication, however, is that the level 
of externality nearly always varies across economic agents and directly taxing the externality 
may be infeasible. In such cases, policy often taxes a product correlated with the externality. 
For example, instead of taxing vehicle emissions directly, policy makers may tax gasoline even 
though per-gallon emissions vary across vehicles. This paper estimates the implications of this 
approach within the personal transportation market. We have three general empirical results. 
First, we show that vehicle emissions are positively correlated with a vehicle’s elasticity for miles 
traveled with respect to fuel prices (in absolute value)—i.e., dirtier vehicles respond more to fuel 
prices. This correlation substantially increases the optimal second-best uniform gasoline tax. 
Second, and perhaps more importantly, we show that the optimal second-best tax performs very 
poorly in eliminating deadweight loss associated with vehicle emissions; in many years in our 
sample over 75 percent of the deadweight loss remains under the optimal second-best gasoline 
tax. Substantial improvements to market efficiency require differentiating based on vehicle type, 
for example vintage. Finally, a uniform gasoline tax performs poorly on equity grounds as well. 
Such a tax would be highly regressive, and substantially more regressive than a direct tax on 
emissions. 
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1 Introduction 

A basic tenet of economics posits that when consumers or firms do not face the true social 

cost of their actions, market outcomes are inefficient. In the case of externalities, Pigouvian 

taxes can correct this market failure, and the optimal tax leads agents to internalize the true 

cost of their actions. A practical complication is that directly taxing the externality may be 

infeasible. In such cases, policy makers might tax a product correlated with the externality. 

This introduces an additional complication: the level of externality generated can vary across 

agents. For example, instead of taxing vehicle emissions, policy makers tax gasoline even 

though emissions per gallon of gasoline consumed varies across vehicles. Similarly, a uniform 

alcohol tax may be imposed to reduce the negative externalities associated with use, even 

though externalities likely vary by the type of alcohol or who is consuming it. We refer 

to uniform taxes intended to address a heterogenous externality second-best optimal (SBO) 

taxes. When the level of externalities produced differs across consumers, a uniform tax will 

be second best and deadweight loss will remain. 

In this paper, we study the size of the SBO gasoline tax, the amount of deadweight 

loss (DWL) from pollution that would remain if this tax is imposed, and the incidence 

of such a tax in the California personal transportation market between 1998 and 2008. 

Policy makers are often concerned about four externalities in the transportation sector: (1) 

local pollution from tailpipe emissions, known as criteria pollutants,1 (2) climate change 

externalities resulting from carbon dioxide associated with the engine’s combustion process, 

(3) road congestion, and (4) externalities associated with accidents. For all but the climate 

change externality, a gasoline tax is an imperfect instrument. While fuel consumption is 

positively correlated with criteria pollutant emissions, congestion, and accident externalities, 

it is not perfectly correlated. In contrast, burning a gallon of gasoline leads to the same 

amount of carbon dioxide emissions regardless of the vehicle, so a gasoline tax is the optimal 

instrument for climate change externalities. 

In the case of the local pollution externalities of driving, the relationship between the 

1Criteria air pollutants are the only air pollutants for which the Administrator of the U.S. Environ-
mental Protection Agency has established national air quality standards defining allowable ambient air 
concentrations. Congress has focused regulatory attention on these pollutants (i.e., carbon monoxide, lead, 
nitrogen dioxide, ozone, particulate matter, and sulfur dioxide) because they endanger public health and are 
widespread throughout the United States 
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second-best optimal gasoline tax and the first-best Pigouvian emissions tax depends on 

three empirical relationships: the distribution of pollution externalities across vehicles; the 

extent to which gasoline prices affect the implicit demand for pollution; and the correlation 

between vehicle-specific demand responses and externality levels. If vehicles do not differ in 

their elasticity of vehicle miles traveled (VMT) with respect to gasoline prices—an elasticity 

that we hereafter call the VMT-elasticity—the SBO gasoline tax will simply be the average 

per-gallon externality across all vehicles. However, if price responsiveness and externalities 

are correlated, Diamond (1973) shows that the SBO gasoline tax will be a weighted average 

of vehicle per-gallon externalities, where the weights are the price derivatives of the vehicle-

specific gasoline demand curves. In our empirical work, we allow for the VMT elasticity to 

vary depending on a vehicle’s emissions per mile traveled, which we observe in our data. 

An important empirical results in the paper is that we find that vehicle-level emissions 

are correlated with vehicle-specific VMT elasticities; dirtier vehicles are more price respon-

sive.2 Using detailed vehicle-specific data on miles driven, we show a positive correlation 

between criteria pollutant emissions and the VMT elasticity (in absolute value) holds for all 

three pollutants for which we have data: carbon monoxide (CO), hydrocarbons (HCs), and 

nitrogen oxides (NOx). VMT elasticities are also positively correlated with greenhouse gas 

emissions and vehicle weight. 

We find the average VMT elasticity is -0.13, but differences between cleaner and dirtier 

vehicles are substantial. When we allow VMT elasticity to vary by within-year quartiles of 

NOx emissions, the elasticity for vehicles in the highest (i.e., dirtiest) quartile is -0.28. The 

VMT elasticity then falls monotonically with NOx quartiles. The VMT elasticity is -0.15 

in the third quartile; -0.05 in the second quartile, and 0.04 in the first quartile. Similar 

correlations between emissions and VMT elasticities hold for CO and HCs. 

These correlations drive a wedge between the SBO gasoline tax associated with emis-

sions and what we call the “naive” tax, which we define as the the tax based only on the 

unweighted -average externality across vehicles. We show the SBO gasoline tax is larger, 

on the order of 50 percent, than the naive gasoline tax in each of the years of our sample. 

2While we tend to discuss the responsiveness of individuals to changes in prices, because drivers can shift 
miles from one car to another, the more relevant response is the response of the number of miles driven by 
a particular vehicle. Therefore, throughout we focus on the response of miles driven by a particular vehicle, 
not by a particular driver. 
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However, we show that even when instituting the SBO gasoline tax, the tax performs poorly 

in eliminating DWL, and only marginally better than the naive gasoline tax. Across our 

sample, we estimate the SBO gasoline tax eliminates only 30 percent of DWL associated 

with the pollutants studied. During the second half of our sample, the SBO gasoline tax 

eliminates only 25 percent of the DWL. 

Given the shortfall of the SBO gasoline tax, we next investigate whether any indirect 

tax can eliminate a substantial portion of the DWL from emissions of criteria pollutants. 

We calculate efficiency improvements from county-specific gasoline taxes and from a policy 

that removes the dirtiest vehicles from the fleet. We find allowing gasoline taxes to vary 

by county would lead to a small improvement, eliminating DWL by less than an additional 

5 percentage points. We find moderate benefits from “homogenizing” the fleet in terms 

of emissions per gallon, potentially through vehicle retirement (e.g., “Cash-for-Clunkers”) 

programs; scrapping the dirtiest 10 percent of vehicles eliminates an additional 14 percentage 

points of DWL. Only a hypothetical tax linked to the weighted-average externality by vehicle 

age offers a substantial improvement over a simple uniform tax. Of course, such a tax is 

almost certainly politically and practically infeasible. 

In addition to failing on efficiency grounds, the SBO gasoline tax also fails on equity 

grounds. Gasoline taxes are generally regressive (Chernick and Reschovski, 1997), because 

gasoline demand is income inelastic. Gasoline expenditures and gasoline taxes paid are 

relatively constant across the income distribution and necessarily make up an larger share 

of income at the lower end of the distribution. One might expect that an emissions tax 

might be more regressive still, especially if poorer households are more likely to own higher 

polluting vehicles. Our results show the opposite, however. Our empirical model predicts 

that the average household in every income decile would pay a higher percentage of income 

under the SBO gasoline tax than under an optimal emissions tax. This is more pronounced 

for households at the bottom of the income distribution. The intuition for this result is 

that the SBO tax is a weighted average of per-gallon emissions where the weights are the 

derivative of vehicle-specific VMT function with respect to gasoline prices. Because dirtier 

vehicles are more price responsive, the SBO tax is higher than unweighted average per-gallon 

emissions. Therefore, SBO tax revenues are higher than under a the optimal emissions tax. 

Furthermore, although on average lower income households are more likely to drive higher 
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polluting vehicles, the correlation is weak. Vehicles that would have a higher tax burden 

under an optimal emissions tax are owned by households throughout the income distribution, 

and make up a small minority of vehicles in every income bracket. 

We are not the first to analyze the optimal level of gasoline taxes. Parry and Small 

(2005) calculate the optimal gasoline tax for the US and UK accounting for local and global 

pollution, accidents, congestion, and the inefficiencies associated with income taxes. Our 

analysis differs in four key respects. First, Parry and Small (2005) implicitly assume vehicle 

externalities are uncorrelated with the sensitivity of each vehicle’s demand for gasoline and 

gasoline prices, whereas we allow for, and find, such correlation. Second, we account for 

the possibility that marginal damage of vehicle emissions may vary geographically. Third, 

Parry and Small (2005) do not estimate the DWL that remains from instituting a gasoline 

tax, as opposed to the first best set of optimal emissions taxes, which is one of the main 

focuses of our paper. Fourth, our focus is more narrow in some respects, as we focus on 

externalities associated with local and global pollution and abstract from external costs 

related to accidents and congestion. 

The closest paper to ours, in terms of our DWL results, is Fullerton and West (2010), who 

also investigate the amount of DWL eliminated by a uniform-gasoline tax. They do so by 

calibrating a numerical model with approximate miles and emissions obtained by matching 

inspection data from a small pilot study in California to quarterly gasoline expenditures in 

the Consumer Expenditure Survey. In contrast, our estimates are based on actual emissions, 

miles traveled, and gasoline prices for the universe of California vehicles. We find a uniform 

tax removes much less of the DWL of pollution compared to their calculations.3 

The paper proceeds as follows. Section 2 draws on Diamond (1973) to derive the SBO 

gasoline tax and the amount of remaining DWL. Section 3 discusses the empirical setting 

and data. Section 4 provides descriptive support for the empirical results through graphical 

analysis. Section 5 presents the main empirical model and results on miles driven. Section 

6 estimates empirically the optimal uniform tax and welfare effects, and Section 7 presents 

results on the incidence of gasoline and emissions taxes. Section 8 concludes the paper. 

3In addition, there is a broad literature aimed at estimating how vehicle owners’ driving and scrappage 
decisions respond to gasoline prices and vehicles policies, typically using either aggregate data or NHTS 
survey data. See for instance Li et al. (2009), Gillingham (2010) and Jacobsen and van Benthem (2013). 
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2 Optimal Uniform Taxes 

In this section, we derive the second-best optimal uniform tax to internalize an externality, 

in the presence of heterogeneity in the externality. We closely follow the model of Diamond 

(1973) in deriving the optimal tax. We then add more structure to the problem to analytically 

solve for the amount of remaining DWL. 

To simplify, we consider a setting where consumers own one vehicle, allowing us to treat 

consumers and vehicles interchangeably. We then discuss the implications of multiple vehicle 

households. 

Consumer h derives utility (indirectly, of course) from her gasoline purchases, αh, and a 

numeraire, µh, but is also affected by the gasoline consumption of others, α−h (the external-

ity). Assuming quasi-linear preferences, consumer h’s utility can be written as: 

Uh(α1, α2, ..., αh, ..., αn) + µh. (1) 

We assume utility is monotone in own consumption, i.e., ∂U
h ≥ 0. This yields demand

∂αh 

curves α∗ 
h, given by: 

αh 
∗ = αh (pg + τ) , (2) 

where pg denotes the per-gallon price of gasoline, and τ a per-gallon tax on purchases of 

gasoline. 

These assumptions, along with assuming an interior solution for each consumer, lead to: 

Proposition 1. The second-best-optimal uniform per-gallon gasoline tax, τ ∗ , is (from Dia-
mond (1973)): P P 

∂Uh 
α0− i h=6 i ∂αi i 

τ ∗ = P . (3)
α0 i i P 

∂Uh 
where 6 ∂αi 

is the external costs associated with a gallon of gasoline consumed by vehicleh=i 
i and αi 

0 is the derivative of consumer i’s demand for gasoline with respect to the price of 
gasoline. 

Proof. See Appendix A. 

The SBO gasoline tax becomes a weighted average of vehicles’ externalities where the 

weights are the derivative of the demand for the gasoline with respect to the tax. If there is 
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a positive correlation between price responsiveness and emissions (i.e., dirtier cars are more 

responsive), this correlation will increase the SBO gasoline tax.4 

As Diamond explicitly discusses, there is no requirement that all of the αi’s must be 

negative.5 Indeed, if households hold multiple vehicles, they may shift miles from their 

least-fuel efficient, most polluting vehicle to a cleaner, more efficient vehicle.6 

The presence of heterogeneity in the externality also implies that a uniform tax will not 

achieve the first-best outcome. The uniform tax will under-tax high externality agents and 

over-tax low externality agents. We extend Diamond (1973) to solve for the amount of DWL 

remaining in the presence of an SBO gasoline tax applied to a market with heterogenous 

externalities. Doing so requires a bit more structure. We first start with the case where 

VMT elasticities and emissions are uncorrelated and then relax this assumption. 

Proposition 2. Suppose drivers are homogenous in their demand for gasoline, but vehicles’ 
per-gallon emissions differ. In particular, let α0 denote the derivative of the demand for 
gasoline with respect to the price of gasoline. 

If the distribution of the per-gallon externality, E, is log normal, with probability density 
function: � � 

1 −(Ei − µE )
2 

ϕ(Ei) = p exp , (4)
2σ2Ei 2σE 

2 
E 

the DWL absent any market intervention will be given as: 

1 2µE +2σ2 
D = e E . 

2α0 

Proof. See Appendix A. 

This leads to the following calculation of remaining DWL under the SBO gasoline tax. 

Proposition 3. Under the assumptions in Proposition 2, the ratio of remaining DWL after 

4As an intuitive example, imagine the case where there are only two vehicle types. The first emits little 
pollution, while the second is dirtier. Also imagine the clean vehicles are completely price insensitive, while 
the dirty vehicles are price sensitive. The naive tax would be calculated based on the average emissions of 
the two vehicle types. However, the marginal emission is the emissions rate of the dirty vehicles; the clean 
cars are driven regardless of the tax level. In this case, we can achieve first best by setting the tax rate at 
the externality rate of the dirty vehicle. There is no distortion to owners of clean vehicles since their demand 
is completely inelastic, so we can completely internalize the externality to those driving the dirty vehicles. 

5However, second-best optimal tax loses the interpretation as a weighted average if some αi’s are positive. 
6Also note that the elasticity of gasoline consumption with respect to price accounts for households selling 

or scrapping their vehicles and buying different ones. That is, if the gasoline tax increases the scrappage rate 
of some vehicles, then the relevant derivative of the externality with respect to price is the expected change 
in gasoline consumption, not the change in gasoline demand, conditional on survival. 
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□ 

□ 

the tax is imposed to the DWL absent the tax is: 

2µE +σ2 

D − e E 2µE +σ2 

2α0 E −σ2e 
R = = 1 − = 1 − e E . (5)

2µE +2σ2 
ED e 

Proof. See Appendix A. 

With externalities uncorrelated with the demand for gasoline, the remaining DWL from a 

uniform tax depends only on the shape parameter of the externality distribution. The larger 

σE 
2 is, the wider and more skewed will the distribution of the externality be, causing the 

uniform tax to “overshoot” the optimal reduction in gasoline consumption for more vehicles. 

If the demand for gasoline is not homogeneous, and in fact is correlated with per-gallon 

externalities, the calculation changes. Let α0 h denote the derivative of the demand for gasoline 

associated with vehicle i with respect to the price of gasoline. For ease, define Bi = 
α 
1 
0 , and 
h 

assume that Bh is distributed lognormal with parameters µB and σB 
2 . Define ρ as the 

dependence parameter of the bivariate lognormal distribution (the correlation coefficient of 

ln E and ln B). We then have: 

Proposition 4. When Bh and Eh are distributed lognormal with dependence parameter ρ, 
the optimal tax is: 

σ2 
E∗ µE + +ρσE σBτ = e 2 

Proof. See Appendix A. 

As we would expect, the optimal tax does not depend on the scale of the elasticity 

distribution, only on the extent to which externalities are correlated with elasticities. We 

can then calculate the amount of remaining DWL under both the naive and SBO gasoline 

tax. 

Proposition 5. When Bi and Ei are distributed lognormal with dependence parameter ρ, 
the ratios of the remaining DWL after the SBO gasoline tax to the original DWL will be: 

ER(τ ∗ ) = 1 − e −σ
2 
, (6) 

And, the ratios of the remaining DWL after the naive uniform tax to the original DWL will 
be: 

−σ2 −ρσE σB −2ρσE σB ).R(τnaive) = 1 − e E (2e − e (7) 

Proof. See Appendix A. 
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As we would expect, the optimal tax correctly accounts for the correlation between 

the externality and demand responses, and thus the remaining DWL depends only on the 

variance and skewness of the externality distribution. However, in the presence of correlation 

the naive tax reduces less of the DWL from the externality, reducing it by a proportion related 

to the degree of correlation and the spread of the two distributions. The term in parentheses 

in Equation (7) is strictly less than 1, and strictly greater than zero if ρ > 0, but may be 

negative if ρ < 0 and the shape parameters are sufficiently large. 

In Section 6, we will show that σE 
2 is such that R(τ ∗) is surprisingly large, and that while 

R(τnaive) is measurably larger, it is not much larger. 

3 Empirical Setting 

3.1 Data 

Our empirical setting is the California personal transportation market. We bring together 

a number of large data sets. Our analysis is primarily based upon the universe of emis-

sions inspections from 1996 to 2010 from California’s vehicle emissions testing program, the 

Smog Check Program, which is administered by the California Bureau of Automotive Repair 

(BAR). An vehicle appears in the data for a number of reasons. First, vehicles more than 

four years old must pass a Smog Check within 90 days of any change in ownership. Second, 

in parts of the state (details below) an emissions inspection is required every other year as 

a pre-requisite for renewing the registration on a vehicle that is six years or older. Third, 

a test is required if a vehicle moves to California from out-of-state. Vehicles that fail an 

inspection must be repaired and receive another inspection before they can be registered 

and driven in the state. There is also a group of exempt vehicles. These are: vehicles of 

1975 model-year or older, hybrid and electric vehicles, motorcycles, diesel-powered vehicles, 

and large natural-gas powered trucks. 

These data report the location of the test, the unique vehicle identification number (VIN), 

odometer reading, the reason for the test, and test results. We decode the VIN to obtain 

the vehicles’ make, model, engine, and transmission. Using this information, we match the 

vehicles to EPA data on fuel economy. Because the VIN decoding is only feasible for vehicles 

made after 1981, our data are restricted to these models. We also restrict our sample to 1998 
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and beyond, given large changes that occurred in the Smog Check Program in 1997. This 

yields roughly 120 million observations. 

The Smog Check data report measurements for NOx and HCs in terms of parts per million 

and CO levels as a percentage of the exhaust, taken under two engine speeds. As we are 

interested in the quantity of emissions, the more relevant metric is a vehicle’s emissions per 

mile. We convert the Smog Check emissions readings into emissions per mile using conversion 

equations developed by Sierra Research for the California Air Resources Board in Morrow 

and Runkle (2005). The conversion equations are functions of both measurements of all 

three pollutants, vehicle weight, model year, and truck status. For more details on cleaning 

the Smog Check data, including the conversion equations for the three criteria pollutants, 

see online Appendix B. 

As part of our simulation exercise, we also use data obtained from CARFAX Inc. to 

estimate scrappage decisions. These data contain the date and location of the last record 

of the vehicle reported to CARFAX for 32 million vehicles in the Smog Check data. This 

includes registrations, emissions inspections, repairs, import/export records, and accidents. 

Because the CARFAX data include import/export records, we are able to correctly classify 

the outcomes of vehicles which are exported to Mexico as censored, rather than scrapped, 

thus avoiding the issues identified in Davis and Kahn (2010). 

For a subset of our Smog Check data, we are able to match vehicles to households using 

confidential data from the California Department of Motor Vehicles (DMV). These data 

track the registered address of the every vehicle in the state, with one address given for each 

year. We use the registration information to attach demographic information on income 

from U.S. Census data. Appendix C discusses the process of cleaning the registration data. 

The DMV data are only available for the years 2000 to 2008. 

For a portion of our analysis, we use data from the 2009 National Highway Transportion 

Survey, which contains information on household vehicles, annual VMT, and household 

income for a sample of households. 

Finally, we use gasoline prices from EIA’s weekly California average price series to con-

struct average prices between inspections. 

Table 1 reports means and standard deviations of the main variables used in our analysis, 

for all observations and broken down by vehicle age and by year of Smog Check. The average 
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fuel economy of vehicles in our sample is 23.5 MPG, with fuel economy falling over the period 

of the sample. The change in the average dollars per mile has been dramatic, almost tripling 

between 1998 and 2008. The dramatic decrease in vehicle emissions is also clear in the data, 

with average per-mile emissions of HCs, CO, and NOx falling considerably from 1998 to 

2008. The tightening of standards has also meant that more vehicles fail Smog Checks late 

in the sample, although some of this is driven by the aging of the vehicle fleet. 

3.2 Automobiles, Criteria Pollutants, and Health 

The vehicle inspection data report emissions of three criteria pollutants: NOx, HCs, and 

CO. All three of these directly result from the combustion process within either gasoline or 

diesel engines. Both NOx and HCs are precursors to ground-level ozone, but all three have 

been shown to have negative health effects on their own.7 

While numerous studies have found links between exposure to the ozone or the three cri-

teria pollutants and health outcomes, the mechanisms are still uncertain. These pollutants, 

as well as ozone, may directly impact vital organs or indirectly cause trauma. For example, 

CO can bind to hemoglobin, thereby decreasing the amount of oxygen in the bloodstream. 

High levels of CO have also been linked to heart and respiratory problems. NOx reacts with 

other compounds to create nitrate aerosols, which are fine-particle particulate matter (PM). 

PM has been shown to irritate lung tissue, lower lung capacity, and hinder long-term lung 

development. Extremely small PM can be absorbed through the lung tissue and cause dam-

age on the cellular level. On their own, HCs can interfere with oxygen intake and irritate 

lungs. Ground-level ozone is a known lung irritant, has been associated with lowered lung 

capacity, and can exacerbate existing heart problems and lung ailments such as asthma or 

allergies. 

4 Preliminary Evidence 

One of the main driving forces behind our empirical results is how gasoline demand elasticities 

for different vehicles vary systematically emissions levels. In this section, we present evidence 

that significant variation exists in terms of vehicle externalities within a year, across years, 

7CO has also been shown to speed up the smog-formation process. For early work on this, see Westberg 
et al. (1971). 
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and even within the same vehicle type (make, model, model year, etc.) within a year. 

Further, simple statistics, such as the average miles traveled by vehicle type, suggest that 

elasticities may be correlated with externalities.8 

Figure 1 plots the distributions of NOx, HCs, and CO emissions in 1998, 2004, and 2010. 

The distribution of criteria pollutant emissions tends to be right-skewed in any given year, 

with a standard deviation equal to roughly one to three times the mean, depending on the 

pollutant. The skewness implies that some vehicles on the road are quite dirty relative to 

the mean vehicle. Over time, the distribution has shifted to the left, as vehicles have gotten 

cleaner, but the range remains. 

The variation in emissions is not only driven by the fact that different types of vehicles 

are on the road in a given year, but also variation within the same vehicle type, defined as 

a make, model, model-year, engine, number of doors, and drivetrain combination. To see 

this, Figure 2 plots the distributions of emissions for the most popular vehicle/year in our 

sample, the 2001 four-door Toyota Corolla in 2009. The vertical red line is at the mean of 

the distribution. Here, again, we see that even within the same vehicle-type in the same 

year, the distribution is wide and right-skewed. The distribution of HCs is less skewed, but 

the standard deviation is 25 percent of the mean. CO is also less skewed and has a standard 

deviation that is 36 percent of the mean. Across all years and vehicles, the mean emissions 

rate of a given vehicle in a given year, on average, is roughly four times the standard deviation 

for all three pollutants (Table A.1). 

To understand how the distribution within a given vehicle type changes over time, Figure 

3 plots the distribution of the 1995 3.8L, front-wheel drive, Ford Windstar in 1999, 2001, 

2004, and 2007.9 These figures suggest that over time the distributions shift to the right, 

become more symmetric, and the standard deviation grows considerably, relative to the 

mean. Across all vehicles, the ratio of the mean emission rate of NOx and the standard 

deviation of NOx has increased from 3.16 in 1998 to 4.53 in 2010. For HCs, this increased 

from 3.59 to 5.51; and, for CO the ratio increased from 3.95 to 5.72. 

These distributions demonstrate significant variation in emissions across vehicles and 

8We are not the first to document the large variation across vehicles in emissions. See, for example, Kahn 
(1996). Instead, our contribution is in finding a link between elasticities and emissions. 

9We chose this vehicle because the 1995 3.8L, front-wheel drive, Ford Windstar in 1999 is the second-most 
popular entry in our data and it is old enough that we can track it over four 2-year periods. 
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within vehicle type, and thus significant scope for meaningful emissions-correlated variation 

in elasticities along those lines.10 We next present suggestive evidence that VMT elasticities 

may be correlated with emissions. For each criteria pollutant within each calendar year 

we rank vehicles by their observed emissions per mile and divide them into quartiles. We 

do the same for fuel economy. Next, for each quartile-year we compute the median annual 

VMT, and plot how this has changed over our sample, normalized by the 1998 level for each 

quartile.. Figure 4 foreshadows our results on VMT elasticities and externalities. For each 

pollutant, we see that the dirtiest quartile saw the largest decreases in miles driven during 

the run up gasoline prices from 1998 to 2008, when prices increased from roughly $1.35 to 

$3.20.11 The ordering of the relative decreases suggests that dirtier vehicles may have been 

more responsive over this period. 

5 Vehicle Miles Traveled Decisions 

We now estimate how changes in gasoline prices affect decisions about vehicle miles traveled 

(VMT), and how this elasticity varies with vehicle characteristics. Our empirical approach 

mirrors Figure 4. For each vehicle receiving a biennial smog check, we calculate average 

daily miles driven and the average gasoline price during the roughly two years between 

Smog Checks. Obviously vehicle owners with more fuel efficient vehicles will respond less to 

changes in the per-gallon gasoline price, and to abstract from this we specify the elasticity 

with respect to the price in dollars per mile (DPM), by dividing the average per gallon price 

by fuel economy in gallons per mile. Thus, the price faced by each vehicle’s owner will vary 

both with the exact period in between Smog Checks, and with the specific vehicles’ fuel 

economy. We then allow the elasticity to vary based on the emissions of the vehicle. We 

begin by estimating: 

ln(V MTijgt) = β ln(DP Mijgt) + γDtruck + ωtime + µt + µj + µg + µv + εigt (8) 

10Because of the way we handle multiple tests of a given vehicle with a year, our distributions likely 
understate the degree of on-road heterogeneity. In order for a vehicle to be registered, the vehicle must pass 
a Smog Check. In our data we see multiple tests of the same vehicle over a short time frame. We use the 
final test, which will necessarily have been passed, for our calculations. Furthermore, our calculations omit 
unregistered vehicles, many of which are likely to have high emissions. 

11The levels also differ. Appendix Figure A.1 plots the median of daily miles traveled across our sample 
split up by the emissions quartile of the vehicle. 
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where i indexes vehicles, j vehicle-types, g geographic locations, t time, and v vehicle age, or 

vintage. DP Mijgt is the average gasoline price per mile faced by vehicle i between time t and 

the date of the previous Smog Check, Dtruck is an indicator variable for whether the vehicle is 

a truck, time is a time trend, and εigt is a residual.12 Our baseline specification assumes that 

gasoline prices are exogenous to individual driving decisions. Such an assumption is common 

in the literature, as gasoline prices are largely driven by movements in the world price of 

crude oil, which saw dramatic changes during the 2000s for reasons unrelated to driving 

choices in California.13 However, we have also estimated our main analyses instrumenting 

for DPM with the Brent Crude oil price, and we obtain very similar results. In Online 

Appendix D we estimate equation 8 including a complete set of month-by-year fixed effects, 

thus relying on cross-sectional variation in gas prices, as opposed to time series variation. 

The results are qualitatively similar to our baseline specification. 

We begin by including demographic characteristics by the zip code of Smog Checks, and 

year and vintage fixed effects. We then progressively include finer vehicle-type fixed effects 

by including make, then make/model/model-year/engine, and finally individual vehicle fixed 

effects. We also differentiate the influence of gasoline prices by vehicle attributes related to 

the magnitude of their negative externalities—criteria pollutants, CO2 emissions, and weight. 

We allow the VMT elasticity to vary with the magnitude of their externalities in two 

ways. For both approaches, we begin by ranking vehicles within each calendar year by their 

emissions per mile of NOx, HCs, CO, fuel economy, or vehicle weight in pounds. In one 

set of specifications we split vehicles up by the quartile of these variables and allow each 

quartile to have a separate β. In another set, we include a linear interaction of centiles of 

these variables and the log of gasoline prices in dollars per mile. 

Table 2 shows our results, focusing on NOx. The changes from Models 1 to 4 illustrates 

the importance of controlling for vehicle-type fixed effects. Initially, the average elasticity 

falls from -0.265 to -0.117 when including make fixed effects, but then rises when including 

finer vehicle type fixed effects. Model 4 includes individual vehicle fixed effects yielding an 

12The fuel economy in gallons per mile used to calculate our DPM variable uses the standard assumption 
that 45 percent of a vehicle’s miles driven are in the city and 55 percent are on the highway. This is the 
standard approach used by the EPA for combined fuel economy ratings. 

13See, for example, Busse et al. (forthcoming). 
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average elasticity of -0.134.14 In Models 5 and 6 we examine heterogeneity with vehicle fixed 

effects. Model 5 includes interactions with quartiles of NOx. The VMT elasticity for the 

cleanest vehicles, quartile one, is positive at 0.043, while the VMT elasticity for the dirtiest 

vehicles is twice the average elasticity at -0.280. To put these numbers in context, the average 

per-mile NOx emissions of a quartile one vehicle is 0.163 grams, while the average per-mile 

NOx emissions of a quartile four vehicle is 1.68 grams. Model 6 assumes the relationship is 

linear in centiles of NOx and finds that each percentile increase in the per-mile NOx emission 

rate is associated with an elasticity .001 larger in absolute value, from a base of essentially 

zero. 

We find similar patterns across the other externalities. The range of the estimated VMT 

elasticities is somewhat larger when using quartiles of HCs and CO emissions compared to 

NOx, with the dirtiest quartiles around -0.30 and the cleanest around 0.05. For CO2 the 

cleanest vehicles are those with the highest fuel economy, and here we see the least fuel-

efficient vehicles having a VMT elasticity of -0.183, compared to -0.108 for vehicles with 

fuel economy in the highest quartile. We observe some heterogeneity in the VMT elasticity 

across vehicle weights as well, although it is smaller than the other externalities. For the full 

set of results, see Appendix Table A.2. 

6 Efficiency of the second best optimal gasoline tax 

In this section, we consider the efficiency of using an SBO gasoline tax to abate the external-

ities caused by driving, specifically those resulting from emissions of NOx, HCs, and CO. We 

begin by calculating both the naive and SBO gasoline tax, and then compare the remaining 

DWL left over from these second-best taxes to the optimal outcome obtained by a Pigouvian 

tax on emissions. 

6.1 Second best optimal gasoline tax 

We calculate the naive tax per gallon of gasoline as the simple average of the externality per 

gallon caused by all vehicles on the road in California in a particular year. We value the 

externalities imposed by NOx and HCs using the marginal damages calculated by Muller 

14Our average elasticity is larger than that found in Hughes et al. (2008) reflecting the longer run nature 
of our elasticity. 
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and Mendelsohn (2009), based on the county in which each vehicle has its Smog Check.15 

The damages calculated by Muller and Mendelsohn (2009) are ideal for this purpose, as they 

use an integrated assessment model to capture how a marginal unit of NOx or HCs emitted 

in one location causes damages throughout the United States, both directly and through 

the formation and removal of ozone and particulate matter. For CO, we use the median 

marginal damage estimate from Matthews and Lave (2000). 

Let the marginal damage per gram of pollutant p in county c be θc
p, with emissions rates 

in grams per mile by vehicle i of �pi . Then the externality per mile of vehicle i, Ei is: 

= θHC · �HC + θNOx · �NOx + θCO · �CO Ei c i c i c i (9) 

The naive tax in year y will then be: 

NyX1 Ei
τnaive(y) = , (10)

Ny MPGii=1 

where Ny denotes the number of vehicles on the road in year y, and MPGi denotes the fuel 

economy rating of vehicle i. In practice, since the stock of vehicles represented in the Smog 

Check data in any given year will be less than the total stock of vehicles in the vehicles fleet, 

we weight each Smog Check observation by the frequency with which vehicles of the same 

vintage and class appear in the California fleet as a whole. 

Following Proposition 1, we calculate the SBO gasoline tax, taking into account the 

heterogeneity in both levels of the externality and the responsiveness to gasoline prices. We 

estimate a regression similar to Equation (8), but allowing the elasticity of VMT with respect 

to DPM to vary over quartiles of all three criteria pollutants, fuel economy, vehicle weight, 

and three groups of vehicle age. For more details, see Appendix E. Let the group-specific 

elasticity for vehicle i be βi
q , where q indexes cells by HC emissions, NOx emissions, CO 

emissions, MPG, weight, and age, with the externalities again in quartiles by year. Further, 

let the average price per gallon and the quantity of gasoline consumed per year in gallons in 

15Note that the values used in this paper differ from those used in the published version of Muller and 
Mendelsohn (2009). The published values were calculated using incorrect baseline mortality numbers that 
were too low for older age groups. Using corrected mortality data increases the marginal damages substan-
tially. We are grateful to Nicholas Muller for providing updated values, and to Joel Wiles for bringing this 
to our attention. 
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year y be Pi
y and Qy

i , respectively.
16 Then the optimal tax in year y will be P P 

∂Uh − α0 h i6=h ∂αi i 
τ ∗ (y) = P , (11)

α0 h h 

with 
Qy 

iα0 = −βq · ,i i P y 
i 

(12) 

and 
∂Uh 

∂αi 

Ei 
= . 
MP Gi 

(13) 

Table 3 shows the naive and SBO taxes for each year from 1998 to 2008. The naive tax 

would be 61.2 cents per gallon of gasoline consumed in 1998, while the SBO tax is 86 cents, 

39 percent higher. The ratio of the naive and SBO gasoline tax increases even as the levels 

of the externalities decline over time. From 2002 on, the SBO gasoline tax is at least 50 

percent larger than the naive tax in each year. 

6.2 Welfare with Uniform Taxes 

We have shown that because of the correlation between elasticities and externality rates, the 

SBO gasoline tax is much higher than the naive tax calculated as the average of per-gallon 

externalities. We now turn to the question of how much the SBO gasoline tax improves 

welfare beyond what is achieved by the naive tax. We note again that even the optimal 

uniform tax is still a second-best policy. Because of the heterogeneity in externality levels, 

the most polluting vehicles will be taxed by less than their external costs to society, leaving 

remaining DWL. Vehicles that are cleaner than the weighted average will be taxed too much, 

overshooting the optimal quantity of consumption and creating more DWL.17 

In each of the following analyses, we compare the remaining DWL resulting from the 

local pollution externality with both the naive and SBO gasoline tax to the DWL without 

16Again, we also weight vehicles based on the number of vehicles of that age and class that appear in the 
fleet as a whole; see Appendix E. We also account for vehicle owners’ decisions to scrap their vehicles to the 
extent these are affected by gasoline prices. Appendix G discusses the details and results of this exercise. 
To summarize, we allow gasoline price to affect scrappage decisions, and allow this to vary over emissions 
profiles and vintages. We find that the main source of heterogeneity occurs across vintages; specifically, 
increases in gasoline prices increase the hazard rate of very old vehicles, but decrease the hazard rate of 
middle-aged vehicles. Because emissions of criteria pollutants are positively correlated with age, this has the 
effect of decreasing criteria pollutants, although the aggregate effect is small. 

17We have also repeated the analysis under the assumption that policy makers adopt the second-best 
optimal VMT tax. The degree of DWL that remains is only slightly reduced. 
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any additional tax. 

6.2.1 Simulation Results 

We begin by approximating the ratios of DWL with and without the taxes using our data to 

simulate the change in miles driven and thus in gasoline consumption from a tax. Let milesyi 

be the actual average miles per day traveled by vehicle i between its last Smog Check and 

ˆthe current one, observed in year y, and let milesi
y
(τ) be the miles per day that a vehicle 

would travel if the average price of gasoline were raised by a tax of $τ per gallon that is fully 

passed through to consumers. We approximate DWL as a triangle, such that the ratio of 

interest is: 

yP ˆ1 milesy −milesi (τ ) Ei 
i · i · − τ
2 MPGi MPGi 

r(τ) = EiyˆP milesy −milesi ( )
1 i MPGi Ei· · i 2 MPGi MPGi 

The fully optimal tax would have a ratio of 0, while a tax that actually increased the 

DWL from gasoline consumption would be greater than 1. Table 4 shows these ratios for 

various taxes. The first two columns show ratios for a statewide tax based on the average 

and marginal externalities (i.e. the naive and SBO taxes), respectively, of all vehicles in 

California in each year. DWL with the naive tax averages 72.8 percent of the DWL with 

no additional tax over the sample period, and rises over time as the fleet becomes cleaner. 

The SBO gasoline tax is little better, averaging 69.8 percent of DWL with no tax during our 

sample period. 

Is it even possible to effectively abate local pollution externalities using a tax on gasoline, 

or is there too much idiosyncratic variation in externality levels for this to be possible? That 

is, if hypothetically the tax were allowed to vary by groups observable to policymakers, would 

the SBO uniform tax perform better? Obviously, this may be politically infeasible depending 

on how the groups are defined and may be impractical to implement. The purpose of this 

analysis is to explore the nature of the failure of the uniform gasoline taxes. 

The remaining columns of Table 4 show remaining deadweight loss from the naive and 

SBO taxes using the average or marginal externality for specific groups of vehicles, rather 

than the entire state. The marginal damages from Muller and Mendelsohn (2009) are de-

signed to vary at the county level, and within California they vary substantially across 
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counties, due to both baseline emissions levels and the extent to which population is ex-

posed to harmful emissions.18 As such, a county-specific tax on emissions might be expected 

to target externality levels more precisely. The third and fourth columns of Table 4 shows 

the DWL ratios for a naive and SBO gasoline tax computed this way, and it turns out there 

is relatively little improvement. In other words, county-by-county variation in emissions 

and elasticities does not explain the failure of a single, uniform tax to remove a substantial 

amount of deadweight loss. The average ratio over our sample is 0.684 for the naive tax and 

0.653 for the optimal uniform tax. 

Since emissions rates are highly correlated with vintage, another approach would be to 

allow taxes to vary by the age of the vehicle.19 The fifth and sixth columns of table 4 show 

this, and here we see a substantial improvement: 0.342 for the naive tax and 0.34 for a SBO 

gasoline tax. Combining these and having the tax vary by both vintage and location, shown 

in the last two columns, reduces the ratios to 0.276 and 0.274, respectively. 

This analysis shows two striking results. First, an SBO gasoline tax does a terrible job of 

addressing the market failure from local pollution externalities. The dirtiest vehicles are not 

taxed enough, and many clean vehicles are over-taxed. This is true even when the uniform 

tax is calculated taking the correlation between emissions and VMT elasticities into account. 

The roughly 50 percent increase in the tax level from a SBO gasoline tax correctly abates 

more emissions from the dirtiest vehicles, but also over-taxes the cleanest vehicles by a larger 

amount. The welfare benefits of the SBO gasoline tax are around 10% higher than those 

from a naive tax, but still fall far short of the benefits from a true Pigouvian tax linked to 

actual vehicle emissions. The number of vehicles for which the uniform tax overshoots is 

remarkable. Table 5 shows the proportion of vehicle-years over the 11 years of our sample for 

which each tax overshoots. Because the distribution of emissions is so strongly right skewed, 

the naive uniform tax overshoots for more than 72 percent of vehicle-years, and the SBO 

gasoline tax for even more. Second, there is enough heterogeneity in the distribution of the 

per-gallon externality that even a tax targeting broad groups leaves a substantial portion of 

DWL. 

18We discuss this further in Online Appendix F. 
19Such a system could perhaps be built within the Smog Check Program, with vehicle-specific taxes based 

on mileage since the previous test. 
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The variance and skewness in the distribution of externality per gallon causes a uniform 

tax to be less efficient than might otherwise be expected. Figure 5 shows this clearly, plotting 

the kernel density of the externality per gallon in 1998 and 2008, with vertical lines indicating 

the naive tax and the optimal tax, respectively. The long right tail of the distribution requires 

that either tax greatly exceed the median externality. 

We next examine how the optimal uniform tax would compare to the optimal Pigouvian 

emissions tax if the distribution became less skewed. That is, how would a uniform tax per-

form if the right tail of the distribution—the oldest, dirtiest vehicles—were removed from the 

road? This could be achieved directly from a Cash for Clunkers-style program, or indirectly 

through tightening emissions standards in the Smog Check Program. Sandler (2012) shows 

that vehicle retirement programs are not cost-effective in reducing criteria emissions, and 

possibly grossly over pay for emissions. However, the overall welfare consequences of this 

sort of scheme may be more favorable if they improve the efficiency of a uniform gasoline 

tax. Table 6 shows the ratios of DWL with the SBO gasoline tax to DWL with no tax, 

removing increasing proportions of the top of the externality distribution. Removing the 

top 1 percent increases the DWL reduction from 30 percent to 38 percent of the total with 

no tax. Scrapping more of the top end of the distribution improves the outcome further. If 

the most polluting 25 percent of vehicles were removed from the road and the SBO gasoline 

tax was imposed based on the weighted externality of the remaining 75 percent, this would 

remove 58.3 percent of remaining DWL. Of course, the practical complications of scrapping 

this large a proportion of the vehicle fleet likely make this cost-prohibitive. 

6.2.2 Analytical Results 

We can also calculate the ratio of remaining DWL to original DWL by calibrating Equations 

(6) and (7) and with the moments in our data. The average value in our sample for the 

2 2lognormal shape σ and σparameters BE 

2With σE 

ρ, the correlation coefficient for the logs of externality and inverse elasticity, is 0.28.20 These 

parameter values produce remaining DWL estimates in line with the simulation results in 

are 1.47 and 1.51, respectively. The average value of 

Table 4. around 1.47, the optimal uniform tax can only decrease DWL by 23 

20This is the average of parameters calculated separately for each year from 1998 to 2008. The parameters 
do not vary much over time. For the year-by-year parameter estimates, see Table A.7 in the Online Appendix. 

19 



percent. 

6.3 Treatment of Other Externalities 

In the previous section we assumed that the difference between the socially optimal con-

sumption of gasoline and actual consumption was entirely driven by externalities from local 

pollution. In practice, there are several other externalities from automobiles, as well as 

existing federal and state taxes on gasoline. Examples of additional externalities include 

congestion, accidents, infrastructure depreciation, and other forms of pollution. The com-

bined state and federal gasoline tax in California was $0.47 during our sample period. 

Many of these other externalities are similar to criteria pollution emissions in the sense 

that they also vary across vehicles. Congestion and accident externalities depend on when 

and where vehicles are driven. Accident and infrastructure depreciation depend to some 

degree on vehicle weight.21 We lack vehicle-specific measures of these other externalities to 

measure how they impact our calculations of the amount of remaining DWL after imposing 

a SBO gasoline tax. However, because these other externalities also vary by vehicle, a 

gasoline tax will also be an imperfect policy instrument for these externalities. Therefore, 

the actual amount of deadweight loss will be the sum of the deadweight loss that we measure 

plus the deadweight loss arising from the externalities that we cannot measure. Insofar as 

additional variation exists, and they are not negatively correlated with the externalities that 

we do measure, we are understating the level of remaining DWL, although not necessarily 

the share of remaining DWL.22 One way to interpret our results is that by ignoring the 

other externalities we are assuming that existing taxes exactly equal the SBO gasoline tax 

associated with these other externalities, and that we are also ignoring the remaining DWL 

due to the fact that these externalities are not uniform across vehicles. 

One externality that does not vary across vehicles is the social cost of CO2 emissions due 

to their contribution to climate change. Because CO2 emissions are, to a first-order approxi-

mation, directly proportional to gasoline consumption, in this case a per-gallon gasoline tax 

21For estimates on the degree of this heterogeneity, see Anderson and Auffhammer (2011) and Jacobsen 
(Forthcoming). 

22In fact, Parry and Small (2005) find that the contribution of these other externalities to the second-best 
optimal gas tax may, in fact, be larger than the contribution arising from local pollutants. This would 
suggest that the degree for which we understate the remaining deadweight loss might be large. 
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is the optimal policy instrument. The larger the climate change externality, the greater the 

share of DWL eliminated by the SBO gasoline tax will be. To get a sense of how climate 

change externalities affect our calculations, we repeat the analysis for a range of social costs 

of carbon (SCC). 

We calculate the remaining DWL after imposing the SBO gasoline tax based on local 

pollution externalities, varying the SCC from zero cents per gallon to $1.00 per gallon.23 

While our discussion focuses on the externalities associated with CO2, we stress that these 

calculations are relevant for any externalities for which a per-gallon tax is the first-best 

instrument. They also represent the lower bound on the remaining DWL when we consider 

any other externality for which a per-gallon tax is a second-best instrument. 

Figure 6 summarizes the results across all years in our sample. The values for an extra 

per-gallon externality of zero roughly correspond to the ratios reported in Table 4. 24 Not 

until the extra per-gallon externality exceeds $0.20 per gallon does a uniform gasoline tax 

eliminate the majority of DWL associated with both the criteria pollutants and a per-gallon 

externality. Even if the per-gallon externality is $1.00, nearly 20 percent of combined DWL 

remains under both the naive and SBO gasoline taxes. 

7 Incidence of Gasoline and Pigouvian Taxes 

Our results in section 6.1 demonstrate that a uniform gasoline tax is an ineffective policy tool 

on efficiency grounds. In this section we consider the implications of the SBO gasoline tax 

and the first-best optimal Pigouvian emissions tax for equity. Gasoline taxes are generally 

regressive (Chernick and Reschovski, 1997). However, it is possible that a uniform gasoline 

tax is less regressive than an emissions tax, particularly if poorer households tend to own 

dirtier vehicles. We begin by describing our methodology for assigning household income to 

the vehicles in our Smog Check data, and then present our results on the regressivity of the 

23For comparison, Greenstone et al. (2011) estimate the SCC for a variety of assumptions about the 
discount rate, relationship between emissions and temperatures, and models of economic activity. For each 
of their sets of assumptions, they compute the global SCC; focusing only on the US impacts would reduce 
the number considerably. For 2010, using a 3 percent discount rate, they find an average SCC of $21.40 
per ton of CO2 or roughly 23.5 cents per gallon of gasoline, with a 95th percentile of $64.90 (71 cents per 
gallon).These calculations assume that the lifecycle emissions of gasoline are 22 pounds per gallon. Using a 
2.5 percent discount rate, the average SCC is $35.10 (38.6 cents per gallon). 

24The figure plots the weighted averages across the years, while the last row in Table 4 is a simple average 
of the annual weighted averages, hence a slight difference 

21 



SBO gasoline tax and the optimal Pigouvian emissions tax. 

7.1 Assigning Income to Vehicles 

For the analyses in this section, we link the Smog Check data to DMV registration infor-

mation. We geocode the addresses from the DMV data and match them to Census block 

groups (CBGs) then link these data to CBG demographics from the 2000 Decennial Census. 

The DMV data allow us to match an address to each vehicle by calendar year for the period 

of 2000–2008. We then predict the annual average tax paid by the owners of each vehicle in 

the Smog Check data, using our estimates of optimal taxes and counterfactual VMT from 

section 6. All of the analyses in this section consider the average of predicted taxes over the 

whole period from 2000–2008. Although the levels of tax and externality are higher earlier in 

the period than later in the period, the distributional patterns are almost identical regardless 

of the time period used. 

Figure 7 shows a map of California CBGs, shaded to show the average predicted annual 

tax paid as a fraction of year 2000 CBG median income. Panel (7a) shows the average 

tax burden of the SBO tax, while panel (7b) shows the average tax burden of an optimal 

Pigouvian emissions tax. Two patterns are evident from the maps. First, there is substantial 

geographic dispersion across the state of California, with vehicle owners in the urban cores 

of Los Angeles and San Diego paying a much higher proportion of CBG median income in 

taxes. Second, although the geographic dispersion differs slightly between the SBO gasoline 

tax and the optimal emissions tax, the levels differ substantially—the annual burden of the 

optimal tax is much lower than that of the SBO tax. We discuss the intuition behind this 

surprising result below. 

The map analysis in Figure 7 is instructive, but is not enough to show the extent to 

which the SBO gasoline tax or an optimal Pigouvian emissions tax would be progressive or 

regressive. To estimate the progressivity of these taxes, median CBG income is insufficient. 

Borenstein (2012) shows that CBG median income masks substantial within-CBG variation 

in household income, which causes it to do a poor job of capturing effects on the top and 

bottom of the income distribution. We implement Borenstein’s suggested correction for CBG 

income, which uses the full distribution of household incomes in each CBG from the Census 

data combined with a separate dataset that contains both annual VMT and household 
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income. In brief, Borenstein’s method requires the correlation between annual VMT and 

income within a CBG. In short, using the 2009 NHTS, we calculate the correlation between 

VMT and income. This allows us to assign vehicles in the Smog Check data to income 

brackets based on each vehicle’s annual VMT and the proportion of households in each 

income bracket within the CBG the vehicle is registered in. For more details, see Appendix 

H and Borenstein (2012). 

Using the Borenstein (2012) correction we assign vehicles to one of 10 income brackets, 

which aggregate the 16 income categories contained in the Census data into groups roughly 

approximating deciles of the California household income distribution.25 For purposes of 

calculating the tax burden and progressivity, we use the midpoint of each income bracket. 

Because our data is at the vehicle level, not the household level, we account for multiple 

vehicle households by dividing the estimated household income by the average number of 

vehicles per household for that income bracket, taken from the 2009 NHTS. 

7.2 Regressivity Results 

Figure 8 plots for each decile of household income the average tax burden as a percentage 

of estimated income for the naive uniform tax, the SBO tax, and the optimal Pigouvian 

emissions tax. The figure also plots the average of pre-tax externality in dollars per year 

using the right axis. Aside from the 10th, highest, income decile, which has a much higher 

average annual VMT than the 9th decile, the average pre-tax externality is declining with 

income. In other words, we find that poorer households have dirtier cars, and pollute more in 

total even though their annual VMT is lower than richer households. As such, we expect an 

emissions tax to be regressive to some extent. Indeed, all three taxes are regressive, with the 

lowest income brackets predicted to pay the highest percentage of household income toward 

the tax. However, the curve is most steeply sloped for the SBO gasoline tax, indicating that 

it is the most regressive of the three. The optimal emissions tax imposes a lower average tax 

burden than the SBO gasoline tax in every income decile. 

On its face, it seems surprising that an emissions tax would result in a lower tax burden 

for all parts of the income distribution. The explanation for this result is that under an 

25Specifically, the break points for the groupings are at the 10.41, 19.87, 29.02, 41.68, 49.31, 59.30, 72.10, 
81.29, and 93.5 percentiles of all households in California. 
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emissions tax, vehicles with the highest per-gallon tax rate have the fewest post-tax VMT, 

and vice versa. Even if all vehicles were equally price responsive, an emissions tax would raise 

less revenue on average than a uniform tax simply because the highest polluting vehicles pay 

the highest tax rate and thus reduce VMT and gasoline consumption the most. Of course, 

the core result of this paper is that vehicles are not equally responsive to gasoline prices, with 

the dirtiest vehicles having the greatest VMT elasticity. This further reduces the average 

burden of an emissions tax, while the variation in elasticities pushes the level and average 

burden of the SBO gasoline tax higher. Moreover, in practice older and dirtier vehicles have 

lower VMT pre-tax. Thus, the SBO gasoline tax would only impose a lower tax burden on an 

income bracket if high-polluting, low VMT vehicles were concentrated in one decile, which is 

not the case. Indeed, Table 5 shows that the SBO tax is higher than optimal on a per-mile 

basis for more than 80% of vehicles. Although households in the lower income brackets are 

more likely to have higher polluting vehicles, more than 75% of vehicles in every income 

group have emissions below the marginal externality that determines the SBO gasoline tax. 

As a result, switching from the SBO gasoline tax to an emissions tax lowers the tax burden 

for the vast majority of vehicles in every income bracket. 

It is also important to note that while Figure 8 illustrates that gasoline taxes are regres-

sive, the figure hides a tremendous amount of variation within income deciles. We find that 

the variance falls as income rises. Figure 9 shows this clearly, plotting several percentiles 

of SBO gasoline tax expenditures as a share of income within each income bracket. For 

instance, the interquartile range of the share of SBO gasoline tax as a fraction of income for 

households in the lowest income decile is between 0.5 percent of household income to over 

1.5 percent of household income. In contrast, the interquartile range for the higher deciles 

is extremely small. 

8 Conclusions 

In this paper we present three empirical results, all stemming from the stylized fact that 

vehicle emissions are heterogeneous and highly right skewed. First, the sensitivity of a given 

vehicle’s miles traveled to gasoline prices is correlated with the vehicle’s emissions. Dirtier 

vehicles are more price responsive. This increases the size of the second-best optimal uniform 
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gasoline tax by as much as 50 percent. 

Second, gasoline taxes are an inefficient policy tool to reduce vehicle emissions. The 

optimal policy would differentially tax vehicles based on their emissions, not on consumption 

of gasoline. While gasoline consumption and emissions are positively correlated, we show 

that gasoline taxes are a poor substitute for a true Pigouvian emissions tax. The remaining 

DWL under the second-best optimal gasoline tax exceeds 75 percent in the second half of our 

sample. Although it comes as no surprise that an indirect tax fails to achieve the optimal 

result, the magnitude of that failure is striking. 

Finally, we find that gasoline taxes are not only regressive, but are more regressive than 

a Pigouvian tax on emissions. Because the distribution of emissions is so strongly right 

skewed, with a small number of very high polluting vehicles contributing the bulk of total 

emissions, a uniform gasoline tax will tend to overtax relative to the social optimum, leaving 

the vast majority of vehicle owners paying more, and with the poorest households paying 

substantially more as a fraction of their income. 
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Table 1: Summary Statistics 

Vehicle Age Year 

All 4-9 10-15 16-28 1998 2008 

Weighted Fuel Economy 23.53 
(5.320) 

23.30 
(5.235) 

23.70 
(5.331) 

23.80 
(5.507) 

24.27 
(5.478) 

23.07 
(5.169) 

Average $/mile 0.0973 
(0.0416) 

0.0928 
(0.0403) 

0.0977 
(0.0417) 

0.109 
(0.0426) 

0.0581 
(0.0134) 

0.143 
(0.0361) 

Odometer (00000s) 1.214 
(0.605) 

0.932 
(0.454) 

1.376 
(0.567) 

1.626 
(0.688) 

1.023 
(0.528) 

1.323 
(0.622) 

Average VMT/Day 24.50 
(95.96) 

30.23 
(43.29) 

23.09 
(101.2) 

15.64 
(148.9) 

29.48 
(65.64) 

22.62 
(28.24) 

Grams/mile HC 0.762 
(1.177) 

0.219 
(0.270) 

0.739 
(1.019) 

2.017 
(1.670) 

1.403 
(1.506) 

0.542 
(1.022) 

Grams/mile CO 5.525 
(12.91) 

0.510 
(1.646) 

4.814 
(10.90) 

18.15 
(20.35) 

12.44 
(18.97) 

3.488 
(10.49) 

Grams/mile NOx 0.664 
(0.638) 

0.317 
(0.303) 

0.731 
(0.599) 

1.297 
(0.728) 

1.042 
(0.904) 

0.516 
(0.547) 

Failed Smog Check 0.0868 
(0.282) 

0.0435 
(0.204) 

0.106 
(0.307) 

0.165 
(0.371) 

0.0515 
(0.221) 

0.0992 
(0.299) 

Average HH Income 48066.3 
(17031.0) 

49955.1 
(17685.0) 

47117.3 
(16556.3) 

44970.8 
(15555.7) 

49768.5 
(17952.5) 

47778.3 
(16791.9) 

Truck 0.385 
(0.487) 

0.406 
(0.491) 

0.368 
(0.482) 

0.367 
(0.482) 

0.322 
(0.467) 

0.426 
(0.494) 

Vehicle Age 10.68 
(4.587) 

6.694 
(1.615) 

12.14 
(1.686) 

18.54 
(2.478) 

9.244 
(3.552) 

11.77 
(4.854) 

N 76510820 34713936 29775806 12008157 4172978 5849644 

Statistics are means with standard deviations presented below in paranetheses. Weighted fuel economy is from 
EPA. Dollars per mile is the average gasoline price from EIA in between the vehicle’s current and previous 
Smog Checks, divided by the vehicle’s fuel economy. Average household income is taken from the 2000 Census 
ZCTA where the Smog Check occured. The dataset used for this table contains one observation per vehicle 
per year in which a Smog Check occured. 
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Table 2: Vehicle Miles Traveled, Dollars Per Mile, and Nitrogen Oxides (Quartiles by year) 

(1) (2) (3) (4) (5) (6) 
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

ln(DPM) -0.269** -0.123** -0.183** -0.134** -0.038 
(0.044) (0.038) (0.027) (0.022) (0.028) 

ln(DPM) * NOx Q1 0.043* 
(0.021) 

ln(DPM) * NOx Q2 -0.054* 
(0.022) 

ln(DPM) * NOx Q3 -0.152** 
(0.025) 

ln(DPM) * NOx Q4 -0.280** 
(0.028) 

ln(DPM)*NOx Centile -0.001** 
(0.000) 

NOx Q2 0.216 
(0.663) 

NOx Q3 -1.742 
(0.881) 

NOx Q4 -2.417* 
(1.003) 

NOx Centile -0.001 
(0.001) 

Truck 0.054 0.057 0.005 
(0.033) (0.045) (0.055) 

Time Trend -0.244** -0.314** -0.278** -0.035 -0.057 -0.062* 
(0.037) (0.024) (0.015) (0.028) (0.032) (0.025) 

Time Trend-Squared 0.002** 0.002** 0.002** 0.000 0.000 0.001* 
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Year Fixed Effects Yes Yes Yes Yes Yes Yes 
Vintage Fixed Effects Yes Yes Yes Yes Yes Yes 
Demographics Yes Yes Yes Yes Yes Yes 
Make Fixed Effects No Yes No No No No 

Vin Prefix Fixed Effects No No Yes No No No 
Vehicle Fixed Effects No No No Yes Yes Yes 

Observations 36387455 36387455 36387455 36387455 29779909 29779909 
R-squared 0.210 0.218 0.143 0.121 0.117 0.118 
∗ p < 0.05, ∗∗ p < 0.01 

Notes: Each observation is a vehicle’s Smog Check inspection. Dependent variable is the log of average 
daily vehicle miles travelled since the previous inspection. DPM represents the average gasoline price over 
the period since the previous inspection, converted to dollars per mile by dividing by vehicle fuel economy 
Quartiles and centiles of NOx are based on rankings of emissions per mile within the calendar year in which 
the Smog Check occurs. Standard errors clustered by vehicle make reported in parentheses. 
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Table 3: Average and Marginal Pollution Externality 

Average Externality (¢/gal) Marginal Externality (¢/gal) 

1998 61.48 91.27 
1999 54.78 81.62 
2000 48.55 74.31 
2001 40.96 64.29 
2002 34.18 54.09 
2003 28.77 46.89 
2004 24.31 39.26 
2005 21.25 33.95 
2006 18.61 29.52 
2007 16.23 25.81 
2008 14.36 22.84 

Notes: Average Externality is the simple average of damages from emissions 
of criteria pollutants produced by each car in each year, divided by fuel usage. 
We refer to a tax on the average externality as the “naive tax”. The marginal 
externality is computed as the weighted average of externality per gallon, 
using the negative slope of the vehicle’s demand curve as the weight.. A tax 
on the marginal externality is the SBO gasoline tax. Both calculations also 
weight vehicles by the frequency with which vehicles of the same vintage and 
class appear in the California fleet as a whole. Dollar figures inflation adjusted 
to year 2008. 
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Table 5: Proportion of Vehicles for which a Uniform Tax Overshoots the Optimal Tax 

Mean 

Naive Tax on Fleet Average Externality 0.724 
SBO Tax on Fleet Marginal Externality 0.803 
Naive Tax on County Average Externality 0.714 
SBO Tax on County Marginal Externality 0.793 
Naive Tax on Vintage Average Externality 0.708 
SBO Tax on Vintage Marginal Externality 0.733 
Naive Tax on County/Vintage Average Externality 0.673 
SBO Tax on County/Vintage Marginal Externality 0.718 

N 36023471 

Proportion of vehicles over the period 1998-2008 whose VMT would be 
lower than optimal under the indicated tax. We assume that the tax is 
adjusted each calendar year to reflect changes in the average or marginal 
externality 
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Table 6: Ratios of DWL with Tax to DWL With No Tax, Scrapping Most Polluting 
Vehicles 

Percentile Scrapped 

None 1% 2% 5% 10% 25% 

1998 
1999 
2000 
2001 
2002 
2003 
2004 
2005 
2006 
2007 
2008 

0.568 
0.577 
0.583 
0.627 
0.675 
0.699 
0.740 
0.762 
0.796 
0.817 
0.836 

0.476 
0.484 
0.501 
0.531 
0.590 
0.634 
0.681 
0.704 
0.735 
0.763 
0.783 

0.451 
0.467 
0.486 
0.515 
0.578 
0.625 
0.672 
0.693 
0.725 
0.753 
0.772 

0.426 
0.453 
0.472 
0.501 
0.566 
0.615 
0.662 
0.678 
0.707 
0.733 
0.745 

0.419 
0.452 
0.471 
0.501 
0.564 
0.613 
0.656 
0.657 
0.668 
0.672 
0.628 

0.439 
0.469 
0.478 
0.456 
0.509 
0.488 
0.458 
0.390 
0.363 
0.378 
0.373 

Average 0.698 0.626 0.612 0.596 0.573 0.436 

Notes: DWL with no tax calculated based on the difference in 
emissions from imposing a tax equal to the actual externality 
per gallon consumed by a particular car. SBO tax computed 
as the weighted average of externality per gallon, using the 
negative slope of the vehicle’s demand curve as the weight. All 
taxes also weight vehicles by the frequency with which vehicles 
of the same vintage and class appear in the California fleet as 
a whole. 
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Table 7: Ratios of DWL with Tax to DWL With No Tax 

Statewide Tax County-Level Taxes Vintage Tax County/Vintage Tax 

Average Marginal Average Marginal Average Marginal Average Marginal 

1998 0.571 0.434 0.536 0.397 0.318 0.295 0.280 0.254 
1999 0.590 0.426 0.558 0.390 0.301 0.279 0.256 0.235 
2000 0.591 0.433 0.556 0.397 0.299 0.281 0.250 0.235 
2001 0.648 0.472 0.619 0.440 0.329 0.312 0.280 0.266 
2002 0.619 0.490 0.586 0.459 0.324 0.310 0.281 0.268 
2003 0.625 0.503 0.589 0.469 0.314 0.303 0.268 0.259 
2004 0.647 0.544 0.619 0.516 0.351 0.341 0.309 0.301 
2005 0.644 0.548 0.617 0.522 0.347 0.336 0.306 0.296 
2006 0.692 0.595 0.669 0.573 0.397 0.390 0.360 0.353 
2007 0.674 0.585 0.653 0.564 0.368 0.362 0.329 0.325 
2008 0.701 0.605 0.682 0.586 0.388 0.383 0.349 0.345 

Average 0.636 0.512 0.608 0.483 0.340 0.327 0.297 0.285 

Notes: DWL with no tax calculated based on the difference in emissions from imposing a tax equal to the actual 
externality per gallon consumed by a particular car. SBO tax computed as the weighted average of externality 
per gallon, using the negative slope of the vehicle’s demand curve as the weight. All taxes also weight vehicles by 
the frequency with which vehicles of the same vintage and class appear in the California fleet as a whole. 
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For Online Publication 

A Proofs of Propositions 

Proposition 1. The second-best-optimal uniform per-gallon gasoline tax, τ ∗ , is (from Dia-
mond (1973)): P P 

∂Uh − α0 i h=6 i ∂αi i 
τ ∗ = P . (14)

α0 i i 

where αi 
0 is the derivative of consumer i’s demand for gasoline with respect to the price of 

gasoline. 

Proof. Consumers have quasi-linear utility functions, given as: 

max Uh(α1, α2, ..., αh, ..., αn) + µh, (15)
αh 

s.t. (pg + τ)αh + µh = mh, (16) 

where pg is the price, τ the tax per gallon, αh the consumption of the polluting good by 
consumer h, µh consumption of a numeraire, and mh consumer h’s income. Assuming an 
interior solution, we have: 

∂Uh 

= (p + τ). (17)
∂αh 

This yields demand curves, which we represent by αh 
∗ , given by: 

α ∗ + τ) . (18)h = αh (pg 

The SBO gasoline tax maximizes social welfare, or the sum of utilities: X X X 
W (τ ) = Uh[α1 

∗ , ..., α ∗ 
h, ...α ∗ 

n] − pg α ∗ 
h + mh. (19) 

h h h 

The first-order condition for the SBO gasoline tax is given as: XX X 
W 0(τ) = 

∂Uh 

αi 
0 − pg α0 h = 0. (20)

∂αii h h 

Rewriting this and plugging in the result from the consumers’ problem, ∂U 
∂αh

h − pg = τ , we 
have: 

XX X∂Uh 

W 0(τ) = αi 
0 + τ αi 

0 = 0. (21)
∂αii h6=i i 
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□ 

□ 

Solving for the second-best tax yields: P P 
∂Uh − α0 i h=6 i ∂αi i 

τ ∗ = P . (22)
α0 i i 

Proposition 2. Suppose drivers are homogenous in their demand for gasoline, but vehicles’ 
per-gallon emissions differ. In particular, let β denote the derivative of the demand for 
gasoline with respect to the price of gasoline. 

If the distribution of the per-gallon externality, E, is log normal, with probability density 
function: � � 

1 −(Ei − µE )
2 

ϕ(Ei) = p exp , (23) 
Ei 2σE 

2 2σE 
2 

the DWL absent any market intervention will be given as: 

1 2µE +2σ2 
ED = e . 

2β 

Proof. Given these assumptions, the deadweight loss absent any market intervention will be 
given as: Z ∞ (Ei)

2 

D = ϕ(Ei)dEi
2β0 

=
1 
E[Ei 

2] (24)
2β 
1 2µE +2σ2 

E= e . 
2β 

Proposition 3. Under the assumptions in Proposition 2, the ratio of the remaining DWL 
with the deadweight loss after the tax is: 

2µE +σ2 
ED − e 

e2µE +σ2 

2β E −σ2 
ER = = 1 − = 1 − e . (25)

2µE +2σ2 
ED e 

Proof. The level of the externality is given as: 

µE +σ2 /2EE = τ = e . (26) 
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□ 

□ 

The deadweight loss associated with all vehicles is given as: Z ∞ (τ − Ei)
2 

D(τ ) = ϕ(Ei)dEi
2β0 

=
1 
E[τ 2 − 2τEi + Ei 

2]
2β 

= 
1
(τ 2 − 2τE[Ei] + E[Ei 

2]) (27)
2β 

21 σ 2 
E ) 

E 
2(τ 2 − 2τeµE + 2µE +2σ+ e= 

2β 
21 σE 
2(τ 2 − 2τeµE + ) + D= 

2β 

e2µE +σ2 
E 

= D − . 
2β 

The ratio of remaining DWL with the deadweight loss absent the tax is therefore: 

22µE +σE 2D − e 2µE +σEe2β 
= 1 − e −σ

2 
E . (28)= 1 −R = 22µE +2σD e E 

Proposition 4. When Bi = 1 and Ei are distributed lognormal with dependence parameter 
βi 

ρ, the optimal tax, represented by τ ∗ , is: 

2σ 

2 
E 

τ ∗ µE + = e +ρσE σB 

Proof. The slope of the demand curve with respect to the cost of driving, defined as Bi = 
β 
1 
i 
, 

where βi is the VMT elasticity for the vehicle owned by consumer i is distributed lognormal 
with parameters µB and σB 

2 . ρ is the dependence parameter of the bivariate lognormal 
distribution (the correlation coefficient of ln E and ln B). The optimal tax is: P 

Eiβi
τ ∗ = P 

βiP
1 Eiβi 

= N 
1 P 
N βi 

E[Eiβi] 
= (29)

E[
B 
1 
i 
] 
2 2σ σE B 

= 
σ
B 

−µB + ρσE σBµE +e 2 2 e 
2 

−µB +e 2 

2σ 
+ρσE σBµE + = e 2 

E 
. 

Proposition 5. When Bi = 
β 
1 
i 
and Ei are distributed lognormal with dependence parameter 
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ρ, the ratios of the remaining deadweight loss after the SBO gasoline tax to the original 
deadweight loss will be: 

2 
R(τ ∗ ) = 1 − e −σE , (30) 

and, the ratios of the remaining deadweight loss after the naive uniform tax to the original 
deadweight loss will be: 

R(τnaive) = 1 − e −σ
2 
E (2e −ρσE σB −2ρσE σB ).− e (31) 

Proof. The deadweight loss with no gasoline tax is: Z ∞ �Z ∞ � 
(Ei)

2BiD = ϕ(Ei)dEi ϕB(Bi)dBi
20 0 

=
1
E[Ei 

2Bi] (32) 
2 

21 σ2 B 

2 

The deadweight loss with the optimal uniform tax is: Z ∞ �Z ∞ � 
(τ − Ei)

2BiD(τ ∗ ) = ϕ(Ei)dEi ϕB(Bi)dBi
20 0 

=
1
E[τ 2Bi − 2τEiBi + Ei 

2Bi]
2 

= 
1
(τ 2E[Bi] − 2τ E[EiBi] + E[Ei 

2Bi]) (33)
2 

2µE +2σ +2ρσE σB+µB +E 2= e . 

2 2 2 21 σB σ σ σ2 
E2 

E 
2 
B 

2 
B 

(τ 2 +ρσE σB 2µE +2σ+ e +2ρσE σB )µB + − 2τeµE + +µB + +µB +2= e 
2 

2 21 
= e 
2 

σ σ2 
E 

2 
E +µB +2 

B 
2 
B2µE +σ +2ρσE σB 2µE +σ− e +2ρσE σB+µB + + D 

21 σ2 
E 2 

B2µE +σ +2ρσE σB+µB + = D − e ,
2 

while the deadweight loss with the naive tax, equal to the average externality level is: 

2 21 σ σ 

(2e 2µE +σ2 
E +µB + +ρσE σB 2µE +σ− e 

2 
E +µB +2 

B 
2 
B D(τnaive) = D − ). (34)

2 

Then the ratios of the remaining deadweight loss after a tax to the original deadweight 
loss will be: 

2σ2 
E +µB + 2 

B2µE +σ +2ρσE σBe 
R(τ ∗ ) = 1 − 2σ2 

E +µB +2µE +2σ +2ρσE σB2e 
2 

= 1 − e −σ 

B 

E , (35) 
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□ 

2 2σ σ2 
E 

2 
E 

B 
2 

B 
2

2µE +σ ρσE σB 2µ+σ− e+µB + +µB +2e 
R(τnaive) = 1 − 2σ2 

E2µE +2σ +2ρσE σB+µB + 2e 
2−σ = 1 − e E (2e 

B 

−ρσE σB −2ρσE σB ).− e (36) 

B Steps to Clean Smog Check Data 

California implemented its first inspection and maintenance program (the Smog Check Pro-

gram) in 1984 in response to the 1977 Clean Air Act Amendments. The 1990 Clean Air 

Act Amendments required states to implement an enhanced inspection and maintenance 

program in areas with serious to extreme non-attainment of ozone limits. Several of Cal-

ifornia’s urban areas fell into this category, and in 1994, California’s legislature passed a 

redesigned inspection program was passed by California’s legislature after reaching a com-

promise with the EPA. The program was updated in 1997 to address consumer complaints, 

and fully implemented by 1998. Among other improvements, California’s new program in-

troduced a system of centralized “Test-Only” stations and an electronic transmission system 

for inspection reports.26 Today, more than a million smog checks take place each month. 

Since 1998, the state has been divided into three inspection regimes (recently expanded 

to four), the boundaries of which roughly correspond to the jurisdiction of the regional Air 

Quality Management Districts. “Enhanced” regions, designated because they fail to meet 

state or federal standards for CO and ozone, fall under the most restrictive regime. All of 

the state’s major urban centers are in Enhanced areas, including the greater Los Angeles, 

San Francisco, and San Diego metropolitan areas. Vehicles registered to an address in an 

Enhanced area must pass a biennial smog check in order to be registered, and they must 

take the more rigorous Acceleration Simulation Mode (ASM) test. The ASM test involves 

the use of a dynamometer, and allows for measurement of NOx emissions. In addition, a 

randomly selected two percent sample of all vehicles in these areas is directed to have their 

smog checks at Test-Only stations, which are not allowed to make repairs.27 Vehicles that 

match a “High Emitter Profile” are also directed to Test-Only stations, as are vehicles that 

26For more detailed background see http://www.arb.ca.gov/msprog/smogcheck/july00/if.pdf. 
27Other vehicles can be taken to Test-Only stations as well if the owner chooses, although they must get 

repairs elsewhere if they fail. 
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are flagged as “gross polluters” (those that fail an inspection with twice the legal limit of one 

or more pollutant in emissions). More recently some “Partial-Enhanced” areas that require 

a biennial ASM test have been added, but no vehicles are directed to Test-Only stations. 

Areas with poor air quality not exceeding legal limits fall under the Basic regime. Cars 

in a Basic area must have biennial smog checks as part of registration, but they are allowed 

to take the simpler Two Speed Idle (TSI) test and are not directed to Test-Only stations. 

The least restrictive regime, consisting of rural mountain and desert counties in the east and 

north, is known as the Change of Ownership area. As the name suggests, inspections in 

these areas are only required upon change of ownership; no biennial smog check is required. 

Our data from the Smog Check Program essentially comprise the universe of test records 

from January 1, 1996 to December 31, 2010. We were able to obtain test records only 

going back to 1996 because this was the year when the Smog Check Program introduced its 

electronic transmission system. Because the system seems to have been phased in during 

the first half of 1996, and major program changes took effect in 1998 we limit our sample to 

test records from January 1998 on. For our analyses, we use a 10 percent sample of VINs, 

selecting by the second to last digit of the VIN. We exclude tests that have no odometer 

reading, with a test result of “Tampered” or “Aborted” and vehicles that have more than 

36 tests in the span of the data. Vehicles often have multiple smog check records in a year, 

whether due to changes of ownership or failed tests, but we argue that more than 36 in what 

is at most a 12 year-span indicates some problem with the data.28 

A few adjustments must be made to accurately estimate VMT and emissions per mile. 

First, we adjust odometer readings for “roll overs” and typos. Many of the vehicles in our 

analysis were manufactured with 5-digit odometers–that is, five places for whole numbers 

plus a decimal. As such, any time one of these vehicles crosses over 100,000 miles, the 

odometer “rolls over” back to 0. To complicate matters further, sometimes either the vehicle 

owner or smog check technician notices this problem and records the appropriate number 

in the 100,000s place, and sometimes they do not. To address this problem, we employ an 

algorithm that increases the hundred thousands place in the odometer reading whenever a 

28For instance, there is one vehicle in particular, a 1986 Volvo station wagon, which has records for more 
than 600 smog checks between January 1996 and March 1998. The vehicle likely belonged to a smog check 
technician who used it to test the electronic transmission system. 
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rollover seems to have occurred. The hundred thousands are incremented if the previous test 

record shows higher mileage, or if the next test record is shows more than 100,000 additional 

miles on the odometer (indicating that the odometer had already rolled over, but the next 

check took this into account). The algorithm also attempts to correct for typos and entry 

errors. An odometer reading is flagged if it does not fit with surrounding readings for the 

same vehicle–either it is less than the previous reading or greater than the next–and cannot 

be explained by a rollover. The algorithm then tests whether fixing one of several common 

typos will make the flagged readings fit (e.g., moving the decimal over one place). If no 

correction will fit, the reading is replaced with the average of the surrounding readings. 

Finally, if after all our corrections any vehicle has an odometer reading above 800,000 or has 

implied VMT per day greater than 200 or less than zero, we exclude the vehicle from our 

analysis. All of our VMT analyses use this adjusted mileage. 

Emissions results from smog checks are given in either parts per million (for HC and NOx) 

or percent (O2, CO, and CO2). Without knowing the volume of air involved, there is no 

straightforward way to convert this to total emissions. Fortunately, as part of an independent 

evaluation of the Smog Check Program conducted in 2002-2003, Sierra Research Inc. and 

Eastern Research Group estimated a set of conversion equations to convert the proportional 

measurements of the ASM test to emissions in grams per mile traveled. These equations are 

reported in Morrow and Runkle (2005) and are reproduced below. The equations are for 

HCs, NOx, and CO, and estimate grams per mile for each pollutant as a non-linear function 

of all three pollutants, model year, and vehicle weight. The equations for vehicles of up to 
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model year 1990 are 

FTP HC = 1.2648 · exp(−4.67052 +0.46382 · HC ∗ + 0.09452 · CO ∗ + 0.03577 · NO ∗ 

+0.57829 · ln(weight) − 0.06326 · MY ∗ 

+0.20932 · T RUCK) 

FTP CO = 1.2281 · exp(−2.65939 +0.08030 · HC ∗ + 0.32408 · CO ∗ + 0.03324 · CO ∗2 

+0.05589 · NO ∗ + 0.61969 · ln(weight) − 0.05339 · MY ∗ 

+0.31869 · T RUCK) 

FTP NOX = 1.0810 · exp(−5.73623 +0.06145 · HC ∗ − 0.02089 · CO ∗2 + 0.44703 · NO ∗ 

+0.04710 · NO ∗2 + 0.72928 · ln(weight) − 0.02559 · MY ∗ 

−0.00109 · MY ∗2 + 0.10580 · T RUCK) 

Where 

HC ∗ = ln((Mode1HC · Mode2HC )
.5) − 3.72989 

CO ∗ = ln((Mode1CO · Mode2CO)
.5) + 2.07246 

NO ∗ = ln((Mode1NO · Mode2NO)
.5) − 5.83534 

MY ∗ = modelyear − 1982.71 

weight = Vehicle weight in pounds 

T RUCK = 0 if a passenger car, 1 otherwise 
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And for model years after 1990 they are: 

FTP HC = 1.1754 · exp(−6.32723 +0.24549 · HC ∗ + 0.09376 · HC ∗2 + 0.06653 · NO ∗ 

+0.01206 · NO ∗2 + 0.56581 · ln(weight) − 0.10438 · MY ∗ 

−0.00564 · MY ∗2 + 0.24477 · T RUCK) 

FTP CO = 1.2055 · exp(−0.90704 +0.04418 · HC ∗2 + 0.17796 · CO ∗ + 0.08789 · NO ∗ 

+0.01483 · NO ∗2 − 0.12753 · MY ∗ − 0.00681 · MY ∗2 

+0.37580 · T RUCK) 

FTP NOX = 1.1056 · exp(−6.51660 +0.25586 · NO ∗ + 0.04326 · NO ∗2 + 0.65599 · ln(weight) 

−0.09092 · MY ∗ − 0.00998 · MY ∗2 + 0.24958 · T RUCK) 

Where: 

HC ∗ = ln((Mode1HC · Mode2HC )
.5) − 2.32393 

CO ∗ = ln((Mode1CO · Mode2CO)
.5) + 3.45963 

NO ∗ = ln((Mode1NO · Mode2NO)
.5) − 3.71310 

MY ∗ = modelyear − 1993.69 

weight = Vehicle weight in pounds 

T RUCK = 0 if a passenger car, 1 otherwise 

C Steps to Clean DMV Data 

We deal with two issues associated with DMV data. The main issue is that DMV entries for 

the same addresses will often have slightly different formats. For example, “12 East Hickory 

Street” may show up as “12 East Hickory St,” “12 E. Hickory St.”, etc. To homogenize the 

entries, we input each of the DMV entries into mapquest.com and then replace the entry 

with the address that mapquest.com gives. 

Second, the apartment number is often missing in DMV data. Missing apartment num-

bers has the effect of yielding a large number of vehicles in the same “location.” We omit 
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observations that have over seven vehicles in a given address or more than three last names 

of registered owners. 

D Robustness Checks 

In this appendix, we report the results of several robustness checks to our main results 

on the intensive margin. Table A.2 reports elasticities by quartile for all five categories of 

externality. 

Our base specification controls for the fixed effect of a each NOx quartile on miles trav-

eled. One might be concerned, however, that variation in dollars per mile (DPM) might be 

correlated with other characteristics such as age, odometer, and demographics, and that the 

DPM-quartile interactions may be picking up this correlation, rather than true heterogene-

ity. To test for this, in Table A.5 we present results with vehicle fixed effects and interactions 

between NOx quartiles and various control variables. Adding these interaction terms actu-

ally makes the heterogeneity in the effect of DPM more pronounced. The final column in 

Table A.5 includes month-by-year fixed effects, therefore allowing for a completely flexible 

time trend. The degree of heterogeneity increases when we include these fixed effects. 

Table A.6 repeats the same exercise, but uses levels rather than logs of DPM as the 

variable of interest. The results are qualitatively similar, with substantial heterogeneity in 

every specification. However, with a log-linear specification we do not observe the cleanest 

vehicles having a positive coefficient. 

We also investigate the functional forms of these relationships in a semi-parametric way. 

For each externality, we define vehicles by their percentile of that externality. We then esti-

mate Equation (8) with separate elasticities for vehicles falling in the zero to first percentile, 

first to second, etc. Appendix Figure A.2 plots a LOWESS smoothed line through these 100 

separate elasticity estimates. For the three criteria pollutants, we find that the relationship 

is quite linear with the elasticity being positive for the cleanest 10 percent of vehicles. The 

dirtiest vehicles have elasticities that are roughly 0.4. For fuel economy, the relationship is 

fairly linear from the 60th percentile onwards, but begins steeply and flattens out from the 

20th percentile to the 40th. The elasticity of the lowest fuel economy vehicles is nearly 0.6. 

To put these numbers into context across the different years, the average fuel economy of 
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the 20th percentile is 18.7, while the average for the 40th percentile is 21.75. The variation 

in elasticities across weight is not monotonic. The relationship begins by increasing until 

roughly the 20th percentile, and then falls more or less linearly thereafter. The elasticity of 

the heaviest vehicles is roughly 0.3. 

Note that the roughly linear relationship between criteria pollutant emissions and the 

elasticity is not due to “over smoothing.” Appendix Figure A.3 plots the LOWESS smoothed 

lines for HCs under different bandwidths. The top left figure simply reports the 100 elas-

ticities. There is some evidence that the relationship is not monotonic early on, but from 

the 5th percentile on, the relationship appears monotonic. Doing this exercise for the other 

criteria pollutants yields similar results. 

E Details of the Gasoline Tax Policy Simulation 

For the intensive margin, we estimate a regression as in column 6 of Tables 2 and A.2, except 

that we interact ln(DPM) with quartile of fuel economy, vehicle weight, and emissions of HC, 

NOx, and CO, and dummies for vehicle age bins, again using bins of 4-9, 10-15, and 16-29 

years, and control for the direct effects of quartiles of HC, NOx, and CO emissions. We use 

quartiles calculated by year and age bin. The coefficients are difficult to interpret on their 

own, and too numerous to list. However, most are statistically different from zero, and the 

exceptions are due to small point estimates, not large standard errors. 

As in Section G, we compress our dataset to have at most one observation per vehicle per 

year. Each vehicle is then assigned an elasticity based on its quartiles and age bin. Vehicle 

i’s VMT in the counterfactual with an additional $1 tax on gasoline is calculated by: 

� � 
Pi + 1 

V MT i = V MT i · · βi ,counterfactual BAU Pi 

where V MT i is vehicle i’s actual average VMT per day between its current and previous BAU 

smog check, Pi is the average gasoline price over that time, and βi is the elasticity for the 

fuel economy/weight/HC/NO/CO/age cell to which i belongs. 

For the extensive margin, we estimate a Cox regression on the hazard of scrappage for 

vehicles 10 years and older, stratifying by VIN prefix and interacting DPM with all five 

type of quartiles and age bins 10-15 and 16-29. Similar to the intensive margin, we assign 
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each vehicle a hazard coefficient based on its quartile-age cell. Cox coefficients can be 

transformed into hazard ratios, but to simulate the affect of an increase in gasoline prices on 

the composition of the vehicle fleet, we must convert these into changes in total hazard. 

To do this, we first calculate the actual empirical hazard rate for prefix k in year t as: 

Dkt 
OrigHazardkt = ,

Rkt 

where Dkt is the number of vehicles in group k, that are scrapped in year t, and Rkt is the 

number of vehicle at risk (that is, which have not previously been scrapped or censored). 

We then use the coefficients from our Cox regression to calculate the counterfactual hazard 

faced by vehicles of prefix k in quartile-age group q during year t as:29 

� � 
1 

NewHazardqkt = OrigHazardkt · exp · γq ,
MPGk 

where MPGk is the average fuel economy of vehicle of prefix k and γq is the Cox coefficient 

associated with quartile group q. We then use the change in hazard to construct a weight 

Hqkt indicating the probability that a vehicle of prefix k in quartile group q in year t would 

be in the fleet if a $1 gasoline tax were imposed. Weights greater than 1 are possible, which 

should be interpreted as a Hqkt − 1 probability that another vehicle of the same type would 

be on the road, but which was scrapped under “Business as Usual.” Because the hazard is 

the probability of scrappage in year t, conditional on survival to year t, this weight must be 

calculated interactively, taking into account the weight the previous year. Specifically, we 

have: 
tY 

Hqkt = (1 − (NewHazardqkj − OrigHazardkt)). 
j=1998 

We also assign each vehicle in each year a population weight. This is done both to scale 

our estimates up to the size of the full California fleet of personal vehicles, and to account for 

the ways in which the age composition of the smog check data differs from that of the fleet. 

We construct these weights using the vehicle population estimates contained in CARB’s 

EMFAC07 software, which are given by year, vehicle age, and truck status. Our population 

weight is the number of vehicles of a given age and truck status in a each year given by 

29Note that age group is determined by model-year and year. 
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EMFAC07, divided by the number of such vehicle appearing in our sample. For instance, if 

EMFAC07 gave the number of 10-year-old trucks in 2005 as 500, while our data contained 

50, each 10-year-old truck in our data would have a population weight of 10. Denote the 

population weight by Ptac, where t is year, a is age, and c is truck status. 

There is an additional extensive margin that we have not estimated in this paper: new 

car purchases. To ensure that the total vehicle population is accurate, we apply an ad hoc 

correction based on Busse et al. (forthcoming), who find that a $1 increase in gasoline prices 

would decrease new car sales by 650,000 per year. Because California’s vehicle fleet makes 

up about 13 percent of the national total, we decrease the population of model years 1998 

and later by 84,500 when constructing the population weight for the counterfactual. We 

apply 40 percent of the decrease to trucks, and 60 percent to passenger cars. Denote the 

“new car effect” nc. 

We estimate the total annual emissions by passenger vehicle in California of NOx, HC, 

CO, and CO2 as actually occurred, and under a counterfactual where a $1 gasoline tax was 

imposed in 1998. Let i denote a vehicle, a vehicle age, c truck status. Then the annual 

emissions of pollutant p in year t under “business as usual” are: X 
Emissionpt = · V MT i · ri(p) · 365,BAU Ptac BAU 

i 

and under the counterfactual they are: X 
Emissionpt = (Ptac−1(model year >= 1998)·nc)·Hqkt ·V MT i counterfactual counterfactual ·ri(p)·365, 

i 

where ri(p) is the emissions rate per mile of pollutant p for vehicle i. For NOx, HC, and 

CO, this is the last smog check reading in grams per mile, while for CO2 this is the vehicle’s 

gallons per mile multiplied by 19.2 pounds per gallon. 

F California versus the Rest of the United States 

Given that our empirical setting is California, it is natural to ask whether our results are 

representative of the country as a whole. At the broadest level, the local-pollution benefits 

from carbon pricing are a function of the per-capita number of miles driven, the emission 

characteristics of the fleet of vehicles, and the marginal damages of the emissions. We present 
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evidence that the benefits may, in fact, be larger outside of California. The reason for this 

is that while the marginal damages are indeed larger in California, the vehicle stock in 

California is much cleaner than the rest of the country because California has traditionally 

led the rest of the U.S. in terms of vehicle-emission standards. 

The results in Muller and Mendelsohn (2009) provide a convenient way to test whether 

California differs in terms of marginal damages. Table A.12 presents points on the dis-

tribution of marginal damages for NOx, HCs, and the sum of the two, weighted by each 

county’s annual VMT.30 Figure A.6 plots the kernel density estimates of the distributions. 

We present the sum of because counties are typically either “NOx constrained” or “VOC 

(HC) constrained,” and the sum is perhaps more informative. As expected, the marginal 

damages are higher in California for HCs, but lower for NOx, as California counties tend 

to be VOC-constrained. The sum of the two marginal damages is 78 percent higher in 

California. Higher points in the distribution show an even larger disparity. 

Larger marginal damages are offset, however, by the cleaner vehicle stock within California— 

a result of California’s stricter emission standards. To illustrate this, we collected county-level 

average per-mile emission rates for NOx, HCs, and CO from the EPA Motor Vehicle Emis-

sion Simulator (MOVES). MOVES reports total emissions from transportation and annual 

mileage for each county. Table A.12 also presents points on the per-mile emissions, and 

Figure A.7 plots the distributions.31 Mean county-level NOx, HCs, and CO are 67, 36, and 

31 percent lower in California, respectively. Other points in the distributions exhibit similar 

patterns. 

Finally, we calculate the county-level average per-mile externality for each pollutant, as 

well as the sum of the three. Table A.12 and Figure A.8 illustrates these. As expected, 

the HC damages are higher, but the average county-level per-mile externality from the sum 

of the three pollutants is 30 percent lower in California than the rest of the country; the 

25th percentile, median, and 75th percentile are 35, 30, and 9 percent lower, respectively. 

These calculations suggest that, provided the average VMT elasticities are not significantly 

30All of the points on the distribution and densities discussed in this section weight each county by its 
total VMT. 

31We note that the emissions reported in MOVES exceed the averages in our data. This may reflect the 
fact that smog checks are not required for vehicles with model years before 1975, and these vehicles likely 
have very high emissions because this pre-dates many of the emission standards within the U.S. 
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smaller outside of California and/or the heterogeneity across vehicle types is not significantly 

different (in the reverse way), our estimates are likely to apply to the rest of the country. 

G Scrappage Decisions 

Our next set of empirical models examines how vehicle owners’ decisions to scrap their vehi-

cles due to gasoline prices. Again we will also examine how this effect varies over emissions 

profiles. 

We determine whether a vehicle has been scrapped using the data from CARFAX Inc. 

We begin by assuming that a vehicle has been scrapped if more than a year has passed 

between the last record reported to CARFAX and the date when CARFAX produced our 

data extract (October 1, 2010). However, we treat a vehicle as being censored if the last 

record reported to CARFAX was not in California, or if more than a year and a half passed 

between the last smog check in our data and that last record. As well, to avoid treating 

late registrations as scrappage, we treat all vehicles with smog checks after 2008 as censored. 

Finally, to be sure we are dealing with scrapping decisions and not accidents or other events, 

we only examine vehicles that are at least 10 years old. 

Some modifications to our data are necessary. To focus on the long-term response to 

gasoline prices, our model is specified in discrete time, denominated in years. Where vehicles 

have more than one smog check per calendar year, we use the last smog check in that year. 

Also, because it is generally unlikely that a vehicle is scrapped at the same time as its last 

smog check, we create an additional observation for scrapped vehicles either one year after 

the last smog check, or six months after the last CARFAX record, whichever is later. For 

these created observations, odometer is imputed based on the average VMT between the 

last two smog checks, and all other variables take their values from the vehicle’s last smog 

check. An exception is if a vehicle fails the last smog check in our data. In this case, we 

assume the vehicle was scrapped by the end of that year. 

Because many scrapping decisions will not take place until after our data ends, a hazard 

model is needed to deal with right censoring. Let Tjivg be the year in which vehicle i, of 

vehicle type j, vintage v, and geography g, is scrapped. Assuming proportional hazards, our 
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basic model is: 

jv(t) · exp{βxDP Migt + γDfailitPr[t < Tijvg < t + 1|T > t] = h0 + ψGigt + αXit}, 

where DP Migt is defined as before; Dfailit is a dummy equal to one if the vehicle failed a 

smog check any time during year t; G is a vector of demographic variables, determined by 

the location of the smog check; X is a vector of vehicle characteristics, including a dummy 

for truck and a sixth-order polynomial in odometer; and h0 
ijv(t) is the baseline hazard rate, 

which varies by time but not the other covariates. In some specifications, we will allow each 

vehicle type and vintage to have its own baseline hazard rate. 

We estimate this model using semi-parametric Cox proportional hazards regressions, 

leaving the baseline hazard unspecified. We report exponentiated coefficients, which may 

be interpreted as hazard ratios. For instance, a 1 unit increase in DPM will multiply the 

hazard rate by exp{β}, or increase it by (exp{β} − 1) percent. In practice, we scale the 

coefficients on DPM for a 5-cent change, corresponding to a $1.00 increase in gasoline prices 

for a vehicle with fuel economy of 20 miles per gallon. 

Tables A.3 and A.4 show the results of our hazard analysis. Models 1 and 2 of Table A.3 

assign all vehicles to the same baseline hazard function. Model 1 allows the effect of gasoline 

prices to vary by whether or not a vehicle failed a smog check. Model 2 also allows the effect 

of gasoline prices to vary by quartiles of NOx. 32 Models 3 and 4 are similar, but stratify the 

baseline hazard function, allowing each VIN prefix to have its own baseline hazard function. 

Model 5 allows the effect of gasoline prices to vary both by externality quartile and age 

group, separating vehicles 10 to 15 years old from vehicles 16 years and older. 

Models 1 and 2 indicate that increases in gasoline prices actually decrease scrapping on 

average, with the cleanest vehicles seeing the largest decreases. The effect is diminished 

once unobserved heterogeneity among vehicle types is controlled for, but is still statistically 

significant. However, the true heterogeneity in the effect of gasoline prices on hazard seems 

to be over age groups. Model 5 shows that when the cost of driving a mile increases by five 

cents, the hazard of scrappage decreases by about 23 percent for vehicles between 10 and 

15 years old, while it increases by around 3 percent for vehicles age 16 and older, with little 

32Quartiles in these models are calculated by year among only vehicles 10 years and older. 
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variation across NOx quartiles within age groups. These results suggests that when gasoline 

prices rise, very old cars are scrapped, increasing demand for moderately old cars and thus 

reducing the chance that they are scrapped. 

Table A.4 presents the quartile by age by DPM interactions for each of the 5 externality 

dimensions. Hydrocarbons and CO have the identical pattern to NOx, with no heterogeneity 

within age-group. With fuel economy and vehicle weight, there is within-age heterogeneity, 

although the form is counter-intuitive. The heaviest and least fuel-efficient vehicles are 

relatively less likely thank the lightest and most fuel-efficient vehicles to be scrapped when 

gasoline prices increase. That is, while all 10- to 15-year-old vehicles are less likely to be 

scrapped, the decrease in hazard rate is larger for heavy, gas-guzzling vehicles. For vehicles 

16 years and older, the heaviest quartile is less likely to be scrapped when gasoline prices 

increase, even though the lightest (and middle quartiles) are more likely. As the model 

stratifies by VIN prefix, this cannot be simply that more durable vehicles have lower fuel 

economy. 

In summary, increases in the cost of driving a mile over the long term increase the 

chance that old vehicles are scrapped, while middle-aged vehicles are scrapped less, perhaps 

because of increased demand. Although vehicle age is highly correlated with emissions of 

criteria pollutants, there is little variation in the response to gasoline prices across emissions 

rates within age groups. 

H Income Distribution Adjustment 

In section 7, we assign income brackets to individual consumers using the method of Boren-

stein (2012). Here we briefly describe the details of that procedure; for more details see 

Borenstein (2012). 

Borenstein shows that household consumption levels of some commodity (gasoline in 

our case) within income brackets can be bounded between the case where the ranking of 

household incomes is sorted by consumption levels (usage-ranking), and the case where 

the ranking of household incomes is random with respect to consumption levels (random 

ranking). If one can calculate the average consumption by income bracket, one can calculate 

a weighting between usage-ranking and random-ranking that correctly assigns households to 
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income brackets based on their consumption. Borenstein proposes calculating these averages 

from a separate dataset that contains individual level income and consumption, if one can 

be found. We utilize the 2009 NHTS for this purpose. 

Formally, let ḡ b denote the average gasoline consumption for consumers living in Cali-

fornia in income group b in the 2009 NHTS. The N vehicles registered in each census block 

group (CBG) in California and appearing in the Smog Check data are to be assigned an 

integer rank from 1 to N , intended to correspond to the income ranking of the household 

those vehicles belong to. If scb denotes the number of households falling into income bracket b 

in CBG c in the 2000 Census, and hb denotes the number of vehicles per household in income 

bracket b, then, for instance, vehicles ranked from 1 to fracNsb ∗ hb will fall into bracket 1. 

The ranking for vehicle i will be vi(w) = (1 − w) · rrr + w · rur, where rrr is drawn randomly 

from a uniform distribution over [1, N ], producing random-ranking, while rur sorts vehicles 

by gasoline consumption, producing usage ranking. Any choice of w will produce a joint 

ranking within CBGs, leading to a statewide average within-bracket gasoline consumption 

level of g̃b within the Smog Check data.33 

The income brackets given at the CBG level in the 2000 census can be pooled into groups 

roughly approximating deciles of the total income distribution in California. The NHTS gives 

income in brackets as well, which can be grouped into 8 groups corresponding to the first 7 

“deciles” in the Census data, plus the top 3 deciles topcoded into one income bracket. We 

calculate w based on the 8 groupings in the NHTS data, but when using that w to assign 

vehicles to income brackets, we use the ranking implied by w to distribute vehicles across 

the top 3 deciles. We choose w to minimize the following goodness-of-fit measure: 

8X 
G = sb(g̃b − ḡ b) 

b=1 

That is, we choose w such that when vehicles in the Smog Check Data are ranked into 

income brackets, the average gasoline usage in each income bracket matches the average 

gasoline usage for that income bracket in the 2009 NHTS. 

33Ideally this calculation would use a CBG-specific w, however the NHTS does not provide geographic 
data at that level. Borenstein (2012) has the same limitation. 
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Table A.2: Vehicle Miles Travelled, Dollars Per Mile, and Externality Quartiles 

Quartile Nitrogen Oxides Hydrocarbons Carbon Monoxide Fuel Economy Vehicle Weight 

1 0.0425 0.0486 0.0466 -0.169 -0.111 

2 -0.0540 -0.0550 -0.0527 -0.159 -0.114 

3 -0.152 -0.149 -0.149 -0.104 -0.145 

4 -0.280 -0.305 -0.307 -0.0986 -0.167 

Coefficients are elasticities calcualted by regressing the log of average daily VMT between Smog Checks on the log 
of the gas price in dollars per mile, interacted with quartiles of the pollutants indicated. Quartiles are based on 
rankings of within the calendar year in which the Smog Check occurs. All regressions controll for direct effects of 
the quartiles, a quadratic time trend, demographics of the zip code where the Smog Check occurs, calendar-year 
fixed effects, vehicle age fixed effects, and vehicle fixed effects. 
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Table A.3: Hazard of Scrappage: Cox Proportional Hazard Model 

Model 1 Model 2 Model 3 Model 4 Model 5 

Dollars per Mile 0.920* 0.965* 
(0.039) (0.018) 

DPM * Failed Smog Check 1.105** 1.074** 1.063** 1.043* 
(0.029) (0.026) (0.021) (0.020) 

Failed Last Smog Check 7.347** 7.800** 7.639** 8.155** 
(0.242) (0.246) (0.161) (0.173) 

DPM * NO Quartile 1 0.801** 0.893** 
(0.044) (0.035) 

DPM * NO Quartile 2 0.862** 0.923** 
(0.038) (0.026) 

DPM * NO Quartile 3 0.883** 0.956* 
(0.034) (0.017) 

DPM * NO Quartile 4 0.929* 0.983 
(0.033) (0.010) 

Vehicle Ages 10-15 

DPM * NO Quartile 1 1.285** 
(0.023) 

DPM * NO Quartile 2 1.287** 
(0.018) 

DPM * NO Quartile 3 1.291** 
(0.014) 

DPM * NO Quartile 4 1.254** 
(0.012) 

Failed Smog Check 8.732** 
(0.380) 

DPM * Failed Smog Check 0.910** 
(0.014) 

Vehicle Ages 16+ 

DPM * NO Quartile 1 0.751** 
(0.016) 

DPM * NO Quartile 2 0.745** 
(0.014) 

DPM * NO Quartile 3 0.745** 
(0.011) 

DPM * NO Quartile 4 0.737** 
(0.008) 

Failed Smog Check 7.765** 
(0.286) 

DPM * Failed Smog Check 1.185** 
(0.026) 

Station ZIP Code Characteristics Yes Yes Yes Yes Yes 
Quadratic Time Trend in Days Yes Yes Yes Yes Yes 
Vehicle Characteristics Yes Yes Yes Yes Yes 
Quartiles of NO No Yes No Yes Yes 
Stratified on Vin Prefix No No Yes Yes Yes 
Observations 31567473 26720283 31567473 26720283 26720283 

Note: Coefficients on dollars per mile scaled for a 5-cent change 
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Table A.5: Robustness Check—Intensive Margin Interacting NOx Quartiles With Other 
Controls 

(1) (2) (3) (4) (5) (6) 

ln(DPM) * NO Q1 0.0406 
(0.0231) 

0.0381 
(0.0250) 

0.0678∗ 

(0.0339) 
0.0605 
(0.0335) 

0.0590 
(0.0333) 

0.0666 
(0.121) 

ln(DPM) * NO Q2 -0.0617∗ 

(0.0261) 
-0.0581∗ 

(0.0269) 
-0.0453 
(0.0309) 

-0.0478 
(0.0310) 

-0.0484 
(0.0308) 

-0.0410 
(0.121) 

ln(DPM) * NO Q3 -0.158∗∗∗ 

(0.0271) 
-0.155∗∗∗ 

(0.0272) 
-0.166∗∗∗ 

(0.0282) 
-0.165∗∗∗ 

(0.0291) 
-0.165∗∗∗ 

(0.0294) 
-0.157 
(0.120) 

ln(DPM) * NO Q4 -0.288∗∗∗ 

(0.0300) 
-0.298∗∗∗ 

(0.0302) 
-0.355∗∗∗ 

(0.0325) 
-0.353∗∗∗ 

(0.0332) 
-0.351∗∗∗ 

(0.0331) 
-0.344∗∗ 

(0.120) 

NO Q2 0.378 
(0.800) 

0.327 
(0.735) 

-2.622 
(1.622) 

-3.925∗ 

(1.693) 
-3.954∗ 

(1.673) 
-4.916∗∗ 

(1.732) 

NO Q3 -1.246 
(1.012) 

-1.447 
(0.899) 

-5.233∗∗∗ 

(1.447) 
-6.846∗∗∗ 

(1.524) 
-6.793∗∗∗ 

(1.508) 
-7.987∗∗∗ 

(1.566) 

NO Q4 -2.297∗ 

(1.116) 
-2.951∗∗ 

(1.084) 
-9.696∗∗∗ 

(2.257) 
-11.39∗∗∗ 

(2.253) 
-11.26∗∗∗ 

(2.271) 
-12.60∗∗∗ 

(2.301) 

Quartile-Time Trend Interactions Yes Yes Yes Yes Yes Yes 

Vintage-Quartile Interactions No Yes Yes Yes Yes Yes 

Quartile-Year Interactions No No Yes Yes Yes Yes 

Quartile-Lagged Odometer Interactions No No No Yes Yes Yes 

Quartile-Demographics Interactions No No No No Yes Yes 

Calendar Month Fixed-Effects No No No No No Yes 

N 2979289 2979289 2979289 2979289 2979289 2979289 

Note: All regressions include vehicle fixed-effects, year fixed effects, vintage/truck fixed effects, a quadratic time trend, a 
sixth order polynomial in the odometer reading at previous Smog Check, and ZIP code level demographic characteristics. 
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Table A.6: Robustness Check—Intensive Margin Interacting NOx Quartiles With Other 
Controls 

(1) (2) (3) (4) (5) (6) 

DPM * NO Q1 

DPM * NO Q2 

DPM * NO Q3 

DPM * NO Q4 

NO Q2 

NO Q3 

NO Q4 

-2.676∗∗∗ 

(0.359) 

-3.337∗∗∗ 

(0.359) 

-3.925∗∗∗ 

(0.389) 

-4.642∗∗∗ 

(0.425) 

0.958 
(0.674) 

0.242 
(0.889) 

0.615 
(1.015) 

-2.807∗∗∗ 

(0.350) 

-3.358∗∗∗ 

(0.357) 

-3.941∗∗∗ 

(0.391) 

-4.720∗∗∗ 

(0.433) 

0.821 
(0.613) 

-0.00702 
(0.798) 

0.124 
(0.999) 

-2.294∗∗∗ 

(0.301) 

-3.075∗∗∗ 

(0.334) 

-3.858∗∗∗ 

(0.397) 

-4.970∗∗∗ 

(0.444) 

-5.997∗∗∗ 

(1.330) 

-8.999∗∗∗ 

(1.563) 

-12.63∗∗∗ 

(2.173) 

-2.412∗∗∗ 

(0.347) 

-3.128∗∗∗ 

(0.355) 

-3.881∗∗∗ 

(0.395) 

-4.974∗∗∗ 

(0.440) 

-7.404∗∗∗ 

(1.391) 

-10.74∗∗∗ 

(1.619) 

-14.43∗∗∗ 

(2.181) 

-2.421∗∗∗ 

(0.345) 

-3.129∗∗∗ 

(0.354) 

-3.875∗∗∗ 

(0.394) 

-4.957∗∗∗ 

(0.442) 

-7.433∗∗∗ 

(1.384) 

-10.69∗∗∗ 

(1.605) 

-14.34∗∗∗ 

(2.205) 

-5.089∗∗∗ 

(0.696) 

-5.339∗∗∗ 

(0.631) 

-5.728∗∗∗ 

(0.631) 

-6.482∗∗∗ 

(0.653) 

-4.917∗∗ 

(1.567) 

-6.708∗∗∗ 

(1.527) 

-9.222∗∗∗ 

(2.227) 

Quartile-Time Trend Interactions Yes Yes Yes Yes Yes Yes 

Vintage-Quartile Interactions No Yes Yes Yes Yes Yes 

Quartile-Year Interactions No No Yes Yes Yes Yes 

Quartile-Lagged Odometer Interactions No No No Yes Yes Yes 

Quartile-Demographics Interactions No No No No Yes Yes 

Calendar Month Fixed-Effects No No No No No Yes 

N 2979289 2979289 2979289 2979289 2979289 2979289 

Note: All regressions include vehicle fixed-effects, year fixed effects, vintage/truck fixed effects, a quadratic time trend, a 
sixth order polynomial in the odometer reading at previous Smog Check, and ZIP code level demographic characteristics. 
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Table A.7: Ratio of Remaining Deadweight Loss With Tax to Deadweight Loss with No 
Tax: Calibration 

σ2 σ2 
B ρ R(τnaive) R(τ ∗) 

1998 1.407 1.465 0.322 0.789 0.755 
1999 1.408 1.471 0.299 0.785 0.755 
2000 1.438 1.486 0.308 0.794 0.763 
2001 1.457 1.496 0.311 0.799 0.767 
2002 1.492 1.506 0.283 0.802 0.775 
2003 1.517 1.535 0.283 0.807 0.781 
2004 1.525 1.531 0.265 0.806 0.782 
2005 1.474 1.539 0.265 0.796 0.771 
2006 1.482 1.539 0.251 0.795 0.773 
2007 1.487 1.547 0.247 0.796 0.774 
2008 1.498 1.533 0.252 0.799 0.777 

Average 1.471 1.513 0.281 0.797 0.770 

Table A.8: Ratios of DWL with Tax to DWL With No Tax, Scrapping Most Polluting 
Vehicles 

Percentile Scrapped 

None 1% 2% 5% 10% 25% 

1998 
1999 
2000 
2001 
2002 
2003 
2004 
2005 
2006 
2007 
2008 

0.434 
0.426 
0.433 
0.472 
0.490 
0.503 
0.544 
0.548 
0.595 
0.585 
0.605 

0.338 
0.338 
0.350 
0.373 
0.407 
0.433 
0.464 
0.485 
0.511 
0.534 
0.556 

0.316 
0.323 
0.336 
0.358 
0.396 
0.424 
0.456 
0.479 
0.506 
0.532 
0.558 

0.293 
0.308 
0.323 
0.347 
0.388 
0.419 
0.455 
0.482 
0.518 
0.552 
0.590 

0.286 
0.307 
0.323 
0.358 
0.398 
0.436 
0.485 
0.520 
0.577 
0.625 
0.681 

0.323 
0.374 
0.405 
0.514 
0.546 
0.624 
0.686 
0.708 
0.757 
0.779 
0.806 

Average 0.512 0.435 0.426 0.425 0.454 0.593 

Notes: DWL with no tax calculated based on the difference in 
emissions from imposing a tax equal to the actual externality 
per gallon consumed by a particular car. SBO tax computed 
as the weighted average of externality per gallon, using the 
negative slope of the vehicle’s demand curve as the weight. All 
taxes also weight vehicles by the frequency with which vehicles 
of the same vintage and class appear in the California fleet as 
a whole. 
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Table A.12: Percentage Difference Between California and the rest of the US 

25th Percentile Median 75th Percentile Mean 

NOx g/mi -0.230 -0.291 -0.338 -0.282 

NOx Damage/ton (MM) -0.439 -0.525 -0.558 -0.685 

NOx Damage/mi -0.595 -0.657 -0.712 -0.761 

HC g/mi -0.262 -0.321 -0.410 -0.354 

HC Damage/ton 1.475 2.558 5.318 1.821 

HC Damage/mi 0.602 1.134 3.358 1.035 

CO g/mi -0.226 -0.321 -0.366 -0.320 

CO Damage/mi -0.226 -0.321 -0.366 -0.320 

NOx + HC Damage/ton (MM) 0.0191 0.994 2.337 0.787 

NOx + HC + CO Damage/mi -0.353 -0.299 -0.0883 -0.295 

Notes: The table reports the coefficient on the California dummy divided by the constant. 

All differences are statistically significant at the 0.001 level, except for NOx g/mi and 

HC Damage/mi at the 25th percentile (significant at the 0.05 level), and NOx Damage/mi. 
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