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Disclaimer   

The statements and conclusions in this report are those of the contractor and not necessarily those of 
the California Air Resources Board. The mention of commercial products, their source, or their use in 
connection with material reported herein is not to be construed as actual or implied endorsement of 
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Abstract  

The purpose of this project was to develop a new methodology to characterize truck body types along 
California Freeways.  With new information on truck activity by body types, results from this study are 
expected to improve heavy duty vehicle classification in the Emission Factors (EMFAC) model and the 
California Vehicle Activity Database (CalVAD), and provide critical data that is required for the analysis of 
freight movement that will benefit the California Statewide Freight Forecasting Model (CSFFM) and 
other freight- or truck-related studies.   
 
This study sought to develop two types of classification models: the first from the combination of 
inductive loop signature and weigh-in-motion (WIM) data, and the second from standalone inductive 
loop signature data.  The key benefit of these models is their readiness for implementation at existing 
traffic detector infrastructure such as inductive loop detector (ILD) and WIM sites.  It was demonstrated 
through this study that the modifications to existing inductive loop detector and WIM sites were 
minimal, and did not compromise existing operations.  The standalone inductive signature classification 
model (designed for implementation an existing ILD sites) demonstrated the ability to distinguish over 
40 truck configurations, while the combined inductive loop signature and WIM classification model was 
able to identify over 60 truck types.  These models were subsequently deployed at sixteen selected sites 
in the California San Joaquin Valley.  A prototype web interface called the Truck Activity Monitoring 
System (TAMS, http://freight.its.uci.edu/tams) was designed to generate dynamic reports of the results 
via an interactive web-based user interface. 
 
Other models developed in this study include a method for estimating truck volumes by a reduced 
number of body types from standalone WIM data, an optimal site selection model for determining the 
optimal sites for deployment of the advanced classification system developed in this study, and a 
method for estimating gross vehicle weight distributions at inductive loop detector sites instrumented 
with inductive signature technology by using data obtained from affiliated WIM sites. 
 
The project was separated into three phases: proof-of-concept truck body classification models were 
developed in Phase 1; model enhancement was performed in Phase 2; and system deployment took 
place as Phase 3.   
 
 
Keywords 
Truck body classification, inductive loop signature, Weigh-in-motion (WIM), truck activity monitoring 
system 
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Executive Summary 

Background 

The purpose of this project was to develop a new methodology to characterize truck body types along 
California Freeways.  With new information on truck activity by body types, results from this study are 
expected to improve heavy duty vehicle classification in the Emission Factors (EMFAC) model and the 
California Vehicle Activity Database (CalVAD), and provide critical data that is required for the analysis of 
freight movement that will benefit the California Statewide Freight Forecasting Model (CSFFM) and 
other freight- or truck-related studies.   
 
In this project, inductive signature technology was used to develop and deploy an advanced vehicle 
classification system comprising two distinct classification models at sixteen selected locations for two 
types of facilities: existing inductive loop detector (ILD) and weigh-in-motion (WIM) sites.  ILD sites 
currently provide only vehicle volume counts.  And although WIM sites provide axle-based truck 
classification and axle weight data, they cannot provide information on truck configuration that can 
provide further insight on industry and freight activity.  Through this study, it is now possible to obtain 
higher resolution truck data which can enable more accurate estimates of GHG and other truck 
emissions, allow for decision makers to make more informed decisions for pavement management 
across a wider range of locations, and provide insight into the spatial distribution of body types for 
freight forecasting applications.  The project will enhance CalVAD by incorporating a higher level of 
detail of commercial vehicle body classes, thus expanding the estimation of heavy-heavy duty truck 
(HHDT) activity by CalVAD.   It will also be used to improve the EMFAC model by increasing the number 
of truck types in the model and will improve on the understanding of truck activity in the State of 
California. 
 
The project was divided into three phases with the following accomplishments: Phase 1 developed 
proof-of-concept body classification models; Phase 2 enhanced the proof-of-concept models and 
created techniques for obtaining body classification predictions for historical WIM data; and Phase 3 
deployed the developed classification models to selected WIM and ILD sites located in California’s 
Central Valley.   

Objectives and Methods 

The research carried out under this project represents a completely new method for obtaining high 
resolution truck data. The objectives of Phase 1 included the (1.1) development of body type 
classification models using inductive signature data, (1.2) development of body type classification 
models using inductive signature data fused with WIM data, and (1.3) investigation of hardware 
interface configurations between WIM controllers and inductive signature technologies.  Phase 2 
objectives included (2.1) data collection, (2.2) model enhancement, (2.3) development of a methodology 
to propagate weight data to ILD locations, (2.4) development of a method to generate body class 
estimates from historical WIM data, and (2.5) development of an optimal facility location model.  Lastly, 
Phase 3 was comprised of (3.1) equipment and model deployment to selected ILD and WIM sites and 
(3.2) system shakedown efforts for deployed sites.   
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Phases 1 and 2 required extensive data collection for model development and enhancement. Data was 
collected at seven WIM sites and one ILD site across California.   Collected data – comprising inductive 
loop signatures, WIM controller outputs, and still images – were pre-processed, loaded into a relational 
database, and processed using a specially developed software user interface designed to assist with 
associating each collected sample’s data (signature, WIM data, and photo) and classifying the record 
according to a preliminary body configuration classification scheme.  The truck body configuration 
classification scheme was originally derived from the body classes defined in the 2002 Vehicle Inventory 
and Use Survey (VIUS), and was further refined to reflect the variety of body configurations observed in 
the collected data.  The proof-of-concept model for ILD-based classification included data from a single 
ILD site while the proof-of-concept model for loop and WIM focused only on the two most common 
truck classes: the FHWA class 5 single-unit two-axle trucks and FHWA class 9 five-axle semi-tractor-
trailers.   
 
Unlike the proof of concept models developed during Phase 1 which employed a Feed Forward Neural 
Network model architecture, the fully enhanced models developed in Phase 2 adopted a multiple 
classifier systems approach with probabilistic model combination to produce even more accurate and 
detailed truck body class predictions for all vehicle types ranging from two axle pickup trucks to six or 
more axle semi-tractor trailers.   
 
For the propagation of weight data to ILD sites (Task 2.3), a Gaussian Mixture Model (GMM) approach 
was employed in conjunction with Global Positioning Data (GPS) of truck trajectories to model the gross 
vehicle weight distribution of trucks at ILD sites by body type.   
 
For the backcasting task (Task 2.4), historical estimates of body class volumes of five axle semi-trailers 
were estimated from WIM axle weight, spacing, and length data using a modified decision tree 
framework while historical estimates of gross vehicle weight distributions were estimated by body class 
using GMMs in combination with the modified decision tree approach.   
 
Lastly, a method to select the deployment locations of the body classification models utilized an 
optimization model that selects the optimal site locations that capture the most number of unique truck 
trajectories in the GPS data set. 

Results  

Two main classification models were developed in this study: the truck body classification models for 
WIM sites, and ILD sites. 
 
The enhanced body classification models produced for WIM sites are subdivided by FHWA axle class 
such that each axle class has a unique set of body classes and resulting correct classification rates (CCR).  
Overall, the nine axle stratified models produce a total of 63 body classes with individual models ranging 
from four to 16 body classes.  The CCRs were in the approximate range of 75% to 96%.    
 
The ILD body classification model was stratified into three tiers with the first tier predicting the general 
vehicle configuration of the vehicle as a single unit or multi-unit truck, the second tier predicting the 
body configuration, and the final tier predicting the body class.  In summary, the ILD model consisted of 
47 body classes across four body configuration groups with CCR ranging from 72% to 94%.    
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The backcasting approach was applied to five axle semi-tractor trailers to predict volumes by trailer 
body type across five trailer classes: vans, tanks, platforms, intermodal containers, and others.  The 
model produces body class volumes estimates with low error in the range of approximately 5% absolute 
percent error in volume.  Finally, for the propagation of gross vehicle weight (GVW) to ILD site locations, 
accuracy of the model was determined by applying a hold-one-out method in which the GVW was 
estimated for an individual WIM site and compared to the observed GVW distribution at that site.  This 
was repeated for all WIM sites.  Approximately 65% of the predicted GVW distributions were found to 
be statistically significant representations of the observed distributions at the 95% confidence level.   
 
The deliverables and results related to hardware development were demonstrated as part of the Phase 
3 deployments to the sixteen selected sites (4 WIM and 12 ILD site locations) in the California San 
Joaquin Valley Air Basin.  The deployment locations are shown in Figure ES-1.   The deployment was 
performed on a variety of facility types, including freeways, highways and arterials. 
 

 

Figure ES-1 Overview of site deployments 

Data from the deployed sites were live-streamed, processed and archived into a relational database 
during the deployment period.  The prototype Truck Activity Monitoring System (TAMS) web-interface1 

                                                           
1
 http://freight.its.uci.edu/tams 

http://freight.its.uci.edu/tams
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was developed to provide access to on-demand detailed hourly summary reports of the body 
classification models at the deployed sites (sample queries results from TAMS are shown in Figure ES-2). 
 

 

Figure ES-2 Detailed hourly volumes of FHWA class 9 trucks by body configuration at the Galt WIM site 
along the SR-99 freeway 

Implementation Effort and Cost 

Site implementation hardware at existing ILD sites primarily comprises a field processing unit, signature 
capable ILD cards, and wireless modems.  The number of ILD cards required varies by site, depending on 
the loop configuration (single or double inductive loop sensors per lane) and the number of lanes to be 
monitored.  They typically range been two and four for the monitoring of truck traveled lanes.  For 
compatible WIM sites with 1060 series controllers, some additional hardware is required to interface 
the ILD cards with the controller as well as to receive WIM data records from the WIM controller.  This 
includes a customized ILD adapter and a serial null modem.  Hence, depending on the number of ILD 
cards required, the hardware implementation costs for an existing loop detector site may range from 
approximately $2,500 and $4,000.  The implementation costs at WIM sites are expected to be about 
$500 higher than ILD sites.  In addition, a wireless data communications monthly subscription cost of 
about $40 is required for data transmission from the field units to the server.  This monthly recurring 
costs may be eliminated if existing high speed communications infrastructure can be utilized. 

Limitations 

Some limitations were observed during the development and deployment of the classification systems 
in this study: 

 The traffic sensors used in this study assume that most drivers observe good lane discipline.  
Vehicles straddling between lanes or changing lanes while over the sensors will generate 
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erroneous data.  Hence, it is important to identify locations where there are no significant 
weaving movements.   

 Sensor data quality is typically affected under severe congestion.  Although the quality of 
inductive signature data is not affected by a vehicle’s speed, it is sensitive to significant 
accelerations and decelerations relative to a vehicle’s speed because they introduce a skew to 
the signature waveform.  This may affect the accuracy of the classification models developed in 
this study.  Hence, the system performance may be compromised during congested traffic 
conditions.  It should be noted that this weakness is not confined within inductive signature 
technology; congested conditions are known to affect other conventional traffic measures such 
as axle spacing measurements at WIM sites and volume count accuracy at conventional ILD 
sites.   

 Inductive signature magnitudes were observed to have a high signal-to-noise ratio for some 
lanes at certain sites.  This may be attributed to the physical quality of the loop installations, as 
poor splices or deteriorating insulation may cause such problems.  There are two concerns with 
a high signal-to-noise ratio.  It may lead to false detections of noise signals as vehicles, and result 
in misclassification errors due to the noise in signature data being misidentified as vehicle 
signature features.  This problem may be addressed by verifying the condition of inductive loop 
sensors and leads, and their connections. 

 The amplitudes of inductive signatures were found to be low at some sites.  As a consequence, 
trucks pulling trailers with a high ground clearance may be detected as multiple vehicle 
signatures.  These fragmented signatures are typically misclassified as passenger vehicles or 
single unit trucks.  Hence, affected sites will typically undercount multiple unit trucks, and 
provide an overestimate of passenger car and light truck volumes.  A quick assessment of the 
raw inductive signature stream will identify sites affected by this problem. 

Future Recommendations 

This study has demonstrated the potential to identify truck body configurations at an unprecedented 
level of detail.  With the emergence of alternative drivetrain technologies in trucks, it will be a 
worthwhile effort to investigate the potential of inductive signature technology in identifying trucks by 
drivetrain as well.  This will be particularly useful in providing truck activity emissions estimates through 
monitoring truck activity by drive train technologies and provide information on the best policies to 
maximize the benefit of technology investments. 

Conclusions 

This project has demonstrated and applied inductive signature technology to detect truck body class at 
inductive loop detector (ILD) and weigh-in-motion (WIM) sites in California.  Extensive data collection 
efforts across the state resulted in an exceptional inventory of truck body types that were used to 
develop two truck body classification models: a standalone inductive signature only model and an 
integrated WIM and inductive signature model, which were designed for implementation at ILD and 
WIM sites, respectively. 
 
The standalone inductive signature only classification model is capable of distinguishing five main 
vehicle configurations (Passenger Vehicle, Single Unit Truck, Truck with Single Trailer, Tractor with Semi-
Trailer, and Tractor with Multiple Trailers) with an accuracy of 93.4% and volume error of 1.3%.  The 
model further expands the truck classifications to over 40 detailed body configurations.  The model 
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predicted 34 of these configurations with an accuracy exceeding 70%, with 19 configurations reporting a 
volume error of within 10%, based on independent test data. 
 
The classification model combining WIM and inductive signature data is capable of predicting 63 body 
configurations, comprising 26 single unit truck, 25 semi-trailer body configurations, and 12 multi-unit 
truck body configurations.  Independent test data results showed that 51 body configurations achieved 
classification accuracies above 70%, and 33 body configurations reported lower than 10% in volume 
errors. 
 
In addition to the body class models developed around inductive signature technology, the extensive 
dataset was leveraged to develop a methodology to predict body class volumes from WIM data for sites 
not equipped with inductive signature technology which is useful for backcasting tasks related to the 
validation and calibration of the CSFFM.   Furthermore, the procedure designed to estimate gross 
vehicle weight distributions at ILD sites showed promising results.   
 
The deployment of inductive signature technology and corresponding body classification models to 16 
sites in the California San Joaquin Valley gives practitioners and researchers a valuable tool to assess 
detailed truck activity, freight movements and impacts.   The results obtained at selected sites have 
been shown to corroborate strongly with existing freight facilities in the region. 
 
With new information on truck activity by body types, results from this study are expected to improve 
heavy duty vehicle classification in the EMFAC model and the CalVAD, and provide critical data that is 
required for the analysis of freight movement that will benefit the CSFFM and other freight- or truck-
related studies. 
 
As a follow-up effort, Caltrans has sponsored a $1M study to further enhance the classification models 
and expand the number of deployed sites to over 90 across the State of California.  These future 
deployments will be located along major truck corridors within metropolitan areas, at regional cordon 
lines, and near state boundaries.  This follow-up study will also further enhance the TAMS web interface 
through which users can examine and download individual body class predictions in addition to hourly 
summaries by location. 
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1 Introduction  

A significant proportion of goods movement is transported by trucks, and the value and tonnage of 
goods are expected to grow over time. Trucks have a significant impact on pavement infrastructure, 
traffic congestion, pollution and “quality of life”.  To provide a better understanding of the behavior of 
freight-related truck movements, it is necessary to obtain detailed and comprehensive truck data.  
However, current traffic detection infrastructure in the state of California is not equipped to collect 
sufficiently detailed truck data to address these concerns.  The prevailing inductive loop detector (ILD) 
equipped traffic detection infrastructure managed by the California Department of Transportation 
(Caltrans) comprise Weigh-In-Motion (WIM) and ILD sites.  There are about 160 directional locations 
within the state monitored with WIM technology that are used primarily for continuous collection of 
axle weight measures and axle-based classification of trucks2.  These stations are located along freeway 
and expressway corridors that experience heavy truck usage.  Although there are nearly 8,000 Traffic 
Monitoring Sites (TMS) currently being deployed along the mainline of major truck corridors in 
California, most of which are equipped with ILD technology for vehicle detection.  However, these were 
not originally designed to provide detailed truck data.  
 
The purpose of this project was to develop a new methodology to characterize truck body types along 
California Freeways.  To do so, selected existing ILD and WIM data collection sites were updated with 
inductive signature technology.  This approach facilitates the acquisition of advanced truck data without 
compromising existing traffic operations at each site.  The higher resolution truck data can enable more 
accurate estimates of GHG and other truck emissions, allow for decision makers to make informed 
decisions for pavement management, and provide insight into the spatial distribution of body types for 
freight analysis applications.   The project was divided into three phases with the following general 
goals: Phase 1 developed proof-of-concept body classification models; Phase 2 enhanced the proof-of-
concept models and created techniques for propagating WIM classifications to ILD locations as well as 
techniques for estimating truck volumes by body class using only WIM data; Phase 3 deployed inductive 
signature capabilities to selected WIM and ILD sites located in California’s Central Valley.  The flow chart 
shown in Figure 1-1 depicts the overall scope of the project.   
 
 

 

                                                           
2
 There are approximately 50 additional WIM sites in California which are designated as PrePass™ stations used to 

screen overweight trucks for further assessment at Commercial Vehicle Enforcement Facilities, and not typically 
used for WIM data collection. 
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Figure 1-1 Project Phases and Tasks Flow Chart 
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2 Background 

2.1 Overview 

Commercial vehicle impacts on infrastructure, safety, emissions and the economy far exceed their 
modest proportion in daily traffic volumes.  At the national level, trucks account for around 10% of the 
annual vehicle distance traveled (Highway Statistics, 2010).  Although this represents a small portion of 
the total travel, the impacts of trucks on the environment, the economy, and infrastructure, are much 
more substantial than that of passenger vehicles.  In fact, according to CAR ’s Mobile  ource Emissions 
Inventory, heavy-duty diesel trucks are the “single largest source of nitrogen oxide emissions in 
California” as well as the “largest source of diesel particulate matter” (CAR , 2010 .   urther, the 
economic impacts of trucks in regard to freight transport are considerable.  The Bureau of 
Transportation  tatistics reported that “trucking as a single mode (including for-hire and private use) 
was the most frequently used mode in freight movement, hauling an estimated 70 percent of the total 
value, 60 percent of the weight, and 34 percent of the overall ton-miles” ( T , 2006 .  Given the vast 
health, safety, and economic impacts of commercial vehicles, many agencies are interested in increasing 
the amount of and improving the quality of publically available commercial vehicle activity data. 

2.2 Current Sources of Commercial Vehicle Data 

While many states have wide ranging resources for passenger traffic, such as California’s  erformance 
Measurement System (PeMS), a significantly smaller set of states collect or measure commercial vehicle 
traffic at the same level as passenger vehicles.  Conventional data sets, although commendable, have 
various limitations and lack detail, especially regarding truck travel patterns and characteristics beyond 
basic volume measurement.  Due to privacy concerns in the trucking industry, commercial vehicle 
activity data can be difficult and expensive to obtain, and many times is incomplete due to small sample 
sizes. To further exacerbate the lack of data, a much used national data set, the Vehicle Inventory and 
Use Survey, was discontinued over ten years ago, and has not found a replacement since.  If policies are 
to be formed which reduce the negative impacts of truck traffic such as temporal shifts or route 
restrictions, there needs to be a way to assess whether the policy has had any affect, which points to the 
need for route specific, temporally continuous, up-to-date, and representative truck data.   
 
The National Cooperative Freight Research Program (NCFRP) Repot 39 reviewed the current state of 
truck activity data and determined critical gaps in freight data (NCFRP, 2014).   Critical information gaps, 
their basic definition, and the best publically available data sources for each variable are summarized in 
Table 2-1. 
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Table 2-1 Data Gaps, Definitions, and Existing Sources for Commercial Vehicle Data 

Variable Definition Best Publically Available Sources 

Vehicle Miles 
Traveled (VMT) 

Measure of the extent of motor vehicle 
operation within a specific geographic area 
 

Highway Performance Measurement 
System (HPMS) 

Tons/Ton-Miles Total weight of the entire shipment multiplied 
by the mileage traveled by the shipment 

Commodity Flow Survey (CFS) 

Value/Value-Miles Market value of goods shipped multiplied by 
the mileage traveled by the shipment 

Commodity Flow Survey (CFS) 

Origin-Destination 
(OD) Flows 
 

The start and end points for a particular truck 
trip 

Commodity Flow Survey (CFS) 
Freight Analysis Framework (FAF) 

Vehicle Speed 
 

Speed of vehicle Roadside traffic counters 
Weigh-in-motion (WIM) 

GPS traces 

 
The major source for several of these data gaps include the Commodity Flow Survey (CFS) which is a 
comprehensive survey of businesses, warehouses, and freight managing offices conducted at the 
national level every five years.   In addition to the CFS and HPMS, several other existing data sources 
were identified in NCFRP Report 39 as sources for commercial vehicle data including the Vehicle 
Inventory and Use Survey (VIUS), Weigh-in-Motion (WIM) systems, privately owned truck GPS data, and 
state and federal truck registration records.  
 
Many of these sources lack in their ability to segment each of these variables by: (1) commodity type, (2) 
vehicle type, (3) vehicle characteristics, and (4) spatial coverage.   Unfortunately, no single source 
addresses each and every data gap with the desired level of detailed segmentation.  According to NCFRP 
Report 39, the CFS and VIUS possess the best ability to cover each of the data gaps at some level of 
segmentation.  Other research highlighted VIUS, GPS, and WIM data as three core data sets which 
provide truck data stratified across the segmentation categories (ITS, 2010).   

2.3 Defining Truck Body Class 

One major limitation is that data sources which provide commodity information (e.g. CFS, SAS, and 
VIUS) come from surveys so cannot be linked to link or route level while data sources that provide 
observed volumes, weights, and vehicle types (e.g. WIM and GPS) do not provide commodity 
information.  This means there is a significant advantage in connecting observed vehicle data to 
commodity information.  Since body configuration is closely linked to commodity carried and other 
operating characteristics, body class data can provide the link to the desired commodity information 
currently provided only in CFS or VIUS.    
 
Vehicle configuration generally refers to axle or length based groupings of vehicles and takes different 
forms depending on the agency using the data.   A commonly used scheme,   WA’s  cheme  , shown in 
Figure 2-1 defines 13 axle based classes.  Within each axle based category, vehicles can be further 
distinguished by body configuration.  Examples of body configurations are shown in Figure 2-2 .  Semi-
tractor trailer body types are classified by their drive unit and trailer unit.  Similarly, multi-trailer trucks 
are defined by drive and trailer units.  For example, the body type of a commonly observed five axle 
semi-tractor trailer listed by the FHWA scheme Figure 2-1 as ‘Class 9 single trailer’ might have a body 
configuration of a van, intermodal container, a tank, or a platform.  In California, the California 
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Department of Transportation (Caltrans), the California Air Resources Board (CARB), and the California 
Energy Commission (CEC) have developed their own classification schemes which represent different 
levels of detail regarding truck characteristics.  
 

 

Figure 2-1 FHWA 13 Class Axle Based Classification Scheme 
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Figure 2-2 Samples of vehicle body configurations 
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Spatial and temporal trends in truck, trailer, and drive unit body types signal differing activity patterns, 
industry-specific operating characteristics, regional land uses, and seasonal commodity flow patterns.   
Figure 2-3(left) shows the variation in minority trailer body classes at two WIM sites in California- an 
urban location (Irvine) near the Ports of Los Angeles and Long Beach and a rural site (Redding) 120 miles 
from the Oregon-California border.   Although vans represent over 60% of truck traffic, the proportions 
of industry specific, minority classes contrast significantly between these two sites.  In Figure 2-3(right) 
the volume of enclosed vans observed at a WIM site located in central California (Fresno) peaks in the 
late afternoon while intermodal container traffic decreases over this same period.  Existing data 
collection methods do not possess the necessary sophistication required to capture the dynamic 
behavior of commercial vehicle operations illustrated in these figures.  
 

 
 

(a) Spatial trends in truck body class (b) Temporal trends in truck body class 

Figure 2-3 Examples of spatial and temporal trends in truck body class. 

 
The needs for body class data of commercial vehicles are twofold.  First, body class data is needed to fill 
critical gaps for existing transportation programs.  Freight transportation planning programs rely heavily 
on the results of the Vehicle Inventory Use Survey (VIUS), but with the discontinuation of that resource, 
a critical gap has been opened and a replacement data source is desperately needed.   Second, body 
class data collected at the link and route level presents an increased level of detail that has yet to be 
captured by any other data source.  The previous figures clearly demonstrate that body class varies 
significantly by location and time of day, so ignoring this level of detail can lead to significant modeling 
errors. 
 
Body class data can allow agencies to further develop existing models for emissions estimation or freight 
forecasting by replacing existing sources that are either inaccurate or lacking in necessary detail or to 
create new models designed to make full use this new data source.  Consequently, better models will 
lead to more effective management of transportation facilities, and improved confidence in estimates of 
emissions and air quality.   Although emissions models are currently not designed to harness truck body 
classification data as input, their inclusion in future models will likely yield significant improvements in 
emissions estimations due to the improved fidelity of truck characterization and estimates of their 
activity.  Since trucks can been related to industry through body classification, agencies can design 
programs to reduce emissions more effectively by designing specific policies that will yield maximum 
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benefits by targeting specific industries that generate high-emitting truck movements.  Additionally, in 
line with freight transportation planning data needs, body class information will help to distinguish 
between long and short haul movements.  Through integration with WIM data, it will also be possible to 
associate empty movements by industry and/or commodity.  This will lead to improvement in emissions 
inventory models.  

2.4 Weigh-In-Motion Systems 

Weigh-in-Motion (WIM) devices have been used since the 1980s to collect data for truck routing, 
pavement management and design, weight enforcement, traffic safety, and transportation policy 
(Nichols and Bullock, 2004).  There are currently 106 WIM sites in California that perform continuous 
data collection, as shown on the map in Figure 2-4.  Two main types of WIM controllers are currently 
deployed in the State of California: the earlier DOS-based 1060 series controllers (Figure 2-5a) and the 
current Linux based iSinc family of controllers (Figure 2-5b), which include the iSinc WCU-II and iSinc 
WCU-3 Lite.   
 

 

Figure 2-4 WIM and TMS Sites in California 

 

Mainline TMS 
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(a) 1060 series WIM controller (b) iSinc Lite WIM controller 

Figure 2-5 Types of WIM controllers deployed in California: (a) 1060 series and (b) iSINC Lite 

The main distinction between the controllers for the purpose of this work is in their built-in ability to 
process inductive signature data.  The loop sensor module (LSM) of the 1060 WIM controllers is 
designed only to obtain conventional bivalent inductive loop data.  On the other hand, the LSM of the 
iSINC Lite controller has the ability to obtain inductive signature data.  The caveat for the iSINC 
controller however, is that inductive signature data is currently designed only for diagnostic and 
troubleshooting purposes.  Hence, the inductive signature data can only be manually logged when the 
system is in diagnostic mode, and is not currently available as an operational feature within the system.   
As WIM controllers become damaged and require replacement, older controllers are replaced with the 
new iSinc models.   This is a great advantage for the work developed in this project because this 
essentially means that all WIM controllers will be capable of producing signature outputs. 
 
A typical WIM station, as depicted in Figure 2-6, includes bending plates or pressure sensors straddled 
by square inductive loop detectors in the outermost lanes and piezoelectric sensors straddled by 
inductive loops in the innermost lanes.  Figure 2-6b depicts a five lane highway sensor site in which the 
outer three lanes are equipped with bending plates while the inner two lanes, used mostly by passenger 
vehicles, are equipped with piezoelectric sensors.   
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(a) Typical inner and outer lane WIM configurations 

 
(b) Example of site configuration for five lane highway 

Figure 2-6 WIM Site Configuration 

WIM stations collect vehicle arrival time and date, axle weights and gross weight, axle spacing, and 
speed (Lu et al., 2002).  Vehicle classification is determined from the number of axles, axle spacing, and 
weight according to the classification sieve for FHWA Scheme F which includes 13 axle-based classes, or 
for California, the 14 class modified axle-based scheme.   A basic decision tree approach divides vehicles 
into FHWA classes based on number of axles and inter-axle distances.   This is approach can lead to 
classification error for certain vehicle classes since many of the axle counts and distances overlap.  
Reported errors in classification range have been shown to be as high as 9.5% (Kwigizile et al., 2005). In 
Chapter 5, improvements to the standard FHWA classification decision tree are introduced by addition 
variables such as length and axle spacing ratios to further define certain classes.   
 
Agencies using WIM data are aware that WIM data is prone to accuracy errors in speed, spacing, and 
weight measurements (FHWA, 2001). The inaccuracies are the result of several possible factors: (1) 
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vehicle dynamics such as speed, acceleration, tire condition, load, and body type; (2) site conditions 
such as pavement smoothness; (3) environmental factors such as temperature and precipitation (Lee, 
1998; NCHRP, 2008).  Prozzi et al. (2007) modeled the load errors as systematic and random where 
random error is a result of statistical fluctuations in estimation which can be over- or under- estimations 
of the true value. On the other hand, systematic errors are persistent inaccuracies in which the true 
value is either consistently over- or under-estimated. Through proper calibration procedures such as 
those outlined in American Society of Testing and Materials (ASTM) Standard E1318-02 (ASTM, 2009) 
and National Cooperative Highway Research Program Synthesis 386 (NCHRP, 2008), systematic error can 
be addressed, but random disturbances in the data will persist regardless of calibration.    

2.5 Inductive Signature Technology 

Inductive loop detector technology has been used since the 1960s. An inductive loop detector consists 
of several coils of electrified wire embedded beneath the pavement and connected to a roadside control 
unit in which loop detector cards process the inductive magnitude changes to measure vehicle presence.  
The use of inductive loop signature technology for classification was introduced by Pursula and 
Pikkarainen in 1994.  There are approximately 25,000 inductive loop detectors in California at around 
8,000 mainline Traffic Monitoring Sites (TMS) as shown in Figure 2-4.   TMSs are generally located in or 
near metropolitan areas.   
 
Conventional inductive loop detectors (ILDs) measure bivalent signals from inductive loops embedded in 
the pavement and are capable of measuring aggregated volumes and occupancies. The red lines in 
Figure 2-7 depict the bivalent outputs, e.g. [0,1], of a conventional loop detector.  Unlike many other 
detector systems such as imaging or acoustic sensors, loop detectors are inherently accurate, achieving 
the best volume count accuracy compared with other common detection technologies, providing a good 
technology platform to develop the proposed system.  Finally, ILDs are generally robust because 
magnetic inductance is not affected by changes in temperature, lighting, visibility and humidity.     
 
Advanced inductive loop detectors measure the inductance change in an inductive loop sensor at rates 
of up to 1200 samples per second (IST, 2006), producing analog waveform outputs, referred to as 
inductive signatures, for each traversing vehicle.  A significant advantage of advanced inductive loop 
detectors is that they can replace conventional detectors without altering the system’s intended 
functions (e.g. occupancy and volume measures). 
 
In addition to vehicle classification, inductive signature technology has been used to develop other 
advanced traffic monitoring applications.  These include the accurate estimation of vehicle speeds from 
only single inductive loop sensors (Tok et al, 2009), as well as anonymous tracking of vehicles between 
adjacent ILD sites to obtain traffic measures such as section and corridor travel time, and section-based 
density (Jeng et al, 2010, Hernandez et al, 2013). 
 
Samples of inductive signatures of various vehicle types are presented in Figure 2-7.  The shape of the 
signature is the result of the ferrous components of the vehicle with the overall duration of the 
signature correlated with the length of the vehicle.  Comparing passenger car and semi-tractor trailer 
signatures, it is easy to distinguish the general shape difference between the signatures.   The 
differences in signature shapes of vehicle within the same axle class are more subtle where spikes and 
valleys generally relate to the undercarriage or chassis of a trailer but can also be the result of 
refrigeration tanks or axle placement, for example.   
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Figure 2-7 Examples of Inductive Signatures 
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2.6 Integrating Technologies 

As shown on the left side of Figure 2-8, the outermost lanes at a typical WIM site are equipped with 
bending plates or pressure sensors to measure axle weights while inductive loop detectors straddle the 
weight sensors to detect vehicle presence.   WIM sites measure speed, volume, truck weight, axle 
spacing, and length, however, axle-based information cannot be directly associated with a truck’s 
function or body configuration.  Advanced ILDs measure inductance change in an ILD up to 1,200 
samples per second producing analog waveform outputs, called inductive signatures, which strongly 
correlate with vehicle body type.  A significant benefit of advanced ILD technology is that it requires no 
in-pavement infrastructure upgrades thus, implementation costs are minimal.   The WIM system can be 
equipped with advanced ILD technology by simply swapping out detector cards in the WIM controller 
with advanced signature capable ILDs.  Test deployments show that the modification does not alter the 
WIM site functionality, so regular data reporting requirements from WIM site are not affected.  Further 
details on the hardware integration are described in Chapter 5.  
 

 

Figure 2-8 WIM Site Configuration (left) with data outputs from Advanced ILDs and WIM (right). 
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3 Data Collection and Processing 

3.1 Overview 

The purpose of this effort was to collect and process a large dataset of truck data.  This addressed a 
major drawback of previous vehicle classification modeling efforts due to the lack of significant data for 
model training and testing.  This is especially true for commercial vehicles which on average account for 
only around 10% of the total highway vehicle population (Caltrans, 2012) thus requiring extended data 
collection periods or selection of specific truck routes with high volumes of truck traffic to obtain 
sufficiently large samples.  An additional complication is that unlike passenger vehicles, commercial 
vehicle body types vary by location and are influenced by local industry and land uses.  For example, 
intermodal container trailers are more prevalent nearer to port areas while trucks with logging trailers 
appear in regions tied to the logging industries.  Smaller commercial vehicles such as single unit trucks 
may also vary in body type by location.  For instance, service related body types like garbage trucks or 
firetrucks might be observed in higher volumes near busier urban areas compared to remote rural sites.  
Significant efforts were made in this project to collect and process an abundant sample of commercial 
vehicles for model training and testing.  This, in part, helped to facilitate more advanced modeling 
efforts and expand the predictive capabilities of the developed models.  Care was taken to select data 
collection locations and seasonal time periods that would capture the extreme diversity of commercial 
vehicle body types.   In total, around 35,000 vehicle records were captured and processed from 
disparate Weigh in Motion (WIM) and inductive loop detector (ILD) site locations in California over a 
time period spanning the fall, winter, and spring seasons.    

3.2 Data Sources 

In addition to inductive loop signature and WIM data, still image data was collected for each passing 
vehicle by connecting a digital camera with a remote trigger to the ILD detector card.  Figure 3-1 depicts 
the hardware configuration including the still image camera connected to the inductive signature cards.  
With this configuration, the loop activation triggered the camera and a series of still images were 
captured for each passing vehicle at a rate of three frames per second while the vehicle was over the 
loop.  Figure 3-2 shows a typical data collection hardware setup at WIM site.  The traffic cabinet on the 
right contains the WIM controller and ILD signature cards.  The still image camera shown to the left of 
the cabinet connects to the ILD signature detector cards within the cabinet.   The field PC clock which set 
the timestamps for the ILD signature and photo data was synchronized against the WIM controller clock 
in order to ease the data groundtruth process that required the processor to link the WIM record, 
inductive signature, and photo together. Figure 3-3 shows examples of still images captured for longer 
combination trucks and a passenger vehicle. 
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Figure 3-1 Data Collection System Architecture with SLR Still Image Camera  

 

Figure 3-2 Data collection setup at WIM site  
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Figure 3-3 Examples of still images collected for various truck types 

 

3.3 Data Collection Sites 

Data collection was performed at seven sites across the State of California.  Figure 3-4 shows the 
locations of the seven data collection sites.  The site name, data type, date of collection, and number of 
collected truck samples are summarized in Table 3-1.  The WIM site along southbound (SB) I-5 in Irvine, 
was used for testing and development of the hardware interface configuration between the WIM 
controller and the inductive signature detector cards.  Sites at Redding, Willows, and Fresno were 
selected to increase the diversity of the truck body types for model development.   For example, sites in 

 

 
(a) Tractor-Trailer Combination truck in two still images 

 

 
(b) Tractor-Trailer Combination truck in three still images 
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(d) Single unit truck in two still images 
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northern and central California were expected to have a greater presence of logging trucks and 
agricultural trucks that would not typically be found at WIM stations closer to UC Irvine such as Irvine 
and San Onofre.   Sites at San Onofre and Leucadia were selected for use in Phase 2 to develop the 
propagation methodology by which detailed classification based on WIM data can be propagated to ILD 
sites equipped with inductive loop signature capabilities.   All sites other than the Saigon site contained 
1060 series WIM controller units which require use of the configured hardware interface.   The Saigon 
site along I-405 uses a newer WIM controller system called iSinc Lite which has the capability to collect 
inductive signature data without additional detector hardware.  Data was collected at this station to 
establish a comparison between inductive loop signatures produced by various controller types, i.e. 
inductive signature detector cards at 1060 controllers and iSinc controllers.  Diagrams of each site 
including the lane configurations and detector positions can be found in Appendix B. 
 

 

Figure 3-4 Data Collection Sites  

 1060 WIM controller site 

 iSinc WIM controller site 
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Table 3-1 Summary of Data Collection Sites 

 
Site Name Irvine Fresno Willows Redding Leucadia San Onofre Saigon* 

Location SB I-5  
Southern 
California 

SB SR-99  
Central 

California 

NB I-5  
Northern 
California 

SB I-5  
Northern 
California 

SB I-5  
Southern 
California 

SB I-5 Southern 
California 

NB I-405  
Southern 
California 

Description Urban, Approx. 
45mi from San 

Pedro Bay 
Ports 

Semi-Urban, 
Agricultural 

Rural Rural, Approx. 
120mi from 

OR-CA border 

Semi-Urban Semi-Urban Urban 

Collection Dates Sept. 21, 2012 
Oct. 2-3, 2012  

March 20-
25th, 2013 

Nov. 7-8, 2012 Dec. 10-12, 
2012 

Dec. 10-12,  
2012 

Jan. 9-10, 2013 Jan. 9-10, 2013 Oct. 9, 2012 

WIM Site Number 15  10  108 2  84 810 112 

Controller Type 1060 WIM / 
TMS 

1060 WIM 1060 WIM 1060 WIM 1060 WIM PrePass 1060 
WIM 

iSinc WIM and 
TMS 

California 
Postmile  

R25.8 25 R10.9 R24.9 R42.2 R68.4 18.6 

Total Lanes 5 SB 3 NB, 3 SB 2 NB, 2 SB 2 NB, 2 SB 2 SB 2 SB 5 NB 

No. Lanes for data 2 SB 2 SB 2 NB 2 SB 2 SB 2 SB 2 NB 

Approximate Total 
Truck Percentage1 

5% 22% 25% 25% 5% 7% 4% 

Total Samples 
Collected 

6,963 9,718 6,908 5,110 4,017 1,906 97 

1 Percent of total traffic, Source: Caltrans Traffic Counts for AADTT (Caltrans, 2012) 
* For signature comparison between different controller systems 
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The main data used for body class model development was collected at Irvine, Fresno, Willows, and 
Redding WIM sites over several two to three day periods during the fall, winter, and spring seasons 
between 2012 and 2013 as summarized in Table 3-2.   The data collection was conducted over 13 
weekdays spanning a total of 97.25 hours.   The majority of the data were collected during uncongested 
conditions. The median speeds are between 50 to 55 miles per hour across all sites.    The Irvine site 
experienced a brief period of minor congestion on October 3rd with speeds below 50 mph.   The Fresno 
site also experienced a brief period of congestion during the November 8th time period. 

Table 3-2 Summary of Data Collection Time Periods 

Site  Date Day of 
Week 

Season Time Period Total 
Hours 

Average 
Speed 
(mph) 

Irvine Sept. 21, 2012 F Fall 10:45AM – 6:00PM 7.25 56.4 

Oct. 2nd, 2012 T Fall 1:00PM – 6:45PM 5.75 57.7 

Oct. 3rd, 2012 W  6:30AM – 9:15AM 2.75 48.2 

March 20th , 2013 
March 25th, 2013 

W 
M 

Spring 6:30AM – 7:45PM 
7:30AM – 4:15PM 

12.25 
8.75 

61.9 
59.1 

Fresno Nov. 7th, 2012 
Nov. 8th, 2012 

W 
T 

Fall 10:15AM -5:15PM 
6:15 AM – 4:45PM 

7.0 
10.5 

57.6 
56.8 

Willows Dec. 10th 2012 
Dec. 11th,2012 
Dec. 12th,2012 

M 
T 
W 

 
Winter 

10:30AM – 4:45PM 
7:15AM - 4:45PM 

7:00 AM – 3:00 PM 

6.25 
9.5 
8.0 

62.1 
59.0 
61.9 

Redding Dec. 10th 2012 
Dec. 11th,2012 
Dec. 12th,2012 

M 
T 
W 

 
Winter 

1:30 PM – 5:00 PM 
7:00 AM – 4:45PM 
7:00 AM – 1:00PM 

3.5 
9.75 
6.0 

57.8 
57.7 
58.8 

Total 13 days    97.25 58.5 

 

3.4 Data Processing 

The data processing procedure, referred to as the groundtruth system, involved preprocessing the WIM, 
inductive signature, and still image data, linking the three data types, and identifying the vehicle 
configuration and body type from each photo record.   A database was designed and developed in 
PostgreSQL to store and integrate inductive loop signature, WIM record, and still image data.  A specially 
developed software user interface was developed in Visual Basic to efficiently process and classify 
collected vehicle samples.  The user interface was designed to communicate with the database and 
allow the user to scroll through photos and select the vehicle class parameters while also linking 
inductive loop signature records and WIM data records to the appropriate vehicle record.    Figure 3-5 
shows two versions of the custom groundtruth system user interface, showing data collected from a 
WIM only in Redding and a paired ILD and WIM site in Irvine.   Both interfaces display navigable still 
image, inductive signature and WIM data, with an additional data entry panel to enter detailed vehicle 
information.  The ILD and WIM interface has an additional inductive signature display that corresponds 
to data collected from the adjacent ILD site.  Five components of vehicle class information is recorded in 
this interface: truck axle configuration, trailer axle configuration, truck body configuration, and trailer 
body configuration, as well as total number of axles.  A schematic of the database structure for the data 
groundtruth system in included in Appendix C. 
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(a) Customized User Interface for WIM Sites 

 

 
(b) Customized User Interface for Combined WIM and ILD Sites 

Figure 3-5 Customized User Interfaces for Data Groundtruth 
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3.5 Vehicle Classification Scheme 

A key component in the development of the body classification models in this study was the creation of 
a comprehensive classification scheme that captures the diversity of truck bodies found in the data.   An 
initial body class scheme was developed based on the VIUS defined body types (VIUS, 2002).  VIUS was 
selected as it provided a high level of detail regarding body classification.  VIUS separates trucks into 
three vehicle configuration groups:  Passenger vehicles, single unit trucks, and semi-tractor trailer 
combination trucks.  Body classes corresponding to trucks were further expanded based on observed 
field data. 

3.5.1 Single Unit Trucks 

Single unit trucks are defined by VIUS as any truck with or without a trailer that is not a truck or road 
tractor. Figure 3-6 illustrates examples of single unit trucks without trailers (a & b) and with small trailers 
(c).  VIUS defines 22 single unit body classes.  
 
Table 3-3 summarizes the five main body categories: vans, platforms, tanks, service, and specialty 
vehicles.   The existing VIUS body classes were expanded into 28 body classes.  The VIUS body class, 
‘Vans, insulated, non-refrigerated’ are not visually distinguishable from basic enclosed vans, and were 
therefore grouped together, then separated across four body classes for modeling.   The VIUS body class 
‘Concrete pumpers’ was not found in the data, and was not included in model development.  Body 
classes identified in the data but not defined in VIUS include pneumatic tanks, livestock trucks, and 
firetrucks.  Additionally, the three body classes including two buses categories and recreational vehicles 
(RVs) are not included in the VIUS classification scheme, and were added to the model classification 
scheme.  These modifications to the VIUS scheme resulted in a total of 31 body classes for single unit 
trucks used for model development. 
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(a) Enclosed van 

 

 
(b) Trash, Garbage, or Recycling 

 

 
(c) Enclosed Van with small trailer 

Figure 3-6 Examples of Single Unit Trucks 
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Table 3-3 VIUS and Model Single Unit Trucks Body Classification  

Body 
Category 

VIUS Body Class Model Body Class 

Van 

Van, basic enclosed (dry cargo) 
Van, insulated non-refrigerated 

Conventional Enclosed Van 

Light Duty Enclosed Van 

Low Loading Enclosed Van 

Cab-Over Engine Enclosed Van 

Van insulated refrigerated 
Conventional Reefer Enclosed Van 

Cab-Over Reefer Enclosed Van 

Van, open top (including low-side grain, fruit, 
potato bed, etc.) 

Open Top Van 

Van, step, walk-in, or multistep (including hi-
cube or cutaway) 

Multi-Stop or Step Van 

Tank 

Tank, dry bulk 

Tank Tank, liquids or gases 

Vacuum 

** Pneumatic Tank 

Platform 
Flatbed (including any with added devices), 
stake, platform, etc. 

Basic Platform 

Low Boy Platform 

Service 

Service, utility (telephone line, cable, pipeline, 
etc.) 

Utility  
 ervice, other (mobile workshop, craftsman’s 
vehicle”, etc.  

Specialty 

Armored Armored 

Beverage Beverage  

Concrete mixer Concrete Mixer 

Concrete pumper * 

Crane Winch or crane truck 

Curtainside Curtainside Van 

Dump (including belly or bottom dump) 

End Dump 

Bottom Dump 

Dumpster Transport 

Pole, logging, pulpwood, or pipe Pole, logging, pulpwood, or pipe 

Street sweeper Street sweeper 

Tow/Wrecker (including flatbed) 
Platform for auto transport 

Wrecker 

Trash, garbage, or recycling Garbage 

** Livestock 

** Firetruck 

Other Other Other 

Bus 

** Recreational Vehicle (RV) 

** 30ft Bus 

** 20ft Bus 

* Not included in model body classification scheme 
** Not included in VIUS 
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3.5.2 Combination Trucks 

Combination trucks refer to multi-unit trucks that include single unit trucks pulling single or small trailers 
(Figure 3-7 a & b) as well as semi-tractor trucks pulling a semi-trailer or multiple trailers (Figure 3-7c & 
d).   In the case of single unit trucks pulling a trailer, the drive unit is categorized by the drive unit body 
type classification as defined in the previous section, while the trailer body classification follows the 
scheme described in this section.  Similarly, a semi-tractor combination truck pulling one or more trailers 
is defined in two components: the tractor unit and trailer unit(s).  The classification schemes for both 
these components are presented in this section. 
  

 
(a) Single unit truck with single trailer 

 

 
(b) Single unit truck with small trailer (recreational vehicle) 

 

 
(c) Enclosed Van Semi Trailer 

 

 
(d) Belly Dump Multi- Trailer 

Figure 3-7 Examples of Combination Truck Trailer Body Classes 

3.5.2.1 Tractor Units 
The tractor unit refers to the drive unit of a semi- tractor trailer combination truck as shown in Figure 
3-8 and is divided by VIUS into four standard engine configuration types described in Table 3-4.  
Conventional and cab-over engine configurations are further specified as sleeper (Figure 3-8 a and b) or 
non-sleeper (Figure 3-8 c and d .  ‘Cab forward engine’ and ‘cab beside engine’ body classes defined in 
VIUS were not found in the data and are not included in the model scheme.  Lastly, two specialty cab 
types were found in the data including cabs with attached cranes and cabs for auto transport (Figure 3-8 
e) and included in the body classification scheme for model development.  This yields a total of six 
tractor unit body classes included in the model classification scheme.  
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(a) Conventional cab without sleeper (b) Cab over without sleeper 

  

  
 (c) Conventional cab with sleeper  (d) Cab over with sleeper 

 

 
(e) Specialty cab with crane 

Figure 3-8 Examples of Tractor Units 
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Table 3-4 VIUS and Model Drive Unit Body Classification 

Body Category VIUS Body Class Model Body Class 

Standard 
Tractor Units 

Conventional cab with or without sleeper Conventional cab 

Conventional with sleeper cab 

Cab over engine with or without sleeper Cab over engine 

Cab over with sleeper cab 

Cab forward engine * 

Cab beside engine * 

Specialty 
Tractor units 

** Cab with attached crane  

** Cab for auto transport 

* Not included in model body classification scheme 
** Not included in VIUS 
 

3.5.2.2 Trailer Units 
As shown in Table 3-5, VIUS defines 17 trailer body types which can be grouped into four main 
categories: van, tank, platform, and specialty.   The 17 body classes were expanded into 27 body types 
for the model classification scheme as shown in the rightmost column of Table 3-5.   VIUS classes for 
basic enclosed vans and insulated non-refrigerated vans were combined because they could not be 
visually distinguished.  This group was divided into vans with and without side skirts (e.g. ‘skirted 
enclosed van) which are aerodynamic panels attached to the bottom sides of the trailer to decrease 
airflow through the trailer undercarriage.  Further added categories include hoppers and agricultural 
vans.   
 
Major additions to the VIUS body classification scheme include intermodal containers and smaller 
trailers.   Intermodal container trailers are not included in VIUS since these belong to shippers rather 
than carriers or operators who participated in the VIUS survey.  These trailers were further distinguished 
into the following categories: intermodal container chassis, 20ft, 40ft, and 53ft intermodal containers, 
and 40ft intermodal refrigerated containers.  The distinction of these categories has significant 
implications on freight activity analysis.  This is because 40ft containers are primarily used at sea port 
facilities, while 53ft containers are used only for domestic freight movement.  In addition, refrigerated 
containers are typically used for hauling perishable goods.  Hence, the movement of such containers 
may result in additional emissions and fuel usage, since refrigeration units on these containers need to 
be operated continuously.  For the purpose of this research, small trailers may be pulled by a single unit 
truck or a tractor.   The VIUS trailer body classes were expanded to include small trailer body types such 
as RV trailers, towed vehicles, and small dolly trailers.   
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Table 3-5 VIUS and Model Body Classification for Semi-Trailers for Existing VIUS Classes 

Category VIUS Body Class Model Body Class 

Van 

Van, basic enclosed (dry cargo) 
Van, insulated non-refrigerated 

Enclosed van 

Skirted enclosed van 

Van, drop frame (excluding livestock) Drop frame van 

Van, insulated refrigerated Reefer enclosed van 

Tank 
Tank, dry bulk 
Tank, liquids or gases 

Hot product tank 

Deep drop tank 

Food grade tank 

Petroleum tank 

Chemical tank 

Crude oil tank 

Air compression tank 

Propane tank 

Pneumatic Tank 

Platform 
Flatbed, platform, etc. 

Basic platform  

Platform with devices 

Low boy (platform with depressed center) Low boy platform 

Specialty 

Dump (including belly or bottom dump) 

Bottom/Belly dump 

Bulk waste transport 

End dump 

Livestock (including livestock dropframe) Livestock 

Curtainside Curtainside van 

Mobile home toter * 

Open tops (vans, low side grain, fruit, etc.) Open top van 

Pole, logging, pulpwood, or pipe Pole, logging, pulpwood, or pipe 

Automobile Carrier  Automobile transport 

Beverage Beverage 

Trailer mounted equipment * 

** Hopper 

** Agricultural van 

Intermodal 
Containers 

** Container chassis 

** 40ft container 

** 40ft refrigerated container 

** 20ft container 

** 20ft container on 40ft chassis 

** 53ft container 

Small Trailers 

** Recreational vehicle trailer 

** Towed vehicle 

** Small trailer/dolly 

* Not included in model body classification scheme 
** Not included in VIUS 

3.6 Data Summary 

FHWA class 5 single unit trucks and FHWA class 9 semi-trailer combination trucks were the most 
prevalent across all four data collection sites as summarized in Table 3-6.  It should be noted that Table 
3-6 reports lower than observed volumes of passenger vehicles.  Passenger vehicles excluding larger 
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pick-up trucks or 12 passenger vans were not processed for the Fresno, Willows, or Redding data 
collection sites, or for the September and October data collection periods at Irvine to reduce the burden 
of processing the data groundtruth.   All passenger vehicles, including sedans, SUVs, minivans, etc. are 
included in the March 20 and 25th data sets at the Irvine site.     

Table 3-6 Volume by site and FHWA class 

FHWA Class Irvine Fresno Willows Redding Total 

Passenger Vehicles 2 1,649 47 127 1 1,824 

3 4,345 745 1,187 22 6,299 

Single Unit 4 176 58 11 8 253 

5 2,843 842 145 77 3,907 

6 515 238 64 64 881 

7 149 14 0 1 164 

Single Trailer 8 455 261 82 112 910 

9 3,077 4,200 3,693 1,711 12,681 

10 11 20 7 7 45 

14 225 119 43 96 483 

Multi Trailer 11 232 477 251 125 1,085 

12 12 63 65 44 184 

13 2 0 1 0 3 

Other 15 148 422 88 88 746 

Total 13,839 7,506 5,764 2,356 29,465 

 
FHWA class 9 semi-trailer combination trucks exhibit one of the most diverse sets of body types.  
Therefore the summaries provided in this section focus on semi-trailer body types.  There are a total of 
12,681 processed vehicle records for semi-tractor trailer vehicle configurations in FHWA class 9.  The 
most prevalent trailer body type is the enclosed van which comprises 65.1% of the data across all sites.  
Within the enclosed van body category, non-refrigerated vans represent 28.6%, refrigerated (e.g. reefer) 
vans represent 26.1%, and non-refrigerated skirted vans represent 10.4% of the total data.   The second 
most populous semi-trailer body type is the basic platform which accounts for 9.5%, followed by tanks 
representing 4.8% of the total data.  Figure 3-9 shows the number of samples for each semi-trailer body 
class across all four sites.   
 
Enclosed vans, refrigerated enclosed vans, and platform semi-trailer body classes dominate the 
population across all four sites.  Notable differences were observed in the number of tanks, open top 
vans, curtainside vans, 53ft containers, 40ft containers, and pole/logging/pipe trailers.  These trailer 
body types are more industry specific and thus possess greater spatial variations due to diverse land 
uses across the data collection sites.   For example, logging trucks were observed in higher proportion at 
the Redding site, which is located in a region with forestry-related industries.  At the Irvine site, open 
top vans which transport garbage, refuse, and construction debris were observed in greater numbers as 
a result of urban land use.   



 

29 
 

 
(a) Majority Class Samples by Site 

 
(b) Minority Class Samples by Site 

Figure 3-9 Number of semi-trailer truck samples by body type across all sites 

 
 
  



 

30 
 

4 Model Development 

4.1 Overview 

This chapter presents all models that were developed as a part of this research study.  These include the 
following: 
 

i. Inductive signature-based truck body classification models, 
ii. Truck volume estimation model, 
iii. Optimal sensor location model, and 
iv. Spatial propagation model 

 
Two models were developed for truck body classification using inductive signatures.  The first WIM-
signature model is applicable at WIM sites retrofitted with inductive signature technology while the 
second inductive signature only model is applicable at ILD sites modified with inductive signature 
technology.  The truck volume estimation model is used to estimate counts of trucks by body 
configuration at WIM sites not equipped with inductive signature technology as well as from archived 
WIM data to provide estimated counts of a reduced set of truck body categories compared with the 
signature-based truck body classification models.  The optimal sensor location model was developed to 
identify the optimal locations for selecting sites for deploying the signature-based truck body systems.  
Lastly, the spatial propagation model allows truck weight data from existing WIM sites equipped with 
inductive signature technology to be extended to ILD sites with inductive signature technology.  

4.2 Body Classification Models 

Classification of trucks by body configuration is not a trivial task, given the wide diversity of body types 
within each vehicle configuration group.  Furthermore, analysis of observed truck volumes by body type 
at the four data collection sites shows that each site contains a different distribution of truck body types, 
especially for minority body classes such as those that carry seasonal commodities such as agricultural 
vans, or vehicle classes with unique travel characteristics such as intermodal containers.  In light of these 
observations, the body classification models developed in this project have the complex task of 
producing accurate classifications across a large array of body classes and generalizing across locations 
with varying distributions of those classes. 
 
Previous vehicle classification models using inductive signatures show that different classifier models 
have varied competencies at predicting certain classes and no one model produced high CCR for all 
classes.  Hence, the multiple classifier systems (MCS) method was adopted for this truck body 
classification modeling effort to increase the classification accuracy for minority body classes as well as 
to enhance the spatial and temporal transferability of the model.  MCS which combine the predictions of 
a series of individual classifiers, leverage the talents of each classifier while minimizing the tradeoffs that 
would occur if only a single classifier was implemented, and is therefore well suited for the truck body 
classification problem. This is a significant contribution of this research, since MCSs have not been 
considered in previous work with inductive signatures nor have they been widely used in the review of 
vehicle classification literature.    
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Dietterich (2000) gives three general reasons why combining multiple models may improve 
performance.  First, from a statistical perspective, when the amount of training data is too small, the 
classifier can produce many different predictions.   But the combined prediction of multiple classifiers 
might be closer to the most accurate prediction.   Second, from a computational perspective, classifiers 
which rely on hill climbing or random search algorithms are subject to local optima.   Thus, an ensemble 
approach where local search starts from varying points and performs an optimal search in different ways 
can have a better chance of approximating the global optimum.   Third, from a representational 
perspective, it is possible that the true relationship between inputs and outputs cannot be represented 
by any of the classifiers.   In this case, the true classifier lies outside the scope of the individual 
classifiers, so combining classifiers can help expand the space of representable functions.  Although 
there is no guarantee that combining models will result in higher performance than the most accurate 
individual classifier, at least the statistical, representational, and computational ‘risks’ are reduced while 
the performance and generalization capability are increased (Dietterich, 2000).   

4.2.1 Selecting Base Classifiers 

The individual classifiers, or base classifiers, which comprise the MCS, can be modifications of the same 
classifier or a combination of different classifiers called hybrid ensembles (Brown, 2005).  For example, a 
set of neural networks with different number of hidden layers constitutes an ensemble while a set of 
three different classifiers-neural network, decision tree, and support vector machine- constitutes a 
hybrid ensemble.   An important consideration in selecting an optimal set of base classifiers is to ensure 
that each classifier exhibits different error characteristics.  Brown (2005) suggests that hybrid ensembles 
are best suited to ensure error diversity since each classifier represents the problem and search space in 
“radically different” ways leading to different patterns of generali ation and class specific prediction 
accuracy.  Therefore, a hybrid ensemble representing both simple statistical classifiers and 
computational, non-parametric classifiers is adopted in this paper.  The ensemble consists of a Naïve 
Bayes Classifier, Decision Tree (DT), Support Vector Machine (SVM), Multilayer Feed Forward Neural 
Network (MLFF), and a Probabilistic Neural Network (PNN).  To ensure error diversity the selected 
classifiers vary in their learning function, definition and interpretation, and possess different 
assumptions about collinearity of input features.  Each base classifier was reasonably optimized with 
regards to parameter settings through cross validation techniques.  The Naïve Bayes and PNN classifiers 
do not require parameter tuning; for the MLP, appropriate network architecture, i.e. number of hidden 
layers and hidden nodes was selected; for the DT, the pruning parameter was optimized to avoid over 
fitting; for the SVM a linear kernel was chosen and the penalty term was selected to improve 
classification accuracy.    

4.2.2 Combining Classifiers  

Base classifiers can be combined through simple majority voting strategies or through more complex 
formulations that attribute weights to each base classifier when combining predictions.  Based on 
experimental studies, there is no significant difference in prediction accuracy between the simplest and 
most complex combination methods (Kuncheva , 2004).  However, the simplest strategies such as 
majority voting do not make full use of the known competencies of base classifiers- information which 
can help increase the overall prediction accuracy of the MCS.  Thus, the Naïve Bayes Combination (NBC) 
technique, which incorporates the accuracies of each base classifier into the final prediction, was 
selected. 
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NBC combines base classifier predictions following from Bayes theory (Kuncheva , 2004).  Instead of 
assigning a weight to each base classifier, a value of support is obtained for each class.  The value of 
support for a particular class is derived from the joint probability distribution between that particular 
class and the class predictions provided by each the base classifiers.  NBC assumes that classifiers are 
mutually independent given a class label.  Conditional independence is represented by the confusion 
matrix, or cross classification matrix, cmi, resulting from application of each classifier on validation data 
where each entry, (k, s), represents the number of samples with true class k and assigned class s.  The 
class with the highest value of support is assigned as the final prediction of the ensemble.  The value of 
support, 𝜇𝑘, is:   
 

𝜇𝑘 ∝  {∏
𝑐𝑚𝑘,𝑠

𝑖 + 1/𝑐

𝑁𝑘 + 1

𝐵

𝑖=1

}

𝛽

 

where  
k  = true class 
s = assigned class 

𝑐𝑚𝑘,𝑠
𝑖  = confusion matrix for base classifier i= 1…..B 

Nk = proportion of samples in class k 
c = number of classes 
β = tunable constant  

 

The formulation is adapted to account for zero values of 𝑐𝑚𝑘,𝑠
𝑖  which left untreated would cause the 

calculation to be zero regardless of other classifier estimates.  Titterington et al. (1981) suggests values 
for β between 0.5 and 1. 
 

4.2.3 Model Inputs 

The input feature sets comprised a combination of WIM measurements and inductive signature 
features. For the inductive signature only models presented in Section 4.2.4, the model inputs consist of 
only features derived from the inductive signature.  For the WIM based models presented in Section 
4.2.5, in addition to the inductive signature features, WIM features provide supplemental input to each 
model.  WIM features include axle spacing and weights, vehicle length, and several derived features 
such as overhang and ratios between axle weights as shown in Figure 4-1.  Overhang represents the 
front and rear portions of the vehicle extending beyond the axles, and is obtained as the arithmetic 
difference between the overall length and the sum of all axle spacing measurements.  Weight ratios are 
calculated as the ratios between the steering, drive, or trailer axles.  
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Figure 4-1 WIM system measurement and derived features for five axle semi tractor-trailer trucks 

The signature feature set includes interpolated magnitudes and interpolated magnitude differences.  
Signatures are pre-processed as shown in Figure 4-2.  First, the raw inductive vehicle signature is cleaned 
by applying a magnitude cutoff criterion to reduce measurement noise at the signature tails (Figure 
4-2(a)).  Second, the signature is normalized by its peak magnitude along the vertical axis and either the 
total duration of the inductive signature in the inductive signature only model or the overall vehicle 
length in the WIM-signature model along the horizontal axis (Figure 4-2(b)).  Third, 20 to 30 equally 
spaced magnitudes are interpolated from the normalized signature using the cubic spline interpolation 
method (Figure 4-2(c)).  A second feature set is computed as the difference between consecutive 
interpolated magnitude points (Figure 4-2(d)).   
 
In the WIM-Signature model, for five axle semi-tractor trailer units, axle spacing measurements are used 
to parse inductive signatures into tractor and trailer portions, as shown in Figure 2-8.  The parsed 
section of the signature representing the trailer is processed according to the same feature extraction 
procedure except the signature is normalized by the peak magnitude of only the trailer portion.  This 
improves classification accuracy since the model will not be influenced by features from the tractor in 
predicting the body class of the trailer.  The parsing procedure is only applied to FHWA class 9 five axle 
semi-tractor trailers. 
 
 

1st to 2nd   rd to  th   th to 5th  2nd to  rd  
Axle  pacing 

Axle Weights 

 verhang  

Vehicle  ength 

1st  2nd   rd  5th   th  

  Indicates derived measurement  



 

34 
 

 
 

(a) Raw Signature (b) Normalized Signature 

  
(c) Interpolated Magnitude Features (d) Magnitude Differences Features 

Figure 4-2 Inductive signature feature extraction procedure 
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Figure 4-3 Inductive Signature Parsing using WIM axle spacing measurements 

4.2.4 Inductive Signature Body Classification Model 

The Inductive Signature Body Classification model requires only inductive signature data for model input 
and does not rely on WIM data.  While the integrated WIM-Signature model is applicable at WIM sites 
equipped with inductive signature technology, the inductive signature only model in this section can be 
implemented at any ILD site equipped with 6-ft inductive loop sensors that has been upgraded with 
signature-capable ILD cards.   

4.2.4.1 Model Structure 
The inductive signature only model implements a three-tiered approach as shown in Figure 4-4.  The 
first tier separates vehicles into two general vehicle configuration groups: single unit and multi-units.  
The second tier further divides the two groups into more specific body configuration groups.  For single 
units, vehicles are classified as either passenger vehicles or single unit trucks.   For multi-units, vehicles 
are classified as single units with trailers, semi-tractor single semi-trailer configurations, or semi-tractor 
multiple trailer configurations.  The third tier consists of the body classification models for each body 
configuration group.  All three tiers of the model use the same feature set comprised of interpolated 
magnitudes and magnitude differences derived from the normalized inductive signature.  The first tier 
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was implemented as a decision tree.  The second tier was implemented as a feed forward neural 
network with two hidden layers of 15 neurons.  The third tier was implemented as a MCS.  
 
 
 

 

Figure 4-4 Model Structure for Inductive Signature Model 

 

4.2.4.2 Results 
The results are presented for the first and second tiers of the model followed by the results of the third 
tier body classification models for each of the body configuration categories.   Results are presented in 
terms of the Correct Classification Rate (CCR), Absolute Percent Error (APE), and Mean Absolute Percent 
Error (MAPE). These are defined as follows: 
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MAPE =
∑ (𝐴𝑃𝐸𝑏 × 𝑁𝑏

𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑) 𝑏

𝑁
× 100 (%) 

where  

b = body class 

𝑁𝑏
𝐶𝑜𝑟𝑟𝑒𝑐𝑡 = number of vehicles correctly classified in body class b 

𝑁𝑏
𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 = number of vehicle observed in body class b (e.g. the true vehicle count) 

𝑁𝑏
𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 = number of vehicles predicted in body class b  

N = total number of vehicles in test dataset 

 

Tier 1 and 2 Results 
The first tier of the model which separated single units from multi-unit vehicles had an overall CCR of 
98.4%.  The CCR for single units was 98.3% and 98.4% for multi-unit configured vehicles.  Vehicles 
classified as single unit vehicles by the first tier were subsequently classified as either passenger cars 
(PC) with CCR of 95.3% or single unit trucks without trailers (SU) with CCR of 89.6%, for an overall CCR of 
93.4%. 
 
Vehicle classified as multi-unit vehicles by the first tier were subsequently classified into single units with 
trailers, single semi-trailers, or multiple semi-trailers, with CCR of 82.7%, 98.6%, and 96.1% respectively.   
The overall CCR for multi-unit vehicles was 96.3%.  
 
The combined result of the first and second tiers is presented in the confusion matrix in Table 4-1.   
Common misclassifications occur for single units with trailers.  A possible reason for the low 
performance of the single unit with trailers class is that signatures for these vehicles are similar to those 
of smaller three or four axle semi-tractor trailers.  Secondly, smaller trailers towed by single unit trucks 
do not result in signatures that are distinctly different from those of larger single unit trucks without 
trailers. 
 
Overall, the first and second tiers of the model produce reasonably accurate classifications.  MAPE in 
volume of the combined first and second tiers is 1.3%.  Volume APE ranges between 0.5% and 7.6%.  
Single units with trailers have the highest APE, but overall the model produces accurate volume 
estimates of each of the five vehicle-body configuration groups.  



 

38 
 

Table 4-1 Inductive Signature Only Model Tier 1 and 2 Cross Classification Table and Volume Accuracy 

Vehicle-Body 
Configuration 

Groups 

Single Unit Multi-Unit 

Total 
CCR 
(%) PC SU 

SU w/ 
Trailer 

Single 
Semi 

Multi 
Semi 

Passenger Car  5,389 263 3 0 0 5,655 95.3 

Single Unit (SU) 298 2,417 121 20 0 2,856 84.6 

SU w/Trailer 0 104 925 186 23 1,238 74.7 

Single Semi 0 47 89 7,415 9 7,560 98.1 

Multi Semi 0 0 6 16 548 570 96.1 

Total 5,687 2,831 1144 7,637 580 17,879 93.4 

Volume APE (%) 0.5 0.9 7.6 1.0 1.8  

 

Tier 3 Results 

Single Unit Truck without Trailers Classification 
This model consists of 13 body classes. Table 4-2  summarizes the CCR results for each of the base 
classifier models and the NBC.  NBC achieved superior performance over the best performing base 
classifier with CCR of 72.4%.   For all but four body classes, the NBC approach performed better than the 
best base classifier.   Nine of the 13 body classes have CCR above 70%, of which five achieve CCR of at 
least 80%, and finally, two models have CCR above 90.0%.   Still several body classes have low 
classification accuracy.  Single units without trailers have a wide variety of body types and due to their 
shorter length, have less distinguishing inductive signature features.   This leads to low classification 
performance in this class. The most common errors resulted from vehicles being misclassified into the 
majority classes of conventional or cab-over van/platforms as well as utility/service trucks.  This is most 
likely due to the variability in the signature features of these classes.    
 
The MAPE in volume is 15.4% for the MCS modeling approach.   Class specific volume APE ranges from 
0.0 to 287.0% for the MCS approach.  The largest discrepancies in volume arise from several low volume 
classes (< 30 samples) such as concrete mixers, dump trucks with triple tandem axles, and street 
sweepers.    In these cases, the APE measurement somewhat exaggerated the small absolute differences 
in volume.    
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Table 4-2 Single Unit Truck without Trailer MCS Summary 

Body Class Vol. 
Base Classifier Models (CCR %) MCS (CCR %) 

MLFF SVM CPNN DT NB NBC 

Conv. Van/Platform 333 72.4 69.7 56.5 67.3 67.6 74.5 

Utility/Service 312 74.4 68.3 59.3 64.4 58.7 68.9 

Cab Over Van/Platform 209 30.6 56.0 23.4 35.9 45.5 68.4 

30ft Bus 114 86.8 89.5 89.5 76.3 85.1 89.5 

Bobtail 107 88.8 86.9 74.8 69.2 82.2 89.7 

Garbage 93 77.4 91.4 90.3 74.2 66.7 88.2 

Multi Stop Van/RV 77 39.0 35.1 29.9 44.2 15.6 51.9 

20ft Bus 74 44.6 70.3 63.5 67.6 17.6 78.4 

Dump/Tank 66 27.3 39.4 28.8 39.4 36.4 36.4 

Dumpster Transport 59 49.2 61.0 50.8 35.6 52.5 54.2 

Concrete 21 81.0 100.0 100.0 85.7 61.9 95.2 

Dump w/ Triple Rear 8 62.5 75.0 62.5 12.5 62.5 75.0 

Street Sweeper 3 66.7 100.0 100.0 33.3 0.0 66.7 

OVERALL  1,476 63.5 68.6 56.6 59.7 57.5 72.4 

Minority Classes  622 64.3 72.5 66.6 61.3 55.5 74.3 

 

Single Unit Truck with Trailers Classification 
The body classification model for Single Unit Trucks with Trailers covers nine truck-trailer combinations.  
A tractable set of unique truck-trailer combinations were observed in the data so separate models to 
predict trucks and trailers was not necessary.  The body classes are presented as truck –trailer 
combinations, e.g. Dump- Dump is a dump truck pulling a dump trailer.  Table 4-3 summarizes the CCR 
for each of the base classifiers and the two model combining strategies.  Using the NBC method, the 
overall CCR is 94.2%.   The best base classifier varied for each body class.  For example, NB was best for 
single units with small trailers (SU small trailer) while SVM was best for RV w/ towed vehicles.   
 
Single units with small trailers and RVs with towed vehicles are commonly cross classified due to the 
similarities in the signature shapes of these two classes.   Concrete trucks with lift axles extended 
achieve superior performance in terms of CCR and precision.   The MAPE in volume was 8.2% across all 
classes with four classes achieving APE below 10%.   Tow trucks, tanks with tank trailers (Tank-Tank), and 
dump trucks with lift axles extended which had poor classification accuracy, likewise have low volume 
accuracy.   
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Table 4-3 Inductive Signature Only Model Tier 3 Single Unit Truck with Trailer MCS Results  

Body Class Vol. 

Base Classifier Models (CCR %) MCS 
(CCR %) 

MLFF SVM CPNN DT NB NBC 

SU small trailer 515 95.0 93.0 85.6 94.8 97.9 96.3 

Dump-Dump 87 92.0 100.0 100.0 93.1 100.0 100.0 

RV w/ Towed Vehicle 49 67.3 93.9 81.6 59.2 91.8 85.7 

Concrete w/Lift Axle 34 100.0 100.0 88.2 91.2 79.4 100.0 

Tank-Tank 30 83.3 100.0 93.3 66.7 70.0 76.7 

Platform-Platform 20 35.0 25.0 50.0 30.0 70.0 65.0 

Tow Truck w/ vehicle 8 87.5 50.0 75.0 87.5 62.5 75.0 

Dump w/ Lift Axle 3 100.0 66.7 66.7 100.0 66.7 66.7 

OVERALL  746 90.9 92.1 86.3 89.1 94.5 94.2 

 

Tractor Classification for Combination Trucks 
The tractor body classification model is applied to vehicles that have been classified as semi-tractor 
trailer combination trucks by the second tier of the model.  There are three tractor body classes 
included in the model: sleeper cabs, cabs without sleepers, and other.   The model uses a subset of the 
inductive signature features that pertain to the first part of the signature representing the tractor.   The 
model is implemented as a multi-layer feed forward neural network as described in the previous 
chapter.  The testing data included 4,100 sleeper cabs, 1,519 cabs without sleepers, and 26 other.  The 
other category includes unconventional tractor types pulling semi-trailers such as wreckers, tanks, 
platforms, etc.  Results are shown in Table 4-4 by CCR for each class.  Overall the model achieves a CCR 
of 88.4%.  The lowest performing group, ‘ ther’ cabs, is typically misclassified as ‘cabs without sleepers’.   
 
 
Table 4-4 Inductive Signature Only Model Tractor Results 

Body Class Vol. 
MLFF 

(CCR %) 

Cabs without Sleepers 1,774 78.1 

Sleeper Cabs 4,044 93.2 

Other 20 40.0 

OVERALL  5,838 88.4 

Single Semi Trailers Classification for Combination Trucks 
There are 19 trailer body classes included in the model for single semi-trailers.  This category consists of 
semi-trailers with several different axle configurations including those with single axle trailers 
resembling FHWA class 8, those with tandem axle trailers resembling FHWA class 9, as well as triple or 
more axle trailers.  Enclosed vans were separated into two groups which approximate FHWA class 9 (five 
axle) and 8 (three or four axle) semi-trailers.  Each of the remaining 17 body classes contains both single 
and tandem rear axle configurations within its class.  The classification performance of the MCS method 
is summarized in Table 4-5 along with the CCRs for each of the base classifiers.    

 
The overall CCR of the MCS is 74.3% and 73.8% when considering only minority classes.  In this model, 
minority classes refer to all body classes except enclosed vans and enclosed van reefers in FHWA 8 and 
9.  Seven of the 19 body classes have CCR between 70% and 80%, five have CCR between 80% and 90%, 
and two have CCR above 90%.   Low performance in terms of CCR is observed for enclosed van reefers in 
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FHWA class 8, 53ft containers, and agricultural vans.  Several unique body classes including logging, 
livestock, and beverage trailers have CCR above 80% and precision above 75%.      
 
Enclosed Van body types including FHWA class 8 and 9 reefer and non-reefer configurations and 53ft 
containers were commonly cross classified.  Essentially, the subtle difference in the signatures caused by 
the configuration of the chassis for these set of body types is not able to be picked up by the models.  
Also, vehicles are commonly misclassified as platform trailers. This is likely due to the diverse set of body 
types and axle configurations within the platform body class.  For example, platform trailers can have 
split tandem axle configurations causing differing inductive signature shapes.    

 
MAPE in volume was 11.3% for all classes and 17.5% for minority classes.  Class specific APE ranged from 
3.7% (Enclosed vans Reefer FHWA 9) to 149% (Drop Frame Vans).  APE errors above 20% were observed 
for enclosed reefer vans in FHWA class 8, 40ft reefer container 20ft containers, low chassis trailers 
including low boy platform and drop frame vans, dump trucks, agricultural vans, and beverage trailers.  
The low CCR and APE in volume can be improved by further collapsing commonly cross classified classes.  
For example, if collapsed to nine classes, the total CCR rises to 90.5% and MAPE in volume becomes 
9.6% with class specific CCR between 59 and 95% and APE between 7 and 100%.     

 

Table 4-5 Semi Tractor Trailers MCS Summary  

Body Class Vol. 
Base Classifier Models (CCR %) 

MCS 
(CCR %) 

MLFF SVM CPNN DT NB NBC 

Enclosed Van  (FHWA 9) 2343 31.2 33.1 87.5 63.8 46.4 74.6 
Enc. Van Reefer (FHWA 9) 1624 54.4 71.9 22.9 71.2 44.3 74.3 

Enclosed Van (FHWA8) 89 66.3 69.7 86.5 77.5 71.9 83.1 
Enc. Van Reefer (FHWA 8) 13 76.9 46.2 0.0 30.8 38.5 46.2 

53ft Container 124 71.0 74.2 21.8 64.5 37.9 57.3 
40ft Container 136 68.4 51.5 19.1 81.6 19.9 75.0 

40ft Container Reefer 17 88.2 88.2 82.4 70.6 82.4 94.1 
20ft Container 14 71.4 85.7 0.0 57.1 71.4 85.7 

Platform 796 57.4 60.2 70.4 64.2 83.8 77.5 
Tank 283 58.3 65.0 78.1 71.7 64.3 70.7 

Open Top Van 185 42.2 54.1 51.4 67.6 28.1 60.5 
Auto 86 61.6 61.6 66.3 52.3 88.4 77.9 

Low Boy Platform 184 58.7 75.5 97.3 63.6 71.2 82.1 
Drop Frame Van 51 54.9 49.0 3.9 62.7 70.6 60.8 

Dump 54 59.3 66.7 44.4 48.1 59.3 70.4 
Logging 15 86.7 80.0 80.0 73.3 73.3 80.0 

Livestock 56 78.6 83.9 67.9 78.6 28.6 80.4 
Agriculture 29 44.8 79.3 13.8 51.7 13.8 58.6 
Beverage 14 92.9 92.9 0.0 50.0 7.1 92.9 

Overall 6113 47.4 54.2 61.5 66.6 52.0 74.3 

Minority Classes 2044 59.6 63.7 62.3 66.2 64.1 73.8 
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Multiple Trailers Classification for Combination Trucks 
There are seven trailer body classes included in the model semi-tractor trailers combination trucks with 
multiple trailers.  Each trailer in the multi trailer configuration was of the same body class for all of the 
observed data.  For example, two enclosed van trailers, or two tank trailers, but not one enclosed van 
and one tank trailer.   The body classes listed in Table 4-6 represents the body class of both trailers in 
the multi-trailer configuration.   The class labeled ‘platforms/tanks’ contains tank-tank and platform-
platform trailers, not to be confused with tank-platform trailers.  The model was trained with separate 
distinctions for platforms and tanks, but later the classes were merged due to the inability of the models 
to effectively distinguish between these two classes.   Likewise, the low chassis van/platform class 
represents a merged class, rather than a mixed trailer configuration.   
 
Table 4-6 summarizes CCR for each of the base classifiers and the two model combining strategies.   As 
with the previous models, the MCS approach achieves overall higher CCR compared to the best 
performing base classifier and is more consistent across body classes than any of the of the base 
classifiers.   Using MCS, all seven body classes achieve above 70% CCR with five of these having CCR 
above 90%.  In examining the cross classification matrix for the MCS approach it can be seen that 
common misclassifications occur between enclosed vans and platforms/tanks.    The MAPE for the multi-
trailer model was 7.0%.   Enclosed vans, platform/tanks, and dump multi-trailers all have APEs lower 
than 7%.  The APEs of the remaining classes ranges from 22 to 50%.    

Table 4-6 Multiple Semi Tractor Trailer Combination Trucks MCS Summary  

Body Class Vol. 

Base Classifier Models (CCR %) MCS 
(CCR %) 

MLFF SVM CPNN DT NB NBC 

Enclosed Van 253 92.1 93.3 77.6 87.4 77.6 92.9 

Platform/Tank 121 91.7 86.8 25.6 71.1 95.0 90.1 

Dump 126 84.1 88.9 90.5 84.9 80.2 90.5 

Pneumatic Tank 36 72.2 75.0 80.6 72.2 66.7 75.0 

Hopper 46 84.8 37.0 54.3 95.7 93.5 91.3 

Agricultural Van 2 100.0 0.0 100.0 50.0 0.0 100.0 

Low Chassis Van/Pltfr. 20 95.0 80.0 100.0 75.0 100.0 85.0 

OVERALL 604 88.8 84.9 69.1 82.8 82.7 90.4 

Minority Classes 351 86.3 78.9 63.0 79.5 86.3 88.6 

 

4.2.4.3 Discussion 
The inductive signature only model used inductive signature data as the sole input.  The model was 
structured into three tiers.  The first tier distinguished between single units and multi units.  The second 
tier separated vehicles in each of the first tier bins into axle configuration classes.  For single units, these 
are passenger cars and single unit trucks without trailers.   For multi units, these are single units with 
trailers, semi-tractor trailer combination trucks with single semi-trailers, and semi-tractor trailer 
combination trucks with multiple semi-trailers.   Combined together, Tiers 1 and 2 achieved CCR of 
93.4% and volume error of only 1.3%.  The four body classification models on Tier 3 are summarized by 
their training and testing dataset sample sizes, number of body classes, CCR, and APE in Table 4-7.  The 
overall classification vehicle scheme of the inductive signature only model is presented in Appendix F.  
 
The major contribution of the Inductive Signature only model is that it greatly increases the level of 
information available from an inductive loop sensor.  Current methods found in the vehicle classification 
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literature can at best distinguish vehicles into a few length based bins using conventional inductive loop 
detectors, and methods using inductive signatures are capable of classifying vehicles into a handful of 
body groups.  The method presented in this section distinguished amount 47 body classes representing 
a vast improvement over existing methods.  
 
Notable body class distinctions for single unit trucks include 30 and 20ft buses, concrete mixers, garbage 
trucks, bobtails, and street sweepers.  Knowledge of these body classes can assist in separating freight 
from service trucks for freight modelling as well as for emissions estimation.   Other notable body class 
distinctions for single semi unit trucks include distinction between five and three or four axle semi-
trucks, container transport trailers including 40ft, 40ft reefer, and 20ft containers, and specialty trailers 
like dump, beverage, livestock, and logging trailers.   Commodity specific body types can be especially 
useful for commodity based freight modeling.   
 
Of the 47 body classes, 34 have CCR above 70% and 19 have APE in volume lower than 10%.  Single unit 
and single semi-trailer models have the largest variety of body types and therefore also possess higher 
volume error and lower classification accuracy.  Low performance in these classes is due to the varied 
axle configurations in the class.  For example, single units can be two to four axle trucks and semi-
trailers can be three to five axle trucks.  Inductive signatures are not apt at distinguishing axle 
configuration thus this diversity maybe partly to blame for lower performance in these classes.  

Table 4-7 Inductive Signature Only Model Tier 3 Results Summary 

Model Training 
Samples 

Testing 
Samples 

Body 
Classes 

CCR (%) Volume MAPE 
(%) 

Single Units 1,553 1,476 13 72.3 15.4 

Single Units with Trailers 714 746 8 94.2 8.2 

Single Semi Trailers 3,720 6,113 19 74.2 11.3 

Multiple Semi Trailers 375 605 7 90.4 7.0 

Overall 6,362 8,940 47 34 models 
CCR > 70% 

27 models 
APE < 10% 

 

4.2.5 Inductive Signature and WIM Body Classification Model 

For each traversing vehicle, an inductive signature was collected concurrently with conventional WIM 
measurements.  Vehicle axle configuration is first determined from axle spacing and total vehicle weight 
measurements according to the FHWA axle configuration classification sieve (Quinley , 2010).  Body 
class is subsequently determined using inductive signature data.   

4.2.5.1 Model Structure 
The overall model structure is shown in Figure 4-5.  Following the data paring and parsing procedure, 
the former of which will be described in Chapter 5, the model is divided into three tiers. A separate body 
classification model was estimated for each axle configuration group corresponding to the FHWA 
scheme, yielding a total of eight truck body classification models.  Each model uses a slightly varied set 
of inputs and several models incorporate a multi-tiered approach to separate unique axle configurations 
before predicting body class.  For multi-unit trucks with tractors and trailers, separate models were 
developed for classification of the tractor and trailer units.   
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* Indicates separate body class model for tractor and trailer units 

Figure 4-5 Model Structure for WIM and Inductive Signature Model 

With the exception of the modifications described below, each of the eight body classification models 
was implemented as a hybrid MCS combined via NBC.  Cross validation was used to train each base 
classifier in the ensemble.  For NBC, trained models were first applied to a reference data randomly 
sampled from the test data to produce a confusion matrix for each base classifier.  The five class 
predictions were subsequently combined according to the NBC technique.   
 
For single unit trucks (FHWA 5), a two tier model was implemented to initially separate trucks with 
trailers from those without.  This tiered approach was necessary due to occasional missed trailer axle 
detections observed in the WIM data.  The first tier, implemented as a MLFF, was based on inductive 
signature features alone.  The second tier subsequently classified non-trailer trucks by body type 
following the MCS method.  The trailer detection model used for two axle trucks is shown in Figure 4-6.  
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Figure 4-6 FHWA Class 5 Model Framework 

Similarly, vehicles classified into FHWA class 8 by the axle-based classification sieve were first separated 
into four further refined axle-based categories: three or four axle semi-tractor trailers, two axle single 
unit trucks with trailers, two axle small trucks with trailers, and three axle trucks with lift axles.  
Approximately 71% of the trucks assigned to FHWA class 8 were three or four axle semi-tractor trailers 
and body class was subsequently determined for trucks in this refined axle group.  Examples of the four 
types of axle configurations contained in FHWA class 8 are shown in Figure 4-7.  Therefore, vehicles 
classified into FHWA class 8 by the axle-based classification sieve were first separated into four further 
refined axle-based categories: three or four axle semi-tractor trailers (Figure 4-7a), two axle single unit 
trucks with trailers (Figure 4-7b), two axle small trucks with trailers (Figure 4-7c), and three axle trucks 
with lift axles (Figure 4-7d).  A MLFF neural network was used to classify vehicles designated as FHWA 
class 8 into the four refined axle categories.  Only those predicted to be three or four axle semi-tractor 
trailers, approximately 71% of the FHWA class 8 records, were subsequently classified by body type.  
Vehicles predicted to be two axle single unit trucks with trailers were assigned to the ‘FHWA class 5 with 
trailer’ model.  Vehicles predicted to be three axle trucks with lift axles were assigned to the ‘FHWA class 
7’ model.  Lastly, vehicles predicted to be two axle small trucks (FHWA class 3) with trailers were not 
further classified as these vehicles types are outside the scope of the body classification models.  
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(a)Three or Four Axle Semi-Tractor Trailers 
 

 
 

 
(b) Two Axle Single Unit Truck with Trailers 

 
 
(c)Two Axle Small Trucks with Trailers 

 
(d) Three Axle Trucks with Lift Axles 

Figure 4-7 Examples of Axle Groups with FHWA Class 8 

Five axle tractor trailers (FHWA 9) were first separated into two axle configuration groups: three axle 
semi-tractors pulling a two axle semi-trailer (FWHA 9a) and three axle straight trucks pulling a two axle 
full trailer (FHWA 9b, also referred to in the California scheme as Class 14).  Axle spacing and weight 
thresholds from the California adaptation of the FHWA classification scheme (Lu et al, 2002) were used 
to divide trucks as FHWA 9a or 9b.    
 
Multi-trailer units (FHWA 11 and 12) differ in the axle count and configuration but analysis of the 
groundtruth data showed that they share the same set of trailer body types, so the two classes were 
merged into one model.  Multi-trailer configurations consisted of two trailers of the same body type, so 
the body class model outputs a single prediction representing all trailers pulled by a truck.  Seven or 
more axle multi-unit trucks (FHWA 13) tend to be specialized equipment movers or other unique body 
types, so no model was developed for this class. 

4.2.5.2 Results 
In this section, results are presented in terms of the correct classification rate (CCR), volume APE, 
volume MAPE, and summary of MCS base classifier performance.   In the summary table of the MCS 
base classifier performance, models with less than ideal performance, deemed to be less than 60% CCR, 
have been highlighted in red to emphasize the cases where an individual base classifier would not 
perform well.   
 
The terms used to assess the models include class specific CCR, Absolute Percent Error (APE), and Mean 
Absolute Percent Error (MAPE) as defined previously. 

Single Unit Truck Classification 
Single Unit Trucks include FHWA classes 4, 5, 6, and 7.  Results for these classes are summarized in Table 
4-8 through Table 4-11.   

FHWA Class 4 
Vehicles classified into FHWA class 4 are meant to be of two or three axle buses, the classification sieve 
captured several non-bus body classes including vans and platforms, as well as recreational vehicles 
(RVs).  The model was trained with 63 samples and tested on 62 samples.  A summary of the MCS base 
classifier performance is provided in Table 4-8.  The overall CCR for the MCS approach with NBC voting 
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was 95.2%.  None of the five base classifier models exceeded the CCR of the NBC approach across all 
body classes.  CCR was near or above 90% across all four body classes.  The model underestimates the 
volume of 30ft buses with single rear axles by 12% but the overall MAPE stands at 9.7%.  

Table 4-8 FHWA 4 Body Classification Model Results 

Body Class Vol. 
Base Classifier Models (CCR %) MCS (CCR %) 

MLFF SVM CPNN DT NB NBC 

Van or Platform 26 92.3 92.3 76.9 88.5 96.2 92.3 
30ft Bus Tandem 11 100.0 100.0 90.9 81.8 45.5 90.9 

30ft Bus Single 25 96.0 0.0 84.0 100.0 100.0 100.0 
RV 0  - -   -  -  -  - 

Overall CCR (%) 62 95.2 56.5 82.3 91.9 88.7 95.2 

FHWA Class 5 
Vehicles detected with only two axles by the WIM system or those identified by the axle detection 
model shown above as having no trailer are included in the FHWA class 5 without trailer body 
classification model.  A total of 10 groups were created from the 21 body classes observed in the data.  
Groups were formed based on shared body characteristics, general usage characteristics, and the 
models ability to distinguish between particular classes.  Of note are platforms and vans which could not 
be distinguished effectively by the models and were therefore lumped into a body class group.  Also, 
platform trucks were separated into four types that represent body class characteristics matching other 
vehicles in the dataset.  For example, ‘cab over platforms’ were grouped with ‘cab over vans’ since both 
have similar body characteristics and could not be distinguished by the models.   Vehicles grouped into 
the ‘other’ category were not able to be distinguished as any of the 18 listed body classes.  
 
The CCR results of the MCS base classifiers and combination strategies are summarized in Table 4-9.  The 
overall CCR of the NBC approach was 75.3%.  Of all the base classifier models, the SVM classifier 
performs best overall with 71.3% CCR, however has CCR below 60% for several classes while the NBC 
approach achieves CCR above 60% for all but one class (‘other’ trucks .  The majority of body classes 
have CCR above 70%.  Low performing classes include light vans/RVs, 12 passenger vans, and ‘other’ 
trucks.   Misclassifications tend to occur by assigning vehicles into the van/platform and 
utility/platform/pickup categories.   The MCS with NBC approach yields a MAPE in volume of 6.8% with 
volume APE for each class between 0.0% and 25.0%.   
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Table 4-9 FHWA Class 5 without Trailer MCS Summary 

Body Class Vol. 
Base Classifier Models (CCR %) MCS (CCR %) 

MLFF SVM CPNN DT NB NBC 

Cab Over Van/Platform 215 41.4 73.5 47.9 54.0 63.3 71.6 

Conv. Van/Platform 180 86.1 89.4 58.9 80.0 86.7 88.3 

Utility/Platform/Pickup 174 66.1 62.1 49.4 62.6 64.4 73.6 

Light Van/RV 104 67.3 51.9 47.1 61.5 54.8 67.3 

20ft Bus 71 83.1 87.3 69.0 71.8 18.3 83.1 

Tow Truck/Platform 61 67.2 47.5 26.2 49.2 60.7 70.5 

12 Pass Van 41 73.2 78.0 58.5 63.4 19.5 65.9 

30ft Bus 32 87.5 96.9 93.8 81.3 84.4 96.9 

Other 22 63.6 18.2 59.1 45.5 22.7 22.7 

Bobtail 12 91.7 91.7 100.0 91.7 83.3 91.7 

Overall CCR (%) 912 67.1 71.3 53.5 64.4 61.5 75.3 

FHWA Class 6 
There were 215 samples in the training dataset representing 15 distinct body class which were collapsed 
into the eight defined in the model. Dump, dumpster transport, and garbage trucks are the most 
prevalent in this class.  The CCR of each base classifier by body class and the MCS combining strategies 
are shown in Table 4-10.   The MCS with NBC combination has an overall CCR of 80.5% with class CCR all 
above 60%.   The model performs very well in identifying bobtail tractors with 91.5% CCR and 95.6% 
precision, and trucks with trailer assigned to FHWA class 6 with 92.9% CCR and 100.0% precision.  
Common cross classification occurred into the ‘platform/van/tank/other’ class.   owever this is to be 
expected given the wide diversity of body types and feature distributions within this class.   The MCS 
approach has a MAPE in volume of 9.4% with class specific APE ranging from 0.0% to 27.6%.  Garbage 
trucks and concrete mixers possess the largest APEs in volume, while bobtails, buses, and dumpster 
transport truck have APE in volume below 10%.   

Table 4-10 FHWA 6 MCS Summary 

Body Class Vol. 
Base Classifier Models (CCR %) MCS (CCR %) 

MLFF SVM CPNN DT NB NBC 

Dumpster 95 72.6 74.7 42.1 76.8 67.4 78.9 
Bobtail 94 92.6 97.9 85.1 89.4 90.4 91.5 

Platform/Van/Tank/Other 89 59.6 39.3 53.9 65.2 92.1 73.0 
Dump 88 75.0 76.1 40.9 47.7 60.2 78.4 

Garbage 29 72.4 89.7 86.2 51.7 37.9 79.3 
Concrete 16 81.3 93.8 93.8 68.8 18.8 68.8 

FHWA 6 w/ trailer 14 57.1 92.9 85.7 85.7 35.7 92.9 
Bus 1 0.0 100.0 100.0 100.0 0.0 100.0 

Overall CCR (%) 426 74.4 75.1 60.3 69.5 71.1 80.5 

FHWA Class 7 
FHWA Class 7 three axle single unit trucks are divided into four body classes.  From the observed data it 
was found that two axle single unit trucks with extended lift axles were often categorized as three axle 
trucks by the FHWA classification sieve.  Therefore the body classes include two axle dump trucks and 
concrete mixers with lift axles in addition to three axle dump trucks (‘dump triple’  and garbage trucks 
(‘garbage triple’ .  The 72 samples in the training data come from the Irvine and  resno sites as none 
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were observed at the Willows or Redding sites.   This was to be expected since three axle single unit 
trucks tend to be urban service trucks, e.g. garbage or dump trucks, and would therefore not be found in 
more rural areas like Redding and Willows.   
 
The test dataset was comprised of a limited set of 19 samples.  Table 4-11 summarizes the performance 
of the base classifiers and MCS combination methods on the test data.  The MCS with NBC performs 
with 100.0% CCR across all body classes, significantly improving upon all of the individual base classifiers 
and the MV combination method.   Since the MCS with NBC had 100.0% CCR and there were no cross 
classifications.   The MAPE in volume was 0.0%.   

Table 4-11 FHWA 7 MCS Summary 

Body Class Vol. 
Base Classifier Models (CCR %) MCS (CCR %) 

MLFF SVM CPNN DT NB NBC 

Garbage Triple Tandem Axle 9 77.8 0.0 100.0 100.0 66.7 100.0 

Concrete Tandem w/ Lift  7 100.0 100.0 42.9 100.0 42.9 100.0 

Dump Triple Tandem Axle 1 100.0 0.0 100.0 100.0 100.0 100.0 

Dump Tandem w/ Lift  2 100.0 100.0 50.0 100.0 100.0 100.0 

Overall CCR (%) 19 89.5 47.4 73.7 100.0 63.2 100.0 

 

Multi-Unit Truck Tractor Classification 
The current model for multi-unit truck tractor body classification covers only FHWA class 9, however it 
can be expanded later to include FHWA classes 8 and 10 through 13.  The tractor body classification 
scheme is a two class scheme: (1) cabs with sleepers and (2) cabs without sleepers. The tractor body 
class was modeled using a Naïve Bayes model.  
 
Figure 4-8 shows the distribution of the axle spacing data for the two tractor body classes: cabs without 
sleepers and sleeper cabs.   For the tractor model, the spacing between the 1st and 2nd axles, vehicle 
length, and an interaction term constructed by multiplying the vehicle length and spacing between the 
1st and 2nd axles were used as inputs to the classification model.  The spacing between the 2nd and 3rd 
axle did not vary significantly by tractor body type and was not included in the model.  Cabs without 
sleepers have shorter spacing between the 1st and 2nd axles than cabs with sleepers.  The median 
distances between the 1st and 2nd axles were 13.3ft and 17.3ft for cabs without sleepers and cabs with 
sleepers, respectively.  The median vehicle length for cabs without sleepers was 66.4ft and 74.0ft for 
sleeper cabs.   
 
The interaction term was included to further delineate between the two tractor body types across sites.  
It was observed that the tractor axle spacing (e.g. spacing between axles 1 and 2) for cabs without 
sleepers at Redding was significantly larger than that at the other three sites.  However, the overall 
vehicle lengths of cabs without sleepers observed at the Redding site were shorter than at the other 
three sites.   Interacting the terms allowed for better delineation between sleeper and non-sleeper cabs 
that was consistent across all observed sites. 
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Figure 4-8 Box plots of spacing between the 1st and 2nd axles, vehicle length, and vehicle length 

interacted with axle spacing by tractor body class 

 
As summarized in Table 4-12, the total CCR was 91.9% for the 4,999 test samples.  Cabs without sleepers 
had a CCR of 83.4% while sleeper cabs had a CCR of 94.6%.   The overall CCR were 90.1%, 96.2%, and 
94.0% for Fresno, Willows, and Redding, respectively.  
 
Both the training and test data from Redding had lower than average accuracy for cabs without 
sleepers.  As previously mentioned, the spacing of the 1st and 2nd axles of cabs without sleepers 
observed at Redding was larger than the average across the other four sites.  This configuration was 
found at each of the four sites but dominated the Redding site data.   Tractors without sleeper cabs that 
have longer tractor chassis might be considered as an additional unique body type, however, there is no 
clear visual features by which the body could be identified to provide groundtruth model data.  
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Table 4-12 Results of the WIM-Only Tractor Classification Model 

 Cabs without sleepers Sleeper Cabs Count CCR 

Fresno 86.4% 91.8% 1,692 90.1% 

Willows 79.8% 97.4% 1,474 96.2% 

Redding 60.3% 97.2% 670 94.0% 

Overall  83.4% 94.6% 4,999 91.9% 

 
The Irvine data was held out during model training so that it could be used independently for spatial 
transferability testing.  Table 4-13 summarizes the spatial transferability results.  The overall CCR was 
88.0%.  The CCR for cabs without sleeper was 83.6% and for sleeper cabs the CCR was 91.2%.  The 
results support the conclusion that the model is reasonably transferable to locations that were not 
included in model training. 
 

Table 4-13 Spatial Transferability Results of the WIM-Only Tractor Classification Model  

 Cabs without sleepers Sleeper Cabs Count CCR 

Irvine 83.6% 91.2% 1,163 88.0% 

 
 

Multi-Unit Truck Trailer Classification 
Multi-Unit Trucks include FHWA classes 8, 9, 10, 11, 12, and 13.  Results for these classes are 
summarized in Table 4-14 through Table 4-17.    

FHWA Class 8 
The FHWA Class 8 Trailer Axle Detector Model distinguishes four refined axle configurations found 
within the FHWA class 8 data using an MLFF neural network.   The overall CCR is 93.6% with class 
specific CCR between 78.7 and 100.0%.   The MAPE in volume is 8.9%.   Those vehicles identified as two 
axle single unit trucks with lift axles and two axle single unit trucks with trailers, are then assigned to the 
body class models for FHWA class 7 and 5 with trailers, respectively.  Vehicles identified as two axle 
small trucks with trailers are terminally identified.   Vehicle predicted to be three or four axle semi-
tractor trailers are fed into the FHWA class 8 body class model.   
 
There were seven unique trailer body classes observed for FHWA class 8 three or four axle semi-tractor 
trailer combination trucks.   Of the seven trailer body classes, five trailer body class groups were formed.   
Enclosed van trailer are the dominant class accounting for 76% of the training samples and 80% of the 
test data.  Unique minority trailer body classes include beverage, livestock, and agricultural trailers.   
 
The results of the base classifiers and MCS combining methods are shown in Table 4-14.  The MCS with 
NBC achieves 90.9% and 71.1% CCR for the overall and minority classes, respectively.  The majority of 
cross classification occur between platform and van trailers.   If van and platform trailers were to be 
combined into a single class, the CCR of the combined class would be 97.6%.   Low chassis van/platform 
and beverage trailers had CCR of 77.8 and 100.0%, respectively.  Unfortunately agricultural van trailers 
were not found in the test data set.  However, the validation dataset performance shows that the base 
classifier models were able to predict agricultural van trailers with CCR of 50%.    The MCS based model 
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generally produces accurate volume estimates with MAPE of 4.3%.  Platforms are the largest source of 
volume error with APE of 20.0%.   

Table 4-14 FHWA Class 8 MCS Summary 

Trailer Body Class Vol. 
Base Classifier Models (CCR %) MCS (CCR %) 

MLFF SVM CPNN DT NB NBC 

Van 149 90.6 99.3 94.0 83.9 63.1 96.0 

Platform 20 45.0 15.0 40.0 60.0 90.0 55.0 

Low Chassis Van/Platform  9 88.9 55.6 77.8 77.8 33.3 77.8 

Beverage 9 100.0 100.0 100.0 33.3 88.9 100.0 

Agricultural Van 0 - - - - - - 

Overall CCR (%) 187 86.1 88.2 87.7 78.6 65.8 90.9 

Minority Class CCR (%) 38 68.4 44.7 63.2 57.9 76.3 71.1 

 

FHWA Class 9a 
FHWA class 9 semi-tractor trailer combination trucks have the widest diversity of body types compared 
with all other FHWA classes.   The training data consisted of 3,205 samples from the Irvine, Willows, 
Redding, and Fresno data collection sites.  The 20 unique body classes were collapsed into 16 body class 
groups, two of which contain multiple body types: (1) the platform group contains basic platforms, bulk 
waste transport, and 20ft containers on platforms;  (2)the tank group contains liquid, dry bulk, and 
pneumatic tanks. Grouping of the trailer body types was based on physical and use characteristics as 
well as cross classifications evident in the training results.    Unique body classes include 20ft, 40ft, and 
53ft intermodal containers as well as refrigerated vans and containers (‘reefer’ .  Commodity specific 
classes include tank, automotive transport, livestock, agricultural, and logging trailers.  
 
Table 4-15 summarizes the base classifiers and MCS model combining strategies for the FHWA class 9 
trailer body class models.  The MCS with NBC achieves 75.5% CCR overall and 77.7% for minority classes.   
The SVM base classifier has the best performance for minority classes (79.2%) but sacrifices 
classification accuracy for the majority class as a result.  Four of the 16 trailer body class groups have 
CCR above 90%, five between 80 and 90%, and four between 70 and 80% using the MCS with NBC 
approach.  Lower than acceptable classification performance resulted for 53ft containers.  Cross 
classifications are common between enclosed vans, reefer vans, and 53ft containers due to their similar 
length, overhang, and chassis characteristics.  Classification accuracy of enclosed vans could be 
increased to 92.1% CCR by merging these three classes.  The model performs exceptionally well for 
many of the unique minority classes.  For example, 40ft containers, 20ft containers, automobile 
transport, and livestock trailers have CCR above 90% and precision above 70%.   The MCS with NBC 
applied to the test data across all sites results in MAPE of 12.0% and 11.1% for all classes and minority 
classes, respectively.   High APE was observed for 40ft reefer containers and drop frame vans, both of 
which were overestimated.  Commodity specific body classes such as auto transport, logging, livestock, 
and agricultural van trailers had APE in volume less than 20%.   
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Table 4-15 FHWA Class 9 MCS Results Summary 

Trailer Body Class Vol. 
Base Classifier Models (CCR %) MCS (CCR %) 

MLFF SVM CPNN DT NB NBC 

Enclosed Van 2,210 35.8 53.8 74.8 69.3 61.2 71.9 
Reefer Vans 1,564 64.5 82.4 24.3 72.4 61.0 74.9 

53ft Box Container 116 69.0 71.6 7.8 59.5 13.8 55.2 

40ft Container 131 74.0 77.1 66.4 58.8 16.8 81.7 

40ft Reefer Container  16 87.5 93.8 18.8 81.3 87.5 93.8 

20ft Container 13 92.3 84.6 100.0 92.3 100.0 100.0 
Platforms 734 51.0 72.5 89.5 77.4 88.6 81.3 

Tank 259 65.3 74.1 81.5 76.4 71.8 78.4 

Open Top Van 152 61.2 79.6 16.4 67.8 33.6 80.3 

Auto 67 89.6 92.5 94.0 74.6 82.1 94.0 

Low Boy Platform 166 80.1 81.9 90.4 81.9 88.6 88.6 
Dump 51 62.7 80.4 41.2 45.1 68.6 66.7 

Drop Frame Van 43 65.1 76.7 32.6 58.1 58.1 74.4 

Logging 14 78.6 78.6 85.7 85.7 85.7 85.7 

Livestock 45 95.6 100.0 64.4 84.4 62.2 95.6 

Agricultural Van 22 90.9 72.7 4.5 77.3 40.9 63.6 

Overall CCR (%) 5,603 52.9 69.2 59.4 71.5 63.7 75.5 

Minority Class CCR (%) 3,393 64.1 79.2 49.4 72.9 65.3 77.7 

 

FHWA Class 9b (California Class 14) 
The body class model for FHWA class 9b (California Class 14) single unit trucks with single trailers 
consists of five body classes.  The body classes represent the truck and trailer body of the vehicle.  For 
example, ‘ ump- ump’ refers to a single unit dump truck pulling a single dump trailer.  The training set 
consisted of 1 5 samples, dominated by ‘dump-dump’ trucks.    verall the CCR for the test data of 2   
samples was 96.7% for the MCS with NBC method.  Dump-Dump, Tank-Tank, and RV-Small trailer classes 
have CCR above 90%.  Platform-Platform trucks are the only underperforming class due to cross 
classifications as tank-tank and dump-dump trucks.  MAPE in volume of the MCS with NBC was 1.7%.  All 
body classes had APE in volume of less than 2%.  Only the Platform-Platform class exceeded 10% APE.   

 

Table 4-16 FHWA 14 MCS Summary 

Trailer Body Class Vol. 
Base Classifier Models (CCR %) MCS (CCR %) 

MLFF SVM CPNN DT NB NBC 

Dump-Dump 171 94.7 98.2 83.6 84.2 98.2 99.4 

Tank-Tank 31 87.1 90.3 71.0 90.3 90.3 90.3 

RV-Small Trailer 25 92.0 100.0 100.0 88.0 100.0 100.0 

Platform-Platform 17 64.7 52.9 11.8 52.9 52.9 76.5 

Livestock-Livestock 0 - - - - - - 

Overall CCR (%) 244 91.4 94.3 78.7 83.2 94.3 96.7 

FHWA Class 10 
The FHWA Class 10 model was limited by the number of samples available for model training and 
testing.  Due to low sample size, the MCS approach could not be applied and a single SVM model was 
used for prediction instead.  The six unique trailer body classes were collapsed into four groups: 20ft 
intermodal containers, platforms, low chassis vans and platforms, and enclosed vans.  The overall CCR 
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was 100.0% for the test data consisting of a limited set of 10 samples.  The model preforms well given 
the limited training data. 

FHWA Class 11 and 12 
From the nine unique trailer body classes representing dual semi-trailers, seven groups were created.   
The majority of samples are enclosed vans, platform, and bottom dump trailers. Minority body types 
included pneumatic tanks, hoppers, and agricultural vans.  The MCS results are shown in Table 4-17 for 
the test set of 302 samples.  The overall CCR for the MCS with NBC was 92.6%.  The MLFF neural 
network base classifier has an overall higher CCR than the NBC method, however, it achieve slightly 
lower accuracy for bottom dump and tank trailers.  The MAPE in volume of the MCS with NBC was 8.0%.  
The largest APE in volume results from platforms being misclassified as tanks, all other class specific APE 
in volume were less than 15%.   
 

Table 4-17 FHWA 11 and 12 MCS Summary 

Trailer Body Class Vol. 
Base Classifier Models (CCR %) MCS (CCR %) 

MLFF SVM CPNN DT NB NBC 

Platform 108 92.6 88.9 42.6 77.8 87.0 91.7 
Van 88 95.5 96.6 87.5 88.6 90.9 95.5 

Bottom Dump 67 98.5 100.0 98.5 97.0 100.0 100.0 
Hopper 33 81.8 63.6 45.5 75.8 81.8 75.8 

Pneumatic Tank 25 88.0 80.0 64.0 72.0 68.0 88.0 
Tank 3 66.7 66.7 66.7 66.7 33.3 100.0 

Agricultural Van 2 100.0 0.0 100.0 50.0 0.0 100.0 
Overall CCR (%) 326 92.9 89.3 68.7 83.7 87.7 92.6 

4.2.5.3 Discussion 
Both the results and depth of detailed body classes depicted in these models go well above the 
capabilities of previous classification models which were limited to at most five body classes using 
current in-pavement technology (Liu et al., 2011).  A major advantage of integrating the WIM site with 
inductive signature capabilities is that the body classification model is able to predict among body types 
found within an axle configuration class whereas previous inductive signature based models had the 
added challenge of predicting among all vehicle body and axle configurations.  In all, eight separate body 
classifications models were developed from an extensive data set of 18,967 truck records distinguishing 
an unprecedented total of 26 single unit truck, 25 semi-trailer body configurations, and 12 multi-unit 
trucks as shown in the summary in Table 4-18.   Of the 63 body classes, 51 had CCR greater than 70% 
and 33 had APE in volume less than 10%.   The overall classification vehicle scheme of the combined 
WIM and inductive signature model is presented in Appendix G. 
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Table 4-18 WIM-Signature Model Summary 

Model No. Training 
Samples 

No. 
Testing 

Samples 

No. Body 
Classes 

CCR (%) Volume APE (%) 

FHWA 4 63 62 4 95.2 9.7 
FHWA 5 without Trailers 1,172 912 10 75.3 6.8 

FHWA 6 215 342 8 80.5 9.2 
FHWA 7 72 19 4 100.0 0.0 

FHWA 8 Semi Trailers 224 187 5 90.9 4.2 
FHWA 9 3,198 5,603 16 75.4 12.2 

FHWA 10 17 13 4 92.3 7.7 

FHWA 11 and 12 508 326 7 92.7 8.0 
FHWA 14 145 244 5 96.7 1.7 
Overall 5,614 7,708 63 52 with CCR > 

70% 
37 with APE < 

10% 

 
The model for FHWA class 4 effectively distinguishes buses from vans and platforms which have been 
misclassified by WIM controllers into this class.  Hence, this model actually improves classification 
accuracy according to the FHWA scheme since FHWA class 4 is meant to only contain buses.  For two 
axle single unit trucks (FHWA 5), body configurations are extremely heterogeneous, and axle 
measurements and weights overlap significantly, however the model still effectively separated buses, 
passenger vans, utility and pickup trucks, bobtails (tractor drive units), and enclosed vans.  Models for 
FHWA classes 6 and 7 differentiated several industry specific categories including concrete, dump, 
garbage, dumpster transport, and vans.  These are important distinctions if one desires to compare 
possible freight and non-freight related vehicle volumes, since passenger related vehicles like buses or 
service oriented trucks such as pickups are not freight carriers.   
 
Five axle combination trucks (FHWA 9) possessed the widest diversity of trailer body types.  Enclosed 
vans formed the majority, while several unique and industry specific classes like logging and intermodal 
containers comprised the minority.  Remarkably, the model can even distinguish refrigerated from non-
refrigerated vans as well as refrigerated from non-refrigerated 40ft intermodal containers.  This level of 
distinction paves new possibilities for advanced tracking of perishable commodities, especially those 
that are port-related.   Also, because length is included in the model, 20ft intermodal containers can be 
classified with high accuracy.  Other commodity specific body types such as automobile transport, 
logging, and livestock trailers had CCR above 85%.   Unfortunately, the model is not able to accurately 
distinguish 53ft intermodal containers from enclosed vans due to overlap in signature and axle 
configuration features thus it is necessary to collapse these classes into a single group for this study.    
 
Across all axle configuration groups, the MCS approach which combined five base classifiers – MLP, 
SVM, CPNN, DT, and Naïve Bayes – using NBC had higher overall CCR than any single base classifier 
model.  While several base classifiers undoubtedly demonstrated adequate performance at predicting 
certain classes, there was always a tradeoff with low performance of the same classifier on other 
classes.  To illustrate this important facet of MCS, the class specific CCRs less than 60% were highlighted 
in red in each of the MCS summary tables.  Each classifier has a set of classes where it performs quite 
poorly, hence the need for the MCS method which consequently produced fewer class specific CCRs 
under 60%.   
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In the FHWA class 9 model, for example, the SVM base classifier produced more accurate predictions 
than any base classifier for livestock trailers (100.0%) but had the lowest performance among all base 
classifier for enclosed van trailers (53.8%).  If the SVM model had been applied alone, the accuracy in 
predicting enclosed vans would have been sacrificed in favor of livestock trailers.   But by combining all 
models, the CCR for enclosed vans was elevated to 71.9%, well above the ability of the SVM model, 
while still maintaining the high accuracy for livestock trailers (95.6%).   Accordingly, for all eight models 
(FWHA class 4 through 11/12) the overall CCRs were above 75% using the MCS approach.   Alternatively, 
had only the MLFF approach been implemented, for example, only six of the eight models would 
achieve CCRs above 75%.    
 
Since NBC calculates an array of probabilities for the set of possible body classes based on the joint 
distribution arising from each base classifier’s cross classification matrix, the strengths of each base 
classifier are captured and weaknesses are controlled.  For example, an unknown vehicle could be 
classified as a reefer by the CPNN model, which had a CCR of only 24% for this class because most 
reefers were misclassified as enclosed vans.  In NBC, the CPNN model will contribute little ‘evidence’ 
toward the estimated probability of the vehicle being a reefer (i.e. the number of records that were truly 
reefers and predicted as such is low  but contribute significant ‘evidence’ toward the estimated 
probability of the vehicle being an enclosed van (i.e. the number of records that were truly reefers but 
classified as enclosed vans is high).  In the simplest possible interpretation, this approach allows the best 
model to be used for each class.   Without this approach, there is no way to predetermine which base 
classifier should be applied to an unknown vehicle.    

4.2.6 Spatial Transferability Analysis 

Spatial transferability analysis was performed for the WIM-Signature FHWA class 9 semi-tractor trailer 
body class model since this model possess the widest array of body classes and spatial differences in 
body class distributions were observed to be particularly significant for this class of trucks.  To assess the 
spatial transferability of the model, the data from the Irvine data collection site was held out from 
model training, and then the trained MCS with NBC method was applied to the data collected from the 
Irvine site.   
 
Table 4-19 presents the CCR for the Irvine data.  The CCR of the Irvine data consisting of 589 samples 
was 64.3% overall and 55.6% for the minority classes.  The MAPE in volume was 30.4% and 41.3% for 
the overall and minority classes, respectively.  The highest error arises from 53ft containers.  In all, lower 
performance resulted from leaving the Irvine data out from the model training, however, this was to be 
expected because each of the four sites possessed widely different body class distributions.  Thus, 
leaving any site out of the training would mean excluding unique samples from the data.  For the most 
accurate model, data from the Irvine site and potentially other sites around the state should be included 
to fully encompass the diversity of vehicle types.   
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Table 4-19 Spatial Transferability Analysis Cross Classification Table for Irvine Data 

Trailer Body 
Class 

Total Number of 
Test Samples 

CCR (%) 

Enclosed Van 231 77.9 

Reefer 104 51.0 

53ft Container 44 25.0 

40ft Container 10 40.0 

40ft Reefer 0 - 

20ft Container 0 - 

Platform 62 72.6 

Tank 19 42.1 

Open Top Van 56 44.6 

Auto Transport 11 90.9 

Low Boy 
Platform 

27 88.9 

Drop Frame Van 10 90.0 

Dump 15 66.7 

Logging 0 - 

Livestock 0 - 

Agricultural Van 0 - 

Total 589 64.3 

 

4.3 Methods for Backcasting Body Classification Data 

The motivation for this method was to find a way to get more truck body class information out of 
historical WIM data for the purposes of validating the California Freight Forecasting Model (CSFFM) to 
prior validation years.  The objective of this model was to estimate site and time specific truck body 
configuration volumes using existing WIM site data and to tie together body configuration volume and 
GVW distribution to provide the much needed relationship between GVW distribution and body class.   
 
Rather than predicting individual vehicle classifications as the models in Section 4.2, the model 
presented in this section produces aggregate trailer body configuration volumes and GVW distribution 
estimates at the hourly, weekly, or seasonal levels for a specific WIM location.  This method allows more 
information to be extracted from axle-based measurement data without requiring modifications to 
existing infrastructure such as installing inductive signature capable detector cards, thus better 
leveraging already heavy investments in WIM systems.  This level of aggregation can better meet the 
needs of the various transportation agencies tasked with freight planning, air quality monitoring, and 
general truck data collection. 
 
The model was developed for five axle semi-tractor trailers that have been classified according to their 
axle spacing and weight measurements to be FHWA class 9 trucks.  Five axle semi-tractor trailer 
combination trucks have distinct axle configuration characteristics, prevalence in the traffic stream 
relative to other truck types, and unique implications for freight and emissions analysis.  Thus, 
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identifying the body classes of five axle semi-tractor trailer combination trucks is of interest.  Two 
models were developed: (1) a tractor body class model and (2) a trailer body class model.   

4.3.1 Modeling Framework 

Classification algorithms which rely on WIM data alone have been shown to be incapable of making 
body configuration predictions (FHWA, 1999).  Hence, this model estimates overall body configuration 
volume and GVW distribution using a modified decision tree (MDT) algorithm.  Whereas a standard 
decision tree (DT) assigns singular predictions to each sample collected at a terminal node of the tree, 
our MDT approach instead applies predetermined probabilities of each body configuration to the 
collection of samples that accumulate at each terminal node.  Then, body configuration volume can be 
estimated by summing across all terminal nodes.   

4.3.1.1 Modified Decision Tree (MDT) Model 
A DT is a non-parametric, supervised classification method.  DTs are viable for large data sets, intuitively 
represented, and due to their non-parametric implementation, do not require calibration.  This 
technique has been used in a variety of fields for these reasons (Chang and Wang, 2006).  In the 
transportation domain, DTs have been used for safety and accident analysis (Chang and Wang, 2006; 
Yan and Radwan, 2006) and for axle-based classification (FHWA, 1999).   
 
A binary Classification and Regression Tree (CART) (Breiman, 1984) was selected as the MDT 
implemented in this paper.  Used in their standard form, a DT declares one target class at each terminal 
node.  However, since we aim to produce volume estimates at an aggregate level rather than individual 
vehicle classifications, the probabilities of body configurations estimated at each terminal node were 
used to produce body configuration volume rather than assign a single prediction to all collected 
samples. Predetermined probabilities are applied to distribute the samples into body configurations at 
each terminal node.  The predetermined probabilities result from training the tree on observed field 
data.  The input variables of the M T represent each body configuration’s physical attributes which 
were statistically shown to be invariant by site or time, thus the terminal node’s body configuration 
proportions from the observed field data (i.e. training data) can be used to predict the body 
configuration volumes when the same input variables are used to bin new, unseen data via the MDT.  
The estimated volumes of each body configuration from each terminal node are then aggregated across 
all terminal nodes to produce the body configuration volume estimates:   
 

𝑉𝑏𝑜𝑑𝑦 𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑖  =  ∑ 𝑉𝑖
𝑛

𝑛

=  ∑ 𝑃𝑟𝑖
𝑛

𝑛

 ×  𝑣𝑛 

where 𝑉𝑖 = total volume of body configuration i , 𝑉𝑖
𝑛= volume of body configuration i at terminal node n, 

𝑃𝑟𝑖
𝑛 = probability of body configuration i at a terminal node n, 𝑣𝑛= total volume collected at a terminal 

node n 
 
To evaluate model performance, the absolute percentage error (APE) was used.  APE measures the 
deviation of estimated from actual truck volumes by body configuration.  The overall APE representing 
all sites by body configuration is the volume weighted average of each body configuration’s A E at each 
site:  
 

𝐴𝑃𝐸 𝑏𝑜𝑑𝑦 𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑖
𝑠𝑖𝑡𝑒 𝑡 =

|𝐴𝑐𝑡𝑢𝑎𝑙𝑖
𝑡 − 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑖

 𝑡|

𝐴𝑐𝑡𝑢𝑎𝑙𝑖
𝑡  × 100 (%) 
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APE 𝑏𝑜𝑑𝑦 𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑖
𝑎𝑙𝑙 𝑠𝑖𝑡𝑒𝑠 =

∑ (𝐴𝑃𝐸 𝑖
𝑡 × 𝐴𝑐𝑡𝑢𝑎𝑙𝑖

𝑡) 𝑡

∑ 𝐴𝑐𝑡𝑢𝑎𝑙𝑖
𝑡

𝑡

× 100(%) 

4.3.1.2 Gaussian Mixture Model (GMM) for estimating GVW distribution  
A GMM was applied to estimate GVW distributions by body configuration using the body configuration 
volume estimates obtained from the MDT model. A GMM is a linear composition of Gaussian 
distributions, 𝒩(𝜇𝑚, Σ𝑚) combined via a mixing proportion parameter, 𝑝𝑚 (Hastie, 2009): 
 

𝑓(𝑥) =  ∑  𝑝𝑚 ∙ 𝒩(𝑥; 𝜇𝑚, Σ𝑚)𝑀
𝑚=1   

where m = number of mixture components,  𝒩(𝜇𝑚, Σ𝑚) = Gaussian distribution with mean μ and 
covariance matrix Σ, and pm is the mixing proportion 
 
To estimate GVW by body configuration, a GMM consisting of three mixture components was estimated 
from the GVW data collected at each terminal node, n, of the MDT. The three mixture components 
approximate the unloaded, partially loaded, and fully loaded GVW distributions.  Next, the GMMs at all 
terminal nodes were aggregated to form a body configuration-specific GMM consisting of three 
independent Gaussian distributions from each of n terminal nodes, e.g. n by three Gaussian mixture 

components. The mixture proportions, 𝑝′
 𝑚
 𝑛

, in the body configuration specific GMM are derived from 

the volume of each body configuration, i, at each node, n, such that 𝑝′
 𝑚
 𝑛 (𝑖) =  𝑣 𝑚

 𝑛 (𝑖) ∙ 𝑝 𝑚
 𝑛 (𝑖) where 

𝑝 𝑚
 𝑛 (𝑖) is the mth mixing proportion of the nth terminal node for body class i.  The final body configuration 

specific GVW distribution is as follows: 
 

𝑓(𝑖) = ∑ ∑ 𝑝′
 𝑚
 𝑛

(𝑖) ∙ 

𝑀

𝑚=1

𝑁

𝑛=1

𝒩(𝑧; 𝜇𝑚
𝑛 , Σ𝑚

𝑛 ) =  ∑ ∑ 𝑣 𝑚
 𝑛 (𝑖) ∙ 𝑝 𝑚

 𝑛 (𝑖) ∙ 

𝑀

𝑚=1

𝑁

𝑛=1

𝒩(𝑧; 𝜇𝑚
𝑛 , Σ𝑚

𝑛 )  

where i = body configuration, n = terminal node, m = number of mixture components 
 
It should be noted that only nodes which have sufficient volumes to construct the Gaussian 
distributions, deemed to be greater than 30 trucks, were used to build the mixture distribution. The 
model is sensitive to the time aggregation interval in this regard since volumes at each terminal node 
depend on the body configuration distribution and total volume at a site.   
In this study, the trained MDT model had 13 terminal nodes each resulting in a three mixture GMM of 
GVW.  Therefore, the Gaussian mixture distribution for each body configuration consists of up to 39 
individual Gaussian distribution components.  The total number of Gaussian models is variable since 
nodes with less than 30 records are disregarded.  Figure 4-9(a) shows the 39 individual Gaussian 
distributions estimated at each node for vans.  Figure 4-9(b) represents the final G mixture distribution 
of GVW for vans from the 39 individual distributions combined via the mixing proportions derived from 
body configuration volumes at the nodes.  
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(a) 39 individual gaussian distributions for vans (b) Final GVW distribution for vans 

Figure 4-9 Deriving GVW distribution for vans 

4.3.2 Data  

Three WIM sites described in Chapter 3 (i.e. Fresno, Redding, and Willows) were selected for model 
development with a fourth site (Irvine) selected for spatial and temporal transferability testing.  In total, 
10,904 five axle semi-trailer truck records were collected across multiple days and manually identified 
by body configuration.  Data were split into training and testing datasets by day with approximately 70 
percent of the data chosen for training and the remaining selected for testing as shown in Table 4-20.   
 

Table 4-20 Summary of Data for Backcasting Model Development  

 
 

Vehicle characteristics 
Five axle semi-trailer trucks (also known as 3S2 trucks) contain the largest variety of truck body 
configurations.  Five trailer body groups were formed to capture this diversity: vans, platforms, tanks, 
 0ft box containers, and ‘other’. Each group shares similar physical, industry and/or commodity 
attributes.  40ft box containers were considered as a separate category in this study since estimating 
volumes of 40ft box containers would be valuable for capturing intermodal transportation movements.  
 
An exploratory analysis was performed to identify the optimal set of axle configuration variables that 
are required to determine body configuration.  In addition to the spacing between the 3rd and 4th axle 
and overall vehicle length, a derived measure called overhang was used.  Spacing between the 3rd and 
4th axles is the measured length in feet between the last tractor axle and the first trailer axle.  Length 

Site Location 
Site 

Description 
Collection dates 

Number of Truck 
Samples Collected 

Number of Class 9 
Truck Samples 
Collected (%) 

SB SR-99 at Fresno 
Agricultural, 
Semi-Urban 

Train  Nov. 08, 2012 
6,715 4,101 (61%) 

Test  Nov. 07, 2012 

SB I-5 at Redding Rural 
Train  Dec. 11, 2012 

2,326 1,694 (73%) 
Test  Dec. 10, 2012 

NB I-5 at Willows Rural 
Train  Dec. 10 - 11, 2012 

4,493 3,507 (78%) 
Test  Dec. 12, 2012 

SB I-5 at Irvine Urban Test  March 20th and 25th, 2013 4,677 1,632 (35%) 
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refers to the distance in feet from the nose of the tractor to the tail of the trailer.  Overhang represents 
the front and rear portions of the vehicle outside the axles and is obtained as the arithmetic difference 
between the overall length and the sum of all axle spacing measurements.  Figure 4-10 shows the 
boxplot depicting the descriptive statistics of these variables by body configuration, illustrating the 
potential of each variable to distinguish the body types defined in this modeling effort.  Van trailers have 
the longest length and overhang, and are distinctive from other body configurations.  Generally, 
platforms have the second longest length.  Tank type trailers have distinctive, shorter overhang.  40ft 
box containers have relatively longer overhang compared to their short length.  A Kolmogorov-Smirnov 
hypothesis test confirmed that the five body groups are indeed differentiable by length, axle spacing, 
and overhang.  It should be noted that axle loads and GVW were not used due to spatial dissimilarities in 
weight.  Further, to alleviate measurement inconsistencies due to sensor calibration, a normalization 
technique was applied. The spacing between the 2nd and 3rd axles of the tractor unit, which is fixed on 
tractors and does not vary geographically or by body configuration, was used to normalize each WIM 
measurement (e.g. length, spacing, and overhang).   
 

   
(a) Length (b) Axle Spacing (c) Overhang 

    

Figure 4-10 Descriptive statistics of WIM variables; (a) Length (b) Axle spacing between 3rd and 4th 
axle (c) Overhang. 

4.3.3 Results 

The trained MDT is presented in Appendix D with probabilities of body configurations displayed at each 
terminal node along with the branching criteria.  Table 4-21 summarizes the results on the training and 
test datasets.  APE across all sites and body classes for the training and test data sites were 3.9 percent 
and 5.3 percent, respectively.  For the test data, the APE in volume across all sites for vans and platforms 
were 1.7 percent and 5.4 percent, respectively.  The APE in volume by site ranged between 0.4 percent 
to 1.9 percent for vans, and 2.8 percent to 13.2 percent for platforms.  However, the volumes of tanks, 
40ft box containers, and other trailer types had relatively higher APEs, ranging from 18.1 percent to 44.2 
percent.  These higher APEs were due in part to the heterogeneity in physical characteristics of trucks 
within those body configuration groups.   

Median
Upper 
Quartile

Lower
Quartile

IQR (Interquartile range)
Largest obs
within 1.5 IQR

Smallest obs
within 1.5 IQR

Outlier

Boxplot Description: 
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Table 4-21. Results of Decision Tree Model 

APE(%) by Sites 

Test Data Set Train Data Set 

Body types Overall 
APE % 

Body types Overall 
APE % Van Pt Tank 40ft Ct Other Van Pt Tank 40ft Ct Other 

All Sites 

Actual 
Volume 

2353 515 208 108 139 3323 4180 1207 349 116 307 5979 

APE % 1.7% 5.4% 21.2% 31.5% 22.3% 5.3% 2.2% 3.7% 20.6% 13.8% 4.9% 3.9% 

Fresno  

Actual 
Volume 

1131 286 160 61 72 

1710 

1509 437 253 63 129 

2391 
Estimated 
Volume 

1151 294 131 47 87 1540 418 227 70 136 

APE % 1.8% 2.8% 18.1% 23.0% 20.8% 5.0% 2.1% 4.3% 10.3% 11.1% 5.4% 3.8% 

Redding  

Actual 
Volume 

223 53 11 4 29 

320 

1028 217 39 8 82 

1374 
Estimated 
Volume 

224 60 9 3 25 1041 220 29 9 75 

APE % 0.4% 13.2% 18.2% 25.0% 13.8% 4.7% 1.3% 1.4% 25.6% 12.5% 8.5% 2.5% 

Willows  

Actual 
Volume 

999 176 37 43 38 

1293 

1643 373 57 45 96 

2214 
Estimated 
Volume 

980 189 50 24 50 1598 389 93 37 97 

APE % 1.9% 7.4% 35.1% 44.2% 31.6% 5.9% 2.7% 4.3% 63.2% 17.8% 1.0% 4.8% 

 
For comparison purposes, two baseline approaches were developed.  The first is based on body 
configuration proportions calculated from observed, site specific data.  This method applies a static 
proportion of vehicle types that does not vary by time of day, but only by location.  The second is based 
on national level body configuration proportions collected in VIUS which have been adjusted by Average 
Annual Truck Miles by body configuration.  VIUS does not include intermodal container trucks so this 
body configuration cannot be estimated under this baseline approach.  Figure 4-11(a) shows the body 
configuration proportions for each site and for VIUS. 
 
To apply the baseline approaches to the test data, the static proportions were used to stratify the test 
data by body configuration.  The same training and testing datasets used for the MDT approach are used 
so the results are direct comparisons between the MDT and two baseline approaches.  Prediction 
accuracies of the baseline approaches are shown in Figure 4-11(b).  The overall APEs are 9 percent and 
55 percent for the observed and VIUS methods, respectively.  Even though the static proportion derived 
from the observed data estimate truck body configuration volumes with error ranging from 8 percent to 
10 percent, this method is extremely labor intensive since manual data collection at targeted WIM sites 
is required to obtain the static proportions.  In addition, compared to the MDT approach which had an 
overall error of only 5 percent, VIUS proportion approaches are not viable alternatives.  
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(a) Proportion of Body Configuration from Observed Data and VIUS (2002) 

 
(b) APE from Baseline Approach 

Figure 4-11 Baseline approaches and APE; (a) Proportion of body configuration from observed and 
VIUS (2002) data (b) APE from baseline proportion approach. 
 

4.3.4 Sensitivity Analysis 

Two sources of sensor measurement error may arise in length and weight measurements: systematic 
errors due to calibration and random errors due to vehicle dynamics over the sensors (Nichols and 
Bullock, 2004).  A sensitivity analysis was performed to ensure that the MDT model is robust to both 
error sources.  To evaluate the sensitivity to systematic errors, a constant 10% increase was applied to 
each measure (length, spacing, and overhang) in the test dataset.  For random errors, random 
disturbances were applied to each measure through repeated random sampling from a normal 
distribution, 𝒩(0, 0.05).  Two different MDT models, one trained on the non-normalized data (i.e. non-
normalized tree, NNT) and a second trained on a dataset normalized by the tractor axle spacing (i.e. 
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normalized tree, NT) were evaluated under two error scenarios: (1) systematic error only, and (2) 
systematic and random error.  
 
With normalization, errors greatly decrease for all sites as summarized in Table 4-22.  The second 
column of Table 4-22 shows the error that results when no errors are applied.  The normalization 
approach reduced overall APE from 15 percent to 5 percent under scenario (1) and from 13 percent to 6 
percent under scenario (2).  Fresno performed the worst with 20 percent APE under scenario (2) and 18 
percent APE scenario (2) when no normalization was applied.  Redding and Willows had more stable 
performance with APE below 10 percent for scenarios (1) and (2).  In all, the normalization approach 
effectively corrected for both systematic and random errors.   

Table 4-22 Results of Sensitivity Analysis on Backcasting Model 

Error Scenario 
No Applied 

Error 
Scenario 1: 

Systematic Error 
Scenario 2: 

Systematic and Random Error 

APE (%) NT** NNT* NT** NNT* NT** 

All Sites 5% 15% 5% 13% 6% 

Fresno 5% 20% 5% 18% 7% 

Redding 5% 9% 5% 8% 5% 

Willows 6% 9% 6% 8% 6% 

*NNT : Non-Normalized Tree, ** NT : Normalized Tree 

 
Spatial and temporal transferability was analyzed to ensure the MDT approach could generalize to sites 
and time periods not included in model development.  The MDT model was applied to the Irvine site, 
which was not used in model development.  Unlike the three sites used to develop the model, the Irvine 
site is an urban location in close proximity to two major sea ports.  General findings conclude that the 
model is both spatially and temporally transferable.  While sites used in model development had 5 
percent overall APE, the Irvine site had an overall APE of 8 percent (Figure 4-12).  From these findings, 
we conclude that the model can be readily applied to other WIM sites and has a potential to be used for 
historical analysis.  
 

 

Figure 4-12 Results of transferability analysis 
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Time of day (TOD) patterns distinguished by body configuration can capture the daily variations of 
commercial vehicle travel activity.  Figure 4-13 highlights the model’s ability to accurately track T   
patterns by body configuration at the Irvine site.  It is clear that vans and platforms follow different TOD 
trends, which would not be captured using static proportion methods.   
 

 

Figure 4-13 Hourly volume estimation using MDT model at Irvine (March 20, 2013) 

4.3.5 GVW Distribution Estimation 

Figure 4-14 shows the resulting GMMs for (a) vans, (b) platforms, (c) tanks, and (d) 40ft intermodal 
containers along with a normalized histogram of observed GVWs for each corresponding body 
configuration.  To obtain sufficient volumes needed to estimate each Gaussian mixture distribution, data 
from all four sites were aggregated.  In practice, larger datasets representing weekly or monthly 
aggregation levels would be more than sufficient.  There are 30 bins in the normalized histogram each 
with a width of 3 kips.  The resulting GMMs for vans and platforms depict tri-modal GVW distributions, 
while tanks follow a bimodal distribution.  This reflects the loading characteristics of tanks which due to 
drive instability arising from partially loaded liquids tend to travel either fully loaded or completely 
empty whereas vans and platforms travel fully, partially, or un- loaded.  In addition, despite the small 
volume observed for 40ft intermodal containers, the GMM was capable of replicating the high 
proportion of lighter or empty loads observed.  This could indicate return trips or transports of less 
dense commodities.   
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(a) Van type GMM 

 
(b) Platform type GMM 

 
(c) Tank type GMM 

 
(d) 40ft Box Container type GMM 

Figure 4-14 Weight histogram and GMM; (a) van (b) platform (c) tank (d) 40ft box container. 

A Kolmogorov-Smirnov hypothesis test was performed for all body configurations to confirm the 
statistical fit of the models.  The test concluded that the null hypothesis, i.e. the estimated mixture 
model and the normalized histogram are from the same population, cannot be rejected at a significance 
level of 1% (α = 0.01  for all body configurations aggregated across all stations.  Therefore, the estimated 
mixture models visually and statistically capture the peaks and overall shape of the observed data.   

4.3.6 Conclusion 

In this section, a MDT method to estimate five-axle semi-tractor trailers (3S2) volume and GVW by body 
configuration based on existing WIM site data was shown to have acceptable performance.  Across all 
sites and body configurations, the MDT model predicted body configuration volumes with only 5 
percent error.  The model employs a simple normalization procedure to ensure robustness to systematic 
errors due to sensor calibration and random errors due to vehicle dynamics over the sensors.  Across all 
sites, the normalization procedure reduced volume estimation errors caused by systematic and random 
measurement errors by approximately 7 percent.  Furthermore, the model demonstrated spatial and 
temporal transferability when applied to a test site with a body configuration distribution that diverged 
from that of the sites used for model development.  Compared against a pair of baseline approaches 
that estimated body configuration volumes using national survey and observed, site specific data the 
MDT method was shown to produce more accurate volume predictions than either baseline approach.  
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In addition to body configuration volume estimation, a method to estimate GVW distribution by body 
configuration was developed.  Statistical results show that the GVW estimation model was able to 
replicate the observed GVW distribution for each of the five body configuration classes.  
 
There are several immediate applications of body class volume and GVW distribution estimates which 
will be investigated in future studies.  First, detailed information on truck volume by body configuration 
tied to GVW distribution can be used for payload factor estimation used in freight modeling.  Second, 
GVW distributions by body class can be used to assess the volume of empty trips at the link or route 
level providing more advanced methods for validating empty movements in freight modeling.  Lastly, by 
applying the MDT model to historical WIM data, body class volume changes over time can be assessed 
at the site level which can be tied to historical accident data to identify accident hot spots stratified by 
body class and perhaps link body class with safety impacts.  

4.4 Optimal Site Selection for System Deployment 

4.4.1 Background 

The problem of selecting the optimal deployment sites was initially investigated by considering 
candidate WIM sites across the State of California, and designing optimization functions coupled with 
sets of constraints to recommend the ideal locations for deployment. 
 
This model was not used in the final site selection effort of this study due to the limited spatial scope of 
the final deployment strategy (within the California San Joaquin Valley) as well as operational 
constraints involved with final selection of deployment sites.  The final deployment strategy was to 
perform deployments within the San Joaquin Air Basin, spanning San Joaquin, Stanislaus, Merced, 
Madera, Fresno, Kings, Tulare, and approximate half of Kern County.  However, only thirteen existing 
data WIM sites are found within this region as shown in Figure 4-15.   
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Figure 4-15 Location of Data WIM sites in the San Joaquin Air Basin 

 
Although most of these sites were equipped with 1060 series WIM controllers at the start of this study, 
many had been upgraded or were being planned for upgrade to the newer iSinc series controllers during 
the deployment phase of this study.  During the deployment phase, it was determined that six WIM sites 
(Banta, Santa Nella, Los Banos, Delhi, Stockdale, Bakersfield and Arvin) were equipped with the iSinc 
controller, one (Porterville) was planned for iSinc upgrade.  This limited the set of feasible candidate 
deployment sites, as the iSinc controller is beyond the scope of this project for implementation of the 
integrated WIM and inductive signature system.  In addition, the Fresno WIM site was undergoing 
construction, and the  odi WIM site was found to be equipped with 6’x12’ inductive loop sensors, which 
are not compatible with the model developed in this study, which is based on 6’x6’ loops.  Hence, only 
three feasible data WIM sites were left as candidates for deployment of the truck body classification 
system. 
 
Notwithstanding, the models developed for the optimal location of sites for WIM and inductive 
signature deployment can still be used for future statewide expansion efforts of the system developed 
in this study.  The models can also be easily modified to include existing candidate ILD sites in addition 
to WIM sites to expand the scope of inductive signature deployment. 
 
Two alternative methods to choose optimal deployment locations based on the analysis of sampled 
truck GPS data are presented in this section.   The first method selects locations based on maximizing 
the total number of origin-destination flows captured while considering the distribution of truck body 
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classes by OD pair.   The second method attempts to locate the best possible set of stations needed to 
perform vehicle re-identification along the highway network to provide further insights into truck trip 
behavior.   Both methods would provide guidelines for optimal deployment.   

4.4.2 Sensor Location Data 

The heavy truck GPS data used in this study was obtained from the American Transportation Research 
Institute (ATRI).  In this dataset, anonymized randomly generated identification numbers (IDs) were used 
to maintain the confidentiality of truckers and trucking companies.  Position and timestamp information 
was obtained from trucks equipped with automatic vehicle location equipment at predetermined 
intervals.  However, these update intervals varied by trucks.  This dataset comprises four weeklong 
subsets in the middle of each quarter in 2010 to provide seasonal representation of truck travel 
activities within California, yielding a total of over 8 million truck positions.  It was assumed that the 
truck trajectories derived from this dataset provide a reasonable representation of heavy duty truck 
activity in California.  The truck trajectories were subsequently matched with WIM site locations to 
determine the number of trips captured by each WIM station, as well as the ordered sequence of WIM 
sites traversed by each truck trip. Figure 4-16 shows the truck trajectories and locations of existing WIM 
sites in California. 
 

 

Figure 4-16. Heavy Truck GPS Trajectory Coverage and WIM Station Locations in California 
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4.4.3 Sensor Location Problem 

The location allocation of roadway sensors is a critical issue when limited budget restricts the number 
sensors that can be deployed.  Sensor placement problems have been extensively studied in 
transportation research in recent years for applications such as origin-destination (OD) flow estimation 
(Lam and Lo, 1990; Yang and Zhou, 1998), travel time estimation (Li and Ouyang, 2011), freeway 
bottleneck identification (Liu and Danczyk, 2009), network level flow estimation (Gentili and 
Mirchandani, 2005; Gentili and Mirchandani, 2012).  These location problems and their associated 
models provided an ample platform from which a sensor location problem for the inductive signature 
technology deployment was developed.    
 
Two methods are presented in this Section.  In the first method, called the flow-interception approach, 
the objective is to deploy a selected number of locations that will maximize the total number of trip 
samples captured. Such an implementation would be desirable for an agency that would like to survey 
the highest possible representation of trucks traveling on the network. The second method—the re-
identification approach—attempts to locate the detector stations such that deployed locations have the 
potential to capture not only the maximum number of trip segments, but also have the captured 
segments reflect the largest possible portion of each trip as well, constrained to the locations available 
for deployment.  Vehicle re-identification aims to match vehicles crossing two different locations based 
on vehicle attribute data.  Vehicle re-identification data can be used to estimation trip OD matrices and 
vehicle path flows.  Inductive signature based vehicle re-identification methods have been shown to be 
feasible for short distances.  There has been interest in developing an inductive loop signature-WIM 
based heavy truck monitoring system, in which data from inductive loop detectors and WIM stations are 
integrated3.  Such an integrated technology can offer a great potential to identify heavy truck 
movements on the freeway.  Cetin et al. studied the re-identification of trucks over long distance can be 
performed.  They developed algorithms to match commercial vehicles that cross two WIM stations with 
a higher accuracy in Oregon by using vehicle length and axle information. 
 

4.4.3.1 Flow-interception Sensor Placement (FSP)  
The Flow-interception Sensor Placement (FSP) method is designed to maximize the total amount of net 
OD trips captured on a network.  Genetili and Mirchandani reviewed a series of sensor location 
problems and categorized those problems into two main types; (1) Full Flow-Observability problem and 
(2) Partial Flow-Observability problem, where the former minimizes the number of sensors to cover the 
entire network flow level and the latter tries to maximize intercepting flow volumes given the number of 
sensors.  In their study, two Partial Flow-Observability problems (M3 and M6) are considered for FSP 
application.  However, M6 is found to be a greedy strategy for selecting locations because it does not 
consider link flow dependence, resulting in double-counting trips that traverse more than one sensor.  
So, M3 was used as the base model for the flow-interception sensor placement (FSP) where sensors are 
located on links such that the max amount of route flows are measured together with a positive fraction 
of trips between any observed OD pairs.  The FSP formulation is as follows: 
 
 
Maximize ∑ 𝜇𝑖𝑦𝑖𝑖∈𝐼          (1) 
 
s.t.  ∑ 𝑥𝑗𝑗∈𝐽𝑖

≥ 𝑦𝑖     ∀𝑖 ∈ 𝐼        (2-a) 

                                                           
3
 http://www.volpe.dot.gov/sbir/sol12_2/topics.html#FH4 

http://www.volpe.dot.gov/sbir/sol12_2/topics.html#FH4
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 ∑ 𝑥𝑗𝑗∈𝐽 = 𝑃          (2-b) 

 

 ∑ 𝛿𝑖
𝑗
𝑥𝑗𝑗∈𝐽 ≥ 1    ∀𝑖 ∈ 𝐼𝑟        (2-c) 

 
 𝑦𝑖 ∈ {0,1}     ∀𝑖 ∈ 𝐼        (2-d) 
 
 𝑥𝑗 ∈ {0,1}     ∀𝑗 ∈ 𝐽        (2-e)  

 

 𝛿𝑗
𝑖 ∈ {0,1}     ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽       (2-f) 

 
Where 𝜇𝑖: flow-based weight factor for different vehicle types on path 𝑖 
𝐼 and 𝐽: set of all travel paths with non-zero flows and the set of candidate sensor locations on the 
network, respectively. 
𝑓𝑖: traffic volume along path 𝑖 ∈ 𝐼 

𝜇𝑖 = 𝑓𝑖 ∑ 𝑤𝑏𝜌𝑏
𝑖

𝑏∈𝐵   ∀𝑖 ∈ 𝐼      
𝐵: set of vehicle types that can be measured  
𝑤𝑏: weight factor for body type 𝑏 ∈ 𝐵        

𝜌𝑏
𝑖 : proportion of vehicle type 𝑏 contributing path 𝑖, ∑ 𝜌𝑏

𝑖
𝑏∈𝐵 = 1.0 ∀𝑖 ∈ 𝐼  

𝑃: maximum number of sensors that can be installed on freeways    
 

𝛿𝑗
𝑖 = {

1, location 𝑗 intercepts flow 𝑓𝑖  
0, otherwise

          

       
The objective function in Equation (1) maximizes the total intercepted net path flow for all given OD 
pairs.  Two binary decision variables, 𝑥𝑗 and 𝑦𝑖  are included, which determine whether the candidate 

location 𝑗 is selected and whether path 𝑖 is covered by sensor placement, respectively.  Constraint (2-a) 
ensures that the decision variable 𝑦𝑖  to be equal to zero if there is no sensor placed on path 𝑖.  
Constraint (2-b) locates exactly 𝑃 sensors on links while constraint (2-c) forces a particular set of paths 𝐼𝑟 

to be covered if needed.  The incident parameter, 𝛿𝑗
𝑖, indicates one if the candidate location 𝑗 is on path 

𝑖, and zero otherwise.  It is noted that constraint (2-c) can conflict with (2-b) if 𝑃 is not large enough to 
cover 𝐼𝑟 (𝑃 < |𝐼𝑟|). 
 
A set of vehicle types, 𝐵 denotes possible types of vehicles passing over the candidate sensor locations.  

A proportion of flow for vehicle type 𝑏 ∈ 𝐵 on path 𝑖 can be expressed as 𝜌𝑏
𝑖 .  The flow-based weight 

factor, 𝜇𝑖  can be defined as a flow multiplied by weight factors for each proportion of vehicle types.  If 
the weight factor, 𝑤𝑏 is the same for all vehicle types, then the model becomes an ordinary flow-
interception model considering all vehicle types equally.  It is noted that without constraint (2-c), the 
problem represents the maximum covering location problem, which is known as NP-hard. 
 

Heavy Truck Body Type Distribution 
One of the main requirements of FSP is the truck type distribution associated with each vehicle path.  
However, the GPS truck trajectories do not provide information on vehicle body types and associated 
commodity types.  Hence, the body type information was obtained from an ongoing effort to develop 
the California Statewide Freight Forecasting Model4 (CSFFM).  CSFFM is a commodity based model to 

                                                           
4
 http://www.dot.ca.gov/hq/tsip/otfa/csffm/index.html 

http://www.dot.ca.gov/hq/tsip/otfa/csffm/index.html
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forecast and analyze freight movement in and out of California.  The model outputs include location-
based commodity productions, consumptions, commodity flows, and vehicle flows by different 
transportation mode (truck, rail, and air).  To identify trucks’ OD and paths, the truck position records in 
truck GPS trajectories were then associated with the CSFFM’s freight analysis zones (97 zones in 
California) based on their GPS points.  In addition, each truck trajectory was projected on CSFFM’s 
statewide transportation network to identify an ordered set of WIM stations associated with each truck 
route. 
 
CSFFM payload factors and body types were employed to determine the fraction of body types 
associated with each OD pair.  The commodity-based payload factors were derived from the California 
portion of the 2002 Vehicle Inventory Use Survey (VIUS), which provide conversion factors from the 
total tonnage value associated with each of fifteen commodity groups defined in CSFFM to the 
corresponding number of vehicles for each OD pair. Table 4-23 shows the eight different body types 
defined in CSFFM. The proportions of body types based on the California portion of VIUS are 
subsequently applied to CSFFM commodity groups in Table 4-24. 
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Table 4-23. VIUS Body Types in CSFFM 

 
Table 4-24. Body Type Distribution by Commodity Group (FHWA Class 9) 

 
 

The following method is applied for the calculation of 𝜌𝑏
𝑖  stated in FSP:  

 

 𝑇𝑏
𝑘 =

𝑚𝑘1𝜑1𝑏

𝑝1𝑏
+

𝑚𝑘2𝜑2𝑏

𝑝2𝑏
+

𝑚𝑘3𝜑3𝑏

𝑝3𝑏
+ ⋯ +

𝑚𝑘15𝜑15𝑏

𝑝15𝑏
= ∑

𝑚𝑘𝑠𝜑𝑠𝑏

𝑝𝑠𝑏
𝑠∈𝑆      (3-a) 

 

 𝜌𝑏
𝑘 = 𝑇𝑏

𝑘/𝑇𝑘           (3-b) 
 
Where  
𝑘: k-th OD pair, 𝑘 ∈ 𝐾 
𝑠: commodity group, 𝑠 ∈ 𝑆  

𝑇𝑏
𝑘: number of trucks in vehicle type 𝑏 for k-th OD pair 

𝑚𝑘𝑠: tonnage of commodity group 𝑠 for 𝑘-th OD pair, 𝑘 ∈ 𝐾, 𝑠 ∈ 𝑆 
𝜑𝑠𝑏: faction of commodity group 𝑠 with vehicle type 𝑏, 𝑏 ∈ 𝐵 
𝑝𝑠𝑏: payload of truck type 𝑏 transporting commodity group 𝑠 

Body Types CA portion of VIUS National VIUS 

1 Concrete mixer and concrete pumper 4.49% 3.62% 

2 Dump 12.56% 21.27% 

3 Flatbed, stake, platform, and low boy 27.30% 19.49% 

4 Service 6.34% 4.52% 

5 Tank 23.73% 8.28% 

6 Trash, garbage, recycling, and vacuum 5.53% 4.21% 

7 Van 17.05% 30.00% 

8 Others 3.00% 8.61% 

Total 100.00 % 100.00 % 

 

Commodity Group Body Type % Commodity Group Body Type % 

1 
Agriculture products 

2 0.0185 
8 

Manufactured 
Products 

2 0.0787 
3 0.2407 3 0.3371 
5 0.0926 7 0.4494 
7 0.5741 8 0.1348 

8 0.0741 9 
Chemical, Pharmaceutical 

products 

3 0.0345 

2 
Wood, Printed products 

2 0.7111 5 0.2759 
3 0.1333 7 0.6897 

7 0.0444 10 Non-metallic mineral 7 1.0000 

8 0.1111 
11 

Metal manufactured 
products 

2 0.0519 

3 Crude petroleum 5 1.0000 3 0.4545 

4 
Fuel, Oil products 

2 0.2857 7 0.4545 
3 0.1786 8 0.0390 

5 0.0357 
12 

Waste materials 

2 0.5517 
7 0.5000 3 0.1724 

5 
Gravel, Non- Metallic 

minerals 

3 0.0556 7 0.2759 

7 0.8889 
13 

Electronics 

3 0.0652 
8 0.0556 5 0.1087 

6 
Coal, Metallic minerals 

2 0.7222 7 0.8261 

3 0.1111 
14 

Transportation equipment 

2 0.2500 
7 0.1111 3 0.2500 
8 0.0556 7 0.5000 

7 
Food, Beverage, Tobacco 

products 

3 0.2391 15 
Logs 

3 0.8571 
5 0.2174 8 0.1429 

7 0.5435       
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𝜌𝑏
𝑘: estimated proportion of body type 𝑏 for OD pair k 

𝑇𝑘: total number of vehicles assumed for k 

𝑇𝑏
𝑘 : the number of trucks in truck type 𝑏 for the given OD pair k, 𝑘 ∈ 𝐾 

 

4.4.3.2 Re-identification Sensor Placement (RSP)  
The objective function and constraints employed in RSP are based on the study by Sherali et al (2006) 
and Liu and Danczyk (2009), where it is formulated as a non-linear optimization problem.  The objective 
function maximizes the benefits that can be represented as the utility of the placement of two sensors.  
In Sherali’s study, benefit was represented as travel time variability while Liu and Danczyk represented 
benefits as non-negative speed gradients.   The objective of the RSP problem for vehicle re-identification 
is to select optimal pairwise locations such that the benefit is derived in terms of the number of truck 
routes captured by the sensor pair.   Unique to re-identification problems are the constraints which 
affect the accuracy of re-identification, such as distance and traffic flow between sensors.  
 
The formulation for the RSP problem is as follows.  Each path 𝑖 ∈ 𝐼 is specified by its traffic volume 𝑓𝑖 
which is assumed to be known via GPS trajectory sampling.  If 𝑓𝑖 passes at least two sensors, the route 
portion between two sensors can be identified as a vehicle re-identification route.  Each path 𝑖 passes a 
set of candidate sensors on highway network, 𝐽𝑖.   
 
RSP-1) Maximize ∑ ∑ ∑ 𝑏ℎ𝑒𝑥ℎ𝑥𝑒𝑒∈𝐽𝑖ℎ∈𝐽𝑖𝑖∈𝐼        (4) 

 
s.t. ∑ 𝑥𝑗𝑗∈𝐽 ≤ 𝑃            (5-a) 

  ∑ 𝑐𝑗𝑥𝑗𝑗∈𝐽 ≤ 𝑈          (5-b) 

 
  𝑥𝑗 ∈ {0,1}     ∀𝑗 ∈ 𝐽        (5-c) 

 
𝐼: set of OD paths on the network 
𝐽: set of all candidate locations for re-identification sensors 
𝑓𝑖: traffic volume on path i 
𝑏ℎ𝑒: benefit factor between head (ℎ) and rear (𝑒) sensors 
𝑃: maximum number of sensors that can be installed on freeways  
𝑐𝑗: unit cost of installing sensors at any site 𝑗 

𝑈: maximum installing budget  
 
We assign the upstream and downstream sensor traversed by a truck trip as the head (ℎ ∈ 𝐽𝑖) and rear 
(𝑒 ∈ 𝐽𝑖) sensors, respectively.  If there exist at least two sensors at 𝑥ℎ and 𝑥𝑒 along path 𝑖, its utility can 
be recorded as 𝑏ℎ𝑒. The objective function (4) seeks to maximize the total benefit based on sensor 
placements among candidate sites, 𝐽.  Constraint (5-a) asserts that the total number of sensors should 
not exceed the available maximum number, 𝑅, while constraint (5-b) limits the total cost of installing 
sensors at each site 𝑗 with a unit cost 𝑐𝑗.  The decision variable 𝑥𝑗 is defined as binary, where 1 

represents the placement of a sensor at location 𝑗 and 0 otherwise in (5-c). 
 
The benefit factor (𝑏ℎ𝑒) constituting the objective function parameters here reflects the ability to 
capture highway paths regarding the variability of freight truck movement.  Since the number of sensors 
on path 𝑖 is a key factor in estimating the true OD paths, the locations of upstream and downstream 
sensors are critical.  A path coverage concept is introduced as a benefit factor of RSP.  Consider that the 
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length of an individual vehicle path 𝑖 connecting its true origin and destination is denoted by 𝐿𝑖.  Then, 
let 𝑅𝑖 denote a set of candidate sensors on path 𝑖.  These sensors play a critical role in reconstructing the 
individual path.  If there are two sensors placed on path 𝑖, denoting 𝑅𝑖 = (𝑟ℎ , 𝑟𝑒) for upstream (head) 
and downstream (rear), the identified distance by two sensors, 𝑑𝑖(𝑟ℎ, 𝑟𝑒) along path 𝑖 can be calculated 
by actual vehicles trajectories along truck routes. If 𝑑𝑖(𝑟ℎ , 𝑟𝑒) represents a significant proportion of 𝐿𝑖, as 
described in (Li and Ouyang, 2011).  On the other hand, if 𝑑𝑖(𝑟ℎ, 𝑟𝑒) is very short compared to 𝐿𝑖, it can 
be inferred that the two sensors do not provide much information about path 𝑖. 
  

 𝑏ℎ𝑒
𝑑 = {

0, 𝑟𝑒 < 𝑟ℎ  
𝑑𝑖(𝑟ℎ,𝑟𝑒)

𝐿𝑖
, otherwise

        (6) 

 
There are currently no comprehensive empirical data for re-identification performance of the integrated 
WIM and inductive signature technology system. However, a recent study by Cetin (2011) evaluated 
factors which affect the matching accuracy between WIM station pairs, such as distance, travel time 
variability, truck volumes, and sensor accuracy and consistency.  They demonstrated that re-
identification with WIM can be performed over large distances, and WIM sensor accuracy and traffic 
volume were identified as the major factors determining the search space at the upstream location.  
 
In this study, the variability of travel time between upstream and downstream is considered to 
potentially affect the accuracy of re-identification because a search space for a downstream vehicle is 
determined based on the travel of detections at head and rear stations.  The width of time windows 
usually increases as the distance between upstream and downstream detectors increases, generally 
yielding a lower probability of vehicle matching.  Therefore, one assumption is that the error rate of re-
identification increases as the distance between head and rear sensors increase in (7).  
 
 Re-identification Error Rates  ∝  𝑑𝑖(𝑟ℎ , 𝑟𝑒)      (7) 
 

 𝑔1(𝑟ℎ, 𝑟𝑒) = 𝑒−𝑠/𝜏         (8) 
 
We assume a distance-based exponential decay function shown in Equation (8), where 𝜏 is a decay rate 
with a positive constant. Let 𝑠 denote an input variable 𝑠 for the function, 𝑔.  In this study, we assume 
that 𝑠 can be replaced with 𝑑𝑖(𝑟ℎ, 𝑟𝑒). Figure 4-17(a) shows three performance decay curves assumed by 
different parameter sets with short (𝜏=100), medium (𝜏=200), and long distance performance (𝜏=400). 
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                     (a) Distance-based Decay: 𝑔1                                   (b) Location-specific Decay: 𝑔2 
 

Figure 4-17. Re-id Performance Decay Assumptions: (a) Distance-based, (b) Location-specific. 

 
A second approach assumes that the decay factor, 𝑔2 can be based on location-specific traffic flow 
characteristics between the upstream to downstream sensors.  Suppose that two detectors, [𝑟ℎ , 𝑟𝑒], are 
installed on a freeway.  Two data types can be used to estimate the likelihood of finding the correct 
match—traffic flow from upstream (ℎ) to downstream (𝑒), 𝑓ℎ𝑒 and all traffic counts at both upstream 
and downstream sites, 𝑓ℎ∈𝐽 and 𝑓𝑒∈𝐽in Equation (9).  The basic idea of this approach is simply assuming a 

search space given the number of vehicles coming from the upstream.  For example, if two locations are 
close and the most vehicles passing the upstream location are going to the downstream location, there 
would be higher probability that the downstream vehicles can be found at the upstream candidate set, 
which means that both 𝑓ℎ𝑒 and 𝑓ℎ∈𝐽 are higher.  On the other hand, if the majority of volumes at the 

upstream site take other paths instead of going to the downstream site, there would be fewer 
downstream vehicles coming from the upstream sites, resulting in a higher 𝑓ℎ∈𝐽, but lower 𝑓ℎ𝑒.  The 

same concept can be extended to traffic counts (𝑓𝑒∈𝐽) at the downstream site.  Note that 𝑔2 is a 

location-specific factor estimated from the ground truth samples.  The observed traffic counts and the 
flow between upstream and downstream can be abstracted from truck trajectories.  
 

 𝑔2(𝑟ℎ, 𝑟𝑒) =
𝑓ℎ𝑒

𝑓ℎ∈𝐽
∙

𝑓ℎ𝑒

𝑓𝑒∈𝐽
         (9) 

 
Segment combinations of possible upstream and downstream WIM sites were extracted from all truck 
trajectories.  A total of 151,760 segments were identified with 2,460 segments of unique upstream and 
downstream WIM site pairs.  Figure 4-17(b) shows the assumed performance decay (𝑔2) for each 
combination of upstream and downstream detectors by distance. As expected, higher rates are 
generally found within the shorter distance range.  The highest value is 0.309 corresponding to truck 
movement between site 30 (Mt. Shasta on I-5 South) and site 2 (Redding on I-5 South).  Almost 60 
percent of vehicles that passed the upstream site also traversed the downstream site.  The performance 
decay associated with WIM site pairs is independent of the presence of other upstream or downstream 
sites. 
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Since multiple sensors can be utilized for one path, i.e. |𝑅𝑖| > 2, a subset of sensor pairs was assumed 
such that there are |𝑅𝑖|-1 levels of pairs from which to derive benefit factors.  For the example of 
𝑅𝑖 = {𝑟1, 𝑟2, 𝑟3, … , 𝑟𝑠}, there are 𝑠-1 benefit factors contributed sequentially by each sensor-based 
segment {𝑟1, 𝑟2}, {𝑟2, 𝑟3},…, {𝑟𝑠−1, 𝑟𝑠}. The total benefit for multiple sensors on a path can be summed up 
as described in Equation (10).  
 

𝑏ℎ𝑒 = ∑ 𝑏ℎ𝑒
𝑑

ℎ,𝑒∈𝑅𝑖
𝑔(ℎ, 𝑒)        (10)  

 

4.4.4 Solutions 

FSP Solution 
The proposed FSP problem takes a linear programming form. This is useful for finding an exact solution 
using conventional linear programming solvers if the problem is not extremely large in scale. A 
preliminary computational experience with C++ and CPLEX 12.4 Concert Library showed reasonable 
computational times around 5 minutes on Intel Core 2 Duo 2.6 GHz CPU and Windows XP.  The origins 
and destinations of 131,201 truck trajectories are grouped by 97 CSFFM Freight Analysis Zones (FAZs) in 
California.  A total of 13,009 unique OD paths were identified with 83 distinct WIM locations.  Hence, 
each OD pair could be associated with multiple distinct paths.  Truck trajectories with one end of their 
trip outside of California had the external end matched to the zones closest to the state boundary.  The 
number of WIM sites traversed by paths ranged between one and eleven sites. 
 

FSP Results for Heavy Truck Body Types 
The aforementioned body type distribution in Figure 4-24 was used to estimate the distribution of body 
types for each commodity group. Truck body types G1, G4, and G6 were not considered as they are not 
associated with freight movement. The selection priorities were performed using a stepwise approach 
to increase the maximum number of locations selected.  Table 4-25 (a) and (b) show the selected 
locations that result from applying six different truck body type criteria to the FSP optimization problem.  
As shown in the first row of the table, the ‘All groups’ criteria gave equal priority to all truck body types.  
The remaining criterions correspond to placing priority on only one of the body types (G2, G3, G5 G7 
and G8) when determining the optimal locations. 
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Table 4-25. Comparison of FSP location selection results for different truck body type priorities 

(a) 1 to 5 selected stations 
Criteria Selected WIM Sites 

P = 1 P = 2 P = 3 P = 4 P = 5 
All groups 95 95, 102 82, 95, 102 3, 82, 95, 102 3, 77, 82, 95, 102 

G2 Dump 47 47, 102 47, 95, 102 44, 47, 95, 10 44, 47, 95, 102, 
103 

G3 Flatbed, stake, 
platform and 
lowboy 

95 82, 95 82, 95, 102 44, 82, 95, 102 44, 77, 82, 95, 
102 

G5 Tank 95 82, 95 82, 95, 102 44, 82, 95, 102 44, 77, 82, 95, 
102 

G7 Van 95 3, 95 3, 77, 95 3, 77, 95, 102 3, 77, 82, 95, 102 
G8 Others 82 82, 102 82, 95, 102 1, 82, 95, 102 3, 44, 82, 95, 102 

 
*[95]: Ontario on CA SR-60, [47]: Castaic on I-5, [82]: Glendora on I-210, [102]: Delhi on CA SR-99, [3]: 
Antelop on I-80 
 
 (b) 20 selected stations 

Criteria Selected WIM Sites 
P = 20 

All groups 3, 5, 10, 15, 24, 29, 37, 44, 47, 57, 59, 63, 67, 69, 75, 77, 82, 95, 
103, 114 

G
2 

Dump 3, 7, 10, 15, 17, 29, 44, 47, 55, 57, 59, 61, 68, 75, 82, 87, 95, 103, 
111, 114 

G
3 

Flatbed, stake, 
platform and 
lowboy 

3, 5, 7, 10, 15, 24, 29, 37, 41, 44, 47, 59, 61, 67, 69, 75, 77, 82, 95, 
103 

G
5 

Tank 1, 5, 7, 10, 15, 24, 35, 37, 41, 44, 46, 47, 59, 61, 67, 69, 77, 82, 95, 
102 

G
7 

Van 3, 5, 10, 15, 24, 29, 30, 37, 44, 47, 57, 59, 63, 67, 69, 75, 77, 82, 
95, 114 

G
8 

Others 2, 3, 5, 7, 10, 15, 29, 35, 41, 44, 47, 59, 61, 67, 69, 77, 82, 95, 102, 
114 

 
 
Figure 4-16 shows a comparison of site selection results using the six different selection criteria for 
selecting five optimal locations.  Sites chosen by one or more of the selection criteria have their 
corresponding slices shaded white.  Both sites 95 and 102 were chosen across all criteria, while site 47 
(Castaic on I-5) and 103 (Orange on CA SR-57) were chosen only when optimizing the location selection 
for G8 (Other) trucks.  The results show that site 95 (Ontario on CA SR-60) had the highest priority across 
when higher priority was given to groups G3, G5, and G7.  This indicates that the model is sensitive to 
different body type priorities.  The location was also reported as one of the top three ranked sites (95, 
77, and 82) based on volumes of 5-axle tractors pulling semi-trailers (FHWA class 9), indicating an 
agreement between the truck GPS data with WIM data.  Although site 95 was not initially selected under 
criterion G2 or G8, it was selected when the total number of sites (P) specified was three, indicating that 
it is generally an ideal site for flow interception.  Also, site 102 (Delhi on CA SR-99) was selected across 
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all criteria when the total number of sites was specified to be 5 sites (P = 5), but was not included when 
P=20 for all but two criteria: G5 and G8.  This indicates that a significant proportion of truck trips 
traversing site 102 may be captured by one or more combinations of alternative sensors in close 
proximity.  Indeed, site 75 (Keyes on CA SR-99), which is located 13 miles north of 102 on SR-99 in 
Central California, was selected for the other criteria in the absence of site 102, and both these sites 
were never chosen simultaneously for each criterion.  This confirmed that the FSP model gives priority 
to selecting non-overlapped locations. 
 
 

 
* Fully white pie chart slice denotes that the location is selected for all scenarios. 

Figure 4-18. Comparison of FSP site selection criteria results for P = 5 

A sensitivity analysis was performed across a range of sensor deployments, for the number of selected 
sites, 𝑃 ranging from 1 to 40. Figure 4-19 shows the flow-interception and the path-interception using 
the six different criteria.  When deploying the body type classification technology for up to 40 locations, 
the flow-interception can capture more than 90 percent of the given truck flows.  G7 shows the 
dominant flows among the body types considered.  When the G7 criterion is used and deployed at 40 
locations, the G7 trucks captured by these selected locations represent 54 percent of total flows.  There 
is no significant difference in path interception across all criteria. 
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                             (a)  Flow Interception                                              (b) Path Interception 

Figure 4-19. FSP results with truck body types 

RSP Solution 
The RSP problem is a constrained mixed-integer quadratic programming problem. Since the benefit 
factors in RSP can vary depending on the combination of selected locations, benefit complexity makes it 
a challenge to solve with traditional nonlinear solver software packages.  Thus, a Genetic Algorithm (GA) 
method was employed to solve the RSP problem.  GA is an adaptive meta-heuristic algorithm used to 
solve combinatorial optimization problems.  The GA method involves a chromosome structure that 
represents a solution of the problem and the solution evolves by copying chromosomes and swapping 
partial chromosomes over generations.  Although GAs do not guarantee optimal solutions, they are 
efficient in seeking approximate solutions in combinatorial optimization problems.  Each chromosome is 
made up of candidate locations representing binary decision variables.  An initial population is given by 
randomly distributed servers over the candidate locations.  For genetic operators, Elitism, Crossover and 
Mutation techniques are employed with the maximum number of generations (e.g., 500 generation 
span) for each scenario. 
 
As shown in Table 4-26, three types of re-identification performance decay scenarios were considered, 
with 𝑔0, 𝑔1, and 𝑔2 representing no decay, distance-based decay, trip-based location specific decay, 
respectively.  Unlike FSP, only trips traversing two or more WIM stations on an observed path were 
considered.  A total of 58,762 individual trips were identified to have two or more sensors among 
131,201 truck paths.  The average number of WIM stations on a path is 2.62 stations.  35,012 (59.6%), 
15,252 (26.0%), and 5,898 (10.0%) trajectories contained two, three, and four WIM sites, respectively, 
while only about 2,600 (4.4%) trajectories contained five or more WIM sites. 
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Table 4-26. RSP location selection results 

 
1Southern California Locations  
 
Table 4-26 reports the RSP location selection results showing between two and ten locations with 
different performance decay scenarios.  New locations from the increase in selected locations are shown 

Number of 
Selections, P 

Decay Assumption 

g0 (No decay) g1, 𝜏 =400 g1, 𝜏 =200 g1, 𝜏 =100 g2 (Trip-based) 

P = 2 41: Vacaville, I-80 
57: Pinole, I-80 

41: Vacaville, I-80 
57: Pinole, I-80 

41: Vacaville, I-80 
57: Pinole, I-80 

41: Vacaville, I-80 
57: Pinole, I-80 

41: Vacaville, I-80 
57: Pinole, I-80 

P = 3 3: Antelope, I-80 
41: Vacaville, I-80 
57: Pinole, I-80 

3: Antelope, I-80 
41: Vacaville, I-80 
57: Pinole, I-80 

3: Antelope, I-80 
41: Vacaville, I-80 
57: Pinole, I-80 

3: Antelope, I-80 
41: Vacaville, I-80 
57: Pinole, I-80 

3: Antelope, I-80 
41: Vacaville, I-80 
57: Pinole, I-80 

P = 4 3: Antelope, I-80 
41: Vacaville, I-80 
57: Pinole, I-80 
72: Bowman, I-80 

3: Antelope, I-80 
41: Vacaville, I-80 
57: Pinole, I-80 
72: Bowman, I-80 

3: Antelope, I-80 
41: Vacaville, I-80 
57: Pinole, I-80 
72: Bowman, I-80 

3: Antelope, I-80 
41: Vacaville, I-80 
57: Pinole, I-80 
72: Bowman, I-80 

3: Antelope, I-80 
41: Vacaville, I-80 
57: Pinole, I-80 
72: Bowman, I-80 

P = 5 1: Lodi, I-5 
3: Antelope, I-80 
41: Vacaville, I-80 
57: Pinole, I-80 
72: Bowman, I-80 

1: Lodi, I-5 
3: Antelope, I-80 
41: Vacaville, I-80 
57: Pinole, I-80 
72: Bowman, I-80 

1: Lodi, I-5 
3: Antelope, I-80 
41: Vacaville, I-80 
57: Pinole, I-80 
72: Bowman, I-80 

3: Antelope, I-80 
41: Vacaville, I-80 
51: West Sac, I-80 
57: Pinole, I-80 
72: Bowman, I-80 

3: Antelope, I-80 
41: Vacaville, I-80 
46: Galt, SR-99 
57: Pinole, I-80 
72: Bowman, I-80 

P = 6 1: Lodi, I-5 
3: Antelope, I-80 
29: Arco, I-5 
41: Vacaville, I-80 
57: Pinole, I-80 
72: Bowman, I-80 

1: Lodi, I-5 
3: Antelope, I-80 
29: Arco, I-5 
41: Vacaville, I-80 
57: Pinole, I-80 
72: Bowman, I-80 

1: Lodi, I-5 
3: Antelope, I-80 
29: Arco, I-5 
41: Vacaville, I-80 
57: Pinole, I-80 
72: Bowman, I-80 

3: Antelope, I-80 
41: Vacaville, I-80 
46: Galt, SR-99 
51: West Sac, I-80 
57: Pinole, I-80 
72: Bowman, I-80 

3: Antelope, I-80 
10: Fresno, SR-99 
41: Vacaville, I-80 
46: Galt, SR-99 
57: Pinole, I-80 
72: Bowman, I-80 
75: Keyes, SR-99 
102: Delhi, SR-99 

P = 7 1: Lodi, I-5 
3: Antelope, I-80 
10: Fresno, SR-99 
29: Arco, I-5 
41: Vacaville, I-80 
57: Pinole, I-80 
72: Bowman, I-80 
75: Keyes, SR-99 
102: Delhi, SR-99 

1: Lodi on I-5 
3: Antelope on I-80 
29: Arco on I-5 
41: Vacaville on I-80 
57: Pinole on I-80 
72: Bowman on I-80 
108: Willows on I-5 

1: Lodi on I-5 
3: Antelope on I-80 
29: Arco on I-5 
41: Vacaville on I-80 
51: West Sac on I-80 
57: Pinole on I-80 
72: Bowman on I-80 

1: Lodi on I-5 
3: Antelope on I-80 
29: Arco on I-5 
41: Vacaville on I-80 
46: Galt, SR-99 
51: West Sac on I-80 
57: Pinole on I-80 
72: Bowman on I-80 

3: Antelope on I-80 
10: Fresno on SR-99 
41: Vacaville on I-80 
57: Pinole on I-80 
72: Bowman on I-80 
75: Keyes on SR-99 
102: Delhi on SR-99 

P = 8 3: Antelope, I-80 
10: Fresno, SR-99 
41: Vacaville, I-80 
57: Pinole, I-80 
72: Bowman, I-80 
74: Bakersfield, SR-99

1 

75: Keyes, SR-99 
102: Delhi, SR-99 

1: Lodi, I-5 
3: Antelope, I-80 
29: Arco, I-5 
41: Vacaville, I-80 
51: West Sac, I-80 
57: Pinole, I-80 
72: Bowman, I-80 
108: Willows, I-5 

1: Lodi, I-5 
3: Antelope, I-80 
29: Arco, I-5 
41: Vacaville, I-80 
46: Galt, SR-99 
51: West Sac, I-80 
57: Pinole, I-80 
72: Bowman, I-80 

1: Lodi, I-5 
3: Antelope, I-80 
29: Arco, I-5 
41: Vacaville, I-80 
44: Banta, I-205 
51: West Sac, I-80 
57: Pinole, I-80 
72: Bowman, I-80 

3: Antelope, I-80 
10: Fresno, SR-99 
41: Vacaville, I-80 
57: Pinole, I-80 
72: Bowman, I-80 
74: Bakersfield, SR-99

1 

75: Keyes, SR-99 
102: Delhi, SR-99 

P = 9 3: Antelope, I-80 
10: Fresno, SR-99 
41: Vacaville, I-80 
47:, Castaic, I-51 

57: Pinole, I-80 
72: Bowman, I-80 
74: Bakersfield, SR-991 

75: Keyes, SR-99 
82: Glendora, I-2101 

102: Delhi, SR-99 

1: Lodi, I-5 
3: Antelope, I-80 
29: Arco, I-5 
41: Vacaville, I-80 
46: Galt, SR-99 
51: West Sac, I-80 
57: Pinole, I-80 
72: Bowman, I-80 
108: Willows, I-5 

1: Lodi, I-5 
3: Antelope, I-80 
29: Arco, I-5 
41: Vacaville, I-80 
46: Galt, SR-99 
51: West Sac, I-80 
57: Pinole, I-80 
72: Bowman, I-80 
75: Keyes, SR-99 
102: Delhi, SR-99 

1: Lodi, I-5 
3: Antelope, I-80 
29: Arco, I-5 
41: Vacaville, I-80 
44: Banta, I-205 
46: Galt, SR-99 
51: West Sac, I-80 
57: Pinole, I-80 
72: Bowman, I-80 

3: Antelope, I-80 
10: Fresno, SR-99 
41: Vacaville, I-80 
47: Castaic I-51 

57: Pinole, I-80 
72: Bowman, I-80 
74: Bakersfield, SR-99

1 

75: Keyes, SR-99 
102: Delhi, SR-99 

P = 10 1: Lodi, I-5 
3: Antelope, I-80 
10: Fresno, SR-99 
41: Vacaville, I-80 
47:, Castaic, I-51 

57: Pinole, I-80 
74: Bakersfield, SR-991 

75: Keyes, SR-99 
82: Glendora, I-2101 

102: Delhi, SR-99 

1: Lodi, I-5 
3: Antelope, I-80 
29: Arco, I-5 
41: Vacaville, I-80 
44: Banta, I-205 
46: Galt, SR-99 
51: West Sac, I-80 
57: Pinole, I-80 
72: Bowman, I-80 
102: Delhi, SR-99 
108: Willows, I-5 

1: Lodi, I-5 
3: Antelope, I-80 
10: Fresno, SR-99 
29: Arco, I-5 
41: Vacaville, I-80 
44: Banta, I-205 
51: West Sac, I-80 
57: Pinole, I-80 
72: Bowman, I-80 
75: Keyes, SR-99 
102: Delhi, SR-99 

1: Lodi, I-5 
3: Antelope, I-80 
29: Arco, I-5 
41: Vacaville, I-80 
44: Banta, I-205 
46: Galt, SR-99 
51: West Sac, I-80 
57: Pinole, I-80 
72: Bowman, I-80 
75: Keyes, SR-99 
102: Delhi, SR-99 

3: Antelope, I-80 
10: Fresno, SR-99 
41: Vacaville, I-80 
47: Castaic I-51 

57: Pinole, I-80 
72: Bowman, I-80 
73: Stockdale, I-51 

74: Bakersfield, SR-99
1 

75: Keyes, SR-99 
102: Delhi, SR-99 
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in red.  For all scenarios, sites 41 and 57 are the best candidates for the maximum re-identification 
benefit if only two locations are allowed within budget.  These two detectors are located 58 km (36 
miles) apart along I-80 in Northern California.  No differences were found across scenarios in P = [2, 3, 
4]. For P = 5, 𝑔1 (𝜏=100) and 𝑔2 show different results with sites 51 (𝑔1) and 46 (𝑔2), although all 
selected sites are in Northern California.  The solution generally adds an additional site based on the 
previous solutions, due to the pairwise selection characteristics.  There are exceptions, however.  For 
example, 𝑔2 drops sites 46 and 72 from P = 5 and adds sites 10, 75, and 102 for P = 6. This reveals that 
the location selection can significantly change depending on the benefit from different pairwise 
combinations.  There is also a preference for Northern California locations across all scenarios, with only 
𝑔0 and 𝑔2 choosing Southern California locations starting at P = 8. 
  
Figure 4-20 shows a spatial comparison the RSP location selection results obtained with 𝑔0, 𝑔1 (𝜏=100), 
and 𝑔2 for P=10.  It shows that 𝑔0 expands the re-identification network from San Francisco (site 57) to 
Los Angeles (site 82), whereas the result of 𝑔1 remains in Northern California.  For 𝑔2, the location 
selection that started from sites 41 and 57 extends to site 47 in Northern Los Angeles when considering 
nine locations in Table 4-26 (b). The three locations selected in Northern Los Angeles, 47, 73, and 74 are 
critical points for identifying the truck route diversion on I-5 and CA-99, which is an intuitive result. 
 

 

Figure 4-20. Comparison of RSP location selection results for 𝒈𝟎, 𝒈𝟏, 𝝉 =100 and 𝒈𝟐, with (P = 10) 
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Figure 4-21 shows sensitivity analysis with up to 40 sites selected.  The objective values in Figure 4-21(a) 
are not as smooth as the curves in Figure 4-19(a).  This is to be expected since the pairwise selection 
method is based on a meta-heuristic algorithm.  However, the results are very consistent with the 
applied decay assumptions.  Without the performance decay assumption (𝑔0), the result shows the 
highest objective values, and then 𝜏 = 400, 200, and 100 are ranked sequentially. As expected, 𝑔2 shows 
the lowest objective values due to the trip-based performance decay assumption that considers a 
potential search space for candidate vehicles, but it is conceivable that 𝑔2 is the most reliable because 
the assumption is based on the observed truck flows.  Figure 4-21(b) shows path-length coverage (%) 
which can be defined as the distance of covered segments between upstream and downstream 
locations divided by the total segment length. The scenario 𝑔0 shows covering more than 80 percent 
when 40 locations are installed. Not much difference in the path coverage can be seen because 
performance decay impacts are not taken into account in this figure, but the scenario with 𝜏 = 100 
shows the lowest values. 
 

  
(a)  Objective Values (%) (b) Path-length Coverage (%) 

Figure 4-21. RSP Results with Decay Performance Assumptions 

4.4.5 Conclusion 

In Section 4.4, two applications for optimally allocating the integrated WIM and inductive signature 
systems at existing WIM were developed: flow-interception sensor placement (FSP) and re-identification 
sensor placement (RSP).  Truck GPS trajectories were utilized with 97 CSFFM FAZs to identify truck’s OD 
and paths. A total of 83 existing WIM sites were considered as candidate sites. The FSP model is capable 
of selecting locations which emphasize different body types by employing flow-based weight factors.  
The assumed distribution of eight different truck body types was based on the 2002 VIUS data for trucks 
in California. The RSP model investigates the best locations for heavy truck re-identification by selecting 
pairwise locations, and is shown to be sensitive to the assumed re-identification decay factor.  Based on 
RSP, sites 41 and 57 have a strong influence on the site selection including many candidate sites in 
Northern California.  Candidate locations in Southern California were not selected due to the limited 
numbers of sensors in that region despite higher traffic counts at those sensors.  This may be because 
few of the existing WIM sites in Southern California are located in such a way that most sensors pairs do 
not capture a significant number of shared flows despite high volumes at individual locations.   
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Although the re-identification decay factors assumed in the RSP may not be representative of true re-
identification performance, they can be easily substituted when such information becomes available 
through future studies. The methods described in this Section were designed for the implementation of 
inductive signature technology at existing WIM sites, the concepts presented for FSP can be extended to 
the deployment of other truck surveillance infrastructure with the use of available truck GPS data.  
Similarly, the RSP can be applied determine the optimal locations for deploying other truck tracking 
technologies such as Bluetooth or RFID.  In these cases, re-identification decay would not be a concern. 

4.5 Propagation of Gross Vehicle Weight to Inductive Loop Detector Sites 

Truck weight data is critical for pavement management, emissions estimation, and freight modeling but 
is not widely collected since it requires WIM or static scales.  Inductive Loop Detector (ILD) sites, even 
those equipped to collect ILD signatures, do not measure weight nor do GPS based tracking methods.  
However, if weight measurements can be obtained at ILD sites then truck weight data will be available 
at more than just the sparse WIM site locations thus providing valuable data for the abovementioned 
applications.   The objective of this section is to estimate gross vehicle weight (GVW) distributions at 
loop detector stations using a combination of body class volume and spatial relationships between ILD 
and WIM sites.    

4.5.1 Methods 

As shown in the models presented in Section 4.3 for backcasting, GVW distributions can be modeled as 
GMM.   Each site is assumed to possess a GVW distribution following a GMM composed of three 
components represented by three means, three variances, and three missing components as follows: 
 

𝑓(𝑥) =  𝑝1 ∙ 𝒩(𝑥; 𝜇1, Σ1) + 𝑝2 ∙ 𝒩(𝑥; 𝜇2, Σ2) + 𝑝3 ∙ 𝒩(𝑥; 𝜇3, Σ3) 
 

Where 
𝒩(𝜇𝑚, Σ𝑚) = Gaussian distribution with mean μ and covariance matrix Σ; 
pm is the mixing proportion 

 
To estimate a GMM at a new site, nine parameters (𝑝𝑚, 𝜇𝑚, Σ𝑚) need to be determined.  To determine 
these parameters, two approaches are suggested.   
 
First, each body class exhibits a uniquely shaped GVW distribution such that the overall GVW at a site is 
a mixture of the GVW distributions for each body class at that site.  This means that the overall GVW 
distribution at a site is the volume weighted combination of each body classes’ individual GVW 
distribution.  To demonstrate, each of the five body class groups shown in Figure 4-22 consists of a three 
component mixture model that have been combined via a GMM of 5 by 3 (i.e. 15) components weighted 
by their corresponding volume to produce the overall GVW distribution shown in the bottom right of the 
figure.  Moreover, certain body classes such as tanks and platforms exhibit unique GVW patterns. For 
example, tanks travel either loaded or empty for safety purposes resulting in GVW distributions with 
two clear peaks.   Under these principles, a regression model was developed to relate body class 
volumes at each site to the GMM parameters (𝑝𝑚, 𝜇𝑚, Σ𝑚) for m = 1:3).  Nine regression models were 
estimated, one for each dependent variable (i.e. each GMM parameter) using the volumes of vans, tanks, 
platforms, container, and ‘other’ trailer body class volumes as independent variables.  The linear 
regression model takes the following form: 
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𝑝𝑚 =  𝛽𝑚,0 + ∑ 𝛽𝑚,𝑏𝑋𝑏

𝐵

𝑏=1

 

𝜇𝑚 =  𝛽𝑚,0 + ∑ 𝛽𝑚,𝑏𝑋𝑏

𝐵

𝑏=1

 

Σ𝑚 =  𝛽𝑚,0 + ∑ 𝛽𝑚,𝑏𝑋𝑏

𝐵

𝑏=1

 

Where 
m = the mth GMM component (m = 1…   
 𝛽𝑚,0 = constant 
𝛽𝑚,𝑏 = regression coefficient for mth GMM component for body class b 
𝑋𝑏 = body class volumes for body class b 

 
To produce a GVW distribution, the estimated component parameters would be combined in a final 
mixture as follows: 

𝑓𝑗(𝑥) =  ∑ 𝑝𝑚 ∙ 𝒩(𝑥; 𝜇𝑚, Σ𝑚)

3

𝑚=1

 

 
Where 

𝒩(𝜇𝑚, Σ𝑚) = the mth Gaussian distribution for site i with mean μ and covariance matrix 
Σ 
𝑝𝑚 = mixing proportion 

 
To apply the model, body class volumes at an ILD site would be estimated via the ILD signature 
classification model and used to predict each of the nine mixture model components.  This model 
assumes a linear relationship between body class volume and GMM parameters and also assumes a 
static relationship between body class volume and GMM parameters across space.  The latter is a 
simplifying assumption to be accounted for by the second approach. 
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Figure 4-22 Example of GVW distribution by Body Class Group Contributing to Overall Site GVW 
Distribution 

Second, GVW distributions are related spatially such that sensors along the same route in the same 
direction within the same region see similar GVW distribution patterns.  Figure 4-23 shows a small 
subsample of GVW distributions for FHWA class 9 trucks at four WIM sites in Northern California in the 
southbound direction along I-5 and SR-97.  Each of the sites has a significant volume of loaded trucks.  
This is due to shared trips along common routes and commodity flow patterns within a region.  Given a 
reasonable assumption about spatial relationships between sites, a GMM can be estimated at an ILD site 
by combining the GMMs at each of the sites that are spatially related to the ILD site using the assumed 
spatial distances as weights in the mixture model.  Thus, for site j, the GMM components 𝜇 and Σ can be 
estimated as follows: 
 

𝑓𝑗(𝑥) =  ∑ ∑ 𝑊𝑖,𝑗 ∙ 𝒩(𝑥; 𝜇1,𝑖, Σ1,𝑖)

3

𝑚=1

𝑁

𝑖=1

 

 
Where 

N = number of neighboring sites, i = 1…N 
 𝒩(𝜇𝑚,𝑖, Σ𝑚,𝑖) = the mth Gaussian distribution for site i with mean μ and covariance 

matrix Σ 
𝑊𝑖,𝑗 = spatial distances between sites i and j used as a mixing proportion 
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Figure 4-23 GVW Distributions along Southbound I-5 and SR-97 in Northern California 

A common method to assess spatial relationships is to use coordinate locations, however this fails for 
directional data where sites of opposite directions share the same coordinate but tend to have very 
different GVW distributions.  For example, at the port of Long Beach, most incoming container traffic in 
the westbound direction is heavily loaded while the outgoing container traffic in the eastbound 
direction is empty.   Using route based distances would also not account for bi-directional sites, nor 
would it accurately capture the spatial relationship for trucks.  For example, I-5 and SR-99 are parallel 
routes in the central valley and sites located at Willows along I-5 and Chico along SR-99 are only 90 miles 
apart by highway routes but would never reasonably see the same trucks and therefore might not have 
the same GVW weight distribution patterns.    
 
In order to derive reasonable spatial relationships between sites, GPS data from the American Trucking 
Research Institute (ATRI) was used to assess the number of shared trips between sites.  The ATRI truck 
GPS data set was considered because its samples comprise fully of truck speed data.  However, both the 
sampling period and sampling frame are limited.  The samples were obtained from four two-week 
periods from the month of February, May, August and November in 2010, and were limited to trucks 
that subscribe to the program.  Trucks in ATRI tend to be long distance hauls, hence, there might be bias 
in the spatial patterns derived from the ATRI data.  Still, ATRI GPS data can be used to evaluate the 
number of shared trips between WIM and ILD sites.   

4.5.2 Data 

A spatially diverse set of WIM sites with GVW data was needed to model the proposed two solutions 
described above.  The data collected for body classification modelling consisted of only four sites spread 
across California and was therefore not dense enough to use to estimate a reasonable model.   Instead, 
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archived WIM data from 2010 was used.  Since WIM data contains GVW, axle spacing, and vehicle length 
measures but not body class, the WIM-only body class volume model (Section 5.2) was applied to 
estimate body class volumes of FHWA class 9 trucks.   In summary, GMM parameters ((𝑝𝑚, 𝜇𝑚, Σ𝑚) 
representing the GVW distribution and body class volumes (vans, platforms, tanks, containers, other) 
were estimated for all 114 sites included in the archived WIM data for the year 2010.    
 
The time aggregation level was determined by examining the time of day (off peak, AM peak, midday, 
and PM peak), day of week (Monday through Friday), and seasonal (fall, spring, summer, winter) 
changes in GVW distribution parameters.  For exposition purposes, the models were developed for data 
disaggregated to the midday (10am to 2PM) time period on Wednesdays in the Fall season.    
 
Finally, WIM system measurements can contain systematic measurement error due to sensor calibration 
issues.  Although there are sophisticated methods (Jeng et al., 2015) by which to assess calibration 
issues, a simple approach of normalizing each vehicles GVW measurement by the weight of the steering 
axle was employed for this analysis.  The steering axle has a relatively static weight across locations and 
body types so it can be used as a reference for calibration error.   All GVWs displayed in the following 
tables and figures reference the normalize GVW.  
 
ATRI GPS pings converted to truck trip trajectories have poor resolution due to the 15 minutes between 
consecutive pings.  As a result, truck trip trajectories (shown as green lines in Figure 4-24) could not be 
directly “snapped” to the road network and linked to WIM sites to derive the spatial weight matrix.  
Instead, screenlines were manually drawn at each of the sites for each direction to capture the truck trip 
trajectories passing through a site.  After placing screenlines, the number of truck trip trajectories that 
passed through each pair of WIM sites were counted and converted into a directional spatial weight 
matrix (a sub-sample shown in Table 4-27) with cells(i,j) representing the number of shared trips from 
WIM site i to WIM site j.  Figure 4-25 shows an example of the resulting spatial relationships arising from 
the screenline capture approach for the northbound Lodi WIM site located along I-5 in the Sacramento 
area.   The site with the most shared trips is WIM site number 105 with 969 shared trips.   
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Figure 4-24 ATRI Truck Trip Trajectories 

Table 4-27 Sample of the Directional Spatial Weight Matrix from GPS Truck Trip Trajectories 

Row Labels 1_N 1_S 10_N 10_S 100_S 101_N 102_N 102_S 103_S 104_N 105_N 105_S 106_N

1_N 0 70 0 0 0 135 0 0 0 969 0 216

1_S 0 0 64 0 0 0 128 0 0 0 991 0

10_N 70 0 0 0 0 1611 0 0 14 65 0 0

10_S 0 64 0 0 0 0 1506 0 0 0 57 0

100_S 0 0 0 0 0 0 0 0 0 0 0 0

101_N 0 0 0 0 0 0 0 0 0 0 0 0

102_N 135 0 1611 0 0 0 0 0 1 117 0 15

102_S 0 128 0 1506 0 0 0 0 0 0 117 0

103_S 0 0 0 0 0 0 0 0 0 0 0 0

104_N 0 0 14 0 0 0 1 0 0 0 0 0

105_N 969 0 65 0 0 0 117 0 0 0 0 0

105_S 0 991 0 57 0 0 0 117 0 0 0 28

106_N 216 0 0 0 0 0 15 0 0 0 0 28

106_S 0 216 0 7 0 0 0 11 0 0 23 0 0

107_N 0 0 0 0 0 0 0 0 0 0 0 1 1

107_S 0 2 0 0 0 0 0 0 0 0 0 0 0

108_N 426 0 18 0 0 0 41 0 0 0 646 0 1

108_S 0 504 0 21 0 0 0 41 0 0 0 812 6

109_N 0 0 0 0 0 0 0 0 0 1 0 0 0
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Figure 4-25 Shared Truck Trip Trajectories with the Lodi Northbound WIM Site as an origin 

4.5.3 Results 

The Kolmogorov-Smirnov test was used to assess the fit of the GVW distributions resulting from the 
regression and spatial weight based methods.  The null hypothesis was that the estimated distribution is 
from the same continuous distribution as the observed GVW data.  The alternative hypothesis was that 
the estimated distribution is from a different continuous distribution than the observed GVW data.   
Testing was performed by holding out one site from model development (i.e. estimation of the 
regression coefficients) and then applying estimated model to the data from the held out site.   This 
process was repeated for all 112 of the sites in the dataset.  Two sites were identified as outliers based 
on their observed GVW mean and variance, leaving 110 viable samples for modeling.  In total, 93 
stations had shared truck trajectories from which a GMM based on spatial weights could be estimated.  
 or the regression based approach, 65.2% of the sites failed to reject the null hypothesis (α = 0.05 .  This 
means that for 72 of the 110 sites their estimated GVW distributions matched their observed GVW 
distribution.   For the spatial weight based approach, 67.7% of the sites failed to reject the null 
hypothesis (α = 0.05  meaning that for 6  of the 9  sites the estimated GVW distribution matched the 
observed distribution.   
 
Lastly, the regression and spatial weight based models were combined to produce a final GMM model 
for each site by weighting each of the models equally.  For the combined model approach, 65.2% of the 
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sites failed to reject the null hypothesis.  Detailed results show that for some cases, where both the 
regression and spatial weight models failed to match the observed data, the combined provided a 
suitable match. 
 
Results for a sample of directional GVW distributions are presented in Figure 4-26 for WIM site 10 along 
SR-99 in Fresno located in central California and site 22 along I-8 near the southern California-Mexico 
border.   The observed GVW distributions at each of these sites are quite different.  However, with the 
exception of the regression model at westbound 22, all models produced statistically significant matches 
to the observed data. 

 

  

Figure 4-26 Spatial Interpolation of GVW Distributions Results 

 

4.5.4 Conclusions  

The spatial interpolation of GVW distributions is an example of the type of analysis that can be 
performed with knowledge of weight data.  The results indicate that by combining body class volume 
estimates and incorporating spatial relationships between WIM sites, GVW distributions can be 
estimated with relative accuracy.   This application serves as a baseline for what can be accomplished in 
regards to weight interpolation.   
 
Several key areas for improvement should be undertaken in future studies.  First, a more advanced 
normalization approach may be applied to the GVW data at each site prior to determining GMM 
parameters.   Second, an obvious improvement will arise by predicting body class volumes based on ILD 
signature data rather than WIM data alone.  More accurate GVW distributions should be possible with 

 

GMM from spatial weights GMM from regression 

GMM from combined Observed 
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improved classification data.   Also, with the WIM-Signature based body classification method, GVW 
distributions can be stratified by body class, so that the spatial weight combination method can pull 
from the stratified GVW distributions rather than the overall distribution.   Third, spatially based 
regression approaches could be evaluated rather than using a global regression model.   

4.6 Summary and Conclusions 

The method presented in this Chapter to integrate WIM and ILD signature technologies and the 
resulting models developed to predict detailed truck body class will uniquely fill the existing gaps in 
freight and air quality monitoring data sources by providing complete, temporally continuous, and 
spatially diverse truck characters data along major truck corridors.  A Multiple Classifier System (MCS) 
approach which combined the predictions of five independent classifiers including a multilayer feed 
forward neural network, a probabilistic neural network, a support vector machine, a decision tree, and a 
naïve Bayes classifier combined using Naïve Bayes Combination (NBC) was used to improve classification 
generalization.  The MCS with NBC proved to be more accurate than any single classifier used in the 
ensemble and in some cases exceeded the accuracy of even the best classifier in the ensemble.   
Comparisons to previous classification models using ILD signature are difficult to make due to the low 
number of commercial vehicle samples used in previous efforts, however, the number of body classes 
depicted in this Project far exceed any found in existing research.  In regards to this point, previous 
vehicle classification problems suffered from a lack of a comprehensive set of commercial vehicle data.  
In this project, models were developed from around 33,000 commercial vehicle records representing 
over 60 body classes.  The data itself is a valuable asset for truck characteristics analysis as it contains a 
very diverse array of body types, time periods, and locations.  
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5 System Hardware and Data Architecture 

5.1 Overview 

One of the main purposes of this study was to develop advanced truck classification models that are 
based on the integration of Weigh-in-motion (WIM) and inductive signature data, and on standalone 
inductive signature data.  The system hardware and data architecture components developed in this 
study are described in this chapter.  Additionally, since the data for model development for the 
integration of WIM and inductive signature data was obtained solely from the older 1060-series WIM 
controllers, there was a need to demonstrate that the signature data obtained from the 1060-series 
controllers are similar to the newer iSinc WIM controllers to ensure that the models are cross-platform 
compatible for future developments. 

5.2 Design of WIM and Inductive Signature Hardware 

Two methods of signature integration for the 1060-series WIM controller were initially considered.  The 
first and preferred option was to develop an adapter interface to replace the existing bivalent 1060 Loop 
Sensor Module (LSM) module with IST-222 inductive loop signature detector cards.  The second less 
desirable option was to splice into the inductive loop sensor leads such that the inductive loop leads 
would directly connect to both the 1060 LSMs as well as IST-222 detector cards.   However, the concern 
was that the splice would adversely affect the inductive loop measurement accuracy for both detector 
cards. 
 
Investigation of the potential inductive signature integration with the iSinc controller was undertaken 
through a trial inductive signature data collection to investigate the quality and compatibility of the 
inductive loop signature data obtained from iSinc controllers.  This procedure helped to determine if the 
inductive signature data obtained from iSinc controllers would be suitable for vehicle classification 
applications.  However, since the inductive signature logging is a proprietary feature of the iSinc 
controller, further development of the inductive signature feature for operations depended on 
International Road Dynamics (IRD), the developers and vendors of iSinc, which would require significant 
developmental time and costs.  Because of the perceived challenges to get iSinc controllers operational 
with inductive loop signature data within the proposed timeline of this study, the hardware integration 
effort was focused on the 1060-series controller.  Furthermore, at the commencement of this study, 
1060-series controllers were deployed at about 80 percent of current WIM sites within the State of 
California.  Hence, despite their age, a hardware integration solution with the 1060 series controllers 
would cover a much larger number of candidate sites that were available for deployment consideration.   
 

5.2.1 Integration Design for 1060-series WIM Controllers 

From the pin-out specifications of the 1060 LSM obtained from IRD as well as the IST-222, it was 
determined that the IST-222 was a viable candidate for adapting to the 1060 LSM.  Although the voltage 
supplied to the 1060 LSM is 12V, as opposed to 24V which is typically supplied to 222 detector cards 
from traffic cabinets, the IST detector cards were designed to handle input voltages ranging between 10-
24V.  Hence, the lower supply voltage from the 1060 WIM controller was not expected to be an issue.  
However, the 1060 LSM is a four channel detector, while the IST-222 possesses only two detector 
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channels.  To address this difference, an adapter was created to allow two IST-222 detector cards to 
replace an existing 1060 LSM to enable signature data processing from all four detector channels.  The 
cross-assignment between the 1060 WIM controller LSM and two IST-222 ILD cards is provided in 
Appendix E.  A prototype IST-222-to-LSM adapter was subsequently designed following this assignment 
scheme to adapt two IST-222 detector cards as a replacement for a single 1060 WIM LSM.  The adapter 
was developed as shown in Figure 5-1, which comprises a 64-pin connector mounted on a 4x6 in PCB 
which shares an identical form factor of the 1060 WIM LSM and connected to two 15-pin VGA-style 
female connectors, with each connector designed to connect to an IST-222 detector card via a 44-pin 
edge connector interface. 
 

 

Figure 5-1 1060 WIM Controller Loop Sensor Module (Left) and IST-222 Loop Sensor Module Adapter 
(right)  

 
A modified 222 input file was fabricated to interface with the IST-222 LSM adapter as shown in Figure 
5-2.  The back panel of the input file was removed and replaced with individual 44-pin edge connectors 
for each IST-222 detector card.  Each edge connector was wired to a multi-pin connector for the purpose 
of interfacing with the LSM adapter.  Because detector cards plugged into the modified 222 input file 
draw power directly from the 1060 WIM controller, the modified input file does not connect to an 
external power supply.  Inductive loop signature data is logged into a field processing unit via the USB 
port located on the front panel of each IST-222 detector card.  Schematic layouts comparing the 
hardware setup for a standalone 1060 WIM controller and the proposed integration with IST-222 
detector cards is presented in Figure 5-3. 
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Figure 5-2 A modified 222 Input File fabricated for the IST-222 LSM Adapter 

 

 

Figure 5-3 Comparison of Hardware Setup for Standalone 1060 WIM Controller (top) and 1060 WIM 
Controller Integrated with IST-222 Detector Cards for Inductive Signature Data Logging 
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5.2.2 Comparison of Inductive Signatures between 1060 and iSinc WIM Controllers 

As previously stated, there are two types of WIM controllers deployed in California.  However the data 
used to develop the body class models in this study were collected at only one type of controller, the 
1060-WIM series controller.  Although the majority of WIM controllers in California at the beginning of 
his study were 1060 controllers, they were in the process of being replaced with the iSinc controllers.  As 
described in the previous sections, the 1060 controllers will need to be equipped with IST-222 ILD cards 
to enable inductive signature data processing, while iSinc controllers have the built-in capability for 
sampling and processing inductive signature data, although this feature is currently available only in 
diagnostic mode.  Because the inductive signature data logging hardware differs and performs under 
different sampling rates for these two controllers, there may be some differences in the quality of the 
inductive signatures obtained.  This evaluation task was performed to determine if the models, which 
were developed from data collected from the 1060 series WIM controllers, are compatible with the iSinc 
controllers, thus eliminating the need to develop different classification models for each controller type.  

5.2.2.1 Data 
The ideal comparison would require both types of controllers, i.e. a 1060 and an iSinc to be located in 
close proximity to each other.  This would allow samples of inductive loop signatures of the vehicles to 
be captured by both controllers.  Hence each vehicle that traverses the study site would generate two 
signatures – one from each controller type – for direct comparison.  Unfortunately, such a configuration 
is not available in the State of California.  Hence, an alternative experimental setup was designed using 
two independent sites – one for each controller type – with an adjacent Inductive Loop Detector (ILD) 
site equipped with IST-222 ILD cards.  Unlike the inductive loop sensors at the WIM sites which have a 6 
foot square loop configuration, the inductive loop sensors at the adjacent ILD sites have a 6 foot round 
loop configuration.  Consequently, inductive signature features obtained between the WIM and ILD sites 
will inherently possess some differences due to the geometric differences in the loop configuration.  
However, it can be concluded that inductive signatures obtained from the two WIM controller types are 
compatible, if the difference in inductive signature pairs obtained between each WIM controller and 
their adjacent ILD location are similar, indicating that the differences are attributed only to the loop 
geometry configuration between WIM and ILD locations, and not due to the controller hardware itself.  
To compare inductive signatures between the two hardware systems, a statistical test which removed 
the effects of differing loop configurations (round vs. square) was performed.   
 
Inductive loop signatures were collected from the 1060 WIM controller equipped with IST detector cards 
and the iSinc WIM controller at Yale (I-5 SB) and Westminster (I-405 SB) sites pictured in Figure 5-4.  At 
the Yale location, the ILD and adjacent WIM sites were both equipped with IST inductive loop detector 
cards.  This location is referred to as ‘I T-I T’.  At the Westminster location, the ILD site was equipped 
with IST cards while the WIM site was equipped with iSinc LSMs.  Hence, the location is referred to as 
‘I T-i inc’.  Since the separations between the ILD and WIM sites at both locations were less than 100 
feet, each of these locations were ideal for obtaining samples of inductive signatures from the same 
truck across the WIM and adjacent ILD site. 
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(a) (b) 

Figure 5-4 Experimental Setup: I-5 Yale location referred to as IST - IST (a), and I-405 Westminster 
location referred to as IST - iSinc (b) 

 

5.2.2.2 Methodology 
A total of 400 and 97 vehicle records were used in the comparative analysis at the Yale and Westminster 
locations, respectively.   The analysis was performed in two steps: (1) Signature Transformation and (2) 
Statistical Comparison.  
 

Signature Transformation 
In order to remove effects from the geometric loop configurations, scaling of the signatures by the 
controller/detector cards, speed differences, and lateral positioning over the loop between the two sites, 
a signature transformation step preceded the statistical comparison.  To normalize each signature, the 
sampled magnitudes and durations were divided by their maximum values.  The second step, referred to 
as ‘shift and stretch’,  involved using the WIM signature as a reference and horizontally shifting and 
stretching the ILD signature to achieve the best fit—more specifically, the minimum sum of vertical 
differences—between the two signatures.    
 

VDS Loops  (IST Card) 

S/B WIM Sensors  (IST Card) 

S/B WIM Sensors  (iSinc Card) 

VDS Loops (IST Card) 
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(a) 

 
(b) 

 
(c) 

Figure 5-5 Signature Transformation: Normalization (a), Shift (b), and Stretch Step (c) 
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Statistical Comparison 
A two tailed t-test of the log transformation of the median and 85th percentile errors from the IST-IST 
and IST-iSinc was used to statistically compare the transformed inductive loop signatures.  A log 
transformation was applied to normalize the median and 85th percentile error to satisfy the normality 
requirements of the t-test.  The null and alternate hypothesis for the t-test is shown below:  
  
 
 
 
Critical values for the t-test were 0.5532 (p= 0.5820) for the median error and -1.3505 (p=0.1791) for the 
85th percentile statistical comparisons at the 5% level of significance.  Thus, the statistical tests confirm 
that the inductive signatures from the 1060 WIM controller equipped with IST-222 inductive loop 
detector cards and iSinc LSMs were similar.  Specifically, at the 5% significance level, inductive signatures 
from the 1060 and iSinc were not statistically different.  Therefore, this result concludes that the 
classification model developed from IST-222 inductive loop detector cards at the 1060 WIM sites is 
expected to be applicable to WIM sites equipped with iSinc controllers.   

 

5.3 Hardware Configuration for Deployment 

5.3.1 Inductive Loop Detector Sites 

The components required for deployment of the truck body classification system at existing ILD sites are 
as follows: 
 

 Inductive Signature Loop Detector Cards 

 Field Processing Unit 

 USB Cables (1 required per detector card) 

 High-speed (LTE) Wireless Modem 
 
Each inductive signature loop detector card can monitor up to two inductive loop sensors.  Hence, the 
number of inductive signature cards required for deployment at ILD sites depending on the physical 
inductive loop configuration installed at each site.  At dual loop sites, one inductive signature loop 
detector card is required for each lane that is to be monitored for truck traffic.  At single loop sites, each 
inductive signature loop detector card may be able to monitor up to two lanes, if the inductive loops at 
both lanes are wired up to the same detector card slot in the detector input file. USB cables connect 
each inductive signature loop detector card to the field processing unit, which processes the signature 
data stream from the inductive signature loop detector cards. The field processing unit subsequently 
transmits the inductive signature data via a high-speed wireless modem to the communications server 
at UCI-ITS for further processing. 
 
The field processing unit uses a fan-less design that contains no moving parts.  The system dissipates 
heat primarily by conduction through the heat conducting fins on the external case.  Data is stored in a 
solid state drive in place of a conventional hard drive.   This solid state system design helps to eliminate 
common causes of system failures that are associated with overheating due to failed fan bearings, or 
from frost effects which may damage conventional hard drives. 
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The field processing units are configured with an Intel Core2-Duo dual core processor and 2GB of 
memory.  It is also equipped with multiple USB ports to interface with the inductive signature detector 
cards and wireless Modem. 
 
ILD sites are typically configured to perform one or both of the following functions: Traffic monitoring 
and traffic census.  Sites configured to perform traffic monitoring are equipped with a traffic controller, 
which processes conventional ILD data and transmits traffic information continuously to a central Traffic 
Management Center (TMC) to monitoring of traffic conditions on the road network.  Such sites are 
typically called Traffic Monitoring System (TMS) sites.  Census sites equipped with inductive loop sensors 
are only configured to perform traffic census, and are typically used periodically to collect traffic volume 
counts.  Axle-based classification counts are also collected at sits instrumented with piezo sensors.  
Hence, ILDs and traffic controllers are not permanently installed at these sites.   
 

  
(a) Hardware Deployment at Traffic Monitoring 

System Cabinet 
(b) Hardware Deployment at Census Cabinet 

Figure 5-6 Deployments at Inductive Loop Detector Sites 

5.3.2 WIM Sites 

The components required for deployment of the truck body classification system at existing WIM sites 
equipped with 1060 series controllers are as follows: 
 

 Inductive Signature Loop Detector Card Interface 

 Inductive Signature Loop Detector Cards (1 required per monitored lane) 

 Field Processing Unit 

 USB Cables (1 required per card) 
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 Serial Null Modem WIM Data Interface Cable 

 High-speed (LTE) Wireless Modem 
 
In addition to the components required for ILD deployment, WIM deployments further require an 
inductive signature loop detector card interface and a serial null Modem WIM data interface cable.  The 
inductive signature loop detector card interface consists of one or more 1060 loop sensor module (LSM) 
adapters which are installed in place of existing LSM cards in the 1060 series controller.  These LSM 
adapters are connected to a modified 222 input card file for housing the inductive signature loop 
detector cards. 
 
One inductive signature loop detector card is required for each lane to be monitored for truck traffic, 
which typically corresponds to the two rightmost lanes in each direction of travel.  USB cables connect 
each inductive signature loop detector card to the field processing unit, which processes the signature 
data stream from the inductive signature loop detector cards.  The field unit is also connected directly to 
the WIM controller via a Null Modem interface cable.  This cable receives raw WIM data that has been 
processed by the 1060 controller.  The field processing unit subsequently transmits both WIM and 
inductive signature data via a high-speed wireless modem to the communications server at UCI ITS for 
further processing. 
 
The field processing units deployed at WIM sites are also based on a fan-less design which dissipates 
heat primarily by conduction through the heat conducting fins on the external case.  Data is stored in a 
solid state drive in place of a conventional hard drive.   This solid state system design helps to eliminate 
common causes of system failures that are associated with overheating due to failed fan bearings, or 
from frost effects which may damage conventional hard drives. 
 
For WIM deployments, the field processing units are configured with an Intel i-3 dual core processor and 
4GB of memory.  The units are also equipped with RS-232 serial ports to interface directly with the 1060 
series WIM controller, and USB ports to interface with the inductive signature detector cards and 
wireless Modem. 
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Figure 5-7 Deployment Hardware from NB 1-405 at Saigon 

 

5.4 Data Communications Architecture 

5.4.1 Overview 

The signature analysis system depends on retrieving signature and WIM data from units installed at the 
roadside throughout the state.  The primary issue to resolve is how to send raw data from the field units 
to a central server, where they can be processed, analyzed, and stored for future use. 
 
An earlier prototype implementation of a system for transmitting inductive signatures for vehicle re-
identification, created an infrastructure for transmitting this data using the Common Object Request 
Broker Architecture (CORBA) over a private TCP/IP subnetwork.  In this earlier implementation, software 
installed on the field unit performed the following steps: 
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1. Using proprietary libraries from Inductive Signal Technologies (IST), connect to the proprietary 
IST server software running on the unit to receive data streaming from the IST signature cards 

2. Process the streaming signatures packets into complete signatures 
3. Process the complete signatures into lower-dimensional “feature vectors” 
4. Transmit the feature vectors back to the central server using ORBIX’s implementation of the 

CORBA event service to send structured, strongly typed data over the TCP/IP subnetwork 
 
This similar implementation provided a useful starting point for solving the signature transmission 
problem in this project.  In deploying the current system, however, a number of issues presented 
themselves as follows: 
 

1. Inductive Signature Technologies (IST), the company that developed the signature reading 
hardware and software, went out of business.  This meant that all existing code would no longer 
be supported—most critically, the proprietary libraries for receiving the signature data from the 
hardware. 

2. The cost of the ORBIX CORBA implementation was difficult to justify for this relatively simple use 
case of transmitting data over the network for processing at the server 

3. Seeking an alternative communications architecture seemed prudent given the strongly typed 
nature and relative mismatch of CORBA for this lightweight data transmission use-case (not to 
mention CORBA’s decline as a common communications layer) 

4. We also wanted a generalized solution that could be used to transmit WIM data as well as 
signature data. 

 
Given this constellation of issues, we considered a number of solutions and finally settled on a 
transitional approach that would leverage as much of the existing infrastructure as possible, would 
provide a path for migration away from burdensome, legacy and commercial technologies, and would 
also support the addition of WIM data to the communications streams.  We discuss the various issues in 
the following sections. 

5.4.2 Supporting Legacy IST Hardware 

We began by addressing the issues associated with transmitting signature data.  The availability of a 
substantial inventory of still-functioning IST hardware and simultaneous lack of a readily available 
alternative on the market meant that it was necessary to try to maintain the IST infrastructure for this 
project.  Though we initially did gain permission to review the source code of IST’s server and libraries, 
we found the legacy code would require substantial modification to recompile and upgrade.  Given the 
limited and unsupported lifetime of the accompanying hardware, we decided to pursue the migration 
strategy. 
 
To support migration with minimal effort while resolving the primary issues, we decided to make limited 
modifications to the existing IST-related code but still maintain the CORBA infrastructure for the time-
being to minimize the number of simultaneous changes made to the code base.  However, in order to 
transition away from paying license fees for CORBA, we moved to an open-source CORBA 
implementation called OmniORB, which provided a sufficiently compatible implementation of the 
necessary CORBA features to make a transition possible 
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To rebuild the field unit software using OmniORB, we transitioned to using the Cygwin unix emulation 
layer atop the Windows operating system being used on the field processing units.  This transition made 
the code more easily transferable to alternative platforms in the future by not relying on Windows-
specific build tools.  Instead, the system is compiled using the cross-platform gcc compiler.  The Unix-like 
cygwin layer also provides capabilities for more rapid and automated remote deployment of system 
changes.  Finally, the source code was placed under version control using the git distributed version 
control tool. 
 
Once the field unit code was recompiled to work with OmniORB, we performed testing to establish its 
consistency with the prior toolset.  At this point, we evaluated the changes needed in the data being 
transmitted over the CORBA event service.  As noted, the existing software had been set up to transmit 
signature feature vectors to limit the data bandwidth necessary.  Since that implementation, however, 
wireless communications speeds have improved sufficiently to permit the transmission of complete, raw 
signature data.  To send this data, we modified the interface definition file (IDL) to include raw signature 
in the structure sent by CORBA and modified the field unit IST processing code to include the raw data in 
the transmitted objects. 

5.4.3 Transitioning the Middleware 

With the goal of removing the dependency on CORBA, we sought a lightweight data passing middleware 
that would provide flexibility on the server-side for using the signature data stream in a variety of ways.  
These included: 
 

1. The primary use case of storing the raw signature data for later processing 
2. The ability to send (near) real-time raw signature data to in-line processing algorithms (e.g., real-

time classification)  
3. The ability to pass (near) real-time signature data feeds to visualization and debugging tools 

 
Furthermore, we wanted this middleware to be general enough to support data sent from WIM units as 
well. 
 
We considered a variety of middleware solutions including message brokers such as RabbitMQ, various 
Enterprise Service Bus architectures, and others.  However, we ultimately settled on a very lightweight 
solution provided by the publish/subscribe (PUBSUB) capabilities of the REDIS key-value store (or data 
structure server).  In the PUBSUB model, a publisher process creates a channel to which one or more 
subscriber processes can listen to receive data.  This system mirrors the CORBA Event Service model 
already employed by the legacy system, but replaces the fairly heavy burden linking in a library 
supporting the CORBA infrastructure with a very lightweight and actively supported library capable of 
communicating with the open source REDIS server. 
 
Working with REDIS offers several advantages for this use case.  First, data is passed on the channels as 
simple strings.  CORBA uses strong data typing, whereby interfaces are defined and specified in the IDL 
files shared between systems.  Any change in the data passed (e.g., changing from signature feature 
vectors to raw signatures) requires that all components receive an updated IDL file and are recompiled 
to transmit the new data types.  This offers distinct advantages for tightly engineered systems.  In our 
signature analysis as WIM data use cases, however, this tight coupling creates as many problems as it 
solves by requiring early software engineering decisions in the development of a rapidly evolving 
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system.  By moving to a system that passes data as simple strings, we offload the data validation and 
consistency issue to the subscribing processes. 
 
Though we want to loosen the data specification, we still need to be able to pass structured data in 
string form.  The JSON standard provides a well-known format for representing flexible but structured 
data in this regard.  Furthermore, the JSON format is the lingua franca for web applications, meaning its 
use for data transition simplifies the development of web applications using that data. 
 
Thus, our design decision was to create a REDIS-based PUBSUB system whereby data from each field 
unit (IST signatures or WIM station) is assigned a specific channel to which streaming signature data is 
written, and various processes subscribe to these channels to receive, process, analyze, display, or store 
the data as appropriate for their functions.   In this context, subscribers to the data need to make use of 
a language-specific library for commenting with the REDIS server using its well-established, open-source 
protocols for which there are numbers free and open source implementations. 

5.4.3.1 Linking IST Units 
To bring the legacy CORBA Event Service data used by the IST signature units into the REDIS 
infrastructure, we created a “bridge” process using the python scripting language.  Python was chosen 
for this process because: 
 

 we preferred to use a scripting language for its simplicity, 
 the OmniORB IDL compiler provided python solid support for creating the CORBA 

communications stubs (but didn’t for virtually all other scripting languages), 
 there are well supported libraries for converting python structures into JSON strings, and 
 there are well supported libraries for interfacing python to REDIS 

 
The python bridge process uses the OmniORB libraries to subscribe to the CORBA Event Channels 
associated with each field unit.  When data comes in on these channels, the bridge process converts the 
data from the CORBA structures into JSON strings use the standard libraries available.  These strings are 
then published onto the appropriate (matching) REDIS channel 
 
At this point, all downstream processes (subscribers) are shielded from the upstream CORBA 
middleware and no longer require a CORBA implementation to use the data.  Instead, they need to 
incorporate a much lighter-weight and simpler REDIS implementation as well as language-specific JSON 
de-serialization library—both of which are readily available for virtually every language across multiple 
platforms. 

5.4.3.2 Linking WIM Stations 
Because we were not adapting WIM stations from an existing infrastructure, no bridge process was 
necessary and linking the WIM station data into the middleware system was more straightforward.  In 
our implementation, software installed on the field unit receives WIM station data in real time, 
performs some basic processing, converts those data to JSON strings and writes them to the appropriate 
REDIS channel on the server using standard REDIS libraries. 
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5.4.4 Using the Data Downstream 

With the data now available via the REDIS PUBSUB system, we turned our attention to making use of the 
data.   

5.4.4.1 Signature Data Applications 
 
We built two main downstream applications for the signature data.  The first was another “bridge” 
process that reads the PUBSUB channels and copies the signatures into a database for long-term storage 
and application development.  To build this process we also preferred a scripting language.  This time, 
however, we chose to build an application using server-side javascript and the node.js platform.  While 
we could have continued working with python, we found that javascript’s integration with JSON made 
data processing incredibly simple and minimized the number of lines of code necessary to process the 
incoming data from REDIS and re-write it to the downstream PostgreSQL database.  This process works 
by subscribing to the specified REDIS channels using the node.js REDIS module, reading the JSON strings 
published on those channels, converting them (natively) from JSON to javascript objects, and then 
writing them to PostgreSQL using the well-support node modules for database interaction.  Once 
written to the database, the signatures can be used by downstream applications needing to perform 
structured queries on the signature datasets. 
 
The second application we built is a web application providing (near real-time) visualization of the 
signatures coming in from the field units.  In this case, we again chose to use node.js for both the 
reasons stated above, and for its capabilities as a web application platform.  In addition to these core 
technologies, we used a variety of web application technologies to make the interface as dynamic as 
possible.  These include: 
 

 Express: a web development framework that handles routing, data management, and links the 
remaining technologies to deliver the web application 

 Jade: an HTML templating language and processing libraries used to maintain portable HTML5 
web pages 

 Socket.io: a javascript library for real-time communication between the web server and web 
clients.  Tightly integrated with Express, we used socket.io to deliver streaming signature data to 
the client web pages in near real-time 

 d3.js: a client-side javascript library for transforming data into visualizations using, in our case, 
scalable vector graphics (SVG) to draw dynamic charts and tables and css transformations to 
illustrate data streams. 

 
The web application provides two main pages.  The first shows all field processing units known to the 
system, including their names and locations, as well as a timestamp showing when the most recent data 
was received from the unit as shown in Figure 5-8.  Using this single page, a user can quickly assess the 
health of the system and its various components.  The second page is accessed by clicking on any of the 
field units listed in the first page.  This second page shows a graphical representation of the last 
signatures received from this field unit for each lane (shown in Figure 5-9).  This page provides useful 
diagnostic capabilities, including the ability to visually assess whether the signatures being received are 
valid. 
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Figure 5-8 Overview of deployed field processing units shown on the ITS Signature Data Viewer 

As the web application has been used to monitor the system, additional capabilities were added, such as 
adding additional timestamp information to show for each field when the most recent signature data 
arrived in the PostgreSQL database (from the database bridge described above).  By comparing to the 
real-time timestamp, this allows users to assess the stability of the data processing infrastructure. 
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Figure 5-9 Graphical representation of signatures streaming live from SR-205 at Mountain House 
Parkway 

5.4.4.2 WIM Data Applications 
For the WIM data, we built a single “bridge” process similar to the one described above for the signature 
data.  Again, this process simply reads the PUBSUB channels and copies the WIM data into a database 
for long-term storage and downstream application development.  This application is virtually identical to 
the signature bridge process except that it reads the WIM data and converts it to SQL statements for the 
WIM tables in the PostgreSQL database. Again, once written to the database, the WIM data can be used 
by downstream applications needing to perform structured queries on the WIM datasets. 

5.5 Data Processing 

5.5.1 Field Unit Data Processing 

5.5.1.1 WIM Data Preprocessing 
WIM data is initially transmitted from the 1060 WIM controller to the field processing unit via a null 
modem cable.  A listener was coded in Java to listen for incoming WIM data transmission events through 
the connected RS-232serial port.  The raw WIM record consists of a data packet, followed by a 
checksum which uses the Cyclic Redundancy Check 16 (CRC16) algorithm.  Hence, each data packet is 
validated against its checksum for error and flagged if the validation fails.  Data packets which pass the 
validation check are subsequently parsed, timestamped by the field processing unit at the time it is 
received at the serial port, and reconstituted as a JSON string record before it is transmitted wirelessly 
to the server.  It should be noted that the timestamp from the field processing unit does not reflect the 
actual detection time of the vehicle.  Instead, it records the time when the WIM record arrives at the 
field processing time from the WIM controller via the null modem interface.  There the timestamp 
would reflect delays that incorporate the duration of the vehicle on the sensor system, the WIM 
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controller data processing and the data transmission speed between the WIM controller and the field 
unit.  However this is still a very useful measure, since the actual time stamp is only recorded on the 
WIM controller.  The issue arises because the 1060-series WIM controller is a primitive DOS-based 
system with no ability to automatically synchronize its internal clock with a central server.  Hence, many 
1060-series based controllers were found to have timestamps that deviated significantly from the actual 
time.  In this regard, the difference between the WIM controller timestamp and the field unit timestamp 
of WIM records gives a close approximation to the actual deviation of the WIM controller clock.  This 
information is critical for the process of matching inductive signature and WIM records from the same 
vehicle, which is described later in this chapter. 

5.5.1.2 Inductive Signature Preprocessing 
Inductive signature data is obtained through the advanced loop detector cards connected via USB 
cables.  An inductance change detection threshold value of 200 is used to determine the presence of 
vehicles.  Hence, each inductive signature record comprises of a continuous stream of data samples with 
values above the detection threshold, and is timestamped by the field unit at the instance of detection. 

5.5.2 Server Data Processing 

Inductive signature and WIM records transmitted to the communications and modeling server via the 
communications architecture described in section 5.4 are initially stored in temporary tables in the 
PostgreSQL database platform hosted on the database server, and processed hourly.  The hourly 
processes on the server side include WIM and inductive signature data pairing for data obtained from 
WIM sites, followed by classification and finally data archive.  The flowchart of the hourly processes is 
presented in Figure 5-10. 
 
As a form of redundancy, the system always searches for the earliest available records that are stored in 
the temporary tables, and begin processing the data in hourly batches until the most recent hour with 
complete data. 
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Figure 5-10 Flowchart of hourly data processes 

5.5.2.1 WIM and Inductive Signature Record Pairing 
As mentioned in Section 3.2, two types of data are obtained from WIM sites: WIM and inductive 
signature records for every passing vehicle.  These two types of data are processed by separate 
hardware systems: WIM data is obtained from the 1060 WIM controller and signature data is obtained 
directly from the field processing unit via the advanced ILDs.  In this process, the field PC clock sets the 
detection timestamps for ILD signature, while the 1060 WIM controller clock sets the detection 
timestamps for WIM.  Ideally these two clocks should be synchronized so that the WIM and signature 
data can be paired based solely on their timestamps.  However, the clocks have been observed to drift 
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and cannot be automatically synchronized since the WIM 1060 uses a DOS-based operating system that 
does not support synchronization with external clocks.  As a consequence, the timestamps reported for 
the same vehicle may be very different from these systems. 
 
To address this problem, an alignment algorithm was developed to pair WIM and signature data 
corresponding to the same vehicle.  It should be noted that the time differences between WIM and 
signature, which are referred as time shifts, may drift over time.  Therefore, the algorithm was designed 
to reset the time shifts every one hour to address drifting concerns.  The algorithm starts with collecting 
truck data from WIM and signature based on their durations.  Vehicle records with durations longer 
than 0.35 second were selected for the alignment process.  Second, the predefined time shifts, which 
are ranged from -1000 milliseconds to 3000 milliseconds gapped by 100 milliseconds, were sequentially 
added to the timestamp of the signature data.  At every iteration, WIM data, which has the closest 
timestamp to the updated signature’s timestamp, pair to the signature data. The alignment algorithm 
repeats the iterations until all the predefined time shifts have been applied to the timestamp of 
signature data.  Additionally, 1 hour aggregated duration differences between WIM and signature data 
are compared at every iteration, and the time shift which has the smallest aggregated duration 
difference is chosen as the optimal time shift.  Lastly, all other signature data with durations under 0.35 
seconds were paired with all WIM data which have the closest timestamp to the optimal time shift.  
 

 

Figure 5-11 Flowchart of the WIM and signature record alignment algorithm 
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5.5.2.2 Classification and Data Archive 
After WIM and signature data have been paired, the vehicle records are classified using the body 
classification models described in section 4.2.  Vehicle records from WIM sites are classified using the 
‘Inductive  ignature  ody Classification Model’ and the ‘Inductive  ignature and WIM  ody Classification 
Model’ to yield two different vehicle classification predictions. Vehicle records from I   sites are 
classified only using the ‘Inductive  ignature  ody Classification Model’.  After the classification is 
completed for all vehicle records, there archival processes are performed.  First, the WIM and signature 
records are transferred to the archive tables and deleted from their corresponding temporary tables the 
pairing information between matched WIM and signature records are also archived.  Next, the results 
from the classification models are archived.  The identifier of each vehicle record is stored with the 
classification results to allow the classifications to be matched with the raw data records.  Lastly, the 
hourly volume counts by body class are calculated by site and stored archived. 
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6 System Deployment 

6.1 Overview 

This chapter describes the efforts that were undertaken to perform the test and actual deployments in 
the field, as well as the development of the Truck Activity Monitoring System interface to allow users to 
obtain on-demand truck classification summary reports from the deployed system. 

6.2 Test Deployments 

The hardware configuration and software for processing WIM and signature data in the field processing 
unit was first developed in the lab, followed by two test deployments that were performed in the field 
at existing WIM and ILD sites to test and refine the field system. 

6.2.1 Lab Development and Testing 

The software for processing WIM and signature data was developed at UCI-ITS.  Test inductive loops 
were fabricated to simulate field inductive loop sensors, while a laptop with RS-232 serial ports was 
setup to simulate a 1060 WIM controller transmitting WIM data to the field processing unit via a null 
modem cable. 

6.2.2 WIM Test Deployment 

The WIM test deployment was performed at the NB Saigon WIM site located along the northbound I-
405 freeway in Orange County.  This reasons this test site was selected were because of its proximity to 
ITS-UCI and also because it equipped with a 1060 WIM controller.  There were objectives for this test 
deployment.   
 
Firstly, we wanted to test the custom hardware interface between the WIM controller and the field 
processing unit.  The custom interface described in Section 5.2 was fabricated in-house at UCI-ITS and 
required field testing to ensure reliability of the design.   
 
Secondly, we wanted to test the stability of the field processing unit configuration.  We initially used the 
Microsoft Windows XP operating system (OS) due to its known compatibility with the software drivers 
for the IST detector cards.  However, we were concerned about the end of support of this operating 
system by Microsoft, and decided to upgrade to the Microsoft Windows 7 32-bit OS, and were able to 
resolve the driver compatibility issues with the OS. 
 
Lastly, we wanted to test and refine the software for processing the WIM and inductive signature data, 
and develop redundancy measures to ensure system stability to minimize the need for on-site 
maintenance.  Wireless modem connectivity issues were occasionally encountered which caused losses 
in data transmission.  To address this, we designed a persistence test that connects to the server hourly 
to detect if WIM and signature data had been successfully transmitted.  The field processing unit was 
designed to automatically restart several times if it is unable to connect to the database or if it is unable 
to find any data transmitted from the field processing unit.  If the restarts fail to rectify the problem, the 
system goes into a cold shutdown.  A wake-up alarm was configured in each system to initiate a warm 
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boot at a specific time of day after such shutdown cases, or for system restart after power failure 
events. 

6.2.3 ILD Test Deployment 

The ILD test deployment was performed at the N. Sand Canyon ILD site along the I-405 freeway in the 
City of Irvine.  The purpose of this deployment was to test the system’s reliability for actual deployment 
at ILD sites.  This deployment was also used to test a new inductive signature detector card developed 
by CLR Analytics, which is expected to provide inductive signature cards for future deployments in place 
of IST cards.  A prototype algorithm was developed to process the signature data obtained from this 
detector card for future applications. 
 
Redundancy measures that are similar to the WIM deployment were also implemented on the systems 
used for ILD deployment. 

6.3 Deployment in the California San Joaquin Valley 

A total of sixteen locations were deployed with the TAMS in this study.  Figure 6-1 presents an overview 
of the deployed locations in the region of San Joaquin Valley Air Basin.  The deployments were chosen 
from existing WIM and ILD sites located at interstate freeways and state route highways with significant 
truck volumes. 
 

 

Figure 6-1 Overview of site deployments 
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6.3.1 WIM Site Deployments 

Four WIM sites were selected for deployment for the WIM-Signature classification system as shown in 
Figure 6-2.  These sites were the only ones available configured with 6-foot inductive loop sensors and 
equipped with 1060 WIM controllers that were compatible with the hardware interface developed by 
UCI-ITS.  Although there were other sites in the California San Joaquin Valley equipped with 1060 WIM 
controllers, one was configured with 12x6 foot rectangular inductive loop sensors (Lodi), while other 
sites were either unavailable due to construction activities (Fresno), or were scheduled for upgrade to 
iSinc controllers (Porterville). 
Three of the selected sites are located within the San Joaquin Valley Air Basin (Tracy, Carbona and 
Keyes).  The Tracy and Carbona WIM sites are located on the I-5 and I-580 freeways, respectively.  These 
sites effectively capture the split truck flows to and from the I-5 freeway from the south, with the 
Carbona WIM site capture flows between the San Francisco Bay Area and the southern half of the 
California San Joaquin Valley.  The Keyes WIM site captures major truck flows on the SR-99 freeway 
south of Stockton.  The fourth WIM site (Galt) is located just outside the San Joaquin Valley Air Basin on 
SR-99 and was designed to capture truck flows between the San Joaquin Valley Air Basin and the 
Sacramento metropolitan area. 
 

 

Figure 6-2 Locations of deployed WIM sites 

 
We coordinated with Caltrans Traffic Operations HQ and IRD field technicians to deploy each site.  This 
involved requesting access to the WIM cabinet and configuring the 1060 controller to output WIM data 
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via the WIM controller’s available RS-232 serial port.  The IRD technician performed a final verification to 
ensure functionality of the WIM controller after each deployment was completed. 

6.3.2 ILD Site Deployments 

Twelve ILD sites were selected for deployment for the signature only classification system.  The 
California San Joaquin Valley Air Basin is divided into two Caltrans Districts: District 6 to the south and 
District 10 to the north.  District 6 encompasses Madera, Fresno, Tulare, Kings and Kern counties, while 
District 10 incorporates San Joaquin, Stanislaus and Merced counties.  Since, deployment at existing ILD 
sites required coordination at the Caltrans district level, the sites were deployed in two phases, grouped 
by the Caltrans district they belonged to. 
 
The sites available for deployment in Caltrans District 6 were limited due to recent events of copper 
theft affecting the traffic detector systems infrastructure.  The locations of deployed ILD sites in Caltrans 
District 6 are presented in detail in Figure 6-3.  In the order from north to south SR99_BARSTOW is 
located on the SR-99 freeway, and was designed to capture truck flows north of Fresno.  A location on 
the SR-180 freeway east of the SR-99 freeway was initially deployed.  However, the field unit experience 
unstable data connectivity issues, and was subsequently re-located to the SR-168 freeway instead.  This 
new location, named SR168_DAKOTA, is located on the SR-168 freeway to capture truck flows serving 
the northeast region of Fresno.  SR198_ROEBEN is located on the SR-198 freeway east of the SR-99 
freeway, in the City of Visalia.  Further south, SR99_SHUSTER is located on the SR-99 freeway in Delano.  
This site was designed to capture truck flows between Bakersfield and Fresno.  SR46_SR99 is located on 
the SR-46 highway just west of the SR-99.  Since the east end of SR-46 terminates at SR-99, this location 
captures truck flows to and from the SR-99 along the east-west corridor of SR-46.  Lastly, I5_SR119 was 
designed to capture truck flows on the south end of the San Joaquin Valley Air Basin.  It is located on the 
I-5 freeway just north of the SR-119 interchange. 
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Figure 6-3 Locations of deployed ILD sites in Caltrans District 6 

The locations of deployed ILD sites in Caltrans District 10 are presented in detail in Figure 6-4.  In the 
order from north to south, I5_HAMMER is located on the I-5 Freeway in Stockton.  This location was 
designed to capture truck flows entering and leaving the San Joaquin Valley Air Basin to the north via 
the I-5 truck corridor.  SR88_WCX is located on the SR-88 highway, just east of SR-99.  This location was 
intended to capture truck flows serving the northeast of the San Joaquin Valley Air Basin.  SR4_TCY is 
located on the SR-4 highway.  This location was designed to capture truck flows towards the Contra 
Costa county area.  SR120_I5 is located on the SR-120 freeway just east of the I-5 freeway.  It was 
designed to capture truck flows on the east-west corridor between the I-5 and SR-99 freeways.  
SR205_MH is located on the SR-205, and effective captures truck flows between the San Francisco Bay 
Area and the San Joaquin Valley Air Basin.  It is also strategically located between the Port of Oakland 
and the Union Pacific (UP) Lathrop rail terminal to capture container truck traffic between the two 
facilities.  Lastly, SR152_SR33 is located on the SR-152 highway west of the I-5 freeway.  The location 
was designed to capture truck flows to and from the Monterey County region. 
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Figure 6-4 Locations of deployed ILD sites in Caltrans District 10 

6.4 Truck Activity Monitoring System 

The prototype Truck Activity Monitoring System (TAMS, http://freight.its.uci.edu/tams) was developed 
to provide access to on-demand summary truck classification reports via an interactive web-based user 
interface. 

6.4.1 System Design 

TAMS was developed using a combination of Java, JavaScript and Java Server Pages technology.  The 
backend of this system is based on a Java platform that performs data queries with the database server.  
The results from the data queries are processed through the Java Server Pages middleware which 
transmits the results to the web browser.  JavaScript is then used to process the results and present 
them on the web interface. 

6.4.2 Web Interface Design 

The TAMS welcome page presents an overview of the system and the map of deployed site locations for 
the study as shown in Figure 6-5.  A menu bar located on the upper left of the page under the title 
provides navigation to features currently built into TAMS.  

http://freight.its.uci.edu/tams
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Figure 6-5 TAMS welcome page 
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To access the main user-interface for obtaining data reports, navigate to Daily Tables under Reports in 
the menu bar.  This will bring up the TAMS Daily Tables interface.  The desired site can be selected either 
via the pull-down box located on the top left corner, or through the interactive map interface.  After the 
date is selected from the calendar interface, an initial summary report will be presented, showing the 
breakdown of daily volumes by lane and aggregated by vehicle class categories.  For WIM sites, the 
aggregated vehicle classes are presented according to the FHWA scheme as shown in Figure 6-6.  In the 
case of ILD sites, five aggregated vehicle classes are presented (shown in Figure 6-7) as follows:  
 

 PC - passenger cars, 

 SU - single unit trucks with no trailers, 

 Single - trucks pulling a small single trailer, 

 Semi - tractors pulling a semi-trailer, and  

 Multi - tractors pulling multi-trailers   
 

A detailed breakdown of hourly volume counts by detailed truck classes can be obtained by clicking on 
the individual daily volume entries.  Examples of detailed hourly classification volumes for WIM and ILD 
sites are presented in Figure 6-8 and Figure 6-9, respectively. 
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Figure 6-6 Daily volumes by lane and aggregated FHWA classes at WIM site 

 

 

Figure 6-7 Daily volumes by lane and aggregated vehicle classes at ILD site 
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Figure 6-8 Detailed hourly classification volumes at WIM site 
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Figure 6-9 Detailed hourly classification volumes at ILD site 
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6.5 Summary of Findings 

Due to technical difficulties associated with the deployment effort, about a month of data was collected 
for the TAMS before the expiration of the wireless data subscription service.  Nonetheless, several 
insights and observations were obtained from the data collected from the deployed sites. 

6.5.1 Truck Travel Pattern Case Study 

Due to the limited data available the results presented in this section are mostly from daily observations 
and are not expected to be statistically significant. 
 
In this analysis, we focused on sites SR205_MH, I5_HAMMER and SR120_I5, which are located on the 
SR-205, I-5 and SR-120 freeways, respectively.  The map of these three locations is presented in Figure 
6-10.  SR205_MH is located between the Port of Oakland and the City of Lathrop, which has a significant 
rail facility.   
 
The tabular heat maps in Figure 6-11, Figure 6-12 and Figure 6-13 show the hourly volume of tractors 
pulling semi-trailers by trailer configuration on June 11, 2015 at their corresponding locations.  Colored 
cells in each table represent the hourly volumes corresponding to the truck body configurations by hour-
of-day.  The cell color scheme provides an overview of the hourly volume patterns over the course of 
the day, where red represents the highest hourly truck volumes observed for the day, while green 
represents the lowest hourly volumes.  Cells with no observed volumes are shaded in grey.  This 
facilitates a quick assessment of the predominant truck volumes at the location and the peak volumes of 
each truck configuration.   
 
Although enclosed van trailers were the most common body configuration, and operate throughout the 
day, there were also approximately 250 40-foot container trailers (refrigerated and non-refrigerated) 
traveling along this corridor in both directions.  In addition, while tractors pulling enclosed vans were 
observed to operate throughout the day, the 20- and 40-foot containers were mainly observed during 
the daylight hours.  Whereas 53-foot containers are used only domestically, 20- and 40-foot containers 
are typically used for at port facilities.  Hence, these observed container traffic on the SR-205 
corroborate with the operating hours of the Port of Oakland in the San Francisco Bay Area.   
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Figure 6-10 Location of detector sites SR205_MH, I5_HAMMER and SR120_I5 for analysis of 
intermodal freight movement 

 

SR205_MH SR120_I5 

I5_HAMMER 



 

126 
 

 
(a) Eastbound SR-205 

 
(b) Westbound SR-205 

Figure 6-11 TAMS heat map of hourly directional semi-tractor truck volumes along the SR-205 freeway 
at Mountain House Parkway 

In contrast, the volumes of 40-foot containers were less significant on the I-5 freeway north of Lathrop 
(shown in Figure 6-12) as well as on the SR-120 east of Lathrop (shown in Figure 6-13).  The truck 
volumes in the westbound direction along the SR-120 freeway were not presented as there were 
suspected data issues due to weak inductive signatures with low magnitudes.  Hence, there is strong 
evidence that Lathrop serves as a significant trip end for port-related container traffic from the San 
Francisco Bay area. 
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(a) Northbound 

 
(b) Southbound 

Figure 6-12 TAMS heat map of hourly directional semi-tractor truck volumes along the I-5 freeway at 
Valley Forge 
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Figure 6-13 TAMS heat map of hourly eastbound semi-tractor truck volumes along the SR-120 freeway 
east of the I-5 freeway 

6.5.2 Problems Encountered 

The reliability of the field hardware systems deployed in this study was excellent, with no significant 
failures associated with the main hardware components.  Most sites remained online throughout the 
deployment period.  Most systems that went offline were able to get re-connected automatically after a 
day as designed. 

6.5.2.1 Detector related issues 
Some sites were observed to drop lanes occasionally, which appeared to be a random occurrence.  It 
was determined that the cause may be within the proprietary design of the IST detector cards.  
However, it appears that this problem may be resolved by monitoring the status of the detector cards, 
and re-initializing the card if the status of the card is detected to be offline. 
 
It was observed that deployments at WIM sites generally encountered more issues than ILD sites.  The 
field technicians occasionally reported receiving bad data such as misclassifications from the detector 
cards to the WIM controller.  There were also instances when the custom detector interface may have 
been accidentally disconnected during routine maintenance of the WIM cabinets.  This was mostly due 
to the initial unfamiliarity of the WIM field technicians with the newly added hardware, and is not 
expected to be a significant issue moving forward.  In such cases, the affected LSM adapters were 
replaced with the original 1060 LSMs to ensure full functionality of the WIM controller. 
 
It was also observed that the signature data from some lanes had abnormally low peak magnitudes at a 
few sites.  As a result, it parts of the inductive signatures were truncated because they did not meet the 
minimum detection threshold, and signatures from multi-unit trucks were occasionally split into one or 
more separate signatures consequently recognized erroneously as multiple vehicles.  It was 
subsequently observed that the affected lanes tend to produce higher passenger vehicle volumes and 
lower overall truck volumes, as shown in Figure 6-14. 
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Figure 6-14 Classification count errors due to low signature magnitudes 

 
At other locations signatures were observed to have a high background noise, which affect the quality of 
the signature data.  The consequence of this is a higher misclassification that results in abnormally high 
volumes for trucks with a large signature variation, such as auto, platform and logging trailers.  These 
errors may be caused by poor connections between the inductive loop sensors and detector cards.  
Results from the affected site – SR99_SCHUSTER – before and after the connection issues were resolved 
are presented in Figure 6-15. 
 

Affected lanes 
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(a) Before connection issues were addressed 

 
(b) After connection issues were addressed 

Figure 6-15 Classification count errors due to high signal noise 
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6.5.2.2 Wireless data communications 
Wireless data communications was a concern prior to deployment due to the probability of poor 
reception coverage at some sites.  This issue was observed at two sites:  SR4_TCY along SR-4 at the Tracy 
Blvd intersection and I5_SR119 deployed along the I-5 freeway north of the SR-119 interchange.  
Verification with cell coverage maps provided by Sensorly5 (shown in Figure 6-16) confirmed that both 
these locations had fairly weak cell signals provided by Sprint PCS, which was the wireless service 
provider for the system. 
 
 

 
(a) Deployment site SR4_TCY located along SR-4 at the intersection with Tracy Blvd  

 
(b) Deployment site I5_SR119 located along I-5 freeway north of SR-119 interchange 

Figure 6-16 Coverage maps for deployment sites affected by data communications issues (obtained 
from Sensorly) 

                                                           
5
 www.sensorly.com 
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6.5.2.3 Other unresolved issues 
Apart from sites with known data communications problems, it was observed that SR205_MH located 
along the SR-205 freeway occasionally went offline due to causes yet to be determined.  However, it 
appears that the system returns online due to the remediating features that were built-in, which forced 
the system to shut down and perform a cold restart during such situations. 
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7 Conclusions 

This project has demonstrated and applied inductive signature technology to detect truck body class at 
inductive loop detector (ILD) and weigh-in-motion (WIM) sites in California.  Extensive data collection 
efforts across the state resulted in an exceptional inventory of truck body types that were used to 
develop two truck body classification models: a standalone inductive signature only model and an 
integrated WIM and inductive signature model, which were designed for implementation at ILD and 
WIM sites, respectively.  The standalone inductive signature only model is capable of distinguishing over 
40 truck configurations, while the model combining WIM and inductive signature data is capable of 
predicting up to 63 body classes, both with overall accuracies above 70%.  In addition to the body class 
models developed around inductive signature technology, the extensive dataset was leveraged to 
develop a methodology to predict body class volumes from WIM data for sites not equipped with 
inductive signature technology which is useful for backcasting tasks related to the validation and 
calibration of the California Statewide Freight Forecasting Model (CSFFM).   Furthermore, the procedure 
designed to estimate gross vehicle weight distributions at ILD sites showed promising results.  The 
deployment of inductive signature technology and corresponding body classification models to 16 sites 
in the California San Joaquin Valley gives practitioners and researchers a valuable tool to assess detailed 
truck activity, freight movements and impacts.   The results obtained at selected sites have been shown 
to corroborate strongly with existing freight facilities in the region. 
 
With new information on truck activity by body types, results from this study are expected to improve 
heavy duty vehicle classification in the EMFAC model and the California Vehicle Activity Database 
(CalVAD), and provide critical data that is required for the analysis of freight movement that will benefit 
the California Statewide Freight Forecasting Model (CSFFM) and other freight- or truck-related studies. 
 

7.1 Implementation Effort and Cost 

Site implementation hardware at existing ILD sites primarily comprises a field processing unit, signature 
capable ILD cards, and wireless modems.  The number of ILD cards required varies by site, depending on 
the loop configuration (single or double inductive loop sensors per lane) and the number of lanes to be 
monitored.  They typically range been two and four for the monitoring of truck traveled lanes.  For 
compatible WIM sites with 1060 series controllers, some additional hardware is required to interface 
the ILD cards with the controller as well as to receive WIM data records from the WIM controller.  This 
includes a customized ILD adapter and a serial null modem.  Hence, depending on the number of ILD 
cards required, the hardware implementation costs for an existing loop detector site may range from 
approximately $2,500 and $4,000.  The implementation costs at WIM sites are expected to be about 
$500 higher than ILD sites.  In addition, a wireless data communications monthly subscription cost of 
about $40 is required for data transmission from the field units to the server.  This monthly recurring 
costs may be eliminated if existing high speed communications infrastructure can be utilized. 

7.2 Limitations 

Some limitations were observed during the development and deployment of the classification systems 
in this study: 
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 The traffic sensors used in this study assume that most drivers observe good lane discipline.  
Vehicles straddling between lanes or changing lanes while over the sensors will generate 
erroneous data.  Hence, it is important to identify locations where there are no significant 
weaving movements.   

 Sensor data quality is typically affected under severe congestion.  Although the quality of 
inductive signature data is not affected by a vehicle’s speed, it is sensitive to significant 
accelerations and decelerations relative to a vehicle’s speed because they introduce a skew to 
the signature waveform.  This may affect the accuracy of the classification models developed in 
this study.  Hence, the system performance may be compromised during congested traffic 
conditions.  It should be noted that this weakness is not confined within inductive signature 
technology; congested conditions are known to affect other conventional traffic measures such 
as axle spacing measurements at WIM sites and volume count accuracy at conventional ILD 
sites.   

 Inductive signature magnitudes were observed to have a high signal-to-noise ratio for some 
lanes at certain sites.  This may be attributed to the physical quality of the loop installations, as 
poor splices or deteriorating insulation may cause such problems.  There are two concerns with 
a high signal-to-noise ratio.  It may lead to false detections of noise signals as vehicles, and result 
in misclassification errors due to the noise in signature data being misidentified as vehicle 
signature features.  This problem may be addressed by verifying the condition of inductive loop 
sensors and leads, and their connections. 

 The amplitudes of inductive signatures were found to be low at some sites.  As a consequence, 
trucks pulling trailers with a high ground clearance may be detected as multiple vehicle 
signatures.  These fragmented signatures are typically misclassified as passenger vehicles or 
single unit trucks.  Hence, affected sites will typically undercount multiple unit trucks, and 
provide an overestimate of passenger car and light truck volumes. 

7.3 Follow-up Studies and Future Recommendations 

This study has demonstrated the potential to identify truck body configurations at an unprecedented 
level of detail.  As a follow-up effort, Caltrans has sponsored a $1M study to further enhance the 
classification models and expand the number of deployed sites to over 90 across the State of California.  
These future deployments will be located along major truck corridors within metropolitan areas, at 
regional cordon lines, and near state boundaries.  This expanded study will also further enhance the 
TAMS web interface through which users can examine and download individual body class predictions in 
addition to hourly summaries by location. 
 
With the emergence of alternative drivetrain technologies in trucks, it will be a worthwhile effort to 
investigate the potential of inductive signature technology in identifying trucks by drivetrain as well.  
This will be particularly useful in providing truck activity emissions estimates through monitoring truck 
activity by drive train technologies and provide information on the best policies to maximize the benefit 
of technology investments. 
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Appendix A – FHWA-CA Classification Scheme 

 

FHWA-CA Classification Scheme for Commercial Vehicle Classes 4 through  4 
(http://www.dot.ca.gov/hq/tpp/offices/ogm/trucks/WIM_Truck_Classification_Diagram.pdf ) 
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Appendix B – Data Collection Site Configurations 

 
Irvine Site Configuration 

 
 

 
Fresno Site Configuration 

 
 

 
Willows and Redding Site Configuration 
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Appendix C – Database Structure for Data Groundtruth System 

 

 

Vehicle Records with user input  ody classi ca on 

 hoto Records  W M Records Signature Records 

Signature  W M  and  hoto Records linked  y Vehicle Record 

Combine  ignature, WIM, and 

 hoto data by Vehicle I   eld 



 

141 
 

Appendix D – Modified Decision Tree Model Architecture for Predicting Truck Volume by Body 
Configuration using WIM data 

 
 
 
 

Node 17

Node 20

Van    :  1.45%
Platform  : 18.1%

Tank  : 67.8%
40ft Ct  : 2.2%
Other  : 10.5%

Node 15

Node 21

Van    :  12.6%
Platform  : 60.5%

Tank  : 22.7%
40ft Ct  : 0.8%
Other  : 3.3%

Node 9

Node 4

Node 2

Node 11

Node 16

Van    :  16.7%
Platform  : 63.2%

Tank  : 6.1%
40ft Ct  : 3.5%
Other  : 10.5%

Node 5

Node 10

Van    :  2.5%
Platform  : 83.5%

Tank  : 7.0%
40ft Ct  : 0.4%
Other  : 6.7%

Node 3

Node 7

Van    :  92.5%
Platform  : 4.05%

Tank  : 0.12%
40ft Ct  : 0.15%
Other  : 3.22%

Node 6

Node 12

Van    :  33.8%
Platform  : 64.7%

Tank  : 0%
40ft Ct  : 0%
Other  : 1.5%

Node 1

Overhang < 2.43

Y N

Spacing < 6.64

Y N

Overhang < 3.26

Y N

Length < 14.77

Overhang < 1.95

Spacing < 7.59

Length < 15.29

Y

Y

Y

Y N

N

N

N

Spacing < 6.08

Spacing < 6.75

Spacing < 7.20

Y N

N

N

Y

Y

Node 13

Van    :  75.3%
Platform  : 24.7%

Tank  : 0%
40ft Ct  : 0%
Other  : 0%

Node 8

Van    :  5.8%
Platform  : 19.4%

Tank  : 3.8%
40ft Ct  : 0%

Other  : 70.9%

Node 22

Van    :  72.5%
Platform  : 22.5%

Tank  : 0%
40ft Ct  : 0%
Other  : 5%

Node 23

Node 24

Van    :  62.1%
Platform  : 20.7%

Tank  : 0%
40ft Ct  : 0%

Other  : 17.2%

Spacing < 7.84

Y N
Node 25

Van    :  0.2%
Platform  : 26%

Tank  : 0%
40ft Ct  : 0%
Other  : 54%

Node 18

Van    :  1.4%
Platform  : 24.7%

Tank  : 39.7%
40ft Ct  : 17.8%
Other  : 16.4%

Node 14

Node 19

Van    :  2.4%
Platform  : 14.4%

Tank  : 13.6%
40ft Ct  : 56.4%
Other  : 12.8%

Y N

Length < 13.93



 

142 
 

Appendix E – Pin-out Cross Assignment between 1060 WIM and IST-
222 Detector Cards 
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Appendix F – Vehicle Classification Scheme for Inductive Loop 
Signature Only Classification Model 

Vehicle Category Body Configuration Sample Image 

Passenger Car Passenger Vehicle 

 
Single Unit Truck 20ft Bus 

 
Single Unit Truck 30ft Bus 

 
Single Unit Truck Beverage 

 
Single Unit Truck Bobtail 

 
Single Unit Truck Van/Platform 

 
Single Unit Truck Concrete 
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Vehicle Category Body Configuration Sample Image 
Single Unit Truck Utility/Service 

 
Single Unit Truck Dump/Tank 

 
Single Unit Truck Dump Triple Rear 

 
Single Unit Truck Multi Stop Van/RV 

 
Single Unit Truck Street Sweeper 

 
Vehicle with Single 
Trailer 

Passenger Vehicle 
w/Trailer 

 
Vehicle with Single 
Trailer 

Pickup/Utility  w/Trailer 

 
Vehicle with Single 
Trailer 

Platform w/Trailer 
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Vehicle Category Body Configuration Sample Image 
Vehicle with Single 
Trailer 

Concrete w/Lift Axle 

 
Vehicle with Single 
Trailer 

Dump 

 
Vehicle with Single 
Trailer 

Dump w/Lift Axle 

 
Vehicle with Single 
Trailer 

Dump w/Trailer 

 
Vehicle with Single 
Trailer 

Van w/Trailer 

 
Vehicle with Single 
Trailer 

Tank w/Trailer 

 
Vehicle with Single 
Trailer 

RV w/Towed Vehicle 

 
Vehicle with Single 
Trailer 

Service w/Trailer 
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Vehicle Category Body Configuration Sample Image 
Vehicle with Single 
Trailer 

RV w/Small Trailer 

 
Vehicle with Single 
Trailer 

Livestock w/Trailer 

 
Tractor with Semi 
Trailer 

20ft Container 

 
Tractor with Semi 
Trailer 

40ft Container 

 
Tractor with Semi 
Trailer 

40ft Container Reefer 

 
Tractor with Semi 
Trailer 

53ft Container 

 
Tractor with Semi 
Trailer 

Agriculture 

 
Tractor with Semi 
Trailer 

Auto 
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Vehicle Category Body Configuration Sample Image 
Tractor with Semi 
Trailer 

Platform 

 
Tractor with Semi 
Trailer 

Beverage 

 
Tractor with Semi 
Trailer 

Bulk Waste 

 
Tractor with Semi 
Trailer 

Container Chassis 

 
Tractor with Semi 
Trailer 

Drop Frame Van 

 
Tractor with Semi 
Trailer 

Enclosed Van Reefer 
(FHWA 9) 

 
Tractor with Semi 
Trailer 

Enclosed Van Reefer 
(FHWA 8) 

 
Tractor with Semi 
Trailer 

Enclosed Van (FHWA 9) 

 
Tractor with Semi 
Trailer 

Enclosed Van (FHWA 8) 
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Vehicle Category Body Configuration Sample Image 

Tractor with Semi 
Trailer 

Dump 

 
Tractor with Semi 
Trailer 

Livestock 

 
Tractor with Semi 
Trailer 

Low Boy Platform 

 
Tractor with Semi 
Trailer 

Open Top Van 

 
Tractor with Semi 
Trailer 

Tank 

 
Tractor with Semi 
Trailer 

Logging 

 
Tractor with Multiple 
Trailers 

Agricultural Van 

 
Tractor with Multiple 
Trailers 

Platform/Tank 

 
Tractor with Multiple 
Trailers 

Bottom/Belly Dump 
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Vehicle Category Body Configuration Sample Image 
Tractor with Multiple 
Trailers 

Van/Platform (Low 
Chassis) 

 
Tractor with Multiple 
Trailers 

Enclosed Van 

 
Tractor with Multiple 
Trailers 

End Dump 

 
Tractor with Multiple 
Trailers 

Hopper 
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Appendix G – Vehicle Classification Scheme for Combined Weigh-In-
Motion and Inductive Loop Signature Classification Model 

FHWA Class Body Configuration Image 

2 Passenger Vehicle 

 3 Passenger Vehicle 

 

4 30ft Bus single rear axle 

 

4 30ft Bus rear tandem 

 

4 RV 

 
4 Van/Platform 

 5 12 Pass Van 
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FHWA Class Body Configuration Image 

5 20ft Bus 

 

5 30ft Bus 

 

5 Bobtail 

 
 
 

5 Other 

 

5 Passenger Car 

 5 Utility/Platform/Pickup 

 5 Van/Platform 

 6 Bobtail 
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FHWA Class Body Configuration Image 

6 Bus 

 

6 Concrete 

 

6 Dump 

 6 Dumpster 

 
6 FHWA 6 with Trailer 

 6 Garbage 

 
6 Platform/Van/Tank/ 

Other 

 7 Concrete_Tandem_Lift Axle 
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FHWA Class Body Configuration Image 

7 Dump_Tandem_Lift Axle 

 7 Dump_Triple_No Trailer 

 7 Garbage_Triple_No Trailer 

 
8 Beverage 

 

8 Livestock 

 

8 Low Boy Platform/Drop Frame 
Van 

 
8 Platform 

 8 Van 
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FHWA Class Body Configuration Image 

9 20ft Intermodal Container 

 9 40ft Intermodal Container 

 
9 40ft Intermodal Container 

Reefer 

 9 53ft Intermodal Container 

 

9 Agricultural Van 

 

9 Automobile Transport 

 

9 Drop Frame Van 

 

9 Enclosed van 
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FHWA Class Body Configuration Image 

9 Enclosed Van Reefer 

 

9 Livestock 

 
9 Logging 

 

9 Low Boy Platform 

 

9 Open Top Van/Dump 

 
9 Platform 

 

9 Tank 

 10 Low Boy Platform/Drop Frame 
Van 
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FHWA Class Body Configuration Image 

10 Platform 

 10 Van 

 

11 Agricultural Van 

 11 Bottom Dump 

 

11 Hopper 

 

11 Platform 

 

11 Tank 

 

11 Van 
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FHWA Class Body Configuration Image 

12 Bottom Dump 

 

12 Platform 

 

12 Van 

 

13 Multi-Trailer 7 or More Axles 

 

14 Dump 

 

14 Livestock 

 14 Platform 

 

14 Tank 
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FHWA Class Body Configuration Image 

15 Unclassified 

 
 
 
 


