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ABSTRACT 
Problem: Studies using the American Cancer Society (ACS) Cancer Prevention II (CPS II) 
cohort to assess the relation between particulate air pollution and mortality rank among the most 
influential and widely cited. The original study, a reanalysis that introduced new random effects 
methods and spatial analytic techniques, and recent studies with longer follow-up and improved 
exposure assignment, have all demonstrated statistically significant and substantively large air 
pollution effects on all-cause and cause-specific mortality. Due to this robust association and a 
lack of other large cohort studies on the long-term effects, the ACS studies have proven 
important to government regulatory interventions and health burden assessments.  

At present there are no ACS CPS II statewide studies in California that investigate whether the 
risks are similar to or different from those reported in the above-mentioned analyses. Existing 
estimates come from either national-level ACS studies, in which the California subjects comprise 
less than 15% of the total national sample, or from select metropolitan or county areas of 
California, where questions remain about their generalizability to the rest of the state. A need 
therefore exists to investigate whether the results hold across California.  In addition, none of the 
existing ACS studies have used high-resolution exposure assignment or investigated the 
temporal dimensions of the dose-response relationship.  In this study we used advanced exposure 
modeling to reduce problems of measurement error, and we investigated time windows of 
exposure. 

Previous Work: Our previous work includes the original ACS study of particulate air pollution 
and mortality, the reanalysis of the ACS study, as well as studies involving analytic extensions to 
both these studies using new spatial models, and a study providing the first assessment of 
particulate air pollution at the within-city or “intraurban” scale using Los Angeles as the test site. 
Our Los Angeles results suggest the chronic health effects associated with intraurban gradients in 
exposure to fine particulate matter (PM2.5) are even larger than those previously reported for the 
metropolitan areas used in both the original study by Pope et al. [1]and the reanalysis by Krewski 
et al. [2]. For the within-city models, we observed effects nearly three times greater than those 
using models relying on between-community exposure contrasts. These findings were confirmed 
using more refined exposure models in a subsequent Health Effects Institute report [3]. In that 
report, we also found risks for the national study that were greater than those in earlier studies for 
deaths due to cardiovascular causes. 

Objectives: In this context, we pursued the following research objectives: (1) to derive detailed 
assessments of the health effects from particulate and gaseous air pollution on all-cause and 
cause-specific mortality in California based on the ACS CPS II cohort, (2) to investigate whether 
specific particle characteristics associate with larger health effects through examination of 
intraurban gradients in exposure to different particle constituents and sources, and (3) to 
determine whether critical exposure time windows exist in the relationship between air pollution 
and mortality in California.  

Description: We identified more than 76,000 California subjects in the ACS cohort to serve as 
the study population (20,432 deaths with an 18 year follow-up ending in 2000). These subjects 
were widely distributed across California, giving comprehensive coverage for much of the 
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population of the state (i.e., 54 of 58 California counties have ACS subjects). For the first time in 
using the ACS CPS-II data, we have geocoded subjects to their home address to refine our 
exposure assignment.  

As a basis for exposure assessment, we utilized interpolation estimates derived by Air Resources 
Board staff for the California Teachers Cohort Study led by Dr. Michael Lipsett, with Dr. Jerrett 
as co-investigator. We also implemented geostatisical kriging, advanced remote sensing coupled 
with atmospheric modeling, land use regression, and Bayesian models capable of assessing 
space-time patterns in exposure to improve exposure assignment.  

We employed a comprehensive set of 20 individual risk factor variables similar to those used in 
previous ACS studies. These variables control for lifestyle, dietary, demographic, occupational, 
and educational influences that may confound the air pollution-mortality association. We used 
ecological variables in the neighborhoods of residence to control for “contextual” neighborhood 
confounding (e.g., unemployment). Although we used similar variables as in previous analyses 
to promote comparison to earlier results, we also tested other model specifications.  

We assessed the association between air pollution and several causes of death, including 
cardiovascular (CVD), ischemic heart disease (IHD), respiratory, lung cancer, and other causes. 
We also evaluated all-cause mortality. There is some debate about the efficacy of evaluating 
associations between all-cause mortality and air pollution because several causes of deaths in this 
broad categorization likely have little association with air pollution. We have included the all-
cause metric for several reasons. First, the all-cause metric has been used in most of the other 
published studies to date, and therefore we used this outcome for comparability with previous 
results. Second, the all-cause measure avoids the potential cross-classification bias between 
respiratory and CVD deaths. Third, the all-cause metric can be useful in burden of mortality 
assessments, and it has been used extensively for this purpose. Finally, we use the all-cause 
metric to compare with the cause-specific effects that we hypothesized should be more strongly 
related to pollution exposures (i.e., CVD deaths). A related point is the use of the combined "all 
other" causes of death to serve as a negative "control".  The overall results are more compelling 
if one observes associations only for those causes of deaths for which there exists biological 
plausibility or where previous results have provided an a priori hypothesis (CVD, IHD, lung 
cancer), and where the risks for all other effects are null.   

We assessed the association between air pollution and death using standard and multilevel Cox 
proportional hazards models. Control was also applied for residence in the five largest urban 
conurbations, which potentially have different mortality rates than non-metropolitan areas. We 
also assessed spatial autocorrelation in the health effect estimates. 

Key Results: Below we summarize the key results from our investigation.  

1. Cardiovascular disease (CVD) deaths, especially those from ischemic heart disease 
(IHD), are consistently and robustly associated with measures of fine particulate and 
traffic-related air pollution. The effects on CVD and IHD in California are virtually 
identical to those of the national ACS study (see Abstract Table 1). 
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Abstract Table 1: Comparison of Relative Risk Estimates from the California and National American Cancer 

Society Cohorts for PM2.5 using a 10 µg/m3 Exposure Increment 

California* National Level** 

Hazard Ratio 95% CI Hazard Ratio 95% CI 

All‐cause 1.08 (1.00, 1.15) 1.08 (1.04, 1.11) 

CVD 1.15 (1.04, 1.28) 1.17 (1.11, 1.24) 

IHD 1.28 (1.12, 1.47) 1.29 (1.18, 1.40) 

* California study uses residential address with a Land Use Regression estimate of exposure with statistical control for individual 
and ecologic covariates and residence in the five largest conurbations in California. 
**National level study uses metropolitan area of residence with the average of all PM2.5 monitors within the metropolitan area as 
the exposure estimate; source for the National estimate for all-cause and IHD from Krewski et al. 2009 [3] Table 9; CVD 
estimate produced for this report for comparison with the California  using the same model and sample as in the Krewski report 
(i.e., two level random effects, with no spatial autocorrelation – referred to as MSA and DIFF in Table 9). Note numbers slightly 
differ from the Krewski report due to rounding. 

Models for both risk estimates control for individual risk factors (e.g., smoking), contextual risk factors (e.g., unemployment in 
area of residence) and are stratified by age, race and sex. Results for the California cohort are also additionally adjusted for 
place of residence in five major urban conurbations.  Follow up period for both studies was from 1982-2000. 

2. All-cause mortality is significantly associated with PM2.5 exposure, but the results are 
sensitive to statistical model specification and to the exposure model used to generate the 
estimates. When we applied control for residence in the largest urban conurbations, and 
we employed the land use regression (LUR) model, we found significantly elevated 
effects on all-cause mortality. For reasons explained in the main report this model 
specification with land use regression exposures and control for residence in the large 
conurbations is most likely to produce scientifically valid results. Many of the other 
results presented were included to satisfy contractual requirements to investigate 
methodological issues of interest to the Air Resources Board. When we use the fully 
specified models, the effect sizes are the same as those in the national study (see 
Abstract Table 1 for a comparison). We observed effects that were of similar size, but of 
borderline significance when using other exposure models.  

3. The strongest and most consistent effects are observed when there is finer-scale spatial 
resolution in the exposure predictions.  In models using the LUR estimate that serve as 
markers of relatively local variation in pollution we see all-cause effects from NO2 and 
PM2.5 (see Abstract Figure 1 for a comparison of the risks from statewide LUR models 
of PM2.5 and NO2 for various causes of death). 
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Abstract Figure 1: Summary of key results for PM2.5 and NO2 with all‐cause and cause specific death. Estimates 

derived from single pollutant models and calibrated to the inter‐quartile range of exposure for each pollutant 

where statistical models control for individual and ecologic covariates and residence in the five largest conurbations in 

California. 

4. The strongest evidence of mortality effects is with exposure models that are markers of 
traffic-related air pollution. The NO2 LUR estimate has significant associations with all-
cause, CVD, IHD, and lung cancer deaths. Exposure estimates based on roadway 
proximity had elevated, but insignificant risks, suggesting weaker effects than with the 
NO2 model, probably due to increased exposure measurement error. 

5. With regard to other causes of death, there was no evidence of an air pollution effect. In 
fact for some regional PM2.5 exposure there was some evidence of negative association, 
but when residence in the five largest urban conurbations was accounted for in the model, 
the effects became positive, but insignificant.  

6. Other pollutants − namely PM10, sulfate derived from PM10 filters, NO2, and ozone 
estimates from interpolation models − all showed consistent associations with CVD that 
are similar in size to those observed for PM2.5. In general, the interpolation estimates of 
these pollutants were highly correlated with each other and with PM2.5. Therefore caution 
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must be exercised in interpreting effects from any single pollutant when the exposure 
estimate relies solely on interpolation. 

CONCLUSION 

Taken together, the results from this investigation indicate consistent and robust effects of 
PM2.5 − and other pollutants commonly found in the combustion-source mixture with PM2.5 

− on deaths from CVD and IHD. We also found significant associations between PM2.5 and 
all causes of death, although these findings were sensitive to model specification. In Los 
Angeles, where the monitoring network is capable of detecting intraurban variations in PM2.5, we 
observed large effects on death from all causes, CVD, IHD, and respiratory disease. These 
results were consistent with past ACS analyses and with findings from other national or 
international studies reviewed in this report.  Our strongest results were from a land use 
regression estimate of NO2, which is generally thought to represent traffic sources, where 
significantly elevated effects were found on deaths from all causes, CVD, IHD, and lung cancer. 
We therefore conclude that combustion-source air pollution is significantly associated with 
premature death in this large cohort of Californians. 
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List of Acronyms and Abbreviations 
A4 – local roads data value 
ACS – American Cancer Society (or American Cancer Society Cohort) 
AHSMOG – Adventist Health Study of Smog 
BME – Bayesian Maximum Entropy, BMElib is the toolbox software used to run a BME 

(see section on “Residual Error Modeling”) 
BMI – body mass index 
C/O – “Care Of”, address error 
CARB – California Air Resources Board 
CER – cerebrovascular (hazard ratio for related death) 
CPS II – Cancer Prevention Study II 
CV – cross-validation 
CVD – cardiovascular disease 
DSA – Deletion/Substitution/Addition algorithm (see section on “Statistical 

Methods for Land Use Regression) 
EPA or USEPA – U.S. Environmental Protection Agency 
ESRI – Environmental Systems Research Institute (developers of GIS software, ArcInfo) 
FCC – Feature Class Code 
GEOS-Chem – chemical transport model 
GINI – statistic for measuring dispersion (coefficient of income inequality) 
GIS – Geographic Information System(s) 
GPS – Global Positioning System 
HEI – Health Effects Institute 
HR – hazard ratio 
IDW – inverse distance weighting 
IHD – ischemic heart disease 
IQR – interquartile range statistic 
KRG – kriging 
LA MSA – Los Angeles Metropolitan Statistical Areas 
LACS – software add-on for ZP4 which converts rural- to street-style addresses 
LUR – land use regression (model) 
LUR-BME – combined Land Use Regression - Bayesian Maximum Entropy model 
MAUP – modifiable areal unit problem 
MET – The National Medicare Cohort 
MSA – metropolitan statistical area 
NA – not available (no data accessible) 
NDI – National Death Index 
NHS – The Nurses Health Study 
NLCD – USGS National Land Use Cover Dataset (2001) 
NLCS – Netherlands Cohort Study on Diet and Cancer 
NO2 – nitrogen dioxide 
O3 – ozone 
PM – particulate matter of any diameter 
PM10 – other (not fine) particulate matter 
PM2.5 – fine particulate matter 
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ppb – parts per billion (unit) 
QA – quality assurance (audit) 
RR – relative risk 
S/TRF – Space/Time Random Field 
SCMC – The Six City Medicare Cohort 
SCS – The Six Cities Study 
SES – socioeconomic status 
SM – streetmap 
SO4

-2 – sulfate 
Stata 10 – statistical software, Stata Corp. 
TRAPCA – Traffic Related Air Pollution and Childhood Asthma Study 
USGS – United States Geological Survey 
ZCA – ZIP code area 
ZP4 – software that includes official United States Postal Service data (ZIP + 4 code) 
µm – micro-meter unit 
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SIGNIFICANCE 
In a recent analysis commissioned by the U.S. Environmental Protection Agency seeking an 
expert consensus on risk of mortality from exposure to PM2.5 [4], every expert panel member 
cited studies based on the American Cancer Society (ACS) cohort as influential. A study by 
Jerrett et al. [5], the first to examine the risks with improved exposure models based on 
gradients across Los Angeles, was continuously noted as one of the most important determinants 
of the risk from PM by the majority of the experts. The consistent results of higher risk estimates 
from this Los Angeles study, probably resulting from reduced exposure measurement error, have 
raised questions about which risk estimate should be used for assessing the benefits of air quality 
regulations in California. The California population of the cohort analyzed by Pope et al. [6] 
comprises about 15% of the total study population (about 76,000 of 500,000 subjects). While the 
Jerrett et al. [5] study is based solely on Los Angeles residents, questions about the applicability 
of the results for the remainder of California persist, given the generally higher levels of 
pollution in the Los Angeles region and the different population mixture there.  

Two other studies have examined multiple counties in California. One study by Ostro et al. [7, 8] 
includes subjects in eight counties and another by Enstrom (2005) [9, 10] has subjects in 11 
counties. The Ostro study is restricted to female subjects who were employed as teachers, and 
the Enstrom study relies on an earlier ACS cohort with many elderly subjects. The special 
populations and constrained geographic coverage in these studies limit their applicability for 
health benefits estimation in California. In our study we have subjects and exposures assigned in 
54 of the 58 California counties. Although the ACS CPS II is not necessarily representative of 
the California population, this cohort does include men and women of various ages and has a 
wide range of socio-demographic characteristics reported on the survey responses. Our study 
therefore supplies the first California-wide estimates of mortality associated with PM2.5 

exposure and other criteria co-pollutants, thus supplying policymakers with a valuable 
resource for deriving benefits estimates.  

Beyond the immediate contributions to benefits estimation, this study resolves key uncertainties 
in the science of air pollution health effects. For the first time we geocoded the ACS subjects to 
their home addresses, as compared to the previous studies that have used either metropolitan area 
of residence or the home ZIP code to assign exposure. This improved locational accuracy is 
combined with the advanced models of exposure. The integration of numerous land use, traffic, 
physiographic, and remotely sensed data into a rigorous mathematical model capable of 
estimating exposures in time and space extends the science of exposure assessment and gives 
results that are less prone to measurement error. 

BACKGROUND AND RATIONALE 
In this section we review key studies that inform our investigation. We emphasize prior ACS 
studies, but also cover many other studies that contribute to knowledge on the chronic effects of 
air pollution on mortality. 
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The Harvard Six Cities Study and American Cancer Society Study of 
Particulate Air Pollution and Mortality 
Epidemiologic studies conducted over several decades have provided evidence to suggest that 
long-term exposure to elevated ambient levels of particulate air pollution is associated with 
increased mortality. Two US cohort studies, the Harvard Six Cities Study [11], a 20 year 
prospective cohort study, and the American Cancer Society (ACS) Study [1], a larger 
retrospective cohort study involving 156 cities, estimated that annual average all-cause mortality 
increased in association with an increase in sulfate fine particles (all particles less than 2.5 µm in 
median aerodynamic diameter or PM2.5) and to undifferentiated PM2.5 in some 50 cities. 

Both studies came under intense scrutiny in 1997 when the results were used by the US 
Environmental Protection Agency (EPA) to support new National Ambient Air Quality 
Standards for PM2.5 and to maintain the standards for particles less than 10 µm in median 
aerodynamic diameter (PM10) already in effect.  The findings were the subject of debate 
regarding the following factors: possible residual confounding by individual risk factors (e.g., 
sedentary lifestyle, active or passive cigarette smoke exposure) or ecologic risk factors (e.g., 
aspects of climate or social milieu); inadequate characterization of the long–term exposure of 
study subjects; different kinds of bias in allocating exposure to separate cities; and robustness of 
the results to changes in the specification of statistical models [12, 13].  To address growing 
public controversy concerning the studies’ methods and results, Harvard University and the ACS 
requested that the Health Effects Institute (HEI) organize an independent reanalysis of these 
studies. 

Through a competitive process, a reanalysis team led by Dr. Daniel Krewski of the McLaughlin 
Centre for Population Health Risk Assessment at the University of Ottawa was selected by an 
independent Expert Panel appointed by the HEI Board of Directors, with support from the EPA, 
industry, Congress, and other stakeholders. The reanalysis study was overseen by the Expert 
Panel, chaired by Dr. Arthur Upton from the University of Medicine and Dentistry of New 
Jersey and former Director of the National Cancer Institute, with assistance by a broad-based 
Advisory Board of stakeholders and scientists. The findings of the reanalysis (Phase I and Phase 
II) were published in 2000 [2, 14].  The final results were extensively peer reviewed by an 
independent Special Panel of the HEI Review Committee, which was chaired by Dr. Millicent 
Higgins of the University of Michigan. 

The Reanalysis Project: Objectives and Findings 
The overall objective of the Particle Epidemiology Reanalysis Project was to conduct a rigorous 
and independent assessment of the findings of the Harvard Six Cities and ACS Studies of air 
pollution and mortality.  Phase 1: Replication and Validation involved a quality assurance (QA) 
audit of a sample of the original data and validation of the original numeric results.  Phase II: 
Sensitivity Analysis tested the robustness of the original analyses to alternate risk models and 
analytics. 

Overall, the reanalysis assured the quality of the original data, replicated the original results, and 
tested those results against alternative risk models of the Cox proportional-hazards family and 
other analytic approaches without substantively altering the original findings of an association 
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between indicators of PM air pollution and mortality [15].  Phase II of the reanalysis made 
innovative contributions to the understanding of the air pollution-mortality association by 
developing new methods of spatial analysis for cohort studies involving both individual and 
ecologic covariates. Key findings from the reanalysis indicated that (1) educational status has a 
significant modifying effect with risk of mortality associated with fine particles declining with 
increasing educational attainment, (2) sulfur dioxide may exert a more robust effect on mortality 
than sulfates, (3) other possible ecologic confounders have no significant effect in models that 
control for spatial autocorrelation, and (4) spatial risk models attenuate the air pollution effect, 
both in terms of size and certainty. 

The implications of the findings for air quality risk management were significant and pointed to 
the vital need for further study to better understand the role of ecologic covariates in the 
association between air pollution and mortality.  Although the new methods developed in the 
reanalysis were useful for exploring the spatial structure of the data and the impact of spatial 
autocorrelation on estimates of risk associated with exposure to particulate air pollution, it was 
recognized that further work is required to determine how robust the results are to more 
sophisticated spatial models.   

Geographic Scale of Analysis 
As an initial step toward understanding the effects of ecologic variables in confounding or 
modifying the relationship between particulate air pollution and mortality, the reanalysis relied 
on the metropolitan statistical area (MSA) scale to match the one used by the original 
investigators [1, 2, 14]. The reanalysis demonstrated that several ecologic covariates were 
significant when incorporated into the standard Cox regression model, assuming independent 
observations. One of the more surprising results was the lack of confounding effect ecologic 
covariates exerted on the air pollution-mortality relationship in models that controlled for spatial 
autocorrelation. Sulfate and sulfur dioxide were the only significant ecologic variables in the 
spatial regression models. 

The reanalysis relied on cross-level or multi-level data, and the extensive battery of individual 
variables used in the first stage of the random effects model may have removed most of the 
potential confounding effects before the ecologic variables were tested in the second stage.  Yet 
this seems unlikely because of compelling literature which points to the importance of 
‘contextual’ or community level effects on mortality [16-18]. Other methodological limitations 
probably contributed to the unexpected results.  At the MSA scale of aggregation, many ecologic 
variables may display too much intra-urban variation to represent the socioeconomic or 
environmental phenomenon of interest without large measurement error.  A growing literature 
points to neighborhood scale ecologic effects [18-21]. In many cases, variation within large 
metropolitan areas is greater than variation between these areas  [22, 23] for comparable analyses 
at the county and census tract scales). 

Another aggregation issue known as ‘modifiable areal unit problem’ (MAUP) emphasizes the 
need for correct scale. This problem arises due to the uncertainty induced by the aggregation 
process. Observed spatial patterns might be a function of the zones chosen for analysis rather 
than the underlying spatial pattern in attribute values.  Spatially aggregated data display higher 
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levels of uncertainty than the individual data on which those aggregations are based, and 
observed patterns may result from artifacts of aggregation [24].   

Aggregation produces changes in values of statistics computed on the variables in two ways. 
First, there is the ‘scale effect’ that results from a loss of information that occurs when individual 
data are aggregated to ecologic zones, and fewer observations exist in the model [25].  The scale 
effect also suggests that some changes in statistical results occur because the aggregate data refer 
to different levels in the geographic hierarchy (e.g., states, metropolitan areas, cities, ZIP code 
areas (ZCA)) and each of these contains different information about the geographic process of 
interest [26]. Each scale can have a different spatial pattern in both mortality experience and the 
ecologic variables that influence mortality.   

Second, the MAUP occurs when the boundaries of the unit of analysis affect variation in 
statistical values derived from these units. This is referred to as the ‘zoning effect.’ Even 
variables measured at the same scale may display different spatial patterns because of the zonal 
boundaries chosen for analysis rather than the underlying spatial pattern.  For example, if the 
boundary of an ecologic unit includes a neighborhood with high poverty, changes to this 
boundary that exclude the poor neighborhood would reduce the poverty rate for the entire 
ecologic unit. 

To minimize these aggregation problems, some researchers suggest that the smallest available 
unit of analysis should be used unless prior evidence indicates larger units will reveal more about 
the effect in question [27]. Testing ecologic variables at either the scale that previous studies 
have shown to be important or at the smallest available scale could alter the results of the 
reanalysis and show that ecologic variables confound the air pollution-mortality relationship.  In 
related literature on environmental justice that investigates whether disadvantaged and minority 
groups suffer greater pollution exposure than wealthier groups and whites, empirical evidence 
and compelling conceptual arguments suggest geographic scale affects the outcome of the 
analysis [23, 28-30]. Likewise, some of the observed air pollution-health relationship may be 
reduced or modified by the contextual effects of ecologic variables measured at finer scales than 
metropolitan areas or at multiple scales.  Further analyses of ecologic covariates in the ACS 
study at multiple scales would answer lingering questions about whether these variables exert a 
significant influence and provide important guidance for location-specific air quality 
management policies. 

Refinement of Exposure Estimates 
Previous ACS studies have relied on between-community central monitor estimates that assign 
entire MSAs the same level of exposure. Recent studies have recognized that exposure to air 
pollution varies spatially within a city [22, 31-34], and these variations may follow social 
gradients that influence susceptibility to environmental exposures [35].  Residents of poorer 
neighborhoods may live closer to point sources of industrial pollution or roadways with higher 
traffic density [36]. Health effects may be larger around such sources, and these effects are 
diminished when using average concentrations for the entire community.  Recent studies of 
PM2.5 have shown that within-city or intraurban exposure gradients can be associated with 
atherosclerosis [37] and high risks of premature mortality [38].  These studies have used 
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geostatistical interpolation models that capture regional patterns of pollution well, but often fail 
to account for near-source impacts from local traffic and industry.  Given the large health effects 
reported in these and other European studies [39, 40] a need exists to refine these estimates of 
intra-urban exposure to reduce uncertainties potentially associated with measurement error. 

Several recent studies have demonstrated the potential of land use regression (LUR) to supply 
accurate, small area estimates of air pollution concentrations without the expense of dispersion or 
exposure modeling [41, 42]. The goal of LUR is to explain as much of the variation in existing 
air quality data for a given pollutant using data on nearby traffic, land use and other variables. 
Using multiple linear regression, a model is developed with existing monitors that can then be 
applied to unmonitored locations provided the appropriate geographic data is available.   

Ross et al.[43] developed LUR models using traffic, distance to the coast and road length 
measures that explained nearly 80% of the variation in nitrogen dioxide levels in San Diego, 
California and were able to predict validation locations – locations that were not included in the 
modeling – to within, on average, 2.1 ppb. LUR models predicting nitrogen dioxide using traffic 
and other variables in Montréal and several European cities also produced accurate predictions 
[44]. 

In contrast to more locally varying gases such as nitrogen dioxide, however, PM mass has a 
significant regional secondary component with smaller contributions from local sources [45]. 
This complicates the estimation of intraurban exposure with LUR.  LUR models have been used 
with some success to predict fine particle concentrations in Europe as part of the Traffic Related 
Air Pollution and Childhood Asthma Study (TRAPCA) [31].  In California, one study has used 
LUR to predict fine particle concentrations in Los Angeles. When applied in health effects 
modeling, the LUR exposure assessment was found to associate with mortality, with less effect 
attenuation from confounders, than with a geostatistical model [3]. This finding suggests that 
LUR models might reduce exposure measurement error and result in better health effects 
assessment.  

Limitations of the Standard Cox Model 
While the reanalysis made progress toward understanding the influence of spatial autocorrelation 
on the sulfate effect, the methods utilized were criticized on a number of grounds [46]. In 
particular, all methods relied on a fixed relationship over space.  For example, the filtering 
method used a 600-km buffer to remove significant spatial autocorrelation prior to estimation 
with weighted least squares.  Yet the relationship between air pollution and mortality may 
display non-stationarity behavior over space, meaning the air pollution effect differs depending 
on the location within the U.S. A more flexible modeling strategy is needed to assess non-
stationary relationships. Also, reliance on one autocorrelation parameter may have effectively 
filtered variables that operate at the broad regional scale such as sulfate, but it may not have 
controlled autocorrelation from pollutants such as sulfur dioxide [46], which has a more spatially 
concentrated or local distribution [2, 14].  The inability of the spatial regression methods to deal 
simultaneously with variables that exhibit different spatial patterns may have contributed to the 
second key finding of the reanalysis, namely, that the effect of sulfur dioxide was more robust to 
control for spatial autocorrelation and other ecologic covariates than the sulfate effect [46]. 
Models capable of adapting to the available data and observed empirical relationships may alter 
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the results, and the implications for health benefits assessment are considerable.  In Phase II of 
the reanalysis, a Poisson modeling approach for Cox models was developed with two levels of 
nested random effects [47]. This method allowed us to characterize the clustering of spatial 
effects simultaneously at two geographic levels.  To accommodate more than two levels of 
geographic nesting (e.g., neighborhood within county, county within MSA, MSA within state), 
our random effects Cox model needed to be extended to fully describe complex spatial patterns 
in the ACS data. 

Post-Reanalysis Studies of the ACS Cohort 
Following the reanalysis, Pope et al. [6] undertook a subsequent analysis using an additional 10 
years of data that doubled the follow-up time to more than 16 years and tripled the number of 
deaths. Exposure data were expanded to include gaseous co-pollutant data and new PM2.5 data, 
which had been collected since the enactment of the new air quality standards for PM2.5. Recent 
advances in statistical modeling were incorporated in the analyses, including the introduction of 
random effects and nonparametric spatial smoothing components in the Cox proportional 
hazards model.  The findings provided strong evidence that long-term exposure to fine 
particulate air pollution common to many metropolitan areas is an important risk factor for lung 
cancer and cardiopulmonary mortality.  Each 10 μg/m3 increase in long-term average PM2.5 

ambient concentrations was associated with approximately a 4%, 6% and 8% increased risk of 
all-cause, cardiopulmonary, and lung cancer mortality respectively.  There was no evidence of 
statistically significant spatial autocorrelation in the survival data after controlling for fine 
particulate air pollution and the various individual risk factors. Graphical examination of the 
correlations of the residual mortality with distance between metropolitan areas revealed no 
significant spatial autocorrelation. 

Pope et al. [48] have examined the pathways by which particles may increase cardiopulmonary 
mortality in the ACS cohort. While the challenges associated with making empirical 
observations relating to potential mechanistic pathways of disease from epidemiological studies 
are recognized, the results of the analysis are largely consistent with the proposition that the 
general physiological pathways that link long-term PM exposure and cardiopulmonary mortality 
risk include pulmonary and systemic inflammation, accelerated atherosclerosis, and altered 
cardiac autonomic function.  Künzli et al. [49] have published the first epidemiologic evidence in 
support of the idea of a chronic vascular response to respiratory and system effects of PM 
exposure. 

Exposure Time Windows 
While the Six Cities study and ACS study have demonstrated an association between long-term 
exposure to particulate air pollution and mortality [1, 6, 11], none of these studies provided an 
indication of the critical period of exposure responsible for the observed association [50]. 
Investigations by Zeger et al. [51] and Schwartz [52] have shown that mortality cannot be 
attributed entirely to the effects of short-term peak exposures, which may affect sensitive 
individuals with pre-existing conditions [53-56].  Krewski et al. [2, 14] developed individual 
temporal exposure profiles for subjects in the Harvard Six-Cities Study by coding the residence 
histories of those subjects. However, limited population mobility and limited variation in 
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individual time-dependent exposure profiles precluded identification of critical exposure-time 
windows [57]. 

The identification of critical exposure-time windows has important implications for establishing 
time lines for public health policy interventions.  The identification of critical exposure-time 
windows requires information on temporal patterns of exposure at the individual level.  Given 
the regulatory importance of the results, further work to develop individual time-dependent 
exposure profiles for ACS cohort participants is needed. 

Description of Cohort Studies Reporting PM2.5 Mortality Risks 
There are now several more population-based cohort studies of air pollution and mortality, which 
report PM2.5 risk estimates. These studies are briefly described below and the results are 
summarized in tabular form to offer a basis of comparison for our subsequent results. We have 
included studies that do not focus on special or limited populations such as veterans or women 
only. 

American Cancer Society Cancer Prevention II Study (ACS CPS II) 
About 1.2 million cohort participants were enrolled by American Cancer Society volunteers 
between September 1982 to February 1983 across all 50 states, the District of Columbia, and 
Puerto Rico. Enrolment was restricted to persons who were at least 30 years of age in households 
with at least one individual 45 years of age or older. Participants completed a confidential 
questionnaire that included demographic characteristics, smoking history, alcohol use, diet, and 
education. The study population included only those who resided in U.S. metropolitan statistical 
areas (MSAs) within the 48 contiguous states and the District of Columbia with available 
pollution data. Mortality was ascertained by volunteers in 1984, 1986, and 1988, and 
subsequently using the National Death Index. In addition, several ecological risk factors 
representing social (education, race, air conditioning, percent non-white) and economic 
(household income, unemployment, income disparity) conditions were obtained from the 1979 
U.S. Census. The PM2.5 measure used here was the average of all PM2.5 concentrations obtained 
from fixed site monitors within an MSA for the years 1999 and 2000.  This resulted in 116 
MSAs being included in the analysis. Cohort follow up was from 1982 to 2000 [3]. 

Multi-level random effects Cox proportional hazards models were used to assess the risk of 
mortality in relation to pollution exposures, while stratifying for age (single-year groupings), sex, 
and race in the baseline hazard. A total of 20 variables were used to control for individual 
characteristics that may confound or modify the air pollution-mortality association. These 
individual variables included occupation, education, diet, smoking, and other lifestyle 
characteristics. In addition to the individual level covariates, seven ecological covariates defined 
at the ZIP code level were included in the model.  Each subject within the same ZIP code was 
assigned the same value of these ecological variables.  Each ecological covariate was represented 
by two separate variables, the MSA average and the difference between the ZIP code area value 
and the MSA average. Community-level random effects allowed for an assessment of residual 
variation in mortality among communities.   
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The National Medicare Cohort (MET) 
The cohort [51] consists of all those 65 years or older, who were enrolled in Medicare between 
the years 2000 and 2005 with ZIP code centroids within 6 miles of an EPA PM2.5 monitoring 
station. The study includes more than 13 million subjects.  The outcome measure is the six-year 
(2000-2005) mortality rate for persons residing within each of 4,568 ZIP codes for each of three 
age stratum: 65-74, 75-84, and 85 years and older. The PM2.5 data were obtained from the U.S. 
Environmental Protection Agency, which included 1,006 monitors for the period 2000-2005.  A 
ZIP code six-year average of PM2.5 was used as a measure of the long-term exposure to PM2.5 for 
an individual living within a ZIP code. To account for socioeconomic status (SES) at the ZIP-
code level, age-specific SES variables from the 2000 US Census were used.  Results are reported 
for three regions of the United States (East, Central, and West).  The National Medicare Cohort 
analysis also reported a summary-pooled estimate of these three regions.  

The Six Cities Study (SCS) 
The study population consisted of 8,096 white participants residing in Watertown, MA; Kingston 
and Harriman, TN; St. Louis, MO; Steubenville, OH; Portage, Wyocena, and Pardeeville, WI; 
and Topeka, KS [58]. Participants were recruited between 1974 and 1977.  Follow-up was 
terminated for this analysis in 1998.  Daily outdoor PM2.5 concentrations were measured at a 
centrally located air-monitoring station in each community from 1979 to 1987. Daily PM2.5 

concentrations were estimating from 1985 to 1998 by city-specific regression equations based on 
the extinction coefficient from visibility data obtained at local airports and routinely collected 
PM10 concentrations by the U.S. EPA from representative monitors within 80 km of each city. 
Proportional hazards Cox survival regression models were used to relate long-term city-specific 
PM2.5 concentrations to survival, controlling for individual risk factors such as smoking, 
education and body mass index. The baseline hazard function was stratified by 1-year age 
groups and gender. 

The Six-City National Medicare Cohort (SCMC) 
The study design of this cohort is similar to that of the National Medicare Cohort (NMC) except 
subjects' enrollment was restricted to the counties corresponding to the six cities examined in the 
SCS [59]. The follow-up period of this study, 2000 to 2002, was shorter than the NMC (2000 to 
2005). PM2.5 concentrations were obtained from EPA monitoring data for 2000 to 2002 in each 
of the six counties. 

Netherlands Cohort Study on Diet and Cancer (NLCS) 
The NLCS study is a study among about 120,000 subjects who were between 55 and 69 years 
old at enrolment in 1986 [60]. The study is primarily on nutrition and cancer, following a case- 
cohort design with a random subgroup of ~5,000 subject characterized in detail to estimate 
person time, as reference for cancer cases obtained from the cohort as a whole from cancer 
registries. Using a variety of modeling approaches, air pollution exposure to Black Smoke and 
NO2 was estimated at the home address of all study participants based on measurement data 
obtained in the period of follow up from routine monitoring stations. Exposure to PM10 was 
estimated using more recent routine measurements, and from the PM10 measurements, PM2.5 was 
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estimated using a fixed PM2.5/PM10 ratio. After ascertaining that individual level risk factors did 
not confound associations between air pollution and mortality in the case-cohort analysis, the 
data from the full cohort were analyzed using a limited set of potential confounders which 
included age, gender, smoking status and area-level socio economic status Specifically, the effect 
of living near busy roads on mortality was also estimated. 

Summary of Cohort Studies for All Causes of Death 
The hazard ratios from these studies are reported in Table 1 for all causes of death.  There is a 
range in risks, ranging from 1.06 to 1.21.  

Summary of Cohort Studies for Specific Causes of Death 
There are a few of cohort studies that report hazard ratios for selected specific causes of death. 
(see Table 2).   

The ACS, SCS, and NLCS all report hazard ratios for specific causes of death although each 
study reports results for a different selection of causes. Hazards ratios from these studies are not 
all directly comparable since some studies incorporate both within-community and between-
community exposure contrasts, while other studies only used between-community exposure 
gradients. 

In general, the lowest hazard ratios are reported for “Other Causes of Death,” which are non-
cardiopulmonary or lung cancer.  This suggests that the majority of evidence supports a 
restriction of PM2.5 effects on mortality to heart, circulation, or lung diseases.   

There was some variation in the hazard ratios observed for respiratory deaths (1.02 to 1.08). The 
hazard ratios for Ischemic/Coronary Heart Disease (IHD) deaths are generally larger (1.26 to 
1.29) than those from other specific causes of death examined except for the hazard ratio 
reported from the Netherlands study (0.96).  Positive associations between PM2.5 and lung cancer 
deaths are observed for all studies (1.06 to 1.27). 
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Table 1: Hazard ratios from cohort studies examining risk of death from all causes associated with long‐term 

particulate matter exposure based on 10 μg/m3 change in PM2.5. 

Hazard 
Cohort Study/ 
Characteristics 

Number of 
Subjects 

Follow‐up Period 
Geographic 
Coverage 

Ratio(95% 
Confidence 
Interval) 

American Cancer 
Society (ACS)  ‐

National 
486,133 1982‐2000 

United States 
(116 MSAs) 

1.08 
(1.04, 1.12) 

Medicare 
(National) 

13,200,000 2000‐2005 
United States 
(668 Counties) 

1.06 
(1.04, 1.07) 

Netherlands Study on 
Diet and Cancer 

(NLCS) 
120, 852 1987‐1996 Netherlands 

1.06 
(0.97, 1.16) 

Six Cities 
(SCS) 

8,111 1979‐1998 
Northeast and 
Midwest US 
(6 Cities) 

1.16 
(1.07, 1.26) 

Medicare 
(SCS) 

341,099 2000‐2002 
Northeast and 
Midwest U.S. 
(6 Counties) 

1.21 
(1.15, 1.27) 

Table 2: Cause‐specific mortality hazard ratios associated with a 10 μg/m3 change in PM2.5 for selected cohort 

studies (95% confidence intervals given in parentheses). 

Cause of 
Death 
/Cohort 

ACS 
(National) 

SCS NLCS 

Cardio‐
Vascular 

1.17 
(1.11, 1.24) 

1.28 
(1.13, 1.44) 

1.11 
(0.93, 1.33) 

Ischemic 
/Coronary 

Heart Disease 

1.29 
(1.18, 1.41) 

1.26 
(1.08, 1.47) 

0.96 
(0.75, 1.22) 

Respiratory 
1.02 

(0.93, 1.13) 
1.08 

(0.79, 1.49) 
1.07 

(0.87, 1.52) 

Lung Cancer 
1.14 

(1.06, 1.23) 
1.27 

(0.96, 1.69) 
1.06 

(0.82, 1.38) 

Others* 
0.98 

(0.94, 1.03) 
1.02 

(0.90, 1.17) 
1.08 

(0.96, 1.23) 

*: All other causes of death not including cardiovascular, respiratory, and lung cancer. 

Materials and Methods 

Exposure Modeling 
This section describes the available monitoring data, methods and results of the exposure 
assessments that were used to assign exposures to the ACS cohort used in the health effects 
models. In order of the least to the most sophisticated methods employed here, we report 
methods and results for the modeling of exposures using inverse distance weighted (IDW) 
interpolation, kriging interpolation, land use regression (LUR) and Bayesian Maximum Entropy 
(BME) interpolation of LUR residuals. 
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Available Pollution Monitors 
Data employed for the land use regression analysis was monthly average data collected at 
numerous governmental sites operated by the California Air Resources Board (CARB) over the 
period 1988-2002. Over that time period there were 138 sites – with land use data support – that 
collected NO2 measurement.  Over the same time period, there were 223 sites measuring PM10 

with land use data support. PM2.5 data were only available between 1998 and 2002 with a total 
of 112 active monitoring sites.  Table 3 and Figure 1 describe the distribution of the number of 
available monitors by respective pollutant.  

Table 3: Summary statistics of number of observations per monitor 

Pollutant No. of Sites 
Mean No. of 

Obs 
Min No. of 

Obs 
Max No. of 

Obs 

NO2 138 110.9 3 180 
PM10 223 98.4 3 180 
PM2.5 112 42.4 2 60 
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Figure 1: Distributions of observed pollutants: NO2, PM10 and PM2.5 

Methodology for Exposure Modeling 

Inverse Distance Weighted (IDW) Interpolation 

Inverse distance weighting estimates were supplied to us by the California Air Resources Board 
Staff. This effort built on a major investigation led by Dr. Michael Lipsett on the California 
Teachers cohort (with Dr. Jerrett as a Co-I). More detail is given in Dr. Lipsett’s report (Lipsett 
et al. 2011 in review). 
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Briefly, routine ambient air monitoring data for PM2.5 were available from 1998 through 2002. 
For our study, data for ozone, PM10, NO2 were available for the years 1988-2002. Dr. Lipsett’s 
team validated monitor locations, and spatial files were produced. Specifically, they had 
received from ARB staff a file with monitor addresses and geocoded coordinates.  In addition, 
the California Air Resources Board (ARB) website listed GPS coordinates for a large number of 
monitors.  These were re-geocoded to the monitor addresses in the file from ARB and compared 
these coordinates with those already in the file on the ARB website.  In a few instances, there 
were non-matching coordinates that ultimately were addressed by comparing them with aerial 
photographs to identify the most likely locations.   

The inverse distance weighting (IDW) estimates were done the same way for both projects. The 
IDW models were parameterized as follows: (1) estimates were restricted to areas within 50 km 
of a monitoring location; (2) monitors with no measurement data during the period of interest 
(1988-2002) were also excluded; (3) the IDW scale parameter was set to the inverse of the 
square of the distance;  (4) the grid resolution was set at 250m and calculated separately – with 
the previously detailed parameters – for each month for all pollutants between 1988-2002 where 
data was available.  These estiamtes were then assigned to residential geocoded address.  

For sulfate, we computed the IDW estimates ourselves using ArcGIS 9.2. Because of sparseness 
in some of the areas state with regard to monitoring and the more regional pattern that sulfate 
follows because it is a secondary pollutant, we did not restrict the interpolation to within 50 km 
of a monitor, but used all available monitors and assigned to all locations, regardless of their 
distance to a monitor. There were several years with the sulfate data that had smaller counts, so 
we used the year with the maximum amount of monitoring data (i.e., 1996). 

Kriging PM2.5 

Kriging is a geostatistical technique belonging to the group of linear least squares estimators.  Its 
purpose is to interpolate values a spatial random field at unobserved locations based on 
previously acquired data. Basically, kriging estimates are weighted averages in a similar way to 
the IDW interpolation except that the weights have been optimized through a least squares 
operation – based on the spatial covariance – to minimize the variance of the prediction error. 
The spatial covariance is estimated from the empirical distribution and requires that the model 
describing the empirical distribution result in a covariance matrix that is symmetric and positive-
semi-definite.   

Data 
We created kriging estimates for an annual average (2000) PM2.5 statewide exposure surface to 
analogously replicate the ACS Los Angeles analysis at the statewide level; this is in keeping with 
our objectives specified in the contract. As monitors were not necessarily operated over the 
entire 12 months of the year 2000 we restricted the input data to those monitors that where 
operated for the entire 12-month period.  This was done as the missing data could potentially 
bias the estimate of the observed annual mean PM2.5 concentrations at the monitors. Of the 112 
monitoring that measured PM2.5 from 1998-2002, only 72 of these monitors had observations 
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for all 12 months of the year 2000. Table 4 summarizes some basic descriptive statistics of the 
observed PM2.5 data and Figure 2 illustrates the distribution of the data of the 72 monitors that 
were used for the kriging exposure assessment.  

Table 4: Summary statistics for mean PM2.5 for 2000 

Obs Mean Std. Dev. Min Max 
PM2.5 72 15.16493 5.827055 3.7775 28.4516 
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Figure 2: Histogram of observed PM2.5 averages for 2000 

Land Use Regression 

Land use regression (LUR) is a statistical technique that employs the pollutant of interest as the 
dependent variable and proximate land use, traffic, and physical environmental variables as 
independent predictors. Thus the methodology seeks to predict pollution concentrations at a 
given site based on surrounding land use, traffic characteristics and other identified auxiliary data 
which may act as a pollution predictor. Surrounding land use and traffic characteristics are 
measured in circular areas (buffers) that surround a given location. During the model 
selection/building phase of the LUR technique, buffers of varying sizes are tested for their ability 
to predict the data.  Specifically, this method uses measured pollution concentrations (y) at 
locations (s) as the response variable and measures of land-use/traffic (x) within circular areas 

29 



 

 

 

 
                     

 

 

 

 

           

 

 

 

Buffer (Roads) 

100m Buffer (Land Use) 

200m Buffer (Roads) 

oads 

N 

+ 
Commercial 1:5,600 

Govemment and Institutional 

Open/par1</water 

Residential 

around s as predictors of the measured concentrations.  Figure 3 illustrates the LUR method in 
relation to potential land use and road predictor datasets.   

Figure 3: Illustration of land use regression methods using GIS data 

We have used the LUR method to predict the multiple year mean exposure model over the full 
dataset, i.e., 1998-2002 for PM2.5 and 1988-2002 for NO2 and PM10. As the observed data is at 
the monthly scale and the output model of the LUR methods is a purely spatial mean model 
describing the “chronic” expected exposure over the respective periods, we expect that the 
residuals will be correlated in space for a given time-period.  We employ the Bayesian Maximum 
Entropy (BME) technique (described in a following section) to model these spatiotemporal 
residuals and apply these BME estimates to the LUR estimates to obtain a predicted monthly 
exposure describing the monthly fluctuation about the mean.   

Statistical Methods for Land Use Regression 
Under the framework of the LUR methodology, a machine learning approach using the 
Deletion/Substitution/Addition algorithm (DSA) − pioneered by Sinisi and van der Laan [61] − 
was employed when selecting predictive models for PM2.5, PM10, and NO2. DSA uses an 
aggressive covariate search algorithm predicated entirely on the power of cross-validation (CV) 
to select the best predictive model.  The algorithm fits a generalized linear model that accounts 
for non-independence in the observations – based on monitoring location – and assesses the 
cross-validation performance using the L2 loss function.  The L2 loss function, otherwise known 
as the risk, is defined as the expectation of the square of the CV error. The approach tests all 
possible covariate combinations with both polynomial and interaction terms.  A number of 
parameters are required to implement the DSA algorithm and they specify the size, the level of 
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interaction, the polynomial fit of the resultant model, and the number ‘v’ of cross-validation sets 
for the v-fold cross-validation.  We allowed models to have a squared polynomial terms and 
first-order interactions.  We tested models using 5-fold CV.  This means that each candidate 
model was fit and cross-validated 5 times at every step in the model building.  The selection of 
the “best” model is done with the assistance of the CV plot, which plots the average CV risk as a 
function of the size of the model.  As the model grows in size there is typically diminishing 
return in the amount of additional predictive power that is added with each additional variable. 
The CV plot gives us a visual tool to select a parsimonious model, i.e., a model that balances the 
need to minimize prediction error while minimizing model complexity.  

Land Use and Traffic Data as Covariates 
We used ArcGIS 9.2 (ESRI, Redlands) to calculate measures of land use, roads and traffic for 
the land use regression (LUR) analysis. Each of the covariates listed in the following sections 
were calculated using circular buffers of the following radii (in meters): 50, 100, 200, 300, 400, 
500, 750, 1000, 2000, 3000, 4000, 5000. 

Data for land use covariates were created from the USGS National Land Use Cover Dataset 
(NLCD) 2001. The NLCD 2001 is a land cover classification dataset, which is derived from GIS 
and remotely sensed data.  The data create 29 classifications for land use, as defined by the 
USGS for the NLCD 2001 dataset: 

11 - Open water 
12 - Perennial Ice/Snow 
21 - Developed, Open Space  
22 - Developed, Low Intensity 
23 - Developed, Medium Intensity 
24 - Developed, High Intensity 
31 - Barren Land 
32 - Unconsolidated Shore 
41 - Deciduous Forest 
42 - Evergreen Forest 
43 - Mixed Forest 
51 - Dwarf Scrub 
52 - Scrub/Shrub 
71 - Grassland/Herbaceous  
72 - Sedge Herbaceous 
73 - Lichens 
74 - Moss 
81 - Pasture/Hay 
82 - Cultivated Crops 
90 - Woody Wetlands 
91 - Palustrine Forested Wetland 
92 - Palustrine Scrub/Shrub 
93 - Estuarine Forested Wetlands 
94 - Estuarine Scrub/Shrub 
95 - Emergent Herbaceous Wetland 
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96 - Palustrine Emergent Wetland  (Persistent)   
97 - Palustrine Emergent Wetland  
98 - Palustrine Aquatic Bed 
99 - Estuarine Aquatic Bed 

We consolidated land uses into natural groups corresponding with one group for 
open/undeveloped land, one for agricultural land and four groups of differing developed land. 
The developed land categories corresponded with land use classes 21-24 (above); classes 81 and 
82 are agricultural land; we categorized all other land uses as open space.   

Additionally, we tested variables describing surrounding population density and proxies of 
industrial activity as potential covariates in the regression analysis.  These two classes of 
covariates were found not to be associated with air pollution in our analysis.  Zev Ross of 
ZevRoss Spatial supplied both these data.  

Roads and Traffic 
Measures of quantities of various road types and estimates of vehicle miles traveled – based on a 
spatially comprehensive estimated traffic dataset – where calculated to be used as covariates in 
the LUR analysis. The traffic volume dataset compiled counts that had been collected between 
1990-2001. We used the TeleAtlas GIS road network shapefile provided in the data package 
supplied with ESRI’s ArcGIS Business Analyst extension. We calculated roads for various 
buffer distances based on road types. In the TeleAtlas road dataset, road links were 
characterized by their Feature Class Code (FCC).  The U.S. Census Bureau created the FCC 
classification system. The system uses a multipart classification where the first character is a 
letter that characterizes the parent object type, i.e., road, railway, point of interest, etc and 
subsequent numbers break the parent type into sub-types (second character) and further sub-
types (third character).  For this analysis, we used FCC classifications A1, A2, and A4.  A1 are 
limited access expressways, A2 are primary roads without limited access and A4 are 
local/neighborhood roads. 

Zev Ross of ZevRoss Spatial supplied the traffic covariate data at various buffering distances; 
see Appendix for a full description of the data and its development. 

PM2.5 estimates derived from remotely sensed data 
In our LUR model we aimed to assess the marginal benefit of including an estimate of PM2.5 

derived from remotely-sensed satellite data in our model.  Ground-level concentrations of PM2.5 

were estimated using satellite atmospheric composition data combined with local, coincident 
scaling factors from a chemical transport model (GEOS-Chem, 2011). Specifically, PM2.5 

estimates were derived from aerosol optical depth (AOD) data from the Terra satellite, in 
combination with output from GEOS-Chem simulations to estimate the relationship between 
aerosol optical depth over the atmospheric column and ground-level PM2.5 [62]. PM2.5 estimated 
at a 0.1x 0.1 degree resolution (~10x10km). Estimates for PM2.5 are from data for 2001 to 2006 
to ensure sufficient observations for stable estimation. 
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Residual Error Modeling ‐ Bayesian Maximum Entropy 

This section describes our proposed estimation method of air pollutants that melds the Bayesian 
Maximum Entropy of modern geostatistics [79-81] (also see its numerical implementation 
BMElib from (http://www.unc.edu/depts/case/BMELIB) with the aforementioned LUR 
approach. BME not only requires mean trend values to translate a non-homogeneous/non-
stationary air pollution field to a homogeneous/stationary field, but copes with the random 
fluctuations of the space/time distribution of air pollution arising from uncertainty in the LUR 
estimates. Specifically the LUR approach provides its fitted values mZ(p) at space/time points p 
which is then used as mean trend in BME to derive residuals X’(p) through Eq. (0): 

X’(p)=X(p)-mZ(p), (0) 

where X(p) is defined as air pollution measurements representing a spatially non-homogeneous 
and temporally non-stationary Space/Time Random Field (S/TRF) (as defined in Appendix C). 
The S/TRF is used to account for the random fluctuation in the LUR-driven residuals (Eq. C1)1. 
We assume that the X’(p) is a homogeneous/stationary random field in the sense that the 
expected value of X’(p) is constant (fluctuated around zero), and the covariance of X’(p) can 
generally be expressed solely as a function of spatial and temporal lags. While with the X(p) one 
faces with numerical difficulty to seek solutions desired, BME depends on X’(p) for a series of 
its estimation processes involving 1) covariance characterization to quantify space/time 
variability in monthly air pollution of the geographical phenomena (Eq. C4), and 2) space/time 
interpolation of air pollution at unsampled points (C8). The mean trend and covariance 
constitutes the general knowledge base that is processed at the first stage of BME to construct the 
prior probability density function (pdf) (Eq. C3). The prior pdf is enriched by assimilating the 
site-specific measurements (Eqs.C6-7) through Bayesian statistics (Eq. C8). This final solution 
provides the posterior pdf fK(χk) (Eq. C8)for the pollutant level at each estimation point (i.e., 180 
individual months in 1988-2002 for NO2 and PM10, each of 60 months in 1998-2002 for PM2.5, 
and 10 km-gridded locations over the state of California for all of the pollutants). 

The first order statistical moment of the posterior pdf is related to the estimate regarding air 
pollution. The estimate could be a mean, mode, or percentile value depending on study aims. For 
instance, if an estimate minimizing mean square errors is needed, the best choice would be the 
mean value. In the case where the most probable value is needed, the mode value is a better 
choice. The second order statistical moment of the posterior pdf is associated with estimation 
uncertainty. The estimation uncertainty is increasing as an estimation point is away from the 
presence of data. The BME estimation surface is then assigned to the specific subjects in 
California of the ACS database. The LUR values at the subject points are calculated and added to 
the assigned estimates in the end.  Once the BME estimates are added to the LUR values, an 
exposure estimate representing the chronic exposure calculated from traffic, land use and other 
auxiliary explanatory factors is fluctuated by a regional spatiotemporal component  – the BME 
estimate – that represents the expected monthly deviation about the chronic exposure.  This gives 
us exposures for every month at locations of interest where data is available. 

1 All equations referenced in this section that are prefaced with "C", i.e., Eq. C1, can be found in Appendix C. 
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Geocoding Methods Used for Converting Individual Addresses to 
Geographic Coordinates for Exposure Assignment 

Equipment/Software Details 
Geocoding of American Cancer Society data was conducted between March 24, 2008 and March 
28, 2008 in Atlanta, Georgia, at the American Cancer Society offices using a Dell Precision M65 
laptop with 2 GB of memory and a dual core processor. The laptop included ArcGIS 9.2 and ZP4 
(Semaphore Corporation) software for use in the geocoding. All road data and geocoding 
locators were prepared in advance and brought to Atlanta. TeleAtlas Dynamap 2000 road data 
were used for all geocoding in California and StreetMap (2006 based on Census TIGER files) for 
historical address information that included data outside of California for which TeleAtlas road 
data was not available. 

Geocoding Locators 
In preparation for the geocoding, three different address locators were prepared, two based on 
TeleAtlas data and one based on StreetMap. All three locators used a side offset of 15 meters. In 
addition, a 3m end offset, 80% spelling sensitivity, minimum candidate score of 10 and 
minimum match score of 60 was used. Addresses that matched more than one address 
erroneously were assigned a “non-match.”  

The two TeleAtlas locators were identical with one exception. One locator used the default street 
name available through TeleAtlas and one used a new street name created by applying ESRI 
address standardization to the street names themselves.2 The TeleAtlas locators were based on 
the US Streets with Zone format with ZIP code as the zone. StreetMap data was used in a 
composite locator made up of a “Streets With Zone” locator as well as a locator using 
hyphenated addresses and an alphanumeric locator. As mentioned above, while this StreetMap 
composite locator was applied to all the data its main value was in geocoding non-California 
addresses for which TeleAtlas data was not available. 

Cohort Raw Text Files from the American Cancer Society 
Three text files were prepared by the American Cancer Society for geocoding: the main 
California file (n=105217), the nutritional sub-cohort (n=23065) and an address history file 
(n=17733) which includes all of the historical addresses for nutritional sub-cohort participants. In 
order to protect the ACS unique ID staff at ACS generated new unique identifier (“id1”). 

Reading Text Files and Preparing for Address Correction 
All three files were read into R statistical software and appended together to create a single, 
larger text file to allow for quicker geocoding. In general the fields were the same except that the 

2 The concern was that, as part of the geocoding process, ArcGIS does its own address standardization and might, 
for example, convert W Main St to West Main Street. We thought that potentially running the street addresses 
from the GIS files through the same address standardization (e.g., W Main St ‐> West Main Street) would improve 
match rates. 
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historical file had three date fields representing day, month and year. To append the files into one 
large file, a day, month and year field was generated for the main California file and the 
Nutrition sub-cohort file and populated with NA values. Regular expressions were used to 
identify and remove errant punctuation in the addresses (i.e. *, % and “). Several addresses were 
preceded by “C/O” which would hinder address standardization and likely need to be filtered 
from the modeling. Therefore a new field of TRUE/FALSE values was created representing the 
existence of a “C/O” in the address and then “C/O” was removed from the addresses. Lastly, a 
new unique ID was creating by concatenating the new ID, the archive day, month, year, the file 
that a record came from (historical, California, nutrition sub-cohort) and the street [For more 
detail on the issue of IDs see the section “An Important Note About IDs”]. This file was exported 
to the external drive for further address processing. 

Address Correction 
The addresses were then run through an up-to-date version of the address correction software 
ZP4 along with the add-on LACS (LACS attempts to convert the rural-style addresses to street-
style addresses). The output fields are listed in Appendix A. ZP4 is software that includes official 
United States Postal Service data files on a single DVD-ROM that provides a tool for 
automatically determining the correct mailing address, ZIP + 4 code, and mail carrier route 
number for any location in the United States. Running addresses through ZP4 has shown to 
dramatically improve match success rates, often by as much as 10 or 20%.  

Clean Up Address Correction Output and Prepare File for Geocoding 
After running the addresses through ZP4 address standardization the resulting text file was read 
into R where field names were modified so that they would be acceptable to a GIS system. The 
extra unnecessary fields with detail on the performance of the address correction software were 
outputted to a separate file called ZP4_extra_output.txt. The records for geocoding were 
exported to a file called acsComplete_forGeocode_ZP4.txt. 

Geocoding 
For comparison purposes both the ZP4-corrected addresses as well as the raw addresses were 
geocoded using all three of the geocoding locators producing six different shapefiles – two 
geocoded files based on the TeleAtlas un-standardized locator, two geocoded files based on the 
TeleAtlas standardized locator and two geocoded files based on the StreetMap composite 
locator. All shapefiles were unprojected with a geographic coordinate system of North American 
Datum 1983. 

The geocoding results were imported to R, modified and exported as the following text files: 

acsComplete_TA_noAlt_B.txt3 – Uncorrected addresses using the locator based on unaltered 
TeleAtlas 

3The suffix “_B” represents files meant for Berkeley 
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acsComplete_TA_Std_B.txt – Uncorrected addresses using the locator based on standardized 
TeleAtlas 
acsComplete_StMap_composite_B.txt – Uncorrected addresses using the locator based on 
StreetMap 
acsComplete_TA_noAlt_ZP4_B.txt – Corrected addresses using the locator based on unaltered 
TeleAtlas 
acsComplete_TA_Std_ZP4_B.txt – Corrected addresses using the locator based on standardized 
TeleAtlas 
acsComplete_StMap_composite_ZP4_B.txt – Corrected addresses using the locator based on 
StreetMap 

Compile Final Geocoded Data 
Based on our review of the results it was clear that, as expected, the standardized addresses 
resulted in much better matches. It was also clear that the geocoding based on standardized 
TeleAtlas street names failed to improve match results. As a result, the geocoding results based 
on corrected ACS addresses and the un-standardized TeleAtlas locator were used as the “gold 
standard” geocodes based on StreetMap were used to fill in missing data.  

The final geocoded results file was assembled as follows: The geocodes based on the ZP4-
corrected ACS data based on the un-standardized TeleAtlas locator represented the starting 
point. For records with a TeleAtlas match with a score greater than 80 this was the geocode used. 
For non-matches or low-score matches a StreetMap geocoded (where available) was used. The 
vast majority of matches (98%) were attributed to TeleAtlas. The final X, Y coordinates along 
with a final geocoding score, final status, final determination of side of street and final locator 
name were added as new fields that all begin with the letter “f” to distinguish the fields as final 
(fX, fY, fScore, fStatus, fSide, fLoc_name, respectively). The final file is called: 
final_geocode_results.txt. 

Study Population 
The original analysis [1], the HEI sponsored reanalysis [2, 14] and our new research reported 
here all have relied on data from the ACS CPS-II, an ongoing prospective mortality study of 
approximately 1.2 million adults. Cohort participants were enrolled by ACS volunteers 
beginning in the fall of 1982. The participants resided in all 50 states, the District of Columbia, 
and Puerto Rico. Most were friends, neighbors, or acquaintances of the ACS volunteers. 
Enrollment was restricted to persons who were at least 30 years of age and who were members 
of households with at least one individual 45 years of age or more.  Participants completed a 
confidential questionnaire, which included questions about a variety of demographic 
characteristics, smoking history, alcohol use, and other lifestyle factors, occupational exposures, 
and other characteristics.  As with the previous analysis, the analytic cohort must be restricted to 
include those who resided in US metropolitan areas within the 48 contiguous states (including 
the District of Columbia) with available pollution data. We then selected those subjects who 
were resident in California at the time of enrollment. 
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Mortality of the study participants was ascertained by volunteers in 1984, 1986, and 1988, and 
subsequently using the National Death Index [63].  Death certificates or multiple cause-of-death 
codes were obtained for participants known to have died. 

Data Collection and Assembly 
A major component of this research dealt with improving control for confounding variables over 
time and in space, particularly at the ‘within community’ or intraurban scale for this latter 
objective. We obtained information on neighborhood social confounders from the 1990 US 
Census. With follow up from 1982-2000, the 1990 census provides an approximate mid-point for 
characterizing likely conditions in the neighborhoods where ACS subjects resided. 

Several variables were examined in this analysis, including: median household income; 125% of 
poverty line; percentage of unemployed persons over the age of 16 years; percentage of adults 
with less than grade 12 education; percentage of homes with air conditioning; the GINI 
Coefficient of income inequality, and percentage of population that are not white.  We only 
included those ZCAs that contained ACS subjects in order to more accurately represent the 
social environment of the ACS participants.   

Statistical Methods and Data Analysis 
To examine the association between ambient concentrations of air pollution and longevity on a 
national scale, we initially used the standard Cox model to link pollution levels to survival 
adjusting for potentially confounding risk factors measured at the individual level [6]. We 
included eight variables representing active smoking habits including non-linear terms for 
cigarettes per day and number of years smoked, seven variables characterising former smoking 
habits, one variable for exposure to passive smoke, two variables representing marital status, two 
variables representing a linear and squared term for body mass index, six variables characterising 
consumption of beer, wine, and alcohol, seven variables characterising the subject’s main 
lifetime occupation and their potential exposure to PM in the workplace, one variable 
representing self reported exposure to dust and fumes in the workplace, eight variables 
representing diet and two variables characterising education, totalling 20 variables.  We also 
examined seven additional risk factors measured at the five-digit ZIP code level.  The baseline 
hazard function was stratified by 1-year age groups, gender, and race.  This model assumes that 
all observations are statistically independent, an assumption that was relaxed in subsequent 
analyses. 

The Cox survival model assumes that the response variable is statistically independent over 
space and time.  However, there is a concern that survival experience may cluster by community 
or neighborhood. That is, longevity among subjects within the same community or 
neighborhood will be more similar than subjects in different geographic locales even after 
controlling for all known and available risk factor information, such as smoking habits, diet, 
education, and occupation. Furthermore, subjects who live closer together may also share more 
similar longevity patterns.  Lack of statistical control for these factors can both bias the estimate 
of air pollution effects on health and their associated standard errors.  To characterize the 
statistical error structure of survival data, statistical methodology and computer software that 
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incorporates two levels of spatial clustering (e.g. MSA and ZIP code area within MSA) have 
been developed. At each of the two cluster levels incorporate a spatial autocorrelation structure 
such that the correlation in survival after adjusting for known risk factors such as smoking 
depends on the distance between clusters.  This distance can be defined as Euclidian, adjacency 
or based on other notions of distance in economic or social terms.  In our analyses we used 
adjacency or nearest neighbor.  

The Spatial Cox Model 
The original version of the Cox regression model [64] assumes that the survival times for 
individuals are statistically independent.  In our earlier analyses of the ACS cohort, we found 
evidence of spatial autocorrelation in the data [2, 14], which needs to be considered in the 
analysis. Ma et al. [47] developed a modification of the Cox regression model incorporating 
random effects to represent spatial patterns in the data, and established large sample properties 
of the maximum likelihood estimates of the model parameters.   

Here, we consider a Cox model with two levels of spatially correlated random effects.  Suppose 
that the cohort of interest is composed of m spatially correlated clusters indexed by i. Within 
the ith cluster, there are Ji spatially correlated subclusters indexed by (i, j).  Specifically, we 
assume that the cluster-level random effects U1, ..., Um are positive random effects with 

 2  d ( s ,i )E(Ui) = 1 and cov(Us, Ui) = 1 . (1) 
where 0<ρ1<1 and d(s, i) indicates the distance between clusters indexed by s and i. The 
distance between two independent clusters indexed by s and iis defined as d1(s, i) = ∞. Negative 
ρ1 can be estimated if the distances are integers. 

We further assume that, given the cluster-level random effects U*= u*= (u1, ..., um), 
the subcluster-level random effects U11, ..., UmJm are positive and spatially dependent with 

2 r{(s ,t ),(i , j )}E(Uij|U*) = Ui and cov(Ust, Uij|U*) = δ(s, i) v 2 . (2) 
where 0<ρ2<1 and r indicates the distance between subclusters indexed by (s, t) and (i, j).  The 
Kronecker notation δ(s, i) is 1 if s = i and 0 otherwise.  In addition, the conditional distribution 
of Uij, given U*= u*, is assumed to depend on ui only. 

Furthermore, within each subcluster (i, j) there are nij individuals. Suppose that the cohort is 
stratified on the basis of one or more relevant covariates and these strata are indexed by s = 1, 2, 
..., a. The (i, j, k) and s notation does not imply any inclusion relation between strata and 
clusters, e.g. males and females could correspond to different strata, whereas clusters and 
subclusters could be communities and families including both males and females.  Let the hazard 

sfunction for individual (i, j, k) from stratum s at time t be denoted by ( 
ijk 

) (t) . Given the random 

effects, we assume that the individual hazard functions are conditionally independent, with 
(s) (s)  (s)ijk (t)  0 (t)uij exp( xijk ) . (3) 

Clearly, the survival times, either observed or censored, are spatially correlated.  The distribution 
of random effects is assumed not to depend on the regression parameter β. Without loss of 

(1) (a ) )generality, we assume that the design matrix X= (x111 ,..., xmJ n is of full rank. A Cox 
m m Jm 

proportional hazards model with a single level of spatially correlated random effects is obtained 
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as a special case of the Cox model with two levels of random effects by setting ν2= 0 and Ji= 1 
for all i. 

Our assumptions (1) and (2) on random effects concern the spatial dependence and the first two 
moments only.  This is desirable since the random mechanism by which the unobserved random 
effects were generated is usually not completely known [47]. 

Auxiliary Random Effects Poisson Models 
As in Ma et al. [47], we made inferences on the random effects Cox models by fitting random 
effects Poisson models.  Let τs1, ..., τsqsdenote the distinct failure times in the sth stratum, with msh 

indicating the multiplicity of failures occurring at time τsh(s = 1, ..., a). The risk set at time τsh is a 
subset of stratum s:R(τsh) = {(i, j, k):tijk ≥ τsh} where tijk is the observed survival time for 

(s )individual (i, j, k) from the sth stratum. In addition, let Yijk ,h be 1 if a failure occurs for individual 

(i, j, k) from the sth stratum at time τsh and 0 otherwise. Let Y and U denote the vectors of the 
(s )Yijk ,h  and the random effects Ui and Uij, respectively. Given the random effects U = u, Peto’s 

version of the conditional partial likelihood [65, p.103] is 
( s ) ( s )Y Yq ijk ,h  ijk ,ha s 

sh 
 (i , j ,k )( ) uij {exp(xijk  )} (msh!)

 p ( ;Y | u)   . (4)
 m 

s 1 h1 {(i , j ,k )( ) 
uij exp(x  )} sh 

sh 
ijk 

We now define an auxiliary random effects Poisson regression model.  Assume that the 
components of Y are conditionally independent, given random effects U = u, with P 

(s) Yijk ,h ~ Po{uij exp( sh  xijk  )}(i, j,k)( sh ) . (5) 

Given the random effects, the conditional likelihood for the random effects Poisson model is 
( s ) ( s ) 

q ijk ,h  ijk ,ha s (i , j ,k )R( sh ) 
uij

Y 
{exp( sh  xijk  )}

Y 

( ,  ;Y | u)   
. (6) 

s 1 h1 exp{ uij exp( sh xijk  )}
(i , j ,k )R( sh ) 

Since the random effects vector does not depend on the regression parameter vector, as in Ma et 
al. [47], we can show that 

a qs msh m exp(m )sh sh(̂ , ̂;Y ,U )    (̂;Y ,U ),   m ! 
 p 

s1  h1 sh  
regardless of covariance structures assumed for random effects.  The term in parentheses on the 
right-hand side does not depend on the parameters of interest.  This demonstrates that the 
maximum joint Poisson likelihood estimators for the regression parameter vector β from (6) are 
the maximum joint partial likelihood estimators for the regression parameter vector β from (4). 
In addition, the nonparametric estimator of the cumulative baseline hazard function remains the 
same as given in Ma et al. [47]. 
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Orthodox Best Linear Unbiased Predictor Approach 

Prediction of random effects 

As in Ma et al. [47], we predicted the random effects by the following orthodox best linear 
unbiased predictor of U given Y. 

Û = E(U) + cov(U,Y)cov-1(Y,Y) (Y – EY), (7) 
where cov(Y,Y) denotes the marginal covariance of Y instead of the conditional covariance of Y 
given U. This is the linear unbiased predictor of U given Y which minimizes the mean squared 
distance between the random effects U and their predictor within the class of linear functions of 
Y. 

Unlike the case of nested random effects in Ma et al. [47], the explicit expression for the inverse 
of var(Y) is no longer available with spatially correlated random effects.  We therefore compute 
the random effects predictor of U given Y given in (7) through numerically inverted var(Y). 
However, the order of covariance matrix var(Y) is ACS data of air pollution and mortality 
between 1982-2000, and the order of this matrix is over 47 million or over 6 million for 
California. Since the matrices Cov(Y,Y) and Cov(U,Y) are dense matrices, even the computer 
memory required by these matrices may create a serious problem for the ACS study data. 

To facilitate the computation, we have derived the following sparse representations for Cov(U,Y) 
and Cov(Y,Y) after some algebra. 

cov(U,Y) = cov(U, U) BT and cov(Y,Y) = diag(EY) + Bcov(U,U)BT, (8) 
where diag(EY) denotes the diagonal matrix with EY on its diagonal. The matrix B is a sparse 
matrix of the same order as that of cov(Y,U)= cov(U,Y)T with column i of B corresponding to 

(s)  (s)cluster i. The elements of column i of B are zeros except being ijk ,h  exp( sh   xijk ) at the 
(s)positions corresponding to those of cov(Yijk ,h ,Ui ) in the matrix cov(Y,U). 

These sparse representations not only make the computer memory feasible, but also make the 
inverting problem of cov(Y,Y) tractable as follows.  Let matrices diag(EY) and cov(U,U) be 
denoted by A and D, we have 

cov -1(Y,Y)= (A + BDBT)-1 

= A-1 - A-1B(BTA-1B + D-1)-1BTA-1 , 
where A-1=diag(EY)-1and D = cov(U,U) is generally small enough to be inverted numerically.  In 
fact, there is a similar sparse representation of cov(U,U); therefore the inverse of cov(U,U) can 
be obtained through inverting numerically the much smaller covariance matrix of cluster level 
random effects. 

The mean squared distances between the random effects U and its predictor can now be 
evaluated through the following equation. 

cov(Û - U, Û -U)= cov(U, U) - Cov(U, Y)cov-1(Y)Cov(Y, U). 

In addition, we have the following two desirable orthogonality properties concerning the 
orthodox BLUP predictor: 

cov(Û - U, Û)= 0 and cov(Û - U, Y)= 0. 
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Estimation of regression parameters 

Consider first estimation of the regression parameters in the case of known dispersion 
parameters.   

As in Ma et al. [47], we can estimate the regression parameters through an optimal estimating 
function. Differentiating the joint log-likelihood of the auxiliary model for the data and random 
effects yields the joint score function.  Replacing the random effects with their predictors, we 

  have an unbiased estimating function for the regression parameters   ( ,  ) : 
a qs 

(s) (s) ( )     Yijk ,h  Û 
ij ( )ijk ,h ( )  (9) 

s1 h1(i , j ,k )( )sh 

The sensitivity matrix S(γ) and the variability matrix V(γ) are defined by 
 ( )

S( )  E  ,
   

TV ( )  E  ( ) ( ). 

According to Ma et al. [47], we have the following global matrix expression for estimating 
function ψ(γ) as their proof holds regardless of the covariance structure assumed for random 
effects. 

ψ(γ) = XTdiag(EY) cov -1(Y,Y) (Y - EY) , (10) 
Similarly, we have 

S(γ) = - V (γ) = 0 - XTdiag(EY) cov -1(Y,Y)diag(EY) X. (11) 

With an appropriate partition of matrix C=XTdiag(EY) cov -1(Y,Y) = (C1, ..., Cm), it follows from 
(10) that 

m m 

 ( )  C (Y  EY )   ( ),i i i i 
i1 i1 

where the unbiased estimating function ψi(γ) = Ci (Yi - EYi) corresponds to the ith cluster.  The 

estimating function m 


 ( ) can easily be shown to be optimal in the sense that it attains the ii 1 

minimum asymptotic covariance for the estimator ̂  among a certain class of linear functions of 
Y [66, 67]. 

The solutions ̂  of the estimating equation m 


 i ( ) = 0 provide estimators of the regression 

i 1 

parameters; however, the unbiased estimating functions ψ1(γ), ..., ψm(γ) are no longer 
independent because of spatial dependence.  Under mild regularity conditions, it can be shown 
the component-wise asymptotic normality of parameter estimator ̂  [68, 69]. Specifically, for 

any constant vector of appropriate dimension b, bT ̂  is asymptotically normal with asymptotic 
mean bTγ and asymptotic variance given by –bTS-1(γ)bas m→∞ . 
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The Newton scoring algorithm introduced by Jørgensen et al. [70] can be used to solve this 

estimating equation m 


 ( ) = 0. This algorithm, which is the Newton algorithm, but with the ii 1 

derivative of m 


 ( ) = 0 replaced by its expectation S(γ), gives the following updated valueii 1 

for γ: 
γ* = γ - S-1(γ)ψ(γ). 

The computation of S(γ) can be realized through (11). 

Estimation of dispersion parameters 

With the case of dispersion parameters unknown, we use moment estimates for the dispersion 
parameter with bias correction to give an unbiased estimating function for dispersion parameters. 
The detailed process of estimating dispersion parameters is given elsewhere and thus is omitted 
here. Unlike in previous approaches in the literature, the asymptotic variance of our regression 
parameter estimator is not affected by variability in the dispersion parameter estimators due to 
insensitivity of our estimation function to dispersion parameters [71]. The computational 
procedures regarding the initial values and iteration steps are exactly as outlined in Ma et al. 
[47]. 

Individual and Ecologic Covariates 
A total of 20 variables were used to control for individual characteristics that might confound or 
modify the association between air pollution and death. These individual variables included 
individual-level risk factors for which data had been collected in the CPS II questionnaire, and 
were considered to be of potential importance on the basis of previous studies, as per our recent 
analyses of this cohort vis-a-vis ozone and PM2.5 mass air pollution [72]. Variables considered 
included for tobacco smoking, education, marital status, body mass index (BMI) and BMI 
squared, alcohol consumption variables, occupational exposure, and diet indices (accounting for 
fat consumption and consumption of vegetables, citrus, and high-fiber grains). None of the 
variables were updated beyond baseline ascertainment. 

The sensitivity of the PM2.5 mortality risk estimates to modeling approaches and assumptions 
was evaluated by estimating Cox proportional hazard models both: (1) with and without the 
random effects; and, (2) with and without socioeconomic contextual variables.  

Specifically, as mentioned earlier, six ecologic covariates obtained from the 1990 U.S. Census 
(median household income, the proportion of persons living in households with an income below 
125% of the poverty line, the percentage of persons over the age of 16 years who were 
unemployed, the percentage of adults with less than a high-school (12th-grade) education, the 
Gini coefficient of income inequality [ranging from 0 to 1, with 0 indicating an equal distribution 
of income and 1 indicating that one person has all the income and everyone else has no income] 
and the percentage of persons who were white) were also included.  These variables were 
included at ZIP code level, but sensitivity analyses were also conducted with random effects at 
the county and air basin levels as the average for the county or air basin level and as the 
difference between the average for the ZIP code of residence and the average for the 
metropolitan statistical area. Because results were insensitive to inclusion of these larger clusters, 
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our results are reported with and without clusters at the ZIP code area.  

We selected the ZIP code scale for three reasons: (1) part of our contractual obligation was to 
assign ZIP codes to replicate the earlier Jerrett et al. (2005) study of Los Angeles; (2) ZIP codes 
supply a reasonably good assessment of the local neighborhood that the individual is likely to 
inhabit and be affected by in terms of contextual effects and all of our previous studies have 
indicated significant effects on the mortality experience in the ACS cohort from contextual 
confounders measured at this scale; and (3) in our assessment of spatial autocorrelation, we 
needed a unit of analysis that can support stable estimates of the random effects. In our previous 
research we have experimented with census tracts and found these to be too small for stable 
random effects estimation, whereas ZIP codes generally supplied stable estimates. 

Control for Urban‐Rural Differences 

Initial evaluation of mortality patterns indicated likely differences between urban and rural areas. 
This pattern is consistent with what has been termed the “non-metropolitan mortality penalty,” 
which was present throughout the entire study period and increased in size from the start to the 
end of follow up by more than a factor of 114. Specifically across the United States, in the 1980s 
there were on average 6.2 excess deaths per 100,000 in non-metropolitan areas compared to 
metropolitan areas, and this number increased to 71.7 excess deaths for the period 2000-2004 
[73]. In all of our previous ACS analyses, we restricted the assessment of air pollution health 
effects to persons living in metropolitan areas. This eliminated by design the need to control for 
difference in the rural versus urban morality experience.  

The key issue in this current study is that many of the lowest air pollution areas are in rural 
places, but during the follow up, the mortality rates within these rural areas have increased 11 
fold compared to metropolitan areas for reasons largely unrelated to air pollution. This is a large 
enough change, when combined with the generally lower pollution levels, to suggest that these 
rural areas could exert a substantial bias on the estimates of pollution effects. To obtain valid 
estimates therefore we had to devise a research design that (a) controlled for the rural-urban 
differences in mortality; and (b) did so in a way that allowed us to examine “within 
metropolitan” area effects. We assessed counties and included the percent urban in the county, 
but this is a crude indicator, that was prone to having a lot of regions with a nearly even split. We 
examined using MSAs, but these cover much of the state and are very heterogeneous in 
population size, and in many cases were likely not large enough to offer enough within unit 
variation in pollution to assess the effects. The spatial units we have chosen meet both of the 
above objectives: they capture more of the largest urban regions in the state and allow for 
assessment of within region pollution effects. 

4 In further examining the literature on the non‐metropolitan mortality penalty, it appears much of the
increased difference has resulted from relatively more rapid improvements in lifestyle and other health 
promoting factors in urban versus rural areas. The migration factor seems not to be the driving force, 
although we emphasize that understanding these urban‐rural mortality patterns and why they are changing 
is an area of active research. 
Cossman JS, James WL, Cosby AG, Cossman RE. Underlying causes of the emerging nonmetropolitan mortality 
penalty. Am J Public Health. 2010 Aug;100(8):1417‐9. Epub 2010 Jun 17. 
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We therefore conducted analyses by including indicator variables representing the five largest 
metropolitan conurbations in California. Four of these conurbations were classified as “combined 
statistical areas”: (1) Fresno-Madera; (2) Los Angeles-Long Beach-Riverside; (3) Sacramento-
Arden-Arcade-Truckee-Nevada; and (4) San Jose-San Francisco-Oakland. One area, San Diego 
County, was classified as a primary statistical area, but we included this as a fifth conurbation 
given its size and urban structure. These are the largest urban conurbations in California and 
were selected to differentiate from rural and metropolitan areas that have different determinants 
of health and illness.  

Because we had prior evidence of effects on all cause and cause-specific mortality in the Los 
Angeles Metropolitan Statistical Area (LA MSA) and examination of the spatial patterns in 
unpredicted mortality suggested the residual mortality there was particularly low for all causes 
and high for cardiovascular disease, we included an indicator for the LA MSA as a sensitivity 
test. Los Angeles is also different from the other conurbations because it is much larger than any 
of the other areas, with a population about 2.5 times greater than the next largest area in 
California. We also included an interaction between the LA MSA and pollution to determine 
whether the effects in the LA MSA were different from the rest of the state. 

The Association between Time-Dependent Windows of Air Pollution 
Exposure and Mortality 
Previous analyses conducted on the ACS cohort have assigned each cohort member an air 
pollution exposure value based on long-term concentration averages.  Using this exposure 
assignment approach, we used ambient concentrations to create long-term averages that include 
values recorded both prior to and after a subject’s event time or time to death or censoring.  The 
estimated hazard ratios are interpreted as the summary effect of a subject living in an 
environment with an assigned pollution value on their mortality rate, regardless of the temporal 
sequence of exposure. However, changes in exposure over time may be related to risk of death 
in addition to their long-term location-specific exposure profile.  To examine this temporal 
association with mortality we took advantage of the monthly estimates of both NO2 and O3 from 
1988 to 2000. 

For each subject we created an estimate of their sub-acute exposure by constructing 12-month 
moving averages from January 1988 to December 2000.  For example, the exposure assigned to 
a subject in January 1989 was based on the average of the 12 monthly estimates of exposure 
from February 1988 to January 1989.  We call this “sub-acute” because we are not using the 
entire exposure time averaged as in other analyses, but this is longer than the acute effects that 
we would normally see in a lag of 1-5 days before the death event. We assumed that each subject 
resided at their home address in 1982 throughout the follow-up period to December 2000 
because mobility information was not available for the majority of subjects. Let xi (t)  represent 

the average pollution concentration assigned to the ith subject in the previous 12-month time 
period (in months) t and let xi  be the long-term exposure assigned to the ith subject based on the 

average concentration from 1988 to 2000.  
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We selected a 12-month averaging period for the sub-acute exposure assignment for two reasons. 
First, using a complete calendar year avoids further adjustment for seasonal cycles in both 
mortality and air pollution. Second, we wanted the clearest possible differentiation between the 
sub-acute and long-term exposure measures to have the greatest possibility to disentangle the 
effects of these two exposure measures on mortality.  The longer the sub-acute averaging time 
the more correlated the two measures, so we selected the shortest exposure period that covered 
all seasons – the 12-month moving average.  We also selected cardiovascular deaths to illustrate 
the effects of exposure assignment on mortality since this group of underlying causes of death 
was most strongly associated with long-term air pollution related mortality.  We restricted the 
follow-up time of the cohort members to January 1989 to December 2000 since we required a 
12-month historical average as one of the exposure assignments with the first month of pollution 
data being January 1988. 

We then examined three survival models.  Each model contained our 20 mortality risk factor 
variables measured at the individual level and six ecological covariates measured at the ZIP code 
area level. The standard Cox model was used for these analyses since there was little difference 
between the Cox and Random Effects survival models in our previous analyses.  The first model 
contained the long-term exposure measure xi , the second model contained the 12 month moving 

averages of pollution exposure xi (t) , and the third and final model contained two exposure 

measures; xi  and xi (t)  xi . The corresponding log-relative risk parameters are denoted as: 

 , , and  respectively.   

These parameters can be interpreted in the following manner.  If there is no sub-acute association 
with mortality and only long-term effects, then  

   and    with   0 . 

If there is both a long-term association with mortality and a sub-acute effect then 

   with  0 and   0 . 

The relative size of the parameters   and  represent the impact of long-term and sub-acute 
effects on mortality respectively. Within this model structure, if there exists a sub-acute 
exposure association with mortality it will be reflected in the estimate of the long-term effect  
as long as there is some variation in exposure over space.  Only the third model can appropriately 
separate the effects of long-term and sub-acute exposure on mortality.   
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Results 

Exposure Modeling Results 

Inverse Distance Weighted Interpolation 
Inverse distance weighted (IDW) exposure estimates were successfully assigned to the ACS 
cohort using ArcGIS 9.2 software (ESRI, Redlands, CA).  For the main analyses, we averaged all 
available monthly estimates to form one estimate of exposure. For the time windows analyses, 
we used the monthly data and 12 month averages to examine the periods of exposure mostly 
likely to be associated with death. Further descriptive statistics and maps illustrating the IDW 
surfaces are provided below in the health effects results section. 

Kriging PM2.5 

As the data were not intrinsically stationary we used a universal kriging model to first fit a 
second order polynomial surface to detrend the data.  Once the data were reasonably stationary, 
we fit the empirical spatial covariance with the parametric K-Bessel function.  Table 5 lists the 
parameters and procedural fitting techniques used in ArcGIS Geostatistical Analyst to derive the 
PM2.5 kriging surface. 

Table 5: PM2.5 Kriging parameters used for data fitting and prediction 

Modeling Procedure Class of Parameter Parameter Value 
Transformation Yes Log 

Detrending Polynomial 2nd order 
Poly. weighting 560189.3 
Smoothing factor 0.5 
Major/minor semiaxis 343485.9 

Semi‐variogram Function K‐Bessel 
# of Lags 8 
Lag size 18152 
Nugget 0.01473 
Measurement Error 0 
K‐Bessel Parameter 2.1263 
Range 137642 
Anisotropy None 
Partial Sill 0.0618 

Searching Neighborhood Neighbors to include 3<x<15 
Sector Type Full 
Angle 90 
major/minor semiaxis 343485.9 

Figure 4 illustrates the empirical and fitted model semi-variogram using the K-Bessel function. 
The semi-variogram is one of a number of graphical means by which to illustrate the spatial 
covariance. The diagram shows a good deal of scatter but the model does a good job of fitting 
through the center of mass in the data. 
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Figure 4: Semi‐variogram used for PM2.5 kriging model 

Fitted estimates appear to show that there is no serious bias in the estimation. A simple 
regression (see footnote below5) of the predicted on observed values shows a coefficient of 1.01 
and intercept of what is essentially zero indicates that there is no overall bias on the estimation. 
If these values deviated from one and zero, respectively, this could indicate bias in the  estimate. 
Figure 5 illustrates the correspondence between predicted and observed values. 

5Regression output from a regression of predicted values on observed values 

Source| SSdf MS Number of obs = 72 
‐‐‐‐‐‐‐‐‐‐‐‐+‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ F( 1, 70) = 211.49 

Model | 1811.2634 1 1811.2634 Prob> F = 0.0000 
Residual | 599.510763 70 8.56443948 R‐squared = 0.7513 

‐‐‐‐‐‐‐‐‐‐‐‐+‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ Adj R‐squared = 0.7478 
Total | 2410.77416 71 33.9545657 Root MSE = 2.9265 

observed| Coef. Std. Err. t P>|t| [95% Conf. Interval] 
‐‐‐‐‐‐‐‐‐‐‐‐‐+‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 
predicted | 1.010312 .0694727 14.54 0.000 .8717527 1.14887 

_cons | ‐.1069909 1.105337 ‐0.10 0.923  ‐ 2.311517 2.097535 
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Figure 5: Kriging PM2.5 estimates plotted against corresponding observations 

Tests of the normality of the distributions of both the observed data and the residual kriging 
errors show that the log-transformation was important in ensuring efficient estimation of the 
predicted values.  Using the Shapiro-Wilks test for normality, we can see from the output 
attached below that prior to modeling there is sufficient evidence to suggest that the observed 
data are different from normally distributed while the errors do not appear to be different than 
normally distributed at an alpha-level of 0.05 (Table 6).  In the output below, W and V are scale 
parameters used to assess the statistical significance of the test using the Wald statistics z. 

Table 6: Shapiro‐Wilk test for normality 

Shapiro‐Wilk W test for normal data 
Variable Obs W V z Prob>z 
Measured 72 0.94158 3.679 2.837 0.00228 
Error 72 0.97392 1.642 1.081 0.13993 

We can conclude that the PM2.5 kriging model provides us with an efficient estimator of ambient 
annual PM2.5 exposure throughout California for the year 2000 as the estimates appear unbiased, 
with normally distributed errors and a small root mean square error of 2.93.   

Land Use Regression 
As the distributions of PM2.5, PM10 and NO2 are left skewed, a natural logarithm transformation 
was applied to them (Figure 6).  Transforming the data to be more normally distributed 
decreased the likelihood that a violation of the assumption of homoscedastic errors occurred with 
the regression models.  Below are the distributions of PM2.5, PM10, and NO2 before and after 
transformation.  The log distribution did a reasonable job of fixing the skew in the data for PM2.5 

and PM10. The transformation of NO2 was not as nearly as effective in creating a normal 
distribution; it resulted in a right skew.  However, the transformation did remove the problem of 
having a hard lower bound to the data distribution at a value of zero.   
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Figure 6: Histograms of raw and log‐transformed pollution observations 
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After processing the observed pollution data through the model selection algorithm, the 
following three LUR models were selected and are outlined in Table 7 and 8, below. 

Table 7: LUR model parameters for NO2, PM2.5 and PM10 models (see Table 8 below for description of pollutants 

and variables) 

Pollutant Variables Beta Std. Err. z P>z 
[95% 
Conf. Interval] 

logNO2 

FCC12_5000 0.007317 0.001674 4.37 0.00001 0.004036 0.010598 

FCC4_5000 0.001408 0.000176 8.02 0.00000 0.001064 0.001752 

Open400^2  ‐0.00055 7.27E‐05  ‐7.54 0.00000  ‐0.00069  ‐0.00041 

Intercept 2.069401 0.080061 25.85 0.00000 1.912485 2.226317 

logPM2.5 

logPM25_RS 0.612978 0.0639 9.59 0.00000 0.4877 0.7383 

Open500  ‐0.00672 0.0031  ‐2.18 0.01463  ‐0.0128  ‐0.0007 

Devlow5000 0.000107 2.71E‐05 3.93 0.00004 0.0001 0.0002 

Intercept 1.121769 0.1452 7.72 0.00000 0.8371 1.4064 

logPM10 
Open5000  ‐9.1E‐05 1.03E‐05  ‐8.87 0.00000  ‐0.00011  ‐7.1E‐05 

Intercept 3.54966 0.040036 88.66 0.00000 3.471191 3.628129 

* P‐value of 0.00000 are less than 0.000005 

Table 8: Description of pollutants and variable short‐hand names in regression output table (above) 

Variable Name Variable Description 
logNO2 The logarithm transformation of observed monthly NO2 (1988‐2002) 
logPM2.5 The logarithm transformation of observed monthly PM2.5 (1998‐2002) 
logPM10 The logarithm transformation of observed monthly PM10 (1988‐2002) 
FCC12_5000 Length of expressways and highways within a 5000 meter buffer (km) 
FCC4_5000 Length of residential roads within a 5000 meter buffer (km) 
Open400^2 Area (in hectares) of open space within a 400 meter buffer to the second power 
logPM25_RS Remote sensing estimate of PM2.5 

Open500 Area (in hectares) of open space within a 500 meters buffer 
Devlow5000 Area (in hectares) of low density developed land 
Open5000 Area (in hectares) of open space within a 5000 meters buffer 

The cross-validation risk plots, Figures 7, 8, and 9 show the expected prediction error for each of 
the best models chosen by the DSA algorithm as a function of model size during the model 
building/selection process.  These plots show that the functional form of the models did not 
include any interaction terms, hence ‘Interaction order 1’ is reported in the plots.  In keeping 
with the DSA algorithm, we chose the model with size that produced the lowest CV-risk.  Table 
9 outlines the average cross-validated risk (CV risk) of the chosen models.  Additionally, the 
minimum possible average prediction error for each of the datasets was reported in the table.  As 
this was a longitudinal dataset, with unbalanced measurements at each monitoring location, and 
modeling was conducted with a set of explanatory variables that were not time varying, the 
theoretical maximum explanation of the observed variance would be to predict the mean value of 
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the observed pollution levels per monitoring location.  If this had been possible for all monitors 
the residual variance would equal the minimum possible CV risk under asymptotic conditions. 

Figure 7: CV risk plots versus model size for PM2.5 model 

Figure 8: CV risk plots versus model size for PM10 model 
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Figure 9: CV risk plots versus model size for NO2 model 

Table 9: Comparison of average cross‐validation risks for selected models 

Average CV Risk NO2 PM10 PM2.5 

DSA 0.275 0.266 0.218 
Minimum Possible Risk 0.118 0.156 0.163 

The pseudo cross-validated risk R2 values described below help to draw a parallel with the more 
familiar R2 measure used in a cross-sectional OLS regression. The values reported in Table 9 are 
equal to: 

Variance of dataset - Average CV Risk
pseudo R 2  

Variance of dataset 
Under asymptotic conditions, the pseudo R2 represents the expected proportion of the variance in 
the observed data described by the model. We see the estimated maximum attainable R2 given 
our modeling constraints reported under the random effects model (Zu), where Zu represent the 
monitor averages. When using the random effects model pseudo R2 to normalize the R2 by the 
DSA model, the DSA model explained 71%, 30% and 65% of the mean variability in NO2, 
PM10, and PM2.5, respectively (Table 10). 

Table 10: Pseudo‐R2 for selected models compared to maximum capable fit 

Psuedo R2 NO2 PM10 PM2.5 

DSA 0.59 0.15 0.32 
Minimum Possible Risk 0.83 0.50 0.49 
Normalized Psuedo R2 0.71 0.30 0.65 

Figure 10 illustrates the observed residuals on predicted values next to their empirical 
distribution of the residuals. The residuals of the models do not appear to violate the 
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homoscedasticity assumption and are nearly normally distributed; aside from a few outliers 
observed with each of the pollutants.  Also, the errors do not appear correlated.  PM10 appears to 
have a few very extreme residuals associated with the few extreme observed values.  There are 
174 residual values between 150 µg/m3 and 539 µg/m3 for PM10 out of a total of 21974 
observations, which is less than 0.1% of the total observations. The remaining pollutants – NO2 

and PM2.5 – do not appear to have such extreme prediction errors 
. 
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Figure 10: Residual plots and histograms of residuals for selected models NO2, PM10, and PM2.5, respectively 

 

Bayesian maximum entropy interpolation of land use regression residuals 
After extracting the residuals of the LUR models for each of the three pollutant models, we fit a 
BME spatiotemporal model to the resulting space-time model residua of each model. 
 
With the residuals (also X’(p) in Eq. 0 above) we may estimate space/time variability 
(experimental covariance, also see the circles in Figures 11-13) for a given spatial lag r and 
temporal lag using Eq. A4. 
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The experimental covariance reveals the temporal cyclic characteristics of the data as 
demonstrated in Figures 11-13, and it may be parameterized by sill (c01 – c04 in Eqs. 12-13) and 
range (ar1 – ar4, at1 – at4 in Eqs. 10-11) in a covariance model that fits the experimental 
covariance. The covariance models (also red curves in Figures. 11-13) we selected are Eq. (12) 
for NO2 and Eq. (13) for PM10 and PM2.5, and their parameters are summarized in Table 11. 

NO2 

  3r    3τ  
c X (r | s  s' |, τ | t  t' |)  c 01 (r ) ( )  c02 exp  exp   a a r2   t2  

  3r 2   2    3r   2 
 c03 exp  cos    c 04 exp   sin   

 a r3   a t3   a r 4   a t 4  (12) 

where (r)=1 if r=0, (r)=0 if r>0, ()=1 if  =0, ()=0 if >0 

PM10 and PM2.5 

  3r    3    3r    3τ  
cX (r | s  s' |,τ | t  t' |)  c01exp exp   c02exp exp    a a a a r1   t1   r2   t2  

  3r2   2    3r   2 
 c03exp cos   c04 exp sin 

 ar3   at3   ar 4   at 4  (13) 

Table 11: Space/time covariance parameters for three air pollutants in California 

Space/time covariance 
model parameters 

NO2 (Eq. 10) PM10 (Eq. 11) PM2.5 (Eq. 11) 

c01 6.6086 (ppb)2 125.3575 (µg/m3)2 22.5148 (µg/m3)2 

c02 48.7259 (ppb)2 118.5815 (µg/m3)2 9.6492 (µg/m3)2 

c03 11.4649 (ppb)2 47.4326 (µg/m3)2 16.0820 (µg/m3)2 

c04 11.4649 (ppb)2 47.4326 (µg/m3)2 16.0820 (µg/m3)2 

ar1 N/A 80 km 38 km 
ar2 110 km 350 km 5 km 
ar3 600 km 280 km 550 km 
ar4 3500 km 1500 km 2500 km 
at1 N/A 1 month 1 month 
at2 8000 months 6000 months 3500 months 
at3 12 months 12 months 12 months 
at4 12 months 12 months 12 months 

The sum of the sill components (c01 – c04) for a pollutant becomes the overall variance for the 
pollutant, and each of the sill components explains how much it contributes to the total variation 
in the measurements. The space/time ranges (ar1 – ar4, at1 – at4) in each term of Eqs. 12-13 define 
spatiotemporal distances at which spatiotemporal covariance drops down to 5% of the variance. 
For the case of PM10 the first covariance element includes a spatial range of 80km and a 
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temporal range of 1 month while the second covariance part has a spatial range of 350km and a 
temporal range of 6000 months. The first component may correspond to correlation structure 
within urban areas with high vehicle traffic and large number of industrial facilities, and monthly 
fluctuations in the data, while the second indicates regional variation of PM10 due to secondary 
formation organic carbon, sulfates and nitrates over a relatively long-term time period. Likewise 
the spatial ranges in the third and fourth components are associated with the regional variation. 
In particular the combination of the temporal ranges in the third and fourth components explains 
the temporal cyclic characteristics of the data, and both at3 and at4 denote the periodicity of the 
seasonal variation. In addition each of c03 and c04 indicates half amplitude of the seasonal 
variation. 

The top and bottom plots in each of Figures. 11-13 denote purely spatial (when temporal lag 
=0) and purely temporal (when spatial lag r=0) covariances, respectively. For NO2 the spatial 
piece (top plot in Figure 11) is a linear combination of the nugget effect (i.e., variance arising 
from measurement uncertainty and/or inherent variability over short space/time distances), 
exponential, and gaussian functions in BMElib, whereas the temporal portion (bottom plot in 
Figure 11) includes a linear combination of nugget effect, exponential function together with 
cosinusoidal and sinusoidal functions associated with the seasonal effects of NO2 attribute. The 
covariance models of PM10 and PM2.5 are similar to that of NO2, but exclude the nugget effect 
from their models.   

Figure 11: Space/time experimental covariance values (circles) and a covariance model fitted to the 

experimental values (curves) – NO2 case 
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Figure 12: Space/time experimental covariance values (circles) and a covariance model fitted to the 

experimental values (curves) – PM10 case 

Figure 13: Space/time experimental covariance values (circles) and a covariance model fitted to the 

experimental values (curves) – PM2.5 case 

The covariance models obtained are used to construct an initial probability regarding air 
pollution distribution over space and time (Eq. C3 in Appendix C). The initial probability is then 
updated to the final probability of air pollution at spatiotemporal estimation points (i.e., 180 
individual months in 1988-2002 for NO2 and PM10, each of 60 months in 1998-2002 for PM2.5, 
and 10 km-gridded locations over the state of California for all of the pollutants). The final 
probability is equivalent to the posterior probability density function (Eq.C9) representing 
estimation outputs. The results of the BME models were then assigned to the monitoring 
locations to assess the combined LUR-BME model fit. 

Combined spatiotemporal BME-LUR model 
After the monthly BME estimates were assigned to the monitoring locations, they were added to 
the LUR estimates to get the spatiotemporal BME-LUR estimate that combined the overall mean 
model from the LUR and the temporal fluctuations of the pollutants for every month. 

Figure 14, shows a comparison between the observed value on the predicted values for both the 
LUR only models and combined LUR-BME models for NO2, PM10 and PM2.5. These plots 
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illustrate that the combined LUR-BME model does a superior job in fitting the observed data in 
all cases. The temporal artifacts present in the data that could not be modeled with the LUR 
framework alone – as indicated by the vertical lines in the first column of plots – have been 
accounted for by the BME models.  We see much less scatter about the one-to-one 
correspondence line indicating a better fit to the data. There appears to be little change in the 
one-to-one correspondence relationship as indicated by the slope of a mixed model regression of 
fitted on observed values.  Table 12 reports these slopes – a slope of 1 indicates no bias in the 
estimate – and we see that the slope increases slightly above the LUR-only value for the BME-
LUR models; however the magnitude of the difference between unity and the comparison of the 
slopes is small. 
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Figure 14: Comparison of predicted on observed plots  for  LUR only and  LUR‐BME models  for NO2, PM10 and 

PM2.5, respectively. 

 
Table 12: Slope of mixed model regression of predicted on observed data. 

Pollutant  Slope LUR  Slope BME‐LUR 

NO2  0.87  1.08 

PM10  0.88  1.05 

PM25  1.07  1.11 
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Figure 15 illustrates a comparison between the LUR only model residuals and the residuals of 
the combined LUR-BME model.  In all three cases, the residuals of the LUR-BME model are 
smaller and less prone to extreme outliers due to high pollution events due to temporal 
considerations that cannot be accounted for by the LUR only models.  The monitor specific error 
structures present in the LUR only model appear to be accounted for by the BME model with no 
obvious violation of the functional form or heteroscedasticity assumptions.  Histogram 
comparison in Figure 16 further illustrates a better fit of the data that the BME-LUR models have 
compared to the LUR only model.  The LUR-BME models do not show the skewed distribution 
of the LUR only models and have a tighter distribution when compared to their LUR only 
counterparts, i.e., the variance of the residuals is smaller.  Table 13 illustrates summary statistics 
of the models' fit.  The reported R2 is the "overall R2" from the random-effects generalized least 
squares (mixed model) output in Stata 10 (Stata Corp, College Station, TX).  The R2 for the LUR 
only model cannot be compared to the pseudo-R2 reported earlier as the pseudo-R2 was 
calculated on the CV-Risks and these are determined strictly by model fit.  
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Figure 15: Comparative residual plots for LUR only and LUR‐BME models for NO2, PM10 and PM2.5, respectively 
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Figure 16: Comparative residuals histograms for LUR only and LUR‐BME models for NO2, PM10 and PM2.5, 

respectively 
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Table 13: Summary statistics of models fits. 

Pollutant Obs 

Std. Dev. Model Std. Dev. Residuals R2 

LUR only LUR‐BME LUR only LUR‐BME LUR only 
LUR‐
BME 

NO2 15310 8.45 11.47 8.85 2.50 45% 96% 
PM10 21947 5.71 18.33 18.40 2.68 9% 98% 
PM2.5 4748 3.95 8.17 8.01 2.46 25% 94% 

Table 13 shows that the data were better fit by the BME model for all three pollutants.  When 
compared to the LUR only model, the LUR-BME model was better able to approximate the 
variability in the observed data as evident by both the larger standard deviation of the model and 
smaller variance on the residual.  The R2 for the LUR-BME models is 96%, 98% and 94% for 
NO2, PM10 and PM2.5, respectively; this represents a minimum two-fold improvement in the fit 
of the data for all pollutants and as much as a ten-fold improvement for PM10. Some caution 
should be exercised when interpreting these results as the possibility exists that these results are 
indicative of some degree of over-fitting. In addition, the BME approach reproduces the 
monitoring values nearly exactly, with the difference being the 10 km grid. So these results are 
not surprising and cannot be used to determine how well the models fits data not used in the 
original prediction. Because of the paucity of monitoring sites we were unable to leave out cross-
validation locations as we would customarily do in a stronger assessment of cross-validation. 
This suggests, however, that all pollutants have some element of local variation that is predicted 
well by the land use regression, but also a broader spatial pattern of regional differences in space 
and time that appear to be well captured by the BME estimates. 

Geocoding Results 
Overall match rates were excellent. More than 90% of geocodable addresses overall and 98% of 
the nutritional sub-cohort addresses were geocoded. Further details are included in the tables 
below. 
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Table 14: Match rate for corrected addresses using the TeleAtlas (unstandardized) and StreetMap (composite) 

locators. 

TeleAtlas StreetMap 
Total Observations 146015 146015 
Total Obs IN CA 142155 142155 
California Obs* 105188 105217 
Nutritional Obs** 21143 23065 
Archived Obs 15824 17733 
M, score=100 87.2 76.1 
M, Score>80 87.7 84 
M, score=100, CA 85.5 75.7 
M, Score>80, CA 86.1 83.4 
M, score=100, Nutri 94.4 81.3 
M, Score>80, Nutri 94.8 82.4 
M, score=100, Arch 88.6 71.9 
M, Score>80, Arch 89.3 82.9 
Missing address 1249 1249 
Missing ZIP and City 309 309 
No Numbers in Address 682 1938 
"PO BOX" 3899 4213 
"P O BOX" 807 814 
" BOX "** 5310 5645 
Approx Geocodeable*** 134763 138232 
M, score=100 91.9 80.3 
M, Score>80 92.4 88.6 
M, score=100, CA 90.1 79.8 
M, Score>80, CA 90.6 87.9 
M, score=100, Nutri 98.4 85.1 
M, Score>80, Nutri 98.8 91.4 
M, score=100, Arch 94.6 77.2 
M, Score>80, Arch 95.3 89 

*Note that 29 observations were coded in the SAS file as "CA" but the city and ZIP placed them 
outside of CA, these 29 are excluded in percentages 
**Note that this has a space before and after to distinguish between addresses with the word 
"BOX" inside another word 
*** Eliminate missing addresses, the different PO Box variants and space Box space, eliminate 
addresses with no numbers, eliminate those with no city AND no ZIP 
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Table 15: Overall match rates by ACS file. Note that these numbers include non‐geocodeable addresses like PO 

Boxes etc. 

Matches at Score of 100 0.87 
Matches at Score of >80 0.88 
CA Matches at Score of 100 0.86 
CA Matches at Score of >80 0.87 
Nutrition Matches at Score of 100 0.92 
Nutrition Matches at Score of >80 0.93 
Add Hist Matches at Score of 100 0.86 
Add Hist Matches at Score of >80 0.88 

Table 16: Approximate match numbers by locator* 

Locator 
SM_Alpha SM_Hyphen SM_Streets TeleAtlas 

Addresshx 2 12 1,442 16,277 
California 0 4 777 104,436 
Nutrition 6 2 1,346 21,711 

*Note we tabulated these numbers based on the full file rather than limiting to the matches so 
these numbers are close but approximate. SM is streetmap, alpha is alphanumeric and hyphen is 
hyphenated. 

Table 17: Breakdown of records with a “C/O” representing Care Of 

FALSE TRUE 
145,887 128 
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Table 18: Counts by ACS file by state. Note that the California file has participant addresses at the beginning of 

the study. 

File State Count 
Addresshx AE 5 
Addresshx AK 14 
Addresshx AL 10 
Addresshx AP 1 
Addresshx AR 35 
Addresshx AZ 240 
Addresshx CA 15824 
Addresshx CN 1 
Addresshx CO 83 
Addresshx CT 2 
Addresshx FL 92 
Addresshx GA 27 
Addresshx GU 1 
Addresshx HI 37 
Addresshx IA 13 
Addresshx ID 73 
Addresshx IL 21 
Addresshx IN 21 
Addresshx KS 9 
Addresshx KY 6 
Addresshx LA 4 
Addresshx MA 9 
Addresshx MD 13 
Addresshx ME 8 
Addresshx MI 13 
Addresshx MN 40 
Addresshx MO 28 
Addresshx MS 1 
Addresshx MT 17 
Addresshx NC 30 
Addresshx ND 1 
Addresshx NE 6 
Addresshx NH 4 
Addresshx NJ 10 
Addresshx NM 56 
Addresshx NV 147 
Addresshx NY 30 
Addresshx OH 17 
Addresshx OK 21 
Addresshx OR 202 
Addresshx PA 20 
Addresshx RI 10 
Addresshx SC 21 
Addresshx SD 4 
Addresshx TN 13 
Addresshx TX 91 
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Addresshx UT 100 
Addresshx VA 36 
Addresshx VT 9 
Addresshx WA 222 
Addresshx WI 22 
Addresshx WV 6 
Addresshx WY 7 
California CA 105188 
California CO 5 
California FL 1 
California GA 1 
California GU 1 
California ID 1 
California KY 1 
California LA 2 
California MA 1 
California MN 2 
California NC 1 
California NM 1 
California NV 4 
California PA 2 
California TX 1 
California VA 2 
California WI 3 
Nutrition AE 1 
Nutrition AK 5 
Nutrition AL 9 
Nutrition AP 2 
Nutrition AR 20 
Nutrition AZ 281 
Nutrition CA 21143 
Nutrition CO 98 
Nutrition CT 1 
Nutrition DC 1 
Nutrition FL 76 
Nutrition GA 23 
Nutrition HI 29 
Nutrition IA 17 
Nutrition ID 64 
Nutrition IL 17 
Nutrition IN 15 
Nutrition KS 9 
Nutrition KY 6 
Nutrition LA 6 
Nutrition MA 9 
Nutrition MD 7 
Nutrition ME 13 
Nutrition MI 19 
Nutrition MN 31 
Nutrition MO 32 
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Nutrition MS 4 
Nutrition MT 19 
Nutrition NC 23 
Nutrition ND 3 
Nutrition NE 7 
Nutrition NH 3 
Nutrition NJ 8 
Nutrition NM 42 
Nutrition NV 177 
Nutrition NY 16 
Nutrition OH 20 
Nutrition OK 16 
Nutrition OR 251 
Nutrition PA 24 
Nutrition RI 4 
Nutrition SC 14 
Nutrition SD 4 
Nutrition TN 7 
Nutrition TX 105 
Nutrition UT 104 
Nutrition VA 26 
Nutrition VT 4 
Nutrition WA 210 
Nutrition WI 29 
Nutrition WV 1 
Nutrition WY 10 
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Health Effects Modeling Results 
In this section we present detailed results of the health effects modeling. We begin with 
descriptions of the analytical cohort, the exposures, and the confounding variables. We then turn 
to reporting the mortality effects from the ZIP code and individual exposure assignments. 

Description of the Final Analytical Dataset 
From a total of 1,184,588 ACS CPS-II participants, there were 104,277 who resided at 
enrollment in the state of California (See Table 19; note: all tables for these results appear at the 
end of this section). Out of the 104,277 California participants, there were 97,165 for whom 
complete ZIP code data was available; for 5,640 participants a ZIP code was assigned according 
to available street address information.  A total of 1,472 participants were excluded where no 
ZIP code could be assigned. Participants were also excluded from the final analytic cohort if 
their residential address contained a ‘PO Box’ or ‘c/o’ field (17,061) or if they could not be 
assigned to a latitude and longitude with a high degree of certainly based on available data (233). 
A total of 9,168 participants were excluded due to missing data on individual-level covariates of 
interest. In total 76,343 participants were retained for the analysis with some variation 
depending on the exposure model among which 20,432 deaths were observed through the year 
2000. Various other exposures models used here had slightly more or less similar exclusion 
numbers based in part on the method used to assign exposures.  

As shown in Table 20, which compares key individual variables that we have included in our 
statistical models, the composition of the California cohort is fairly similar to the National ACS 
cohort. The California cohort has a lower proportion of whites than the national cohort, but is 
still predominantly white. In California there are considerably more subjects with postsecondary 
education. California has a lower proportion of current smokers. More Californians are divorced 
than in the national cohort. On diet, Californians tend to consume less fat, and they report 
drinking more wine and liquor.  

Descriptive Results for the Analytic Cohort 

Tables 21 and 21 show the number of subjects with assigned exposures, the mean and variance 
of each exposure model, and the percentile distribution for each exposure model. These statistics 
are given for assignments at both the individual home address and the ZIP code of residence. In 
some cases there are differences in the underlying sample size available due to variations in the 
available monitors, the ZIP codes used to assign exposures, or the statistical procedure used to 
generate the exposure model. For example, some of the exposures were assigned in 2007-8, 
when a less complete ZIP code file that matched the ACS subjects was available in GIS format. 
Subsequent updates to this file were made and used for several of the estimates, but due to 
resource and time constraints, we were unable to update all estimates with the more recent and 
more comprehensive ZIP files.  

In comparing estimates assigned at the individual address level for PM2.5, the inverse distance 
weighting (IDW) exposure estimates tend to have a higher mean and variance than those 
estimated by the kriging model. The IDW estimates also have a much higher maximum value 
than the kriging models. The same estimates, when assigned to the ZIP codes rather than the 
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home address, have closer values with the means being more similar. The variance of the IDW is 
still larger as is the maximum value, but the two estimates are much closer in their distributions 
when assigned to the ZIP code.  

For ozone, the individual assignment using the IDW exposure estimate has about the same mean 
and variance as the BME model, but the BME model tends to have a smaller range. The same 
comparison for PM10 reveals that the BME model has about the same mean, but a much smaller 
variance and range than the IDW model. With NO2, the mean and variances are substantially 
reduced with the BME compared to the IDW and the values are much lower overall for the 
BME. 

Table 23 includes distribution of the ecologic covariates used in the analysis. These are based on 
the 1990 ZIP code tabulations. Not surprisingly given the predominantly white composition of 
the cohort, most live in neighborhoods that have a preponderance of whites. Many also live in 
neighborhoods with high proportions of postsecondary graduate earners, with relatively high 
incomes. The Gini coefficient suggests that even at the 50th percentile, there is often considerably 
income inequality in the neighborhoods. Notably the unemployment rates are fairly low 
compared to the study enrollment period in 1982, when there was a severe national recession [3]. 

Figures 17 - 21 show maps that illustrate the general spatial patterns present in the air pollution 
exposures used in our epidemiological analyses. In Figure 17, we see that PM2.5 varies smoothly 
across the state, with the highest concentrations being observed in Los Angeles and the Central 
Valley. The lower concentrations tend to occur around the San Francisco Bay area and in rural 
areas of state. PM10 follows a similar spatial pattern, although the spatial pattern appears to have 
slightly more spatial variability (Figure 20). For sulfate, areas along the US-Mexico border have 
the highest concentrations, while in the remainder of the state there appears to be a trend toward 
lower values in the north (Figure 19). For ozone, the highest values are observed in the inland 
areas of southern California and to a lesser extent in the central valley (Figure 18). Ozone tends 
to be lower in coast regions. With NO2, monitoring coverage is more limited, but here we 
observed again higher levels in southern California, particularly in Los Angeles (Figure 21). The 
central valley and the South San Francisco Bay area also display elevated levels of NO2. Of 
importance to subsequent interpretation, many of the major metropolitan areas have higher levels 
of pollution. 

Tables 24, 25, and 26 show the correlations of the exposure surfaces used in the analysis. 
Correlations are high, with Pearson’s R values generally over 0.7. Because our analyses and past 
evidence indicated that the Los Angeles Metropolitan Statistical Areas (LA MSA) might be 
different than the rest of the state, we present correlations between the various exposure 
estimates for the entire state, for the state without LA included, and for LA alone. Statewide 
results are shown in Table 24. PM2.5 estimates from the IDW and kriging models are highly 
correlated regardless of whether they are assigned at the individual address or ZIP code level. 
BME2.5 estimates by contrast tend to be less correlated with the other PM2.5 estimates. In general 
this pattern holds for correlations between IDW or kriging estimates and BME estimates. PM2.5 

kriging estimates tend have high or very high correlations with PM10, sulfate and NO2, with 
slightly lower correlations with ozone. The exception is the NO2 LUR and BME models where 
the correlations are overall much lower with the other exposure estimates. Similarly some of the 
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correlations between the PM10 BME model and other pollutants, notably ozone, are lower as 
well. A similar pattern holds for the IDW PM2.5 estimates. In general, all estimates display 
positive correlations. BME estimates among the pollutants tend to have lower correlations, with 
ozone being particularly low in its correlation with NO2 and PM10. 

Results for the state minus the LA MSA are shown in Table 25.  Here the patterns are similar in 
terms of correlations among the various IDW and kriging models, although for sulfate and NO2 

correlations with PM2.5 are lower than in the statewide analysis. Again the BME and LUR 
models appear to follow a different spatial pattern and do not correlate as highly with either the 
other exposure estimates of the same pollutants or with the other pollutants that were estimated 
with the BME models. Here most pollutants show a positive correlation, with the exception 
being the correlation between ozone and the NO2 LUR model. 

In LA the patterns of correlation are quite different than in the statewide analyses, Table 26. Here 
correlations between estimates tend to be much lower, with the exception of those correlating 
ZIP to the individual address, which remain fairly high. IDW estimates correlate highly with 
kriging, PM10 and NO2 estimates. Notably the correlations with the IDW estimates of PM2.5 and 
ozone, PM10 and sulfate all seem to be lower, although NO2 retains a high correlation. Here 
correlations between the BME models and the other exposure estimates tend to be even lower. 
Another important difference is with ozone that tends to show very low or negative correlations 
with nearly all the other pollutants except for PM10 where there is a moderate, positive 
correlation. The strongest negative correlation is between sulfate and ozone. Again correlations 
among the BME estimates tend to be low to moderate.  

Causes of Death Investigated 
For all exposure models presented in subsequent tables we investigated the association between 
all causes of mortality (all International Classification of Diseases 9th Revision or ICD9 codes) 
and air pollution exposures. Several other cause-specific categories were also investigated, 
including cardiovascular disease (CVD = ICD9 Codes 390-459), ischemic heart disease (IHD = 
ICD9 Codes 410-414), respiratory disease (RESP= ICD9 Codes 460-519), lung cancer (LC = 
ICD 9 Code 162), all cancers (AlC = IC9 codes 140-239), other causes of death ((RS others  = 
All ICD9 – (CV+RESP)), and other causes of death not due to cancer ((RSNC others non-cancer 
= All ICD9 – (CV+RESP+ALC)). 

ZIP Code Exposure Assignment 
Tables 27 and 28 present the results of three different exposure models with exposures assigned 
at the residential ZIP code of the subject. We conducted this analysis to determine whether the 
effects observed in earlier studies of Los Angeles [3, 5] would replicate across California.  In 
these earlier studies we also used the ZIP code of residence to assign exposures. 

The two models for PM2.5 include: (1) inverse distance weighting (IDW); and (2) kriging; (see 
exposure methods for more detail). The tables show results for various model specifications all 
of which stratify the baseline hazard function on age, race, and gender. In the table, results are 
presented for both standard Cox proportional hazards models (SC) and random effects Cox 
models (RE). Specific models include: (a) those that control only for individual level covariates, 
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and (b) those that control for individual covariates and six ecologic covariates measured in 1990. 
We had prior evidence of effects on all cause and cause-specific mortality in the Los Angeles 
Metropolitan Statistical Area (LA MSA) and an examination of the spatial patterns in 
unexplained or unpredicted mortality indicated the residual mortality there was particularly low 
for all causes and high for cardiovascular disease. For these reasons, we also include results with 
an indicator for the LA MSA as a sensitivity test. We also included an interaction between the 
LA MSA and pollution to determine whether the effects in the LA MSA were different from the 
rest of the state. 

In these statewide models we found no effect of PM2.5 on all cause mortality; however, there 
were significantly elevated effects for cardiovascular deaths (CVD) and for deaths from ischemic 
heart disease (IHD). For both IDW and kriging, the results for both CVD and IHD are highly 
consistent among exposure models and statistical model specification. Effects sizes for CVD 
indicate relative risks or RRs ~ 1.11 over the interquartile range of exposure in each model. For 
IHD, effect sizes range from RR ~ 1.14-1.16, with the kriging estimates being slightly larger 
than those with the IDW models. None of the other causes of death show elevated risks in 
relation to PM2.5 exposure, and in few instances, they show mildly negative risks, except when 
the LA indicator is included. When the LA indicator is included, all of the significantly negative 
risks become null. 

For the models containing the LA indicator, LA has a lower death rate overall than the rest of the 
state, as shown by the indicator RRs, which are generally below 1, except for CVD and IHD, 
which are above 1. In the interaction models using kriging and IDW exposure estimates, LA 
displays a consistently lower death rate, but a much higher dose-response to air pollution with 
most causes of death showing elevated risks in relation to PM2.5. Although not significant in 
most instances, the point estimates are large overall. With all cause mortality and respiratory 
deaths, the RRs are significantly elevated. For all cause mortality a RR of approximately 1.25 is 
seen for LA – which is similar in size to earlier reports [5] – and for respiratory deaths the RR is 
approximately 1.91. 

Consistent with the results that do not use the LA interaction, we also observed significantly 
elevated risks for CVD and for IHD across all of California that are similar in size when the 
interaction term is included, but these are slightly smaller, than those presented from the non-
interaction models. In these cases, too, the confidence intervals overlap and the estimates are 
probably not significantly different from one another. 

Results from Exposure Assignments to the Geocoded Residential Address 

In models that control for residence in the five large conurbations found in Table 31, there are 
significantly elevated risks for all-cause (RR ~ 1.04), CVD (RR ~ 1.08), and IHD (RR ~ 1.14). 
Lung cancer and respiratory deaths were also elevated but were not significantly so. There was 
little evidence of association with other causes of death, which were slightly elevated but highly 
insignificant, or with other cancers. The model controlling for residence in the five major urban 
conurbations probably supplies the most valid results because this accounts for the non-
metropolitan mortality penalty discussed earlier. There is evidence of a negative association 
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between other causes of death and indicator variables (including some of the cancers, and air 
pollution), which is likely indicative of (a) negative confounding due to the non-metropolitan 
elevation in mortality, and (b) the fact that many of the non-metropolitan areas also have lower 
levels of pollution. Failure to control for this effect probably introduces a negative bias into the 
air pollution coefficient. 

Results for the PM2.5 exposures assigned at the home address were similar to those assigned at 
the ZIP code (see Tables 29-32 for the IDW, kriging, land use regression, and remote sensing 
estimates respectively). Both CVD and IHD have significantly elevated risks, regardless of 
which exposure models were used. For other causes of death, there were no significantly 
elevated effects. 

Effect sizes were slightly larger when using the kriging model than the IDW models. For CVD, 
effect sizes for the association with IDW have a RR ~ 1.08 and for IHD they range from RR ~ 
1.11 to 1.13. In the kriging models, the CVD effect have a RR ~ 1.1 and for IHD they are ~ 1.15. 
There was very little sensitivity to the model specification; the set of confounders included in the 
model, or adding ozone as a co-pollutant did little to modify the effect estimate.  

In comparing results obtained with the different PM2.5 exposure estimates (Figures 22-24), the 
largest HRs per each 10 µg/m3 increase in PM2.5 were observed for PM2.5 Remote Sensing (RS) 
and PM2.5 LUR. In contrast, somewhat lower HRs were observed for PM2.5 KRG and PM2.5 

IDW.  Results were comparable for PM2.5 KRG and PM2.5 IDW at both the individual and ZIP 
code–levels, although slightly lower for the individual-level assignments. Results for the BME 
models were very similar to those of kriging and IDW. 

The pattern of effects with the LA interaction was similar to those reported in the ZIP code 
analysis, with generally lower death rates indicated by the binary variable for Los Angeles and 
positive interactions between LA and PM2.5, suggesting a higher dose response there. Effects on 
CVD and IHD deaths were similar to those in models without the interaction term, although in 
these models we also observe elevated but insignificant effects of PM2.5 on all causes and 
respiratory deaths. The models using the kriging exposure estimate produced similar results to 
those with the IDW when ZIPs are included, although there are not elevated risks on all causes of 
death in these models and the positive, insignificant effects on respiratory death are larger.  

Risk Estimates for Other Pollutants 
Although not the primary motivation underlying this research, we also tested the effects of ozone 
(O3), nitrogen dioxide (NO2), other particulate matter (PM10), sulfate (SO4

-2), and proximity to 
highways and major roads.  

Ozone 

We assessed ozone effects on the same causes of death and with the same model specifications 
as the PM2.5 models. For ozone, we assigned exposure based on the IDW method at the 
individual scale and on the BME method at the ZIP code of residence scale (see Tables 33 and 
34). There were no effects on all cause mortality, but in all of the specified models we found 
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significant effects for CVD and IHD deaths. These effects estimates are similar in size to those 
observed for PM2.5, and they were only slightly reduced by inclusion of ecologic confounders. In 
random effects models including interactions for Los Angeles, there were no significant 
interactions, although the risks of ozone tended to be somewhat lower in LA than in the rest of 
the state. Effects estimates for the IDW and BME models were similar in size, but the inclusion 
of the LA indicator exerted a stronger confounding effect on the BME estimate than on the IDW 
exposure model. None of the other cause-specific mortality outcomes had a positive association 
with ozone, although in the interaction models there was an insignificantly elevated risk for 
respiratory deaths. In some instances, there were negative risks for other cancers, lung cancer 
and other causes of death, but these became insignificantly elevated or were of borderline 
significance when the Los Angeles indicator and interaction terms were included.  There were 
elevated risks in the interaction models for lung cancer, all cancers and for other causes of death, 
both with and without cancers included, although these were insignificant.  

NO2 

Effects for NO2 were significantly elevated for several causes of death. Effects on CVD and IHD 
were similar to those of PM2.5 across the IQR range (see Table 35 and 36). For CVD the RR was 
~ 1.07-1.08, and for IHD RR ~ 1.12-1.13. We conducted sensitivity analyses using the BME-
LUR model and found these to be similar to the kriging and inverse distance weighting effect 
estimates (results not shown). 

With the land use regression model, effects for NO2 were significantly elevated for several 
causes of death (see Table 36). Effects on CVD and IHD were similar to those of PM2.5 across 
the interquartile range. For CVD the RR was ~ 1.07-1.08, and for IHD RR ~ 1.12-1.13. There 
were significantly elevated risks of for all causes of death. Relative risks were in the range of 
1.03-1.05 for all causes across the relatively small interquartile range of 4.12 ppb. NO2 exposure 
was also significantly associated with deaths from lung cancer. Relative risks were in the range 
of 1.10-1.17, with the larger risks being observed in models that controlled for clustering in the 
ZIP codes and for ecologic influences on death. 

PM10 and Sulfate in PM10 

Results for PM10 were very similar to those observed from the PM2.5 models (see Table 37). 
There were no elevated risks for all causes of death, but significantly elevated risks for deaths 
from CVD and from IHD. Across the IQR of exposure, the RR was about 1.08 for CVD and 1.14 
for IHD. The patterns of interaction with Los Angeles were similar to those observed for PM2.5. 
We conducted sensitivity analyses using the BME-LUR for PM10 model and found these to also 
be similar to the kriging and inverse distance weighting estimates (results not shown). 

Effects for the sulfate models were nearly the same as those for PM10, which is not surprising 
given that the sulfate was derived from the PM10 filters (see Table 38).  
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Road Proximity 

For road proximity, we observed elevated relative risks of death, but these were not significantly 
different than the null effect (Tables 39-42). This general pattern held regardless of whether we 
used 50m to major roads, 100m to major highways, or a variable combining both 50m to major 
roads or 100m to major highways. Because residential mobility could substantially influence the 
proximity to road variable potentially more than for the other pollutants, we examined a shorter 
follow up period ending in 1988 when residential mobility would be less of a factor. In these 
analyses, we found larger effects, but they were still not significantly elevated. In Table 42, we 
included PM2.5 and found that the road buffers did not appreciably affect the PM2.5 risks. 

Time-Dependent Window Analysis Results 
The estimates of the log-hazard ratio parameters  , , and  are given in Table 40 for both 

nitrogen dioxide and ozone. For both pollutants    suggesting that all of the association 
between air pollution exposure and cardiovascular mortality in this cohort is spatial in nature and 
not temporal.  This conclusion is reinforced by the results from the joint exposure model in 
which there is no evidence of an association between the time varying exposure variable 
xi (t)  xi and cardiovascular mortality (p>0.05).   

The standard error of the estimate of  is much larger than those of the other parameters.  This is 
due to the much smaller variation in xi (t)  xi compared to xi . For nitrogen dioxide, the variance 

of xi  is 110.25 ppb2 and that of xi (t)  xi is 4.84 ppb2. Thus 96% of the combined variation in 

these two exposure measures is associated with spatial variability and only 4% with variation 
over time.  For ozone, the percentage of spatial variation is smaller than nitrogen dioxide at 83% 
but the vast majority of variation in exposure is associated with changes in ozone concentrations 
over space compared to time.  We conclude that the exposure patterns are much more variable 
spatially over California than over the time period from 1988 to 2000 within any locale.  Due to 
this lack of temporal exposure window variability we were not able to adequately investigate the 
temporal association between exposure to either nitrogen dioxide or ozone in this study. 
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Table 19:Reasons for exclusion of CPS‐II participants from final California analytic cohort, follow‐up 1982‐2000 

1. Total CPS‐II Population 1,184,588 

2. California participants 104,277 

3. Participants with complete zip code data 102,805 

4. Participants without ‘PO Box/co’ in address 85,744 

5. Participants geocoded 85,511 

6. Participants with missing/erroneous covariate data 

Race 391 

Education 953 

Marital Status 528 

Body Mass Index 1,664 
Passive Smoking 755 

Cigarette Smoking 4,877 

TOTAL 9,168 

6. Participants with air pollution data* 76,343 

PM2.5 KRG individual‐level 76,105 

PM2.5 BME individual‐level 76,105 

PM2.5 IDW individual‐level 73,609 

PM2.5 KRG zip‐code level 74,029 

PM2.5 IDW zip‐code level 70,084 

PM10KRG individual‐level 76,260 

PM10 BME individual‐level 76,105 

PM10 BME zip‐code level 74,029 

Ozone IDW individual‐level 76,222 

Ozone BME zip‐code level 69,551 

Sulfate IDWindividual‐level 76,260 

NO2 IDW individual‐level 75,364 
NO2 BME individual‐level 76,105 

NO2 LUR individual‐level 76,105 

Road buffers 76,105 

Note: Numbers shown in the second column indicate the sample used for each analysis. 

76 



 

 

                         

       

       

           

            

         

           

             

     

         

       

        

       

         

          

       

     

         

                

                

         

                

                

             

             

             

         
 

 
   

 
   

 
 

Table 20: Participant characteristics in the Nationwide Study Compared to the California Cohort. 

Variable Nationwide California 
Participants (n) 488,370 76,343 

Participants died from (%) 
All Causes 26.4 26.8 

CPD 13.1 14.1 
Lung Cancer 2.0 2.0 

All other causes 11.3 10.6 

Age 56.6 (10.5) 57.3 (10.6) 
Female (%) 56.5 56.2 
White (%) 94.0 91.5 

Education (%) 
< High School 12.1 8.7 
High School 31.2 23.0 
>High School 56.7 68.3 

Current Smoker (%) 21.9 19.4 
Cigarettes per day 22.0 (12.4) 21.5 (12.6) 
Years of smoking 33.6 (11.0) 34.1 (11.4) 

Former Smoker (%) 30.3 28.9 
Cigarettes per day 21.6 (14.6) 20.8 (14.7) 
Years of smoking 22.2 (4.1) 22.1 (12.7) 

Age when started smoking (%) 
< 18 yras (current smoker) 9.3 7.7 
< 18 yras (former smoker) 11.8 10.3 
Hours per day exposed to 

smoking 3.2 (4.4) 2.7 (4.1) 
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Table 21: Distribution of air pollutants at individual level. 

Percentiles 

Air Pollution # Subjects Mean Variance 0 5 10 25 50 75 90 95 100 

PM2.5 KRG 76,343 15.25 22.28 5.14 9.26 10.59 11.56 13.29 20.09 22.13 22.54 24.73 

PM2.5 IDW 76,041 21.95 35.12 3.77 11.52 15.16 18.23 20.42 26.97 29.33 31.35 36.26 

PM2.5 BME 76,105 16.13 25.60 4.30 8.86 9.88 12.14 14.93 21.08 22.73 23.71 28.50 

Ozone 76,222 50.54 210.60 17.11 28.84 31.25 36.93 50.89 61.00 68.59 74.50 96.20 

PM10 76,260 29.83 106.6 8.21 16.48 18.08 21.04 28.67 38.44 43.63 47.50 84.27 

PM10 BME 76,105 32.35 138.24 8.53 16.23 18.37 23.00 30.22 41.59 49.10 52.36 66.37 

Sulphate IDW 76,260 2.822 2.026 0.395 0.977 1.201 1.607 1.933 4.277 4.692 4.820 5.072 

NO2 IDW 75,364 25.22 102.73 3.17 11.08 13.85 17.85 22.47 35.00 40.37 42.03 45.51 

NO2 BME 76,105 14.21 50.23 0.46 4.80 6.23 9.13 12.31 19.24 25.22 27.63 36.01 

PM2.5 LUR 76,105 14.14 12.45 4.24 8.28 9.47 11.63 14.09 16.98 18.43 19.35 25.08 

PM2.5 RS 76,105 9.81 11.11 2.00 5.03 5.70 7.34 8.82 12.73 14.46 15.36 17.89 

PM10 LUR 76,105 28.78 21.77 15.51 19.59 21.75 25.62 30.08 32.81 33.70 33.94 34.18 

NO2 LUR 76,105 12.28 8.50 3.04 7.93 8.82 10.23 12.15 14.35 16.20 17.07 21.93 
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Table 22: Distribution of air pollutants at ZIP level. 

Percentiles 

Air Pollution 
928 ZIPs 
# Subjects 

Mean Variance 0 5 10 25 50 75 90 95 100 

PM2.5 KRG 73,609 15.16 22.14 5.277 9.152 10.50 11.58 12.81 20.05 22.06 22.57 24.70 

PM2.5 IDW 70,084 15.98 26.32 3.777 9.752 10.69 11.56 13.79 20.93 23.29 24.17 27.08 

Ozone BME 69,551 50.50 210.8 22.65 28.98 31.17 37.02 50.69 61.26 68.47 74.99 89.13 
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Table 23: Distribution of Ecological Covariates based on 1990 Census data and defined at the ZIP Code Area. 

Percentiles 

Ecological Covariate # Subjects Mean Variance 0 5 10 25 50 75 90 95 100 

White 76,343 0.7733 0.0265 0.0442 0.4419 0.5507 0.6976 0.8092 0.8965 0.9338 0.9579 1.0000 

Black 76,343 0.0463 0.0076 0.000 0.0011 0.0034 0.0101 0.0201 0.0468 0.0944 0.1700 0.8608 

Hispanic 76,343 0.1702 0.0240 0.000 0.0292 0.0386 0.0678 0.1183 0.2143 0.3707 0.5343 0.9749 

Post Secondary Ed. 76,343 0.6103 0.0235 0.000 0.3510 0.4086 0.5041 0.6208 0.7142 0.8181 0.8512 1.0000 

Mean Income 76,343 42,472 2.58*108 4,999 23,075 25,979 32,202 40,488 48,432 61,686 77,669 129,654 

Gini Coefficient 76,343 0.3746 0.0036 0.000 0.3080 0.3237 0.3492 0.3803 0.4071 0.4297 0.4445 0.5990 

Unemployment 76,343 0.0389 0.0021 0.000 0.0139 0.0168 0.0242 0.0325 0.0434 0.0564 0.0680 0.5208 

80 



 

 

                   

   

 
 

 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 
 

 

 
 

 

 
 

 
 

 

 
 

 

                                     

                                      

           

                                        

                                         

                                      

                                           

                                            

                                             

                                              

                                               

                                              

                                                   

                                                

                                                 

                                                      

                                                   

                                                    

 

                                                 
             

                                   

                   

                                                 

                   

 
I I 

Table 24: Pearson correlations (x100) between air pollutants (California overall). 
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PM2.5 KRG ‐‐ 86.53 90.16 77.53 81.29 71.38 89.69 89.39 72.7 81.9 81.57 35.39 98.83 95.44 64.15 71.43 36.12 36.88 
PM2.5 IDW ‐‐ 85.45 74.74 72.93 56.71 78.63 78.01 72.34 87.66 76.8 41.78 85.88 90.19 65.36 59.04 36.11 36.31 
PM2.5 BME ‐‐ 94.04 87.1 64.07 86.37 88.16 76.47 82.8 82.99 50.56 89.47 89.75 77.26 66.36 48.17 47.48 
PM2.5 LUR ‐‐ 87.17 54.67 76.38 80.46 66.16 69.87 73.68 55.46 76.81 75.28 81.19 56.8 54.46 48.12 
PM2.5 RS ‐‐ 50.9 80.22 76.44 70.27 67.58 62.93 37.51 80.83 81.48 72.31 51.47 49.4 39.71 
Ozone ‐‐ 75.24 78.02 45.67 43.1 59.76

 ‐

1.27 70.93 69.14 40 98.88 15.25 15.25 
PM10 KRG ‐‐ 93.52 69.06 69.36 75.76 26.07 89.27 87.13 60.39 79.06 36.16 30.19 
PM10 BME ‐‐ 60.78 68.1 80.33 37.57 88.49 85.14 65.06 79.66 45.12 39.03 

Sulfate KRG ‐‐ 78.69 73.45 35.23 73 74.42 58.45 47.72 28.47 35.45 
NO2 IDW ‐‐ 81.73 50.46 81.31 81.71 62.96 45.66 31.57 40.78 
NO2 BME ‐‐ 55.42 80.49 74.35 57.82 61.31 37.02 40.87 
NO2 LUR ‐‐ 35.17 28.98 50.02

 ‐

2.11 56.2 67.58 
PM2.5 KGR (ZIP) ‐‐ 96.24 65.5 71.45 37.34 38.5 
PM2.5IDW(ZIP) ‐‐ 64.64 69.89 31.69 34.51 
PM2.5BME(ZIP) ‐‐ 40.91 65.86 68.18 

Ozone BME (ZIP) ‐‐ 12.38 12.89 
PM10BME(ZIP) ‐‐ 74.66 
NO2BME(ZIP) ‐‐

See footnote for years represented by air pollution exposure6 

6 Years represented by air pollution exposures 
Pollutant PM2.5 KRG PM2.5 IDW PM2.5 BME PM2.5 LUR PM2.5 RS Ozone PM10 KRG PM10 BME Sulfate IDW 

Years 2000 1998‐2002 1998‐2002 1998‐2002 2001‐2006 1988‐2002 1988‐2002 1988‐2002 1996 

Pollutant NO2 IDW NO2 BME NO2 LUR PM2.5 KGR (ZIP) PM2.5 IDW (ZIP) PM2.5 BME (ZIP) Ozone BME (ZIP) PM10 BME (ZIP) NO2 BME (ZIP) 

Years 1988‐2002 1988‐2002 1988‐2002 2000 1998‐2002 1998‐2002 1988‐2002 1988‐2002 1988‐2002 
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Table 25: Pearson correlations (x100) between air pollutants (California minus LA). 

Air Pollutants 
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PM2.5 KRG ‐‐ 80.28 85.20 73.50 81.90 71.33 88.28 87.80 63.49 63.49 72.21 16.48 98.78 95.72 55.13 70.93 33.38 18.23 
PM2.5 IDW ‐‐ 79.93 72.00 72.76 48.52 74.11 72.33 57.78 82.41 69.99 32.05 79.46 86.46 59.19 50.79 38.45 21.28 
PM2.5 BME ‐‐ 94.98 87.92 60.45 84.69 86.98 61.94 71.38 80.21 42.29 84.00 86.10 72.24 63.04 51.35 36.49 
PM2.5 LUR ‐‐ 87.94 47.76 72.94 77.74 55.15 64.26 74.11 52.63 72.11 72.62 76.81 49.97 57.70 41.99 
PM2.5 RS ‐‐ 52.86 81.40 78.85 61.14 61.01 67.55 28.60 80.82 80.66 68.33 54.11 48.17 28.55 
Ozone ‐‐ 72.69 75.46 34.69 27.65 49.08

 ‐

16.49 71.05 71.95 30.31 98.94 14.13 6.88 
PM10 KRG ‐‐ 92.84 60.11 58.31 70.45 12.33 87.76 88.11 54.06 77.81 32.87 18.41 
PM10 BME ‐‐ 47.21 54.18 73.11 23.12 87.11 87.07 59.27 77.44 43.34 26.97 

Sulfate KRG ‐‐ 61.11 67.67 21.06 51.62 54.68 42.41 35.34 24.88 17.36 
NO2 IDW ‐‐ 72.15 43.89 60.38 65.36 54.61 28.69 31.10 22.03 
NO2 BME ‐‐ 50.76 69.42 69.59 53.00 49.47 40.05 30.67 
NO2 LUR ‐‐ 14.70 11.36 46.82 ‐18.99 54.82 62.20 

PM2.5 KGR (ZIP) ‐‐ 96.23 56.13 71.07 34.45 19.45 
PM2.5IDW(ZIP) ‐‐ 56.11 72.62 31.10 15.59 
PM2.5BME(ZIP) ‐‐ 31.21 70.39 64.85 

Ozone BME (ZIP) ‐‐ 12.20 4.08 
PM10BME(ZIP) ‐‐ 75.58 
NO2BME(ZIP) ‐‐

See footnote for years represented by air pollution exposure7 

7Years represented by air pollution exposures 
Pollutant PM2.5 KRG PM2.5 IDW PM2.5 BME PM2.5 LUR PM2.5 RS Ozone PM10 KRG PM10 BME Sulfate IDW 

Years 2000 1998‐2002 1998‐2002 1998‐2002 2001‐2006 1988‐2002 1988‐2002 1988‐2002 1996 

Pollutant NO2 IDW NO2 BME NO2 LUR PM2.5 KGR (ZIP) PM2.5 IDW (ZIP) PM2.5 BME (ZIP) Ozone BME (ZIP) PM10 BME (ZIP) NO2 BME (ZIP) 

Years 1988‐2002 1988‐2002 1988‐2002 2000 1998‐2002 1998‐2002 1988‐2002 1988‐2002 1988‐2002 
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Table 26: Pearson correlations (x100) between air pollutants (LA only). 

Air Pollutants 
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)

O
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e

 (Z
IP
)

P
M

1
0

 B
M
E 
(Z
IP
) 

N
O

2
 B
M
E 
(Z
IP
) 

PM2.5 KRG ‐‐ 64.14 68.09 30.34 39.34 5.14 83.43 73.80 35.58 87.36 57.39 49.06 90.25 63.38 8.22

 ‐

1.41 46.36 37.20 

PM2.5 IDW ‐‐ 51.90 10.21 5.67 8.72 39.53 43.76 24.70 74.91 37.49 24.38 52.52 65.70 5.21 3.82 2.83 25.30 

PM2.5 BME ‐‐ 78.30 62.20 ‐1.28 54.20 60.17 36.45 58.94 38.89 42.35 58.99 54.54 47.37 ‐5.80 45.55 35.44 
PM2.5 LUR ‐‐ 58.48 11.91 34.87 46.81 9.57 12.60 21.34 28.82 23.58 9.63 64.91 8.88 39.51 21.00 

PM2.5 RS ‐‐ ‐52.04 26.63 10.22 60.53 33.22

 ‐

16.01 22.36 37.83 47.39 42.65

 ‐

56.55 49.99 29.05 

Ozone ‐‐ 3561 51.61

 ‐

69.30
 ‐

17.18 56.72

 ‐

12.84

 ‐

2.99

 ‐

41.61

 ‐

8.63 95.69

 ‐

22.85
 ‐

29.21 

PM10 KRG ‐‐ 78.66 4.54 59.57 62.30 19.61 79.76 36.90 4.94 28.81 38.26 7.53 

PM10 BME ‐‐ 14.46 51.08 82.78 48.60 66.99 19.44 19.38 47.29 47.61 29.48 

Sulfate KRG ‐‐ 51.13 31.57 21.81 24.78 54.60 38.36

 ‐

24.30 83.67 55.05 

NO2 IDW ‐‐ 40.50 41.28 79.13 74.58 2.32

 ‐

21.41 36.09 40.40 

NO2 BME ‐‐ 43.94 50.39 0.85

 ‐

8.83 54.81 28.23 13.31 

NO2 LUR ‐‐ 45.85 21.29 19.04

 ‐

13.03 55.66 68.98 

PM2.5 KGR (ZIP) ‐‐ 70.86 13.57

 ‐

4.73 55.30 44.81 

PM2.5IDW(ZIP) ‐‐ 16.74

 ‐

43.93 28.00 38.64 

PM2.5BME(ZIP) ‐‐ ‐10.34 55.05 55.76 

Ozone BME (ZIP) ‐‐ ‐25.16 31.53 

PM10BME(ZIP) ‐‐ 71.78 

NO2BME(ZIP) ‐‐

See footnote for years represented by air pollution exposure8 

8 Years represented by air pollution exposures 
Pollutant PM2.5 KRG PM2.5 IDW PM2.5 BME PM2.5 LUR PM2.5 RS Ozone PM10 KRG PM10 BME Sulfate IDW 

Years 2000 1998‐2002 1998‐2002 1998‐2002 2001‐2006 1988‐2002 1988‐2002 1988‐2002 1996 

Pollutant NO2 IDW NO2 BME NO2 LUR PM2.5 KGR (ZIP) PM2.5 IDW (ZIP) PM2.5 BME (ZIP) Ozone BME (ZIP) PM10 BME (ZIP) NO2 BME (ZIP) 

Years 1988‐2002 1988‐2002 1988‐2002 2000 1998‐2002 1998‐2002 1988‐2002 1988‐2002 1988‐2002 
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Table 27: Hazard ratios of PM2.5 IDW ZIP code‐level (IQR=9.37) for selected causes of death in the ACS cohort with follow‐up from 1982 to 2000, adjusting 

for individual level covariates and ecologic level covariates (1990), stratifying the baseline hazard function by age (1‐year groupings), gender and race using 

the Standard Cox Model and the Random Effects model, 1 cluster level (ZIP), (95% confidence intervals given in parenthesis), ZIP variance (10‐3) beneath, n = 

70,084. 

Covariate 
Cause of Death 

All Cause CVD IHD Respiratory Lung Cancer All Cancers Other Others no Cancers 
(n=18,744) (n=7,649) (n=4,346) (n=1,871) (n=1,414) (n=6,171) (n=8,871) (n= 2,700) 

Individual 
covariates 

SC 0.989 
(0.963, 1.016) 

1.107 
(1.061, 1.155) 

1.143 
(1.081, 1.208) 

0.964 
(0.883, 1.051) 

0.941 
(0.852, 1.039) 

0.915 
(0.873, 0.960) 

0.905 
(0.870, 0.942) 

0.883 
(0.822, 0.949) 

RE 0.991 
(0.962, 1.020) 
4.92 

1.108 
(1.060, 1.157) 
5.33 

1.142 
(1.078, 1.210) 
7.47 

0.964 
(0.883, 1.052) 
2.48 

0.941 
(0.852, 1.040) 
0.53 

0.916 
(0.872, 0.962) 
4.33 

0.906 
(0.870, 0.944) 
2.90 

0.885 
(0.822, 0.954) 
13.18 

+7 1990 
Ecological 

SC 0.995 
(0.967, 1.025) 

1.112 
(1.062, 1.164) 

1.154 
(1.086, 1.225) 

0.992 
(0.903, 1.090) 

0.951 
(0.854, 1.059) 

0.922 
(0.876, 0.970) 

0.911 
(0.872, 0.950) 

0.886 
(0.820, 0.958) 

RE 0.996 
(0.966, 1.026) 
1.28 

1.112 
(1.060, 1.166) 
4.57 

1.153 
(1.084, 1.226) 
2.74 

0.992 
(0.903, 1.090) 
0.87 

0.951 
(0.854, 1.059) 
0.47 

0.922 
(0.876, 0.971) 
0.99 

0.911 
(0.872, 0.950) 
0.35 

0.887 
(0.819, 0.961) 
9.51 

+ LA SC 0.967 1.036 0.997 0.827 1.026 0.957 0.938 0.898 
indicator LA Ind. (0.925, 1.011) (0.968, 1.110) (0.911, 1.091) (0.717, 0.954) (0.870, 1.209) (0.885, 1.036) (0.878, 1.002) (0.796, 1.012) 

PM2.5 1.012 1.092 1.155 1.086 0.939 0.942 0.940 0.934 
(0.975, 1.049) (1.031, 1.156) (1.072, 1.244) (0.968, 1.218) (0.821, 1.073) (0.883, 1.004) (0.891, 0.991) (0.848, 1.029) 

RE 0.967 1.038 0.997 0.827 1.026 0.957 0.938 0.900 
LA Ind. (0.924, 1.012) (0.967, 1.114) (0.911, 1.093) (0.716, 0.955) (0.870, 1.209) (0.884, 1.036) (0.878, 1.002) (0.796, 1.017) 
PM2.5 1.012 1.091 1.154 1.086 0.939 0.942 0.940 0.934 

(0.975, 1.051) (1.028, 1.158) (1.070, 1.245) (0.968, 1.219) (0.821, 1.074) (0.883, 1.005) (0.891, 0.991) (0.845, 1.031) 
1.10 4.57 2.73 0.80 0.47 0.93 0.27 7.72 

+ LA * PM2.5 SC 0.680 0.729 0.652 0.247 0.503 0.832 0.781 0.669 
LA Ind. (0.522, 0.885) (0.488, 1.090) (0.380, 1.119) (0.098, 0.625) (0.189, 1.338) (0.527, 1.315) (0.531, 1.148) (0.326, 1.370) 

1.173 1.173 1.211 1.722 1.384 1.066 1.087 1.143 
LA*PM2.5 (1.043, 1.321) (0.980, 1.403) (0.953, 1.539) (1.143, 2.594) (0.893, 2.146) (0.867, 1.310) (0.914, 1.293) (0.829, 1.576) 

PM2.5 
0.996 
(0.958, 1.035) 

1.074 
(1.011, 1.141) 

1.134 
(1.048, 1.226) 

1.038 
(0.920, 1.172) 

0.909 
(0.789, 1.048) 

0.936 
(0.875, 1.001) 

0.932 
(0.881, 0.986) 

0.922 
(0.833, 1.021) 

RE 0.681 0.736 0.654 0.247 0.503 0.831 0.781 0.675 
LA Ind. (0.521, 0.889) (0.487, 1.113) (0.380, 1.127) (0.097, 0.626) (0.189, 1.338) (0.525, 1.318) (0.530, 1.150) (0.326, 1.400) 

1.173 1.168 1.209 1.722 1.384 1.066 1.087 1.139 
LA*PM2.5 (1.041, 1.321) (0.971, 1.405) (0.949, 1.540) (1.142, 2.595) (0.892, 2.147) (0.867, 1.312) (0.913, 1.293) (0.821, 1.579) 

PM2.5 
0.996 
(0.958, 1.036) 

1.074 
(1.009, 1.143) 

1.133 
(1.047, 1.226) 

1.038 
(0.920, 1.172) 

0.909 
(0.789, 1.048) 

0.936 
(0.875, 1.002) 

0.932 
(0.881, 0.986) 

0.922 
(0.831, 1.023) 

0.62 3.92 1.96 0.70 0.47 0.93 0.26 7.23 
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Table 28: Hazard ratios of PM2.5KRG ZIP code‐level (IQR=8.4735) for selected causes of death in the ACS cohort with follow‐up from 1982 to 2000, adjusting 

for individual level covariates and ecologic level covariates (1990), stratifying the baseline hazard function by age (1‐year groupings), gender and race using 

the Standard Cox Model and the Random Effects model, 1 cluster level (ZIP), (95% confidence intervals given in parenthesis), ZIP variance (10‐3) beneath, n = 

73,609. 

Covariate 
Cause of Death 

All Cause CVD IHD Respiratory Lung Cancer All Cancers Other Others no Cancers 
(n=19,734) (n=8,046) (n=4,536) (n=1,971) (n=1,483) (n=6,500) (n=9,340) (n= 2,840) 

Individual 
covariates 

SC 0.993 
(0.967, 1.020) 

1.111 
(1.066, 1.158) 

1.156 
(1.094, 1.221) 

0.964 
(0.885, 1.051) 

0.931 
(0.845, 1.027) 

0.917 
(0.876, 0.961) 

0.912 
(0.877, 0.948) 

0.898 
(0.837, 0.964) 

RE 0.994 
(0.966, 1.024) 
4.92 

1.111 
(1.064, 1.160) 
5.34 

1.155 
(1.091, 1.223) 
7.91 

0.964 
(0.885, 1.051) 
4.02 

0.931 
(0.845, 1.027) 
0.52 

0.918 
(0.875, 0.963) 
3.67 

0.912 
(0.877, 0.949) 
2.55 

0.900 
(0.837, 0.969) 
13.98 

+7 1990 
Ecological 

SC 0.994 
(0.965, 1.024) 

1.110 
(1.060, 1.161) 

1.162 
(1.094, 1.235) 

0.988 
(0.899, 1.086) 

0.939 
(0.843, 1.045) 

0.918 
(0.872, 0.966) 

0.912 
(0.874, 0.951) 

0.898 
(0.831, 0.971) 

RE 0.994 
(0.965, 1.025) 
1.15 

1.109 
(1.058, 1.163) 
4.70 

1.161 
(1.092, 1.235) 
3.14 

0.988 
(0.899, 1.086) 
0.98 

0.939 
(0.843, 1.046) 
0.45 

0.918 
(0.872, 0.966) 
0.65 

0.912 
(0.874, 0.951) 
0.24 

0.899 
(0.831, 0.974) 
9.94 

+ LA SC 0.966 1.030 0.985 0.833 1.051 0.963 0.938 0.887 
indicator LA Ind. (0.922, 1.012) (0.958, 1.106) (0.896, 1.082) (0.716, 0.968) (0.885, 1.248) (0.887, 1.046) (0.876, 1.005) (0.783, 1.005) 

PM2.5 1.012 1.092 1.171 1.088 0.915 0.936 0.943 0.957 
(0.974, 1.052) (1.028, 1.159) (1.083, 1.267) (0.963, 1.228) (0.795, 1.053) (0.876, 1.002) (0.892, 0.997) (0.865, 1.059) 

RE 0.967 1.032 0.985 0.833 1.051 0.963 0.938 0.889 
LA Ind. (0.922, 1.014) (0.958, 1.111) (0.896, 1.084) (0.716, 0.968) (0.884, 1.248) (0.886, 1.046) (0.876, 1.005) (0.783, 1.010) 
PM2.5 1.012 1.090 1.170 1.088 0.915 0.937 0.943 0.957 

(0.973, 1.053) (1.024, 1.161) (1.080, 1.267) (0.963, 1.229) (0.795, 1.053) (0.875, 1.002) (0.892, 0.997) (0.862, 1.061) 
0.98 4.77 3.05 0.85 0.45 0.65 0.21 7.98 

+ LA * PM2.5 SC 0.566 0.770 0.523 0.177 0.417 0.680 0.545 0.312 
LA Ind. (0.415, 0.772) (0.483, 1.228) (0.275, 0.993) (0.058, 0.539) (0.132, 1.317) (0.398, 1.163) (0.345, 0.859) (0.131, 0.741) 

1.254 1.131 1.306 1.917 1.483 1.159 1.260 1.556 
LA*PM2.5 (1.102, 1.428) (0.930, 1.375) (1.000, 1.705) (1.210, 3.037) (0.915, 2.404) (0.925, 1.454) (1.041, 1.526) (1.085, 2.231) 

PM2.5 
0.995 
(0.956, 1.035) 

1.081 
(1.016, 1.150) 

1.148 
(1.058, 1.245) 

1.043 
(0.919, 1.184) 

0.886 
(0.765, 1.027) 

0.925 
(0.863, 0.992) 

0.926 
(0.874, 0.982) 

0.927 
(0.834, 1.030) 

RE 0.566 0.769 0.522 0.177 0.417 0.680 0.545 0.316 
LA Ind. (0.414, 0.773) (0.475, 1.244) (0.273, 0.998) (0.058, 0.539) (0.132, 1.318) (0.397, 1.165) (0.345, 0.860) (0.132, 0.757) 

1.255 1.133 1.307 1.918 1.483 1.160 1.260 1.548 
LA*PM2.5 (1.101, 1.430) (0.926, 1.386) (0.998, 1.711) (1.210, 3.040) (0.914, 2.405) (0.924, 1.455) (1.040, 1.526) (1.076, 2.228) 

PM2.5 
0.995 
(0.955, 1.036) 

1.079 
(1.011, 1.151) 

1.147 
(1.056, 1.246) 

1.043 
(0.918, 1.184) 

0.886 
(0.0.765, 1.027) 

0.925 
(0.863, 0.993) 

0.926 
(0.874, 0.982) 

0.927 
(0.833, 1.032) 

0.49 4.66 2.46 0.79 0.43 0.61 0.17 5.22 
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Table 29: Hazard ratios of PM2.5IDW individual‐level (IQR=8.74) for selected causes of death in the ACS cohort with follow‐up from 1982 to 2000, adjusting 

for individual level covariates and ecologic level covariates (1990), stratifying the baseline hazard function by age (1‐year groupings), gender and race using 

the Standard Cox Model and the Random Effects model, 1 cluster level (ZIP), (95% confidence intervals given in parenthesis), ZIP variance (10‐3) beneath, n = 

76,041. 

Covariate 
Cause of Death 

All Cause CVD IHD Respiratory Lung Cancer All Cancers Other Others no Cancers 
(n=20,351) (n=8,292) (n=4,692) (n=2,035) (n=1,536) (n=6,711) (n=9,639) (n= 2,928) 

Individual 
covariates 

SC 0.990 
(0.968, 1.013) 

1.076 
(1.038, 1.116) 

1.113 
(1.061, 1.168) 

0.950 
(0.883, 1.023) 

0.964 
(0.886, 1.048) 

0.948 
(0.911, 0.987) 

0.934 
(0.904, 0.966) 

0.904 
(0.851, 0.961) 

RE 0.991 
(0.967, 1.016) 
4.94 

1.076 
(1.036, 1.118) 
6.25 

1.112 
(1.058, 1.169) 
7.92 

0.950 
(0.883, 1.023) 
2.46 

0.964 
(0.886, 1.048) 
0.56 

0.949 
(0.911, 0.989) 
5.51 

0.935 
(0.904, 0.969) 
4.13 

0.905 
(0.850, 0.964) 
14.33 

+7 1990 
Ecological 

SC 1.003 
(0.978, 1.028) 

1.084 
(1.043, 1.127) 

1.132 
(1.075, 1.191) 

0.975 
(0.901, 1.055) 

0.982 
(0.898, 1.073) 

0.962 
(0.922, 1.004) 

0.948 
(0.915, 0.983) 

0.918 
(0.860, 0.979) 

RE 1.003 
(0.978, 1.029) 
1.31 

1.085 
(1.042, 1.129) 
5.24 

1.131 
(1.074, 1.191) 
2.82 

0.975 
(0.901, 1.055) 
0.87 

0.982 
(0.898, 1.074) 
0.49 

0.963 
(0.922, 1.005) 
1.74 

0.948 
(0.915, 0.983) 
0.81 

0.919 
(0.859, 0.982) 
11.02 

+ LA SC 0.962 1.052 1.004 0.856 0.992 0.921 0.908 0.880 
indicator LA Ind. (0.922, 1.004) (0.985, 1.124) (0.920, 1.096) (0.746, 0.983) (0.848, 1.160) (0.855, 0.993) (0.853, 0.967) (0.784, 0.987) 

PM2.5 1.017 1.063 1.130 1.032 0.984 0.992 0.983 0.962 
(0.988, 1.048) (1.014, 1.113) (1.063, 1.201) (0.940, 1.132) (0.885, 1.095) (0.943, 1.045) (0.942, 1.026) (0.891, 1.040) 

RE 0.963 1.053 1.005 0.856 0.992 0.921 0.908 0.883 
LA Ind. (0.922, 1.005) (0.984, 1.128) (0.920, 1.097) (0.746, 0.983) (0.848, 1.160) (0.854, 0.994) (0.853, 0.967) (0.785, 0.992) 
PM2.5 1.017 1.063 1.129 1.032 0.984 0.993 0.983 0.962 

(0.987, 1.048) (1.012, 1.115) (1.061, 1.201) (0.940, 1.132) (0.885, 1.095) (0.943, 1.045) (0.942, 1.026) (0.889, 1.041) 
1.04 5.09 2.83 0.76 0.49 1.30 0.36 8.23 

+ LA * PM2.5 SC 0.833 0.950 0.828 0.694 0.402 0.844 0.768 0.606 
LA Ind. (0.629, 1.103) (0.623, 1.449) (0.471, 1.458) (0.271, 1.777) (0.139, 1.161) (0.513, 1.388) (0.506, 1.166) (0.281, 1.307) 

1.047 1.033 1.063 1.069 1.337 1.028 1.055 1.127 
LA*PM2.5 (0.958, 1.145) (0.903, 1.182) (0.889, 1.272) (0.793, 1.441) (0.955, 1.872) (0.877, 1.205) (0.924, 1.205) (0.883, 1.439) 

PM2.5 
1.012 
(0.981, 1.044) 

1.058 
(1.007, 1.112) 

1.121 
(1.050, 1.196) 

1.024 
(0.929, 1.130) 

0.954 
(0.853, 1.068) 

0.989 
(0.937, 1.044) 

0.977 
(0.934, 1.022) 

0.950 
(0.876, 1.031) 

RE 0.835 0.961 0.831 0.694 0.401 0.841 0.768 0.620 
LA Ind. (0.629, 1.110) (0.623, 1.483) (0.470, 1.470) (0.271, 1.780) (0.139, 1.162) (0.510, 1.387) (0.505, 1.167) (0.285, 1.349) 

1.046 1.030 1.062 1.069 1.337 1.029 1.055 1.120 
LA*PM2.5 (0.956, 1.145) (0.897, 1.182) (0.886, 1.273) (0.793, 1.441) (0.955, 1.872) (0.877, 1.208) (0.923, 1.206) (0.875, 1.434) 

PM2.5 
1.012 
(0.980, 1.045) 

1.058 
(1.005, 1.115) 

1.120 
(1.049, 1.197) 

1.025 
(0.929, 1.130) 

0.954 
(0.853, 1.068) 

0.989 
(0.937, 1.045) 

0.977 
(0.934, 1.023) 

0.950 
(0.874, 1.033) 

0.94 5.01 2.64 0.75 0.48 1.36 0.35 7.28 
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Table 30: Hazard ratios of PM2.5KRG individual‐level (IQR=8.52902) for selected causes of death in the ACS cohort with follow‐up from 1982 to 2000, 

adjusting for individual level covariates and ecologic level covariates (1990), stratifying the baseline hazard function by age (1‐year groupings), gender and 

race using the Standard Cox Model and the Random Effects model, 1 cluster level (ZIP), (95% confidence intervals given in parenthesis), ZIP variance (10‐3) 

beneath, n = 76,135. 

Covariate 
Cause of Death 

All Cause CVD IHD Respiratory Lung Cancer All Cancers Other Others no Cancers 
(n=20,432) (n=8,327) (n= 4,710) (n=2,044) (n=1,540) (n=6,739) (n=9,676) (n= 2,937) 

Individual 
covariates 

SC 0.993 
(0.968, 1.018) 

1.100 
(1.057, 1.144) 

1.157 
(1.098, 1.218) 

0.963 
(0.889, 1.044) 

0.933 
(0.850, 1.024) 

0.927 
(0.887, 0.969) 

0.920 
(0.886, 0.954) 

0.902 
(0.844, 0.965) 

RE 0.993 
(0.967, 1.021) 
4.30 

1.099 
(1.055, 1.145) 
5.28 

1.156 
(1.095, 1.219) 
7.54 

0.963 
(0.888, 1.045) 
4.17 

0.933 
(0.850, 1.024) 
0.647 

0.928 
(0.887, 0.970) 
2.14 

0.920 
(0.886, 0.956) 
1.93 

0.904 
(0.843, 0.968) 
10.33 

+7 1990 
Ecological 

SC 0.993 
(0.966, 1.021) 

1.097 
(1.051, 1.145) 

1.154 
(1.090, 1.223) 

0.986 
(0.902, 1.077) 

0.933 
(0.842, 1.033) 

0.923 
(0.880, 0.969) 

0.917 
(0.881, 0.955) 

0.905 
(0.841, 0.973) 

RE 0.993 
(0.965, 1.021) 
0.82 

1.096 
(1.048, 1.147) 
4.03 

1.154 
(1.088, 1.223) 
3.65 

0.986 
(0.902, 1.078) 
1.161 

0.933 
(0.842, 1.033) 
0.57 

0.923 
(0.879, 0.969) 
0.61 

0.917 
(0.881, 0.955) 
0.34 

0.905 
(0.840, 0.976) 
6.97 

+ LA SC 0.966 1.037 0.977 0.825 1.010 0.957 0.933 0.882 
indicator LA Ind. (0.924, 1.009) (0.969, 1.109) (0.895, 1.068) (0.717, 0.950) (0.859, 1.186) (0.886, 1.034) (0.875, 0.995) (0.784, 0.992) 

PM2.5 1.010 1.077 1.167 1.080 0.928 0.943 0.949 0.961 
(0.975, 1.046) (1.020, 1.138) (1.087, 1.254) (0.967, 1.206) (0.817, 1.055) (0.887, 1.002) (0.902, 0.998) (0.876, 1.053) 

RE 0.966 1.038 0.978 0.825 1.010 0.957 0.933 0.883 
LA Ind. (0.924, 1.010) (0.969, 1.113) (0.894, 1.070) (0.716, 0.951) (0.859, 1.186) (0.886, 1.034) (0.875, 0.995) (0.785, 0.995) 
PM2.5 1.009 1.076 1.166 1.080 0.928 0.943 0.949 0.960 

(0.974, 1.046) (1.017, 1.138) (1.084, 1.254) (0.967, 1.207) (0.817, 1.055) (0.887, 1.003) (0.901, 0.998) (0.875, 1.054) 
0.62 4.11 3.53 1.01 0.57 0.58 0.27 4.69 

+ LA * PM2.5 SC 0.643 0.874 0.637 0.319 0.515 0.646 0.564 0.398 
LA Ind. (0.485, 0.852) (0.573, 1.332) (0.356, 1.138) (0.116, 0.878) (0.180, 1.476) (0.396, 1.054) (0.372, 0.855) (0.181, 0.876) 

1.189 1.075 1.199 1.493 1.333 1.183 1.240 1.402 
LA*PM2.5 (1.056, 1.338) (0.900, 1.284) (0.940, 1.528) (0.980, 2.274) (0.856, 2.077) (0.962, 1.455) (1.040, 1.477) (1.008, 1.949) 

PM2.5 
0.996 
(0.960, 1.033) 

1.071 
(1.011, 1.133) 

1.151 
(1.069, 1.240) 

1.053 
(0.940, 1.180) 

0.907 
(0.794, 1.037) 

0.930 
(0.873, 0.991) 

0.933 
(0.885, 0.984) 

0.938 
(0.852, 1.032) 

RE 0.644 0.878 0.638 0.319 0.515 0.646 0.564 0.402 
LA Ind. (0.485, 0.854) (0.570, 1.352) (0.355, 1.148) (0.115, 0.878) (0.180, 1.477) (0.395, 1.055) (0.372, 0.856) (0.182, 0.887) 

1.188 1.074 1.197 1.494 1.333 1.183 1.239 1.397 
LA*PM2.5 (1.055, 1.339) (0.895, 1.287) (0.937, 1.530) (0.980, 2.276) (0.855, 2.077) (0.962, 1.456) (1.040, 1.477) (1.003, 1.946) 

PM2.5 
0.996 
(0.960, 1.033) 

1.069 
(1.008, 1.134) 

1.150 
(1.067, 1.240) 

1.053 
(0.939, 1.181) 

0.907 
(0.794, 1.037) 

0.930 
(0.873, 0.991) 

0.933 
(0.885, 0.984) 

0.938 
(0.851, 1.032) 

0.37 4.00 3.04 0.97 0.55 0.56 0.23 3.06 

87 



 

 

                                                 

                                            

                                                 

 

   
     

                                                                                                                                                                            

       

 
 

   
   

 
   

 
   

 
   

 
   

 
   

 
   

 
   

     
   

 

 
   

 

 
   

 

 
   

 

 
   

 

 
   

 

 
   

 

 
   

 
   

  
   

   
 
   

 
   

 
   

 
   

 
   

 
   

 
   

     
   

 

 
   

 

 
   

 

 
   

 

 
   

 

 
   

 

 
   

 

 
   

 
   

 
 

     
 

 

 
   

 
   

 
   

 
   

 
   

 
   

 
   

 
   

 
   

 
   

 
   

 
   

 
   

 
   

 
   

 
   

   
     

 

 
   

 
   

 

 
   

 
   

 

 
   

 
   

 

 
   

 
   

 

 
   

 
   

 

 
   

 
   

 

 
   

 
   

 

 
   

 
   

 
         

     
 

 
 

 

 
   

 
   

 
   

 
   

 
   

 
   

 
   

 
   

 
   

 
   

 
   

 
   

 
   

 
   

 
   

 
   

 
   

 
   

 
   

 
   

 
   

 
   

 
   

 
   

   
     
 
   
 
   

 
   

 
   

 
   

 

 
   

 
   

 
   

 

 
   

 
   

 
   

 

 
   

 
   

 
   

 

 
   

 
   

 
   

 

 
   

 
   

 
   

 

 
   

 
   

 
   

 

 
   

 
   

 
   

 

Table 31: Hazard ratios of PM2.5LUR individual‐level (IQR= 5.35) for selected causes of death in the ACS cohort with follow‐up from 1982 to 2000, adjusting 

for individual level covariates and ecologic level covariates (1990), stratifying the baseline hazard function by age (1‐year groupings), gender and race using 

the Standard Cox Model and the Random Effects model, 1 cluster level (ZIP), (95% confidence intervals given in parenthesis), ZIP variance (10‐3) beneath, n = 

76,105. 

Covariate 
Cause of Death 

All Cause CVD IHD Respiratory Lung Cancer All Cancers Other Others no Cancers 
(n=20,358) (n=8,300) (n=4,693) (n=2,034) (n=1,535) (n=6,713) (n=9,639) (n= 2,926) 

Individual 
covariates 

SC 0.993 
(0.966, 1.020) 

1.072 
(1.027, 1.119) 

1.127 
(1.065, 1.193) 

0.952 
(0.873, 1.038) 

0.991 
(0.898, 1.094) 

0.960 
(0.916, 1.006) 

0.944 
(0.908, 0.982) 

0.910 
(0.847, 0.977) 

RE 0.996 
(0.968, 1.026) 
4.35 

1.073 
(1.026, 1.123) 
6.84 

1.129 
(1.064, 1.198) 
11.05 

0.953 
(0.873, 1.040) 
3.61 

0.991 
(0.898, 1.094) 
0.56 

0.961 
(0.915, 1.009) 
4.52 

0.946 
(0.908, 0.985) 
3.50 

0.914 
(0.849, 0.984) 
10.64 

+7 1990 
Ecological 

SC 1.005 
(0.976, 1.035) 

1.079 
(1.031, 1.130) 

1.147 
(1.080, 1.218) 

0.985 
(0.898, 1.081) 

1.017 
(0.915, 1.131) 

0.967 
(0.920, 1.017) 

0.956 
(0.916, 0.997) 

0.931 
(0.863, 1.005) 

RE 1.006 
(0.976, 1.036) 
0.92 

1.080 
(1.030, 1.132) 
4.81 

1.148 
(1.079, 1.221) 
5.14 

0.986 
(0.898, 1.082) 
0.95 

1.018 
(0.915, 1.131) 
0.51 

0.967 
(0.919, 1.018) 
1.85 

0.956 
(0.917, 0.998) 
1.08 

0.935 
(0.865, 1.011) 
8.76 

+ LA SC 0.961 1.063 1.023 0.863 0.940 0.911 0.898 0.871 
indicator LA Ind. (0.925, 1.000) (1.002, 1.129) (0.945, 1.107) (0.760, 0.979) (0.814, 1.085) (0.851, 0.976) (0.848, 0.951) (0.784, 0.967) 

PM2.5 1.019 1.055 1.138 1.037 1.040 1.000 0.993 0.977 
(0.987, 1.053) (1.003, 1.110) (1.064, 1.216) (0.936, 1.149) (0.925, 1.169) (0.945, 1.057) (0.948, 1.040) (0.898, 1.063) 

RE 0.962 1.064 1.022 0.862 0.940 0.912 0.898 0.872 
LA Ind. (0.924, 1.000) (1.000, 1.131) (0.942, 1.108) (0.760, 0.979) (0.814, 1.085) (0.851, 0.977) (0.848, 0.952) (0.784, 0.969) 
PM2.5 1.020 1.056 1.138 1.037 1.040 1.000 0.993 0.979 

(0.987, 1.053) (1.002, 1.112) (1.063, 1.219) (0.936, 1.149) (0.925, 1.169) (0.945, 1.058) (0.948, 1.040) (0.899, 1.067) 
0.68 4.37 5.01 0.91 0.50 0.96 0.34 5.93 

+ LA * PM2.5 SC 0.829 1.045 0.835 0.618 0.523 0.608 0.710 1.030 
LA Ind. (0.655, 1.050) (0.730, 1.497) (0.517, 1.347) (0.282, 1.351) (0.219, 1.251) (0.401, 0.922) (0.501, 1.006) (0.545, 1.946) 

1.060 1.006 1.084 1.141 1.261 1.174 1.098 0.934 
LA*PM2.5 (0.966, 1.164) (0.873, 1.160) (0.898, 1.308) (0.840, 1.550) (0.897, 1.772) (0.997, 1.383) (0.957, 1.259) (0.726, 1.202) 

PM2.5 
1.011 
(0.976, 1.046) 

1.054 
(0.997, 1.114) 

1.123 
(1.044, 1.209) 

1.019 
(0.913, 1.138) 

1.006 
(0.886, 1.142) 

0.977 
(0.920, 1.038) 

0.980 
(0.932, 1.031) 

0.986 
(0.901, 1.079) 

RE 0.832 1.056 0.836 0.617 0.523 0.609 0.711 1.037 
LA Ind. (0.656, 1.054) (0.732, 1.524) (0.515, 1.358) (0.282, 1.351) (0.219, 1.252) (0.401, 0.924) (0.501, 1.008) (0.546, 1.969) 

1.059 1.002 1.083 1.142 1.261 1.174 1.097 0.932 
LA*PM2.5 (0.965, 1.163) (0.867, 1.158) (0.895, 1.310) (0.840, 1.551) (0.897, 1.772) (0.997, 1.383) (0.957, 1.259) (0.723, 1.202) 

PM2.5 
1.011 
(0.976, 1.047) 

1.055 
(0.996, 1.117) 

1.124 
(1.043, 1.211) 

1.019 
(0.913, 1.138) 

1.005 
(0.886, 1.142) 

0.977 
(0.920, 1.039) 

0.980 
(0.932, 1.031) 

0.989 
(0.902, 1.084) 

0.54 4.37 4.86 0.91 0.49 0.75 0.30 6.07 
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...Continues from previous page (Table 31). 

Covariate 
Cause of Death 

All Cause CVD IHD Respiratory Lung Cancer All Cancers Other Others no Cancers 
(n=20,358) (n=8,300) (n=4,693) (n=2,034) (n=1,535) (n=6,713) (n=9,639) (n= 2,926) 

+CMSA SC 0.785 0.735 0.872 0.775 1.225 0.829 0.845 0.878 
5‐indicator CM1 (0.683, 0.903) (0.587, 0.919) (0.660, 1.153) (0.492, 1.223) (0.786, 1.909) (0.651, 1.057) (0.693, 1.030) (0.623, 1.237) 

0.988 1.061 1.159 0.844 0.980 1.016 0.966 0.864 
CM2 

(0.937, 1.041) (0.977, 1.152) (1.037, 1.295) (0.716, 0.994) (0.803, 1.197) (0.925, 1.116) (0.894, 1.044) (0.752, 0.992) 

CM3 0.969 0.939 1.018 0.916 1.075 1.024 1.026 1.033 
(0.905, 1.038) (0.842, 1.047) (0.880, 1.179) (0.742, 1.131) (0.843, 1.369) (0.910, 1.153) (0.931, 1.131) (0.869, 1.227) 

CM4 1.003 0.938 1.115 0.806 0.943 1.178 1.115 0.992 
(0.935, 1.076) (0.838, 1.051) (0.961, 1.294) (0.647, 1.003) (0.723, 1.230) (1.045, 1.328) (1.009, 1.232) (0.826, 1.190) 

CM5 1.048 1.039 1.157 0.927 1.140 1.113 1.092 1.050 
(0.997, 1.102) (0.959, 1.124) (1.039, 1.289) (0.795, 1.082) (0.949, 1.370) (1.020, 1.215) (1.016, 1.174) (0.923, 1.196) 

PM2.5LUR 1.038 1.078 1.140 1.058 1.079 0.998 1.008 1.031 
(1.001, 1.077) (1.018, 1.141) (1.056, 1.231) (0.942, 1.188) (0.943, 1.234) (0.937, 1.064) (0.956, 1.064) (0.936, 1.135) 

RE 0.785 0.735 0.872 0.775 1.225 0.829 0.845 0.878 
CM1 (0.682, 0.904) (0.586, 0.922) (0.658, 1.155) (0.491, 1.222) (0.785, 1.909) (0.650, 1.058) (0.693, 1.030) (0.622, 1.240) 

0.987 1.061 1.158 0.843 0.980 1.016 0.966 0.865 
CM2 

(0.936, 1.041) (0.975, 1.155) (1.035, 1.296) (0.715, 0.994) (0.803, 1.196) (0.925, 1.116) (0.893, 1.044) (0.752, 0.995) 

CM3 0.969 0.938 1.018 0.915 1.075 1.024 1.027 1.036 
(0.905, 1.038) (0.839, 1.050) (0.878, 1.181) (0.741, 1.131) (0.843, 1.370) (0.910, 1.154) (0.931, 1.132) (0.871, 1.234) 

CM4 1.003 0.938 1.115 0.806 0.942 1.178 1.115 0.992 
(0.934, 1.076) (0.835, 1.055) (0.959, 1.296) (0.647, 1.004) (0.722, 1.230) (1.045, 1.328) (1.009, 1.233) (0.825, 1.193) 

CM5 1.048 1.041 1.157 0.927 1.140 1.113 1.092 1.050 
(0.997, 1.102) (0.959, 1.129) (1.037, 1.291) (0.794, 1.082) (0.949, 1.370) (1.020, 1.215) (1.016, 1.174) (0.921, 1.197) 

PM2.5LUR 1.039 1.079 1.141 1.058 1.079 0.999 1.009 1.032 
(1.001, 1.078) (1.018, 1.144) (1.056, 1.232) (0.942, 1.189) (0.943, 1.234) (0.937, 1.065) (0.956, 1.064) (0.936, 1.137) 
0.325 3.061 2.379 0.957 0.537 0.496 0.249 3.237 
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Table 32: Hazard ratios of PM2.5RS individual‐level (IQR= 5.39) for selected causes of death in the ACS cohort with follow‐up from 1982 to 2000, adjusting for 

individual level covariates and ecologic level (1990) covariates, stratifying the baseline hazard function by age (1‐year groupings), gender and race using the 

Standard Cox Model and the Random Effects model, 1 cluster level (ZIP), (95% confidence intervals given in parenthesis), ZIP variance (10‐3) beneath, n = 

76,105. 

Covariate 
Cause of Death 

All Cause CVD IHD Respiratory Lung Cancer All Cancers Other Others no Cancers 
(n=20,358) (n=8,300) (n=4,693) (n=2,034) (n=1,535) (n=6,713) (n=9,639) (n= 2,926) 

Individual 
covariates 

SC 0.995 
(0.966, 1.024) 

1.082 
(1.035, 1.132) 

1.139 
(1.074, 1.209) 

0.960 
(0.876, 1.053) 

0.978 
(0.881, 1.087) 

0.963 
(0.916, 1.013) 

0.938 
(0.900, 0.979) 

0.884 
(0.819, 0.955) 

RE 0.998 
(0.967, 1.029) 
4.38 

1.082 
(1.032, 1.134) 
6.17 

1.140 
(1.071, 1.214) 
10.04 

0.962 
(0.877, 1.055) 
3.51 

0.979 
(0.881, 1.087) 
0.55 

0.964 
(0.916, 1.015) 
4.60 

0.940 
(0.900, 0.982) 
3.49 

0.887 
(0.820, 0.959) 
9.93 

+7 1990 
Ecological 

SC 0.999 
(0.969, 1.030) 

1.077 
(1.027, 1.129) 

1.139 
(1.069, 1.213) 

0.988 
(0.896, 1.090) 

0.992 
(0.886, 1.109) 

0.968 
(0.917, 1.021) 

0.945 
(0.904, 0.988) 

0.896 
(0.827, 0.972) 

RE 0.999 
(0.969, 1.031) 
0.88 

1.076 
(1.024, 1.131) 
4.32 

1.139 
(1.067, 1.215) 
4.52 

0.989 
(0.896, 1.091) 
0.94 

0.992 
(0.886, 1.110) 
0.50 

0.968 
(0.917, 1.022) 
1.79 

0.946 
(0.904, 0.989) 
0.96 

0.898 
(0.827, 0.976) 
7.78 

+ LA SC 0.966 1.069 1.037 0.864 0.957 0.911 0.904 0.888 
indicator LA Ind. (0.930, 1.004) (1.008, 1.134) (0.959, 1.121) (0.763, 0.979) (0.831, 1.102) (0.852, 0.975) (0.854, 0.956) (0.801, 0.985) 

PM2.5 1.011 1.052 1.125 1.038 1.007 1.000 0.979 0.934 
(0.978, 1.045) (0.998, 1.108) (1.050, 1.205) (0.933, 1.154) (0.891, 1.138) (0.943, 1.060) (0.933, 1.028) (0.855, 1.020) 

RE 0.967 1.070 1.037 0.864 0.957 0.912 0.904 0.889 
LA Ind. (0.930, 1.005) (1.007, 1.137) (0.957, 1.122) (0.763, 0.979) (0.830, 1.102) (0.852, 0.976) (0.854, 0.957) (0.801, 0.987) 
PM2.5 1.011 1.051 1.124 1.038 1.007 1.000 0.979 0.934 

(0.978, 1.046) (0.995, 1.109) (1.048, 1.206) (0.934, 1.154) (0.891, 1.138) (0.943, 1.060) (0.933, 1.028) (0.855, 1.022) 
0.66 3.98 4.35 0.96 0.50 0.96 0.33 5.17 

+ LA * PM2.5 SC 0.796 0.948 0.872 0.498 0.610 0.672 0.752 0.988 
LA Ind. (0.678, 0.935) (0.744, 1.209) (0.630, 1.207) (0.290, 0.856) (0.332, 1.117) (0.504, 0.895) (0.592, 0.956) (0.640, 1.523) 

1.114 1.069 1.101 1.357 1.285 1.185 1.108 0.941 
LA*PM2.5 (1.021, 1.216) (0.937, 1.220) (0.923, 1.312) (1.015, 1.814) (0.927, 1.783) (1.015, 1.385) (0.973, 1.262) (0.742, 1.194) 

PM2.5 
0.992 
(0.956, 1.029) 

1.038 
(0.980, 1.100) 

1.105 
(1.024, 1.193) 

0.988 
(0.880, 1.110) 

0.965 
(0.843, 1.104) 

0.972 
(0.912, 1.036) 

0.963 
(0.913, 1.015) 

0.943 
(0.857, 1.038) 

RE 0.796 0.955 0.873 0.498 0.609 0.671 0.752 0.988 
LA Ind. (0.677, 0.936) (0.745, 1.225) (0.627, 1.214) (0.289, 0.856) (0.332, 1.117) (0.503, 0.896) (0.592, 0.956) (0.638, 1.531) 

1.114 1.065 1.100 1.358 1.286 1.186 1.108 0.942 
LA*PM2.5 (1.020, 1.217) (0.930, 1.219) (0.920, 1.315) (1.015, 1.815) (0.927, 1.783) (1.014, 1.387) (0.973, 1.262) (0.741, 1.197) 

PM2.5 
0.992 
(0.956, 1.029) 

1.038 
(0.978, 1.102) 

1.105 
(1.022, 1.194) 

0.989 
(0.880, 1.111) 

0.965 
(0.843, 1.104) 

0.972 
(0.911, 1.036) 

0.963 
(0.913, 1.015) 

0.944 
(0.856, 1.040) 

0.41 3.69 4.13 0.94 0.50 0.84 0.31 5.09 
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Table 33: Hazard ratios of Ozone IDW at ZIP code‐level (IQR=24.07) for selected causes of death in the ACS cohort with follow‐up from 1982 to 2000, 

adjusting for individual level and ecologic covariates, stratifying the baseline hazard function by age (1‐year groupings), gender and race using the Standard 

Cox Model and the Random Effects model, 1 cluster level (ZIP), (95% confidence intervals given in parenthesis), ZIP variance (10‐3) beneath, n = 76,135. 

Covariate 
Cause of Death 

All Cause CVD IHD Respiratory Lung Cancer All Cancers Other Others no Cancers 
(n=20,432) (n=8,327) (n=4,710) (n=2,044) (n=1,540) (n=6,739) (n=9,676) (n= 2,937) 

Individual 
covariates 

SC 0.989 
(0.967, 1.012) 

1.062 
(1.024, 1.101) 

1.114 
(1.062, 1.168) 

0.979 
(0.910, 1.053) 

0.936 
(0.860, 1.018) 

0.927 
(0.890, 0.965) 

0.939 
(0.908, 0.971) 

0.968 
(0.911, 1.029) 

RE 0.987 
(0.963, 1.012) 
4.40 

1.062 
(1.022, 1.103) 
7.06 

1.113 
(1.059, 1.171) 
10.96 

0.977 
(0.908, 1.052) 
4.82 

0.936 
(0.860, 1.018) 
0.66 

0.925 
(0.888, 0.964) 
3.83 

0.938 
(0.906, 0.971) 
3.67 

0.971 
(0.911, 1.034) 
13.02 

+7 1990 Ecol SC 0.979 
(0.955, 1.003) 

1.051 
(1.011, 1.091) 

1.097 
(1.043, 1.154) 

0.974 
(0.901, 1.052) 

0.917 
(0.839, 1.002) 

0.919 
(0.880, 0.959) 

0.930 
(0.897, 0.964) 

0.958 
(0.898, 1.022) 

RE 0.979 
(0.955, 1.003) 
0.83 

1.051 
(1.009, 1.094) 
5.77 

1.097 
(1.041, 1.156) 
7.15 

0.973 
(0.901, 1.052) 
1.24 

0.917 
(0.839, 1.002) 
0.57 

0.918 
(0.880, 0.959) 
0.84 

0.930 
(0.897, 0.964) 
0.53 

0.960 
(0.898, 1.025) 
8.81 

+ LA SC 0.982 1.081 1.051 0.870 1.006 0.954 0.922 0.855 
indicator LA Ind. (0.945, 1.020) (1.020, 1.145) (0.974, 1.135) (0.769, 0.984) (0.874, 1.157) (0.893, 1.021) (0.872, 0.975) (0.772, 0.947) 

Ozone 0.984 1.028 1.082 1.011 0.915 0.931 0.952 1.000 
(0.958, 1.011) (0.986, 1.071) (1.024, 1.143) (0.930, 1.100) (0.830, 1.009) (0.889, 0.976) (0.916, 0.990) (0.932, 1.073) 

RE 0.982 1.081 1.051 0.870 1.006 0.955 0.922 0.856 
LA Ind. (0.945, 1.021) (1.018, 1.148) (0.971, 1.137) (0.769, 0.984) (0.874, 1.158) (0.893, 1.021) (0.872, 0.976) (0.772, 0.949) 
Ozone 0.984 1.027 1.082 1.011 0.915 0.931 0.952 1.001 

(0.957, 1.011) (0.984, 1.073) (1.022, 1.145) (0.930, 1.099) (0.830, 1.010) (0.888, 0.976) (0.915, 0.990) (0.932, 1.075) 
0.71 5.16 6.75 1.04 0.57 0.69 0.29 4.86 

+ LA * O3 SC 1.119 1.495 1.585 1.905 1.092 0.804 0.776 0.704 
LA Ind. (0.885, 1.413) (1.049, 2.131) (0.989, 2.540) (0.876, 4.144) (0.465, 2.561) (0.532, 1.214) (0.548, 1.098) (0.369, 1.340) 

0.948 0.876 0.846 0.727 0.967 1.072 1.072 1.082 
LA*O3 (0.863, 1.041) (0.759, 1.010) (0.700, 1.023) (0.531, 0.994) (0.687, 1.360) (0.909, 1.264) (0.933, 1.232) (0.836, 1.399) 

Ozone 0.989 1.040 1.099 1.036 0.918 0.926 0.946 0.994 
(0.961, 1.017) (0.996, 1.087) (1.037, 1.164) (0.950, 1.130) (0.829, 1.017) (0.882, 0.972) (0.909, 0.986) (0.924, 1.069) 

RE 1.122 1.483 1.576 1.909 1.093 0.805 0.777 0.716 
LA Ind. (0.886, 1.422) (1.029, 2.138) (0.972, 2.553) (0.876, 4.157) (0.466, 2.566) (0.532, 1.217) (0.548, 1.100) (0.374, 1.371) 

0.947 0.879 0.848 0.726 0.966 1.071 1.072 1.075 
LA*O3 (0.861, 1.041) (0.758, 1.018) (0.698, 1.029) (0.530, 0.994) (0.687, 1.359) (0.908, 1.264) (0.932, 1.232) (0.829, 1.393) 

Ozone 0.988 1.040 1.099 1.035 0.918 0.926 0.946 0.995 
(0.961, 1.017) (0.994, 1.089) (1.036, 1.166) (0.949, 1.129) (0.829, 1.017) (0.881, 0.972) (0.909, 0.986) (0.924, 1.072) 
0.74 4.61 6.01 1.06 0.57 0.66 0.26 4.21 
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Table 34: Hazard ratios of Ozone BME at ZIP code‐level (IQR=24.241) for selected causes of death in the ACS cohort with follow‐up from 1982 to 2000, 

adjusting for individual level and ecologic covariates, stratifying the baseline hazard function by age (1‐year groupings), gender and race using the Standard 

Cox Model and the Random Effects model, 1 cluster level (ZIP), (95% confidence intervals given in parenthesis), ZIP variance (10‐3) beneath, n = 69,551. 

Covariate 
Cause of Death 

All Cause CVD IHD Respiratory Lung Cancer All Cancers Other Others no Cancers 
(n=18,542) (n=7,554) (n=4,276) (n=1,828) (n=1,402) (n=6,142) (n=8,811) (n= 2,669) 

Individual 
covariates 

SC 0.985 
(0.961, 1.010) 

1.058 
(1.018, 1.099) 

1.099 
(1.045, 1.157) 

0.967 
(0.894, 1.045) 

0.930 
(0.851, 1.017) 

0.925 
(0.887, 0.966) 

0.935 
(0.903, 0.969) 

0.960 
(0.900, 1.024) 

RE 0.984 
(0.958, 1.011) 
4.99 

1.058 
(1.016, 1.102) 
7.28 

1.099 
(1.042, 1.160) 
10.59 

0.966 
(0.892, 1.045) 
3.36 

0.930 
(0.851, 1.018) 
0.55 

0.924 
(0.883, 0.966) 
6.21 

0.935 
(0.901, 0.971) 
5.17 

0.964 
(0.900, 1.032) 
17.24 

+7 1990 Ecol SC 0.973 
(0.948, 0.999) 

1.045 
(1.003, 1.090) 

1.076 
(1.019, 1.136) 

0.962 
(0.884, 1.046) 

0.900 
(0.817, 0.990) 

0.917 
(0.876, 0.960) 

0.925 
(0.890, 0.961) 

0.945 
(0.881, 1.013) 

RE 0.973 
(0.947, 1.000) 
1.18 

1.046 
(1.001, 1.092) 
6.59 

1.076 
(1.017, 1.139) 
6.94 

0.961 
(0.884, 1.046) 
0.96 

0.900 
(0.818, 0.991) 
0.45 

0.917 
(0.875, 0.960) 
1.24 

0.925 
(0.890, 0.961) 
0.52 

0.948 
(0.882, 1.019) 
11.88 

+ LA SC 0.990 1.096 1.073 0.875 1.063 0.959 0.926 0.856 
indicator LA Ind. (0.951, 1.030) (1.030, 1.165) (0.988, 1.164) (0.768, 0.998) (0.915, 1.235) (0.893, 1.030) (0.872, 0.982) (0.768, 0.954) 

Ozone 0.977 1.013 1.051 1.005 0.881 0.930 0.950 0.995 
(0.948, 1.006) (0.967, 1.062) (0.989, 1.118) (0.915, 1.104) (0.789, 0.983) (0.883, 0.980) (0.909, 0.992) (0.921, 1.076) 

RE 0.991 1.097 1.073 0.875 1.063 0.960 0.926 0.857 
LA Ind. (0.951, 1.032) (1.028, 1.170) (0.986, 1.167) (0.768, 0.998) (0.915, 1.235) (0.893, 1.031) (0.872, 0.983) (0.768, 0.957) 
Ozone 0.976 1.013 1.051 1.005 0.881 0.930 0.950 0.997 

(0.947, 1.006) (0.964, 1.064) (0.987, 1.120) (0.914, 1.104) (0.789, 0.983) (0.882, 0.980) (0.909, 0.992) (0.921, 1.080) 
1.12 5.88 6.42 0.76 0.45 1.06 0.29 8.38 

+ LA * O3 SC 1.070 1.559 1.763 1.748 0.933 0.767 0.689 0.528 
LA Ind. (0.841, 1.362) (1.082, 2.248) (1.083, 2.868) (0.784, 3.896) (0.388, 2.243) (0.501, 1.173) (0.481, 0.986) (0.272, 1.026) 

0.968 0.864 0.815 0.752 1.054 1.096 1.128 1.217 
LA*O3 (0.878, 1.067) (0.745, 1.003) (0.668, 0.993) (0.543, 1.042) (0.740, 1.502) (0.923, 1.301) (0.976, 1.303) (0.932, 1.589) 

Ozone 0.980 1.030 1.075 1.031 0.876 0.922 0.939 0.977 
(0.950, 1.011) (0.980, 1.082) (1.008, 1.146) (0.935, 1.137) (0.780, 0.983) (0.873, 0.974) (0.897, 0.982) (0.900, 1.061) 

RE 1.074 1.545 1.750 1.750 0.934 0.767 0.690 0.539 
LA Ind. (0.839, 1.374) (1.056, 2.258) (1.064, 2.878) (0.784, 3.904) (0.388, 2.247) (0.500, 1.177) (0.481, 0.987) (0.275, 1.057) 

0.967 0.868 0.817 0.752 1.054 1.096 1.128 1.208 
LA*O3 (0.875, 1.068) (0.744, 1.013) (0.668, 1.001) (0.543, 1.042) (0.740, 1.502) (0.922, 1.302) (0.976, 1.303) (0.921, 1.583) 

Ozone 0.979 1.029 1.074 1.030 0.876 0.922 0.939 0.979 
(0.948, 1.012) (0.977, 1.084) (1.005, 1.148) (0.934, 1.137) (0.780, 0.983) (0.872, 0.974) (0.897, 0.983) (0.900, 1.065) 
1.14 5.25 1.14 0.76 0.45 0.94 0.23 6.40 
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Table 35: Hazard ratios of NO2 IDW at individual‐level (IQR=17.17) for selected causes of death in the ACS cohort with follow‐up from 1982 to 2000, 

adjusting for individual and ecologic level covariates, stratifying the baseline hazard function by age (1‐year groupings), gender and race using the Standard 

Cox Model and the Random Effects model, 1 cluster level (ZIP), (95% confidence intervals given in parenthesis), ZIP variance (10‐3) beneath, n = 75,364. 

Covariate 
Cause of Death 

All Cause CVD IHD Respiratory Lung Cancer All Cancers Other Others no Cancers 
(n=20,162) (n=8,237) (n=4,667) (n=2,012) (n=1,518) (n=6,636) (n=9,534) (n= 2,898) 

Individual 
covariates 

SC 0.990 
(0.967, 1.014) 

1.080 
(1.042, 1.120) 

1.124 
(1.071, 1.179) 

0.928 
(0.861, 1.001) 

0.949 
(0.870, 1.035) 

0.949 
(0.911, 0.989) 

0.933 
(0.902, 0.966) 

0.898 
(0.844, 0.956) 

RE 0.992 
(0.967, 1.017) 
4.49 

1.081 
(1.040, 1.123) 
6.46 

1.123 
(1.068, 1.181) 
8.98 

0.929 
(0.861, 1.002) 
3.64 

0.949 
(0.870, 1.035) 
0.62 

0.951 
(0.911, 0.992) 
2.98 

0.934 
(0.902, 0.968) 
2.51 

0.899 
(0.843, 0.959) 
11.15 

+7 1990 Ecol SC 1.007 
(0.981, 1.034) 

1.104 
(1.060, 1.150) 

1.166 
(1.105, 1.230) 

0.956 
(0.879, 1.040) 

0.968 
(0.878, 1.067) 

0.957 
(0.913, 1.002) 

0.943 
(0.907, 0.980) 

0.913 
(0.852, 0.979) 

RE 1.008 
(0.981, 1.035) 
0.91 

1.104 
(1.059, 1.151) 
3.63 

1.165 
(1.104, 1.230) 
1.77 

0.956 
(0.879, 1.040) 
1.20 

0.968 
(0.878, 1.067) 
0.57 

0.957 
(0.913, 1.002) 
1.10 

0.943 
(0.907, 0.980) 
0.70 

0.914 
(0.852, 0.981) 
8.77 

+ LA SC 0.935 1.001 0.912 0.836 0.963 0.910 0.898 0.873 
indicator LA Ind. (0.891, 0.981) (0.929, 1.079) (0.826, 1.006) (0.715, 0.977) (0.808, 1.147) (0.836, 0.990) (0.837, 0.964) (0.767, 0.993) 

NO2 1.044 1.103 1.225 1.048 0.987 1.005 0.997 0.979 
(1.006, 1.082) (1.042, 1.168) (1.136, 1.321) (0.934, 1.177) (0.863, 1.128) (0.943, 1.071) (0.946, 1.052) (0.890, 1.078) 

RE 0.935 1.003 0.912 0.836 0.963 0.910 0.898 0.876 
LA Ind. (0.891, 0.982) (0.929, 1.082) (0.826, 1.007) (0.715, 0.977) (0.808, 1.147) (0.836, 0.990) (0.837, 0.964) (0.769, 0.998) 
NO2 1.043 1.102 1.224 1.048 0.987 1.005 0.997 0.978 

(1.006, 1.083) (1.040, 1.169) (1.135, 1.320) (0.934, 1.177) (0.863, 1.129) (0.943, 1.072) (0.945, 1.052) (0.888, 1.078) 
0.42 3.64 1.20 1.05 0.57 0.87 0.38 6.15 

+ LA * NO2 SC 0.752 0.940 0.923 0.379 0.719 0.782 0.694 0.520 
LA Ind. (0.603, 0.937) (0.676, 1.307) (0.589, 1.446) (0.170, 0.845) (0.316, 1.636) (0.533, 1.148) (0.502, 0.961) (0.281, 0.960) 

1.110 1.030 0.994 1.452 1.151 1.075 1.131 1.281 
LA*NO2 (1.001, 1.231) (0.883, 1.203) (0.806, 1.225) (1.005, 2.098) (0.782, 1.693) (0.898, 1.288) (0.972, 1.318) (0.964, 1.704) 

NO2 
1.027 1.098 1.226 1.002 0.967 0.994 0.979 0.946 
(0.988, 1.069) (1.032, 1.169) (1.130, 1.330) (0.885, 1.135) (0.836, 1.118) (0.928, 1.066) (0.924, 1.038) (0.853, 1.050) 

RE 0.752 0.947 0.925 0.379 0.719 0.780 0.694 0.524 
LA Ind. (0.603, 0.938) (0.676, 1.326) (0.589, 1.451) (0.170, 0.846) (0.315, 1.636) (0.531, 1.147) (0.501, 0.961) (0.282, 0.972) 

1.110 1.028 0.993 1.452 1.151 1.077 1.132 1.278 
LA*NO2 (1.001, 1.231) (0.877, 1.204) (0.805, 1.225) (1.005, 2.099) (0.783, 1.694) (0.898, 1.291) (0.972, 1.319) (0.959, 1.703) 

NO2 
1.027 1.097 1.225 1.002 0.967 0.994 0.979 0.946 
(0.987, 1.069) (1.030, 1.170) (1.129, 1.330) (0.884, 1.135) (0.836, 1.119) (0.927, 1.066) (0.924, 1.038) (0.851, 1.051) 
0.36 3.58 1.20 1.01 0.57 0.95 0.38 4.90 
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Table 36: Hazard ratios of NO2LUR at individual‐level (IQR= 4.12) for selected causes of death in the ACS cohort with follow‐up from 1982 to 2000, adjusting 

for individual and ecologic level covariates, stratifying the baseline hazard function by age (1‐year groupings), gender and race using the Standard Cox 

Model and the Random Effects model, 1 cluster level (ZIP), (95% confidence intervals given in parenthesis), ZIP variance (10‐3) beneath, n = 76,105. 

Covariate 
Cause of Death 

All Cause CVD IHD Respiratory Lung Cancer All Cancers Other Others no Cancers 
(n=20,358) (n=8,300) (n=4,693) (n=2,034) (n=1,535) (n=6,713) (n=9,639) (n= 2,926) 

Individual 
covariates 

SC 0.993 
(0.966, 1.020) 

1.072 
(1.027, 1.119) 

1.127 
(1.065, 1.193) 

0.952 
(0.873, 1.038) 

0.991 
(0.898, 1.094) 

0.960 
(0.916, 1.006) 

0.944 
(0.908, 0.982) 

0.910 
(0.847, 0.977) 

RE 0.996 
(0.968, 1.026) 
4.35 

1.073 
(1.026, 1.123) 
6.84 

1.129 
(1.064, 1.198) 
11.05 

0.953 
(0.873, 1.040) 
3.61 

0.991 
(0.898, 1.094) 
0.56 

0.961 
(0.915, 1.009) 
4.52 

0.946 
(0.908, 0.985) 
3.50 

0.914 
(0.849, 0.984) 
10.64 

+7 1990 
Ecological 

SC 1.005 
(0.976, 1.035) 

1.079 
(1.031, 1.130) 

1.147 
(1.080, 1.218) 

0.985 
(0.898, 1.081) 

1.017 
(0.915, 1.131) 

0.967 
(0.920, 1.017) 

0.956 
(0.916, 0.997) 

0.931 
(0.863, 1.005) 

RE 1.006 
(0.976, 1.036) 
0.92 

1.080 
(1.030, 1.132) 
4.81 

1.148 
(1.079, 1.221) 
5.14 

0.986 
(0.898, 1.082) 
0.95 

1.018 
(0.915, 1.131) 
0.51 

0.967 
(0.919, 1.018) 
1.85 

0.956 
(0.917, 0.998) 
1.08 

0.935 
(0.865, 1.011) 
8.76 

+ LA SC 0.961 1.063 1.023 0.863 0.940 0.911 0.898 0.871 
indicator LA Ind. (0.925, 1.000) (1.002, 1.129) (0.945, 1.107) (0.760, 0.979) (0.814, 1.085) (0.851, 0.976) (0.848, 0.951) (0.784, 0.967) 

PM2.5 1.019 1.055 1.138 1.037 1.040 1.000 0.993 0.977 
(0.987, 1.053) (1.003, 1.110) (1.064, 1.216) (0.936, 1.149) (0.925, 1.169) (0.945, 1.057) (0.948, 1.040) (0.898, 1.063) 

RE 0.962 1.064 1.022 0.862 0.940 0.912 0.898 0.872 
LA Ind. (0.924, 1.000) (1.000, 1.131) (0.942, 1.108) (0.760, 0.979) (0.814, 1.085) (0.851, 0.977) (0.848, 0.952) (0.784, 0.969) 
PM2.5 1.020 1.056 1.138 1.037 1.040 1.000 0.993 0.979 

(0.987, 1.053) (1.002, 1.112) (1.063, 1.219) (0.936, 1.149) (0.925, 1.169) (0.945, 1.058) (0.948, 1.040) (0.899, 1.067) 
0.68 4.37 5.01 0.91 0.50 0.96 0.34 5.93 

+ LA * PM2.5 SC 0.829 1.045 0.835 0.618 0.523 0.608 0.710 1.030 
LA Ind. (0.655, 1.050) (0.730, 1.497) (0.517, 1.347) (0.282, 1.351) (0.219, 1.251) (0.401, 0.922) (0.501, 1.006) (0.545, 1.946) 

1.060 1.006 1.084 1.141 1.261 1.174 1.098 0.934 
LA*PM2.5 (0.966, 1.164) (0.873, 1.160) (0.898, 1.308) (0.840, 1.550) (0.897, 1.772) (0.997, 1.383) (0.957, 1.259) (0.726, 1.202) 

PM2.5 
1.011 
(0.976, 1.046) 

1.054 
(0.997, 1.114) 

1.123 
(1.044, 1.209) 

1.019 
(0.913, 1.138) 

1.006 
(0.886, 1.142) 

0.977 
(0.920, 1.038) 

0.980 
(0.932, 1.031) 

0.986 
(0.901, 1.079) 

RE 0.832 1.056 0.836 0.617 0.523 0.609 0.711 1.037 
LA Ind. (0.656, 1.054) (0.732, 1.524) (0.515, 1.358) (0.282, 1.351) (0.219, 1.252) (0.401, 0.924) (0.501, 1.008) (0.546, 1.969) 

1.059 1.002 1.083 1.142 1.261 1.174 1.097 0.932 
LA*PM2.5 (0.965, 1.163) (0.867, 1.158) (0.895, 1.310) (0.840, 1.551) (0.897, 1.772) (0.997, 1.383) (0.957, 1.259) (0.723, 1.202) 

PM2.5 
1.011 
(0.976, 1.047) 

1.055 
(0.996, 1.117) 

1.124 
(1.043, 1.211) 

1.019 
(0.913, 1.138) 

1.005 
(0.886, 1.142) 

0.977 
(0.920, 1.039) 

0.980 
(0.932, 1.031) 

0.989 
(0.902, 1.084) 

0.54 4.37 4.86 0.91 0.49 0.75 0.30 6.07 

94 



 

 

           

   
     

                                                                                                                                                                            

       

 
 

 

 
   
 
   
 
   
 
   
 
   
 
   

 
   

 
   

 
   

 
   

 
   

 
   

 
   

 
   

 
   

 
   

 
   

 
   

 
   

 
   

 
   

 
   

 
   

 
   

 
   

 
   

 
   

 
   

 
   

 
   

 
   

 
   

 
   

 
   

 
   

 
   

 
   

 
   

 
   

 
   

 
   

 
   

 
   

 
   

 
   

 
   

 
   

 
   

 
   

 
   

 
   

 
   

 
   

 
   

   
   
 
   
 
   
 
   
 
   
 
   
 

 
   

 
   

 
   

 
   

 
   

 
   

 

 
   

 
   

 
   

 
   

 
   

 
   

 

 
   

 
   

 
   

 
   

 
   

 
   

 

 
   

 
   

 
   

 
   

 
   

 
   

 

 
   

 
   

 
   

 
   

 
   

 
   

 

 
   

 
   

 
   

 
   

 
   

 
   

 

 
   

 
   

 
   

 
   

 
   

 
   

 

 
   

 
   

 
   

 
   

 
   

 
   

 

 

...Continues from previous page (Table 36). 

Covariate 
Cause of Death 

All Cause CVD IHD Respiratory Lung Cancer All Cancers Other Others no Cancers 
(n=20,358) (n=8,300) (n=4,693) (n=2,034) (n=1,535) (n=6,713) (n=9,639) (n= 2,926) 

+CMSA SC 0.799 0.765 0.941 0.811 1.251 0.819 0.844 0.899 
5‐indicator CM1 (0.697, 0.917) (0.614, 0.954) (0.716, 1.238) (0.518, 1.268) (0.812, 1.927) (0.646, 1.039) (0.695, 1.025) (0.642, 1.257) 

0.987 1.070 1.193 0.874 0.948 0.993 0.955 0.879 
CM2 

(0.937, 1.038) (0.988, 1.159) (1.070, 1.329) (0.746, 1.023) (0.783, 1.148) (0.907, 1.087) (0.886, 1.030) (0.769, 1.006) 

CM3 0.956 0.922 0.995 0.924 1.022 1.008 1.015 1.036 
(0.892, 1.025) (0.825, 1.030) (0.858, 1.155) (0.745, 1.144) (0.799, 1.308) (0.893, 1.137) (0.919, 1.121) (0.869, 1.235) 

CM4 1.002 0.943 1.134 0.825 0.916 1.159 1.107 1.003 
(0.934, 1.074) (0.843, 1.056) (0.978, 1.314) (0.665, 1.025) (0.704, 1.193) (1.029, 1.305) (1.002, 1.222) (0.838, 1.202) 

CM5 1.025 1.002 1.098 0.924 1.064 1.094 1.078 1.047 
(0.973, 1.080) (0.922, 1.088) (0.981, 1.228) (0.787, 1.084) (0.879, 1.288) (0.999, 1.198) (1.000, 1.162) (0.915, 1.197) 

NO2LUR 1.047 1.072 1.100 1.002 1.169 1.042 1.030 1.002 
(1.012, 1.084) (1.016, 1.132) (1.024, 1.181) (0.898, 1.118) (1.031, 1.325) (0.982, 1.106) (0.980, 1.083) (0.916, 1.097) 

RE 0.799 0.766 0.941 0.810 1.251 0.819 0.844 0.899 
CM1 (0.696, 0.917) (0.613, 0.957) (0.714, 1.241) (0.518, 1.267) (0.811, 1.927) (0.646, 1.040) (0.695, 1.025) (0.642, 1.260) 

0.986 1.070 1.192 0.873 0.948 0.993 0.955 0.880 
CM2 

(0.937, 1.038) (0.986, 1.162) (1.068, 1.330) (0.746, 1.023) (0.783, 1.148) (0.906, 1.087) (0.886, 1.030) (0.769, 1.008) 

CM3 0.956 0.921 0.995 0.923 1.022 1.008 1.016 1.039 
(0.892, 1.026) (0.821, 1.032) (0.855, 1.158) (0.744, 1.144) (0.799, 1.309) (0.893, 1.137) (0.919, 1.122) (0.870, 1.241) 

CM4 1.002 0.943 1.133 0.825 0.916 1.159 1.107 1.004 
(0.934, 1.074) (0.839, 1.059) (0.975, 1.317) (0.665, 1.025) (0.703, 1.193) (1.028, 1.306) (1.002, 1.222) (0.836, 1.205) 

CM5 1.025 1.003 1.097 0.923 1.064 1.094 1.078 1.046 
(0.972, 1.080) (0.922, 1.092) (0.979, 1.230) (0.786, 1.084) (0.879, 1.289) (0.998, 1.198) (0.999, 1.162) (0.913, 1.198) 

NO2LUR 1.048 1.074 1.101 1.002 1.169 1.042 1.031 1.003 
(1.012, 1.085) (1.016, 1.134) (1.024, 1.183) (0.898, 1.118) (1.031, 1.325) (0.982, 1.107) (0.980, 1.083) (0.916, 1.098) 
0.376 3.112 3.127 0.889 0.508 0.553 0.266 3.089 
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Table 37: Hazard ratios of PM10 at individual‐level (IQR=17.3150) for selected causes of death in the ACS cohort with follow‐up from 1982 to 2000, adjusting 

for individual ecologic level covariates, stratifying the baseline hazard function by age (1‐year groupings), gender and race using the Standard Cox Model 

and the Random Effects model, 1 cluster level (ZIP), (95% confidence intervals given in parenthesis), ZIP variance (10‐3) beneath, n = 76,135. 

Covariate 
Cause of Death 

All Cause CVD IHD Respiratory Lung Cancer All Cancers Other Others no Cancers 
(n=20,432) (n=8,327) (n=4,710) (n=2,044) (n=1,540) (n=6,739) (n=9,676) (n= 2,937) 

Individual 
covariates 

SC 1.001 
(0.978, 1.025) 

1.081 
(1.042, 1.121) 

1.137 
(1.084, 1.193) 

0.982 
(0.911, 1.059) 

0.969 
(0.889, 1.056) 

0.955 
(0.916, 0.995) 

0.946 
(0.914, 0.980) 

0.929 
(0.872, 0.989) 

RE 1.002 
(0.977, 1.028) 
4.33 

1.082 
(1.041, 1.124) 
6.25 

1.138 
(1.082, 1.197) 
9.42 

0.982 
(0.910, 1.060) 
4.26 

0.969 
(0.889, 1.056) 
0.68 

0.955 
(0.916, 0.996) 
3.34 

0.947 
(0.914, 0.981) 
3.27 

0.930 
(0.872, 0.992) 
11.55 

+7 1990 Ecol SC 1.002 
(0.977, 1.029) 

1.079 
(1.036, 1.123) 

1.136 
(1.077, 1.198) 

1.007 
(0.927, 1.093) 

0.972 
(0.884, 1.069) 

0.957 
(0.915, 1.001) 

0.946 
(0.911, 0.983) 

0.924 
(0.863, 0.990) 

RE 1.002 
(0.976, 1.029) 
0.84 

1.079 
(1.034, 1.125) 
4.69 

1.136 
(1.075, 1.200) 
5.10 

1.006 
(0.926, 1.094) 
1.15 

0.972 
(0.884, 1.069) 
0.59 

0.957 
(0.914, 1.002) 
0.95 

0.947 
(0.911, 0.983) 
0.59 

0.925 
(0.862, 0.993) 
7.53 

+ LA SC 0.966 1.063 1.028 0.847 0.964 0.925 0.909 0.873 
indicator LA Ind. (0.929, 1.003) (1.003, 1.127) (0.952, 1.111) (0.748, 0.959) (0.837, 1.110) (0.865, 0.990) (0.859, 0.961) (0.787, 0.968) 

1.013 1.058 1.126 1.059 0.983 0.981 0.976 0.965 
PM10 

(0.985, 1.043) (1.012, 1.106) (1.062, 1.194) (0.968, 1.159) (0.886, 1.092) (0.933, 1.031) (0.936, 1.017) (0.895, 1.040) 

RE 0.966 1.064 1.028 0.847 0.964 0.926 0.909 0.874 
LA Ind. (0.929, 1.004) (1.002, 1.130) (0.950, 1.112) (0.748, 0.960) (0.837, 1.110) (0.865, 0.990) (0.859, 0.962) (0.788, 0.970) 

1.013 1.057 1.126 1.059 0.984 0.981 0.976 0.965 
PM10 (0.984, 1.043) (1.009, 1.108) (1.061, 1.196) (0.968, 1.159) (0.886, 1.092) (0.933, 1.031) (0.936, 1.017) (0.894, 1.041) 

0.61 4.41 4.95 1.02 0.59 0.70 0.30 4.45 
+ LA *PM10 SC 0.722 0.946 0.711 0.497 0.751 0.644 0.606 0.525 

LA Ind. (0.568, 0.918) (0.656, 1.363) (0.438, 1.156) (0.221, 1.117) (0.315, 1.790) (0.423, 0.980) (0.425, 0.864) (0.272, 1.014) 
1.142 1.054 1.183 1.274 1.121 1.181 1.203 1.262 

LA*PM10 (1.024, 1.273) (0.894, 1.244) (0.951, 1.471) (0.886, 1.832) (0.757, 1.660) (0.976, 1.428) (1.025, 1.412) (0.938, 1.697) 

PM10 1.005 1.054 1.114 1.046 0.976 0.971 0.965 0.952 
(0.976, 1.035) (1.007, 1.104) (1.049, 1.183) (0.954, 1.147) (0.877, 1.087) (0.923, 1.022) (0.925, 1.008) (0.881, 1.029) 

RE 0.723 0.955 0.714 0.497 0.752 0.644 0.607 0.530 
LA Ind. (0.568, 0.921) (0.655, 1.390) (0.436, 1.169) (0.221, 1.118) (0.315, 1.791) (0.422, 0.981) (0.425, 0.865) (0.273, 1.028) 

1.141 1.050 1.180 1.274 1.120 1.181 1.203 1.257 
LA*PM10 (1.023, 1.273) (0.886, 1.245) (0.946, 1.474) (0.886, 1.833) (0.756, 1.660) (0.976, 1.429) (1.025, 1.412) (0.932, 1.694) 

PM10 
1.005 
(0.976, 1.035) 

1.054 
(1.005, 1.106) 

1.115 
(1.048, 1.186) 

1.046 
(0.954, 1.147) 

0.977 
(0.877, 1.087) 

0.971 
(0.923, 1.023) 

0.965 
(0.925, 1.008) 

0.953 
(0.881, 1.030) 

0.37 4.28 4.29 1.00 0.59 0.66 0.25 3.18 
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Table 38: Hazard ratios of Sulfate IDW at individual‐level (IQR=2.6705) for selected causes of death in the ACS cohort with follow‐up from 1982 to 2000, 

adjusting for individual level covariates and Ecologic 1990, stratifying the baseline hazard function by age (1‐year groupings), gender and race using the 

Standard Cox Model and the Random Effects model, 1 cluster level (ZIP), (95% confidence intervals given in parenthesis), ZIP variance (10‐3) beneath, n = 

76,135. 

Covariate 
Cause of Death 

All Cause CVD IHD Respiratory Lung Cancer All Cancers Other Others no Cancers 
(n=20,432) (n=8,327) (n=4,710) (n=2,044) (n=1,540) (n=6,739) (n=9,676) (n= 2,937) 

Individual 
covariates 

SC 0.982 
(0.957, 1.009) 

1.068 
(1.025, 1.113) 

1.105 
(1.046, 1.166) 

0.886 
(0.817, 0.966) 

0.926 
(0.842, 1.019) 

0.972 
(0.929, 1.017) 

0.935 
(0.901, 0.972) 

0.858 
(0.801, 0.920) 

RE 0.984 
(0.957, 1.012) 
4.16 

1.068 
(1.023, 1.116) 
7.26 

1.103 
(1.042, 1.169) 
12.23 

0.889 
(0.817, 0.966) 
2.02 

0.926 
(0.842, 1.019) 
0.66 

0.972 
(0.928, 1.019) 
3.93 

0.936 
(0.900, 0.974) 
2.83 

0.859 
(0.800, 0.922) 
5.91 

+7 1990 Ecol SC 1.002 
(0.973, 1.032) 

1.091 
(1.042, 1.143) 

1.145 
(1.007, 1.217) 

0.918 
(0.836, 1.009) 

0.957 
(0.859, 1.066) 

0.992 
(0.943, 1.044) 

0.950 
(0.910, 0.991) 

0.859 
(0.795, 0.929) 

RE 1.002 
(0.973, 1.033) 
0.84 

1.092 
(1.041, 1.146) 
4.87 

1.144 
(1.074, 1.219) 
5.45 

0.918 
(0.836, 1.009) 
0.98 

0.957 
(0.859, 1.067) 
0.60 

0.992 
(0.942, 1.045) 
1.34 

0.950 
(0.910, 0.992) 
0.79 

0.860 
(0.795, 0.931) 
3.42 

+ LA SC 0.957 1.051 1.001 0.895 0.975 0.881 0.894 0.926 
indicator LA Ind. (0.917, 0.999) (0.984, 1.123) (0.917, 1.092) (0.779, 1.028) (0.834, 1.141) (0.818, 0.950) (0.839, 0.951) (0.824, 1.040) 

1.024 1.064 1.144 0.968 0.969 1.056 1.004 0.893 
Sulfate 

(0.987, 1.062) (1.004, 1.127) (1.061, 1.234) (0.864, 1.085) (0.849, 1.106) (0.992, 1.124) (0.953, 1.058) (0.810, 0.983) 

RE 0.957 1.052 1.001 0.895 0.975 0.882 0.894 0.927 
LA Ind. (0.917, 1.000) (0.982, 1.127) (0.916, 1.094) (0.779, 1.028) (0.834, 1.141) (0.818, 0.950) (0.839, 0.952) (0.824, 1.042) 

1.024 1.063 1.143 0.968 0.969 1.056 1.004 0.893 
Sulfate 

(0.987, 1.062) (1.001, 1.129) (1.058, 1.236) (0.864, 1.086) (0.849, 1.106) (0.991, 1.124) (0.952, 1.058) (0.810, 0.985) 
0.60 4.77 5.46 1.02 0.60 0.59 0.33 2.92 

+ LA *SO4 SC 0.727 0.852 0.739 0.330 0.836 0.671 0.757 1.023 
LA Ind. (0.537, 0.984) (0.538, 1.349) (0.398, 1.374) (0.113, 0.962) (0.281, 2.482) (0.395, 1.140) (0.487, 1.177) (0.463, 2.260) 

1.184 1.137 1.204 1.841 1.099 1.182 1.107 0.940 
LA*SO4 (0.984, 1.423) (0.860, 1.505) (0.826, 1.754) (0.965, 3.511) (0.565, 2.139) (0.857, 1.632) (0.846, 1.449) (0.579, 1.526) 

Sulfate 1.016 1.057 1.134 0.946 0.965 1.048 1.000 0.895 
(0.979, 1.055) (0.996, 1.121) (1.049, 1.226) (0.842, 1.064) (0.842, 1.105) (0.983, 1.118) (0.947, 1.055) (0.811, 0.988) 

RE 0.726 0.870 0.749 0.330 0.835 0.669 0.755 1.019 
LA Ind. (0.535, 0.986) (0.543, 1.394) (0.399, 1.406) (0.113, 0.962) (0.281, 2.481) (0.393, 1.138) (0.485, 1.176) (0.459, 2.262) 

1.185 1.124 1.195 1.842 1.100 1.185 1.109 0.942 
LA*SO4 (0.984, 1.427) (0.843, 1.498) (0.815, 1.753) (0.965, 3.518) (0.565, 2.142) (0.857, 1.638) (0.847, 1.452) (0.579, 1.534) 

Sulfate 1.016 1.057 1.134 0.946 0.965 1.048 0.999 0.895 
(0.979, 1.055) (0.994, 1.124) (1.047, 1.228) (0.842, 1.064) (0.842, 1.105) (0.983, 1.118) (0.947, 1.055) (0.810, 0.990) 
0.55 4.48 4.99 1.01 0.61 0.66 0.35 2.86 
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Table 39: Hazard ratios of Road Buffers at individual‐level (EXP100 or Mjr50) for selected causes of death in the ACS cohort with follow‐up from 1982 to 

2000, adjusting for individual and ecologic level covariates, stratifying the baseline hazard function by age (1‐year groupings), gender and race using the 

Standard Cox Model and the Random Effects model, 1 cluster level (ZIP), (95% confidence intervals given in parenthesis), ZIP variance (10‐3) beneath, n = 

76,105. 

Covariate 
Cause of Death 

All Cause CVD IHD Respiratory Lung Cancer All Cancers Other Others no Cancers 
(n=20,358) (n=8,300) (n=4,693) (n=2,034) (n=1,535) (n=6,713) (n=9,639) (n= 2,926) 

Individual 
covariates 

SC 1.021 
(0.985, 1.059) 

1.034 
(0.978, 1.093) 

1.045 
(0.971, 1.126) 

1.001 
(0.894, 1.120) 

0.922 
(0.803, 1.058) 

0.976 
(0.914, 1.042) 

1.008 
(0.955, 1.063) 

1.081 
(0.984, 1.188) 

RE 1.021 
(0.984, 1.059) 
4.33 

1.036 
(0.979, 1.095) 
7.88 

1.047 
(0.972, 1.128) 
14.29 

1.001 
(0.894, 1.120) 
4.47 

0.922 
(0.803, 1.058) 
0.57 

0.974 
(0.912, 1.040) 
5.41 

1.006 
(0.953, 1.062) 
5.04 

1.082 
(0.984, 1.189) 
15.45 

+7 1990 Ecol SC 1.014 
(0.978, 1.052) 

1.029 
(0.973, 1.088) 

1.036 
(0.962, 1.116) 

0.985 
(0.880, 1.104) 

0.914 
(0.797, 1.050) 

0.971 
(0.910, 1.037) 

1.001 
(0.949, 1.056) 

1.069 
(0.973, 1.175) 

RE 1.014 
(0.978, 1.052) 
0.88 

1.030 
(0.974, 1.090) 
5.97 

1.038 
(0.963, 1.118) 
8.93 

0.985 
(0.880, 1.104) 
0.96 

0.914 
(0.796, 1.050) 
0.50 

0.970 
(0.909, 1.036) 
2.28 

1.001 
(0.948, 1.056) 
1.90 

1.070 
(0.974, 1.177) 
12.07 

+ LA SC 0.972 1.096 1.096 0.878 0.956 0.910 0.895 0.863 
indicator LA Ind. (0.938, 1.007) (1.039, 1.157) (1.020, 1.178) (0.783, 0.986) (0.840, 1.089) (0.855, 0.968) (0.850, 0.943) (0.785, 0.949) 

RDbuf 1.013 1.035 1.042 0.979 0.913 0.966 0.995 1.060 
(0.977, 1.050) (0.978, 1.094) (0.967, 1.123) (0.874, 1.097) (0.795, 1.048) (0.905, 1.032) (0.943, 1.050) (0.965, 1.165) 

RE 0.972 1.097 1.095 0.878 0.956 0.910 0.895 0.865 
LA Ind. (0.938, 1.008) (1.037, 1.160) (1.017, 1.180) (0.782, 0.986) (0.840, 1.089) (0.855, 0.969) (0.850, 0.943) (0.786, 0.953) 
RDbuf 1.013 1.036 1.043 0.979 0.913 0.966 0.995 1.061 

(0.977, 1.050) (0.979, 1.095) (0.968, 1.124) (0.874, 1.097) (0.795, 1.048) (0.905, 1.031) (0.943, 1.050) (0.965, 1.167) 
0.67 4.82 7.46 0.88 0.49 1.04 0.35 6.83 

+ LA * Mjr50 SC 0.964 1.080 1.065 0.885 0.985 0.902 0.890 0.865 
LA Ind. (0.928, 1.002) (1.018, 1.145) (0.985, 1.152) (0.782, 1.003) (0.858, 1.131) (0.844, 0.964) (0.842, 0.941) (0.781, 0.959) 

1.052 1.095 1.183 0.951 0.801 1.061 1.033 0.982 
LA*RDbuf 

(0.962, 1.149) (0.959, 1.249) (0.995, 1.407) (0.709, 1.275) (0.558, 1.149) (0.902, 1.249) (0.903, 1.183) (0.771, 1.252) 

RDbuf 1.002 1.014 1.003 0.988 0.952 0.955 0.989 1.064 
(0.962, 1.044) (0.951, 1.080) (0.921, 1.092) (0.872, 1.120) (0.817, 1.108) (0.887, 1.027) (0.931, 1.050) (0.958, 1.181) 

RE 0.965 1.080 1.064 0.885 0.985 0.902 0.891 0.868 
LA Ind. (0.928, 1.002) (1.016, 1.147) (0.982, 1.153) (0.782, 1.003) (0.858, 1.131) (0.844, 0.965) (0.842, 0.942) (0.782, 0.963) 

1.052 1.096 1.184 0.951 0.801 1.061 1.033 0.981 
LA*RDbuf 

(0.962, 1.149) (0.961, 1.251) (0.995, 1.408) (0.709, 1.275) (0.558, 1.149) (0.902, 1.249) (0.903, 1.183) (0.769, 1.250) 

RDbuf 1.002 1.014 1.004 0.988 0.952 0.955 0.989 1.065 
(0.962, 1.044) (0.951, 1.081) (0.922, 1.093) (0.872, 1.120) (0.817, 1.108) (0.887, 1.027) (0.931, 1.050) (0.959, 1.183) 
0.65 4.90 7.39 0.88 0.50 1.03 0.35 6.86 
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Table 40: Hazard ratios of Road Buffer Mjr50 at individual‐level for selected causes of death in the ACS cohort with follow‐up from 1982 to 2000, adjusting 

for individual and Ecologic covariates level, stratifying the baseline hazard function by age (1‐year groupings), gender and race using the Standard Cox 

Model and the Random Effects model, 1 cluster level (ZIP), (95% confidence intervals given in parenthesis), ZIP variance (10‐3) beneath, n = 76,105. 

Covariate 
Cause of Death 

All Cause CVD IHD Respiratory Lung Cancer All Cancers Other Others no Cancers 
(n=20,358) (n=8,300) (n=4,693) (n=2,034) (n=1,535) (n=6,713) (n=9,639) (n= 2,926) 

Individual 
covariates 

SC 1.012 
(0.976, 1.051) 

1.025 
(0.968, 1.086) 

1.048 
(0.972, 1.130) 

0.977 
(0.870, 1.097) 

0.902 
(0.782, 1.040) 

0.964 
(0.902, 1.032) 

1.003 
(0.950, 1.060) 

1.092 
(0.992, 1.202) 

RE 1.012 
(0.975, 1.050) 
4.36 

1.027 
(0.970, 1.088) 
7.85 

1.050 
(0.973, 1.133) 
14.32 

0.977 
(0.870, 1.097) 
4.47 

0.902 
(0.782, 1.040) 
0.57 

0.963 
(0.900, 1.030) 
5.47 

1.002 
(0.948, 1.059) 
5.07 

1.092 
(0.992, 1.203) 
15.40 

+7 1990 Ecol SC 1.007 
(0.970, 1.045) 

1.021 
(0.965, 1.082) 

1.041 
(0.965, 1.123) 

0.963 
(0.857, 1.082) 

0.896 
(0.777, 1.034) 

0.961 
(0.898, 1.028) 

0.998 
(0.944, 1.054) 

1.080 
(0.981, 1.190) 

RE 1.007 
(0.970, 1.045) 
0.88 

1.023 
(0.966, 1.084) 
5.93 

1.043 
(0.966, 1.125) 
8.95 

0.963 
(0.857, 1.082) 
0.96 

0.896 
(0.777, 1.034) 
0.50 

0.960 
(0.897, 1.027) 
2.32 

0.997 
(0.944, 1.054) 
1.91 

1.081 
(0.982, 1.191) 
12.02 

+ LA SC 0.972 1.096 1.096 0.877 0.956 0.910 0.895 0.863 
indicator LA Ind. (0.938, 1.006) (1.038, 1.156) (1.020, 1.178) (0.782, 0.985) (0.839, 1.088) (0.855, 0.968) (0.850, 0.942) (0.785, 0.949) 

Mjr50 1.005 1.027 1.047 0.957 0.895 0.956 0.992 1.071 
(0.968, 1.043) (0.970, 1.088) (0.970, 1.129) (0.852, 1.075) (0.776, 1.032) (0.894, 1.023) (0.938, 1.048) (0.973, 1.180) 

RE 0.972 1.096 1.095 0.877 0.956 0.910 0.895 0.866 
LA Ind. (0.938, 1.007) (1.036, 1.159) (1.017, 1.180) (0.782, 0.985) (0.839, 1.089) (0.855, 0.968) (0.850, 0.943) (0.786, 0.954) 
Mjr50 1.005 1.028 1.048 0.957 0.895 0.956 0.992 1.072 

(0.968, 1.043) (0.971, 1.089) (0.971, 1.131) (0.852, 1.075) (0.776, 1.032) (0.893, 1.023) (0.938, 1.048) (0.974, 1.181) 
0.66 4.80 7.48 0.87 0.49 1.05 0.35 6.82 

+ LA * Mjr50 SC 0.965 1.082 1.068 0.887 0.985 0.904 0.890 0.860 
LA Ind. (0.929, 1.002) (1.021, 1.147) (0.989, 1.155) (0.784, 1.004) (0.859, 1.130) (0.846, 0.965) (0.842, 0.941) (0.776, 0.952) 

1.047 1.080 1.173 0.928 0.782 1.050 1.039 1.027 
LA*Mjr50 

(0.955, 1.147) (0.943, 1.238) (0.982, 1.400) (0.684, 1.259) (0.536, 1.140) (0.887, 1.243) (0.904, 1.194) (0.803, 1.314) 

Mjr50 0.996 1.010 1.010 0.970 0.936 0.947 0.984 1.066 
(0.955, 1.038) (0.946, 1.078) (0.926, 1.101) (0.853, 1.102) (0.800, 1.096) (0.878, 1.021) (0.926, 1.046) (0.958, 1.186) 

RE 0.965 1.083 1.068 0.887 0.985 0.904 0.890 0.862 
LA Ind. (0.929, 1.003) (1.020, 1.149) (0.986, 1.157) (0.784, 1.004) (0.859, 1.130) (0.846, 0.966) (0.842, 0.941) (0.778, 0.956) 

1.047 1.082 1.172 0.928 0.782 1.050 1.039 1.026 
LA*Mjr50 

(0.955, 1.147) (0.944, 1.240) (0.981, 1.401) (0.684, 1.259) (0.536, 1.140) (0.887, 1.243) (0.904, 1.194) (0.802, 1.312) 

Mjr50 0.996 1.010 1.011 0.970 0.937 0.947 0.984 1.067 
(0.955, 1.038) (0.947, 1.079) (0.927, 1.103) (0.853, 1.102) (0.800, 1.096) (0.878, 1.021) (0.926, 1.047) (0.959, 1.188) 
0.65 4.84 7.36 0.87 0.49 1.04 0.35 6.78 
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Table 41: Hazard ratios of Road Buffer EXP100 at individual‐level for selected causes of death in the ACS cohort with follow‐up from 1982 to 2000, adjusting 

for individual and ecologic level covariates, stratifying the baseline hazard function by age (1‐year groupings), gender and race using the Standard Cox 

Model and the Random Effects model, 1 cluster level (ZIP), (95% confidence intervals given in parenthesis), ZIP variance (10‐3) beneath, n = 76,105. 

Covariate 
Cause of Death 

All Cause CVD IHD Respiratory Lung Cancer All Cancers Other Others no Cancers 
(n=20,358) (n=8,300) (n=4,693) (n=2,034) (n=1,535) (n=6,713) (n=9,639) (n= 2,926) 

Individual 
covariates 

SC 1.051 
(0.938, 1.178) 

1.035 
(0.865, 1.237) 

0.902 
(0.701, 1.161) 

1.195 
(0.852, 1.676) 

1.148 
(0.778, 1.693) 

1.055 
(0.864, 1.288) 

1.027 
(0.868, 1.216) 

0.967 
(0.706, 1.325) 

RE 1.050 
(0.936, 1.177) 
4.38 

1.034 
(0.864, 1.237) 
7.72 

0.902 
(0.700, 1.162) 
14.13 

1.194 
(0.851, 1.676) 
4.36 

1.148 
(0.778, 1.692) 
0.56 

1.053 
(0.862, 1.287) 
5.15 

1.027 
(0.867, 1.216) 
5.07 

0.971 
(0.708, 1.330) 
15.26 

+7 1990 Ecol SC 1.037 
(0.925, 1.162) 

1.022 
(0.854, 1.222) 

0.886 
(0.688, 1.140) 

1.170 
(0.834, 1.643) 

1.139 
(0.772, 1.679) 

1.042 
(0.853, 1.272) 

1.014 
(0.856, 1.200) 

0.952 
(0.695, 1.305) 

RE 1.037 
(0.925, 1.162) 
0.88 

1.021 
(0.853, 1.222) 
5.81 

0.886 
(0.688, 1.142) 
8.69 

1.170 
(0.834, 1.643) 
0.96 

1.139 
(0.772, 1.679) 
0.50 

1.041 
(0.852, 1.272) 
2.07 

1.014 
(0.856, 1.201) 
1.90 

0.956 
(0.698, 1.310) 
11.73 

+ LA SC 0.971 1.094 1.093 0.879 0.960 0.911 0.895 0.860 
indicator LA Ind. (0.938, 1.006) (1.037, 1.155) (1.017, 1.175) (0.783, 0.987) (0.843, 1.093) (0.857, 0.970) (0.850, 0.943) (0.782, 0.946) 

EXP100 1.036 1.024 0.887 1.170 1.137 1.041 1.012 0.949 
(0.925, 1.162) (0.856, 1.224) (0.689, 1.142) (0.833, 1.642) (0.771, 1.678) (0.852, 1.271) (0.855, 1.199) (0.693, 1.302) 

RE 0.972 1.094 1.092 0.879 0.960 0.912 0.895 0.862 
LA Ind. (0.938, 1.007) (1.035, 1.157) (1.014, 1.176) (0.783, 0.987) (0.843, 1.093) (0.857, 0.970) (0.850, 0.943) (0.783, 0.950) 
EXP100 1.036 1.023 0.888 1.170 1.137 1.040 1.012 0.952 

(0.925, 1.162) (0.855, 1.224) (0.689, 1.143) (0.833, 1.643) (0.771, 1.677) (0.852, 1.271) (0.855, 1.199) (0.694, 1.304) 
0.66 4.70 7.27 0.88 0.49 0.94 0.35 6.35 

+ LA * SC 0.972 1.092 1.088 0.880 0.967 0.912 0.897 0.866 
EXP100 LA Ind. (0.938, 1.007) (1.034, 1.152) (1.012, 1.170) (0.784, 0.989) (0.848, 1.101) (0.857, 0.971) (0.852, 0.945) (0.787, 0.952) 

0.975 1.149 1.334 0.943 0.629 0.952 0.845 0.588 
LA*EXP100 

(0.749, 1.270) (0.778, 1.695) (0.779, 2.283) (0.422, 2.106) (0.214, 1.848) (0.592, 1.530) (0.558, 1.280) (0.245, 1.413) 

EXP100 1.043 0.984 0.813 1.186 1.240 1.053 1.051 1.050 
(0.914, 1.189) (0.795, 1.218) (0.597, 1.107) (0.806, 1.746) (0.812, 1.893) (0.838, 1.322) (0.869, 1.271) (0.745, 1.480) 

RE 0.972 1.092 1.088 0.880 0.967 0.912 0.897 0.868 
LA Ind. (0.938, 1.008) (1.032, 1.155) (1.009, 1.172) (0.783, 0.989) (0.848, 1.102) (0.857, 0.971) (0.852, 0.946) (0.788, 0.956) 

0.976 1.154 1.337 0.943 0.629 0.952 0.845 0.587 

LA*EXP100 
(0.750, 1.271) 
1.043 

(0.781, 1.704) 
0.982 

(0.780, 2.290) 
0.813 

(0.422, 2.107) 
1.186 

(0.214, 1.848) 
1.239 

(0.593, 1.530) 
1.052 

(0.558, 1.280) 
1.051 

(0.244, 1.411) 
1.053 

EXP100 (0.914, 1.189) (0.793, 1.216) (0.597, 1.108) (0.806, 1.746) (0.811, 1.893) (0.837, 1.322) (0.869, 1.271) (0.747, 1.484) 
0.65 4.75 7.31 0.88 0.49 0.94 0.35 6.39 
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Table 42: Hazard ratios of PM2.5 KRG with Road Buffer (EXP100 and Mjr50) at individual‐level for selected causes of death in the ACS cohort with follow‐up 

from 1982 to 2000, adjusting for individual and ecologic level covariates, stratifying the baseline hazard function by age (1‐year groupings), gender and race 

using the Standard Cox Model and the Random Effects model, 1 cluster level (ZIP), (95% confidence intervals given in parenthesis), ZIP variance (10‐3) 

beneath, n = 76,105. 

Covariate 
All Cause CVD IHD 

Cause of Death 
Respiratory Lung Cancer All Cancers Other Others no Cancers 

(n=20,358) (n=8,300) (n=4,693) (n=2,034) (n=1,535) (n=6,713) (n=9,639) (n= 2,926) 
42 Cov. 
+7 1990 Ecol 

SC 
EXP100 

Mjr50 

PM2.5KR G 

1.036 
(0.924, 1.161) 
1.006 
(0.969, 1.044) 
0.993 
(0.965, 1.022) 

1.025 
(0.857, 1.226) 
1.027 
(0.970, 1.088) 
1.097 
(1.049, 1.146) 

0.888 
(0.690, 1.144) 
1.051 
(0.974, 1.134) 
1.149 
(1.083, 1.219) 

1.173 
(0.836, 1.647) 
0.961 
(0.855, 1.080) 
0.987 
(0.901, 1.082) 

1.140 
(0.772, 1.682) 
0.892 
(0.773, 1.029) 
0.925 
(0.833, 1.028) 

1.040 
(0.852, 1.271) 
0.956 
(0.893, 1.023) 
0.921 
(0.876, 0.968) 

1.010 
(0.853, 1.196) 
0.992 
(0.939, 1.049) 
0.918 
(0.880, 0.957) 

0.941 
(0.686, 1.290) 
1.075 
(0.976, 1.184) 
0.912 
(0.845, 0.983) 

RE 
EXP100 

Mjr50 

PM2.5KR G 

1.036 
(0.924, 1.161) 
1.006 
(0.969, 1.044) 
0.993 
(0.965, 1.023) 
0.86 

1.024 
(0.856, 1.225) 
1.028 
(0.970, 1.089) 
1.096 
(1.047, 1.148) 
3.62 

0.888 
(0.690, 1.144) 
1.052 
(0.975, 1.135) 
1.149 
(1.082, 1.220) 
3.17 

1.173 
(0.836, 1.647) 
0.961 
(0.855, 1.080) 
0.987 
(0.901, 1.082) 
0.95 

1.140 
(0.772, 1.682) 
0.892 
(0.773, 1.029) 
0.926 
(0.833, 1.028) 
0.47 

1.040 
(0.851, 1.271) 
0.956 
(0.893, 1.022) 
0.921 
(0.876, 0.968) 
0.86 

1.010 
(0.853, 1.196) 
0.992 
(0.939, 1.049) 
0.918 
(0.880, 0.957) 
0.40 

0.944 
(0.688, 1.294) 
1.076 
(0.977, 1.185) 
0.913 
(0.845, 0.987) 
8.92 

102 



 

 

                                             

                                              

                                

 
   

   

   
 

   

                  
 

          

 
 
 

     
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 

     
 

 
 
 

 
 
 

 
 
 

 
 
 

 
   
   
   

Table 43: Long‐term and sub‐acute cardiovascular mortality log‐hazard ratios per 1 ppb of nitrogen dioxide or ozone using a follow‐up period of January 

1989 to December 2000, adjusted for individual and ecological risk factors using the Standard Cox survival model by definition of exposure time: long‐term, 

12 month moving average, or joint exposure (long‐term and sub‐acute). Standard errors are given in parenthesis. 

Pollutant Long‐term 
Exposure (   ) 

12 Month 
Moving 

Average (  ) 

Joint Exposure 

Long‐term (  ) Sub‐Acute (   ) 

Nitrogen 
Dioxide 

(per 1 ppb) 

0.00571*** 
(0.00153) 

0.00547*** 
(0.00159) 

0.00517** 
(0.00160) 

‐0.01167 
(0.00876) 

Ozone 
(per 1 ppb) 

0.00379* 
(0.00157) 

0.00347* 
(0.00156) 

0.00385* 
(0.00159) 

‐0.00263 
(0.00489) 

*: 0.01<p<0.05 
**: 0.001<p<0.01 
***: p<0.001 
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Figure 17: PM2.5map from the kriging interpolation model for 2000 
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Figure 18: Ozone map from the inverse distance weighting model interpolation model for 1988‐2002 Average 
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Figure 19: Sulfate map from the inverse distance weighting model interpolation model for 1996 

106 



 

 

 
                           

 
  

. 
• • • . 

• . • 
• 

• • . • • . • . , . . . .. . • -., •-.-r•cra!J!e- l tO . . • 
• • 

• 'san1Frant is!o 
• • • • • • • 

4
san ~ose • 

I• 
• . 
•. 

• PM10 Monitors - All 

PM10(1DW) 
(ug/ml) 

[_=:J 8.8-22.6 

L_] 22.7-258 

r=) 25.9-306 

L___j 30 7 - 36 1 

- 36.2 - 41.4 

- 41.5- 47.5 

- 47.6 - 67.2 O 25 

• 

•• ' .. .,.. 

50 100 

Carson 

• • ••• 

150 200 
MIies 

• 

• 

I 
I 
I 

I 
t 

~ 

Figure 20: PM10 map from the inverse distance weighting interpolation model for 1988‐2000 Average 

107 



 

 

 
                           

 
  

N 

-L 
l 
I 

• 

• . . . Carson 

• • 

I 
• l • . ·t 

• 
• • • 

. • . • . • . • 
" .. 

• N02 Monitors - All •• 
N02(1DW) ' ..; 
(ppb] 

[=:] 2-91 

(=:] 9.2 -13.8 

~ 13.9 - 16.5 " - 16.6-19.9 

- 20-24.7 \. 
- 248 -30 1 

- 30.2-43.8 25 so 100 150 200 
Miles 

l 

Figure 21: NO2 map from the inverse distance weighting interpolation model for 1988‐2000 Average 
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Figure 22: Hazard ratios and 95% confidence intervals for the association between different PM2.5 indicators 

(each 10 ug/m3) at both the individual and ZIP code‐level and all cause mortality, follow‐up from 1982 to 2000, 

adjusting for individual level covariates and ecologic level covariates (1990), stratifying the baseline hazard 

function by age (1‐year groupings), gender and race using the Random Effects model, 1 cluster level (ZIP) 
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Figure 23: Hazard ratios and 95% confidence intervals for the association between different PM2.5 indicators 

(each 10 ug/m3) at both the individual and ZIP code‐level and cardiovascular mortality, follow‐up from 1982 to 

2000, adjusting for individual level covariates and ecologic level covariates (1990), stratifying the baseline 

hazard function by age (1‐year groupings), gender and race using the Random Effects model, 1 cluster level (ZIP) 
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Figure 24: Hazard ratios and 95% confidence intervals for the association between different PM2.5 indicators 

(each 10 ug/m3) at both the individual and ZIP code‐level and ischemic heart disease mortality, follow‐up from 

1982 to 2000, adjusting for individual level covariates and ecologic level covariates (1990), stratifying the 

baseline hazard function by age (1‐year groupings), gender and race using the Random Effects model, 1 cluster 

level (ZIP) 
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DISCUSSION 

In these analyses we sought to estimate the effects of PM2.5 and other air pollutants on premature 
death in California. This study was motivated by earlier research from Los Angeles that showed 
PM2.5 exerted a large, significant effect on all cause mortality and mortality from CVD and by a 
lack of statewide dose-response functions for benefits estimates. In the earlier analyses, effects 
for all causes, CVD, and IHD outcomes were larger than those observed in our national level 
studies using the ACS CPS II [5]. But in a more recent follow up [3], the effects tended to 
increase for CVD and IHD in the national study and were of similar size to those observed in 
LA. The effects on all cause mortality were still about twice the size in LA compared to the 
recent national study, although they were more uncertain due to the smaller sample size. 
Consequently, uncertainty exists as to the effects that would be observed in a statewide model for 
California. 

Below we summarize the key findings from the present investigation. We then offer narrative 
interpretation. 

Key Findings 

1. Cardiovascular disease (CVD) deaths, especially those from ischemic heart disease 
(IHD), are consistently and robustly associated with measures of fine particulate and 
traffic-related air pollution. The effects on CVD and IHD in California are virtually 
identical to those of the national ACS study (see Abstract Table 1). 

Abstract Table 1: Comparison of Relative Risk Estimates from the California and National American Cancer 

Society Cohorts for PM2.5 using a 10 µg/m3 Exposure Increment 

California* National Level** 

Hazard Ratio 95% CI Hazard Ratio 95% CI 

All‐cause 1.08 (1.00, 1.15) 1.08 (1.04, 1.11) 

CVD 1.15 (1.04, 1.28) 1.17 (1.11, 1.24) 

IHD 1.28 (1.12, 1.47) 1.29 (1.18, 1.40) 

* California study uses residential address with a Land Use Regression estimate of exposure with statistical control for individual 
and ecologic covariates and residence in the five largest conurbations in California. 
**National level study uses metropolitan area of residence with the average of all PM2.5 monitors within the metropolitan area as 
the exposure estimate; source for the National estimate for all-cause and IHD from Krewski et al. 2009 [3] Table 9; CVD 
estimate produced for this report for comparison with the California  using the same model and sample as in the Krewski report 
(i.e., two level random effects, with no spatial autocorrelation – referred to as MSA and DIFF in Table 9). Note numbers slightly 
differ from the Krewski report due to rounding. 

Models for both risk estimates control for individual risk factors (e.g., smoking), contextual risk factors (e.g., unemployment in 
area of residence) and are stratified by age, race and sex. Results for the California cohort are also additionally adjusted for 
place of residence in five major urban conurbations.  Follow up period for both studies was from 1982-2000. 

2. All-cause mortality is significantly associated with PM2.5 exposure, but the results are 
sensitive to statistical model specification and to the exposure model used to generate the 
estimates. When we applied control for residence in the largest urban conurbations, and 
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we employed the land use regression (LUR) model, we found significantly elevated 
effects on all-cause mortality. For reasons explained in the main report this model 
specification with land use regression exposures and control for residence in the large 
conurbations is most likely to produce scientifically valid results. Many of the other 
results presented were included to satisfy contractual requirements to investigate 
methodological issues of interest to the Air Resources Board. When we use the fully 
specified models, the effect sizes are the same as those in the national study (see 
Abstract Table 1 for a comparison). We observed effects that were of similar size, but of 
borderline significance when using other exposure models.  

3. The strongest and most consistent effects are observed when there is finer-scale spatial 
resolution in the exposure predictions.  In models using the LUR estimate that serve as 
markers of relatively local variation in pollution we see all-cause effects from NO2 and 
PM2.5 (see Abstract Figure 1 for a comparison of the risks from statewide LUR models 
of PM2.5 and NO2 for various causes of death). 

Abstract Figure 1: Summary of key results for PM2.5 and NO2 with all‐cause and cause specific death. Estimates 

derived from single pollutant models and calibrated to the inter‐quartile range of exposure for each pollutant 

where statistical models control for individual and ecologic covariates and residence in the five largest conurbations in 

California. 
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4. The strongest evidence of mortality effects is with exposure models that are markers of 
traffic-related air pollution. The NO2 LUR estimate has significant associations with all-
cause, CVD, IHD, and lung cancer deaths. Exposure estimates based on roadway 
proximity had elevated, but insignificant risks, suggesting weaker effects than with the 
NO2 model, probably due to increased exposure measurement error. 

5. With regard to other causes of death, there was no evidence of an air pollution effect. In 
fact for some regional PM2.5 exposure there was some evidence of negative association, 
but when residence in the five largest urban conurbations was accounted for in the model, 
the effects became positive, but insignificant. 

6. Other pollutants − namely PM10, sulfate derived from PM10 filters, NO2, and ozone 
estimates from interpolation models − all showed consistent associations with CVD that 
are similar in size to those observed for PM2.5. In general, the interpolation estimates of 
these pollutants were highly correlated with each other and with PM2.5. Therefore caution 
must be exercised in interpreting effects from any single pollutant when the exposure 
estimate relies solely on interpolation. 

Narrative 

The overall results of these analyses indicate that there is a measurable and significant link 
between air pollution and cardiovascular disease deaths in California. These results are 
remarkably robust to controlling for individual and spatial/contextual variables and the use of 
various approaches to assign pollution exposures.  These air pollution-cardiovascular disease 
death associations are also largely consistent with similar findings from other cohorts in the U.S. 
and elsewhere. All-cause mortality was associated with PM2.5 air pollution exposure in the Los 
Angeles area and in the state of California as a whole in some model specifications. Consistent 
with other findings [74], NO2 was significantly related to all-cause mortality in statewide 
models. 

We found evidence of different effects in Los Angeles with several exposure models for PM2.5. 
With these models there were significantly elevated causes of death for all causes and for 
respiratory effects in LA that were greater than those observed in statewide analyses or the 
national study. Many other causes of death also seemed to have elevated risks in LA, which 
despite having a lower overall death rate, tended to display a steeper dose-response relationship 
between PM2.5 and death. LA has the densest network of monitors in the state. It also has 
topographic and meteorological conditions that increase the variation in PM2.5 compared to other 
parts of the state [75]. We attribute the larger effects there to the combination of better 
monitoring data and the relatively high variation in PM2.5, both of which may contribute to more 
precise risk estimates because of lower measurement error and higher inherent variation. 

We conducted several sensitivity analyses in an effort to understand more fully why the 
statewide effects for all cause and lung cancer deaths were more sensitive to model specification 
than in either the national model or the LA-specific model. These included the following: 

114 



 

 

 

 
 

 
 

 
 

 

 
 

 

 

 

 

 

 

 
 

 

 

 

1. Threshold models to assess whether there was a level below which no effect was 
observed. We hypothesized that because LA had higher average PM2.5 levels than much 
of the state, the larger effects there may represent a threshold. We found no significant 
evidence of a threshold effect in the dose-response function.  

2. Controlling for demographics by excluding people of Hispanic ethnicity who may have 
lower rates for some types of cancer and also tend to live in more highly polluted regions, 
but this had no appreciable effect on the results. 

3. Excluding baseline cancer subjects to ensure this did not bias the results, but this did not 
alter the results. 

4. Including more individual covariates for predicting cancer than in our standard model 
with 20 variables; again the results remained roughly the same. 

5. Examining long-term residents only (those in the same residence for 10 years or more at 
baseline). We observed larger effects in this group, but not significantly different than 
unity for all causes of death in models that did not control for residence in a large 
conurbation. 

6. Including variables to control for the percent of the county that is urban or rural, which 
had little influence on the results. 

7. Clustering on two levels – county and ZIP code areas – with spatial autocorrelation at 
each level, and again the results were stable and the similar to other models.  

8. Including indicator variables for all major combined statistical areas and the primary 
statistical area of San Diego to represent the potential influence of the urban versus rural 
differences in death rates and pollution. These analyses revealed PM2.5 effects on all 
cause mortality when we employed the LUR model, which incorporated remote sensing 
predictions and land use information likely to influence local variations in the pollutant. 

Results must be interpreted with caveats in that, in several sensitivity analyses, the exposure 
models may have lacked the data support necessary to derive exposure estimates capable of 
detecting effects outside of LA. As we have discussed elsewhere [5], there may be a more toxic 
mixture of air pollution in LA due to the presence of major port facilities and a relatively higher 
contribution there from traffic and diesel exhaust, but we are unable to test this effect directly 
because the monitoring data needed to predict markers of diesel, such as elemental carbon, are 
unavailable. 

In all exposure models, we observed elevated risks for IHD and CVD. Statistical model 
specification, whether using standard Cox models or multilevel models clustered on the ZIP code 
of residence, did not substantively influence the results. In addition, the inclusion of updated 
ecologic covariates from 1990 did not appreciably affect the risks, and if anything had a small 
positive confounding effect.  

We did see some evidence of significant negative associations between cancer and PM2.5, but 
these became null in the more fully specified models with an indicator for LA or with the 
indicator for the five largest urban conurbations. Models controlling for residence in the five 
major urban conurbations probably yield the most valid results because they account for the non-
metropolitan mortality penalty discussed earlier. Within the indicator variables, there is evidence 
of a negative association between other causes, including some of the cancers, and air pollution, 
which is likely indicative of negative confounding due to the non-metropolitan elevation in 
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mortality and the fact that many of the non-metropolitan areas also have lower levels of 
pollution. Failure to control for this effect probably introduces a negative bias into the air 
pollution coefficients. 

In comparing results obtained with the different PM2.5 exposure models (Figures 22-24), the 
largest HRs per each 10 µg/m3 increase in PM2.5 were observed for PM2.5 RS and PM2.5 LUR.  In 
contrast, somewhat lower HRs were observed for PM2.5 KRG and PM2.5 IDW.  Results were 
comparable for PM2.5 KRG and PM2.5 IDW at both the individual and ZIP code-levels, although 
slightly lower for the individual-level assignments. These findings suggest that in models with 
auxiliary information beyond the monitoring sites, this additional information may reduce 
exposure measurement error and therefore provide more valid estimates of exposure. The BME 
model contained auxiliary information, but also had a large smoothing influence from the 
relatively sparse monitoring network, which tended to increase correlations with other 
interpolation pollution estimates that did not use auxiliary information. With a maximum of 112 
government monitoring locations for PM2.5 we lacked the data support to describe accurately the 
expected spatiotemporal variability in this pollutant.  This lack of monitoring support probably 
resulted in over-smoothing in the predicted pollution surfaces that had no auxiliary information. 
In the absence of sufficient data, interpolators become less informative and will all tend to 
resemble the most basic interpolator, name, the inverse distance weighting algorithm. This is 
why we see high correlations between the interpolator class of exposure estimates but lower 
correlation with the land use regression estimate. We would also note the BME model is an exact 
interpolator that replicates the monitored values exactly. In our case we predicted the BME over 
~9 km grid cells that aligned with the remote sensing estimates, so it would not produce an exact 
replication of the monitoring value, but in cases where the grid centroid is close to the 
monitoring location, we would expect it to fit the data very closely. Consequently some of the fit 
of observed onto predicted in the plots in question is probably an artifact of the exact 
interpolation component of the BME. Therefore with the BME, it is not surprising that risk 
estimates tended to resemble those from the interpolation models. We caution that we have not 
undertaken formal analyses of measurement error. Thus, our conclusion that more spatially 
resolved exposure models produce higher risks is based solely on statistical theory about the 
impact of measurement error and the empirical findings rather than formal analyses testing 
various models against a gold standard. 

Many of the other pollutants tested also displayed relationships that were similar in magnitude 
and sign to those of PM2.5. Ozone, NO2 (interpolated), PM10 and sulfate all had significant 
associations with CVD and IHD. When tested in co-pollutant models, ozone effects were 
confounded to the null when PM2.5 was in the model. PM2.5 estimates were relatively unaffected 
by the inclusion of ozone. 

We observed significantly elevated effects on CVD and IHD deaths using our land use 
regression (LUR) model for NO2 (largely influenced by the density of roads). We also found 
significant NO2 effects on all-cause mortality and lung cancer deaths.  When this NO2 estimate 
was included in models with PM2.5, both pollutants had significantly elevated effects on 
mortality from CVD and IHD. The effects of NO2 on all causes and on deaths from lung cancer 
remained significantly elevated. The trend toward elevated risks from the road buffers, which 
measured proximity to highways and major roads, also supports the traffic effect. Although these 
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effects were not significantly elevated, they were consistently positive. As shown in the 
Appendix, roadways in different areas of the state carry different traffic volumes in different 
counties. Combined with the other limitation of road buffers for measuring actual pollution 
exposures (because they do not take into account the continuous field of exposure), we interpret 
the elevated but non-significant effects as suggestive of a traffic influence on mortality. In other 
studies where road buffers have been explicitly compared to LUR results, the continuous NO2 

exposure fields from the LUR have been found to be more consistently predictive of mortality 
than road buffers [74], and that conclusion is supported by our findings here.  

CONCLUSION 

Taken together, the results from this investigation indicate consistent and robust effects of 
PM2.5 − and other pollutants commonly found in the combustion-source mixture with PM2.5 

− on deaths from CVD and IHD. We also found significant associations between PM2.5 and 
all causes of death, although these findings were sensitive to model specification. In Los 
Angeles, where the monitoring network is capable of detecting intraurban variations in PM2.5, we 
observed large effects on death from all causes, CVD, IHD, and respiratory disease. These 
results were consistent with past ACS analyses and with findings from other national or 
international studies reviewed in this report.  Our strongest results were from a land use 
regression estimate of NO2, which is generally thought to represent traffic sources, where 
significantly elevated effects were found on deaths from all causes, CVD, IHD, and lung cancer. 
We therefore conclude that combustion-source air pollution is significantly associated with 
premature death in this large cohort of Californians. 
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Appendices 

Appendix A: ZP4 Output Fields 

Address (delimited) 
Address (final) 
Address (original) 
Address leftovers 
Building/firm 
City (final) 
City (original) 
City (preferred) 
City stateZIP (final) 
City stateZIP (preferred) 
County code 
County name 
Date certified 
DefaultMatch 
DPV CMRA 
DPV confirm 
DPV fastnotes 
DPV footnotes 
DPV violation 
Error codes (combined) 
Error message 
Error numbers (detailed) 
Field5 
Field6 
Field7 
Field8 
ID 
LACS flag 
LACS indicator 
LACS return 
State (final) 
State (original) 
Unique ZIP 
Version 
ZIP (final) 
ZIP (five-digit) 
ZIP (four-digit add-on) 
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Appendix B: Deriving Estimates of Traffic for the Land Use 
Regression Models 

Summary 
Consistent traffic is one of the best predictors of air pollutant levels in land use regression and 
other deterministic models, particularly for nitrogen dioxide and particulate matter. However, 
traffic is also one of the weakest data sources in terms of completeness and accuracy. Traffic 
data for highways is available from the Highway Performance Monitoring System. For large 
cities, traffic data is available for major roads from Municipal Planning Organizations. Both of 
these data sources tend to suffer from spatial inaccuracy and fail to include smaller roads that 
represent a high proportion of overall road density. As a result, existing traffic data sources are 
inadequate for a statewide study in California. 

In lieu of traffic data, several studies have used road density as a proxy. This variable appears to 
perform reasonably well as an air pollutant predictor but fails to capture the enormous variation 
between types of roads and between very different areas of the state of California. In order to 
improve upon simple road density measures and provide a traffic-related variable for use in a 
statewide study we used more than 56,000 traffic counts stratified by road type and location to 
generate traffic weights for 2.5 million road links in California. The traffic weights were then 
used to calculate traffic-weighted road density for air monitoring locations for use in land use 
regression and related air pollutant models. 

Traffic Count Data Used to Generate Traffic Weights 
Traffic point-count data was purchased from TeleAtlas. The data provides the count location, 
traffic volume and year for the most recent counts and often several historical counts for the 
same location. Although the data includes historical counts going back to the mid-1970s, and the 
highest density of counts are available for the years 1990-2001. The traffic count data includes a 
unique ID that enabled a one-to-one link with the TeleAtlas road network data. 

Temporal Trends in Traffic Volumes 
Between 1990 and 2000, the years with high numbers of counts, we see a slight increase in 
average traffic volume. 

119 



 

 

 
 

 
 

 

 
 

 
 

 
 

 

                                                 
                                       

                             
   

   

 

 

       

       

         

         

       

         

       

Counts as far back as 1976 are included in the 
TeleAtlas dataset but the volume of data really 
picks up in 1990 (and even more in 1995) and 
drops off precipitously after 2001 (Figure 1). In 
general, the mean traffic volume increases slightly 
from 1990 to 2001 (Figures 2-4), for the most part 
this increase is driven by counts on roads with a 
Functional Class Code of A1 (FCCs are defined in 
table at right).9 A2 (Figure 4), A3 and A4 (not 
shown) have very little, or no, consistent change from year to year. When counts are limited to 
those since 1995 the increase is still visible though somewhat less pronounced. The slope when 
volume is regressed against year is about 1400 (1800 with all counts since 1990) meaning that 
for each year counts increase by about 1400. This increase, however, is primarily limited to FCC 
A1 and given that the overall mean of A1 counts is about 56,000 the increase is negligible and 
was not adjusted for. In addition, based on the number of yearly counts available we restricted 
the dataset included in the analysis to 1990-2001. 

FCC Category Description 
A1 Primary interstate 
A2 Primary US and state highways 
A3 Secondary state and county highways 
A4 Local, neighborhood, rural road, city street 

Possibly Excluded Categories With Limited Counts 
A5 Vehicular trail, road (4WD) vehicle 
A6 Various (access ramp, cul‐de‐sac, traffic circle) 
A7 Various (other thoroughfare, alley, driveway) 

Many locations have more than one traffic count. 

The data included count information for 56,000 different locations statewide, but each location 
may include data on as many as five historical counts and we evaluate the potential of using this 
additional information to strengthen estimates. For example, 
43% of the locations have more than one count, 8% have six 
counts (see table at left). Figure 5 shows the within-location 
averages against the most recent count and you can see that 
there is a strong linear relationship with some scatter. In the 
end the very strong correlation between the most recent count 
and historical counts provided confidence that using the most 
current information would provide representative values for a 
location. 

Number of 
Counts Frequency Proportion 

1 32327 0.57 
2 10354 0.18 
3  4021  0.07  
4  2671  0.05  
5  3053  0.05  
6  4257  0.08  

Total 56683 1.00 

Assigning Traffic Values to Unmeasured Road Links 
Statewide averages/medians would be too coarse of a measure 

We determined that assigning traffic weights to road links based on statewide medians would be 
too coarse and not take advantage of the information available in the traffic count data and 
instead would use “targeted” medians and several approaches were evaluated. 

Traffic counts were intersected with county and Census-defined urbanized area layers. Mean, 
median and counts of traffic volume data was then calculated by county by urban versus non-

9Note that the TeleAtlas FCC code has been aggregated to two digits from the original three. The two digit codes 
represent the broad road‐type categories while the extra digit distinguishes between, for example, separated vs 
un‐separated roads. 
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urban and by specific urbanized areas. The county-level means and medians are depicted in 
Figure 6-10. 

County-level not recommended due to distinct differences in within county traffic volumes. 

Based on this analysis it was determined that county counts would be less informative than 
counts related to urbanization or population.  This was due to the fact that, in many cases, there 
can be different levels of urbanization in different areas of the same county that can lead to 
different traffic volume patters. For example, in Los Angeles County median traffic volume in 
urbanized areas on FCC A1 is 109,500 while this same number for non-urbanized areas in LA 
County is just 38,500. Similarly for San Diego median volume on A1 in urbanized areas is 
75,000 compared with 32,500 in the same county in non-urbanized areas. In addition, several 
counties do not have adequate counts within particular FCC categories to calculate stable 
medians. 

There are distinct differences in traffic volume between urbanized and non-urbanized 
areas. 

Box plots of traffic volumes by FCC broken out by urban versus non-urbanized areas suggest 
that an urban/non-urban split could be a convenient way to aggregate the data (Figure 11). In all 
FCC categories with enough data urbanized areas have distinctly higher traffic volumes than 
non-urbanized areas. 

Similar to statewide and county-levels, urban versus non-urban statewide, however, may be too 
coarse a split. We see that within urbanized areas the means and medians differ substantially 
with a median of 109,500 in urban areas of Los Angeles County, 79,500 in urban areas of 
Alameda County, 33,000 in urban Fresno. 

Population levels within an urbanized area could be a convenient way to cut the data but 
fails to account for proximity to major urban areas such as Los Angeles 

The possibility of breaking all data down into population-urbanization categories to account for 
differences between urbanized areas was tested. Box and other types of plots suggest that this is 
a reasonable approach. Figure 12 shows a preliminary categorization of urbanized areas based on 
population with small, medium, large, very large and Los Angeles with its own category. Figure 
13 shows that these categories do a reasonable job of categorization particularly for the highways 
(A1). 

But figure 13 also shows that size alone may not be enough to distinguish very well between 
small, medium or large urbanized areas, particularly in non-FCCA1. Figures 14 and 15 further 
illustrate the bias that would result from assignment based on size alone. Using medians based on 
all traffic counts by urbanized areas this plot shows that assignment based on population mis-
specifies some of the urbanized areas. For example, the second and third-ranked cities (after Los 
Angeles) in terms of median traffic are Mission Viejo and Thousand Oaks. These are relatively 
small cities in terms of population but their proximity to Los Angeles affects their traffic counts. 
Instead, a slight alteration of the categorization based on population potential (a distance 
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weighted population calculation) improves categorization but still leaves a series of cities with 
nearly the same median traffic levels in each of the population categories. 

Final Traffic Weight Assignment Method 
In the end it was determined that five different broad categories could be used to assign traffic 
weights: 

Urban – These are FCC codes in a specific urban area with at least 15 traffic count points. So, 
for example, San Francisco FCC A1 has greater than 15 counts and, therefore, all FCC1 in the 
San Francisco urbanized area will be assigned SF UA-specific medians. All links in the specific 
urban area with this FCC, regardless of county would be assigned this value. 

Urban County – These are FCC codes in a specific urban area that do not have at least 15 traffic 
count points but the county itself has at least 15 traffic count points in urbanized areas generally. 
In this case we first calculated county-specific urban area-specific medians (i.e., we would have 
Los Angeles County—Los Angeles Urban Area; Los Angeles County – Lancaster Urbanized 
Area etc) and then took the mean of these values. Note, first, that only the portion of an 
urbanized area within a specific county was included so that we have Orange County – Los 
Angeles Urban; Ventura County -- Los Angeles Urban etc because the Los Angeles Urbanized 
area extends in to several counties. Note that we chose to calculate urbanized area-specific 
medians first and then average these values as opposed to taking the overall median of traffic 
counts in urbanized areas in a county. We did this so that one urbanized area with a significant 
number of counts did not swamp all the rest of the urbanized areas. 

Urban County Size – These are links in urban areas that don’t have the required 15 counts for 
an FCC AND the county also doesn’t have the required number of urban counts. For these 
instances the state’s 58 counties were broken into five size categories Very Low (0-100,000 
people; 23 counties), Low (100,001-250,000 13 counties), Medium (250,001-1 million; 14 
counties), High (1 million-2.5 million; 5 counties) and Very High (>2.5 million; 3 counties) (see 
map in Figure 16). Then the median traffic counts using all traffic counts in urban areas in each 
population size category was calculated. 

Rural10 County – This is basically the same as Urban County but for non-urban areas. Links 
within a county with enough rural counts on a particular FCC are assigned a county-specific 
(FCC-specific) median. 

Rural County Size – Again, basically the same as the Urban County Size – for links in rural 
areas in counties that don’t have 15+ counts for an FCC, we needed to aggregate counties of a 
particular population size and use these numbers. 

10Note that rural refers to areas not in Census‐defined urban areas. 
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Specific Steps in Detail 

see Figure 17 for traffic assignment decision making tree  

1. Assign all California traffic counts to a Census-defined urbanized area and county based on 
location.11 

2. Calculate two-digit abbreviated FCC code (A1-A6). 

3. Limit counts to those 1990-2001 and limit to abbreviated FCC codes A1-A4.  Total of 53917 
counts. 

4. For counts in urbanized areas aggregate most recent traffic count values (“VOLUME” in the 
TeleAtlas traffic data) by urbanized area and by FCC. Calculate median and the number of 
counts. 

5. For counts in urbanized areas aggregate by county code by urbanized area by FCC. Calculate 
median and the number of counts. 

6. For counts in urbanized areas aggregate by county population category by FCC. Calculate median 
and the number of counts. (This table is only 20 rows). 

7. Merge together three tables representing counts in urbanized areas and create a final traffic 
assignment field (“trafFIN”) for each urbanized-county-FCC combination where urban-area 
specific values are prioritized (if they have enough counts), followed by within-county averages 
and, finally, county-size-based estimates. 

8. For counts in non-urbanized areas aggregate by county by FCC. Calculate median and the 
number of counts. 

9. For counts in non-urbanized areas aggregate by county population category by FCC.  

10. Merge together two tables representing counts in non-urbanized areas and create a final traffic 
assignment field (“trafFIN”) for each county-FCC combination where county-level values are 
prioritized followed by county-size categories. 

11. Append the urban and non-urban tables together and generate a “trafID” which is a concatenation 
of the urbanized area Census code, county fips code and FCC code separated by “-“. Non 
urbanized areas get a ua code of “00000” 

12. Link this data to the 2.5 million TeleAtlas links (A1-A4). (Reminder to Bernie that the original 
file sent to me has 2000 duplicated links). 

11There are 55 urbanized areas and 58 counties in California. 
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Results 
There are a total of 143 possible UA-County combinations (including 58 values that begin with 
00000 representing non-urban locations). Thirty-six of the 55 urbanized areas in California exist 
in just one county, thirteen in two, three in three, one in four and two urbanized areas (LA, Bay 
Area) touch five different counties. Multiplied by 4 (number of FCC categories) this gives 572 
different possible “types” of traffic counts distributed through the 2.5 million records. In total, 
500 of these possible combinations actually exist in the road data (for example, rural A2 links in 
Alameda county do not exist).  

Links in urbanized areas make up 34% of road length in California. Among links in urbanized 
areas 90% of road length was assigned traffic estimates based on urbanized area-specific values 
(7% assigned based on county-specific and 3% assigned based on urban-county-size 
calculations). For links in rural areas assignments were split almost evenly between county-
specific calculations (52%) and county-size calculations (48%). 

Issues and Concerns 
The most obvious overall concern is that assigning the medians to all links with a specific FCC 
(in an urban area) causes a significant amount of variation in the results. This is an important and 
basically unavoidable limitation of the method. We do not have enough data to accurately 
represent all the variation on California roadways. The method discussed above is a traffic-
weighted road density and cannot be considered a true traffic layer. 

In a few cases, urbanized areas can be diverse. For example, the San Francisco urbanized area 
covers both San Francisco and Alameda County (and three others). In terms of land use, 
transportation and other factors, these areas are quite different and yet they are treated as a single 
entity under this method. 

Counties were weighted by population size, not density. In general this was considered the 
preferably choice but there may be places where population density cut-point could yield 
different estimates. San Bernardino or Riverside County might be examples. These counties have 
relatively high populations but they are concentrated in the West. As a result the more rural areas 
may get traffic assignments that are higher than they should be. But if we used population 
density both the urbanized and more rural areas closer to LA (where the majority of the 
population lives) might get values lower than they should be. 

The general assumption in using a layer like this is that the variation we miss is random normal 
error. We will inevitably underestimate some roads and overestimate others. With tens of 
thousands of ACS participants and with relatively larger buffers there will not be a significant 
amount of bias. This is likely a fair assumption but bias will still exist in calculations based on 
this layer. 
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Appendix B ‐ Figure 1: Histogram of number of available traffic counts year 
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Appendix B ‐ Figure 2: Scatterplot of traffic volumes by year with overlaid statistical measures for all road types 

(in title: Traf = Traffic) 
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Appendix B  ‐ Figure 3: Scatterplot of traffic volumes by year with overlaid statistical measures for primary 

interstate highways (in title: Traf = Traffic) 
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Appendix B  ‐ Figure 4: Scatterplot of traffic volumes by year with overlaid statistical measures for Primary US 

and states highways (in title: Traf = Traffic) 
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Appendix B ‐ Figure 5: Within location averages versus the most recent counts 
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Appendix B ‐ Figure 6: County level urban mean/median traffic volumes for primary interstates 
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Appendix B ‐ Figure 7: County level non‐urban mean/median traffic volumes for primary interstates 
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Appendix B ‐ Figure 8: County level mean/median traffic volumes for primary US and states highways 
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County-Level Mean/Median Traffic Volume: FCC=A3 
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Appendix B ‐ Figure 9: County level mean/median traffic volumes for secondary state and county highways 
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County-Level Mean/Median Traffic Volume: FCC=A4 
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Appendix B ‐ Figure 10: County level mean/median traffic volumes for local, neighborhood, rural road, and city 

streets 
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Appendix B ‐ Figure 11: Boxplots of traffic count by road type comparing urban to non‐urbanized areas 
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Appendix B ‐ Figure 13: Boxplots of traffic counts by categorized urban area ‐ Los Angeles is a singular category 
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Appendix B ‐ Figure 14: Traffic volume against population category 
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Appendix B ‐ Figure 15: Traffic volume against population potential category 
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Appendix B ‐ Figure 16: The plot shows how the counties were broken down in terms of population size. 
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Appendix B ‐ Figure 17: Traffic Assignment Decision Making Tree 
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Appendix C: Mathematical Foundations of Bayesian Maximum 
Entropy Estimation 

BME is a non-linear, in general, estimator and integrates (i) composite space-time metrics 
(space/time analysis rather than purely spatial or purely temporal – time series analysis), (ii) data 
fluctuation, (iii) data uncertainty (i.e., inaccurate modeled data, extrapolation, stochastic 
empirical laws, missing records, desegregation or downscaling, measurement errors, and 
accuracy difference between remote sensing data and ground measurements), and (iv) secondary 
information correlated with a primary variable in a mathematically rigorous and unified manner. 
It derives spatial regression techniques involving ordinary, simple, and intrinsic kriging as its 
limiting cases under restrictive assumptions on spatial or temporal correlation structures, types of 
data, and mean trend models considered. In addition it copes with rationally non-stationary 
mapping situations and incorporates higher order statistical moments and the non-gaussian law. 
The BME approach has proven effective in numerous application contexts such as environmental 
exposure [76-78], adverse health effect [79, 80], risk assessment  [81, 82], and urban 
geography [83, 84]. 

The random fluctuations found from the space/time distribution of air pollution are mainly due to 
the uncertainty in measurements, LUR estimates, and their space/time variability. The 
Space/Time Random Field (S/TRF), X(p) is defined as an ensemble of possible realizations, χmap 

at mapping points over space and time pmap=[pdata,pk] consisting of data points pdata and 
estimation points pk. The S/TRF efficiently addresses the randomness in terms of multivariate 
probability density function (pdf),  fX(χmap): 

fX(χmap)dχmap = Prob[χ1<X(p1)<χ1+dχ1,…,χm<X(pm)<χm+dχm], (C1) 

whereProb[.] denotes the probability operator. Any equations derived through the BME 
framework are then based on the S/TRF representation. 

Let us define the S/TRF of air pollution as X(p), that is often regarded as a spatially non-
homogeneous and temporally non-stationary field. We assume that the non-homogeneous/non-
stationary S/TRF X(p) can be modeled as the sum of a space/time mean trend mZ(p)and a 
homogeneous/stationary residual X’(p) as follow: 

X(p)= mZ(p) + X’(p), (C2) 

where the residual X’(p) is a homogeneous/stationary random field in the sense that the expected 
value of X’(p) is constant (fluctuated around zero), and the covariance of X’(p) can generally be 
expressed solely as a function of spatial and temporal lags. The mean trend used for this study 
becomes the LUR results at data points, and leads to the residual with which to implement BME 
estimation. 

(i) At the first stage, BME generates the prior pdf fG providing an initial probability distribution 
across space and time based on mean vector mXmap and covariance matrix cXmap of air pollution. 
In particular the covariance describes space/time correlation and air pollution dependencies 
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between pairs of points. BME maximizes the entropy function [85, p.105] given mXmap and cXmap, 
which leads to the Gaussian pdf (prior pdf) provided by: 

fG(χmap)= N (χmap ;mXmap, cXmap), (C3) 

To obtain the cXmap, first we were based on X’(p) in Eq. (C2) to calculate experimental 
covariance (i.e., circles in Figs 11-13) for a given spatial lag r and temporal lag using the 
following estimator: 

1 N ( r , ) 2 (C4)ĉ X (r , )   i 1 X head , i X tail , i  m XN (r , ) 

whereN(r,) is the number of pairs of points with values (Xhead,Xtail) separated by a distance of r 
and a time of . In practice we use a tolerance dr and d, i.e., such that 

r-dr ≤ ||shead-stail|| ≤ r+drand-d ≤ ||thead-stail|| ≤ +d. (C5) 

Second, we find a permissible covariance model (i.e., cXmap in Eq C3) that fits the experimental 
covariance. 

(ii) At the second stage, the site-specific knowledge available is organized into deterministic hard 
(Eq. C6) and probabilistic soft data (Eq.C7) and expressed in terms of suitable operators. 

Prob[ X(phard) =hard]=1, (C6) 

Prob[X(psoft) <u]=  u 
d soft fS ( soft) , (C7) 

Where hard, fS(.), and X(psoft) are respectively an error-free measurement at point phard, a 
conditional pdf, and air pollution field at soft data locations psoft. 

(iii) At the final stage, the initial solution fG of stage (i) is enriched by assimilating the site-
specific knowledge of stage (ii) through Bayesian statistics. This final solution provides the 
posterior pdf fK(χk) (Eq. C6)for the contaminant level at each estimation point pk (i.e., 180 
individual months in 1988-2002 for NO2 and PM10, each of 60 months in 1998-2002 for PM2.5, 
and 10 km-gridded locations over the state of California for all of the pollutants). 

fK(χk) = fG[χk|S] = A-1  dχsoftfS(χsoft)fG(χmap), (C8) 
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where A is a normalization coefficient. Since we do not consider soft data in this study, Eq. C8 is 
reduced to: 

fK(χk) = Z-1fG(χhard,χk), 
(C9) 

where Z is a normalization coefficient. 
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