ARB Freight Locomotive Advanced Technology Assessment September 3, 2014 Sacramento, California California Environmental Protection Agency **⊘** Air Resources Board #### **Technology Assessment Objective** - Help inform planning for near, mid, and long-term planning horizons. - Sustainable Freight Plan - State Implementation Plan - Scoping Plan, etc - Identify current state of advanced technologies that provide opportunities for emission reductions. #### Summary of Findings Handout | <u>a</u> | | | | | | | | | | | | | | | | |-------------------------------|--|--|--|---|--|---|---|--|--|--|---|---|--|--|--| | | Technology | Performance
(rel to Tier 2) | Cost | Operational
Considerations | Status | Next Step | s KeyChal | lenges | | | | | | | | | Tier 2/3 | | 5.5 g/bpchr
NOx, 0.1-0.2
g/bpchr PM | ~\$2.3M/unit | Compatible with
national fleet | Full-Scale
Commercial
Production | | Nat'l star
engine tech
were nece
bring Tie
commercial | advances
essary to
er 2 to | | | | | | | | | Tier 4 | Combustion
improvements,
enhanced
cooling, and
Exhaust Gas
Recirculation
(EGR) | 75-85% NOX
and PM
reductions | ~\$3 million
per unit to
account for
enhanced
combustion,
cooling and
systems
integration | Compatible with
national fleet | Battery
Tender
Car | Technology Battery tender connected to locomotive. Could potentially be | Performance
(cel to Tier 2)
Zero emission
miles | Cost Locomotive +\$5M for each tender car. Costs should go | Operational
Considerations
Compatible with
national fleet if
there's a national
charging
infrastructure, | Status
Concept | Next Steps Policies and funding for R&D | Key Challenges Overcoming potential operational impacts (ARB funded Unfl Study) | | | | | LNG | dual fuel (60-
80% NG)
retrofits for
Tier 2/3 or
HPDI for Tier 4 | Same as Tier
2/3 for
retrofits, 75-
85% NOx/PM
reductions for
Tier 4, No DPM
when using NG | Locomotive
+\$1M for
each tender
car, but fuel
costs 50%
less | Need for tender
car, NG fueling
infrastructure | | T2-T4 | connected to
T2-T4+
locamatives. | T2-T4+ | T2-T4+ | | down as
production
levels
increase and
electricity
cheaper than
diesel. | | | | | | Tier 4+ | SCR for NOX,
DOC and DPF
for PM | 90% reduction ,
70% NOx/PM
reductions
beyond Tier 4 | ~\$4 million
per unit.
Possible
maintenance
cost
increases for
after-
treatment. | Compatible with
national fleet, will
require
maintenance/sup
ply for urea | Catenary | Electric power
provided from
catenary lines | Zero tailpipe,
upstream
emissions for
power
generation | Range of
~\$30 to
~\$300 million
per mile but
would be
amortized
over many | Compatible with
national fleet if
there's a national
catenary system | Technology used
in U.S., Europe,
Russia, China and
other parts of the
world. | Policies and
funding needed
for capital costs
and research and
development. | Capital costs of infrastructure. Studies needed on system design, electric power plants, and existing infrastructure modifications. | | | | | On-Board
Battery
Hybrid | On-board
batteries to
power
locomotives | Up to 10% NOx
and PM
additional
reductions, due
to reduced fuel
consumption | ~\$4 million
per unit | Compatible with
national fleet | Fuel Cell | Proton Exchange Membrane (PEMs), Solid Oxide Fuel Cell (SOFC)/Gas Turbine | Zero tailpipe,
upstream
emissions for
hydrogen
generation | years.
Not available | Compatible with
national fleet if
there's a national
fueling system | PEMS: Conceptual phase, with BNSF small prototype switcher locomotive. (BNSF 1205: Green Goat converted to fuel cell) SOFC/GT: Concept Paper | Policies and
funding needed
for research and
development. | modifications. | | | | #### Agenda - Background on North American Freight Rail Operations - Historical Evolution of Technology and Operations - Framework for Technology Assessment - Assessment of Technologies to Reduce Locomotive Emissions # Background on Freight Rail and Locomotive Operations #### Basics on U.S. Freight Diesel-Electric Locomotive Operations Seven Class I (Major) Freight Railroads in US Operating on 160k miles of track with Chicago as a major hub. UP and BNSF National Fleet of ~15,000 locomotives. 10,000 interstate line-haul and 5,000 regional and switch locomotives #### Freight Diesel-Electric Locomotive - Diesel engine powers electric alternator which provides electricity to the locomotive traction motors/wheels. - Two Domestic Manufacturers: General Electric (GE) and Electro-Motive Diesel (EMD) ## Types of UP and BNSF Locomotives in California - Interstate Line Haul (4,400 hp) - Pull long trains across the country (e.g., Chicago to Los Angeles) - Consume ~330,000 gallons of diesel annually. - Operate 5–10% of time within California - Medium Horsepower (MHP) (2,301–4,000 hp) - Regional, helper, and short haul service. - Consume ~50,000-100,000 gallons of diesel annually. - Most operations in California or western region. - Switch (Yard) (1,006-2,300 hp) - Local and rail yard service. - Consume ~25,000-50,000 gallons of diesel annually. - Most operations in and around railyards. #### **UP and BNSF Major Freight Train Routes to South Coast Air Basin** # Historical Evolution of Locomotive Technology and Operations #### Historical Rail Fuel Improvements - ▶ 50% improvement in efficiency since 1980 (~1.8%/year) - Due to operational and technology improvements - FRA and rail roads project continued fuel efficiencies of about 1% per year. #### Operations: - Unit trains for bulk commodities (e.g., coal, ethanol, grain, etc.) and double-stack containers for intermodal. - Technology: - Locomotive combustion (e.g., electronic and common rail fuel injection) and locomotive pulling power (i.e., tractive effort) - Distributed Power Units (DPUs), Idle Reduction Devices (IRDs) and Trip Optimizers. # U.S. EPA Line-Haul Locomotive Emission Standards (g/bhp-hr) | Standard | NOx
(g/bhp hr) | Percent
Reduction from
Pre Tier 0 | PM
(g/bhp hr) | Percent
Reduction from
Pre Tier 0 | |-------------------|-------------------|---|------------------|---| | In-use/pre-Tier 0 | 13.5 | | 0.6 | | | | | | | | | Tier 1 | 7.4 | | 0.45 | • | | Tier 2 | 5.5 | ~60% | 0.2 | ~67% | | Tier 3 | 5.5 | | 0.1 | | | Tier 4 | 1.3 | ~90% | 0.03 | ~95% | #### ARB & Local Programs to Reduce Emissions - ▶ 1998 Locomotive NOx Fleet Average Agreement in South Coast Air Basin: - 67% and 50% NOx and PM reductions, respectively. - Full compliance by 2010 to achieve nearly a Tier 2 NOx average. - 2005 ARB/Railroad Agreement - 20% PM, some NOx reductions - Full compliance by June 30, 2008. - CARB Diesel Fuel Regulation Intrastate Locomotives: - 14% and 6% PM and NOx reductions. - Full compliance by 2007. # Statewide NOX Emissions from Line-Haul Locomotives ## Statewide PM2.5 Emissions from Line-Haul Locomotives # Framework for Technology Assessments ## Key Performance, Fueling, Operational, and Economic Considerations - Locomotive Performance - Tractive Effort (Pulling Power) - Emission Reductions - Fuel Efficiency - Fueling and Operating Conditions - Operations and Economics - Durability (up 30 years or more) - Reliability - Safety - Compatibility with Existing Fleet - Timing of Development, Testing and Production - Costs (Capital, Fuel, Maintenance) # Today's Tier 3 Locomotive Performance | Engine and Fuel Efficiency | Value | |----------------------------|-------| | | | | | | | | | | | | | | | | | | ^{*}Medium Speed Engine. | Emissions
Level | grams/bhp-hr | |--------------------|--------------| | NOX | 5.5 | | PM | 0.1 | | НС | 0.3 | ^{**} Revenue Ton Miles. # Existing Locomotive Refueling and Operating Conditions - Refueling intervals are approximately 1,000 miles based on current refueling infrastructure. - For example Chicago to Los Angeles routes: - Existing major refueling locations in BNSF and UP Kansas City, KS, BNSF Belen, NM, UP El Paso, TX, Rawlins, WY. - U.S. freight locomotives operate in extreme temperature ranges, travel over extreme mountain grades, and below sea level to 9,000' elevations. #### UP and BNSF's Locomotive Operations #### Dynamic National Fleet: 8,400 of 10,000 interstate line haul locomotives operated in the South Coast Air Basin (SCAB) in 2013. #### Foreign Power: - Foreign power" are locomotives leased/exchange from other Class I railroads. - UP/BN operated ~4.5% foreign power* in SCAB in 2013. - Nationally up to 10% of locomotives are borrowed from other Class I railroads annually. 60-day movement of one interstate freight line haul locomotive ### Locomotive Acquisition Rates and Useful Life - Acquisition* of Locomotives - GE and EMD build about 500-1,200 locomotives annually for world-wide use. - UP and BNSF combined acquired ~500 new locomotives annually for U.S. operations between 1996-2014. (* New locomotives can be purchased, leased, and exchanged.) - Interstate Line Haul Locomotives: - US EPA estimates 30 years for fleet turnover - ~20 years for interstate service. - ~10 years for regional service. - ~10-20 years for switch service or sell to shortline railroads. # Historical Development of Today's Tier 2/4 Technologies | Stage | Year
1 | Year
2 | Year
3 | Year
4 | Year
5 | Year
6 | Year
7 | Compliance
Date | |---|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--------------------| | Concept/Design | | | | | | | | | | Lab Engine Testing | | | | | | | | | | Prototype and Demo Locos (1-5 units) | | | | | | | | | | Pre-Production
Loco Field Tests
(20-75 units) | | | | | | | | | | Commercial Production | | | | | | | | | # Actions Needed to Develop Tier 2/4 Locomotives - U.S. EPA locomotive national emissions standards: - 1998 and 2008 locomotive rulemakings - Engine technology advances: - Advanced combustion (e.g., turbochargers, EGR). - Electronic and common rail injection systems. - Advanced systems integration. # Advanced Locomotive Technology Assessments # Approach to Assessing Advanced Locomotive Technologies - Emission Reductions - Technology Description - Operational Considerations (including infrastructure) - Demonstration Status and Production Capacity - Costs (Capital and Operating) - Next Steps to Demonstrate and Deploy - Key Challenges #### Locomotive Technologies Evaluated - Tier 4: - Diesel–Electric - Natural Gas (LNG/CNG) - ▶ Tier 4+: - Tier 4 with Aftertreatment (SCR, DOC, and DPF) - Battery Hybrid: - On–Board (Locomotive) Battery - Battery Tender (connected to locomotive) - Electric: - Catenary (Single or Dual Mode Locomotives) - Fuel Cell Technologies: - Proton Exchange Membrane (PEMs) - Solid Oxide Fuel Cell/Gas Turbine (SOFC/GT) - **Other Advanced Propulsion Systems** ## ARB Funded Study of Economic and Operational Impacts on California Rail - University of Illinois (U of I) will assess: - Potential operational impacts, costs, and savings of advanced locomotive technologies. - Focus on technologies that might limit operations to South Coast Air Basin or California. - For example, battery tenders, all-electric. - Potential time delays to switch different types of locomotives on trains at exchange point railyards. - Assess potential for mode shifts, if there are time delays (e.g., from rail to trucks or ships). - U of I study draft by late 2014. # Tier 4 Diesel-Electric Freight Interstate Line Haul Locomotives GECX 2015 - GE Tier 4 Prototype ## Tier 4 Diesel-Electric Freight Interstate Line Haul Locomotive | Criteria | Assessment | | | |-----------------------------------|--|--|--| | Emission Reductions | 75-85% NOx-PM: Reductions from | | | | Emission Reductions | Tier 2/3. | | | | | Combustion improvements, enhanced | | | | Technology | cooling, and Exhaust Gas Recirculation | | | | | (EGR). | | | | Technology Performance: | Similar to Tier 3, but there may be a fuel | | | | Fuel Efficiency | penalty for advanced emission controls. | | | | Technology Performance: | Unchanged from Tior 2 | | | | Fuel Tank and Range | Unchanged from Tier 3 | | | | Operational Consideration: | Yes, compatible with national fleet | | | | Compatible w/National Fleet | res, compande with national neet | | | ## Tier 4 Diesel-Electric Freight Interstate Line Haul Locomotive | Criteria | Assessment | | | | | |--|---|--|--|--|--| | Operational Consideration: Infrastructure | No major changes needed. | | | | | | Costs (preliminary estimates) | ~\$3 million per unit to account for enhanced combustion, cooling and systems integration costs. Increase on-par with technology cost increases between Tier 2 and Tier 3. | | | | | | Current Status | GE: Support field service testing of 20 pre-
commercial production units for full scale
commercial production from 2015-2017.
EMD: Full scale commercial production by 2017. | | | | | # Dual Fuel (LNG-Diesel) Line Haul and CNG Switch Locomotives Source: http://www.____com/gas_updates_165.shtml #### Railroad Industry: Long History of Gas Rail Test Programs - Propane locomotive in 1930's. - ▶ LPG Gas Turbine locomotive in 1950's. - ▶ BN CNG Efforts in 1980's. - Gas Rail Initiative and LNG switchers in 1990's. - S. California LNG Line Haul Locomotive early 2000's. - A number of recent rail LNG test programs: - Canadian National, BNSF, etc. ## Tier 3/4 Dual Fuel Freight Interstate Line Haul Locomotive | Criteria | Assessment | | | |--|---|--|--| | Emission Reductions | Tier 4: 75-85% NOx-PM reductions from Tier 2 levels, no DPM when using NG | | | | Technology | 60-80% (LNG) to retrofit existing Tier 2/3 locomotives. High Pressure Direct Injection (up to 95% LNG): new Tier 4 | | | | Technology Performance: Fuel Efficiency | Not Available. | | | | Technology Performance:
Fuel Tank and Range | Not Available. Note: 30,000 gallon LNG tender could potentially fuel two locomotives up to 2,200 miles. | | | | Status | BNSF/GE: 2 line haul prototypes and tender BNSF/EMD: 2 line haul prototypes and tender CN/EMD: 2 MHP prototypes and tender | | | ### Tier 3/4 Dual Fuel Freight Interstate Line Haul Locomotive | Criteria | Assessment | | | | |-----------------------------------|--|--|--|--| | Operational Consideration: | Need major investment in LNG fuel | | | | | Infrastructure | infrastructure, retrofit existing locomotives, | | | | | | and build FRA compliant tenders. | | | | | Operational Consideration: | Potential issues with tenders if national | | | | | Compatible w/National Fleet | fueling network is not available. | | | | | | \$1 million for ~30,000 gallon tender. Costs | | | | | Costs (preliminary estimates) | should go down as production levels | | | | | Costs (premimary estimates) | increase. | | | | | | Fuel price: up to 50% less than diesel | | | | | | Cost-benefit analysis, operational impact | | | | | Next Steps | analysis, infrastructure analysis, on-going | | | | | | testing, federal regulatory approvals | | | | #### Dual Fuel Locomotives Key Challenges: - ▶ Energy Density vs. Diesel (130,000 BTUs): - LNG 60%, CNG 25%. - Need more volume to be diesel equivalent. - Will Cost-Benefit Bear Out? - Natural gas fuel infrastructure (e.g., liquefaction plants and refueling centers) and capital costs versus lower fuel costs. - Railroads are assessing the operational impacts with the use of dual fuel locomotives and tenders. - Currently, no emission reductions beyond Tier 4. Tier 4+ or Near-Zero Emission Locomotives: # Tier 4+ Diesel-Electric or Dual Fuel Freight Interstate Line Haul Locomotive | Criteria | Assessment | |--------------------------------|--| | Emission Reductions | 90% reductions from Tier 2, | | | 70% NOx/PM reductions beyond Tier 4 | | | Selective Catalytic Reduction (SCR) – NOx. | | Technology | Diesel Oxidation Catalyst (DOC) and Diesel | | | Particulate Filter (DPF) – PM control | | Technology Performance: | Diesel: should be similar to Tier 4 | | Fuel Efficiency | LNG: should be similar to Tier 4 LNG | | Technology Performance: | Diesel: should be similar to Tier 4 | | Fuel Tank and Range | LNG: should be similar to Tier 4 LNG | | Status | Concept Phase | # Tier 4+ Diesel-Electric or Dual Fuel Freight Interstate Line Haul Locomotive | Criteria | Assessment | |--|---| | Operational Consideration: | No major infrastructure changes, but urea | | Infrastructure | supply depots needed. | | Operational Consideration: Compatible w/National Fleet | Yes, compatible with national fleet. | | Costs (preliminary estimates) | ~\$4 million per unit* to account for aftertreatment. Increase on-par with | | | technology cost increases between Tier 2 and Tier 3. Possible maintenance cost increases for after-treatment devices. | | Next Steps | Policies and funding needed for research and development. | | Key Challenges | Engine compartment space, and policies/investments to get technology to commercial introduction. | *ARB estimate. ## GE On-Board Locomotive Batteries and Transpower Concept for Battery Tenders #### GE On-Board Locomotive Batteries | Criteria | Assessment | |---|--| | Emission Reductions | Up to 10% NOx and PM additional reductions, due to reduced fuel consumption with zero emissions miles. | | Technology | Locomotive on-board batteries. | | Technology Performance: Fuel Efficiency | Not Available. | | Technology Performance: Fuel Tank and Range | Not Available. | | Status | Conceptual phase, with prototype. | | Key Challenges | At this time, on-board batteries may be limited by the lack of space available on a locomotive. | ### Transpower Concept for Battery Tender | Criteria | Assessment | |--------------------------------|---| | Emission Reductions | Zero-emission miles for duration of battery | | | capacity | | | Battery tender connected to locomotive. | | Technology | Could potentially be connected to T2-T4+ | | | locomotives. | | Technology Performance: | Not Available. | | Fuel Efficiency | INOLAVAIIADIE. | | Technology Performance: | Not Avoilable | | Fuel Tank and Range | Not Available. | | Status | Conceptual phase. | # GE On-Board Locomotive Batteries and Transpower Concept for Battery Tender | Criteria | Assessment | |--|--| | Operational Consideration:
Infrastructure | None for on-board battery locomotive. Tender will require national charging infrastructure or limited to operation within certain areas | | Operational Consideration: Compatible w/National Fleet | Yes, if national charging infrastructure | | Costs (preliminary estimate) | \$~5M for Tier 4 locomotive with on-board
batteries. \$5M for battery tenders. Costs
should go down as production levels
increase and electricity cheaper than diesel. | | Next Steps | Policies and funding needed for research and development. | | Key Challenges | Compatibility with national fleet and operational impacts for tender. | ## PEM Fuel Cell Locomotive ### PEMS Fuel Cell Interstate Line Haul Locomotive | Criteria | Assessment | |---|---| | Emission Reductions | Zero emissions on hydrogen. | | Technology | Proton Exchange Membrane (PEMs). | | PEMS - Potential | Thermal efficiency could be higher than current locomotives (up to ~50%). | | Technology Performance: Energy Efficiency | Not available. | | Technology Performance: Fuel Tank and Range | Not available. | | Status | Conceptual phase, with BNSF small prototype switcher locomotive. (BNSF 1205: Green Goat converted to fuel cell) | ### SOFC/GT - Fuel Cell Interstate Line Haul Locomotive | Criteria | Assessment | |--|---| | Emission Reductions | Near-zero emissions, possibly beyond Tier 4+. | | Technology | Solid Oxide Fuel Cell/Gas Turbine (SOFC/GT). | | SOFC/GT - Potential | Enough theoretical power to operate an interstate line haul locomotive. Thermal efficiency up to 70%. For reference the thermal efficiency of diesel locomotives is 40%. | | Technology Performance:
Energy Efficiency | Not available. | | Technology Performance: Fuel Tank and Range | Not available. | | Status | Conceptual phase. UC Irvine: ARB/SCAQMD funded concept paper. | ### PEM or SOFC/GT – Fuel Cell Interstate Line Haul Locomotives | Criteria | Assessment | |--|---| | Operational Consideration: Physical Infrastructure | No major changes. | | Operational Consideration: Compatible w/National Fleet | Need national fueling infrastructure (e.g., hydrogen). | | Costs (preliminary estimates) | Not available. | | Next Steps | Policies and funding needed for research and development. | #### Freight Railroad Electrification #### Deseret Power Railroad (Built in 1984. 35 miles of dedicated 50kv electrified track. 7 - GE electric locomotives. Operate up to four locomotives pulling ~75 coal hoppers on 3 trains per day to support the 460 MW Bonanza Power Plant). ## Freight Railroad Electrification | Criteria | Assessment | |---|--| | Emission Reductions | Zero stack emissions. Emissions from electric power plants. | | Technology | Electrification with catenary. | | Technology Performance: Energy Efficiency | Not available. | | Technology Performance: Fuel Tank and Range | Range is as far as catenary lines extend. | | Status | Technology used in U.S., Europe, Russia, China and other parts of the world. | ## Freight Railroad Electrification | Criteria | Assessment | |-----------------------------------|---| | Operational Consideration: | Catenary, electric power plants and | | Infrastructure | substations. | | Operational Consideration: | Will require exchange railyards, unless | | Compatible w/National Fleet | national system is electrified. | | Costs (preliminary estimates) | Wide range, dependent on design of | | | electrified system (e.g. 50kv vs. 25kv). | | | Range of ~\$30 to ~\$300 million per mile | | | but would be amortized over many years. | | Next Steps | Policies and funding needed for capital | | | costs and research and development. | | Key Challenges | Capital costs of infrastructure. Studies | | | needed on system design, electric power | | | plants, and existing infrastructure | | | modifications. | # Other Technologies for Consideration: Advanced Rail Propulsion Systems - Linear Induction Motors (LIM) - Linear Synchronous Motors (LSM) - Maglev Concepts that should be explored further for applications to freight rail. ## **Key Findings** - Future technologies will need be advanced through a variety of mechanisms: - On-going R&D for technology and infrastructure - Public and private investments in development and demonstration of technology, fuels and infrastructure. - Policies to promote and develop these technologies and to accelerate their deployment. ## Key Findings - All of the technologies assessed are viable, but timing and costs vary. - Tier 4 standards are likely to be met only with EGR technology. - Tier 4 standard could have been met with SCR and DPF. - SCR can control NOx from an engine that's tuned for fuel efficiency. - LNG may be economically viable but GHG benefits dependent on methane leakage rates. ## **Key Findings** - Tender and fuel cells show promise for long-term technologies, but research and demonstration projects are needed. - Some technologies may not be compatible with national system. - University of Illinois study will help identify the operational and economic impacts of advanced technologies including fuel tenders. ### Contacts - Nicole Dolney ndolney@arb.ca.gov (916) 322–1695 - Harold Holmes hholmes@arb.ca.gov - Mike Jaczola <u>mjaczola@arb.ca.gov</u> - Eugene Yang <u>eyang@arb.ca.gov</u> - Stephen Cutts <u>scutts@arb.ca.gov</u> - Hector Castaneda hcastane@arb.ca.gov - Matthew Malchow <u>mmalchow@arb.ca.gov</u>