

ANDREAS STIHL

EXECUTIVE ORDER U-U-015-0990-1 New Off-Road Small Spark-Ignition Engines at or Below 19 Kilowatts

Pursuant to the authority vested in California Air Resources Board by the Health and Safety Code, Division 26, Part 5, Chapters 1 and 2; and

Pursuant to the authority vested in the undersigned by Health and Safety Code Sections 39515 and 39516 and Executive Order G-19-095;

IT IS ORDERED AND RESOLVED: That the following engine and emission control systems produced by the manufacturer are certified for use in small off-road equipment. Production engines shall be in all material respects the same as those for which certification is granted.

MODEL YEAR	ENGINE FAMILY		DISPLACEMENT (cc) ENGINE C		FUEL TYPE (CNG/LNG=compressed/liquefied natural gas LPG=liquefied petroleum gas)			
2020	LA8X	S.0274UJ	27	2-stroke, < 50 c	c Gasoline			
DURABILITY HOURS		SPECIAL FEATURES & EMISSION CONTROL SYSTEMS			TYPICAL EQUIPMENT APPLICATION			
300		EM			Non-Backpack Blower, Leaf Blower/Vacuum			
ENGINE CODES/MODELS (rated power in kilowatt, kW)		See Attachment						

ABBREVIATIONS: EM=engine modification TWC/OC=three-way/oxidizing catalyst WUTWC/WUOC=warm-up TWC/OC O2S=oxygen sensor HO2S=heated O2S EGR=exhaust gas recirculation AIR=secondary air injection PAIR=pulsed AIR MFI=multi port fuel injection SFI=sequential MFI TBI=throttle body fuel injection DFI=direct fuel injection TC/SC=turbo/super charger CAC=charge air cooler 2(prefix)=parallel (2)(suffix)=in series ECM=engine control module

The following are the hydrocarbon plus oxides of nitrogen (HC+NOx), carbon monoxide (CO), and particulate matter (PM) emission standards (Title 13, California Code of Regulations, (13 CCR) Section 2403(b)), and certification emission levels for this engine family in grams per kilowatt-hour (g/kW-hr). Engines within this engine family shall have closed crankcases in conformance with Section 1054.115(a) of the "California Exhaust Emission Standards and Test Procedures for New 2013 and Later Small Off-Road Engines," adopted October 25, 2012.

*=not applicable	HC+NOx (g/kW-hr)	CO (g/kW-hr)	PM (g/kW-hr)	
STANDARD	50	536	2.0	
FAMILY EMISSION LEVEL	57	450	1.1	
CERTIFICATION LEVEL	53	314	1.1	

BE IT FURTHER RESOLVED: That the family emission level(s) (FELs), as applicable, is an emission limit declared by the manufacturer for use in the averaging, banking and trading program and in lieu of an emission standard for certification. It serves as the applicable emission standard for determining compliance of any engine within this engine family under 13 CCR Sections 2403(e)(1) and 2407(a).

BE IT FURTHER RESOLVED: That for the listed engines, the manufacturer has submitted, and the Executive Officer hereby approves, the information and materials to demonstrate certification compliance with 13 CCR Section 2404 (emission control labels) and 13 CCR Sections 2405 and 2406 (emission control system warranty).

Engines certified under this Executive Order must conform to all applicable California emission regulations.

Quarterly reports of engines produced in this engine family for sale in California shall be submitted to the Executive Officer no later than 45 days after the end of each calendar quarter.

This Executive Order is only granted to the engine family and model-year listed above. Engines in this family that are produced for any other model-year are not covered by this Executive Order.

This Executive Order hereby cancels and replaces Executive Order U-U-015-0990 dated August 20, 2019.

Executed at El Monte, California on this 1214 day of March 2020.

Allen Lyons, Chief

Emissions Certification and Compliance Division

Page: 9

Model Year:

2020

Manufacturer

ANDREAS STIHL AG & Co. KG

Issued:

01/22/2020

Engine Family: LA8XS.0274UJ Revised:

01/22/2020

E.O. Number: U-U-015-0990-1

Small Off-Road Engine Model Summary Form

Units for Table: kW

47. Model Designation	48. Sales Code	49. Displ. (cc)	50. Bore/ Stroke	51. Ignition Timing	52. max. Power	53. Rated Speed (RPM)	54. Rated Torque	55. Torque Speed (RPM)	56. Emiss. Control Sys.
BG 86	50-State	27.2	34/30 mm	26° b.t.d.c	0.919	7200	1.25 Nm	5500	EM
BG 86 C	50-State	27.2	34/30 mm	26° b.t.d.c	0.919	7200	1.25 Nm	5500	EM
SH 86 C	50-State	27.2	34/30 mm	26° b.t.d.c	0.919	7200	1.25 Nm	5500	EM
					, A. 10				26.5
	100								
								16.1	
	Model Designation BG 86 BG 86 C	Model Sales Designation Code BG 86 50-State BG 86 C 50-State	Model DesignationSales CodeDispl. (cc)BG 8650-State27.2BG 86 C50-State27.2	Model Designation Sales Code Displ. (cc) Bore/ Stroke BG 86 50-State 27.2 34/30 mm BG 86 C 50-State 27.2 34/30 mm	Model DesignationSales CodeDispl. (cc)Bore/ StrokeIgnition TimingBG 8650-State27.234/30 mm26° b.t.d.cBG 86 C50-State27.234/30 mm26° b.t.d.c	Model Designation Sales Code Displ. (cc) Bore/Stroke Ignition Timing max. Power BG 86 50-State 27.2 34/30 mm 26° b.t.d.c 0.919 BG 86 C 50-State 27.2 34/30 mm 26° b.t.d.c 0.919	Model Designation Sales Code Displ. (cc) Bore/Stroke Ignition Timing Max. Power (RPM) Rated Speed (RPM) BG 86 50-State 27.2 34/30 mm 26° b.t.d.c 0.919 7200 BG 86 C 50-State 27.2 34/30 mm 26° b.t.d.c 0.919 7200	Model Designation Sales Code Displ. (cc) Bore/ Stroke Ignition Timing max. Power Rated Speed (RPM) Rated Torque BG 86 50-State 27.2 34/30 mm 26° b.t.d.c 0.919 7200 1.25 Nm BG 86 C 50-State 27.2 34/30 mm 26° b.t.d.c 0.919 7200 1.25 Nm	Model Designation Sales Code Displ. (cc) Bore/ Stroke Ignition Timing Max. Power Rated Speed (RPM) Rated Torque Torque Speed (RPM) BG 86 50-State 27.2 34/30 mm 26° b.t.d.c 0.919 7200 1.25 Nm 5500 BG 86 C 50-State 27.2 34/30 mm 26° b.t.d.c 0.919 7200 1.25 Nm 5500