Pursuant to the authority vested in California Air Resources Board by the Health and Safety Code, Division 26, Part 5, Chapters 1 and 2; and

Pursuant to the authority vested in the undersigned by Health and Safety Code Sections 39515 and 39516 and Executive Order G-19-095;

IT IS ORDERED AND RESOLVED: That the following equipment produced by the manufacturer is certified as described below. Production equipment shall be in all material respects the same as those for which certification is granted.

MODEL YEAR	EVAPORAT	IVE FAMILY	FUEL TYPE		
2024	CRPC	M2CA	Gasoline		
EVAPORATIVE EMISSION CONTRO	L SYSTEMS	EQUIPMENT APPLICATION			
Canister (C), Metal (M)		Generator Set			

Equipment/evaporative systems certified by this Executive Order are further described in Attachment.

The following are the evaporative emission standard (Title 13, California Code of Regulations, 13 CCR Section 2754 or 2754.1, as applicable), and certification level in g organic material hydrocarbon equivalent test⁻¹. The running loss emissions control has been demonstrated by the manufacturer.

HOT SOAK PLUS DIURNAL EMISSION STANDARD (g organic material hydrocarbon equivalent test ⁻¹)							
STANDARD	EVAPORATIVE FAMILY EMISSION LIMIT DIFFERENTIAL (EFELD)	EVAPORATIVE MODEL EMISSION LIMIT (EMEL)	CERTIFICATION LEVEL				
0.70	*	= (STANDARD) – (EFELD)	0.54				

*not applicable

BE IT FURTHER RESOLVED: That the evaporative model emission limit (EMEL), as applicable, is the diurnal or hot soak plus diurnal emission rate declared by the manufacturer based on evaporative emissions test results for the model of engine or equipment model within the evaporative family that is expected to exhibit the highest evaporative emission rate relative to the applicable diurnal or hot soak plus diurnal emission standard, obtained by following TP-902. No engine or equipment emissions within the evaporative family can have a diurnal emissions rate that is higher than the final declared EMEL established by final test data pursuant to TP-902.

BE IT FURTHER RESOLVED: That the evaporative family emission limit differential (EFELD), as applicable, is an emission rate differential between the diurnal or hot soak plus diurnal emission standard in Tables 1, 2 or 3 of section 2754(a) for the model of engine or equipment within the evaporative family that is expected to exhibit the highest evaporative emission rate relative to the applicable diurnal or hot soak plus diurnal emission standard and the EMEL declared for the model and is applicable to the entire evaporative family represented by the model. The EFELD is used to determine the EO holder's compliance with the applicable diurnal emission standard, on a corporate average basis, for any equipment within this evaporative family. (See Title 13 CCR Section 2754.1(f).)

BE IT FURTHER RESOLVED: That for the listed equipment, the manufacturer has submitted, and the Executive Officer hereby approves, the information and materials to demonstrate certification compliance with Title 13 CCR Section 2759 (labeling), Section 2774 (bond requirements) and Sections 2760 and 2764 (emission control system warranty).

Equipment certified under this Executive Order must conform to all applicable California emission regulations.

This Executive Order is only granted to the evaporative family and model-year listed above. Equipment in this family that is produced for any other model-year is not covered by this Executive Order.

Executed on this <u>lat</u> day of February 2024.

Folin U. Lang

Robin U. Lang, Chief Emissions Certification and Compliance Division

SORE Evap Model Summary Template (rev. Aug 2023)

Date: ____12/04/2023_____ Evaporative Family: _____CRPCM2CA_____

Model Summary

For CARB Use Only Executive Order: U-U-169-0600 Attachment __1__of__1__

		S3 Sales Codes approp	(Check all			Se Fuel Tank Vo							
S1. Worst Case (Check One)	S2. Equipment Model	CA Only	50-State	S4. Engine Class	S5. Fuel System (FI or CARB)	Total	Nominal	S7. Fuel Tank Internal Surface Area (m^2)	S8. Fuel Line Type (e.g. Single or Multi-Layer)	S9. Nominal Fuel Line Length (mm)	S10. Fuel Line Inside Diameter (mm)	S11. Engine Family	S12. Carbon Canister Working Capacity (g/L), if equipped
	GF9700E-G		х	П	FI	43.7	40.5	0.79	Multi-layer	≤1000	≥3	RCRPS.4202CA	1.61
	GF9700E		х	II	FI	31.5	30.0	0.7	Multi-layer	≤1000	≥3	RCRPS.4202CA	2.23 or 1.72 or 1.52
	GF9700E		х	Ш	FI	43.7	40.5	0.79	Multi-layer	≤1000	≥3	RCRPS.4202CA	1.61
	GF9700E-P GF9700E		х	II	FI	34.7	29.1	0.78	Multi-layer	≤1000	≥3	RCRPS.4202CA	2.03 or 1.56
	GS8800E-P GS8800E		х	II	FI	25.0	20.2	0.61	Multi-layer	≤1000	≥3	RCRPS.4202CA	1.91 or 1.69
	Gi8800E-P Gi8800E		х	II	FI	19.8	16.4	0.57	Multi-layer	≤1000	≥3	RCRPS.4202CA	2.13 or 1.42
	GF12000E-P		х	Ш	FI	34.7	29.1	0.78	Multi-layer	≤1000	≥3	RCRPS.5002CA	2.03 or 1.56
	GF12000E R9500DFP-6		х	П	FI	34.0	31.0	0.7	Multi-layer	≤1000	≥3	RCRPS.5002CA	2.07 or 1.59
х	GF12000E R9500DFP-6		х	II	FI	43.7	40.5	0.79	Multi-layer	≤1000	≥3	RCRPS.5002CA	1.61
	GF12000E-G		х	П	FI	43.7	40.5	0.79	Multi-layer	≤1000	≥3	RCRPS.5002CA	1.61
	Gi11700E GD11700E		х	II	FI	38.6	33.0	0.77	Multi-layer	≤1000	≥3	RCRPS.5002CA	1.82 or 1.40