

Pursuant to the authority vested in California Air Resources Board by the Health and Safety Code, Division 26, Part 5, Chapters 1 and 2; and

Pursuant to the authority vested in the undersigned by Health and Safety Code Sections 39515 and 39516 and Executive Order G-19-095:

IT IS ORDERED AND RESOLVED: That the following equipment produced by the manufacturer is certified as described below. Production equipment shall be in all material respects the same as those for which certification is granted.

		ENGINE	DESCRIPTION							
	MANUFACTURER	ENGINE FAMILY	FUEL TYPE (CNG/LNG=compressed/liquefied natural gas LPG=liquefied petroleum gas)							
Chong	gqing Rato Technology Co., Ltd.	PCRPS.2241GP	(U-U-169-0555)	224, 212	Gasoline, Gasoline-LPG dual-fuel					
S.A. = See TBC = To B	Attachment se Certified	EQUIPMEN	IT DESCRIPTION	ı	1					
MODEL YEAR	EVAPORATIVE FAMILY	FUEL TANK NOMINAL CAPACITY (liters)	EQUIPMENT APPLICATION							
2023	CRPCM225P	See Attachment		Ge	Generator Set					
EMISSION	N CONTROL SYSTEMS (ECS)	ENGINE and/or EQUIPMENT MODEL								
	СМ	See Attachment								
Metal=M Tre		elar=L Nylon=N Acetal=A Othe	er=O B. EVAPORATIVE	FAMILY 2-Letter	Other=O 2. Tank Barrier Type and Code:- r CODE (Venting Control Codes =C, S, O); (Tank of use abbreviations for ECS types.					

The following are the evaporative emission standards (Title 13, California Code of Regulations, 13 CCR Section 2754, as applicable), and certification levels in g organic material hydrocarbon equivalent day or g ROG·m²-day¹ or grams per liter for this evaporative family or the component Executive Order, as applicable. The running loss emissions control has been demonstrated by the manufacturer.

DIURNAL EMISSION STANDARD (g organic material hydrocarbon equivalent·day⁻¹)											
0.95 + 0.056 × Nominal Capacity (L)											
	LINE PERMEATION ROG·m ⁻² ·day ⁻¹)		FANK PERMEATION g ROG·m ⁻² ·day ⁻¹)	CARBON CANISTER BUTANE WORKING CAPACITY (grams per liter)							
STANDARD	CERTIFICATION LEVEL OR EXECUTIVE ORDER		CERTIFICATION LEVEL OR EXECUTIVE ORDER	STANDARD	CERTIFICATION LEVEL OR EXECUTIVE ORDER						
15	See Attachment	1.5	See Attachment	1.4	See Attachment						

BE IT FURTHER RESOLVED: That for the listed equipment, the manufacturer has submitted, and the Executive Officer hereby approves, the information and materials to demonstrate certification compliance with 13 CCR Section 2759 (labeling), Section 2774 (bond requirements) and 13 CCR Sections 2760 and 2764 (emission control system warranty).

Equipment certified under this Executive Order must conform to all applicable California emission regulations.

This Executive Order is only granted to the evaporative family and model-year listed above. Equipment in this family that is produced for any other model-year is not covered by this Executive Order.

Executed on this ______ day of July 2022.

Robin U. Lang, Chief

Johns Sahi Jor

Emissions Certification and Compliance Division

Date: _03/20/2022____ Evaporative Family: ___CRPCM225P_____ For CARB Use Only Executive Order: U-U-169-0579 Attachment _1_of_2_

Model Summary

		S3 Sales Codes approp	(Check all			S6. Fuel Tank Volume (Liters)									
S1. Worst Case (Check One)	S2. Model	Calif. Only		S4. Engine Class (I or II)	S5. Fuel System (FI or CARB)	Total	Nominal	S7. Fuel Tank Internal Surface Area (m^2)	S8. Fuel Line Type (e.g. Single or Multi-Layer)	S9. Nominal Fuel Line Length (mm)	S10. Fuel Line Inside Diameter (mm)	S11. Engine Family	S12. Fuel Tank Executive Order	S13. Fuel Line Executive Order	S14. Carbon Canister (or Working Capacity (g/L)/ Other Venting Control Executive Order)
x	R3500(D)P(N)-(P)(X*) 200911**, 200969** 200970**, 200971** 200921**, 201005** 201006**, 201042** 201156**, 201086** 201119**		x	I	CARB	23.0	17.8	0.539	Multi-Layer	≤500	4 or greater	PCRPS.2241GP	Q-19-132A	Q-22-033 Q-19-119 Q-20-001 Q-21-007	Q-19-063 Q-22-016 Q-22-017 Q-22-018 Q-22-023 Q-22-025 Q-22-027 Q-22-029 Q-22-030
	R4000i(D)P(N)- (P)(X*) R4000iSP(N)- (P)(X*) R4000iEP(N)- (P)(X*) 201056**, 201057** 201081**		x	I	CARB	19.0	15.2	0.5020	Multi-Layer	≤500	4 or greater	PCRPS.2241GP	Q-19-023	Q-22-033 Q-19-119 Q-20-001 Q-21-007	Q-19-063 Q-22-015 Q-22-016 Q-22-025 Q-22-027 Q-22-028
	R4000i(D)P(N)- (P)(X*) R4000iSP(N)- (P)(X*) R4000iEP(N)- (P)(X*) 201056**, 201057** 201081**		X	I	CARB	10.50	8.50	0.32	Multi-Layer	≤500	4 or greater	PCRPS.2241GP	Q-19-132	Q-22-033 Q-19-119 Q-20-001 Q-21-007	Q-20-013 Q-20-014 Q-22-014 Q-22-015 Q-22-022 Q-22-028 Q-22-037
	R3000iSP(N)-(P)(X*) R3000iEP(N)-(P)(X*) 200986**, 200987** 200989**, 200990** 200992**, 200993** 200988**, 200991** 200984**, 201053** 201064**, 201079** 201154**, 201155**		х	I	CARB	19.0	15.2	0.5020	Multi-Layer	≤500	4 or greater	PCRPS.2241GP	Q-19-023	Q-22-033 Q-19-119 Q-20-001 Q-21-007	Q-19-063 Q-22-015 Q-22-016 Q-22-025 Q-22-027 Q-22-028

Date: _03/20/2022____ Evaporative Family: ___CRPCM225P_____ For CARB Use Only Executive Order: U-U-169-0579 Attachment _2_of_2_

Model Summary

I	1	S3		l	1	Se	3			l		I	1	<u> </u>	1
		Sales Codes	(Check all			Fuel Tank Volume (Liters)									
S1. Worst Case (Check One)	S2. Model	appropri		S4. Engine Class (I or II)	S5. Fuel System (FI or CARB)	(Lite	Nominal	S7. Fuel Tank Internal Surface Area (m^2)	S8. Fuel Line Type (e.g. Single or Multi-Layer)	S9. Nominal Fuel Line Length (mm)	S10. Fuel Line Inside Diameter (mm)	S11. Engine Family	S12. Fuel Tank Executive Order	S13. Fuel Line Executive Order	S14. Carbon Canister (or Working Capacity (g/L)/ Other Venting Control Executive Order)
	R3000iSP(N)-(P)(X*) R3000iEP(N)-(P)(X*) 200986**, 200987** 200992**, 200993** 200988**, 200991** 200994**, 201533** 201064**, 201079** 201154**, 201155**		х	I	CARB	10.50	8.50	0.32	Multi-Layer	≤500	4 or greater	PCRPS.2241GP	Q-19-132	Q-19-119 Q-20-001 Q-21-007	Q-20-013 Q-20-014 Q-22-014 Q-22-015 Q-22-022 Q-22-028 Q-22-037
	R3100(D)P(N)-(P)(X*) 200963**, 200964**		х	I	CARB	23.0	17.8	0.539	Multi-Layer	≤500	4 or greater	PCRPS.2241GP	Q-19-132A	Q-22-033 Q-19-119 Q-20-001 Q-21-007	Q-19-063 Q-22-016 Q-22-017 Q-22-018 Q-22-023 Q-22-025 Q-22-027 Q-22-029 Q-22-030
	_														