

JOHN DEERE

EXECUTIVE ORDER U-U-077-0069

New Off-Road Small Spark-Ignition
Equipment

Pursuant to the authority vested in California Air Resources Board by the Health and Safety Code, Division 26, Part 5, Chapters 1 and 2; and

Pursuant to the authority vested in the undersigned by Health and Safety Code Sections 39515 and 39516 and Executive Order G-19-095;

IT IS ORDERED AND RESOLVED: That the following equipment produced by the manufacturer is certified as described below. Production equipment shall be in all material respects the same as those for which certification is granted.

		ENGINE	DESCRIPTION							
	MANUFACTURER	ENGINE FAM	IILY (E.O. NUMBER)	ENGINE SIZE (cc)	FUEL TYPE (CNG/LNG=compressed/liquefied natural gas LPG=liquefied petroleur gas)					
В	RIGGS & STRATTON, LLC	MBSXS.7242 NBSXS.5402	2VL (U-U-002-1139) 2VE (U-U-002-1138) 2VL (U-U-002-1217) 2VE (U-U-002-1198)	540, 656, 724	Gasoline					
* TBC = To Be Certified EQUIPMENT DESCRIPTION										
MODEL YEAR	EVAPORATIVE FAMILY	FUEL TANK SIZE (liters)	EQUIPMENT APPLICATION							
2023	JDXCC3	See Attachment	Lawn and Garden Tractor, ZTR – Residential							
EMISSIO	N CONTROL SYSTEMS (ECS)	ENGINE and/or EQUIPMENT MODEL								
	Canister/Co-extruded	See Attachment								
Code:- Meta		ed=C Selar=L Nylon=N A	Acetal=A Other=O B. EVAP	DRATIVE FAMILY	Other=O 2. <u>Tank Barrier Type and</u> '2-Letter CODE (Venting Control Codes pe or code. Do not use abbreviations for					

The following are the evaporative emission standard (Title 13, California Code of Regulations, 13 CCR Section 2754 or 2754.1, as applicable), and certification level in g organic material hydrocarbon equivalent day. The running loss emissions control has been demonstrated by the manufacturer.

*=not applicable	DIURNAL EMISSION STANDARD (g organic material hydrocarbon equivalent·day⁻¹)							
STANDARD	EVAPORATIVE FAMILY EMISSION LIMIT DIFFERENTIAL (EFELD)	EVAPORATIVE MODEL EMISSION LIMIT (EMEL)	CERTIFICATION LEVEL					
1.20 + 0.056 × Nominal Capacity (L)	1.25	= (STANDARD) - (EFELD)	0.46					

BE IT FURTHER RESOLVED: That the evaporative model emission limit (EMEL), as applicable, is the diurnal emissions level declared by the manufacturer based on diurnal test results for a worst-case engine or equipment model within an evaporative family. No engine or equipment emissions within the evaporative family could be closer to its respective standard than the evaporative family emission limit differential (EFELD) calculated from the declared EMEL for the worst-case engine or equipment.

BE IT FURTHER RESOLVED: That the evaporative family emission limit differential (EFELD), as applicable, is an emission level differential between the effective standard level for a specific model representing the entire evaporative family and the EMEL declared for the specific model. It serves as the applicable evaporative emission standard for determining compliance on a corporate average basis of any equipment within this evaporative family under 13 CCR Sections 2754.1.

BE IT FURTHER RESOLVED: That for the listed equipment, the manufacturer has submitted, and the Executive Officer hereby approves, the information and materials to demonstrate certification compliance with 13 CCR Section 2759 (labeling), Section 2774 (bond requirements) and 13 CCR Sections 2760 and 2764 (emission control system warranty).

Equipment certified under this Executive Order must conform to all applicable California emission regulations.

JOHN DEERE

EXECUTIVE ORDER U-U-077-0069
New Off-Road Small Spark-Ignition

Equipment

This Executive Order is only granted to the evaporative family and model-year listed above. Equipment in this family that is produced for any other model-year is not covered by this Executive Order.

Executed on this 27th day of May 2022.

Folma Sahri for Allen Lyons, Chief

Emissions Certification and Compliance Division

SORE Evap > 80cc Model Summary Template (rev. 2020)

Date: ____ 14-Sep-22

Evaporative Family: _____ JDXCC3

Model Summary

For CARB Use Only Executive Order: U-U-077-0069 Attachment _1__of_1__ RC1: 10-10-22

		Sales Codes (Chec				Se Fuel Tank Vo									
S1. Worst Case (Check One)	S2. Model	Calif. Only	50-State	S4. Engine Class (I or II)	S5. Fuel System (FI or CARB)	Total	Nominal	S7. Fuel Tank Internal Surface Area (m^2)	S8. Fuel Line Type (e.g. Single or Multi-Layer)	S9. Nominal Fuel Line Length (mm)	S10. Fuel Line Inside Diameter (mm)	S11. Engine Family	S12. Fuel Tank Executive Order	S13. Fuel Line Executive Order	S14. Carbon Canister (or Working Capacity (g/L)/ Other Venting Control Executive Order)
	S110		х	II	CARB	12.1	9.1	0.35	Multi-Layer	1980	6.35	MBSXS.5402VL NBSXS.5402VL	NA	Q-19-002A	2.8g/L
	S120		х	II	CARB	12.1	9.1	0.35	Multi-Layer	2206	6.35	MBSXS.7242VE NBSXS.7242VE	NA	Q-19-002A	2.8g/L
	S130		х	II	CARB	12.1	9.1	0.35	Multi-Layer	2215	6.35	MBSXS.7242VE NBSXS.7242VE	NA	Q-19-002A	2.8g/L
	S140		х	II	CARB	12.1	9.1	0.35	Multi-Layer	2215	6.35	MBSXS.7242VE NBSXS.7242VE	NA	Q-19-002A	2.8g/L
х	S160		х	II	CARB	12.1	9.1	0.35	Multi-Layer	2215	6.35	MBSXS.7242VE NBSXS.7242VE	NA	Q-19-002A	2.8g/L
	S170		х	II	CARB	12.1	9.1	0.35	Multi-Layer	2215	6.35	MBSXS.7242VE NBSXS.7242VE	NA	Q-19-002A	2.8g/L
	S180		х	II	CARB	12.1	9.1	0.35	Multi-Layer	2215	6.35	MBSXS.7242VE NBSXS.7242VE	NA	Q-19-002A	2.8g/L
	Z315E		х	II	CARB	14.17	11.2	0.4277	Multi-Layer	1221	6.35	MBSXS.7242VE NBSXS.7242VE	NA	Q-19-002A	3.3g/L
	Z325E		х	II	CARB	14.17	11.2	0.4277	Multi-Layer	1221	6.35	MBSXS.7242VE NBSXS.7242VE	NA	Q-19-002A	3.3g/L
	Z515E		х	II	CARB	19.1	17	0.48	Multi-Layer	1200	6.35	MBSXS.7242VE NBSXS.7242VE	NA	Q-19-002A	1.5g/L
						_		_	_						