

JOHN DEERE

EXECUTIVE ORDER U-U-077-0065-1 New Off-Road Small Spark-Ignition Equipment

Pursuant to the authority vested in California Air Resources Board by the Health and Safety Code, Division 26, Part 5, Chapters 1 and 2; and

Pursuant to the authority vested in the undersigned by Health and Safety Code Sections 39515 and 39516 and Executive Order G-19-095;

IT IS ORDERED AND RESOLVED: That the following equipment produced by the manufacturer is certified as described below. Production equipment shall be in all material respects the same as those for which certification is granted.

		ENGINE	DESCRIPTION							
	MANUFACTURER	ENGINE FAM	FUEL TYPE (CNG/LNG=compressed/liquefied natural gas LPG=liquefied petroleun gas)							
Kav	vasaki Heavy Industries, LTD.	NKAXS.6032 NKAXS.6172 NKAXS.7262 NKAXS.7262 NKAXS.7262 NKAXS.7262 NKAXS.8522 MKAXS.6032 MKAXS.6032 MKAXS.6032 MKAXS.7262 MKAXS.7262 MKAXS.8522 LKAXS.6032 LKAXS.6032 LKAXS.6032 LKAXS.6172 LKAXS.7262 LKAXS.7262 LKAXS.7262 LKAXS.7262	CE (U-U-004-0871) CE (U-U-004-0875) CE (U-U-004-0875) CE (U-U-004-0888) CE (U-U-004-0881) CG (U-U-004-0887) CCK (U-U-004-0883) CCF (U-U-004-0882) CCD (U-U-004-0887) CCE (U-U-004-0840) CCD (U-U-004-0843) CCE (U-U-004-0844) CCE (U-U-004-0851) CCG (U-U-004-0851) CCG (U-U-004-0851) CCG (U-U-004-0852) CCC (U-U-004-0852) CCC (U-U-004-0856) CCC (U-U-004-0866) CCD (U-U-004-0866) CCD (U-U-004-0809-1) CCE (U-U-004-0811-1) CCE (U-U-004-0811-1) CCG (U-U-004-0811-1) CCG (U-U-004-0811-1) CCG (U-U-004-08122) CCB (U-U-004-08822) CCB (U-U-004-08823)	401, 603, 617, 726, 852	Gasoline					
	Briggs & Stratton, LLC	NBSXS.4792 NBSXS.7242 MBSXS.4792 MBSXS.7242 LBSXS.8102	HH (U-U-002-1214) VX (U-U-002-1220) HH (U-U-002-1148) 2VX (U-U-002-1166) VX (U-U-002-1135) HH (U-U-002-1115)	479, 724, 810						
	Kohler Company	NKHXS.6942 NKHXS.6942 MKHXS.6942 MKHXS.6942	EKG (U-U-005-0716) EEA (U-U-005-0718) EKG (U-U-005-0674) EEA (U-U-005-0672) KG (U-U-005-0654)	694	14					
TBC = To	Be Certified	•	,		•					
MODEL	EVAPORATIVE FAMILY	FUEL TANK SIZE EQUIPMENT APPLICATION								
YEAR 2022	JDXCC1	(itters) See Attachment Commercial Turf, Lawn and Garden Tractor,								
	N CONTROL SYSTEMS (ECS)		ZTR – Residential, ZTR – Commercial, Other ENGINE and/or EQUIPMENT MODEL							
	(200)	See Attachment								

Code: Metal=M Treated HDPE or PE=P Co-extruded=C Selar=L Nylon=N Acetal=A Other=O B. EVAPORATIVE FAMILY 2-Letter CODE (Venting Control Codes = C, S, O); (Tank Barrier Codes = M, P, C, L, N, A, O). Note: Always list venting control type or code first before tank barrier type or code. Do not use abbreviations for ECS types.

The following are the evaporative emission standard (Title 13, California Code of Regulations, 13 CCR Section 2754 or 2754.1, as applicable), and certification level in g organic material hydrocarbon equivalent day. The running loss emissions control has been demonstrated by the manufacturer.

*=not applicable	DIURNAL EMISSION STANDARD (g organic material hydrocarbon equivalent·day⁻¹)									
STANDARD	EVAPORATIVE FAMILY EMISSION LIMIT DIFFERENTIAL (EFELD)	EVAPORATIVE MODEL EMISSION LIMIT (EMEL)	CERTIFICATION LEVEL							
1.20 + 0.056 × Nominal Capacity (L)	1.6	= (STANDARD) - (EFELD)	0.46							

JOHN DEERE

EXECUTIVE ORDER U-U-077-0065-1 New Off-Road Small Spark-Ignition Equipment

BE IT FURTHER RESOLVED: That the evaporative model emission limit (EMEL), as applicable, is the diurnal emissions level declared by the manufacturer based on diurnal test results for a worst-case engine or equipment model within an evaporative family. No engine or equipment emissions within the evaporative family could be closer to its respective standard than the evaporative family emission limit differential (EFELD) calculated from the declared EMEL for the worst-case engine or equipment.

BE IT FURTHER RESOLVED: That the evaporative family emission limit differential (EFELD), as applicable, is an emission level differential between the effective standard level for a specific model representing the entire evaporative family and the EMEL declared for the specific model. It serves as the applicable evaporative emission standard for determining compliance on a corporate average basis of any equipment within this evaporative family under 13 CCR Sections 2754.1.

BE IT FURTHER RESOLVED: That for the listed equipment, the manufacturer has submitted, and the Executive Officer hereby approves, the information and materials to demonstrate certification compliance with 13 CCR Section 2759 (labeling), Section 2774 (bond requirements) and 13 CCR Sections 2760 and 2764 (emission control system warranty).

Equipment certified under this Executive Order must conform to all applicable California emission regulations.

This Executive Order is only granted to the evaporative family and model-year listed above. Equipment in this family that is produced for any other model-year is not covered by this Executive Order.

This Executive Order hereby supersedes Executive Order U-U-077-0065 dated June 09, 2021.

Executed on this _____ day of May 2022.

Gobna Eshi for

Allen Lyons, Chief

Emissions Certification and Compliance Division

Date: _4/14/2022_____
Evaporative Family: _JDXCC1_____

For CARB Use Only Executive Order: U-U-077-0065-1 Attachment _1_of_2_

Model Summary

		S				Se									
		Sales Codes approp				Fuel Tank Vo	lume (Liters)								
S1. Worst Case (Check One)	S2. Model	Calif. Only	50-State	S4. Engine Class (I or II)	S5. Fuel System (FI or CARB)	Total	Nominal	S7. Fuel Tank Internal Surface Area (m^2)	S8. Fuel Line Type (e.g. Single or Multi-Layer)	S9. Nominal Fuel Line Length (mm)	S10. Fuel Line Inside Diameter (mm)	S11. Engine Family	S12. Fuel Tank Executive Order	S13. Fuel Line Executive Order	S14. Carbon Canister (or Working Capacity (g/L)/ Other Venting Control Executive Order)
	1200A		х	П	CARB	15.0	13.6	0.41	Muliti-Layer	1650	6.35	LKAXS.4012CE MKAXS.4012CE NKAXS.4012CE	NA	Q-19-002	Q-19-063
	1200H		x	II	CARB	18.9	14.8	0.42	Muliti-Layer	525	6.35	LBSXS.4792HH MBSXS.4792HH NBSXS.4792HH	NA	Q-19-002	1.8g/L
	S240		х	II	CARB	12.1	9.1	0.35	Muliti-Layer	2357	6.35	LKAXS.7262CF MKAXS.7262CF NKAXS.7262CF	NA	Q-19-002	2.8g/L
	HPX615E		х	II	CARB	25	20	0.65	Muliti-Layer	1230	6.35	LKAXS.6172CE MKAXS.6172CE NKAXS.6172CE	NA	Q-19-002	Q-19-064
	TS GATOR		х	II	CARB	22.3	18.9	0.54	Muliti-Layer	1050	6.35	LKAXS.4012CE MKAXS.4012CE NKAXS.4012CE	NA	Q-19-002	1.4g/L
	TX GATOR		х	II	CARB	22.3	18.9	0.54	Muliti-Layer	1230	6.35	LKAXS.4012CE MKAXS.4012CE NKAXS.4012CE	NA	Q-19-002	1.4g/L
	TX TURF GATOR		х	II	CARB	22.3	18.9	0.54	Muliti-Layer	1230	6.35	LKAXS.4012CE MKAXS.4012CE NKAXS.4012CE	NA	Q-19-002	1.4g/L
	X350		х	II	CARB	13.7	12.5	0.52	Muliti-Layer	2047	6.35	LKAXS.7262CF MKAXS.7262CF NKAXS.7262CF	NA	Q-19-002	2.1g/L
	X350R		х	II	CARB	9	7.6	0.43	Muliti-Layer	1880	6.35	LKAXS.7262CF MKAXS.7262CF NKAXS.7262CF	NA	Q-19-002	3.4g/L
	X354		х	II	CARB	13.7	12.5	0.52	Muliti-Layer	2030	6.35	LKAXS.7262CF MKAXS.7262CF NKAXS.7262CF	NA	Q-19-002	2.1g/L
	X380		х	II	CARB	13.7	12.5	0.52	Muliti-Layer	2035	6.35	LKAXS.7262CF MKAXS.7262CF NKAXS.7262CF	NA	Q-19-002	2.1g/L
x	X570		х	II	CARB	19.3	16.7	0.88	Muliti-Layer	1935	6.35	LKAXS.7262CE MKAXS.7262CE NKAXS.7262CE	NA	Q-19-002	1.6g/L
	Z545R		х	II	CARB	15.4	13.2	0.45	Muliti-Layer	1442	6.35	LBSXS.8102VX MBSXS.7242VX NBSXS.7242VX	NA	Q-19-002	1.5g/L
	Z740R		х	II	CARB	40.8	31.5	1.038	Muliti-Layer	1120	6.35	LKAXS.7262CG MKAXS.7262CG MKAXS.7262CK NKAXS.7262CK	NA	Q-19-002	Q-19-064
	636M		х	II	CARB	22.7	21.2	0.52	Muliti-Layer	905	6.35	LKAXS.6032CD MKAXS.6032CD LKAXS.6032CG MKAXS.6032CE NKAXS.6032CE	NA	Q-19-002	Q-19-096

Date: _4/14/2022____ Evaporative Family: _JDXCC1____ For CARB Use Only Executive Order: U-U-077-0065-1 Attachment _2_of_2_

Model Summary

		S	1	1		S6					I		ı	I	
		Sales Codes	(Check all			Fuel Tank Vol									
S1. Worst Case (Check One)	S2. Model	Calif. Only	50-State	S4. Engine Class (I or II)	S5. Fuel System (FI or CARB)	Total	Nominal	S7. Fuel Tank Internal Surface Area (m^2)	S8. Fuel Line Type (e.g. Single or Multi-Layer)	S9. Nominal Fuel Line Length (mm)	S10. Fuel Line Inside Diameter (mm)	S11. Engine Family	S12. Fuel Tank Executive Order	S13. Fuel Line Executive Order	S14. Carbon Canister (or Working Capacity (g/L)/ Other Venting Control Executive Order)
	648R		х	II	CARB	22.7	21.2	0.52	Muliti-Layer	1260	6.35	LKAXS.7262CG MKAXS.7262CG NKAXS.7262CG	NA	Q-19-002	Q-19-096
	2400		х	II	FI	42.4	30	0.95	Muliti-Layer	1505	6.35	LKHXS.6942KG MKHXS.6942KG NKHXS.6942KG	NA	Q-19-002	Q-19-064
	2700		х	II	FI	22.37	20.25	0.49	Muliti-Layer	617	6.35	MKHXS.6942EA NKHXS.6942EA LKAXS.8522CB	NA	Q-19-002	Q-19-064
	Z930M		х	II	CARB	48.3	43.5	1.2	Muliti-Layer	855	6.35	MKAXS.8522CC MKAXS.8522CD NKAXS.8522CD	NA	Q-19-002	Q-19-056
		<u> </u>													