

JOHN DEERE

EXECUTIVE ORDER U-U-077-0063-2 New Off-Road Small Spark-Ignition Equipment

Pursuant to the authority vested in California Air Resources Board by the Health and Safety Code, Division 26, Part 5, Chapters 1 and 2; and

Pursuant to the authority vested in the undersigned by Health and Safety Code Sections 39515 and 39516 and Executive Order G-19-095;

IT IS ORDERED AND RESOLVED: That the following equipment produced by the manufacturer is certified as described below. Production equipment shall be in all material respects the same as those for which certification is granted.

MANUFACTURER		IILY (E.O. NUMBER)	ENGINE SIZE (cc)	FUEL TYPE (CNG/LNG=compressed/liquefied natural gas LPG=liquefied petroleum gas)				
Kawasaki Heavy Industries, LTD	MKAXS.603 MKAXS.726 MKAXS.726 MKAXS.726 MKAXS.401 LKAXS.6032 LKAXS.6172 LKAXS.7262 LKAXS.7262 LKAXS.7262 LKAXS.7263 KKAXS.400 KKAXS.603 KKAXS.6172	12CE (U-U-004-0840) 32CD (U-U-004-0843) 72CE (U-U-004-0848) 32CE (U-U-004-0851) 32CF (U-U-004-0853) 32CF (U-U-004-0852) 2CE (U-U-004-0806) 32CD (U-U-004-0812-1) 32CE (U-U-004-0812-1) 32CE (U-U-004-0812-1) 32CF (U-U-004-0812-1) 32CF (U-U-004-0779) 32CA (U-U-004-0779) 32CA (U-U-004-0770-1) 32CA (U-U-004-0770-1) 32CA (U-U-004-0770-1) 32CA (U-U-004-0770-1) 32CA (U-U-004-0770-1) 32CA (U-U-004-0770-1) 32CA (U-U-004-0770-1)	401, 603, 617, 726	Gasoline				
Briggs & Stratton Corporation	MBSXS.724 LBSXS.8102 LBSXS.4792	2HH (U-U-002-1148) 2VX (U-U-002-1166) 2VX (U-U-002-1135) 2HH (U-U-002-1115) 2HH (U-U-002-1077)	479, 724					
Kohler Company	MKHXS.6942 LKHXS.6942	2KG (U-U-005-0674) 2EA (U-U-005-0672) 2KG (U-U-005-0654) 2KG (U-U-005-0612)	694					
Loncin Motor Co., Ltd.	KCGPS.8032	2PN (U-U-145-0384) 2PN (U-U-145-0431)	708, 764, 803					
TBC = To Be Certified		NT DESCRIPTION						
IODEL EVAPORATIVE FAMILY	FUEL TANK SIZE (liters)	EC	UIPMENT APPLICATION					
2021 JDXCC1	See Attachment	See Attachment Commercial Turf, Lawn and Garden ZTR – Residential, ZTR – Commerci						
MISSION CONTROL SYSTEMS (EC	5)	ENGINE and/or E	QUIPMENT I	MODEL				
Canister/Co-extruded		See Attachment						

The following are the evaporative emission standard (Title 13, California Code of Regulations, 13 CCR Section 2754 or 2754.1, as applicable), and certification level in g organic material hydrocarbon equivalent day. The running loss emissions control has been demonstrated by the manufacturer.

*=not applicable	DIURNAL EMISSION STANDARD (g organic material hydrocarbon equivalent day¹)									
STANDARD	EVAPORATIVE FAMILY EMISSION LIMIT DIFFERENTIAL (EFELD)	EVAPORATIVE MODEL EMISSION LIMIT (EMEL)	CERTIFICATION LEVEL							
1.20 + 0.056 × Nominal Capacity (L)	1.6	= (STANDARD) - (EFELD)	0.46							

BE IT FURTHER RESOLVED: That the evaporative model emission limit (EMEL), as applicable, is the diurnal emissions level declared by the manufacturer based on diurnal test results for a worst-case engine or equipment model within an evaporative family. No engine or equipment emissions within the evaporative family could be closer to its respective standard than the evaporative family emission limit differential (EFELD) calculated from the declared EMEL for the worst-case engine or equipment.

JOHN DEERE

EXECUTIVE ORDER U-U-077-0063-2 New Off-Road Small Spark-Ignition Equipment

BE IT FURTHER RESOLVED: That the evaporative family emission limit differential (EFELD), as applicable, is an emission level differential between the effective standard level for a specific model representing the entire evaporative family and the EMEL declared for the specific model. It serves as the applicable evaporative emission standard for determining compliance on a corporate average basis of any equipment within this evaporative family under 13 CCR Sections 2754.1.

BE IT FURTHER RESOLVED: That for the listed equipment, the manufacturer has submitted, and the Executive Officer hereby approves, the information and materials to demonstrate certification compliance with 13 CCR Section 2759 (labeling), Section 2774 (bond requirements) and 13 CCR Sections 2760 and 2764 (emission control system warranty).

Equipment certified under this Executive Order must conform to all applicable California emission regulations.

This Executive Order is only granted to the evaporative family and model-year listed above. Equipment in this family that is produced for any other model-year is not covered by this Executive Order.

This Executive Order hereby supersedes Executive Order U-U-077-0063-1 dated September 14, 2020.

Executed on this 23rd day of May 2021.

Allen Lyons, Chief

Emissions Certification and Compliance Division

SORE Evap > 80cc Model Summary Template (rev. 2020)

Date: ____ 22-Feb-21
Evaporative Family: ____ JDXCC1

Model Summary

For CARB Use Only Executive Order: U-U-077-0063-2 Attachment _1_of_2_

		Sales Codes approp	(Check all			Se Fuel Tank Vo									
S1. Worst Case (Check One)	S2. Model	Calif. Only	50-State	S4. Engine Class (I or II)	S5. Fuel System (FI or CARB)	Total	Nominal	S7. Fuel Tank Internal Surface Area (m^2)	S8. Fuel Line Type (e.g. Single or Multi-Layer)	S9. Nominal Fuel Line Length (mm)	S10. Fuel Line Inside Diameter (mm)	S11. Engine Family	S12. Fuel Tank Executive Order	S13. Fuel Line Executive Order	S14. Carbon Canister (or Working Capacity (g/L)/ Other Venting Control Executive Order)
	1200A		х	II	CARB	15.0	13.6	0.41	Muliti-Layer	1650	6.35	KKAXS.4012CC LKAXS.4012CE MKAXS.4012CE		Q-19-002	Q-19-063
	1200H		х	II	CARB	18.9	14.8	0.42	Muliti-Layer	525	6.35	KBSXS.4792HH LBSXS.4792HH MBSXS.4792HH		Q-19-002	See S23, #2 1.8g/L
	S240		х	II	CARB	12.1	9.1	0.35	Muliti-Layer	2357	6.35	KKAXS.6032CA LKAXS.7262CF MKAXS.7262CF		Q-19-002	See S23, #2 2.8g/L
	HPX615E		х	II	CARB	25	20	0.65	Muliti-Layer	1230	6.35	KKAXS.6172CD LKAXS.6172CE MKAXS.6172CE		Q-19-002	Q-19-064
	TS GATOR		х	II	CARB	22.3	18.9	0.54	Muliti-Layer	1050	6.35	KKAXS.4012CC LKAXS.4012CE MKAXS.4012CE		Q-19-002	See S23, #2 1.4g/L
	TX GATOR		х	II	CARB	22.3	18.9	0.54	Muliti-Layer	1230	6.35	KKAXS.4012CC LKAXS.4012CE MKAXS.4012CE		Q-19-002	See S23, #2 1.4g/L
	TX TURF GATOR		х	II	CARB	22.3	18.9	0.54	Muliti-Layer	1230	6.35	KKAXS.4012CC LKAXS.4012CE MKAXS.4012CE		Q-19-002	See S23, #2 1.4g/L
	X350		х	II	CARB	13.7	12.5	0.52	Muliti-Layer	2047	6.35	KKAXS.6032CA LKAXS.7262CF MKAXS.7262CF		Q-19-002	See S23, #2 2.1g/L
	X350R		х	11	CARB	9	7.6	0.43	Muliti-Layer	1880	6.35	KKAXS.6032CA LKAXS.7262CF MKAXS.7262CF		Q-19-002	See S23, #2 3.4g/L
	X354		х	11	CARB	13.7	12.5	0.52	Muliti-Layer	2030	6.35	KKAXS.6032CA LKAXS.7262CF MKAXS.7262CF		Q-19-002	See S23, #2 2.1g/L
	X380		х	II	CARB	13.7	12.5	0.52	Muliti-Layer	2035	6.35	KKAXS.7262CA LKAXS.7262CF MKAXS.7262CF		Q-19-002	See S23, #2 2.1g/L
х	X570		х	11	CARB	19.3	16.7	0.88	Muliti-Layer	1935	6.35	KKAXS.7262CA LKAXS.7262CE MKAXS.7262CE		Q-19-002	See S23, #2 1.6g/L
	Z515E		х	П	CARB	15.4	13.2	0.45	Muliti-Layer	1442	6.35	KCGPS.8032PN LCGPS.8032PN		Q-19-002	See S23, #2 1.5g/L
	Z545R		х	П	CARB	15.4	13.2	0.45	Muliti-Layer	1442	6.35	LBSXS.8102VX MBSXS.7242VX		Q-19-002	See S23, #2 1.5g/L
	Z740R		х	II	CARB	40.8	31.5	1.038	Muliti-Layer	1120	6.35	KKAXS.7262CC LKAXS.7262CG MKAXS.7262CG		Q-19-002	Q-19-064
	636M		х	II	CARB	22.7	21.2	0.52	Muliti-Layer	905	6.35	KKAXS.6032CA LKAXS.6032CD MKAXS.6032CD		Q-19-002	Q-19-096

Date: ____ 22-Feb-21
Evaporative Family: ____ JDXCC1

For CARB Use Only Executive Order: U-U-077-0063-2 Attachment _2_of_2_

Model Summary

		Sales Code	s (Check all			Se Fuel Tank Vo	5. Iume (Liters)								
S1. Worst Case (Check One)	S2. Model	approj Calif. Only	50-State	S4. Engine Class (I or II)	S5. Fuel System (FI or CARB)	Total	Nominal	S7. Fuel Tank Internal Surface Area (m^2)	S8. Fuel Line Type (e.g. Single or Multi-Layer)	S9. Nominal Fuel Line Length (mm)	S10. Fuel Line Inside Diameter (mm)	S11. Engine Family	S12. Fuel Tank Executive Order	S13. Fuel Line Executive Order	S14. Carbon Canister (or Working Capacity (g/L)/ Other Venting Control Executive Order)
	648R		х	Ш	CARB	22.7	21.2	0.52	Muliti-Layer	1260	6.35	KKAXS.7262CC LKAXS.7262CG MKAXS.7262CG		Q-19-002	Q-19-096
	2400		х	II	CARB	42.4	30	0.95	Muliti-Layer	1505	6.35	KKHXS.6942KG LKHXS.6942KG MKHXS.6942KG		Q-19-002	Q-19-064
	2700		Х	II	CARB	22.37	20.25	0.49	Muliti-Layer	617	6.35	MKHXS.6942EA		Q-19-002	Q-19-064
		_	_												