

CHONGQING AM PRIDE POWER&MACHINERY CO.,LTD

EXECUTIVE ORDER U-U-164-0105 New Off-Road Small Spark-Ignition Equipment

Pursuant to the authority vested in California Air Resources Board by the Health and Safety Code, Division 26, Part 5, Chapters 1 and 2; and

Pursuant to the authority vested in the undersigned by Health and Safety Code Sections 39515 and 39516 and Executive Order G-19-095;

IT IS ORDERED AND RESOLVED: That the following equipment produced by the manufacturer is certified as described below. Production equipment shall be in all material respects the same as those for which certification is granted.

ENGINE DESCRIPTION										
	MANUFACTURER	ENGINE FAMILY	(E.O. NUMBER)	ENGINE SIZE (cc)	FUEL TYPE (CNG/LNG=compressed/liquefied natural gas LPG=liquefied petroleum gas)					
Ý	AMAHA MOTOR CO., LTD.		KYMXS.0805EH (U-U-017-0309) LYMXS.0805EL (U-U-017-0334)		Gasoline					
TBC = To Be Certified EQUIPMENT DESCRIPTION										
MODEL YEAR	EVAPORATIVE FAMILY	FUEL TANK NOMINAL CAPACITY (liters)	EQUIPMENT APPLICATION							
2020	LCPPS.0805EA	4.0	Generator Set							
EMISS	SION CONTROL SYSTEMS	ENGINE and/or EQUIPMENT MODEL(S)								
	P	See Attachment								
TANK TYPE: S=sealed M=metal P=treated HDPE or PE C=coextruded L=selar N=nylon A=acetal O=other (specify)										

The following are the evaporative emission standard (Title 13, California Code of Regulations, 13 CCR Section 2755 or 2757, as applicable), and certification level in g ROG·m⁻²·day⁻¹ for this evaporative family or the component Executive Order, as applicable.

*=not applicable PERMEATION EMISSION STANDARDS								
×	FUEL LINE PERMEATION (g ROG·m ⁻² ·day ⁻¹)	FUEL TANK PERMEATION (g ROG·m ⁻² ·day ⁻¹)						
STANDARD	CERTIFICATION LEVEL OR EXECUTIVE ORDER	STANDARD	CERTIFICATION LEVEL OR EXECUTIVE ORDER					
15	Q-18-018, Q-18-024, Q-18-030A, Q-18-031A, Q-19-071	2.0	Q-19-005B					

BE IT FURTHER RESOLVED: That for the listed equipment, the manufacturer has submitted, and the Executive Officer hereby approves, the information and materials to demonstrate certification compliance with 13 CCR Section 2759 (labeling), Section 2774 (bond requirements) and 13 CCR Sections 2760 and 2764 (emission control system warranty).

Equipment certified under this Executive Order must conform to all applicable California emission regulations.

This Executive Order is only granted to the evaporative family and model-year listed above. Equipment in this family that is produced for any other model-year is not covered by this Executive Order.

Executed at El Monte, California on this 16 TH day of March 2020.

Allen Lyons, Chief

Emissions Certification and Compliance Division

For CARB Use	e Only		
Executive Ord	er: U-U- 16	4	-0105
Attachment	l of	į	

Model Summary Sheet

(In #11, identify the fuel tank model exhibiting the highest permeation rate relative to the applicable permeation emission standard.)

11. Worst Case (Check One)	12. Model	Sales (Che	3. Codes ck all priate) 50- State	Fue	14. I Tank e (Liters) Nominal	15. Fuel Tank Internal Surface Area (m²)	16. Fuel Line Type (e.g. Single or Multi-	17. Fuel Line Length (mm)	18. Fuel Line Internal Diameter (mm)	19.	20. Fuel Tank Component Executive Order*	21. Fuel Line Component Executive Order*
							Layer)				7	
X	AP2000i SC2000i SC2000iCO		x	4.1	4.0	0.185	Multi- Layer	115	5 7	KYMXS.0805EH LYMXS.0805EL	Q-19-005B	Q-18-018 Q-18-024 Q-18-030A Q-18-031A Q-19-071
	SC2300i		X	4.3	4.0	0.181	Multi- Layer	170	5 7	KYMXS.0805EH LYMXS.0805EL	Q-19-005B	Q-18-018 Q-18-024 Q-18-030A Q-18-031A Q-19-071
	2											
						The second secon	An Three Court Harris Little	mar to a section difference of the second	yen yez			
,												
						3						

^{*}If not using CARB Component EOs, fill out test data information in #26-31.