| California Environmental Protection Agency | BAYERISCHE MOTOREN WERKE AG | EXECUTIVE ORDER A-008-0213-1    |
|--------------------------------------------|-----------------------------|---------------------------------|
|                                            |                             | New Passenger Care Light Duty T |

Light-Duty Trucks and Medium-Duty Vehicles

Pursuant to the authority vested in the Air Resources Board by Health and Safety Code (HSC), Div. 26, Part 5, Chap. 2; and pursuant to the authority vested in the undersigned by HSC Sections 39515 & 39516 and Executive Order G-02-003;

## IT IS ORDERED AND RESOLVED:

That the following exhaust and evaporative emission control systems produced by the manufacturer are certified as described below. Production vehicles shall be in all material respects the same as those for which certification is granted.

| MODEL<br>YEAR | TEST GROUP    | VEHICLE TYPE             | EXHAUST EMISSION<br>STANDARD CATEGORY | USEFU<br>(mil                          |      | IN<br>COMF<br>(*=N/A or<br>A/E=ex | MEDIATE<br>-USE<br>PLIANCE<br>r fuil in-use;<br>(h. / evap.<br>liate in-use) | FUEL TYPE                                                                                                        |
|---------------|---------------|--------------------------|---------------------------------------|----------------------------------------|------|-----------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| 2007          | 7BMXB03.0N52  | Passenger Car            | Emission Vehicle (LEV II<br>ULEV)     | EXH /<br>ORVR<br>150K                  | EVAP | EXH                               | EVAP                                                                         | Gasoline                                                                                                         |
| No.           |               | PECIAL FEATURES          | EVAPORATIVE                           | The second second second second second |      | A                                 |                                                                              | and the second |
| 1             | 2WU-TWC,2TWC, | 2HAFS,2HO2S, SFI, OBD(F) | 7BMXR0                                |                                        | AF)  |                                   | DISPLACE                                                                     | EMENT (L)                                                                                                        |
| •             |               | *                        |                                       | 120580                                 |      |                                   |                                                                              |                                                                                                                  |
| •             |               | *                        |                                       |                                        |      |                                   | 2.5                                                                          | 3                                                                                                                |
|               |               |                          | ííí [*                                |                                        |      | 5                                 | 2.0                                                                          | , .                                                                                                              |

See the Attachment for Vehicle Models, Evaporative Family, Engine Displacement, Emission Control Systems, Phase-In Standards, OBD Compliance, Emission Standards and Certification Levels, and Abbreviations.

#### **BE IT FURTHER RESOLVED:**

That the exhaust and the evaporative emission standards and the certification emission levels for the listed vehicles are as listed on the Attachment. Compliance with the 50° Fahrenheit testing requirement may have been met based on the manufacturer's submitted compliance plan in lieu of testing. Any debit in the manufacturer's "NMOG Fleet Average" (PC or LDT) or "Vehicle Equivalent Credit" (MDV) compliance plan shall be equalized as required.

## **BE IT FURTHER RESOLVED:**

That for the listed vehicle models, the manufacturer has attested to compliance with Title 13, California Code of Regulations, (13 CCR) Sections 1965 [emission control labels], 1968.2 [on-board diagnostic, full or partial compliance], 2035 et seq. [emission control warranty], 2235 [fuel tank fill pipes and openings] (gasoline and alcohol fueled vehicles only), and "High-Altitude Requirements" and "Inspection and Maintenance Emission Standards" (California Exhaust Emission Standards and Test Procedures for 2001 and Subsequent Model PC, LDT and MDV).

#### BE IT FURTHER RESOLVED:

Additional NMOG fleet average or vehicle equivalent credits are granted to the listed vehicle models pursuant to 13 CCR Section 1961(a)(8) [optional 150K certification].

Vehicles certified under this Executive Order shall conform to all applicable California emission regulations.

The Bureau of Automotive Repair will be notified by copy of this Executive Order.

This Executive Order hereby supersedes Executive Order A-008-0213 dated March 15, 2006.

Executed at El Monte, California on this day of April 2006.

llen Lyons, Chief Mobile Source Operations Division



BAYERISCHE MOTOREN WERKE AG

EXECUTIVE ORDER A-008-0213-1

New Passenger Cars, Light-Duty Trucks and Medium-Duty Vehicles

# ATTACHMENT

| AVERA                                                                                                           | For bi-, dua<br>G FLEET<br>(GE [g/mi]                                                                          | 1 1111000      | @ RAF=*<br>RAF = *                                                                                                                                                     |                                                                                         | CH4≂met<br>HCHO≃fo                      | hane; NMOG                                                                                                                                      | =non-CH4                                                                                                                              | organic ga                                                                                | s; NMHC=n                                                                                                                                               | on-CH4                                                  | hydrocarbon;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CO=carbon                                                                                           | monoxide                                                            |                                                                                                                                                 | les of pitro                                                                                   |
|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| CERT                                                                                                            | STD                                                                                                            | NMOG           | NMHC                                                                                                                                                                   | NMHC<br>STD                                                                             | I DOI-SOAK                              | RI (a/mil=nu                                                                                                                                    | nning lene.                                                                                                                           | 00101-1-                                                                                  | 44 44                                                                                                                                                   |                                                         | againers lacto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                     | su∸z/s da                                                           | ay diumal+                                                                                                                                      | milliocom                                                                                      |
| 0.037                                                                                                           | 0.043                                                                                                          | CERT<br>[g/mi] | CERT<br>[g/mi]                                                                                                                                                         | [g/mi]                                                                                  | CO                                      | [g/mi]                                                                                                                                          |                                                                                                                                       | s Fahrenh<br>x [g/mi]                                                                     |                                                                                                                                                         | uppleme<br>CHO [m                                       | intal reueral le                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | st procedure                                                                                        | \$                                                                  |                                                                                                                                                 |                                                                                                |
| 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - | @ 50K                                                                                                          | 0.022          | *<br>[a,]                                                                                                                                                              |                                                                                         | CERT                                    | STD                                                                                                                                             | CERT                                                                                                                                  |                                                                                           | D CE                                                                                                                                                    |                                                         | STD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PM [g/<br>CERT                                                                                      | STD                                                                 | Hw<br>CER                                                                                                                                       | / NOx [g/r<br>T S                                                                              |
|                                                                                                                 | @ UL                                                                                                           | 0.022          | *                                                                                                                                                                      | 0.040                                                                                   | 0.1                                     | 1.7                                                                                                                                             | 0.01                                                                                                                                  | 0.0                                                                                       |                                                                                                                                                         | 0                                                       | 8.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | *                                                                                                   | *                                                                   | 0.00                                                                                                                                            |                                                                                                |
| 8. C                                                                                                            | @ 50°F & 4K                                                                                                    | 0.068          | *                                                                                                                                                                      | 0.035                                                                                   | 0.1                                     | 2.1                                                                                                                                             | 0.01                                                                                                                                  | 0.0                                                                                       |                                                                                                                                                         |                                                         | 11.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | *                                                                                                   |                                                                     | 0.00                                                                                                                                            |                                                                                                |
|                                                                                                                 |                                                                                                                |                |                                                                                                                                                                        |                                                                                         |                                         |                                                                                                                                                 | 0.01                                                                                                                                  | 0.0                                                                                       | 5 0.                                                                                                                                                    | 3                                                       | 16.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                     | *                                                                   |                                                                                                                                                 |                                                                                                |
|                                                                                                                 | [g/mi]<br>= & 50K                                                                                              |                |                                                                                                                                                                        | NMHC+N(<br>(comp                                                                        | osite)                                  | CO [g<br>(comp                                                                                                                                  |                                                                                                                                       |                                                                                           | C+NOx<br>[US06]                                                                                                                                         | CC                                                      | ) [g/mi]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                     | C+NOX                                                               | I C                                                                                                                                             | 0 [g/mi]                                                                                       |
| Q 20 P                                                                                                          | a JUN                                                                                                          |                |                                                                                                                                                                        | CERT                                                                                    | STD                                     | CERT                                                                                                                                            | STD                                                                                                                                   | CERT                                                                                      |                                                                                                                                                         |                                                         | UŠÕ6j                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                     | [SC03]                                                              |                                                                                                                                                 | [SC03]                                                                                         |
| CERT                                                                                                            | 1.5                                                                                                            | SFTP @ 40      | 000 miles                                                                                                                                                              | *                                                                                       | *                                       |                                                                                                                                                 |                                                                                                                                       |                                                                                           | STD                                                                                                                                                     | CERI                                                    | r std                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CERT                                                                                                | STD                                                                 | CER                                                                                                                                             | T   S1                                                                                         |
| STD                                                                                                             | 10.0                                                                                                           |                | @ * miles                                                                                                                                                              | *                                                                                       | *                                       | *                                                                                                                                               |                                                                                                                                       | 0.03                                                                                      | 0.14                                                                                                                                                    | 1.7                                                     | 8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.01                                                                                                | 0.20                                                                | 0.2                                                                                                                                             | 2                                                                                              |
|                                                                                                                 |                                                                                                                |                |                                                                                                                                                                        |                                                                                         |                                         |                                                                                                                                                 |                                                                                                                                       |                                                                                           |                                                                                                                                                         |                                                         | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | *                                                                                                   | *                                                                   | *                                                                                                                                               |                                                                                                |
| Eva                                                                                                             | porative Fan                                                                                                   | nily           | (gram                                                                                                                                                                  | urnal + Hot<br>s/test) @ U                                                              | Soak<br>L                               | 2-Days Diu<br>(grams                                                                                                                            | rnal + Ho<br>/test) @I                                                                                                                | t Soak<br>JL                                                                              | R<br>(gra                                                                                                                                               | unning<br>ms/mil                                        | Loss<br>e) @ UL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | O<br>Rec                                                                                            | n-Board                                                             | l Refuelin<br>prams/ga                                                                                                                          | g Vapor                                                                                        |
|                                                                                                                 | 3MXR0128E8                                                                                                     | e.             | CERT                                                                                                                                                                   | ST                                                                                      |                                         | CERT                                                                                                                                            | S                                                                                                                                     | TD                                                                                        | CERT                                                                                                                                                    | r k                                                     | STD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                     | CERT                                                                |                                                                                                                                                 | STD                                                                                            |
| / 0                                                                                                             | *                                                                                                              | 0              | 0.38                                                                                                                                                                   | 0.5                                                                                     |                                         | 0.35                                                                                                                                            | _                                                                                                                                     | 65                                                                                        | 0.02                                                                                                                                                    |                                                         | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                     | 0.04                                                                |                                                                                                                                                 | 0.20                                                                                           |
|                                                                                                                 | *                                                                                                              |                | *                                                                                                                                                                      |                                                                                         |                                         | *                                                                                                                                               |                                                                                                                                       | *                                                                                         | *                                                                                                                                                       |                                                         | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                     | *                                                                   |                                                                                                                                                 | *                                                                                              |
|                                                                                                                 |                                                                                                                |                |                                                                                                                                                                        |                                                                                         | *                                       |                                                                                                                                                 | *                                                                                                                                     | *                                                                                         |                                                                                                                                                         | *                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | *                                                                                                   |                                                                     | *                                                                                                                                               |                                                                                                |
| as recircul                                                                                                     | *<br>licable; UL=us<br>ed vehicle weig<br>adsorbing TW<br>lation; AIR=se<br>ge air cooler; C<br>fied petroleum | C, WU-waim     | -up catalyst;                                                                                                                                                          | OC=oxidizin                                                                             | g catalyst;                             | O2S≈oxyger                                                                                                                                      | n sensor: 🖡                                                                                                                           | 02S=he                                                                                    | ted 02S                                                                                                                                                 | ES/LA                                                   | Service first                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | LEV, IWU                                                                                            | *<br>ard; CER<br>=3-way c                                           | atalyst;                                                                                                                                        | *<br>ation;                                                                                    |
| as recircul                                                                                                     | ation: AID-co.                                                                                                 | C, WU-waim     | passenger ca<br>djusted LVW<br>-up catalyst;<br>jection; <b>PAIR</b><br>JII/partial on-<br>5%" Ethanol                                                                 | OC=oxidizin                                                                             | g catalyst;<br>; MFI= mul<br>ostic; DOR | MDV=med<br>hicle; TLEV=<br>02S≃oxyger<br>tiport fuel inj<br>=direct ozon                                                                        | n sensor; 1<br>jection; SF<br>e reducing                                                                                              | IO2S=hea<br>I=sequent<br>; prefix 2=                                                      | ited O2S; A<br>ial MFI; TB<br>parallel; (2                                                                                                              | VFS/HAF<br>II=throttl<br>) suffix=                      | rol System; S<br>LEV=super L<br>FS=air- fuel r<br>e body inject<br>series; CNG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LEV, IWU                                                                                            | *<br>ard; CER<br>=3-way c                                           | atalyst;                                                                                                                                        | *<br>ation;                                                                                    |
| AS recircui<br>AC=charg<br>PG=liquef                                                                            | alation; AIR-see<br>e air cooler; C<br>fied petroleum                                                          | C, WU-waim     | passenger ca<br>djusted LVW<br>-up catalyst;<br>jection; <b>PAIR</b><br>JII/partial on-<br>5%" Ethanol                                                                 | CC=oxidizin<br>E=pulsed AIR<br>board diagno<br>Fuel                                     | g catalyst;<br>; MFI= mul<br>ostic; DOR | MDV=med<br>hicle; TLEV=<br>02S≃oxyger<br>tiport fuel inj<br>=direct ozon                                                                        | n sensor; F<br>ection; SF<br>e reducing<br>HICLE                                                                                      | IO2S=hea<br>I=sequent<br>; prefix 2=                                                      | ted O2S; A<br>ial MFI; TE<br>parallel; (2<br>ELS INI<br>S EN<br>S S S                                                                                   | VFS/HAF<br>II=throttl<br>) suffix=                      | rol System; S<br>LEV=super L<br>TS=air- fuel r<br>e body inject<br>series; CNG<br>IATION<br>INTER<br>IN<br>COMI<br>(*=N/A o<br>A/E=eo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | LEV, IWU                                                                                            | *<br>ard; CER<br>=3-way c.<br>/ heated ,<br>= turbo/sa<br>npressed, | atalyst;                                                                                                                                        | *<br>ation;                                                                                    |
| as recircul<br>AC≕charg<br>PG=liquefi<br>MA<br>BN                                                               | AKE                                                                                                            | C, WU-waim     | passenger ca<br>djusted LVW<br>-up catalyst;<br>jection; PAIF<br>JII/partial on-<br>5%" Ethanol<br>200<br>MODE                                                         | DC=oxidizin<br>#=pulsed AIR<br>board diagno<br>Fuel<br>7 MODE                           | g catalyst;<br>; MFI= mul<br>ostic; DOR | MDV=med<br>hicle: TLEV=<br>02S=oxyger<br>tiport fuel inj<br>=direct ozon<br>R: VEI                                                              | HICLE                                                                                                                                 | MODE                                                                                      | ELS INI                                                                                                                                                 | FS/HAF<br>II=throtti<br>Suffix=<br>FORM<br>GINE<br>IZE  | rol System; S<br>LEV=super L<br>S=air- fuel r<br>e body inject<br>series; CNG<br>IATION<br>INTER<br>IN<br>COMF<br>(*=N/A o<br>A/E=e<br>Intermed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MEDIATE<br>-USE<br>-USE<br>-USE<br>-LIANCE<br>- full in-use;<br>h. / evap.<br>liate in-use;         | * ard; CER =3-way c. / heated = turbo/st npressed                   | atalyst;<br>AFS; EGF<br>uper charg<br>/liquefied r                                                                                              | *<br>ation;<br>R=exhausi<br>er;<br>hatural ga                                                  |
| as recircul<br>AC=charg<br>PG=liquefi<br>MA<br>BN                                                               | AKE                                                                                                            | C, WU-waim     | passenger ca<br>djusted LVW<br>-up catalyst;<br>jection; PAIF<br>3%" Ethanol<br>200<br>MODE<br>Z4 3.0<br>Z4 3.0                                                        | CC=oxidizin<br>E=pulsed AIR<br>board diagno<br>Fuel<br>7 MODE<br>EL<br>Di<br>sí         | g catalyst;<br>; MFI= mul<br>ostic; DOR | MDV=med<br>hicle: TLEV=<br>O2S=oxyger<br>tiport fuel inj<br>=direct ozon<br>R: VEI<br>EVAPOF<br>FAM<br>7BMXR0<br>7BMXR0                         | n sensor; F<br>fection; SF<br>e reducing<br>HICLE<br>RATIVE<br>ILY<br>128E85<br>128E85                                                | O2S=hee<br>I=sequenin<br>; prefix 2=<br>MODE<br>EC:<br>NO                                 | ted O2S; A<br>lial MFI; TB<br>parallel; (2<br>ELS INF<br>S<br>S<br>S<br>(                                                                               | GINE                                                    | INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER | MEDIATE<br>-USE<br>VILIANCE<br>r full in-use;<br>h. / evap.<br>liate in-use)<br>EVAP                | *<br>ard; CER<br>=3-way c.<br>/ heated .<br>= turbo/sa<br>npressed. | AFS; EGF<br>uper charg<br>/liquefied r                                                                                                          | *<br>ation;<br>R=exhaust<br>er;<br>atural gas                                                  |
| as recircul<br>AC≕charg<br>PG=liquefi<br>MA<br>BN                                                               | ation; AIR-se<br>e air cooler; C<br>fied petroleum<br>AKE<br>MW                                                | C, WU-waim     | passenger ca<br>djusted LVW<br>-up catalyst;<br>jection; PAIF<br>200<br>200<br>MODE<br>Z4 3.0<br>Z4 3.0<br>Z4 3.0si C                                                  | CC=oxidizin<br>E=pulsed AIR<br>board diagno<br>Fuel<br>7 MODE<br>EL<br>Di<br>sí         | g catalyst;<br>; MFI= mul<br>ostic; DOR | MDV=med<br>nicle; TLEV=<br>02S=oxyger<br>tiport fuel inj<br>=direct ozon<br>R: VEI<br>EVAPOF<br>FAM<br>7BMXR0<br>7BMXR0                         | n sensor; F<br>iection; SF<br>e reducing<br>HICLE<br>RATIVE<br>ILY<br>128E85<br>128E85                                                | O2S=hea<br>=sequent<br>prefix 2=<br>MODE<br>EC:<br>NO<br>1<br>1<br>1                      | ted O2S; A<br>ial MFI; TB<br>parallel; (2<br>ELS INI<br>S<br>S<br>S<br>(                                                                                | GINE<br>IZE<br>IL)<br>GINE<br>IZE<br>IL)<br>3<br>3<br>3 | Intermec<br>A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MEDIATE<br>-USE<br>-USE<br>-USE<br>-USE<br>-LIANCE<br>-full in-use;<br>itate in-use)<br>EVAP        | * ard; CER =3-way c: / heated = turbo/st npressed                   | atalyst;<br>AFS; EGF<br>Jiquefied r<br>HASE-IN<br>STD.                                                                                          | *<br>ation;<br>R=exhausi<br>er;<br>hatural gas<br>OBD                                          |
| as recircul<br>AC=charg<br>PG=liquefr<br>MA<br>BN<br>BN<br>BN                                                   | AKE                                                                                                            | C, WU-waim     | passenger cz<br>djusted LVW<br>-up catalyst;<br>jection; PAIR<br>1//partial on-<br>5%" Ethanol<br>200<br>MODE<br>Z4 3.0<br>Z4 3.0<br>Z4 3.0<br>Z4 3.0<br>Si C<br>3231  | DC=oxidizin<br>E=pulsed AIR<br>board diagno<br>Fuel<br>7 MODE<br>EL<br>Di<br>si<br>OUPE | g catalyst;<br>; MFI= mul<br>ostic; DOR | MDV=med<br>hicle; TLEV=<br>C2S=oxyger<br>itiport fuel inj<br>edirect ozon<br>R: VEI<br>EVAPOF<br>FAM<br>7BMXR0<br>7BMXR0<br>7BMXR0              | h sensor; F<br>fiection; SF<br>e reducing<br>HICLE<br>ATIVE<br>ILY<br>128E85<br>128E85<br>128E85                                      | O2S=head<br>=sequent<br>prefix 2=<br>MODE<br>EC:<br>NO<br>1<br>1<br>1<br>1                | ted O2S; A<br>ial MFI; TB<br>parallel; (2<br>ELS INF<br>S<br>S<br>S<br>(<br>(                                                                           | GINE<br>IZE<br>(L)<br>3<br>3<br>5                       | rol System; S<br>LEV=super L<br>S=air- fuel r<br>e body inject<br>series; CNG<br>IATION<br>INTER<br>IN<br>COMF<br>("=N/A o<br>A<br>INTER<br>IN<br>COMF<br>("=N/A o<br>A<br>A<br>A<br>A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MEDIATE<br>-USE<br>-USE<br>-USE<br>-UIANCE<br>full in-use;<br>EVAP<br>EVAP<br>*                     | * ard; CER =3-way c                                                 | AFS: EGF<br>uper charge<br>/liquefied r<br>IASE-IN<br>STD.<br>SFTP<br>SFTP                                                                      | *<br>ation;<br>R=exhaust<br>er;<br>atural gas<br>OBD<br>Full                                   |
| as recircul<br>AC=charg<br>PG=liquefi<br>MA<br>BM<br>BM<br>BM                                                   | AKE                                                                                                            | C, WU-waim     | passenger ca<br>djusted LVW<br>-up catalyst;<br>jection; PAIF<br>200<br>200<br>MODE<br>Z4 3.0<br>Z4 3.0<br>Z4 3.0si C                                                  | CC=oxidizin<br>Expulsed AIR<br>board diagno<br>Fuel<br>7 MODE<br>EL<br>Di<br>si<br>OUPE | g catalyst;<br>; MFI= mul<br>ostic; DOR | MDV=med<br>hicle: TLEV=<br>O2S=oxyger<br>tiport fuel inj<br>=direct ozon<br>R: VEI<br>EVAPOF<br>FAM<br>7BMXR0<br>7BMXR0<br>7BMXR0<br>7BMXR0     | A sensor; Fiedlion; SF<br>e reducing<br>HICLE<br>AATIVE<br>ILY<br>128E85<br>128E85<br>128E85<br>28E85                                 | 02S=hea<br>=sequent<br>prefix 2=<br>MODE<br>EC:<br>NO<br>1<br>1<br>1<br>1<br>1            | ELS INI<br>ELS INI<br>S EN<br>C C C C C C C C C C C C C C C C C C C                                                                                     | GINE<br>IZE<br>IL)<br>3<br>3<br>3<br>3                  | INTER<br>INTER<br>INTER<br>INTER<br>IN<br>COMI<br>(*=N/A or<br>A/E=0)<br>Intermed<br>EXH<br>A<br>A<br>A<br>A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MEDIATE<br>-USE<br>-USE<br>-USE<br>-UIANCE<br>full in-use;<br>(h. / evap.<br>iate in-use)<br>&<br>* | * ard; CER =3-way c:                                                | AFS; Edf<br>AFS; Edf<br>Jiquefied r<br>Jiquefied r<br>ASSE-IN<br>SFTP<br>SFTP<br>SFTP<br>SFTP<br>SFTP                                           | *<br>ation;<br>R=exhaust<br>er;<br>atural gas<br>OBD<br>Full<br>Full<br>Full<br>Full           |
| as recircul<br>AC=charg<br>PG=liquefr<br>MA<br>BM<br>BM<br>BM<br>BM                                             | AKE AW                                                                     | C, WU-waim     | passenger ca<br>djusted LVW<br>-up catalyst;<br>jection; PAIF<br>Jil/partial on-<br>5%" Ethanol<br>200<br>MODE<br>Z4 3.0<br>Z4 3.0<br>Z4 3.0<br>Z4 3.0<br>S23i<br>525i | DC=oxidizin<br>Expulsed AIR<br>board diagno<br>Fuel<br>7 MODE<br>EL<br>Di<br>SI<br>OUPE | g catalyst;<br>; MFI= mul<br>ostic; DOR | MDV=med<br>hicle; TLEV=<br>C2S=oxyger<br>itiport fuel inj<br>edirect ozon<br>R: VEI<br>EVAPOF<br>FAM<br>7BMXR0<br>7BMXR0<br>7BMXR0              | n sensor; F<br>iection; SF<br>e reducing<br>HICLE<br>ATIVE<br>ILY<br>128E85<br>128E85<br>128E85<br>128E85<br>28E85                    | O2S=head<br>=sequent<br>prefix 2=<br>MODE<br>EC:<br>NO<br>1<br>1<br>1<br>1                | ted O2S; A<br>ial MFI; TB<br>ial MFI; TB<br>ELS INI<br>ELS INI<br>S<br>S<br>S<br>(<br>(                                                                 | GINE<br>IZE<br>IL)<br>3<br>3<br>3<br>3<br>3             | INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER | MEDIATE<br>ALL ALL ALL ALL ALL ALL ALL ALL ALL ALL                                                  | * ard; CER =3-way c                                                 | AFS; EGF<br>Juper charge<br>/liquefied r<br>AFS; EGF<br>Juper charge<br>/liquefied r<br>AFSE-IN<br>SFTP<br>SFTP<br>SFTP<br>SFTP<br>SFTP<br>SFTP | *<br>eation;<br>R=exhaust<br>er;<br>aatural gaa<br>OBD<br>Full<br>Full<br>Full<br>Full<br>Full |
| as recircul<br>AC=charg<br>PG=liquefr<br>MA<br>BM<br>BM<br>BM<br>BM<br>BM                                       | AKE<br>AW<br>AW<br>AW<br>AW<br>AW<br>AW<br>AW<br>AW<br>AW<br>AW<br>AW<br>AW<br>AW                              | C, WU-waim     | passenger ca<br>djusted LVW<br>-up catalyst;<br>jection; PAIF<br>200<br>MODE<br>Z4 3.0<br>Z4 3.0<br>S24 3.0<br>S25<br>S25si                                            | DC=oxidizin<br>Expulsed AIR<br>board diagno<br>Fuel<br>7 MODE<br>EL<br>Di<br>Si<br>OUPE | g catalyst;<br>; MFI= mul<br>ostic; DOR | MDV=med<br>nicle: TLEV=<br>O2S=oxyger<br>tiport fuel inj<br>=direct ozon<br>R: VEI<br>EVAPOF<br>FAM<br>7BMXR01<br>7BMXR01<br>7BMXR01<br>7BMXR01 | h sensor; F<br>fiection; SF<br>e reducing<br>HICLE<br>ATIVE<br>ILY<br>128E85<br>128E85<br>128E85<br>128E85<br>28E85<br>28E85<br>28E85 | 02S=head<br>=sequent<br>prefix 2=<br>MODE<br>EC:<br>NO<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | ed O2S; A<br>ial MFI; TB<br>parallel; (2<br>ELS INF<br>S<br>S<br>S<br>C<br>(<br>C<br>S<br>S<br>S<br>C<br>S<br>C<br>S<br>C<br>S<br>C<br>S<br>C<br>S<br>C | GINE<br>IZE<br>IL)<br>3<br>3<br>3<br>3                  | INTER<br>INTER<br>INTER<br>INTER<br>IN<br>COMI<br>(*=N/A or<br>A/E=0)<br>Intermed<br>EXH<br>A<br>A<br>A<br>A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MEDIATE<br>-USE<br>-USE<br>-USE<br>-UIANCE<br>full in-use;<br>(h. / evap.<br>iate in-use)<br>&<br>* | * ard; CER =3-way c: / heated = turbo/si npressed ; PH              | AFS; Edf<br>AFS; Edf<br>Jiquefied r<br>AASE-IN<br>STD.<br>SFTP<br>SFTP<br>SFTP<br>SFTP<br>SFTP                                                  | *<br>ation;<br>R=exhaust<br>er;<br>hatural gas<br>OBD<br>Full<br>Full<br>Full                  |