California Environmental Protection Agency	GENERAL MOTORS CORPORATION	EXECUTIVE ORDER A-006-1302-1
AIR RESOURCES BOARD		New Passenger Cars, Light-Duty Trucks

Pursuant to the authority vested in the Air Resources Board by Health and Safety Code (HSC), Div. 26, Part 5, Chap. 2; and pursuant to the authority vested in the undersigned by HSC Sections 39515 & 39516 and Executive Order G-02-003;

IT IS ORDERED AND RESOLVED:

That the following exhaust and evaporative emission control systems produced by the manufacturer are certified as described below. Production vehicles shall be in all material respects the same as those for which certification is granted.

MODEL YEAR	TEST GROUP	VEHICLE TYPE	EXHAUST EMISSION STANDARD CATEGORY	U\$EFUL LiFE (miles)		IN- COMP (*=N/A or A/E≂ex	MEDIATE USE LIANCE full in-use; h. / evap. late in-use)	FUEL TYPE			
2008	2006 6GMXV04,8067	Passenger Car	Low Emission Vehicle (LEV)	EXH / ORVR	EVAP	EXH	ËVAP	Gasoline (Tier 2			
2000			(224)	100K	150K	•	E	Unleaded)			
No.	ECS & SF	PECIAL FEATURES	EVAPORATIV	E FAMILY (EV		DISPLACEMENT (L)					
1	2TWC, 2HO2	6GMX	R0133810								
•		*	6GMX	6GMXR0133880							
*		*						l.6			
*		A		*							

See the Attachment for Vehicle Models, Evaporative Family, Engine Displacement, Emission Control Systems, Phase-In Standards, OBD Compliance, Emission Standards and Certification Levels, and Abbreviations.

BE IT FURTHER RESOLVED:

That the exhaust and the evaporative emission standards and the certification emission levels for the listed vehicles are as listed on the Attachment. Compliance with the 50^o Fahrenheit testing requirement may have been met based on the manufacturer's submitted compliance plan in lieu of testing. Any debit in the manufacturer's "NMOG Fleet Average" (PC or LDT) or "Vehicle Equivalent Credit" (MDV) compliance plan shall be equalized as required.

BE IT FURTHER RESOLVED:

That for the listed vehicle models, the manufacturer has attested to compliance with Title 13, California Code of Regulations, (13 CCR) Sections 1965 [emission control labels], 1968.2 [on-board diagnostic, full or partial compliance], 2035 et seq. [emission control warranty], 2235 [fuel tank fill pipes and openings] (gasoline and alcohol fueled vehicles only), and "High-Altitude Requirements" and "Inspection and Maintenance Emission Standards" (California Exhaust Emission Standards and Test Procedures for 2001 and Subsequent Model PC, LDT and MDV).

Vehicles certified under this Executive Order shall conform to all applicable California emission regulations.

The Bureau of Automotive Repair will be notified by copy of this Executive Order.

This Executive Order hereby supersedes Executive Order A-006-1302 dated May 13, 2005.

9TH Executed at El Monte, California on this _ ____ day of June 2005.

mmm

Allen Lyons, Chief Mobile Source Operations Division

New Passenger Cars, Light-Duty Trucks and Medium-Duty Vehicles

						ΑΤΤΑ		MEN	Г								
(Fo			AND EV e-fueled v											_S ne test fue	 el.)		
AVERAGE [g/ml] CH4 F		@ RAF=* AF = *	NMOG or NMHC	HCHO=fo	rmaldehyde; l	PM=particu	late matter; F	AF=reac	tivily adjus	ment factor	; 2/3 D [g/te	st]=2/3 day	NOx=oxides o diurnał+ ram: mg=milli				
0.048	STD 0.046	NMOG CERT [g/mi]	CERT STD		ERT CERT		mi≕mile; I CO	K=1000 miles [g/ml]	; F=degree NO	s Fahrenheit; x [g/mi]	SFTP=si HC	upplementa CHO [mg	i federal te: mi]	st procedure PM [g/	- /mi]	Hwy NC	Dx [g/mi]
	@ 50K	0.058	* [A:]	0.075	CERT 1.2	STD 3.4	CERT 0.1	STD 0.2	CE		15.	CERT	STD	CERT 0.05	STD 0.3		
((@ UL 50°F & 4K	0.075	*	0.090	1.6	4.2	0.1	0.3	*		18.	*	*	0.1	0.4		
	ý.			NMHC+N		 CO [g		NMHC+			[g/mi]		C+NOx	со	[g/mi]		
CO [(@ 20°F				CERT S		(composite) CERT STD		[g/mi] [US06] CERT STD		[US06] CERT STI		[g/mi] [SC03] CERT STD		[SC03] CERT ST			
ERT	3.8	See all states and	000 miles	*	*	•	*	0.09	0.14	2.0	8.0	0.14	0.20	1.8	2.7		
STD	10.0	SFTP	@ * miles	*	*	*	*	*	*	*	*	*	*	*	*		
Eva	porative Far	nily		urnal + Hot s/test) @ L						Running Loss (grams/mile) @ UL			On-Board Refueling Va Recovery (grams/galion)				
		CERT				TD			STD	CERT		STD					
6GMXR0133810 6GMXR0133880		0.22	0.			.65 .65	0.00		0.05	0.01		0.20					
00	*		*		•	*		*	*		10.00 *						
•	*		*	,	*		*	*		* *		*	•				
LVW≃loade	d vehicle wei	setul lite; PC	=passenger c														
ADSTWC=: pas recircul CAC=charg	ation; AIR=se le air cooler; (/C; WU=wan econdary air i OBD (F)/(P)=	adjusted LVW n-up catalyst njection; PAI full/partial on 85%" Ethano	/; LEV=low 6 OC=oxidizin R=pulsed All board diagn Fuel	emission ve ng catalyst; R; MFI= mu lostic; DOP	ehicle; TLEV ; O2S=oxyge ultiport fuel in	=transition an sensor; njection; SI ne reducin	al LEV; ULE HO2S=heate FI=sequentia g; prefix 2=p	:V≖ultra I ad O2S; , al MFI; TI paralieł; (;	_EV; SULI AFS/HAF: BI=throttle 2) suffix=s	EV=super (S=air- fuel) body injec eries; CN(JLEV; TWO ratio senso tion; TC/SO G/LNG= co	C=3-way c r / heated . C≠ turbo/s	T= Certificati atalyst; AFS; EGR=(uper charger; /liquefied nat	exhaust		
ADSTWC=: jas recircul CAC=charg .PG=liquef	ation; AIR=se le air cooler; (/C; WU=wan econdary air i OBD (F)/(P)=	adjusted LVW n-up catalyst njection; PAI full/partial on 85%" Ethano	/; LEV=low e OC=oxidizin R=pulsed All board diagn Fuel 06 MOD	emission ve ng catalyst; R; MFI= mu lostic; DOP	ahicle; TLEV; ; O2S=oxyge ultiport fuel in R=direct ozo: AR: VE	=transition an sensor; njection; SI ne reducin	al LEV; ULE HO2S=heate FI=sequentia g; prefix 2=p	V=ultra I ad O2S; , al MFI; TI paralie!; (; LS IN	_EV; SULI AFS/HAF: BI=throttle 2) suffix=s	EV=super (S=air- fuel i body injec eries; CN(ATION INTER IN COM (*=N/A (A/E=e	JLEV; TWO ratio senso tion; TC/SO G/LNG= co	C=3-way c; r / heated . C= turbo/si mpressed. e; P}	atalyst; AFS; EGR =(uper charger;	exhaust ural gas; 		
NSTWC=: las recircul AC=charg .PG=liquef	ation; AIR=se e air cooler; i ied petroleum	/C; WU=wan econdary air i OBD (F)/(P)=	adjusted LVW n-up catalyst njection; PAI full/partial on 85%" Ethano 200	/; LEV=low e OC=oxidizi R=pulsed All -board diagn Fuel	emission ve ng catalyst; R; MFI= mu lostic; DOP	ehicle; TLEV ; O2S=oxyge ultiport fuel ir R=direct ozoc AR: VE EVAPO FAN	=transition an sensor; njection; SI ne reducin HICLE	al LEV; ULE HO2S=heate Fl=sequentia g; prefix 2=p MODE	V=ultra I ad O2S; , al MFI; TI paralie!; (; LS IN	LEV; SULI AFS/HAF: Bi=throttie 2) suffix=s FORM FORM	EV=super (S=air- fuel body injec eries; CN(ATION INTEF IN COM (*=N/A c A/E=c Interme	JLEV; TWC ratio senso tion; TC/SC G/LNG= co RMEDIATE N-USE IPLIANCE IPLIANCE or full in-us xxh. / evap. diate in-us	C=3-way c; r / heated . C= turbo/si mpressed. e; P}	atalyst; AFS; EGR= uper charger; /liquefied nat	exhaust ural gas; 		
DSTWC=: las recircul AC=charg PG=liquef MA	ation; AIR=se e air cooler; (ied petroleum	/C; WU=wan econdary air i OBD (F)/(P)=	adjusted LVW n-up catalyst njection; PAI full/partial on 85%" Ethanol 200	/; LEV=low e OC=oxidizi R=pulsed All board diagn Fuel D6 MOD	emission ve ng catalyst; R; MFI= mu lostic; DOP	eggmxR 6GMXR 6GMXR 6GMXR 6GMXR 6GMXR	=transition an sensor; njection; SI ne reducin CHICLE	ALEV; ULE HO2S=heatk g; prefix 2=p MODE ECS NO.	V=ultra I ad O2S; , al MFI; TI paralie!; (; LS IN	EV; SULI AFS/HAF: BI=throttie 2) suffix=s FORM FORM SIZE (L)	EV=super (S=air- fuel body injec eries; CN(ATION INTEF IN COM (*=N/A c A/E=c Interme	JLEV; TWG ratio senso dition; TC/SG G/LNG= co RMEDIATE N-USE IPLIANCE or full in-us xxh. / evap. diate in-us EVA	C=3-way c; r / heated . C= turbo/si mpressed. e; P}	atalyst; AFS; EGR=(per charger; /liquefied nat	oxhaust ural gas; OBD I		
DSTWC=: jas recircul AC=charg PG=liquef M/ CAD CAD	ation; AIR=se e air cooler; d ied petroleur AKE	/C; WU=wan econdary air i OBD (F)/(P)=	adjusted LVM n-up catalyst njection; PAI full/partial on 85%" Ethanoi 200 MOE	/; LEV=low e OC=oxidizi R=pulsed All board diagn Fuel D6 MOD	emission ve ng catalyst; R; MFI= mu lostic; DOP	ender: TLEV CO2S=oxyge Ultiport fuel in R=direct ozoc AR: VE EVAPO FAN 6GMXR 6GMXR	=transition on sensor; ine reducin HICLE RATIVE MILY	ALEV; ULE HO2S=heatk Fl=sequentia g; prefix 2=p MODE ECS NO.	V=ultra I ad O2S; , al MFI; TI paralie!; (; LS IN	EV; SULI AFS/HAF; Bi=throtile 2) suffix=s FORM NGINE SIZE (L) 4.6	EV=super (B=air-fuel body injec; eries; CNI ATION INTEF INTEF COM (*=NiA (*=NiA A/E=c Interme EXH	ULEV; TWC ratio senso ration; TC/SK G/LNG= co RMEDIATE N-USE PLIANCEUS 2016 PLIAN	C=3-way c; r / heated . C= turbo/si mpressed. e; P}	atalyst; AFS; EGR=(per charger; /liquefied nat	exhaust ural gas; OBD II Fuil		