Californ	ia Environmental Protectios	t Agency
	RESOURCES	BOARD

Pursuant to the authority vested in the Air Resources Board by Health and Safety Code (HSC), Div. 26, Part 5, Chap. 2; and pursuant to the authority vested in the undersigned by HSC Sections 39515 & 39516 and Executive Order G-02-003;

IT IS ORDERED AND RESOLVED:

That the following exhaust and evaporative emission control systems produced by the manufacturer are certified as described below. Production vehicles shall be in all material respects the same as those for which certification is granted.

MODEL YEAR	TEST GROUP	VEHICLE TYPE	EXHAUST EMISSION STANDARD CATEGORY				IN- COMP (*=N/A or A/E=exi	IEDIATE USE LIANCE full In-use; h. / evap. iate in-use)	FUEL TYPE	
2006	2006 6MBXV05.5LBI	Passenger Car	Low Em	ission Vehicle (LEV)	EXH / ORVR	EVAP	EXH EVAP		Gasoline	
		· ·······		()	100K	100K	*	*	Gasonne	
No.	ECS & SPECIAL FEATURES			EVAPORATIVE	FAMILY (EV	DISPLACEMENT (L)				
1	2WU-TWC,2TWC, 2HO2S(2), SFI, EGR, AIR, OBD(F)			6MBXR0	160LNZ					
2	2WU-TWC,2TWC, 2HO2S(2), SFI, SC, AIR, CAC, OBD(F)			6MBXR0	168LNZ			_		
3	2TWC, 2HO2S(2), SFI, SC, AIR, CAC, OBD(F)			6MBXR0174LNZ				5.	5	
•	•			6MBXR0	218LNZ					

See the Attachment for Vehicle Models, Evaporative Family, Engine Displacement, Emission Control Systems, Phase-In Standards, OBD Compliance, Emission Standards and Certification Levels, and Abbreviations.

BE IT FURTHER RESOLVED:

That the exhaust and the evaporative emission standards and the certification emission levels for the listed vehicles are as listed on the Attachment. Compliance with the 50° Fahrenheit testing requirement may have been met based on the manufacturer's submitted compliance plan in lieu of testing. Any debit in the manufacturer's "NMOG Fleet Average" (PC or LDT) or "Vehicle Equivalent Credit" (MDV) compliance plan shall be equalized as required.

BE IT FURTHER RESOLVED:

That for the listed vehicle models, the manufacturer has attested to compliance with Title 13, California Code of Regulations, (13 CCR) Sections 1965 [emission control labels], 1968.2 [on-board diagnostic, full or partial compliance], 2035 et seq. [emission control warranty], 2235 [fuel tank fill pipes and openings] (gasoline and alcohol fueled vehicles only), and "High-Altitude Requirements" and "Inspection and Maintenance Emission Standards" (California Exhaust Emission Standards and Test Procedures for 2001 and Subsequent Model PC, LDT and MDV).

BE IT FURTHER RESOLVED:

That certification to the evaporative emission standards in 13 CCR 1976(b)(1)(B)-(C) listed above has been permitted pursuant to 13 CCR 1976(b)(1)(F)-Endnote 3(b).

Vehicles certified under this Executive Order shall conform to all applicable California emission regulations.

The Bureau of Automotive Repair will be notified by copy of this Executive Order.

This Executive Order hereby supersedes Executive Order A-003-0306 dated January 19, 2005.

Executed at El Monte, California on this 23RD day of June 2005.

nom

Allen Lyons, Chief Mobile Source Operations Division

California Environmental Protection Agency

New Passenger Cars, Light-Duty Trucks and Medium-Duty Vehicles

					4	ΑΤΤΑ	CH	MEN	T						
(F	EX For bi-, dual	(HAUST	AND EV	APORA	TIVE E	EMISSIO and CERT	N STA	NDAR ntheses	DS Al are tho	ND CE se app	RTIFIC	CATION	LEVEL	_S ne test fu	el.)
NMOG	FLEET GE [g/mi]	NMOG (@ RAF=*	NMOG or	CH4=met	hane: NMOG=	non-CH4 o	manic oas	· NMHC=r	on-CH4 F	wdrocarbon	CO-corbo		Monandan	
CERT	STD	NMOG	AF = *	NMHC	I NOL-SOAK:	rmaldehyde; P RL [g/mi]=runr K=1000 miles	nna loss. [JRVR In(n)	allon disoo	need)=on	boord refue	aling upper r		r diurnal+ iram; mg=m i	lligram
0.039	0.046	CERT	CERT STD Minimute, re-tool index, re-degrees rainferment, SP						CHO [m			PM [g/mi] Hwy NOx [g			
	@ 50K	[g/mi] 0.028	[g/mə] *		CERT	STD 34	CERT	STD	CEF		STD	CERT	STD	CERT	STD
	@ UL	0.028	*	0.075	1.0	3.4 4.2	0.04	0.2		.4 .8	15. 18.	*	*	0.00	0.3
0	@ 50°F & 4K	0.039	÷	0.150	0.4	3.4	0.03	0.3	_	.0	30.	*		0.00	0.4
	1			NMHC+N	Ox [g/mi]	CO [g/	mil	NMHC	+NOx	L ĈĈ) [g/mi]	NM	IC+NOx		[g/mi]
	[g/mi] F & 50K			(comp	osite)	(compo		[g/mì]			US06]		[[SC03]		[9/11/] [C03]
				CERT	STD	CERT	STD	CERT	STD	CERI	STD	CERT	STD	CERT	STD
CERT	1.6	SFTP @ 4		. *	*	*	*	0.02	0.14	0.5	8.0	0.01	0.20	0.3	2.7
STD	10.0	SFTP	@ * miles	*	*	*	*	*	*	*	*	*	*	*	*
				irnal + Ho s/test) @ l		2-Days Diurnal + Hot S (grams/test) @ UL			oak Runnin (grams/m				On-Board Refueling V Recovery (grams/gallon		
			CERT		TD	CERT	S	TD	CER	т	STD		CERT	}	STD
	MBXR0160LN		1.2		.0	1.6		2.5	0.00		0.05		0.01		0.20
6MBXR0168LNZ		1.2		.0	0.7		2.5 2.5	0.00		0.05		0.03		0.20	
6N	MBXR0174LN									0	0.05		0.02		0.20
6N * = not appl LVW=loade ADSTWC= gas recircul CAC=charg	MBXR0174LN MBXR0218LN blicable; UL=us led vehicle wei =adsorbing TW ulation; AIR=se ge air cooler; (sfied petroleum	NZ seful life; PC= ight; ALVW=a /C; WU=warn econdary air ii OBD (F)/(P)=	0.5 passenger ca adjusted LVW; n-up catalyst; njection; PAIR full/oartial on-	2 r; LDT=ligh ; LEV=low r OC=oxidizi =pulsed Al board diaor	.0 nt-duty truck emission ve ng catalyst; R: MEI= mi	1.6 k; MDV=medi shicle; TLEV= ; O2S=oxyger	um-duty v transitiona sensor; F	ar LEV; UL HO2S=hea	EV=ultra ated O2S;	sion Cont LEV; SU AFS/HA	LEV≈supe FS=air- fue	r ULEV; TW I ratio sens	C=3-way ca	atalyst; AFS; EGR ª	exhaust
6M * = not appl LVW=loade ADSTWC= gas recircul CAC=charg	MBXR0218LN blicable; UL=us led vehicle wei =adsorbing TW ulation; AIR=se rge air cooler; (NZ seful life; PC= ight; ALVW=a /C; WU=warn econdary air ii OBD (F)/(P)=	0.5 passenger ca adjusted LVW; n-up catałyst; njection; PAIR full/partial on- 85%" Ethanol	2 r; LDT=ligh ; LEV=low i OC=oxidizi =pulsed A1 board diagr Fuel	.0 emission ve ng catalyst R; MFI≃ me nostic; DOI	1.6 sk: MDV=medi shicle; TLEV= ; O2S=oxyger ultiport fuel inj R=direct ozon AR: VEI	um-duty v transitiona i sensor; H ection; SF e reducing	vehicle; EC al LEV; UL HO2S=hea FI=sequen g; prefix 2=	S= Emis: EV=ultra ated O2S; tial MFI; 1 -parallel;	sion Cont LEV; SU AFS/HA BI=thrott (2) suffix=	rol System LEV=supe FS=air- fue le body inje series; Cl MATIO	r ULEV; TW el ratio sens: ection; TC/S NG/LNG= c N ERMEDIAT	ndard; CER /C=3-way ca or / heated / SC= turbo/su ompressed/	atalyst; AFS; EGR ª	tion; =exhaust
6M * = not appl LVW=loade ADSTWC=. gas recircul CAC=charg LPG=liquef	MBXR0218LN blicable; UL=us led vehicle wei =adsorbing TW ulation; AIR=se rge air cooler; (NZ seful life; PC= ight; ALVW=a /C; WU=warn econdary air ii OBD (F)/(P)=	0.5 passenger ca adjusted LVW; n-up catałyst; njection; PAIR full/partial on- 85%" Ethanol	2 rr, LDT=loy I OC=oxidizi Polsed Al board diagr Fuel 6 MOD	.0 emission ve ng catalyst R; MFI≃ me nostic; DOI	1.6 k; MDV=medi shicle; TLEV= ; O2S=oxyger ultiport fuel inj R=direct ozon	um-duty v transitiona i sensor; H ection; SF e reducing HICLE	vehicle; EC al LEV; UL HO2S=hea FI=sequen g; prefix 2=	S= Emise EV=ultra ated O2S; tial MFI; 1 parallel; ELS IN S E	sion Cont LEV; SU AFS/HA BI=thrott (2) suffix=	rol System LEV=supe FS=air- fue le body inje series; Cl MATIO INTE CO {*=N/A	r ULEV; TW el ratio sens ection; TC/S NG/LNG= c N	ndard; CER /C=3-way cc or / heated / C= turbo/su ompressed/ FE E se; Ph ,	atalyst; AFS; EGR ª	tion; =exhaust
6M * = not appl LVW=loade ADSTWC=. gas recircul CAC=charg LPG=liquef	MBXR0218LN blicable; UL=us ead vehicle wei =adsorbing TW ulation; AIR=se ge air cooler; (afied petroleum	NZ seful life; PC= ight; ALVW=a /C; WU=warn econdary air ii OBD (F)/(P)=	0,5 passenger ca adjusted LVW n-up catalyst; njection; PAIR full/partial on- 85%" Ethanol 200	2 rr, LDT=loy I OC=oxidizi Polsed Al board diagr Fuel 6 MOD	.0 emission ve ng catalyst R; MFI≃ me nostic; DOI	1.6 k; MDV=medi bhicle; TLEV= ; O2S=oxyger ultiport fuel inj R=direct ozon AR: VEI EVAPOF	um-duty v transitiona i sensor; H ection; SF e reducing HICLE	rehicte: EC al LEV; UL HO2S=hea fl=sequen g; prefix 2= MODI	S= Emise EV=ultra ated O2S; tial MFI; 1 parallel; ELS IN S E	sion Cont LEV; SU AFS/HA BI=thrott (2) suffix: IFOR! NGINE SIZE	rol System LEV=supe FS=air- fue le body inje series; Cl MATIO INTE CO {*=N/A	r ULEV; TW el ratio sensi ection; TC/S NG/LNG= c N ERMEDIAT IN-USE MPLIANCI A or full In-u exh. / evap	ndard; CER /C=3-way cc or / heated / C= turbo/su ompressed/ E E Se; Pt se; Pt se; Pt	atalyst; AFS; EGR: Iper charge liquefied na	tion; =exhaust r; itural gas;
6M * = not appl LWW=loade ADSTWC= gas recircul CAC=charc LPG=liquef M/	MBXR0218LN blicable; UL=us ead vehicle wei =adsorbing TW ulation; AIR=se ge air cooler; (afied petroleum	NZ seful life; PC= ight; ALVW=a /C; WU=warn econdary air ii OBD (F)/(P)=	0,5 passenger ca adjusted LVW n-up catalyst; njection; PAIR full/partial on- 85%" Ethanol 200	2 rr, LDT=light LEV=low / OC=oxidizi =pulsed Al board diagr Fuel 6 MOD	.0 emission ve ng catalyst R; MFI≃ me nostic; DOI	1.6 k; MDV=medi bhicle; TLEV= ; O2S=oxyger ultiport fuel inj R=direct ozon AR: VEI EVAPOF	2 um-duty v transitiona sensor; H ection; SF e reducing HICLE	rehicte: EC al LEV; UL HO2S=hea fl=sequen g; prefix 2= MODI	S= Emis: EV=ultra ated O2S; tial MFI; T =parallel; ELS IN S E	sion Cont LEV; SU AFS/HA BI=thrott (2) suffix: IFOR! NGINE SIZE	rol System LEV=supe 185=air-tupe 185air-tu	r ULEV; TW el ratio sens- ection; TC/S NG/LNG= c N ERMEDIAT IN-USE MPLIANCI IN-USE MPLIANCI A or full in-u =exh. / evap nediate in-u:	ndard; CER I/C=3-way ca or / heated / i/C= turbo/su ompressed/ FE E se; Ph se; Ph AP	atalyst; AFS; EGR: Iper charge liquefied na	tion; =exhaust r; itural gas;
6M * = not appl LVW=loade ADSTWC= gas recircul CAC=charg LPG=liquef M/	MBXR0218LN blicable; UL=us led vehicle wei adsorbing TM ulation; AIR=se rge air cooler; (sfied petroleum	NZ seful life; PC= ight; ALVW=a /C; WU=warn econdary air ii OBD (F)/(P)=	0,5 epassenger ca djusted LVW; n-up catalyst; njection; PAIR full/partial on- 55%" Ethanol 200 MODE	2 r; LDT=ligh LEV=low OC=oxidizi =pulsed Al board diagr Fuel 6 MOD	.0 emission ve ng catalyst R; MFI≃ me nostic; DOI	1.6 : MDV=medi ; O2S=oxyger ultiport fuel inj R=direct ozon AR: VEI EVAPOF FAM	2 um-duty v transition; SF ection; SF e reducing HICLE RATIVE ILY	MODI	S= Emiss EV=ultra ated O2S; ital MFI; T =parallel; ELS IN S E	I Sion Cont LEV; SU AFS/HA BI=thrott (2) suffix: IFORI IFORI NGINE SIZE (L)	rol System LEV=supe FS=air-tue le body inji eseries; Cl MATIO INTE CO (*=N// A/E Intern EXH	r ULEV; TW el ratio sens ection; TC/S NG/LNG= c N ERMEDIAT IN-USE MPLIANCI A or full In-u =exh. / evap rediate In-u	ndard; CER /C=3-way cc or / heated / C= turbo/su ompressed/ E E E se; PH se; PH AP	atalyst; AFS; EGR= uper charge fliquefied na flASE-IN STD.	tion; exhaust r; tural gas; OBD II
6M * = not appl LVW=loade ADSTWC= gas recircul LPG=liquef MERCEL MERCEL	MBXR0218LN eld vehicle wei =adsorbing TW ulation; AIR=se ge air cooles effed petroleum	NZ seful life; PC= ight; ALVW=z (C; WU=warn condary air i DBD (F)/(P)= n gas; E85=*t	0,5 passenger ca adjusted LVW, n-up catalyst; njection; PAIR B5%" Ethanol 200 MODE	2 r; LDT=light LEV=low OC=oxidizi =pulsed Al board diagr Fuel 6 MOD EL EL MG MG	.0 ht-duly truck emission ve ng catalyst R; MFI≃ m nostic; DOI	1.6 k; MDV=medi bhicle; TLEV= ; O2S=oxyger ultiport fuel inj R=direct ozon AR: VEI EVAPOF FAM 6MBXR0	2 um-duty v transitions sensor; H ection; SF e reducing HICLE RATIVE ILY	eehicie; EC al LEV; IU HO2S=hea I=sequen ;; prefix 2= MODI EC NC	S= Emiss EV=ultra ated O2S; ital MFI; T =parallel; ELS IN S E	IFORI IFORI IFORI NGINE SIZE (L) 5.5	rol System LEV=supe FS=air-fuc le body inje eseries; Cl MATIO INTE CO ('=N// A/E Interm EXH	r ULEV; TW el ratio sensi ection; TC/S NG/LNG= c N ERMEDIAT IN-USE MPLIANCI Aor full In-u =exh. / evap nediate in-u	ndard; CER /C=3-way cc or / heated / C= turbo/su ompressed/ FE E Se; PI Se; PI Se; PI	atalyst; AFS; EGR= per charge fliquefied na HASE-IN STD. SFTP	tion; =exhaust r; tural gas; OBD II Full
6M * = not appl LVW=loade ADSTWC=, gas recircul CAC=charg LPG=liquef MERCEL MERCEL MERCEL	MBXR0218LN elicable; UL=us eadsorbing TW Jlation; AIR=se ge air cooler; d fifed petroleum IAKE DES-BENZ DES-BENZ	NZ seful life; PC= ight; ALVW=z (C; WU=warn condary air i DBD (F)/(P)= n gas; E85=*t	0,5 passenger ca adjusted LVW n-up catalyst; njection; PAIR full/partial on-1 5%" Ethanol I 200 MODE C55 AI CL55 A	2 rr, LDT=light LEV=low, OC=oxidizi =pulsed AI board diagr Fuel 6 MOD EL EL MG MG CABRIOLE	.0 ht-duly truck emission ve ng catalyst R; MFI≃ m nostic; DOI	1.6 :: MDV=medi hicle; TLEV= : O2S=oxyger ultiport fuel inj R=direct ozon AR: VEI EVAPOF FAM 6MBXR0 6MBXR0	2 um-duty v transitions sensor; H HICLE ATIVE ILY 160LNZ 218LNZ 160LNZ	eehicie; EC al LEV; IU HO2S=hea I=sequen g; prefix 2: MODI EC NC	S= Emis: EV=ultra ated O2S; ital MFI; T =parallel; ELS IN S S D.	IFORI SIGNE SIZE (L) SIGNE SIZE (L) 5.5	rol System LEV=supe FS=air-fue le body inji eseries; Cl MATIO INTE CO (*=N// A/E Interm EXH +	r ULEV; TW el ratio sens ection; TC/S NG/LNG= c N ERMEDIAT IN-USE MPLIANCI A or full In-u eexh. / evap nedlate In-u EV	ndard; CER ndard; CER or / heated / SC= turbo/su ompressed/ FE E se; Pt AP	atalyst; AFS; EGR= uper charge fliquefied na IASE-IN STD. SFTP SFTP	tion; =exhaust r; tural gas; OBD II Full Full
6M * = not appl LVW=loade ADSTWC= gas recircul CAC=charg LPG=liquef MERCEL MERCEL MERCEL MERCEL	MBXR0218LN blicable; UL=us ed vehicle wei adsorbing TW lation; AIR=se ge air cooler; d fied petroleum IAKE DES-BENZ DES-BENZ DES-BENZ	NZ seful life; PC= ight; ALVW=z (C; WU=warn condary air i DBD (F)/(P)= n gas; E85=*t	0,5 passenger ca adjusted LVW; n-up catalyst; njection; PAIR full/partial on- 200 MODE C55 AI CL55 A K 55 AMG (C	2 r; LDT=ligh LEV=low OC=oxidizi =pulsed Al board diagr Fuel 6 MOD EL EL MG MG AMG	.0 nt-duty truck emission ve ng catalyst R; MFI≃ m nostic; DOI	1.6 (; MDV=medi chicle; TLEV= ; O2S=oxyger ultiport fuel inj R=direct ozon AR: VEI EVAPOF FAM 6MBXR0 6MBXR0	2 um-duty v transition; SF e reducing HICLE RATIVE ILY 160LNZ 160LNZ 160LNZ	MODI ECC NC 1 1 2 2 1 2 2 1	S= Emiss EV=ultra ated O2S; ital MFI; T =parallel; ELS IN S E	IFORI SISTER	rol System LEV=supe FS=air-fuc le body inje rseries; Cl MATIO INTE CO (*=W/ A/E Intern EXH	r ULEV; TW el ratio sens ection; TC/S NG/LNG= c N ERMEDIAT IN-USE MPLIANCI Aor full In-u =exh. / evap nediate in-u	rice	atalyst; AFS; EGR= uper charge fliquefied na IASE-IN STD. SFTP SFTP SFTP	tion; =exhaust r; tural gas; OBD II Full Full Full
6M * = not appl LVW=loadk ADSTWC=, gas recircul CAC=charg LPG=liquef MERCEI MERCEI MERCEI MERCEI MERCEI	MBXR0218LN plicable; UL=us adventicle wei- adsorbing TW ulation; AIR=se ge air coole petroleum IAKE DES-BENZ DES-BENZ DES-BENZ DES-BENZ	NZ seful life; PC= ight; ALVW=z (C; WU=warn condary air i DBD (F)/(P)= n gas; E85=*t	0,5 passenger ca adjusted LVW; n-up catatyst; njection; PAIR 85%" Ethanol 200 MODE C55 AI CL55 A K 55 AMG (C CLK 55 /	2 r; LDT=light LEV=low OC=oxidizi =pulsed Al board diagr Fuel 6 MOD EL EL MG CABRIOLE AMG AMG	.0 nt-duty truck emission ve ng catalyst R; MFI≃ m nostic; DOI	1.6 K; MDV=medi chicle; TLEV= ; O2S=oxyger ultiport fuel inj R=direct ozon AR: VEI EVAPOF FAM 6MBXR0 6MBXR0 6MBXR0	2 um-duty v transitions sensor; H ection; SF e reducing HICLE RATIVE ILY 160LNZ 160LNZ 160LNZ 160LNZ	eehicie; EC al LEV; IUHO2S=hea I=sequen ;; prefix 2= MODI EC NC	S= Emiss EV=ultra ated O2S; ital MFI; T =parallel; ELS IN S. E S. E	IFORI IFORI IFORI IFORI IFORI IFORI SIZE (L) 5.5 5.5 5.5 5.5	rol System LEV=supe FS=air-fuc le body inje rseries; Cl MATIO INTE CO ('=N// A/E Interm EXH • •	r ULEV; TW el ratio sens ection; TC/S NG/LNG= c N ERMEDIAT IN-USE MPLIANCI Aor full In-u =exh. / evap nediate in-u	ndard; CER /C=3-way cc or / heated / C= turbo/su ompressed/ FE E Se; PI Se) AP	AFS; EGR: AFS; EGR: Inper charge liquefied na STD. SFTP SFTP SFTP SFTP	tion; =exhaust r; tural gas; OBD 11 Full Full Full Full
6M * = not appl LVW=loade ADSTWC= gas recircul CAC=charg LPG=liquef MERCEL MERCEL MERCEL MERCEL MERCEL MERCEL	MBXR0218LN elicable; UL=us eadsorbing TW Jation; AIR=se ge air cooler; (fifed petroleum IAKE DES-BENZ DES-BENZ DES-BENZ DES-BENZ DES-BENZ	NZ seful life; PC= ight; ALVW=z (C; WU=warn condary air i DBD (F)/(P)= n gas; E85=*t	0,5 passenger ca adjusted LVW, n-up catalyst; njection; PAIR full/partial on-1 200 MODE C55 AI CL55 A K 55 AMG (C CLK 55 /	2 r; LDT=ligt: LEV=low i C=oxidizi Pulsed Al board diagr Fuel 6 MOD EL EL MG AMG AMG AMG MG	.0 nt-duty truck emission ve ng catalyst R; MFI≃ m nostic; DOI	1.6 :: MDV=medi hicle; TLEV= : O2S=oxyger ultiport fuel inj R=direct ozon AR: VEI EVAPOF FAM 6MBXR0 6MBXR0 6MBXR0 6MBXR0	2 um-duty v transitions sensor; H HICLE ATIVE ILY 160LNZ 160LNZ 160LNZ 160LNZ 160LNZ 168LNZ	Pehicie; EC al LEV; IU HO2S=hea I=sequen g; prefix 2: MODI EC NC 1 1 2 1 1	S= Emiss EV=ultra ated O2S; ital MF1; T parallel; ELS IN S E	IFORI IFORI IFORI SIZE (L) 5.5 5.5 5.5 5.5 5.5	rol System LEV=supe FS=air-fue le body inji eseries; Cl MATIO INTE CO (*=N// AP Intern EXH • •	r ULEV; TW I ratio sens ection; TC/S NG/LNG= c RMEDIAT IN-USE MPLIANCI A or full In-u =exh. / evap nedlate in-u EV	ndard; CER /C=3-way ca or / heated / C= turbo/su ompressed/ E E Se; PH AP AP	atalyst; AFS; EGR= AFS; EGR= liquefied na liquefied na sFTP SFTP SFTP SFTP SFTP SFTP	tion; exhaust r; tural gas; OBD 11 Full Full Full Full Full Full
6M * = not appl LVW=loadk ADSTWC= gas recircul CAC=charg LPG=liquef MERCEI MERCEI MERCEI MERCEI MERCEI MERCEI MERCEI MERCEI	MBXR0218LN olicable; UL=us ed vehicle wei adsorbing TW ulation; AIR=se ge air cooler offed petroleum IAKE DES-BENZ DES-BENZ DES-BENZ DES-BENZ DES-BENZ	NZ seful life; PC= ight; ALVW=z (C; WU=warn condary air i DBD (F)/(P)= n gas; E85=*t	0.5 passenger ca adjusted LVW; n-up catalyst; njection; PAIR 2000 MODE C55 AI CL55 A K 55 AMG (C CLK 55 / CLS55 / E55 AI	2 r; LDT=ligh LEV=low i OC=oxidizi spalsed Al board diagr Fuel 6 MOD EL MG MG MG AMG MG VAGON)	.0 nt-duty truck emission ve ng catalyst R; MFI≃ m nostic; DOI	1.6 (; MDV=medi chicle; TLEV= ; O2S=oxyger ultiport fuel inj R=direct ozon AR: VEI EVAPOF FAM 6MBXR0 6MBXR0 6MBXR0 6MBXR0 6MBXR0	2 um-duty v transition; SF e reducing HICLE ATIVE ILY 160LNZ 160LNZ 160LNZ 160LNZ 168LNZ 168LNZ 168LNZ	MODI ECC NC ECC NC ECC NC ECC NC ECC NC 1 1 2 1 1 2 2 2 2	S= Emiss EV=ultra ated O2S; ital MFI; T parallel; ELS IN S. E.	IFORI IFORI IFORI ISINE SIZE (L) 5.5 5.5 5.5 5.5 5.5 5.5 5.5	rol System LEV=supe FS=air-fuc le body inje rseries; Cl MATIO INTE CO {*=N// *=N// * interm EXH *	r ULEV; TW el ratio sens ection; TC/S NG/LNG= c RMEDIAT IN-USE MPLIANCI A or full In-u =exh. / evap rediate in-ur	ndard; CER /C=3-way cc or / heated / C= turbo/su ompressed/ E Se; Pt Se; AP	AFS; EGR: AFS; EGR: hor charge liquefied na IASE-IN STD. SFTP SFTP SFTP SFTP SFTP SFTP SFTP	tion; =exhaust r; tural gas; OBD II Full Full Full Full Full
6M * = not appl LVW=loade ADSTWC= gas recircul CAC=charg LPG=liquef MERCEL MERCEL MERCEL MERCEL MERCEL MERCEL MERCEL MERCEL MERCEL	MBXR0218LN olicable; UL=us ed vehicle wei adsorbing TW ulation; AIR=se ge air cooler offed petroleum IAKE DES-BENZ DES-BENZ DES-BENZ DES-BENZ DES-BENZ DES-BENZ DES-BENZ DES-BENZ DES-BENZ DES-BENZ	NZ seful life; PC= ight; ALVW=z (C; WU=warn condary air i DBD (F)/(P)= n gas; E85=*t	0.5 passenger ca adjusted LVW; n-up catatyst; njection; PAIR 2000 MODE C55 AI CL55 A CL55 A CL55 A CLS55 A E55 AMG (V S55 AI E55 AG (V S55 A	2 r; LDT=ligh LEV=low i OC=oxidizi =pulsed Al board diagr Fuel 6 MOD EL AMG AMG AMG AMG VAGON) MG MG	.0 nt-duty truck emission ve ng catalyst R; MFI≃ m nostic; DOI	1.6 (; MDV=medi chicle; TLEV= ; O2S=oxyger ultiport fuel inj R=direct ozon AR: VEJ EVAPOF FAM 6MBXR0 6MBXR0 6MBXR0 6MBXR0 6MBXR0 6MBXR0	2 um-duty v transitions sensor; H ection; SF e reducing HICLE RATIVE ILY 160LNZ 160LNZ 160LNZ 160LNZ 160LNZ 168LNZ 168LNZ 168LNZ 168LNZ	MODI ECC NC ECC NC ECC NC 1 1 2 2 2 2 2	S Emiss EV=ultra ated O2S; ital MFI; T =parallel; ELS IN S E	1 sion Cont LEV; SU AFS/HA BI=thrott (2) suffix= IFORI SIE (L) 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5	rol System LEV=supe FS=air-fue le body inje rseries; Cl MATIO INTE CO ('=N// A/E interm EXH • •	r ULEV; TW ertion; TC/S NG/LNG= c N ERMEDIAT IN-USE MPLIANCI A or full in-u =exh. / evap rediate in-u	ndard; CER /C=3-way cc or / heated / C= turbo/su ompressed/ FE E Se; PI Se) AP	Alaiyst: AFS; EGR= AFS; EGR= Iliquefied na Iliquefied na STD. STD. SFTP SFTP SFTP SFTP SFTP SFTP SFTP SFTP	tion; exhaust r; tural gas; OBD II Full Full Full Full Full Full Full Full
6M * = not appl LW=loadk ADSTWC= gas recircul CAC=charg LPG=liquef MERCEI MERCEI MERCEI MERCEI MERCEI MERCEI MERCEI MERCEI MERCEI MERCEI MERCEI MERCEI	MBXR0218LN eld vehicle usi eadsorbing TW Jation; AIR=se ge air cooler; (fifed petroleum IAKE DES-BENZ DES-BENZ DES-BENZ DES-BENZ DES-BENZ DES-BENZ DES-BENZ DES-BENZ DES-BENZ	NZ seful life; PC= ight; ALVW=z (C; WU=warn condary air i DBD (F)/(P)= n gas; E85=*t	0,5 passenger ca adjusted LVW, n-up catalyst; njection; PAIR full/partial on- 200 MODE C55 AI CL55 A K 55 AMG (C CLS55 J E55 AMG (V S55 AJ	2 Ir; LDT=light LEV=low I OC=oxidizi Epulsed Al board diagr Fuel I G MOD EL MG AMG AMG VAGON) MG MG AMG	.0 nt-duty truck emission ve ng catalyst R; MFI≃ m nostic; DOI	1.6 (; MDV=medi hicle; TLEV= ; O2S=oxyger ultiport fuel inj R=direct ozon AR: VEI EVAPOF FAM 6MBXR0 6MBXR0 6MBXR0 6MBXR0 6MBXR0 6MBXR0 6MBXR0	2 um-duty v transitions; SF e reducing HICLE ATIVE ILY 160LNZ 160LNZ 160LNZ 168LNZ 168LNZ 168LNZ 168LNZ 168LNZ 168LNZ 168LNZ	Pehicie; EC al LEV; IU IO2S=hea I=sequen g; prefix 2: MODI EC NC 1 1 2 2 2 2 2	S= Emiss EV=ultra ated O2S; ital MF1; T =parallel; ELS IN S E).	IFORI IFORI IFORI SIZE (L) 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.	A CONTRACTOR CONTRACTO	r ULEV; TW el ratio sens ection; TC/S NG/LNG= c RMEDIAT IN-USE MPLIANCI A or full in-u =exh. / evap nediate in-u EV	ndard; CER /C=3-way ca or / heated / C= turbo/su ompressed/ E E Se; PH Se; PH Se; PH Se; AP	atalyst: AFS, EGR= AFS, EGR= liquefied na liquefied na liquefied na SFTP SFTP SFTP SFTP SFTP SFTP SFTP SFTP	tion; exhaust r; tural gas; OBD 11 Full Full Full Full Full Full Full Full Full Full