

GENERAL MOTORS DAEWOO AUTOMOTIVE & TECHNOLOGY CO.

EXECUTIVE ORDER A-357-0003 New Passenger Cars, Light-Duty Trucks and Medium-Duty Vehicles

Pursuant to the authority vested in the Air Resources Board by Health and Safety Code (HSC), Div. 26, Part 5, Chap. 2; and pursuant to the authority vested in the undersigned by HSC Sections 39515 & 39516 and Executive Order G-02-003;

IT IS ORDERED AND RESOLVED:

That the following exhaust and evaporative emission control systems produced by the manufacturer are certified as described below. Production vehicles shall be in all material respects the same as those for which certification is granted.

MODEL YEAR	TEST GROUP	VEHICLE TYPE	STANDARD CATEGORY (miles) (*=N/A or full in A/E=exh. / ev intermediate in		USE LIANCE full in-use; h. / evap.	FUEL TYPE				
2004	4GDXV02.0D04	Passenger Car	"LEV II" Ultra Low Emission Vehicle (LEV II	EXH / ORVR	EVAP	EXH	EVAP	Gasoline		
		•	ULEV)	120K	150K	Α	E			
No.		SPECIAL FEATURES	10 Ku	EVAPORATIVE FAMILY (EVAF) DISPLACEMENT (L						
1	WU-TWC,TWC,	HO2S(2), SFI, EGR, OBD(P)	4GDXR0	115E0L						
*		*	*	*						
*		*	*			2				
*		* //	*							

See the Attachment for Vehicle Models, Evaporative Family, Engine Displacement, Emission Control Systems, Phase-In Standards, OBD Compliance, Emission Standards and Certification Levels, and Abbreviations.

BE IT FURTHER RESOLVED:

That the exhaust and the evaporative emission standards and the certification emission levels for the listed vehicles are as listed on the Attachment. Compliance with the 50° Fahrenheit testing requirement may have been met based on the manufacturer's submitted compliance plan in lieu of testing. Any debit in the manufacturer's "NMOG Fleet Average" (PC or LDT) or "Vehicle Equivalent Credit" (MDV) compliance plan shall be equalized as required.

BE IT FURTHER RESOLVED:

That for the listed vehicle models, the manufacturer has attested to compliance with Title 13, California Code of Regulations, (13 CCR) Sections 1965 [emission control labels], 1968.2 [on-board diagnostic, full or partial compliance], 2035 et seq. [emission control warranty], 2235 [fuel tank fill pipes and openings] (gasoline and alcohol fueled vehicles only), and "High-Altitude Requirements" and "Inspection and Maintenance Emission Standards" (California Exhaust Emission Standards and Test Procedures for 2001 and Subsequent Model PC, LDT and MDV).

Vehicles certified under this Executive Order shall conform to all applicable California emission regulations.

The Bureau of Automotive Repair will be notified by copy of this Executive Order.

Executed at El Monte, California on this 2774 day of October 2003.

Allen Lyons, Chief

Mobile Source Operations Division

EXECUTIVE ORDER A-357-0003

New Passenger Cars, Light-Duty Trucks
and Medium-Duty Vehicles

ATTACHMENT

EXHAUST AND EVAPORATIVE EMISSION STANDARDS AND CERTIFICATION LEVELS

(For bi-, dual- or flexible-fueled vehicles, the STD and CERT in parentheses are those applicable to testing on gasoline test fuel.)

	NMOG FLEET NMOG @ RAF=* AVERAGE [g/mi] CH4 RAF = *		NMOG or	CH4=methane: NMOG=non-CH4 organic gas; NMHC=non-CH4 hydrocarbon; CO=carbon monoxide; NOx=oxides of nitrogen; CO or HCHO=formaldehyde; PM=particulate matter; RAF=reactivity adjustment factor; 22 D [g/test]=2/3 day diumnal+ HCHO=formaldehyde; PM=particulate matter; RAF=reactivity adjustment factor; 27 D [g/test]=2/3 day diumnal+ HCHO=formaldehyde; PM=particulate matter; RAF=reactivity adjustment factor; 27 D [g/test]=2/3 day diumnal+ HCHO=formaldehyde; PM=particulate matter; RAF=reactivity adjustment factor; 27 D [g/test]=2/3 D [g/test]=2/3 day diumnal+ HCHO=formaldehyde; PM=particulate matter; RAF=reactivity adjustment factor; 27 D [g/test]=2/3 D [g/test]=2/3 day diumnal+ HCHO=formaldehyde; PM=particulate matter; RAF=reactivity adjustment factor; 27 D [g/test]=2/3 D [g/test]=2/3 day diumnal+ HCHO=formaldehyde; PM=particulate matter; RAF=reactivity adjustment factor; 27 D [g/test]=2/3 D [g/test]=2/3 day diumnal+ HCHO=formaldehyde; PM=particulate matter; RAF=reactivity adjustment factor; 27 D [g/test]=2/3 day diumnal+ HCHO=formaldehyde; PM=particulate matter; RAF=reactivity adjustment factor; 27 D [g/test]=2/3 day diumnal+ HCHO=formaldehyde; PM=particulate matter; RAF=reactivity adjustment factor; 27 D [g/test]=2/3 day diumnal+ HCHO=formaldehyde; PM=particulate matter; RAF=reactivity adjustment factor; 27 D [g/test]=2/3 day diumnal+ HCHO=formaldehyde; PM=particulate matter; RAF=reactivity adjustment factor; 27 D [g/test]=2/3 day diumnal+ HCHO=formaldehyde; RAF=formaldehyde; RAF=formaldehydehyde; RAF=formaldehydehydehydehydehydehyde; RAF=formaldehydehydehydehydehydehydehyde											
CERT	STD	NMOG	NMHC	NMHC STD	Inot-soak; R	L la/mil=runi	nina loss: O	RVR Id/dallon	dispensed)	≃on-board refu emental federal	eling vanor re	scovery, u=or	am; mg= millig	jram .	
0.040	0.040 0.053	CERT [g/mi]	CERT [g/mi]	[g/mi]	COL	g/mi]	NOx	(g/mi)		[mg/mi]	PM [Hwy NO	Hwy NOx [g/mi]	
Salaharan Salaha			[g/m]	13	CERT	STD	CERT	STD	CERT	STD	CERT	STD	CERT	STD	
	@ 50K	0.026	*	0,040	0.6	1.7	0.02	0.05	0.3	8.	*	*	0.04	0.07	
A.W. Zana	@ UL	0.037	*	0.055	1.0	2.1	0.04	0.07	0.4	11.	*	*	0.06	0.09	
**** @	50°F & 4K	0.044	*	0.080	0.4	1.7	0.02	0.05	9.0	16.	*	*	*	*	
CO 1	-/i1	Carolinia (9 1)	NMHC+NC		, CO [g/		NMHC+N		CO [g/mi]	NMF	C+NOx	CO [g/mi]	

CO [g/mi]			NMHC+NOx [g/mi] (composite)		CO [g/mi] (composite)		NMHC+NOx [g/mi] [US06]		CO [g/mi] [US06]		NMHC+NOx [g/mi] [SC03]		CO [g/mi] [SC03]	
@ 20	0°F & 50K		CERT	STD	CERT	STD	CERT	STD	CERT	STD	CERT	STD	CERT	STD
CERT	2.6	SFTP @ 4000 miles	*	*	. * 4	*	0.02	0.14	0.1	8.0	0.07	0.20	0.8	2.7
STD	10.0	SFTP @ * miles	•	*	*	•	•	*	+	*	*	*	•	*

Evaporative Family	3-Days Diurn (grams/te		2-Days Diurn (grams/te	al + Hot Soak est) @ UL	Runnin (grams/m		On-Board Refueling Vapor Recovery (grams/gallon) @ UL		
	CERT	STD	CERT	STD	CERT	STD	CERT	STD	
4GDXR0115E0L	0.39	0.50	0.34	0.65	0.01	0.05	0.13	0.20	
•	*	*	*	*	*	*	*	•	
*	*	*	*	*	*	*	•	+	
*	*	*	*	*	*	*	*	+	

* = not applicable; UL=useful life; PC=passenger car; LDT=light-duty truck; MDV=medium-duty vehicle; ECS= Emission Control System; STD= Standard; CERT= Certification; LVW=loaded vehicle weight; ALVW=adjusted LVW; LEV=low emission vehicle; TLEV=transitional LEV; ULEV=ultra LEV; SULEV=super ULEV; TWC=3-way catalyst; ADSTWC=adsorbing TWC; WU=warm-up catalyst; OC=oxidizing catalyst; O2S=oxygen sensor; HO2S=heated O2S; AFS/HAFS=air- fuel ratio sensor / heated AFS; EGR=exhaust gas recirculation; AIR=secondary air injection; PAIR=pulsed AIR; MFI= multiport fuel injection; SFI=sequential MFI; TBI=throttle body injection; DGI=direct gasoline fuel injection; TC/SC= turbo/super charger; CAC=charge air cooler; OBD (F)/(P)=full/partial on-board diagnostic; DOR=direct ozone reducing; prefix 2=parallel; (2) suffix=series; CNG/LNG=compressed/liquefled natural gas; LPG=liquefled petroleum gas; E85="85%" Ethanol Fuel;

2004 MODEL YEAR: VEHICLE MODELS INFORMATION

MAKE	MODEL	EVAPORATIVE FAMILY	ECS NO.	ENGINE SIZE (L)	IN- COMP (*=N/A or A/E=exi	MEDIATE USE LIANCE full in-use; h. / evap. ate in-use)	PHASE-IN STD.	OBD II
					EXH	EVAP		
SUZUKI	FORENZA	4GDXR0115E0L	1	2	Α	E	SFTP	Partial