EXECUTIVE ORDER A-9-220
Relating to Certification of New Motor Vehicles
CHRYSLER CORPORATION
Pursuant to the authority vested in the Air Resources Board by the Health and Safety Code, Division 26, Part 5, Chapter 2; and

Pursuant to the authority vested in the undersigned by Health and Safety Code Sections 39515 and 39516 and Executive Orders G-45-3 and G-45-4;

IT IS ORDERED AND RESOLVED: That 1991 model-year Chrysler Corporation emission control systems are certified as described below for gasolinepowered light-duty trucks:

Engine Family: MCR3.3T5FBRX Displacement: 3.3 Liters (201 Cubic Inches)
Exhaust emission control systems (Special Features):
Three-Way Catalyst
Heated Oxygen Sensor
Multipoint Electronic Fuel Injection
Vehicle models, transmissions, engine codes and evaporative emission control families are listed on attachments.

The following are the emission standards for this engine family:

Loaded Vehicle	Hydrocarbons Weight (lbs.	Carbon Monoxide	Nitrogen Oxides (Grams per Mile)
(Grams Der Mile)			

3751-5750
0.50
9.0
1.0

The following are the certification emission values for this engine family:
Loaded Vehicle Hydrocarbons Carbon Monoxide Nitrogen Oxides Weight (lbs.) (Grams per Mile) (Grams per Mile) (Grams per Mile)

3751-5750
0.25
2.3
0.4

BE IT FURTHER RESOLVED: That the listed models also comply with
"California Evaporative Emission Standards and Test Procedures for 1978 and Subsequent Model Gasoline-Powered Motor Vehicles".

BE IT FURTHER RESOLVED: That the listed vehicle models also comply with the Board's "Specifications for Fill Pipes and Openings of Motor Vehicle Fuel Tanks" (Title 13, California Code of Regulations, Section 2290) for the aforementioned model-year.

BE IT FURTHER RESOLVED: That the listed vehicle models also comply with the Board's high altitude requirements and highway emission standards as stipulated in "California Exhaust Emission Standards and Test Procedures for 1988 and Subsequent Model Passenger Cars, Light-Duty Trucks, and Medium-Duty Vehicles".

BE IT FURTHER RESOLVED: That the listed vehicle models also comply with the "California Motor Vehicle Emission Control Label Specifications" (Title 13, California Code of Regulations, Section 1965) for the aforementioned model year.

BE IT FURTHER RESOLVED: That the vehicle models listed also comply with the "Malfunction and Diagnostic System for 1988 and Subsequent Model Year[s]..." (Title 13, California Code of Regulations, Section 1968) for the aforementioned model year.

BE IT FURTHER RESOLVED: That for the listed vehicles, the manufacturer has submitted and the Executive Officer hereby approves the materials to demonstrate certification compliance with the Board's emission control system warranty provisions (Health and Safety Code Section 43205).

Vehicles certified under this Executive Order must conform to all applicable California emission regulations.

The Bureau of Automotive Repair will be notified by copy of this order and attachment.

Executed at El Monte, California this day of March, 1990.

K. D. Drachand, Chief Mobile Source Division

Eng. Family
MCR3.3T5FBRX

Pass Cars \qquad Lt-Duty Trucks_ Med-Duty Vehicles_ Gas_X. Dlesel \qquad Eng. Type SOHC V/6 LIter (CID) \qquad 33 (201) Evap. Famlly MCRTC \& MCRTG Emission Control Sys. (Use SAE Abbrv.) TWC, $\mathrm{HO}_{2} \mathrm{~S}, \mathrm{MPI}$

Englne: Front_X MId.__ Rear__ Drive: FWD X_RW__ 4WD-FT_X 4WD-PT__

ATTACHMENT TO SDS PG. 1
OF EXECUTIVE ORDER A-9-220 ENGINE FAMILY MCR3.3T5FBRX

VEHICLE MODELS

SYP53

SKE13, SKH52, SKH53, SKP52, SKP53,SDE12, SDE13, SDH52, SDH53, SDP52,SDP53

SHH52, SHH53, SHP52, SHP53, SPH52, SPH53, SPP52,SPP53

CARLINE
CHRYSLER TOWN \& COUNTRY

DODGE CARAVAN

PLYMOUTH VOYAGER

2	-	\%	\bigcirc	0	\pm	1 ²
\sim	\sim	\sim	\sim	\sim	0	O
0	0	-	0	0	0	-
0	0	$\underline{~}$	\pm	m	m	1 mm
\checkmark	\sim	\cdots	\cdots	\cdots	\pm	15Ω
ω	N	\cdots	N	\cdots	N	1 m
m	m	m	m	π	m	$1 \quad m$
\bigcirc	8	0	9	?	5	1 z
						-
						\% m
0	0	0	0	0	0	120
$\mathfrak{0}$	$\underset{\sim}{\circ}$	$\mathfrak{\rho}$	$\stackrel{\square}{\square}$	$\stackrel{\square}{5}$	$\stackrel{\square}{\square}$	12
$\stackrel{\sim}{3}$	$\stackrel{\sim}{N}$	$\stackrel{\sim}{\sim}$	$\stackrel{N}{N}$	-	0	1 \boldsymbol{m}
0	\cdots	H	\cdots	-	$\underset{\sim}{\sim}$	-
0	0	0	0	0	n	$1-9$
						$\underline{7}$
						$\leq \infty$
n	0	0	0	0	0	1
\leqslant	\cdots	<	$<$	2	$<$	1の8

