Pursuant to the authority vested in the Air Resources Board by Sections 43013, 43018, 43101, 43102, 43104 and 43105 of the Health and Safety Code; and

Pursuant to the authority vested in the undersigned by Sections 39515 and 39516 of the Health and Safety Code and Executive Order G-02-003;

IT IS ORDERED AND RESOLVED: That the following compression-ignition engines and emission control systems produced by the manufacturer are certified as described below for use in off-road equipment. Production engines shall be in all material respects the same as those for which certification is granted.

MODEL YEAR	ENGINE FAMILY	DISPLACEMENT (liters)	FUEL TYPE	USEFUL LIFE (hours)
2009	9PKXL03.3XM1	3.3	Diesel	8000
	FEATURES & EMISSION		TYPICAL EQUIPMENT APPLIC	CATION
I C	Direct Diesel Injection, Tu Charge Air Cooler, Smoke	irbocharger, Puff Limiter	Cranes, Loaders, Tractor, Doz Compressor, Generator Set, Other Ind	er, Pump, ustrial Equipment

The engine models and codes are attached.

The following are the exhaust certification standards (STD) and certification levels (CERT) for hydrocarbon (HC), oxides of nitrogen (NOx), or non-methane hydrocarbon plus oxides of nitrogen (NMHC+NOx), carbon monoxide (CO), and particulate matter (PM) in grams per kilowatt-hour (g/kw-hr), and the opacity-of-smoke certification standards and certification levels in percent (%) during acceleration (Accel), lugging (Lug), and the peak value from either mode (Peak) for this engine family (Title 13, California Code of Regulations, (13 CCR) Section 2423):

RATED POWER	EMISSION				EXHAUST (g/kw	-hr)		OF	ACITY (%)
CLASS	STANDARD CATEGORY		HC	NOx	NMHC+NOx	co	PM	ACCEL	LUG	PEAK
37 ≤ kW < 56	Tier 4 Interim	STD	N/A	N/A	4.7	5.0	0.40	20	15	50
56 ≤ kW < 75	Tier 3	STD	N/A	N/A	4.7	5.0	0.40	20	15	50
		CERT			4.7	0.7	0.31	12	3	17

BE IT FURTHER RESOLVED: That for the listed engine models, the manufacturer has submitted the information and materials to demonstrate certification compliance with 13 CCR Section 2424 (emission control labels), and 13 CCR Sections 2425 and 2426 (emission control system warranty).

Engines certified under this Executive Order must conform to all applicable California emission regulations.

This Executive Order is only granted to the engine family and model-year listed above. Engines in this family that are produced for any other model-year are not covered by this Executive Order.

Executed at El Monte, California on this ______ day of January 2009.

Annette Hebert, Chief

Mobile Source Operations Division

Engine Model Summary Template

U-R-022-0123 Attachment, page 1 of 1

Engine Family	Engine Family 1 Engine Code 2 Engine Model	2. Engine Model	3.BHP@RPM mm/stroke @ (SAE Gross)		(ate: 5.Fuel Rate: peak HP (lbs/hr) @ peak HP (lordiesels only)	6.Torque @ RPM (SEA Gross)	/ Fuel Rate: mm/stroke@peak torque	8.Fuel Rate: (lbs/hr)@peak torq	8.Fuel Rate: 9.Emission Control SPC	SPL
finning and and			3							
9PKXL03.3XM1	-	3312/2200 60, 80.5@2200	, 80.5@2200	87	31.5	236@1400	26	22.3	22.3 CAC DDITAR TC	7
9PKXL03.3XM1	2	3456/2200	73.8@2200	82	29.7	216@1400	87	20.0	DDI TAA	>
Matthiagram unversenante meterrentes acetat tenassatiture ethigraments	ingerees and a distribution of the second reserves on the chartes of the chartes of the second reserves.	and the first has different regions of the contract of the con	500							

