Compression Ignition and Heavy-Duty Certification

2011 EMA Certification Workshop
May 3, 2011

2011 EMA Certification Workshop

2012+ General Certification Topics

2012+ On-Road Certification Topics

2011+ Off-Road Certification Topics

2012+ General Certification Topics

2012+ Certification General Topics

- CI-HD Staffing / Responsibilities
- 2011 MY Diesel Engine Certification Lessons Learned
- Certification Application Issues

Compression-Ignition and Heavy-Duty Certification (CI-HD)

- CA-MDE (engine certified GVWR 8501~14000)
- CA-MDV (using above: exhaust and evaporative)
- On-Road HD Otto Cycle Engines (GVWR>14000)
- On-Road HD Diesel Cycle Engines (GVWR>14000)
- On-Road HD Evaporative Vehicles Certification
- On-Road HD Hybrid Vehicles (GVWR>14000)
- Off-Road Compression-Ignition Engines
- On-Road HD ZEV Approvals
- Fuel-Fired Heaters Approval (GVWR>14000)

CI-HD Staff / E-Mail Address

Kimberly Pryor – Manager

Paul Adnani

Zachary Evans

Tsatsu Nukunya

James Pang

Babak Pazokifard

Michael Pham

kpryor@arb.ca.gov

padnani@arb.ca.gov

zevans@arb.ca.gov

tnukunya@arb.ca.gov

spang@arb.ca.gov

bpazokif@arb.ca.gov

lpham@arb.ca.gov

On-Road Light-Duty (ONLD)-Diesel Certification

- ONLD certifies EMA manufacturers' diesel LDT and MDV.
- Diesel SCR and AECD reviews are coordinated between CI-HD and ONLD staff.
- Current ONLD staff certifying diesels:

Duc Nguyen, Manager Seongyup Kim Lucky Benedict Tony Martino Bill McDuffee dnguyen@arb.ca.gov skim@arb.ca.gov nbenedic@arb.ca.gov tmartino@arb.ca.gov wmcduffe@arb.ca.gov

Lessons Learned From 2011 Diesel Engine Certification

- Review of Sensors Table
- Sensors Fault vs. ATD Shut-off
- SCR Strategy Approval for 2011 MY
- Toxic Compound Emissions (TAC Emissions)

ATD = After-treatment Device

Certification Application Issues

- Engine Label Testing
- Delegated Assembly Process
- DF Program Options

Engine Label Testing

- Labels must self-destruct upon removal
- Durability
 - 10 years or compliance period
 - Engine compartment environment
 - Normal solvent for de-greasing engine
- Provide at least TWO samples for ARB testing

Delegated Assembly (DA)

- ARB's On-Road HDDE regulations do not include DA, OFCI regulations are the same as EPA
- Staff accepts EPA's procedure
- Manufacturers must submit DA procedures/audit into DMS
- Manufactures must identify DA parts

DF Program Options

- 2011+ On-HHDD, Tier4i and Tier4 OFCI Engines
- Staff prefers 50% UL testing using in-use service cycle
- Optional 35% UL with 2011+ in-use validation program
 - EMA Co-op proposal
 - Continuing mileage on the original DF engine
 - Other alternatives
- Most manufacturers have already chosen option, discussion needed for new engines.

2012+ On-Road Certification Topics

2012+ Certification

On-Road Topics

- OBD
- Sensors Table → All 2010 MY Engines
- Confirmatory Testing → "cut points"

On-Board Diagnostics

- MY2010-2012, one engine family with OBD per non SVM (except alternative fueled engines)
 -Parent rating (highest sales) – full OBD
 - -Child ratings (others) extrapolated OBD (malfunction criteria per engineering evaluation approved by ARB)
- OBD documents to MSCD directly
- OBD approval letter from MSCD to Mfr to DMS

AECD Sensors Table

- Speeds up review for 2011+ applications
- Identifies in-appropriate shut-off of critical emissions control systems
- Identifies and possibly reduces system tamper

```
Senso
               Sense
      r or
                 d
                         Sens
                                  Sens
                                                                       Defau
                                            sens
n
     Actua
                                   or/
               Param
                          or -
                                             or
      tor
                eter
                         Actua
                                  Actua
                                            still
                                                                       Mode
                                                                                Failu
                                                                                         Impa
     Name
               Range
                          tor
                                   tor
                                           worki
                                                    Failur
                                                             Failur
                                                                                 re
                                                                                          cts
               : High
                         Value
                                            ng?
                                                                                                                AECD
m
                                  Value
                                                                       thres
                                                                                Cons
                                                                                          on
     Abbre
               / Low
                        : High
                                  : Low
                                           (ves /
                                                    Detec
                                                              Indic
                                                                       hold
                                                                                         Emis
                                                                                                   AECD
                                                                                                              Justificati
                                                                                                                              ARB staff
                                                                                eque
                                                                                                   Type
     vation
               (Units)
                         (unit)
                                  (unit)
                                            no)
                                                     tion
                                                              ation
                                                                       value
                                                                                         sions
                                                                                 nce
                                                                                                                 on
                                                                                                                              comment
```

http://www.arb.ca.gov/msprog/cihd/cihd.htm

On-Road Heavy-Duty

Confirmatory Test "Cut-Points"

 General policy to request confirmatory testing when result exceeds 85% of standard

On-Road Heavy-Duty Diesel Engine Self-Retest

	<u>xxHC</u>	<u>CO</u>	<u>NOx</u>	<u>PM</u>	<u>HCHO</u>
Standard	0.14	15.5	0.20	0.01	0.050
85% : retest	0.12	13.2	0.17	0.0085	0.043

2011+ MY OFCI Certification Topics

Certification Topics

- Tier-3 ~ Tier-4i / Tier-4 → Transition Topics
- DPF → Manual-only Regeneration Concern
- SCR → Implementation Concerns
- Sensors Table → All 2011+ MY OFCI Engines
- Confirmatory Testing → "cut points"
- Flex Engines

Tier-3 to Tier-4 Transition Topics

- Carryover of DFs from Tier-3 to Tier-4i
- Two DFs needed for Tier-4i → NRTC and SS
- Carry-across of on-road DFs to off-road engines, where applicable

Diesel Particulate Filters

- Manual-only regeneration → Approval NOT likely
 - Frequency vs. Accountability
 - Excess emissions vs. control logic
- Operator Commanded Regeneration (OCR) is allowed under safe harbor provisions per ARB letter (CHC-2006-007-1)

Selective Catalytic Reduction (SCR)

- Similar concerns addressed by On-Road SCR
- Application specific approval may be possible
- Recommend early SCR discussion with agency
- Cu and V based SCR catalyst
 TAC emissions needs to be quantified (approval is an open issue)
- Workshop slides as guidance
- More discussion with Manufacturers needed

2011+ MY OFCI - AECD Sensors Table

- Speeds up review for 2011+ applications
- Identifies in-appropriate shut-off of critical emissions control systems
- Identifies and possibly reduces system tamper

```
Senso
               Sense
n
      r or
                 d
                         Sens
                                  Sens
                                            sens
                                                                       Defau
     Actua
                          or -
                                   or /
                                             or
               Param
      tor
                eter
                         Actua
                                  Actua
                                            still
                                                                       Mode
                                                                                Failu
                                                                                          Impa
n
u
     Name
                                           worki
                                                    Failur
                                                              Failur
                                                                                          cts
               Range
                          tor
                                   tor
                                                                                  re
                                  Value
                                            nq?
                                                                                                                AECD
               : High
                         Value
                                                                       thres
                                                                                Cons
m
                                                                                          on
                         : High
                                           (yes /
                                                                                                              Justificati
b
     Abbre
               / Low
                                  : Low
                                                     Detec
                                                              Indic
                                                                        hold
                                                                                eque
                                                                                          Emis
                                                                                                    AECD
     vation
              (Units)
                         (unit)
                                            no)
                                                     tion
                                                              ation
                                                                       value
                                                                                         sions
                                                                                                    Type
                                                                                                                            ARB staff comment
                                  (unit)
                                                                                 nce
                                                                                                                  on
```

http://www.arb.ca.gov/msprog/cihd/cihd.htm

2011 MY OFCI Confirmatory Test "Cut-Points" 24

General policy - confirmatory testing when result exceeds 85% of Stds/FEL

Contact certification representative for specifics

Category <8kw 85%: retest 8 <kw<19 -="" 19<kw<37="" 37<kw<56="" 6<kw<75="" 85%:="" category="" out="" phase="" retest="" retest<="" th=""><th>NMHC + NO * * * 7.5 6.4 4.7 4.0 OFCI NMHC + NO 4.7 4.0</th><th>Tier - 4 Phase – O</th><th>* * * * 5.5 4.7 5.0 4.3</th><th>* * * 0.30 0.26 0.30 0.26</th><th>NMHC+NO3 7.5 6.4 7.5 6.4 4.7 4.0 4.7</th><th></th><th>8.0 6.8 6.6 5.6 5.5 4.7 5.0</th><th>PM 0.40 0.34 0.40 0.34 0.03 0.026</th></kw<19>	NMHC + NO * * * 7.5 6.4 4.7 4.0 OFCI NMHC + NO 4.7 4.0	Tier - 4 Phase – O	* * * * 5.5 4.7 5.0 4.3	* * * 0.30 0.26 0.30 0.26	NMHC+NO3 7.5 6.4 7.5 6.4 4.7 4.0 4.7		8.0 6.8 6.6 5.6 5.5 4.7 5.0	PM 0.40 0.34 0.40 0.34 0.03 0.026	
85%: retest 8 <kw<19 -="" 19<kw<37="" 37<kw<56="" 6<kw<75="" 85%:="" category="" out="" phase="" retest="" retest<="" th=""><th>* 7.5 6.4 4.7 4.0 OFCI NMHC + NO 4.7</th><th></th><th>* * * 5.5 4.7 5.0 4.3</th><th>* * 0.30 0.26 0.30</th><th>6.4 7.5 6.4 4.7 4.0 4.7</th><th></th><th>6.8 6.6 5.6 5.5 4.7</th><th>0.34 0.40 0.34 0.03 0.026</th></kw<19>	* 7.5 6.4 4.7 4.0 OFCI NMHC + NO 4.7		* * * 5.5 4.7 5.0 4.3	* * 0.30 0.26 0.30	6.4 7.5 6.4 4.7 4.0 4.7		6.8 6.6 5.6 5.5 4.7	0.34 0.40 0.34 0.03 0.026	
8 <kw<19 -="" 19<kw<37="" 37<kw<56="" 6<kw<75="" 85%:="" category="" out="" phase="" retest="" retest<="" td=""><td>* 7.5 6.4 4.7 4.0 OFCI NMHC + NO 4.7</td><td></td><td>* * 5.5 4.7 5.0 4.3</td><td>* 0.30 0.26 0.30</td><td>7.5 6.4 4.7 4.0 4.7</td><td></td><td>6.6 5.6 5.5 4.7</td><td>0.40 0.34 0.03 0.026</td></kw<19>	* 7.5 6.4 4.7 4.0 OFCI NMHC + NO 4.7		* * 5.5 4.7 5.0 4.3	* 0.30 0.26 0.30	7.5 6.4 4.7 4.0 4.7		6.6 5.6 5.5 4.7	0.40 0.34 0.03 0.026	
8 <kw<19 -="" 19<kw<37="" 37<kw<56="" 85%:="" <kw<75="" category="" out="" phase="" retest="" retest<="" td=""><td>* 7.5 6.4 4.7 4.0 OFCI NMHC + NO 4.7</td><td></td><td>* 5.5 4.7 5.0 4.3</td><td>* 0.30 0.26 0.30</td><td>6.4 4.7 4.0 4.7</td><td></td><td>5.6 5.5 4.7</td><td>0.34 0.03 0.026</td></kw<19>	* 7.5 6.4 4.7 4.0 OFCI NMHC + NO 4.7		* 5.5 4.7 5.0 4.3	* 0.30 0.26 0.30	6.4 4.7 4.0 4.7		5.6 5.5 4.7	0.34 0.03 0.026	
19 <kw<37 85% : retest 37<kw<56 85% : retest Category <kw<75 -="" out<br="" phase="">85% : retest</kw<75></kw<56 </kw<37 	7.5 6.4 4.7 4.0 OFCI NMHC + NO 4.7		5.5 4.7 5.0 4.3	0.30 0.26 0.30	6.4 4.7 4.0 4.7		5.5 4.7	0.03 0.026	
19 <kw<37 85% : retest 37<kw<56 85% : retest Category <kw<75 -="" out<br="" phase="">85% : retest</kw<75></kw<56 </kw<37 	6.4 4.7 4.0 OFCI NMHC + NO 4.7		4.7 5.0 4.3	0.26 0.30	4.7 4.0 4.7		5.5 4.7	0.026	
85% : retest 37 <kw<56 -="" 85%="" :="" <kw<75="" category="" out="" phase="" retest="" retest<="" td=""><td>6.4 4.7 4.0 OFCI NMHC + NO 4.7</td><td></td><td>4.7 5.0 4.3</td><td>0.26 0.30</td><td>4.0 4.7</td><td></td><td>4.7</td><td>0.026</td></kw<56>	6.4 4.7 4.0 OFCI NMHC + NO 4.7		4.7 5.0 4.3	0.26 0.30	4.0 4.7		4.7	0.026	
37 <kw<56 85% : retest Category <kw<75 -="" out<br="" phase="">85% : retest</kw<75></kw<56 	4.7 4.0 OFCI NMHC + NO 4.7		5.0 4.3	0.30	4.7				
85% : retest Category <kw<75 -="" 85%="" :="" out="" phase="" retest<="" td=""><td>4.0 OFCI NMHC + NO 4.7</td><td></td><td>4.3</td><td></td><td></td><td></td><td>5.0</td><td>0.03</td></kw<75>	4.0 OFCI NMHC + NO 4.7		4.3				5.0	0.03	
<kw<75 -="" out<br="" phase="">85% : retest</kw<75>	NMHC + NO: 4.7		out Exhaust		4.0		4.3	0.026	
<kw<75 -="" out<br="" phase="">85% : retest</kw<75>	NMHC + NO: 4.7		OFCI Tier - 4 Phase – Out Exhaust			OFCI Tier – 4 Final Exhaust			
<kw<75 -="" out<br="" phase="">85% : retest</kw<75>	4.7		СО	PM	xxHC	N0x	СО	PM	
85% : retest			5.0	0.02	0.19	0.40	5.0	0.02	
	40		4.3	0.017	0.16	0.34	4.3	0.017	
Tim 100 pintse out	4.0		5.0	0.02	0.19	0.40	5.0	0.02	
85% : retest	3.4		4.3	0.017	0.16	0.34	4.3	0.017	
0 <kw<560 -="" in<="" phase="" td=""><td>4.0</td><td></td><td>3.5</td><td>0.02</td><td>0.19</td><td>0.40</td><td>3.5</td><td>0.02</td></kw<560>	4.0		3.5	0.02	0.19	0.40	3.5	0.02	
85% : retest	3.4		3.0	0.017	0.16	0.34	3.0	0.017	
0370 . retest	5.1		5.0	0.017	0.10	0.51	5.0	0.017	
	OFCI Tier - 4 Phase-In and Alt NOx Exhaust				OFCI Tier – 4 Final Exhaust				
Category	xxHC	N0x	CO	PM	xxHC	N0x	CO	PM	
kw<75 phase - in	0.19	0.40	5.0	0.02	0.19	0.40	5.0	0.02	
85% : retest	0.16	0.34	4.3	0.017	0.16	0.34	4.3	0.017	
<kw<75 alt.="" nox<="" td=""><td>0.19</td><td>3.4</td><td>5.0</td><td>0.02</td><td>0.19</td><td>0.40</td><td>5.0</td><td>0.02</td></kw<75>	0.19	3.4	5.0	0.02	0.19	0.40	5.0	0.02	
85% : retest	0.16	2.9	4.3	0.017	0.16	0.34	4.3	0.017	
<kw<130 -="" in<="" phase="" td=""><td>0.19</td><td>0.40</td><td>5.0</td><td>0.02</td><td>0.19</td><td>0.40</td><td>5.0</td><td>0.02</td></kw<130>	0.19	0.40	5.0	0.02	0.19	0.40	5.0	0.02	
85% : retest	0.16	0.34	4.3	0.017	0.16	0.34	4.3	0.017	
<kw<130 alt.="" nox<="" td=""><td>0.19</td><td>3.4</td><td>5.0</td><td>0.02</td><td>0.19</td><td>0.40</td><td>5.0</td><td>0.02</td></kw<130>	0.19	3.4	5.0	0.02	0.19	0.40	5.0	0.02	
85% : retest	0.16	2.9	4.3	0.017	0.16	0.34	4.3	0.017	
0 <kw<560 -="" in<="" phase="" td=""><td>0.19</td><td>0.40</td><td>3.5</td><td>0.02</td><td>0.19</td><td>0.40</td><td>3.5</td><td>0.02</td></kw<560>	0.19	0.40	3.5	0.02	0.19	0.40	3.5	0.02	
85% : retest	0.16	0.34	3.0	0.017	0.16	0.34	3.0	0.017	
30 <kw<560 alt.="" nox<="" td=""><td>0.19</td><td>2.0</td><td>3.5</td><td>0.02</td><td>0.19</td><td>0.40</td><td>3.5</td><td>0.02</td></kw<560>	0.19	2.0	3.5	0.02	0.19	0.40	3.5	0.02	
85% : retest	0.16	1.7	3.0	0.017	0.16	0.34	3.0	0.017	
	OFCI Tier - 4i Exhaust				OFCI Tier – 4 Final Exhaust				
Category	xxHC	N0x	СО	PM	xxHC	N0x	CO	PM	
>560kw (MM)	0.4	3.5	3.5	0.10	0.19	3.5	3.5	0.04	
85% : retest	0.34	3.0	3.0	0.085	0.16	3.0	3.0	0.034	
560 <kw<900 gen<="" td=""><td>0.4</td><td>3.5</td><td>3.5</td><td>0.10</td><td>0.19</td><td>0.67</td><td>3.5</td><td>0.03</td></kw<900>	0.4	3.5	3.5	0.10	0.19	0.67	3.5	0.03	
85% : retest	0.34	3.0	3.0	0.085	0.16	0.57	3.0	0.026	
>900kw gen	0.4	0.67	3.5	0.10	0.19	0.67	3.5	0.020	
85% : retest	0.34	0.57	3.0	0.085	0.19	0.57	3.0		

Air Resources Board

2011+ MY OFCI - Flex Engines

- Flex Engine EOs being issued by ARB
- Flex Engine MAC will be forthcoming
- Additional guidance for equipment manufacturers forthcoming
 - Submittals
 - DO NOT email to Annette
 - Reports

Compression-Ignition and Heavy-Duty Certification

Contact Information

Kimberly Pryor, Manager

Phone Number: (626) 575-6640

Email Address: kpryor@arb.ca.gov

