

# Heavy-Duty Low NOx Program

## **Proposed Heavy-Duty Engine Standards**

Public Workshop Diamond Bar, CA September 26, 2019

MSCD/ECCD



#### Outline

- Applicability
- Summary of Proposed Certification Standards
- Feasibility of Proposed Standards
  - Heavy-Duty Diesel-Cycle
  - Heavy-Duty Otto-cycle
- Option for a National Program



## **Applicability**

- MD and HD diesel-cycle engines (HDDE)
  - GVWR > 10,000 pounds
- MD and HD Otto-cycle engines (HDOE)
  - GVWR > 10,000 pounds

2024 and subsequent model years



## Summary of Proposed Exhaust Emissions Standards

|                     | Proposed NOx Exhaust Emissions Standards |                   |                    |                   |  |
|---------------------|------------------------------------------|-------------------|--------------------|-------------------|--|
| <b>Model Year</b>   | HDDE                                     |                   |                    | HDOE              |  |
|                     | FTP / RMC<br>(g/bhp-hr)                  | LLC<br>(g/bhp-hr) | Idling<br>(g/hour) | FTP<br>(g/bhp-hr) |  |
| 2024 - 2026         | 0.05                                     | 0.20              | 10                 | 0.05              |  |
| 2027 and subsequent | 0.015 - 0.030                            | (I – 3) x FTP     | <= 10              | 0.015-0.030       |  |
| <b>M</b> odel Year  | Proposed PM Exhaust Emissions Standards  |                   |                    |                   |  |
| 2024 and subsequent | 0.005                                    |                   |                    | 0.005             |  |



#### HDDE Feasibility of the 2024 Standards - FTP/RMC

#### FTP/RMC: 0.05 g/bhp-hr

- SwRI Stage I: 0.09 g/bhp-hr NOx composite FTP engine calibration changes only
  - Baseline: 0.14 g/bhp-hr

#### 2019 MY certification emission levels

- $\sim$  40% of engine families (EF) have certification levels < 0.1 g/bhp-hr with some close to 0.05 g/bhp-hr
- Most EFs today have CO2 emissions levels below the 2024 Phase 2 GHG standards

#### MECA's tailpipe emissions modeling assessments

- Using as input: SwRI Stage I calibration strategy and current commercially available SCR systems
  - 0.04 g/bhp-hr composite FTP NOx with lower SCR volume than is in the market today
  - 0.03 g/bhp-hr composite FTP NOx with average SCR volume than is in the market today
  - 0.02 g/bhp-hr composite FTP NOx with average SCR volume and commercially available next generation ASC



#### HDDE Feasibility of the 2024 Standards – LLC

- LLC: 0.20 g/bhp-hr
  - SwRI Stage 2 program
    - Baseline: with stock 2014 MY aftertreatment calibration: 0.34 g/bhp-hr (2014 Volvo MD13TC)
    - Adding load to idle portion of the LLC will assist in reducing emissions on the LLC
  - MECA's modeling assessments<sup>a</sup>
    - Currently available emission controls
    - Heated urea dosing, and
    - 20% 50% ammonia storage level on the SCR
      - 0.18 0.38 g/bhp-hr NOx

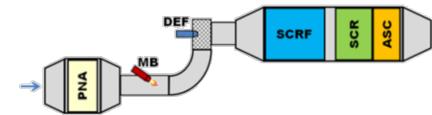
| Model Run<br>on Low<br>Load Cycle | DPF PGM<br>Loading | SCR<br>Prestorage<br>with NH3 | Urea<br>Dosing<br>Temp (°C) | Tailpipe<br>NOx<br>(g/bhp-hr) |
|-----------------------------------|--------------------|-------------------------------|-----------------------------|-------------------------------|
| Baseline                          | X                  | 20%                           | 170                         | 0.40                          |
| Scenario 1                        | 2X                 | 20%                           | 170                         | 0.38                          |
| Scenario 2                        | 2X                 | 50%                           | 170                         | 0.23                          |
| Scenario 3                        | 2X                 | 50%                           | 150                         | 0.18                          |

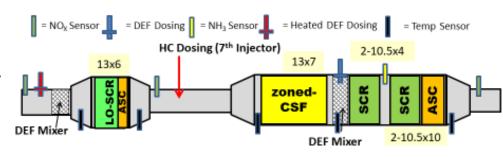


## HDDE Feasibility of the 2024 Standards – Idling

#### Idling NOx Standard: 10 g/hr

- SwRI Stage 2
  - Low NOx idle calibration: high EGR rate, intake throttling, and late combustion phasing
  - Demonstrated engine-out emissions of 2.8 g/hr NOx (on idle segment of the LLC)


#### Potential revisions to the existing requirements

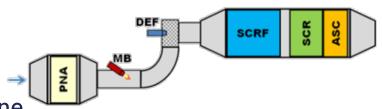

- Make clean idle standard requirement mandatory (Remove "optional")
- Remove exemptions for buses, school buses, armored cars, and workover rigs
- Include in-use compliance requirement
- Potential revisions to the test procedure load, preconditioning, etc.



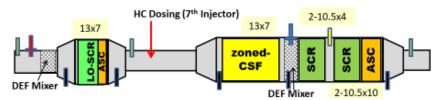
#### HDDE Feasibility of the 2027 Standards - FTP/RMC

- FTP/RMC: 0.015 to 0.030 g/bhp-hr
  - SwRI Stage 1b: 0.023 g/bhp-hr FTP
    - Engine calibration: higher EGR rates and high idle speed (cold start strategy)
    - Advanced aftertreatment system:
      - PNA, mini-burner, SCRF, SCR, and ASC
      - Chemical and thermally aged aftertreatment system)
  - SwRI Stage 3: 0.019 g/bhp-hr FTP
    - Model-based DEF dosing, cylinder deactivation, split SCR system, and exhaust insulation (hydrothermally aged aftertreatment system)
    - Currently in progress, will determine feasibility on thermally and chemically aged aftertreatment system
  - Potentially adjust standard up to account for longer UL

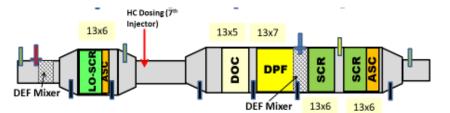





#### HDDE Feasibility of the 2027 Standards - LLC


#### LLC: (1 – 3) x FTP

- LLC standard will be based on:
  - SwRI Stages 2 and 3 calibration test results and
  - Potential GHG emission impacts
- SwRI Stage 2
  - 0.07 g/bhp-hr NOx with no change in CO2 emissions from baseline
  - 0.02 g/bhp-hr NOx with 2% GHG penalty
- SwRI Stage 3:
  - Currently in progress, will determine feasibility
  - Screening results of two systems
    - 0.053 g/bhp-hr (System 2B)
    - 0.036 g/bhp-hr (System IA)






#### System IA



#### System 2B



## HDDE Feasibility of the 2027 Standards - Idling

#### Idling NOx Standard: ≤ 10 g/hr

- SwRI Stage 2
  - Low NOx idle calibration: high EGR rate, intake throttling, and late combustion phasing
  - Demonstrated engine-out emissions of 2.8 g/hr NOx (on idle segment of the LLC)
- SwRI Stage 3
  - Currently in progress
  - Will determine feasibility



## HDOE Feasibility of 2024 and 2027 Standards

- **2024-2026 MY** FTP: 0.05 g/bhp-hr
- 2027+ MY
  FTP: (0.01 to 0.03) g/bhp-hr
  - 2019 MY certification data
    - 6 HDOEs certified to the 0.02 g/bhp-hr optional NOx standard on the FTP



## Feasibility of the PM Standard

- FTP/RMC: 0.005 g/bhp-hr
  - Proposed to prevent backsliding
  - Engines currently certified close to PM = 0.001 g/bhp-hr
  - Maintain current robust PM emission control performance



#### What about Federally Certified Trucks?



# U.S. EPA Cleaner Trucks Initiative Notice of Proposed Rulemaking expected later in 2020

- National heavy-duty low NOx program is critical for California
  - Out-of-state trucks contribute significantly to California vehicle miles traveled
- CARB staff has coordinated closely with U.S. EPA technical staff
- For MY 2027+, hope for a nationally harmonized program
- For MY 2024-2026, CARB staff may propose a voluntary option for manufacturers:
  - Certify to a less stringent standard in California in exchange for committing to certify cleaner trucks nationwide

#### Next Steps

- SwRI Stage 3 Final calibration and Demonstration January 2020
  - Will determine final proposed NOx standards FTP/RMS-SET/LLC/Idle
    - Based on a full useful life aging of 435,000 miles
- Potential adjustments to take into account the proposed lengthened useful life
- Will continue to work with EMA, individually with engine manufacturers, and other stakeholders to develop technologically feasible and cost-effective requirements

