Update on Heavy-Duty Low NO_X Demonstration Programs at SwRI

SOUTHWEST RESEARCH INSTITUTE®

Christopher Sharp September 26, 2019

CARB Low NO_X Programs at SwRI

- <u>Stage I</u> Evaluating Technologies and Methods to Lower Nitrogen Oxide Emissions from Heavy-Duty Vehicles (2014-2017) - **COMPLETE**
 - Initial Technology Evaluation Diesel and CNG
 - Primary focus on Regulatory Cycles
- Stage Ib Repeat Aging and Evaluation of Stage I Hardware (2018-2019) REPORTING
 - Answer questions from Stage 1 and provide robust parts for Stage 2
- Stage 2 Heavy-Duty Low Load Emission Control (2017-2019) REPORTING
 - Expand previous technology evaluation to low-load and urban operating cycles
 - Evaluation of in-use testing metrics to evaluate emissions at low loads
- <u>Stage 3</u> Further Evaluation and Development of Low NO_X Technologies on 2017 (non-Turbocompound) Engine Platform (2018-2020)
 - Focus on both Low Load (Real world) and Regulatory cycles
 - Stage 3b Engine Hardware Technology Effort organized by SwRI to augment Stage 3

Stage Ib Results - Updated Data Set with FUL Tests

Note: UAF of +0.004 g/hp-hr is added to these to account

for infrequent regeneration impact

ENGINE, EMISSIONS & VEHICLE RESEARCH

3

Stage 2 - Final Low Load Cycle

- Developed from real world vehicle operations at Low Load
- Average power generally 7-8% of engine max (with idle load)
- Run with accessory load at idle
 - HHD: 3.5kw, MHD: 2.5kw, LHD: I.5kw (from EPA GEM defaults)
- TP NO_X Levels on Current Production engines 0.35 to 1.5 g/hp-hr

Stage 2 - LLC Performance on Stage I / 2 Engine

Stage 2 - Baseline EU 6 System

- Overall 90% conversion
- EO NO_{\times} = 3.4 g/hp-hr
- TP $NO_{x} = 0.34 \text{ g/hp-hr}$
- $CO_2 = 607 \text{ g/hp-hr}$

Stage 2 - Low NO_X Engine

- Overall 97.5% conversion
- EO NO_x = 3.0 g/hp-hr
- TP $NO_X = 0.07 \text{ g/hp-hr}$
- $CO_2 = 608 \text{ g/hp-hr}$

Updated Stage 2 LLC Result Comparison

- Stage 1b Baseline MD13TC EU6 90% conversion on LLC
- Without thermal management, 91% conversion and CO₂ is improved by 2% on LLC
- Highest level of thermal management shows 2% CO_2 penalty for 0.02 g/hp-hr NO_X on LLC
- "Optimized" thermal management at 0.07 g/hp-hr NO_X is fuel consumption neutral

Stage 3 Low NO_X Demonstration Program

- Examine potential for Low NO_X on a platform that is more representative of broader market in 2017+
 - Production 2017 Cummins X15
 - More representative of typical U.S. GHG approach
- Integrate both Regulatory and Low Load Cycles at the start
 - Program targets are 0.02
 g/hp-hr on regulatory cycles
 and control on Low Load
 cycles

2017 Cummins X15

Production
Aftertreatment
(replaced for Low NO_x)

Stage 3 – Modified Engine Calibration (Cold FTP Example)

- 2017 Cummins X15 stock engine hardware
- Modified Calibration Elements Modified EGR, VGT, multiple injections, elevated idle, etc...
- Elevated T and Reduce EO NO_X early (some GHG cost)
- Higher EO NO_X later for (mitigate some of GHG cost)
- Note that Cold-FTP Recal 3 has +4% impact on CO₂ (+0.6% to Composite)

Stage 3b - Additional Engine Hardware Evaluated

 Cylinder Deactivation (CDA) and EGR Cooler Bypass selected is final choices to carry forward to Stage 3 demonstration

 Hardware evaluations indicated sufficient value to justify hardware cost

Stage 3 - Using CDA to Improve AT System Conditions and Fuel Consumption

Cold-Start FTP ("Get Hot")

Cold FTP	Baseline	ModCal	ModCal w/ CDA
CO ₂ g/hp-hr	531	552	538
% from baseline	n/a	+ 4.0%	+ 1.3%
Weighted % from base	n/a	+ 0.5%	+ 0.2%
EO NO _X , g/hp-hr	2.0	3.2	3.0

SwRI

Hot-Start FTP ("Stay Hot")

swri.org

Stage 3 Aftertreatment – Configurations Examined

Integration and Evaluation Complete

- Development Aged parts hydrothermally aged to 435,000 miles FUL (Current Data)
- Final Aged parts thermal and chemical aging to 435,000 miles FUL using DAAAC protocol (Final Demonstration) IOX acceleration factor

Stage 3 - Updated System Comparisons

Stage 3 - Final Aftertreatment System Schematic (Hybrid of 2B + IA)

- Zone coated CSF for reduced thermal inertia upstream of dsSCR
- Need 7th injector to avoid HC exposure on LO-SCR
- Similar deSO_X questions for LO-SCR

			with ASC zone
LOSCR	13x6	400/4	coated
			DOC coating front
zonedCSF	13x7	300/7 HAC	CSF coating back
SCR	2-10.5x4	600	dual parallel paths
			dual parallel paths,
			with ASC zone
SCR-ASC	2-10.5x10	600	coated

Stage 3 - Cold FTP Performance - 2B+IA

Stage 3 - Hot FTP Performance - 2B+IA

Stage 3 - RMC-SET Performance – 2B+IA

Stage 3 - LLC Performance - 2B+IA

Stage 3 Low NO_X – Current Development Status

Stage 3 - Program Timeline and Schedule

- Full Technical Program Completion February 2020
- Results on Final Aged parts Jan-Feb 2020
- Draft Report March 2020

Acknowledgments

- California Air Resources Board (CARB)
- South Coast Air Quality Management District (SCAQMD)
- U.S. EPA
- Manufacturer's of Emission Controls Association (MECA)
- SwRI CHEDEVII Consortium
- OEM Partners
 - Volvo (Stage 1 / 1b / 2)
 - Cummins (Stage 3)
- Program Advisory Group stakeholders
- National Renewable Energy Lab (NREL)
- All of the MECA supplier member companies who supplied hardware and engineering support

Appendix – Backup Materials

Stage 1b Final Conclusions

- Generally observed degradation in Stage 1b was smaller than for Stage 1
 - FTP: Stage lb = 0.023 g/hp-hr versus Stage l = 0.034 g/hp-hr
 - RMC-SET : Stage Ib = 0.032 g/hp-hr versus Stage I = 0.038 g/hp-hr
 - pre-ash cleaned was at 0.042 g/hp-hr
 - Canning failure and subsequent issues did have a significant impact on system performance (normal versus abnormal degradation identified)
 - Note: +0.004 Upward Adjustment Factor (UAF) should be added to both results to account for emissions due to infrequent regeneration

	BSCO2, g/hp-hr				
	Cold	Hot	Composite	RMC	
Baseline Engine	574.2	542.6	547.4	457.7	
Final ULN Config	604.4	548.8	558.2	463.6	
% change	5.3%	1.1%	2.0%	1.3%	
Mini-burner air	0.4%	0.2%	0.2%		
Increased SCRF Regenerati	0.3%	0.3%			
Total FTP CO	2.5%	1.6%			

- RMC-SET performance was heavily influenced by ash cleaning
 - reduced temperature and backpressure post ash cleaning
 - evidence of precious metal contamination on SCRF appears to be removable but better cleaning procedure needs to be adopted ENGINE, EMISSIONS & VEHICLE RESEARCH

Stage2 - Final Low Load Cycle on Current Production Engines

Engine A - 2017

- Overall 64% conversion
- EO $NO_X = 4.2 \text{ g/hp-hr}$
- TP NO_{\times} = 1.5 g/hp-hr
- $CO_2 = 613 \text{ g/hp-hr}$

Engine B - 2018

- Overall 74% conversion
- EO $NO_X = 3.2 \text{ g/hp-hr}$
- TP NO_{\times} = 0.8 g/hp-hr
- $CO_2 = 710 \text{ g/hp-hr}$

Stage 3 Final Configuration - Overall and Upstream

Stage 3 - Final Configuration - Downstream Package

Stage 3 - Overall SCR Controller Schematic

ECM Compatible, Production Oriented Controls Approach

Stage 3 - Control Structure Example for Downstream Catalyst / Doser (ufSCR)

Stage 3 - Dual Dosing Approach - Cold FTP Example

- Upstream

 (heated) dosing
 dominates early
 dosing
- Both system active in transition
- Downstream dosing dominates high temperature with AT warm
- Upstream dosing comes back into play as system cools to prepare storage

