

HEAVY-DUTY LOW NOx PROGRAM WORKSHOP

JANUARY 23,2019

LOW LOAD CYCLE DEVELOPMENT

MOBILE SOURCE CONTROL DIVISION

OBJECTIVE

- Current engine certification cycles (HD-FTP and RMC-SET):
 - Do not account for sustained low load operations
 - Too short to adequately test for active thermal management of aftertreatement system
- Objective is to develop a new Low Load Cycle (LLC) that:
 - Is representative of real-world urban tractor and vocational vehicle operations that are characterized by low engine loads
 - Has average power and duration adequate for demonstrating that hardware and controls needed to deal with low load challenges are present and functional
 - Has emission standard that balances the need for NOx emission reductions and any associated GHG emission impacts
- Work performed under Stage 2 of the Low NOx Demonstration program by SwRI (with support from NREL)

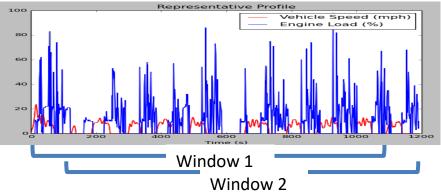
LOW LOAD CYCLE DEVELOPMENT STEPS

- Development of Low Load Vehicle Profiles (NREL) ✓
- 2. Translation of Vehicle-Based Profiles to Engine-Based Ones (SwRI) 🗸
- 3. Testing of Low Load Engine Profiles (SwRI) 🗸
- 4. Development of Candidate Low Load Cycles (NREL / SwRI) ✓
- 5. Testing of Candidate Low Load Cycles (SwRI) ✓
- 6. Selection of Final Low Load Cycle (CARB / SwRI) In Progress

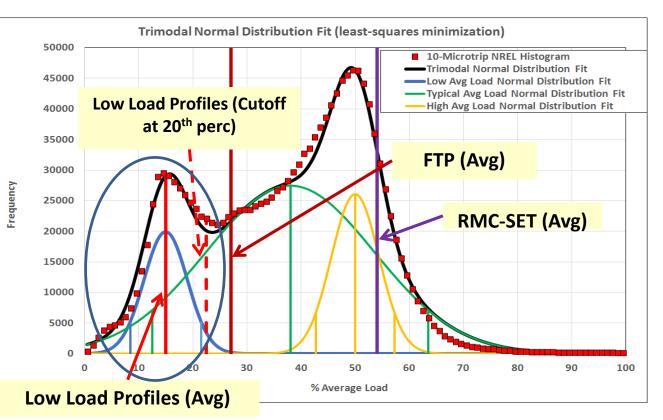
ANALYSIS OF VEHICLE ACTIVITY DATA

Source Datasets

Fleet DNA + CARB HDDV Activity Data

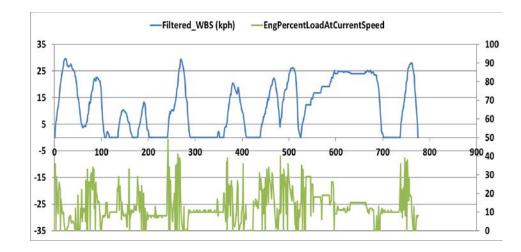

- 751 vehicles
- 25 Locations across the US (predominantly in CA)
- 55 Fleets
- 44 Vocational Designations
- \sim 600+ GB of raw data

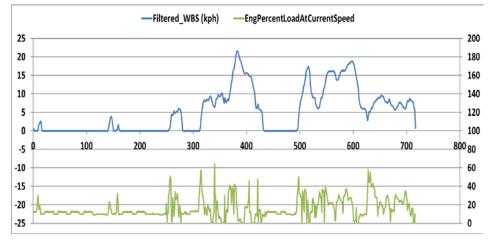
- Parcel Delivery
- Line Haul
- Mass Transit
- Drayage
- Transfer truck
- Tanker
- Freight
- Agricultural
- Warehouse Delivery
- Dump Truck
- Long Haul
- Public Sweeping
- Public Towing
- Dry Van
- Public County Work Delivery
- Regional Haul


- Refuse Pickup
- Beverage Delivery
- Food Delivery
- Linen Delivery
- Utility
- Telecom
- School Bus
- Snow Plow
- Construction
- Refrigerated Truck
- Public Freeway Work
- Local Delivery
- Concrete
- Bucket Truck
- - Local household moving trucks

DEVELOPMENT OF LOW LOAD VEHICLE PROFILES

 Data analyzed using moving windows of 10 microtrips




- ~1.25 million windows (profiles) obtained
- Only profiles with average loads below 20% were further considered for constructing the LLC

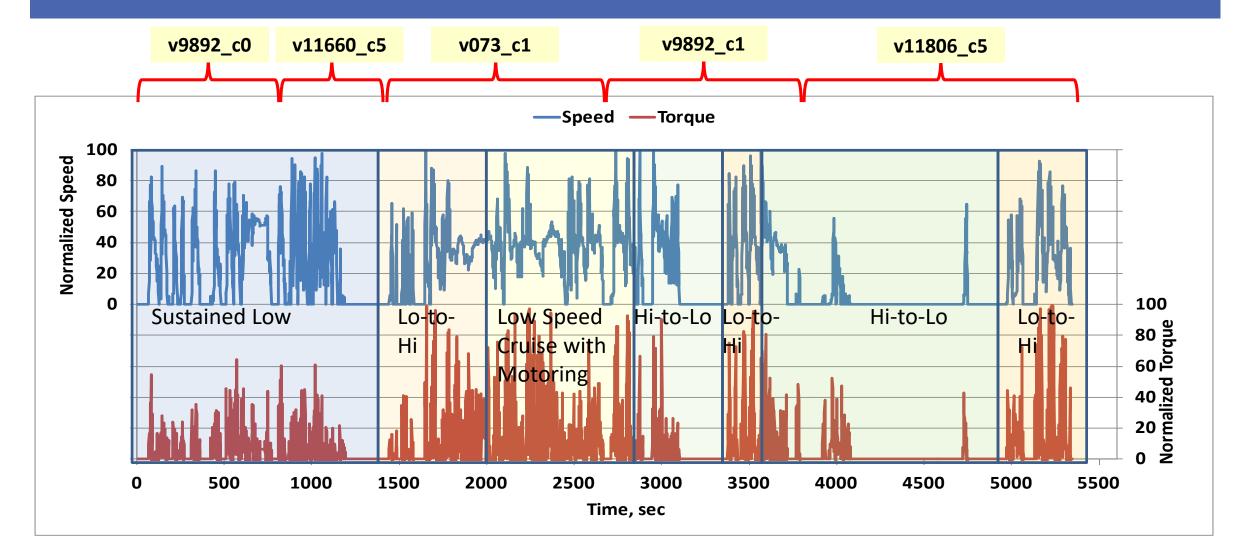
CLUSTERING AND SELECTION OF REPRESENTATIVE PROFILES

- K-means clustering applied to the population of profiles to identify groups with similar characteristics
 - A total of 3 clusters were identified
- To identify most representative profiles, results for each cluster were ranked based on their distance to cluster center
- Starting with profiles closest to cluster center, profiles examined for behavior and final suitability for testing
- Profiles with outlying behavior removed from list

BASIC EMISSION CONTROL CHALLENGES

- An effective Low Load Cycle will test all three of the following challenges:
 - High Load-to-Low Load Transition
 - Drive to work-site then lower load work or idle period
 - How long can system maintain performance and manage heat during prolonged cool-off?
 - Sustained Low Load
 - Repeated short transients separated by idle (delivery, refuse, transit bus, drayage)
 - Can system maintain heat levels long-term?
 - Low Load-to-High Load Transition
 - Long downhill grade transition to uphill (Tractor)
 - Long idle transition to highway work
 - Can system handle abrupt increases in engine-out emissions?

SUMMARY OF REPRESENTATIVE PROFILES


Profile	Vehicle	Cluster	Length	Avg % Speed	Avg % Torque	Repeats in SwRI Test Runs	Class	Chassis	Engine	Trans	Gears	Vocation
1	v9892	0	800	26.9	6.9	4	8	4x2	Volvo D13	AMT	12	Food Service
2	v11660	0	1295	21.4	6.6	3	8	6x4	Mack MP8-415C	MT	13	Drayage
3	v075	0	1130	26.3	7.4	3	8	6x4	Mack MP8-415C	AMT	10	Drayage
4	v11815	1	1949	11.5	8.8	3	8	6x4	Cummins ISX 15	MT	13	Transfer Truck
5	v11646	1	904	15.9	10.7	4	4	4x2	Cummins ISB 6.7	AT	6	Parcel Delivery
6	v073	1	1410	33.8	18.1	3	8	6x4	Mack MP8-415C	AMT	10	Drayage
7	v9892	1	1616	27.0	10.6	3	8	4x2	Volvo D13	AMT	12	Food Service
8	v11660	5	615	16.2	3.5	4	8	6x4	Mack MP8-415C	MT	13	Drayage
9	v11806	5	1810	7.5	6.8	3	8	6x4	Cummins ISX 12	AMT	10	Transfer Truck
10	v11817	5	739	15.3	7.7	4	8	6x4	Cummins ISM 11	AMT	10	Transfer Truck

Load data broadcast by engines not sufficiently accurate for use directly to create engine cycle, so used Phase 2 Greenhouse Gas Emissions Model (GEM) simulation model to translate vehicle-based profiles to engine-based ones

INITIAL CANDIDATE CYCLES

- Five primary types of events were observed in the low load profiles:
 - Sustained low load
 - Long idle
 - Motoring/short idle cooling
 - Post-cooling breakthrough (high load segments)
 - Mid-speed cruise-motoring
- Initial candidate cycles were constructed to include one example of each of the 5 types of events
- Did not always use the entire profile if the key segment could be completed in a shorter time

EXAMPLE CANDIDATE CYCLE

OTHER CONSIDERATIONS

- Preconditioning procedure to bring engine to temperature and warm aftertreatment
 - I FTP + 20 min soak
- Longer duration for long idle segment?
 - Not productive, no change in results
- Longer or shorter sustained low load segment?
 - Pro: countermeasure for higher thermal inertia systems
 - Con: longer cycle time
- Longer or shorter mid-speed cruise/motoring segment?
 - Pro: bridges space from rest of LLC to FTP in terms of power, covers upper corner of low load space
 - Con: inclusion does raise overall temperatures, but minor effect, also longer cycle time

FINAL CANDIDATE CYCLES

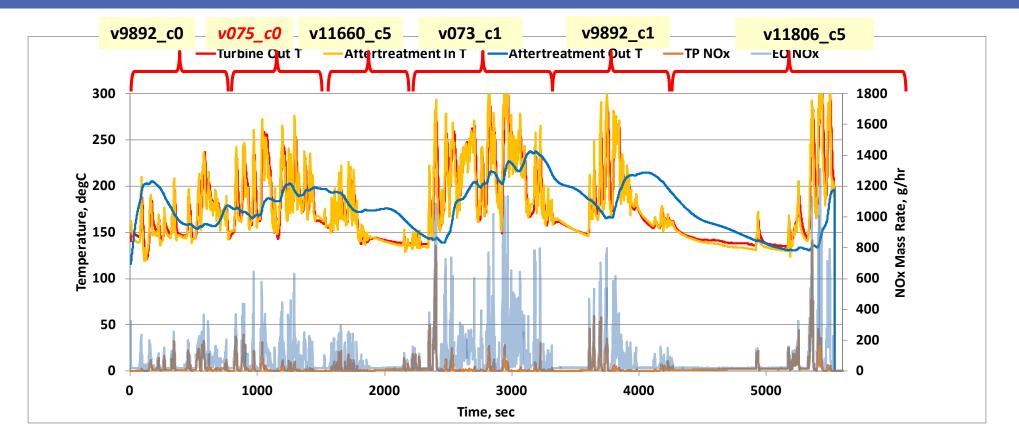
- LLC Candidate #7 90 min
 - 30 min sustained low load segment
 - Retains v073 mid-speed cruise/motoring segment
- LLC Candidate #8 81 min
 - 30 min sustained low load segment
 - Shorter v073 mid-speed cruise segment for breakthrough only
- LLC Candidate #10 70 min
 - 20 min sustained low load segment
 - Shorter v073 mid-speed cruise segment for breakthrough only

Currently favored by CARB Staff

LLC Candidates – Test Results on Engine E

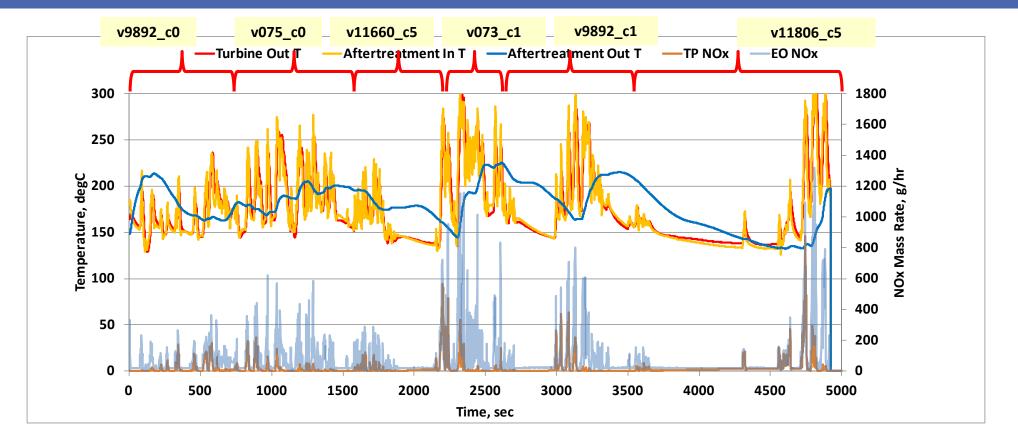
Candidate	Duration [min]	Conversion efficiency [%]	Engine Out NOx [g/bhp-hr]	Engine Out NOx [g NOx/kg CO2]	Tailpipe NOx [g/bhp-hr]	Tailpipe NOx [g NOx/kg CO2]
#7	90	74	3.2	4.4	0.8	1.1
#8	81	77	2.9	4. I	0.7	0.9
#10	70	69	3.2	4.3	1.0	I.3

PLANNED LLC REQUIREMENTS

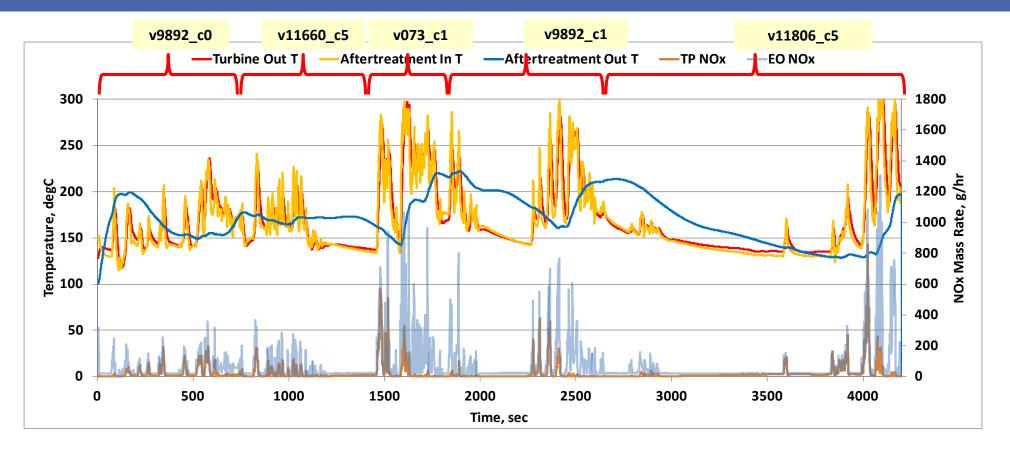

- LLC standard will be based on:
 - SwRI Stages 2 and 3 calibration test results
 - Potential GHG emission impacts
 - Could be a standalone standard or combined with other test requirements
 - e.g., incorporate idle test within the LLC test (to reduce testing burden)
- Conformity factor for LLC and in-use testing requirements:
 - May be same or different, depending on SwRI LLC optimization results
- May include a CO₂ emissions cap
- Preliminary proposal on LLC standard /CO₂ cap: March 2019 workgroup Meeting

CONTACTS

- Kim Heroy-Rogalski, Chief Mobile Source Regulatory Development Branch <u>Kim.Heroy-Rogalski@arb.ca.gov</u> (916) 327-2200
- Stephan Lemieux, Manager On-Road Heavy-Duty Diesel Section <u>stephan.lemieux@arb.ca.gov</u> (626) 450-6162
- Lee Wang, Ph.D., P.E., Air Resources Engineer On-Road Heavy-Duty Diesel Section <u>Lee.Wang@arb.ca.gov</u> (626) 450-6145 Lead: Low Load Cycle Development, HD Low NOx Demonstration Program


Backup Slides

LLC Candidate 7 – Test Results on Engine E


- Overall 74% conversion
- EO NOx (g/hp-hr / g/kgCO2) = 3.2 / 4.4
- TP NOx (g/hp-hr / g/kgCO2 = 0.8 / 1.1

LLC Candidate 8 – Test Results on Engine E

- Overall 77% conversion
- EO NOx (g/hp-hr / g/kgCO2) = 2.9 / 4.1
- TP NOx (g/hp-hr / g/kgCO2 = 0.7 / 0.9

LLC Candidate 10

- Overall 69% conversion
- EO NOx (g/hp-hr / g/kgCO2) = 3.2 / 4.3
- TP NOx (g/hp-hr / g/kgCO2 = 1.0 / 1.3