Properties and Performance of Gas-to-Liquids Fischer-Tropsch Diesel Fuels

Bob McCormick and Teresa Alleman National Renewable Energy Laboratory

Presented at
ARB/CEC Alternative Diesel Fuel Symposium
August 19, 2003
Sacramento, California

303-275-4432 robert_mccormick@nrel.gov

History of F-T Diesel Fuel

- Fischer-Tropsch process developed in 1920's
- Produced when conventional fuels were unavailable
 - Germany during WWII
 - South Africa during apartheid era
- Worldwide production of FT products was >3 billion annual gallons in 2002, from coal and gas
- Mainly in South Africa and Malaysia
- Many FT projects at various stages worldwide

NAMIBIA

ZIMBABWE

Pietersburg

Ladysmith

PRETORIA

BOTSWANA

F-T Production (simplistic) - First Step

- Carbonaceous feedstock
 - Natural gas, coal, biomass
 - Not produced from petroleum
- Syngas formation
 - Mixture of CO and H₂
 - Autothermal reforming
 - Steam reforming
 - Partial oxidation
 - Syngas formation is ~70%
 of total cost of fuel production

F-T Production (simplistic)- Second Step

F-T catalysis

- High temperature processes
 - 300-350°C
 - Iron catalysts
 - Typically, lower MW branched hydrocarbons
- Low temperature processes
 - 200-240°C
 - Iron or cobalt catalysts
 - Typically, higher MW straight chain hydrocarbons

F-T Production (simplistic) - Final Step

Post-processing

- In LT processes, heavy waxes are mildly cracked to produce diesel fuel
- HT hydrocarbons can be oligomerized to form diesel fuels

Example Fuel Properties

Typical fuel properties from recent literature review (SAE 2003-01-0763)

Comparison to No. 2 Diesel

Property	Method	Typical No. 2	Low T F-T	High T F-T (PetroSA COD)	
HHV, MJ/kg	D240	43-48	45-48	45-48	←Similar energy content
Density, 15°C	D4052	0.8464	0.7695-0.7905	0.8007-0.8042	
Distillation, °C	D86				but lower density (lower
IBP		174	159-210	230	btu/gal)
50%		253	244-300	254	10 1011 9011)
90%		312	327-334	323	
FBP		344	338-358	361	
Cetane number	D613	44.9	>74	~50	←Higher Cetane Number
Sulfur, ppm	D5453	300	<1		←Ultra-low sulfur
Total Aromatics	D5186	~30	0.1-2	~10	←Near zero or low aromatic
Hydrogen, wt%	D5291	13-13.5	~15	~14.4	←High hydrogen content

Lubricity

Zero or low aromatic fuels typically have marginal lubricity, but good response to additives

Cold Flow-CN Trade-off for F-T

Highly n-paraffinic F-T diesels have poor cold flow properties (but high CN)

- Unresponsive to cold flow additives in neat form
- Can be addressed through modification of processing conditions

Elastomer Compatibility

- •Tensile strength, hardness, and elongation are retained after exposure to FT diesel
- •Elastomer swelling is lower for nitrile rubber
 - May reduce sealing effectiveness
 - Low swelling caused by low aromatic content
- •Swell of fluorocarbon materials is less significant

Tsukasaki, Y., Toyota Motor Corporation, "*Technical Trend of GTL Fuels for Automobile*," JSAE Journal, Vol. 55, No. 5, Pages 67 ~ 72, May 2001.

Other Performance Issues

Biodegradability:

-limited experimental data suggests higher rates of biodegradation for FT fuels relative to conventional

Stability:

-highly paraffinic FT-fuels are susceptible to oxidative degradation and antioxidant additives are required

FT NO_x and PM Summary-HD/LD

Source: SAE 2003-01-0763

Cause of Emissions Effects

 Reducing aromatic content is consistently associated with emissions reductions

- In both old and new engines
- Likely this is related to reduction in adiabatic flame temperature which is higher for aromatics
- Reduced PM emissions may be related to lower polyaromatic content (PM precursor)

- Emissions reductions observed for FT-diesel may be most reliably correlated with the low aromatic content, or alternatively the high hydrogen content
- In older engines the high CN may also be important

Toxic Emissions Testing

- Limited testing to date
 - Both LD and HD
- Trend shows reduced emissions of selected toxic compounds from F-T diesel fuel compared to conventional diesel fuel

Toxic Emission Results

Compound	Highe	west		
Benzene	CARB	No. 2	ALS	F-T
Formaldehyde	No. 2	ALS	CARB	F-T
Naphthalene	No. 2	CARB	F-T	ALS
Fluorene	No. 2	CARB	F-T	ALS
Pyrene	No. 2	ALS	CARB	F-T
Chrysene	No. 2	CARB	ALS	F-T
Benzo(a)pyrene	ALS	CARB	No. 2	F-T

DB OM611 Light-duty diesel engine

Source: SAE 2001-01-3628

Summary

- Most FT fuels share common set of properties: near zero sulfur content, high cetane number, low aromatic content, high H/C ratio
- Positive performance attributes include:
 - Not made from peteroleum
 - Reductions in NOx and PM observed in a variety of LD and HD engines/vehicles
 - Very limited data indicate significant reduction in toxic emissions
 - Limited data suggest high rates of biodegradation
- Possibly negative performance attributes include:
 - •FT fuels have poor lubricity but respond well to lubricity additives
 - Poor cold flow properties, but can be addressed through modified process conditions
 - Reduced elastomer swell can be expected for nitrile elastomers
 - Susceptible to oxidation
- Perhaps most useful as a high quality blending component?