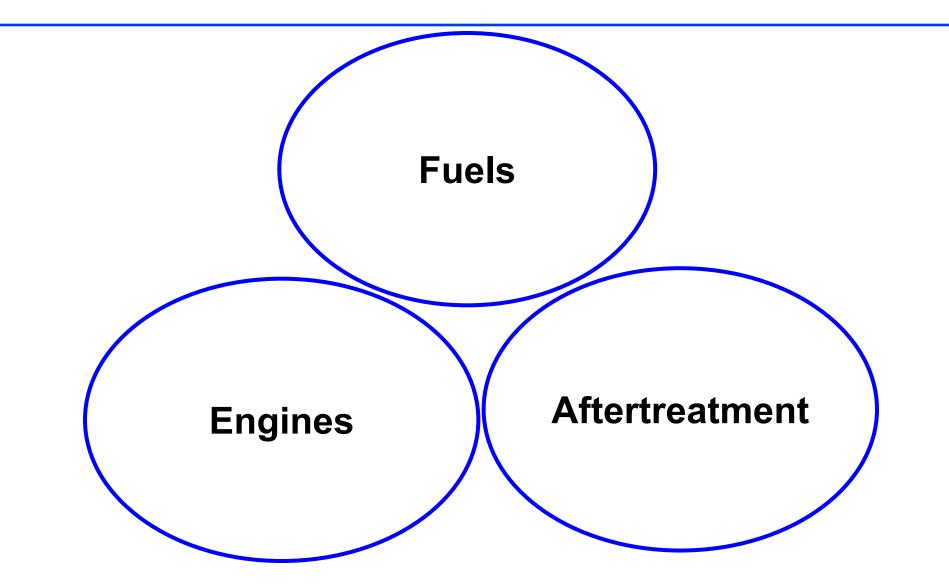
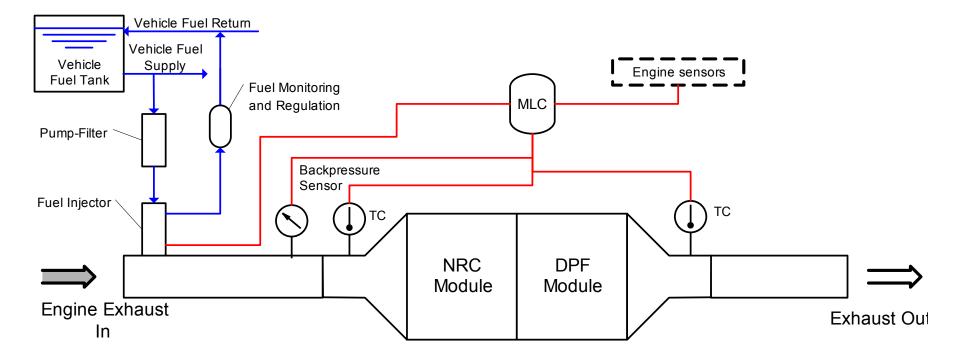
Emissions Reduction Performance Benefits of Fischer-Tropsch Fuel Combined with Advanced Aftertreatment


> Bradley L. Edgar, Ph.D. Cleaire Advanced Emission Controls

> > August 19, 2003

- Overview
- Test Programs
 - CEC/Caltrans/CaTTS
 - SCAQMD/NREL Demonstration Program
- Summary

Low Emission Power Train Strategy



Fischer-Tropsch fuel

Good for the Engine

- High cetane number lower NOx
- Lower aromatics lower PM
- Good for the aftertreatment
 - No sulfur
 - No aromatics
 - Straight chain hydrocarbons may be more selective for NOx reduction

Cleaire Longview[™]

Longview™

Cleaire Longview

- CARB verified as of April 11, 2003
- 25% NOx reduction
- >85% PM reduction
- Requires ULSD (or better) fuel

Test Program #1

CEC/Caltrans/CaTTS

Test Program #1: CEC/Caltrans/CaTTS

Vehicle

Caltrans Truck with 1996 International DT466, 230 hp

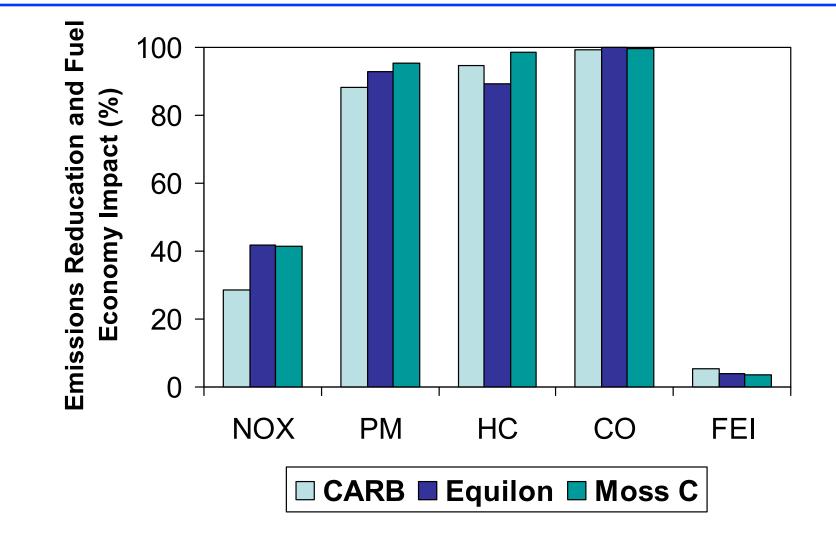
Test Cycles

Transient (UDDS), Steady (Cruise-60)

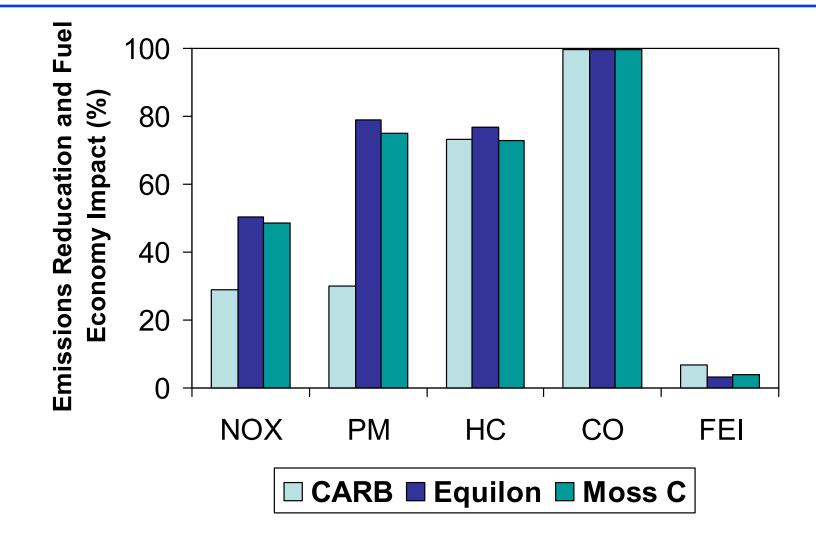
Fuels

CARB #2 Diesel

Fischer-Tropsch


Shell (Equilon), Petro AS (Moss C)

Aftertreatment


Cleaire Longview

CARB vs. F-T Fuel over UDDS Cycle

CARB vs. F-T Fuel over Cruise-60 Cycle

SCAQMD/NREL Fischer-Tropsch Demonstration

Test Program #2: Use of FT Fuel on an Engine with Emission Controls

- Development and Demonstration of Fischer-Tropsch Fueled Heavy-Duty Vehicles with Control Technologies for Reduced Diesel Exhaust Emissions
 - SCAQMD RFP #P2002-18
 - Co-funded by National Renewable Energy Laboratory
- Team includes Automotive Testing Labs, Ricardo, Shell, and Cleaire
- Program includes work in test cell and in field

Engine and Emission Targets

- Engine
 - 2002 Cummins ISM, 370 hp
 - Pistons modified by Ricardo
 - Increased EGR rate
- Emission targets on composite FTP (g/bhp-hr)
 - NOx 1.2
 - NO₂ 0.4
 - PM 0.01
 - HC 1.3
 - CO 15.5

Method to Reach 1.2 g/bhp-hr NOx

- Baseline, standard diesel
- Baseline, FT
- Higher EGR rate, new combustion bowl, F-T
- Higher EGR rate, new combustion bowl, F-T, DPF, Lean NOx catalyst

- 2.3 g/bhp-hr
- 2.0 g/bhp-hr
- 1.5 g/bhp-hr
- 1.2 g/bhp-hr

Targets are achieved

Composite FTP results (g/bhp-hr)

	Target	Result
NOx	1.2	1.17
PM	0.01	0.005
HC	1.3	0.04
CO	15	0.06
NO2	0.3	0.4

Emissions performance is achieved within engine operating limits. Good transient performance is expected

- F-T Fuel in combination with advanced aftertreatment lowers engine emissions with no engine modification
 - NOx: 40-50%
 - PM: >85%
- F-T Fuel in combination with advanced aftertreatment and engine modification lowers engine out emissions
 - NOx: <1.2 g/bhp-hr</p>
 - PM: 0.005 g/bhp-hr
 - Very low CO and HC (including some air toxics)

- F-T Fuels lowers engine emissions
- F-T Fuels enables aftertreatment to work better
- Benefits appear to be synergistic but not interdependent, which is attractive from a deployment point of view