Biodiesel and Renewable Diesel Workgroup

California Biodiesel Multimedia Revised Tier II Report

March 12, 2009 Sacramento, CA

Tim Ginn, University of California, Davis

Tom McKone, University of California, Berkeley

Tiered Approach Refresher

Tier 1
Preliminary
Review

- Define framework and approach
- Identify information needs and gaps
- Peer review

Tier 2
Multimedia Risk
Assessment
Design Review

- Experimental design developed and submitted
- Design peer reviewed, feedback provided for Tier 3
- Final report is used as the basis for recommendations submitted to the Environmental Policy Council
- Final report is peer reviewed

Tier 3
Final Multimedia
Risk Review

Tiered Approach Refresher

Tier 1
Preliminary
Review

- Define framework and approach
- Identify information needs and gaps
- Peer review

Tier 2 Multimedia Risk Assessment Design Review

Experimental design developed and submitted

 Design peer reviewed, feedback provided for Tier 3

- Final report is used as the basis for recommendations submitted to the Environmental Policy Council
- Final report is peer reviewed

Tier 3
Final Multimedia
Risk Review

Conclusions About Key Information Gaps

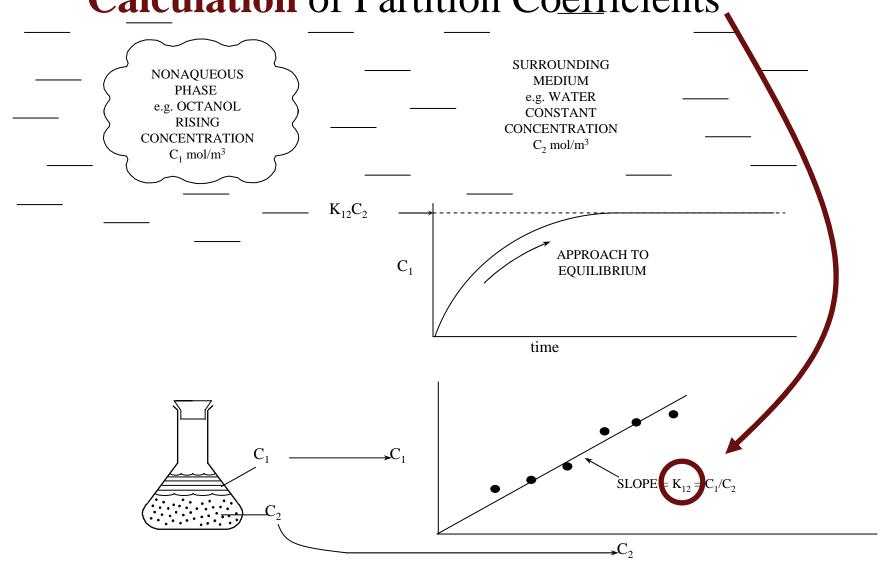
- Additives composition, use, and impact
 - How biocides and anti-oxidants impact biodegradation
 - How priority additive impact human and ecosystem health
 - How cold flow property controllers impact multiphase transport, etc.
 - toxicity
- Subsurface fate and transport properties
- Releases Material Compatibility
- Biodegradation of all biodiesel components in soils and aquifers
- More information on air emissions
- Missing toxicological data

Conclusions About Key Information Gaps

- Additives composition, use, and impact
 - How biocides and anti-oxidants impact biodegradation
 - How priority additive impact human and ecosystem health
 - How cold flow property controllers impact multiphase transport, etc.
 - toxicity
- Subsurface fate and transport properties
- Releases Material Compatibility
- Biodegradation of all biodiesel components in soils and aquifers
- More information on air emissions
- Missing toxicological data

- biocides and anti-oxidants
 - cold flow, cetane booster, NOx reducer...
- Subsurface fate and transport
- Material Compatibility
- Biodegradation
- Air emissions
- Toxicological

Overview of the Biodiesel Tier II Plan


- Solubility of components
- biocides and anti-oxidants
 - cold flow, cetane booster, NOx reducer... >solubility
- Subsurface fate and transport
- Material Compatibility
- Biodegradation
- Air emissions
- Toxicological

Relative to ULSD

Experimental Determination (coming) Calculation of Partition Coefficients

Solubility Calculations

Assumptions:

- Raoult's law
 - Solubility proportional to mole fractions in biodiesel
- Assume activities =1
 - (conservatively assumed based on knowing that the greatest partitioning of oil into the water phase will be achieved through this assumption).
- FAMES and additives partition according to Raoult's Law
- Raoult's law implies the absence of cosolvency effects.
 - (This may not be a conservative assumption when additives are involved, some of which are completely soluble in water and may affect solubility of other components of biodiesel)

Solubility Calculations

Biodiesel-water Partition Coefficient, K_o for kth component from Raoult's law

$$K_o = \frac{\omega_k \sum_{j=1}^{N} \frac{c_{oj}}{\omega_{oj}}}{S_k \gamma_k}$$

Where, per kth component:

- ω_o = the molecular weight (g/mol)
- $-c_o = component concentration in biodiesel (g/L)$
- S = the solubility of the component in water (g/L)
- γ = the activity coefficient of the component (assumed to be 1)
- component = FAME or additive compound.

...Will Compare with GC-MS

Experimental Plan Summaries

Subsurface Fate & Transport

Ant Farm

Material Compatibility

Immersion batch

Biodegradation

Multi-batch respirometry

Aquatic Toxicity

6 species marine & freshwater

Subsurface Fate & Transport

Approach:

Ant Farm

2D infiltration vadose zone

Visual observation, dyes

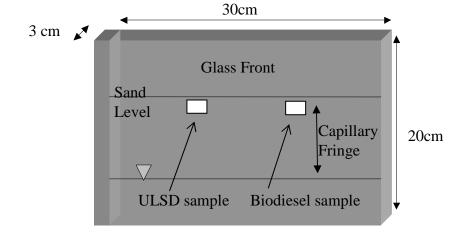
Lens formation

Permutations:

Two soils

Medium sand

Silty-sand-loam


B100 (Soy and animalfat)

antioxidant+biocide

B20 (Soy and animalfat)

antioxidant+biocide

ULSD

Subsurface Fate & Transport

Experimental Matrix

	ULSD	Animalfat	Animalfat	Soy	Soy
		B100	B20	B100	B20
Reference	50-200 mL				
biocide and		50-200 ml	50-200 ml	50-200 ml	50-200 ml
antioxidant		two soils		two soils	
Totals	50-200mL	200-800 ml	100-400 ml	200-800ml	100-400ml

Subsurface Fate & Transport

Material Compatibility

Approach:

Prelude to anticipated UL testing

Broad indicators

Batch exposures

1-4 months

Aerobic immersions

Permutations:

B100, B20, B5 x Animalfat, Soy

With/without low salinity water

All with antioxidant additive

Materials

Bimetal copper-steel coupons

Fiberglass

elastomers

Material Compatibility

Experimental Matrix

Low-salinity water

	_	Animalfat /			Soy			
Material	ULSDx2	B100	B20x2	B5	B100	B20x2	B5	
Copper-steel	.2 L	.2 L	.2 L	.2 L	.2 L	.2 L	.2 L	
Fiberglass 1	.2 L	.2 L	.2 L	.2 L	.2 L	.2 L	.2 L	
Fiberglass 2	.1 L	.1 L	.1 L	_	.1 L	.1 L	-	
Elastomer 1	.2 L	.2 L	.2 L	.2 L	.2 L	.2 L	.2 L	
Elastomer 2	.1 L	.1 L	.1 L	.1 L	.1 L	.1 L	.1 L	
Elastomer 3	.1 L	.1 L	.1 L	_	.1 L	.1 L	-	
Elastomer 4	.1 L	.1 L	.1 L	_	.1 L	.1 L	-	
Totals	2 L	1 L	2 L	1 L	1 L	2 L	1 L	

Biodegradation

Approach:

OECD (2004) recommended testing

Batch respirometry (CO2)

Mineral medium,

inoculumn activated sludge

Tested substrate (same slow stir method as aquatic tox)

Permutations:

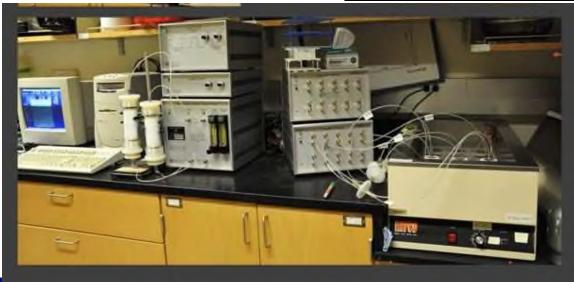
B100 (Soy and animalfat)

Antioxidant, antioxidant+biocide

B20 (Soy and animalfat)

Antioxidant, antioxidant+biocide

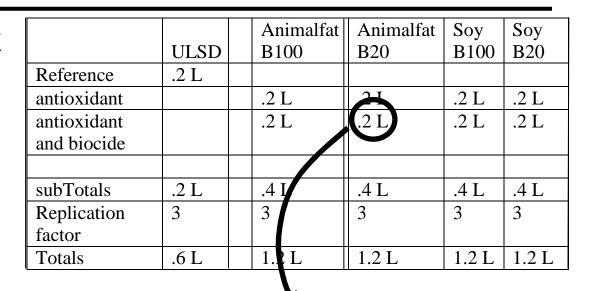
ULSD



Biodegradation

Experimental Matrix

		Animalfat	Animalfat	Soy	Soy
	ULSD	B100	B20	B100	B20
Reference	.2 L				
antioxidant		.2 L	.2 L	.2 L	.2 L
antioxidant		.2 L	.2 L	.2 L	.2 L
and biocide					
subTotals	.2 L	.4 L	.4 L	.4 L	.4 L
Replication	3	3	3	3	3
factor					
Totals	.6 L	1.2 L	1.2 L	1.2 L	1.2 L



Biodegradation

Experimental Matrix And submatrix

Description	Content					# of
	Substrate	Inoculum	Mineral	Reference	Rep.	Microcosm
Test suspension	X	X	X		3	3x9 = 27
Inoculum blank		X	X		3	3
Procedure control		X	X	X	1	1
Abiotic + Adsorption control	X Sterilized	X Sterilized	X Sterilized		1	1x9 = 9
			TOTAL Microcosms:		50	

Aquatic Toxicity

Approach: 6 Species

EPA methods for Chronic Toxicity

- W Coast Marine EPA 600/R-95-136, 1995
- Marine and Estuarine, EPA 821-R-02-014, 2002
- -Freshwater EPA 821-R-02-013, 2002.

Slow-stir aqu. prep (Schluep et al. 2001)

- 10:1 aqu:biodiesel, 24hrs, 2 hrs, decant
- GC-MS for solubility, stability
- -100%, 50%, 25%, 10%, 5%, 1%, 0% dilutions

Multiple chronic and Acute endpoints

Permutations:

B20 Soy, B20 Animalfat
Antioxidant and biocide
B100/po biocide as fossi

B100/no biocide as feasible ULSD

Aquatic Toxicity

Experimental Matrix

		Test chemical					
Test Species	Test Type	ULSD	B20S	B20S	B20A	B20A	
			A	$A+B^a$	A	A+B	
Green algae (Selenastrum capricornutum)	96-hr chronic cell growth	1L	1L	1L	1L	1L	
Water flea (Ceriodaphnia dubia)	7-day chronic (survival and reproduction)	1L	1L	1L	1L	1L	
Fathead minnow (Pimephales promelas)	7-day chronic (survival and growth)	1L	1L	1L	1L	1L	
Red Abalone (Haliotis rufescens)	48-hr chronic (shell development)	1L	1L	1L	1L	1L	
Mysid (Mysidopsis bahia)	7-day chronic (survival and growth)	1L	1L	1L	1L	1L	
Topsmelt (Atherinops affinis)	7-day chronic (survival and growth)	1L	1L	1L	1L	1L	
Totals		61	61	61	61	61	
Totals		6L	6L	6L	6L	6L	

Summary

Relative to ULSD

Broad Scope - Limited depth (time, \$)

Conservative design

Potential risk = potential impact x potential frequency of use

Present

Soy, animalfat feedstocks B100 storage, B20 storage & use, B5 use Biocide, antioxidant

Absent

Other feedstocks (yellowgrease, canola, etc.)
Other additives (coldflow, cetane booster, NOx reducer)
Anaerobic biodegradation, NAPL biodegradation
Coupled processes (SRB in UST)

