

YAKIMA REGIONAL CLEAN AIR AGENCY

Order of Approval Permit No NSRP-26-ARNGLLC-19

<u>New Source Review Order of Approval for Augean RNG LLC for Upgrading/Converting</u> <u>Biogas from GDR Power to a Renewable Natural Gas (RNG) Using Two Stages of</u> <u>Hydrogen Sulfide Removal (primary and secondary units), Bio-Gas Cleaning Unit (GCU)</u> <u>and Enclosed Emergency Flare</u>

IN THE MATTER OF approving a project which establishes a new air contaminant source at Augean RNG LLC, WA. THIS ORDER OF APPROVAL IS HEREBY ISSUED TO:

Applicant/Permittee:	Augean RNG LLC Biogas/Energy
Located at:	5121 Dekker Rd. Outlook, WA. 98938
Responsible Official:	Andrew T. Nekus, Vice President Augean RNG LLC 235 Pine St. Suite 1100 San Francisco, CA. 94104
Contact at the site:	Brandon Casas, Maintenance and Construction Coordinator, Regenis brandonc@regenis.net Phone: 509-840-7023

IN COMPLIANCE WITH THE PROVISIONS OF THE STATE OF WASHINGTON CLEAN AIR ACT (Revised Code of Washington (RCW)) CHAPTER 70.94.152, WASHINGTON ADMINISTRATIVE CODE (WAC) 173-400-110, 173-460-040:

ISSUE DATE: January 30, 2020

THIS ORDER OF APPROVAL PERMIT IS SUBJECT TO THE FOLLOWING CONDITIONS:

Installation/modification of the equipment must be conducted in compliance with all data and specifications submitted with the New Source Review (NSR) application under which this Order of Approval is issued unless otherwise specified herein. The conditions and limitations of this NSR Order of Approval are attached as follows:

1.0 DESCRIPTION OF THE SOURCE

- 1.1 Augean RNG LLC; hereafter referred to as the Permittee, the Facility, ARNG or the Source is the owner and operator of a renewable biogas cleaning facility. The Permittee submitted a New Source Review (NSR) application proposing to install a bio-gas cleaning facility adjacent to GDR Power manure digester facility at 5121 Dekker Rd, Outlook.
- 1.2 The Permittee is proposing to take all the biogas generated by the GDR Power manure digester facility, scrub the Hydrogen Sulfide (H₂S) and other unwanted gases from the biogas prior to injection into a nearby Natural Gas (NG) pipeline. The optimal production rate is at about 525 standard cubic feet per minute ((scfm). The biogas at the injection point into the NG pipeline will meet the NG pipeline required quality in accordance with the application. The finished products (scrubbed biogas) will be compressed into long vessels/tanks and transported few miles down the road to a newly built station connected to the natural gas pipeline for injection into the NG pipeline. Once the RNG pipeline to the 5121 Dekker road installation is completed and linked to the Northwest Pipeline LLC gas transmission line, RNG will be conveyed from the project site to the interconnect via the RNG pipeline instead of using trucked vessels.
- The Permittee is proposing to install two stages of H₂S removal primary (Eco-Tec BgPur 1.3 removal system) and secondary (two tanks in a series which contains SulfurTrap EX adsorbent) control units considered as (bio-scrubbers control units), bio-Gas Cleaning Unit (GCU) which utilizes pressure swing adsorption (PSA) which separates the scrubbed biogas into two main gas streams and an emergency enclosed flare. The raw biogas comes from the GDR Power facility. The process flow diagram is shown in Figure 1 below. The raw biogas enters into the primary H₂S control unit which is the Eco-Tec BgPur H₂S removal system. The H₂S from this primary unit is converted into solid elemental sulfur, which will be stored temporarily in a dedicated bin until sold. From the flow chart, the primary H₂S control unit can handle H₂S concentration influent up to 5000 parts per million by volume (ppmv). The primary H₂S control unit scrubs H₂S to output of 6.5 ppmv, but it could be higher up to 10 ppmv, then followed by the secondary H₂S control unit which consists of two standing tanks in a series, which scrub H₂S to less than 1 ppmv. The two standing tanks containing the Sulfur Trap EX adsorbent to remove the majority of the H2S. Spent sulfur trap materials from this secondary unit are disposed of as non-hazardous materials according to Permittee. There are no air emissions discharges to the atmosphere from the primary and the secondary H₂S bio-scrubbers control units.
- 1.4 The scrubbed biogas from secondary H₂S control unit goes to the GCU. The GCU will recover 97.5% of the Methane (CH₄) concentration and the H₂S will be less than 1 ppm by volume of H₂S. The scrubbed biogas from the GCU is injected into a natural gas pipeline (for now, into the vessel/tank to be transported to the NG pipeline). The GCU is equipped with Pressure Swing Adsorption (PSA) to separate the biogas coming from the secondary H₂S control unit into two gas streams (based on molecular weight): a methane enriched stream which is injected into the NG pipeline, while the second stream is CO₂ enriched vented through the stack to the atmosphere. The stack is part of the GCU

(manufactured by Green lane) venting the mostly CO_2 to the atmosphere and some H_2S which shall not exceed 10ppmv at any time.

- 1.5 An enclosed flare will be installed to mainly destroy any out of specification scrubbed RNG biogas that does not meet the NG mainline specifications, and in the event of an emergency, excess biogas which may arise including those coming from the GDR Power digester and during any maintenance can also be destroyed. However, the biogases will pass-through the secondary H₂S control unit prior to flaring in the enclosed flare in case of emergency or out of specification biogas as shown in Figure 1 below.
- 1.6 In addition to the above installation, the Permittee included the GDR Power NG fired boiler (190 Hp fired Parker boiler that provides heat to the GDR Power digester, permitted under Order of Approval Number-03-GDRP-19), but air emissions from the boiler are included in the ambient air impacts review of this project (The Augean project is also referred to as Stage 2).
- 1.7 This NSR application is for two stages of H₂S removal, the primary and secondary H₂S control units, the GCU and the emergency enclosed flare (Stage 2). The NG permanent 190 HP boiler will be installed as part of this Augean RNG LLC project; as stated above it is covered under Order of Approval number NSRP-03-GDRP-19 and GDR is the responsible party, unless ARNG LLC is taking the responsibility through a contract.
- 1.8 Air emissions from operation of this project after installation, hereafter known as Stage 2, are in the form of small Particulate Matter (PM₁₀, PM_{2.5}), Oxides of Nitrogen and Sulfur (NOx, SOx), CH₄, H₂S, Volatile Organic Compounds (VOCs) some of which are known as Hazardous Air Pollutants (HAPs) and Toxic Air Pollutants (TAPs) in accordance with the Federal Clean Air Act (FCAA) or Washington Administrative Code (WAC), respectively.
- 1.9 Air emissions are emitted mostly from the GCU, the enclosed flare, and the permanent NG boiler. The City of Yakima, issued a DNS for this installation for the State Environmental Policy Act (SEPA) requirement on March 3, 2016. A public notice for this NSR was published in accordance with the Washington Clean Air Act (RCW) 70.94.152 and section 173-400-171 of the Washington Administrative Code.
- 1.10 The layout and specifications of this Stage 2 facility and any modification to this project were submitted with the NSR application and any additional submitted information are enclosed in the NSR review as provided by the Permittee. A summary are shown in the Figures attached to this Order of Approval (Order/Permit) below.
- 1.11 New emissions process units of this operations are considered installation of air contaminants requiring a NSR and an Order of Approval pursuant to the Revised Code of Washington (RCW) 70.94.152 and the Washington Administrative Code (WAC) 173-400-110 and 173-460-040

Augean RNG LLC NSRP-26-ARNGLLC-19 Page **4** of **25**

1.12 The delivery of the primary H₂S control (the Eco-Tec BgPur system) has been delayed to late February 2020. The Permittee submitted a letter on December 16, 2019 proposing to add two 25-yard vacuum boxes that will be filled with the same medium used in the secondary H₂S control unit to increase the adsorption capacity. These 25-yard vacuum boxes are shown in Figure 5 below. YRCAA will accept this temporary solution for the primary Eco-Tec BgPur system until March 19, 2020 only. The original primary H₂S control Eco-Tec BgPur system must be installed and operational before March 19, 2020. This temporary solution shall be accepted provided that H₂S shall not exceed 10 ppmv from the secondary control system and less than 4.5 ppmv from the GCU steam going to the NG pipeline for injections. At the NG pipeline injections, there shall be no release to the atmosphere. The H₂S limits at the NG pipeline injection point, is a stipulation between Augean RNG LLC and Northwest Pipeline. The H₂S from the second stream going to the GCU discharge stack shall not exceed 10 ppmv at any time. All other operational and approval conditions within this Order of Approval shall remain the same and applicable at any time.

2.0 DETERMINATIONS

In relation to the above installation, YRCAA determines that the Source shall comply with the federal, state and local regulations and laws including but not limited to the following determination:

- 2.1 The Facility is located in an area that is in attainment with all state and federal air quality standards for all criteria pollutants;
- 2.2 The Facility is not a major stationary source as of the date of issuance of this Order and is not subject to the Prevention of Significant Deterioration (PSD) permitting requirements of WAC 173-400-700 through 173-400-750;
- 2.3 The permanent proposed 190 Hp natural gas-fired boiler meets the definition of gas-fired boiler in in accordance with 40 CFR Part 63, Subpart JJJJJJ, therefore, not subject to this Subpart according to 63.11195(e). No other NESHAPs apply to the permanent boiler, however, the boiler is the responsibility of GDR Power, unless ARNG is taking the responsibility through a contract;
- 2.4 This installation Stage 2 project is subject to the requirements of WAC 173-400-110 General Regulation for Air Pollution Sources- New Source Review (NSR) for Sources and Portable Sources and WAC 173-460-040 Controls for New Sources of Toxic Air Pollutants- New Source Review, thus, this NSR being processed;
- 2.5 This installation Stage 2 project, is subject to the requirements of WAC 173-441 and WAC 173-476 Reporting of Emissions of Greenhouse Gases and Ambient Air Quality Standards, respectively;
- 2.6 This installation Stage 2 project, is subject to the requirements of 40 CFR Part 50 National ambient Air quality Standards and 40 CFR Part 60 NSPS New Source

Performance Standards, general requirements, 40 CFR Part 98 Mandatory Greenhouse Gas Reporting at a the required threshold of the regulations;

- 2.7 The Facility is subject to the annual Registration Program as outlined in WAC 173-400-099 – and YRCAA Regulation 1, 4.01. Thus, the Facility shall submit their annual report including the annual air emissions with the required fees to YRCAA as specified in the forms by YRCAA on or before the specified date from the previous calendar year; and
- 2.8 The recommended model by Environmental Protection Agency (EPA) AERSCREEN Model was used for modeling the ambient air impact. The model results showed that all potential air emissions will comply with the NAAQS and the Acceptable Source Impact Level (ASIL) of WAC 173-460-150

THEREFORE, it is hereby ordered that the project as described above, in the NSR application, and in detailed plans, specifications and other information submitted in reference thereto, is **APPROVED** for operation, **PROVIDED** the specification submitted with the application and the following conditions are met:

3.0 OPERATIONAL APPROVAL CONDITIONS

- 3.1 This Order is for the Stage 2 operation as defined above. It is composed of the primary and secondary H₂S control units, GCU and an enclosed flare as described above. The Facility is located at 5121 Dekker Rd., Outlook, Washington, in accordance with the plan and specifications submitted with the NSR application to YRCAA. The specification for these units and equipment are shown in Table 1 of this Order below.
- 3.2 Best Available Control Technology (BACT) and Toxic BACT (t-BACT) pursuant to RCW 70.94.152, WAC 173-400-113 and WAC 173-460-060 shall be satisfied for any proposed new facility or modified air emission source to control air emissions. YRCAA finds BACT to be satisfied as follows:
 - 3.2.1 Hydrogen sulfide concentration shall not exceed 10 (ten) parts per million by volume (ppmv) from the primary H₂S control unit and shall not exceed 10 (ten) ppmv from the secondary H₂S control units including the GCU;
 - 3.2.2 There shall be no air emissions discharged from the primary and the secondary H_2S control units to the atmosphere at any time. However, the GCU and the gas compressors are equipped with standard safety pressure relief valve (PRV). These valves may pop open in case of overpressures to prevent any catastrophic failure. These momentarily relief valves pressures are not part of the normal operation, it is exceptional during emergency only.
 - 3.2.3 At minimum, the continuous H₂S monitoring system location shown in the Figure 3 below shall be install and working all the time during normal operation;

- 3.2.4 The GCU shall have at least 96% CH₄ recovery;
- 3.2.5 The raw biogas, in case of emergency, must be routed through the secondary H₂S control unit prior to the enclosed flare. In no event shall the biogas during any abnormal operation be released directly to the ambient atmosphere;
- 3.2.6 The maximum air emission limits for H_2S and other air pollutants shall be limited, per the submitted specifications with this NSR application and specified in the emission limit Section 5.0 below and Appendix A;
- 3.2.7 An Operation and Maintenance (O&M) plan for the primary and secondary H₂S control units, the GCU and the enclosed flare, shall be developed in accordance with the manufacturers recommended standards;
- 3.2.8 The primary and secondary H₂S control units, the GCU and the enclosed flare must be operated per manufacturer specifications and written instruction including the pH level, tune-ups, maintenance and any required certification;
- 3.2.9 TAP air emissions shall always be below the Acceptable Source Impact Levels (ASIL);
- 3.2.10 The permanent 190Hp boiler will use only NG as the sole source of fuel for the boiler as specified in Order of Approval number NSRP-03-GDRP-19, unless ARNG is taking the responsibility for this boiler through a contract; and
- 3.2.11 The air emissions from the flare and the GCU shall meet the ASIL of WAC 173-460 and the National Ambient Air Standards (NAAQs) of 40 CFR Part 50 and as also specified in this Order.
- 3.3 The pH from primary and the secondary H2S bio-scrubbers control units shall be maintained at the indicated manufactures written instruction which shall be submitted to YRCAA.
- 3.4 All air emissions from this Facility shall be in compliance with air emission standards at all times. It is the responsibility of the owner to make sure that air emissions are within all known and future applicable federal and state rules and regulation standards, including but not limited to 40 CFR Part 50, WAC 173-400-040 and 173-460.
- 3.5 The primary and the secondary H₂S bio-scrubbers control units must be inspected at least monthly for system integrity and replaced any parts if needed. The record must be designed by the Permittee and maintained at the Facility site.

3.6 This Order authorizes the operation of the following equipment:

Units	Unit Type	Manufacturer	Model/ Serial number and/or Size	Motor Hp (Capacity)
1	Primary Hydrogen Sulfide Unit	Eco-Tec	Serial #: S-7049 Model #: 301-102.	107 HP
1	Secondary Hydrogen Sulfide Unit	Chemical Products Industries, Inc.	-	-
1	Bio-Gas cleaning Unit (GCU)	Greenlane	Model: TKC51672 – C1D1 Serial #: TKC51672	Stack 6 inches diameter 30 foot tall- (252 SCFM)
1	Enclosed flare	Aereon	Model: 1CP800 Serial # : EOZCFO	-
1	Industrial Boiler	Parker Industrial boiler	T6800L- Natural Gas only	190 Hp

Table 1 List of authorized Equipment to be installed (Stage 2).

- 3.7 Upon installation and the start of operation of this Facility, no raw biogas from the digester shall be released directly into the atmosphere. It shall be the responsibilities of GDR Power to have all the biogas collected and send it over to Augean RNG LLC, unless another contract exist between the two facilities. The Augean RNG LLC shall pass the raw biogas through the primary and the secondary H₂S control units, then to the GCU unit except during maintenance or repair, in which case the biogas shall pass at minimum, through either the primary or the secondary H₂S control units prior to sending it to the enclosed flare. During normal operation and maintenance activities, the H₂S concentration in the biogas must not exceed 10 ppmv. In case of emergency, maintenance or repair or any out of specification biogas, the biogas must be routed to the enclosed flare after passing by the primary or the secondary H₂S cleaning units at minimum and the H₂S concentration in the biogas shall not exceed a maximum of 10 ppmv.
- 3.8 The Permittee shall install and operate the biogas flow meters to measure and record the incoming biogas from GDR Power to the Permittee's Facility, before the enclosed flare and prior to injection to the NG pipeline. The record must be maintained at the facility and reported to YRCAA monthly to YRCAA for the first six months and annually after that with the registration program.
- 3.9 Concentration of the hydrogen sulfide from the primary and the secondary H₂S control units must not exceed a maximum of 10 ppmv and 4.5 ppmv from the GCU stream going to the NG pipeline injection and a maximum of 10 ppmv to the GCU stream going to the discharge stack. The H₂S concentration shall be monitored and tested using the following methods:
 - 3.9.1 The Permittee shall measure and monitor the concentration of H₂S in ppmv in the biogas at the influents and effluents of the primary and secondary H₂S

control units and at the effluent of the GCU prior to stack discharge and prior to the enclosed flare. This may be done by using gas detection tubes with a concentration range designed to accurately measure the concentration of H_2S to less than 1 ppmv; or by the continuous monitoring method similar to the one shown in Figure 3 below;

- 3.9.2 The measurement of the H₂S concentration method stated above (3.9.1) must be approved in advance prior to implementation and/or operation in writing from YRCAA. The approved method shall be attached to this Order and become part of this Order;
- 3.9.3 Measurements of H₂S in the biogas shall be accurately measured as specified above in 3.9.1 at minimum once per calendar day or on another measurement schedule approved as a continuous monitoring method by YRCAA. Such written approval must be attached and be part of this Order.
- 3.9.4 The monitoring and measurement of the concentration of H₂S at the specified locations stated in 3.9.1 shall start immediately at the initial start-up period.
- 3.9.5 The Permittee shall submit a written Quality Assurance Plan (QAP) including the written approved method for the monitoring and testing of H_2S at the specified location. If an alternative monitoring methods than those stated above, these methods then must be approval in writing first, by YRCAA and they must be included in the QAP.
- 3.9.6 The Permittee shall report all H₂S measurements in excess of the limits established in conditions 3.9 to our agency within 12 hours of measurement or discovery, the probable cause of such deviations, and any corrective actions or preventative measures taken must also be reported to YRCAA.
- 3.10 If no approved method by YRCAA to measure the H₂S as stated in the above conditions, a source test to verify the concentration of H₂S at the effluent of the primary and the secondary H₂S control units and the GCU shall be conducted upon normal operation, but no latter then 60 days from the issuance of this Order in accordance with 40 CFR Part 60, Appendix A, Method 15 to demonstrate compliance with the H₂S limits in this Order. The source test protocol shall be submitted to YRCAA at least 15 days prior to the source test date. Results of the source test must be submitted to the YRCAA within 30 days after the source test date.
- 3.11 If the Permittee, choose continuous monitoring method which has been approved by YRCAA, the Permittee shall maintain information on all H₂S monitors used in the facility, but they must be part of the approved method in writing by YRCAA. This information must be compiled in one place and shall include the following for each monitor: monitor manufacturer and model number, date of monitor installation, range of H₂S concentration the monitor can accurately measure, description of maintenance,

calibration, and accuracy verification, the date of the last maintenance, calibration, and accuracy verification, and the name of the person performing the action. This information shall also be available to YRCAA to review during site inspections and upon request.

- 3.12 The Permittee shall maintain all H₂S monitor measurements for a period of at least five (5) years after each measurement. Monitor data must be readily available to YRCAA for review during site inspections and upon request.
- 3.13 If and when a source test is required, the Permittee shall conduct the source test every five years pursuant to the current WAC 173-400. This requirement may change or be waived to 10 years with a written approval from YRCAA, only if the H₂S concentration as specified in this Order has not been exceeded for the previous five years. If more than one exceedance has been recorded above the specified concentration in this Order, the source test requirement will revert back to every five years.
- 3.14 The enclosed flare shall be installed as submitted with the NSR application. In no event shall, the biogas be vented directly to the ambient air even during an emergency. The flare shall be operational at all times and shall be equipped with thermocouple at the flame tip to monitor that the flame is working.
- 3.15 The enclosed flare height shall be at least 45 feet high from the ground level and shall not operate more than 440 hours per 12 rolling consecutive months.
- 3.16 The incoming biogas from GDR Power shall never be released directly to the atmosphere.
- 3.17 The Permittee must develop and implement a site-specific O&M plan based on the manufacturers and designers experience as part of the BACT above. The O&M Plan shall contain at minimum four sections: general information, operation plan (i.e., key operating parameters), maintenance plan and any other additional information. The Permittee must develop the O&M plan within 90 days after the issuance of this Order and shall include, but not be limited to the following:
 - 3.17.1 The Permittee shall provide appropriate training in operating all units including the enclosed flare to all operators;
 - 3.17.2 The QAP, the H₂S monitoring systems shall be included in O&M plan; and
 - 3.17.3 Check all units for signs of damage as per designers or manufacturers recommended intervals. If no recommended intervals, it shall be done at least monthly. The Log of any major repairs or replacements to any of the installed equipment shall be reported to YRCAA within 10 days.

Augean RNG LLC NSRP-26-ARNGLLC-19 Page **10** of **25**

- 3.18 Within 90 days from the date of issuance of this Order, the Permittee shall submit notification to YRCAA indicating that the O&M plan is completed and in place. If the Permittee needs to make any future modification or the method of operating the units beyond those approved in this Order, an approval in writing from YRCAA must be obtained before such modification takes place.
- 3.19 No emissions shall be released from this operation beyond the property boundary in a quantity that interferes unreasonably with the use and enjoyment of the property owner upon which the material is deposited or is detrimental to the health, safety or welfare of any person or causes damage to any property or business.
- 3.20 Opacity as measured by 40 CFR Part 60, Appendix A, Method 9, July 1, 2004 from the enclosed flare, must be conducted within 30 days from the startup of the flare and shall not exceed five percent (5%), average for six consecutive minutes in any given one hour period. The Permittee shall maintain the 5% or less at all times when the flare is on, except during periods of startup, shutdown or malfunction as provided in WAC 173-400-081.
- 3.21 In addition to the initial opacity reading above, once a month, the Permittee shall conduct and record visual opacity from the rest of the Facility. If the observer sees any kind of visible emissions aside from the enclosed flare smoke which shall not exceed 5%, the Permittee shall immediately take corrective action as directed in the O&M plan until there are no visible emission from that the unit. If opacity is greater than the limit, corrective actions shall be taken which may include the following:
 - 3.21.1 Certify that the enclosed flare is performing according to its design functions within the acceptable design parameters and is being operated according to O&M procedures. The enclosed flare must be checked against all operational conditions that have resulted in compliance in the past. If the enclosed flare is not performing according to its design and O&M procedures, the Permittee must take corrective action within 48 hours to correct the problem; or
 - 3.21.2 Conduct an opacity evaluation by a certified opacity reader in accordance with 40 CFR 60, Appendix A, Method 9 within 48 hours of the malfunction correction to verify compliance with the 5% opacity limit. If opacity is greater than 5% appropriate and timely corrective action must be taken no later than 48 hours to identify and correct the problem causing the opacity. If the Permittee has no certified reader on site, the Permittee should call YRCAA and will be advised accordingly.
- 3.22 In accordance with WAC 173-400-105(4) and YRCAA Regulation 1, Article V, Section 5.11(c), the Permittee shall conduct a source test when deemed necessary by YRCAA to demonstrate compliance for any air pollutant, specific to this Order.
- 3.23 The YRCAA Air Pollution Control Officer (APCO) or his designated staff shall be

Augean RNG LLC NSRP-26-ARNGLLC-19 Page **11** of **25**

allowed to enter the Facility at reasonable times to inspect for compliance with applicable laws, regulations and the conditions on this Order.

4.0 GENERAL APPROVAL CONDITIONS

- 4.1 All units including the primary and the secondary H₂S control units, the GCU and the enclosed flare shall comply with all other requirements specified in all current federal, state and local air pollution laws and regulations, including, but not limited to, RCW 70.94 Washington Clean Air Act, WAC 173-400 General Regulations for Air Pollution Sources, WAC 173-460 Controls for New Sources of Toxic Air Pollutants, applicable parts of 40 CFR Part 60 and the YRCAA Regulation 1.
- 4.2 All plans, specifications or other information submitted to YRCAA and any further authorizations, approvals, or denials in relation to this project, shall be incorporated herein and made a part of the YRCAA file and this Order.
- 4.3 Nothing in this approval shall be construed as obviating compliance with any requirement(s) of law including those imposed pursuant to the Washington Clean Air Act, and rules and regulations thereunder. Any violation(s) of such rules and regulations are penalized in accordance with RCW 70.94.430 and YRCAA Regulation 1, Article 5, Compliance and Enforcement.
- 4.4 Authorization may be modified, suspended or revoked in whole or part for cause including, but not limited to, the following:
 - 4.4.1 Violation of any terms or conditions of this authorization; or,
 - 4.4.2 Obtaining this authorization by misrepresentation or failure to disclose fully all relevant facts.
- 4.5 The provisions of this authorization are severable and, if any provision of this authorization, or application of any provisions of this authorization to any circumstance, is held invalid, the application of such provision to their circumstances, and the remainder of this authorization, shall not be affected thereby.
- 4.6 This Order and its requirements apply to the Facility owner and/or operator(s) and any contractor or subcontractor performing any activity authorized under this Order. Any persons, including contractors and/or subcontractors, not in compliance with the applicable requirements in this Order are in violation of federal, state and local laws and regulations and subject to appropriate civil and criminal penalties. The Facility owner and/or operator, and all contractors or subcontractors are liable for the actions and violations of their employees. Any violation committed by a contractor or subcontractor shall be considered a violation by the Facility owner and/or operator, and is also a violation by the contractor and/or any subcontractors.

Augean RNG LLC NSRP-26-ARNGLLC-19 Page **12** of **25**

- 4.7 Laws, rules and regulations may be superseded or revised without notice. It is the Permittee's responsibility to stay current with laws, rules and regulations governing their business and therefore is expected to comply with all new laws, rules and regulations immediately upon their effective date. New laws, rules and regulation updates will be incorporated into existing Orders or upon renewal of said Orders.
- 4.8 All air emissions from the operations of this Facility shall be in compliance with all air emission standards at all times. It is the responsibility of the owner to make sure that air emissions are within all known and promulgated laws, rules and regulations standards.
- 4.9 If, or whenever the Permittee wants to change the quantity of air emissions set forth in this Order or any modification to the Facility, another NSR must be filed with YRCAA before any change takes place and BACT requirements must be satisfied.
- 4.10 This Order is invalid without paying the required fees to YRCAA, pursuant to RCW 70.94.152 within the specified time on the invoice.

5.0 EMISSION LIMITS

- 5.1 Hydrogen sulfide shall not exceed 10 ppmv from the effluent of the primary and secondary H₂S control units, and not exceed 4.5 ppmv from the GCU stream going to the injection NG pipeline.
- 5.2 Air emissions discharge from the GCU after the secondary H₂S control unit shall be not exceed a maximum of 10 ppmv of H₂S at the GCU discharge stack as stated and specified in the above conditions.
- 5.3 Biogas sent to the enclosed flare shall not exceed 10 ppmv at any time.
- 5.4 Pursuant to WAC 173-400-113(2), the enclosed flare shall use the specified burner as stated in the NSR application.
- 5.5 Air emissions from this Stage 2 Facility operation, are estimated to generate small particulate matters (PM₁₀, PM_{2.5}), CO, VOC, NOx, SOx and others as shown in Appendix A. These maximum emissions shall not be exceeded as specified in the Appendix.
- 5.6 TAPs air emissions shall always be below the Acceptable Source Impact Levels (ASIL).
- 5.7 In addition to those specified limit on this Order, the Permittee shall comply with all applicable general standards for maximum air emissions as specified in WAC 173-400-040, WAC 173-460 and WAC 173-400-075.

6.0 MONITORING AND RECORDKEEPING REPORTING REQUIREMENTS

- 6.1 The Permittee shall record and maintain the daily concentration of H_2S from the primary and secondary H_2S control units at the influent and effluents in addition to the concentration at the effluent of the GCU. Concentration in ppmv shall not exceed the limits stated above.
- 6.2 The Permittee shall record and maintain the data from the facility's H₂S monitors as per the approved method in writing from YRCAA and shall be part of this Order as described in the above conditions.
- 6.3 The Facility shall submit their annual registration forms (report) including the annual air emissions with the required fees to YRCAA and including the sent-out specified forms by YRCAA on or before the specified date on the form which is 60 days from the beginning of each calendar year. Annual air emissions and production shall be based on the previous calendar year.
- 6.4 This Order and its conditions shall remain in effect in the event of any change in control of ownership or operation of the Facility. In the event of any such change in control of ownership or operation, the Permittee shall notify the succeeding owner of this Order and conditions and shall notify the YRCAA of the change by filing an "Ownership or Name Change" form within fifteen (15) days of that change. The form can be obtained or requested from YRCAA's office or the website.
- 6.5 If any other source test is ever required for this operation, except as specified in the approval conditions above, the results of the source test shall be submitted to the YRCAA within 30 days following the completion date of the source test.
- 6.6 The final source test results must be reported to YRCAA in units of ppmv, pounds per hour and potential tons per year for each pollutant.
- 6.7 The Permittee shall keep all records including this Order on site. Records shall include, at minimum, the monthly number of hours of operation of all units, H₂S concentration in ppmv, the daily biogas production, and the O&M items performed. Forms for recordkeeping must be designed by the Permittee and shall include the date and time of maintenance performed and the operator's name. An electronic H₂S concentration from the primary, secondary H₂S control and the effluent of the GCU may only be accepted if approved by YRCAA in writing.
- 6.8 The required records, logs and O&M plan for this Facility shall be kept on site and shall always be available to the APCO of the YRCAA or his designated staff during inspections or upon request. The O&M plan shall be updated to reflect any changes in operating procedures.
- 6.9 Records shall be maintained and kept at the site for the most recent five year period, and be made available during inspections or when requested by YRCAA.

Augean RNG LLC NSRP-26-ARNGLLC-19 Page **14** of **25**

- 6.10 Any application form, report, compliance certification, monthly record and the annual consumption report submitted to YRCAA pursuant to this Order must be signed by the responsible official.
- 6.11 Total air emissions for each air pollutant including HAPs/TAPs, and the number of hours of operation must be calculated and reported to YRCAA on an annual basis as specified in the annual registration documents provided by YRCAA to the Facility, as long as the Facility is not a Title V source.

You may appeal this Order to the Pollution Control Hearings Board (PCHB) within 30 days of the date of receipt of this Order. The appeal process and applicable requirements is governed by Chapter 43.21B RCW. "Date of receipt" is defined in RCW 43.21B.001(2).

To appeal you must do all of the following within 30 days of the date of receipt of this Order:

- File your appeal and a copy of this Order with the PCHB, P.O. Box 40903, Olympia, WA, 98504-0903. Filing means actual receipt by the PCHB during regular business hours.
- Serve a copy of your appeal and this Order on YRCAA in paper form by mail or in person. E-mail is not accepted.

DATED at the City of Yakima, Washington this 30 day of January, 2020.

PREPARED and REVIEWED BY:

Hasan M. Tahat, Ph.D. Compliance, Engineering and Planning Division Supervisor Yakima Regional Clean Air Agency

REVIEWED BY:

Norman Hepner, P.E. Nth Degree Engineering Solutions

ISSUED BY:

Keith M. Hurley

Air Pollution Control Officer Yakima Regional Clean Air Agency

Augean RNG LLC NSRP-26-ARNGLLC-19 Page 15 of 24

Potential to Emit (PTE)

PMT10 PMZ.5 SO2 NOx VOC CO Pb HAPs TAPs CO2e (ton/yr) MT/yr 0.000 0.000 0.00 0.00 0.00 0.00E+00 0.00 * 12,482 0.090 0.620 1.20 3.95 2.40 2.94E-06 8.76E-04 * 1,079 0.090 0.620 1.20 3.95 2.40 2.94E-06 0.001 >de min** 13.561							Use the hale page for thomadal TAP PTE
PMZ.5 SO2 NOx VOC CO Pb HAPs TAPs) (ton/yr) (ton/yr)	2.40	1.20	0.620	0.090	0.090	0.090	
PMZ.5 SO2 NOx VOC CO Pb HAPs TAPs) (ton/yr) (ton/yr)	2.40	1.20	0.020	0.090	0.000	0.000	ΤΟΤΛΙ
PMZ.5 SO2 NOx VOC CO Pb HAPs TAPs) (ton/yr) (ton/yr)	•	100	0 000	0 000	0 000	0.000	Emergency Flare, max 5% to flare
PMZ.5 SO2 NOx VOC CO Pb HAPs TAPs) (ton/yr) (ton/yr) (ton/yr) (ton/yr) (ton/yr) (ton/yr)	0.00	0.00	0.00	0.000	0.000	0.000	
) (ton/yr) (ton/yr) (ton/yr) (ton/yr) (ton/yr) (ton/yr) (ton/yr)				2000	0000	0 000	Gas Cleaning Unit (GCU) Exhaust Gas
PM2.5 SO2 NOX VOC CO Pb HAPs TAPs	r) (ton/vr)	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(toniyi)	
PM2.5 SO2 NOX VOC CO Ph HAPe TAB	ļ					(tomb -)	
	00	NOx	S02	PM2.5	DLIMA	T INI	Sources
				-		DIA	

** See the Flare page for individual TAPs above de minimis

General Notes: -- Fugitive emissions are negligible and are not included

	Emission Thresholds			New Source Review Emission Thresholds	
		(ton/yr)	Hand Land	PIN	
0.75		(ton/yr)		DLWL	
0.5		(ton/yr)		PM2.5	
2.0		(ton/yr)		SO2	
2.0		(ton/yr)		NOx	
2.0		(ton/yr)		VOC	
5.0		(ton/vr)		co	
0.005	1	(ton/vr)		РЪ	
	1.6	(ton/vr)		HAPs	
>de min	(icourse)	(ton/wr)	171.0	TAPe	
	i Kittal	MT/W	0020	~600	

		0.00				CO2 0.58%	CH4 07.54%	Give	27	Flow	ict stream		ILD, KAW DU						CH4 55-60%		48,0		Digester Gas Composition, unburned Temp 101 deg F	Gas volume at standard conditions	Peak H2S content of digestor gas:	l Ibmol 1	64 lb SO2	Standard molar volume: 34 lb H2S/lbi	Ideal gas constant (Ihmol R)	760 mmHg =	$68 \text{ F} = \frac{527.67 \text{ R}}{527.67 \text{ R}}$	Standard Condition	Maximum hours to flare	Maximum nercentare	Maximum hours of production	Peak Hourly biogas production	Peak digester gas flowrate Peak Gas Cleaning Unit flowrate	Gas Cleaning Unit (GCU)	Page 16 of 24	NSRP-26-ARNGLLC-19	Anna MARTIN
	+ ppinv)/0		20	0%		s	27.000 scfh	to r	Compostion	2	2000 ppmv	2.0% saturated	0/	1/0	(gap 04) 001100	(40 ava)	(57 avo)	Inite	48,000 scfh	800 scfm (max)	omposition, unb 101 deg F	ard conditions	f digestor gas:	I lbmol SO2/lbmol H2S	64 lb SO2/lbmol SO2	nol	t m/(lhmol R)	11	ons per WAC 17. 527.67 R	Wig	Maximum hours to flare	Maximum gas produced	s of production	gas production	Peak digester gas flowrate as Cleaning Unit flowrate]
100.0070 27		0.00%	0.14%	1.1.T.O	1 74.02		20	% by vol				100.770 40		2.0%	0.2%	1.0%							ourned	385.3 scf/lbmol	7000 ppm			385.3 scf/lbmol		1 atm	73-400-030(88 R		438	328.50 mmscf/yr	8.760 hr/yr	37.500 scfh	625 scfm				
27,000 (check)		0						sefh (lh/lhmol)	20% of total biogas	2000 00 000		0000	240 34						2					bmol							3)			scf/yr	1		3 3				
1.149 450.0 sefin			32 3.1				16 1.093.6		gas				21.2	44.8	8.0	34.9	2,193	1136	lb/hr	Peak										298	1	100-year G	0.907	2,000	1,000,000	000 000 1	Conversions				
 5,032	4.17E-02	0.0	13.8	149.5	/8.5	70 7	4.790.0		236.52 MM			15,057	92.8	196.4	35	152.8	9,603	4.976	tpy	PTE										298 N2O	1 CO2	WP, Table A-1	0.907 metric ton/ton	2,000 lb/ton	1,000,000 Btu/MMBtu	00 min/nr					
									236.52 MMscf/year RNG maximum																							100-year GWP, Table A-1 of WAC 173-441-040			Green values. Calculated data	Blue values Entered data	Key				

Total isn't relevant since the flare and the discharge stack won't operate at the same time	charge stac	and the dis	e the flare a	levant since	Total isn't re	1.1563	0.0826	165.2	0.0482		total H2S	tot
Conied from Elere wo	2	model	0.263	permit	0.0131	0.7116	1.42E-03	2.84	2.96E-02	Hydrogen Sulfide (H2S)		flare
Calculated by mass balance, not emission factor	2	model	0.263	permit	0.0131	0.4447	8.12E-02	162.33	1.85E-02	stack (H2S)	stack (H2S)	
Notes	ASIL (ug/m^3 Notes)	Flag, >SQER	SQER (lb/avgin g period)	Flag, >De Min	De Minimis (lb/avging period)	TAP (lb/24 hr)	TAPs (tpy)	PTE Emission (lb/yr)	Emission Rates (lb/hr)	Pollutant	Unit	3
Sum of flows:						scfm	347 scfm				-	
		12,482.2		10,128	2,312		20.830	0.81%		Other gas?	Othe	
				8.12E-02	1.638-02	34	10-000		A Tridd		Total	
				8.6	2.0	81	3 10E 01	0.00100%	nnmv	Cit	H2S	
				19.1	4.4	32	20	0.2010			H20	
				7.4	1.7	×1 ×1	23	0.11%		% S C U	02	
		9.017.2	9.017.2	9.939.6	2,269.3	44	19.872	94.63%		2 94.65% 0.11%		
		ω.	138.6	152.8	34.9	16	840	4.0%		17	CH4	
		CO2e	metric tpy	tpy	<u>lb/hr</u>	<u>M.W.</u> (lb/lbmol)	scfh	% by vol	Given Units		2	
					S	44% of total biogas	44%	C	000 scfh	21	110	
									67 F		Temp	
		Ie	6 by volum	5.0 to 15.0%	r methane - (5.4% by volume - the explosive range for methane - 5.0 to 15.0% by volume	e - the explo	by volume	:	Vol% CH4 in slip stream:	Vo]% C]	
							2	200 scfn CO2 slip 200 scfh CO2 slip 131 mmscf CO2 slip/year	 sefm CO2 slip sefh CO2 slip mmscf CO2 slip 	250.0 19,200 131		
							eam	lb/hr CO2 in slip stream ton/yr CO2 in slip stream	b/hr CO2 ton/yr CC	2,193 9,603		
						7.49 mmscf CH4 slip/year 40.0% of total biogas; assume all goes to slip stream	r ne all goes	7.49 mmscf CH4 slip/year	9 mmscf CJ		C02	
								+ sup	4 scfh CH4 slip	1094.4		
		Ton/Year)	Metric Ton	r (but not N	4.976 CO2e ton/yr (but not Metric	4.97(eam ream =	99.1 ton/yr CH4 in slip stream	ton/yr CH	+5.4 199.1		
						tream	4.0% of total methane leaves in slip stream	thane leav	6 of total m		CH4	
									arge Gas	Slip Stream/Discharge Gas	IS	
											- for 1 + 2011	Γ

Augean RNG LLC NSRP-26-ARNGLLC-19 Page 17 of 24

Augean RNG LLC NSRP-26-ARNGLLC-19 Page 18 of 24					
BIOGAS ENCLOSED FLARE - CRITERIA POLLUTANTS	CRITERIA PO	LLUTANTS			
Flare design capacity: Maximum hours gas sent to flare: Percent capacity:	48,000 sc//hr = 438 hr/vr 5,00%	sc/Dw = htt/vr	800	800 scfm	Standard molar volume 34 lb H2S/lbmol H2S
Biogas Hest Content Pesk hourly hest in biogas Maximum nanual hest in biogas: H1S;		Btu/sef MABtu/br MABtu/vr ppmv (parts per million by volume)	illion by volume)		64 lb SO2/lbmol SO2 1 lbmol SO2/lbmol H25
Pollutant	PTEE	PTE Endssions		Е	Emission Factor
DV/mvt mv	lb/hr	tpy	value	units	reference
EINERALD AND S	0.410	0.090	0.015	lb/mmBtu	Verador - Aeroon
Sulfur Dioxide (350 ppmv H2S)			Insiste .	mol% H2S	AP-42, Table 5.3-1. Updated 1/95, footnote d
	1.84	20.01	244.66	lb/mmscf	SO2 (lb/mmwcf) = 1685 (mol% H2S)
Nitrogen Oxides (NOx)	5.47	1.20	0.2	lb/mmBtu	Vendor - Aereon - worst case, off-spec RNG
(VOC)	18.058	3,95	0.66	lb/nmBtu	Vendor - Aereon - Vendor guarantees 98% destruction efficience
Carbon Monoxide (CO)	10.94	2.4	0.4	lb/numBtu	Vendor - Aereon
Lead (Pb)			5.0E-04	lb/nunscf	AP-42 Table 1.4-2, 7/98
H.C Flamman Oca/	1.34E-05	2.94E-06	4.908-07	lb/mmBtu	Divide lb/mmscf by 1020 Btu/scf as per AP-
rugo, Flate femoves 98%	NACON .	0,405,00	2% of H2S sent to the flare after primary treatment	o the flare after pr	rimary treatment
Carbon Dioxide (CO2)			120,000	lb/mmscf	AP-42 Table 1.4-2, 7/98
	3,219	705	811	lb/mmBtu	Divide lb/mmscf by 1020 Btu/scf as per AP-
Nitrous Oxide (N2O)			2.2	lb/mmscf	AP-42 Table 1.4-2, 7/98
	0.059	610'0	2.16E-03	lb/mmBtu	Divide lb/mmscf by 1020 Btu/scf as per AP-
Methane (CH4)			23	Bb/manacf	AP-42 Table 1.4-2, 7/98
	200.0	0.014	2.25E-03	lb/mmBtu	Divide lb/mmscf hv 1020 Rhu/w-f as not AD

385.3 scf7bmol

HAP and TAP Emission factor source: AP-42 Tables 1.4-3 & -4 (0798) Flare Potential Tosle Air Polluthant Emissions with Annual Averaging Periods

CAS Nbr. Pollutant

129000 P						193395			-													-		203008	67000	01210			91576	CAS Nbr.
Pyrene	Phenanthrene	Nickel	Naphinatene	control of the second s	and and compounds	Indeno(1,2,3-od)pyrene	ormaldehyde	Fluorene	Fluoranthene	.4-Dichlorobenzene (para-)***	Dibenz(a,h)anthracene	Chrysene	Chromium(VI)**	Cadmium	Beryllium	Benzo(k)fluoranthene	Henzo(g,h,i)perylene	Benzo(b)fluoranthene	Benzia a pyrene	Benzene	Benz(a)anthracene	Arsenic	Anthracene	Accraphthylene	Accuaphthene	1,12-Dimetrylbenz(a)anthracene	7 13 IN THE REPORT OF THE REPORT	Mashadahalanth	2-Methylnanthalene	Pollutani
E OOF OF	1.70E-05	2.10E-03	6.10E-04	60°2001C	C DOLLOG	1 2017.06	7 50E-02	2.80E-06	3.00E-06	1.20E-03	1.20E-06	1.80E-06	2.66E-04	1,10E-03	1.20E-05	1,80E-06	1.20E-06	1.80E-06	1.20E-06	2.10E-03	1.80E-06	2.00E-04	2.40B-06	1.80E-06	1.80E-06	1.60E-05	00-3081	C0-204/2	7 400 02	Endssion Factor (Ib/mmscf)
	1.67E-08	2.06E-06	5.98E-07	4,901:-07	1.702.49	1 765 00	\$0.451.7	2.75E-00	2.9417.00	1.181-06	1,18E-09	1.76E-09	2.61E-07	1.08E-06	1.18E-08	1.761-09	1.18E-09	1.76F-09	1.18E-09	2.06E-06	1.7612-09	1.96E-07	2.35E-09	1.76E-09	1.76E-09	1.57E-08	1.76E-09	2352-08		Emission Factor Emission Factor (Ib/mmscf) (Ib/mmBtu)*
	4 SKE 07	5.63E-05	1.64E-05	1.341-05	4.8.55-08	100.000	10101	7.51F.08	50.450 S	1.078-05	1.72E-08	4.812-08	714F.06	2.95E-05	3.22E-07	4,83E-08	3.22E-08	4.83E-08	3.22E-08	\$163E-05	4.83E-08	\$.36E-06	6.44E.08	4.83E-08	4.8312-08	4,29E-07	4.83E-08	6.44E-07		Emission Rates (lb/hr)
PO-LOVE	2000.04	2.471-02	7.17E-03	5.87E-03	211E-05	10-210-0	0.010.01	2 20 200 2	1 610 04	1111111	1415.00	2.115.04	1 112 00	cU 1001	1.41E.DA	2.11E-05	1.418-05	2.11E-05	1.41E-05	2.47E-02	2.11E-05	2.35E.01	2.828-05	2.11E.05	2.11F.05	1.88F-04	2.11E-05	2.82E-04		Emission Factor Emission Rates (lb/hr) PTE Emission (lb/yr) TAPs (tpy)
		100	1 SSF.05	2.94H-06		4,411,04			00-3CD/1	4.0.011.0.0		0011001	0.401.00	6 46T M					PARTON	20.916.1	and a second	1 176.06								TAPs (tpy)
80-3665	1.436.403	0000000	1 (98-06	2:04F-06		4,412-04	1.041-08	1.768-08	90-3597			1/2012-00	0.401-00	C ALL OF					10275-02	1 112 00	111111111	1 170 04						1.41E-07		HAPs (tpv)
		710010	0.0070	0 0050		0.8812			0.0141			0.0031	0.0129						1670'0	74400	27000	1000								TAP (b/m)
		797-0	0100	10		1.6			0.872			6,408-05	0.00228						1550	0.111	1670010	0.0000							period)	De Mininda Ob/avaine
												Ivermit	posnet																Min	Flag, >De
		5.64	10			32			17,4			0.00128	0.0457						6.62		0.0581								(normania)	SQER
												model																	SOER	Flag.
1	T	0.0294	0.0833			0.167	-		0.0909			6.67E-06	0.000238	-					0.0345		0.000303								ASIL (ug/m^3)	
HAD only DOMA	HAP only			SHOW HEREAD GENERATION, HAT PONT	Relow method detection UAD DOME		HAP only, POM	HAP only, POM		Below method detection, HAP POM		EF for total Cr; adjusted per reference to Cr(VI)		Below method detection	Below method detection, HAP POM	Below method detection, HAP only, POM	Below method detection, HAP POM	Below method detection, HAP POM		Below method detection, HAP POM			Below method detection, HAP only, POM	Below method detection, HAP only, POM	Below method detection, HAP POM	Below method detection, HAP POM	HAP only, POM		Notes	

 Christe Ishmand faster by 1020 Block is ner AP-42 Tables 1.4.3 & 4.
 The AP-42 mission faster Chronium includes Craffills which is net TAP. The EF was multiplied by 19% to obtain an EF for CrV11. See Autematic Din An Overview of Methods for EPAA National Scale Air Toxics Assessment. https://www.epa.gov/u
 Holdbordwarout (pan) is a TAP, the EF is for us no. 2521-22.4, which is a mixture of disblordwarout is interns, so this EF is conservative. iles/2015-10/do HAP only, POM tv2005-nata-tmd.pdf

Flare Potential Toxic Air Pollutant Finissions with 24-hour Averaging Periods

CAS MID	r ollutant	(lb/mmscf)	(Ib/numBtu)*	Emission Rates (lb/lur) PTE Endssion (lb/yr) TAPs (tpy)	PTE Endssion (B/yr)	TAPs (tpy)	HAPs (tpy)	TAP (1b/24	(Ib/avging	Flag, >De	(Ib/avging	Flag.	ASIL (ug/m^3)	Neta
7440484	Cohalt				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			(m	period)	Nin	period)	-	to under other	140163
	al and all	8.40E-05	8.241.08	2.25E-06	161F-05	1:201-02	1 900 00	A ADDREAT	0.000000					
7783064	Hydmoon Sulfide (H)S)				A A A A A A A A A A A A A A A A A A A	DA-CAMI	00-3001	1100000241	0.000057		610.0		01	
	10211 MILLIO DECIMATOR			2.908.02		IN THE O							9.1	
7439965	Maneanese	1 20E D4	1 11 1 1 1			THAT I REAL TO A		1000	0.0131	Dennit	0.263	model	2	Calculated by mass halance not emission (
TANDAL		10.000	2.125201	0.022-02	1.631-04	80.491.8	\$ 16F-08	SPLAUUU U	CALCOULD U		0.00000			CONTRACTOR OF THESE CRIMINAL TOLICITIES OF THE
1459910	Mercury	2.60P.04	201355 0	2010 2			00 100100	CLEDDON'S	0020000		97 00010		0.04	
110641				MALTER PAR	40-121-1	2,280-08	0.587-08	0.000167	0.000501		00110		0.00	
C4C011	n-mexane	1.800+00	1.768-07	CU 315 F	10.364 1						0.110.0		0.09	
7727407	Selenium			14. 11. 10.	100000	-2.00D-04	9/001040	1.139	4.60		92.0		700	
7247011	Contract of the local division of the local	2.402-05	2.35E-08	6.44E-07	SUBLUE									
108883	Toluene	1 405 01	A DEC A	0 000 00										Below method detection
		00-209-0	00-2022-00	9.12E-05	1.46E-03	7.30E-07	7.30F-07	0 00 710	270		2.01			TANADA MANAGAMANA MANAGAMANA
C INTERSCI LACTOR BY 102			Case of the local division of the local divi											

Flare Potential Toxic Air Pollutant Emissions with 1-hour Averaging Periods

CAS Nbr.	Pollutant	Emission Factor (lb/mmscf)	Endssion Factor (lb/mmBtu)*	Emission Rates (lb/hr)	PTE Endmion (lb/yr)	(r) TAPs (tpy)) HAP+ (tpy)	TAP (Ib/hr)	De Minimis (Ib/avging	Flag, >De Min	SQER (Ib/avging	Flag.	ASIL (ug/m^3)
630080	Carbon Monoxide			1001					period)		period)	WILVer	
10103AAD	Vilano Di			10.74	0501	2.4		10.94	14		20.1		
Obte2OTAT	Nitrogen Dioxide			5.47	202				1111	Nation 1	50.4		23000
74460905	Sulfur Disside			2.41	1602	1.20		5.47	0.457	Dermat	1.03	modul	170
and the second se				2.83	1,239,89	0.62		181	0.467				41.0
Divide lb/mmscl factor by 102	1020 Btu/scf as per AP-42 Tables 1.4-3 & 4					- ALANDARIA - ALANDARIA		100 million	104.0	Ianusd	1.40	model	660
wolow	A TO CAVE SHORT TO UN AND AND AND AND AND AND AND AND AND AN				TOTALS (tov)**:		0,0009						
A DESCRIPTION OF A DESC	aution in AD 47 Tables 4 4 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4												

GREENHOUSE GAS POLLUTANTS Based on biogas combusted at the flare

Dioxide (CO₂) Biogas Pass-thru Combustion Produc Compound PTE Emission PTE Emission (tpy) (NIT/yr) Global Warming Potenial* COge** (MT/yr)

 Insue Oxde (N_O)
 IVIAL
 1.39E-0.7
 1.176-0.7
 288
 3.09

 Olded warming potentials from Table A.1 to Stabuet A. of 40 CFR Part 98, 100 year time horizon.
 1.079
 1.079
 1.079

 Olded warming potentials from Table A.1 to Stabuet A. of 40 CFR Part 98, 100 year time horizon.
 1.079
 1.079
 1.079

GDR POWER 6.3 MMBTU/HR NATURAL GAS-FIRED BOILER Heat input rating

6.3 MMBtu/hr

Peak hourly gas production Maximum operating hours Assumed Heat Content Peak hourly heat Maximum annual heat

6,176 scf/hr 8,760 hr/yr 1,020 Btu/scf 6.30 MMBtu/hr 55,188 MMBtu/yr 1 ppmv (parts per million by volume)

Standard molar volume: 34 lb H2S/lbmol H2S 64 lb SO2/lbmol SO2

385.3 scf/lbmol

0.0100

1 lbmol SO2/lbmol H2S

H2S	
Peak natural gas feed rate:	0.00

0.00618 MMscf/hr

Pollutant	PTE E	missions		En	ission Factor
	lb/hr	tpy	value	units	reference
PM/PM ₁₀ /PM _{2.5}	0.047	0.206	7.6	lb/mmscf	AP-42, Table 1.4-2, 7/98
Sulfur Dioxide (SO2)	0.0037	0.016	0.6	lb/mmscf	AP-42 Table 1.4-2, 7/98
Nitrogen Oxides (NOx)	0.31	1.35	50	lb/mmscf	AP-42 Table 1.4-1, 7/98, small boiler - low Nox burners
Volatile Organic Compounds (VOC)	0.034	0.15	5.5	lb/mmscf	AP-42 Table 1.4-2, 7/98
Carbon Monoxide (CO)	0.52	2.27	84	lb/mmscf	AP-42 Table 1.4-1, 7/98
Lead (Pb)	3.1E-06	1.35E-05	5.0E-04	lb/mmscf	AP-42 Table 1.4-2, 7/98
Carbon Dioxide (CO ₂)	741.2	3,246	120,000	lb/mmscf	AP-42 Table 1.4-2, 7/98
Nitrous Oxide (N ₂ O)	1.36E-02	5.95E-02	2.2	lb/mmscf	AP-42 Table 1.4-2, 7/98
Methane (CH ₄)	1.42E-02	6.22E-02	2.3	lb/mmscf	AP-42 Table 1.4-2, 7/98

6-3 MMBtu'hr NATURAL GAS-FIRED BOILER - HAPs & TAPs THESE ARE NOT INCREASED EMISSIONS AND DO NOT EFFECT THE TAP PERMITTING ANALYSIS HAP and TAP Emission factor source: AP-42 Tables 1-4-3: & 4 (07)PS). Potential Toxic Air Pollutant Emissions with Annual Averaging Periods

CAS Nbr.	Pollutant	Emission Factor (lb/mmscf)	Emission Factor (lb/mmBtu)*	Emission Rates (lb/hr)	PTE Emission (lb/yr)	TAPs (tpy)	HAPs (tpy)
91576	2-Methylnapthalene	2.40E-05	2.35E-08	1.48E-07	1.30E-03	1	6.49E-07
56495	3-Methylcholanthrene	1.80E-06	1.76E-09	1.11E-08	9.74E-05		0.471-07
57976	7,12-Dimethylbenz(a)anthracen	1.60E-05	1.57E-08	9.88E-08	8.66E-04	1	
83329	Acenaphthene	1.80E-06	1.76E-09	1.11E-08	9.74E-05		
203968	Acenaphthylene	1.80E-06	1.76E-09	1.11E-08	9.74E-05		
120127	Anthracene	2.40E-06	2.35E-09	1.48E-08	1.30E-04		
7440382	Arsenic	2.00E-04	1.96E-07	1.24E-06	1.08E-02	5.41E-06	5.41E-06
56553	Benz(a)anthracene	1.80E-06	1.76E-09	1.11E-08	9.74E-05	5.4112-00	J.41L-00
71432	Benzene	2.10E-03	2.06E-06	1.30E-05	1.14E-01	5.68E-05	5.68E-05
50328	Benzo(a)pyrene	1.20E-06	1.18E-09	7.41E-09	6.49E-05	5.08E-05	J.08E-03
205992	Benzo(b)fluoranthene	1.80E-06	1.76E-09	1.11E-08	9.74E-05		
191242	Benzo(g,h,i)pervlene	1.20E-06	1.18E-09	7.41E-09	6.49E-05	1	
207089	Benzo(k)fluoranthene	1.80E-06	1.76E-09	1.11E-08	9.74E-05		
7440417	Beryllium	1.20E-05	1.18E-08	7.41E-08	6.49E-04	-	
7440439	Cadmium	1.10E-03	1.08E-06	6.79E-06	5.95E-02	2.98E-05	2.98E-05
7440473	Chromium	1.40E-03	1.37E-06	8.65E-06	7.57E-02	3.79E-05	3.79E-05
218019	Chrysene	1.80E-06	1.76E-09	1.11E-08	9.74E-05	5.176-05	3.17E-03
53703	Dibenz(a,h)anthracene	1.20E-06	1.18E-09	7.41E-09	6.49E-05		
106467	1,4-Dichlorobenzene (para-)**	1.20E-03	1.18E-06	7.41E-06	6.49E-02	3.25E-05	3.25E-05
206440	Fluoranthene	3.00E-06	2.94E-09	1.85E-08	1.62E-04	5.250-05	8.12E-08
86737	Fluorene	2.80E-06	2.75E-09	1.73E-08	1.51E-04		7.57E-08
50000	Formaldehyde	7.50E-02	7.35E-05	4.63E-04	4.06E+00	2.03E-03	2.03E-03
193395	Indeno(1,2,3-cd)pyrene	1.80E-06	1.76E-09	1.11E-08	9.74E-05	2.03E-03	2.03E-03
91203	Naphthalene	6.10E-04	5.98E-07	3.77E-06	3.30E-02	1.65E-05	1.65E-05
7440020	Nickel	2.10E-03	2.06E-06	1.30E-05	1.14E-01	1.0515-05	5.68E-05
85018	Phenanthrene	1.70E-05	1.67E-08	1.05E-07	9.20E-04		4.60E-07
129000	Pyrene	5.00E-06	4.90E-09	3.09E-08	2.71E-04		4.60E-07 1.35E-07

* Divide lb/mmscf factor by 1020 Btu/scf as per AP-42 Tables 1.4-3 & 4. ** 1.4-Dichlorobenzene (para) is a TAP; the EF is for cas no. 25321-22-6, which is a mixture of dichlorobenzene isomers, so this EF is conservative.

Boiler Potential Toxic Air Pollutant Emissions with 24-hour Averaging Periods

CAS Nbr.	Pollutant	Emission Factor (lb/mmscf)	Emission Factor (lb/mmBtu)*	Emission Rates (lb/hr)	PTE Emission (lb/yr)	TAPs (tpy)	HAPs (tpy)
7440484	Cobalt	8.40E-05	8.24E-08	5.19E-07	7.21E-04	3.61E-07	3.61E-07
7439965	Manganese	3.80E-04	3.73E-07	2.35E-06	3.26E-03	1.63E-06	1.63E-06
7439976	Mercury	2.60E-04	2.55E-07	1.61E-06	2.23E-03	1.12E-06	1.12E-06
110543	n-Hexane	1.80E+00	1.76E-03	1.11E-02	1.55E+01	7.73E-03	7.73E-03
7782492	Selenium	2.40E-05	2.35E-08	1.48E-07	2.06E-04	1.136-03	1.15E-05
108883	Toluene	3.40E-03	3.33E-06	2.10E-05	2.92E-02	1.46E-05	1.46E-05

Divide lb/mmscf factor by 1020 Btu/scf as per AP-42 Tables 1.4-3 & 4.

Boiler Potential Toxic Air Pollutant Emissions with 1-hour Averaging Periods

CAS Nbr.	Pollutant	Emission Factor (lb/mmscf)	Emission Factor (lb/mmBtu)*	Emission Rates (lb/hr)	PTE Emission (lb/yr)	TAPs (tpy)	HAPs (tpy)
630080	Carbon Monoxide			0.52	19,907	23	
10102440	Nitrogen Dioxide			0.31	2,705	1.35	
74460905	Sulfur Dioxide			0.004	32.46	0.02	

* Divide lb/mmscf factor by 1020 Btu/scf as per AP-42 Tables 1.4-3 & 4.

TOTALS (tpy)**: 3.6513 ** Pollutants listed as below detection in AP-42 Tables 1.4-3 & 4 (denoted by "<" before the emission factor) are not included in the totals. Augean RNG LLC NSRP-26-ARNGLLC-19 Page 20 of 25

NOTE and a REMINDER:

AUGEAN RNG LLC HYDROGEN SULFIDE MONITORING PLAN IS AN INTEGRAL PART OF THIS ORDER OF APPROVAL AND SHALL BE ATTACHED TO THIS ORDER OF APPROVAL

CLEAN ARECOM

NSRP-26-A RNG LLC-19 (Augean RNG LLC) Page 21 of 25

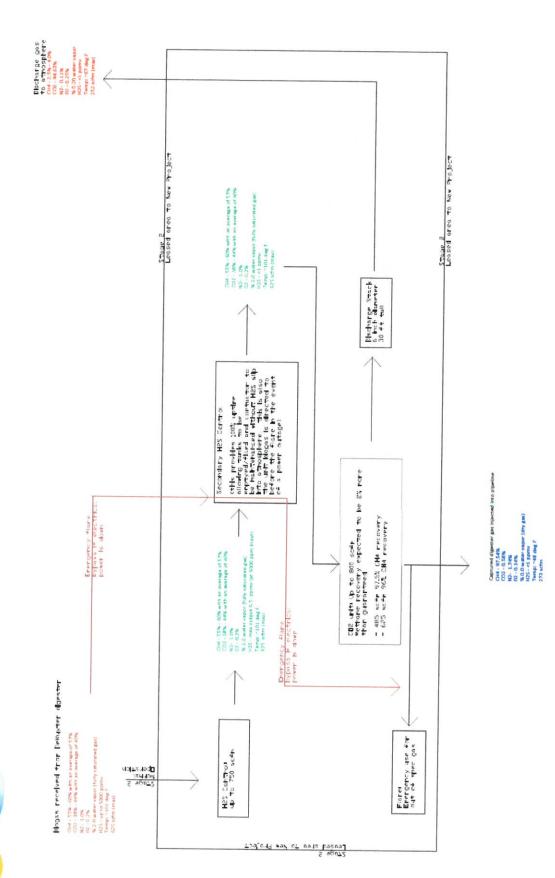


Figure 1. Process flow diagram for Augean RNG LLC (Stage 2)

NSRP-26-A RNG LLC-19 (Augean RNG LLC) Page 22 of 25



Figure 2. Location and the overall layout of the project for Stage 2 Augean RNG LLC

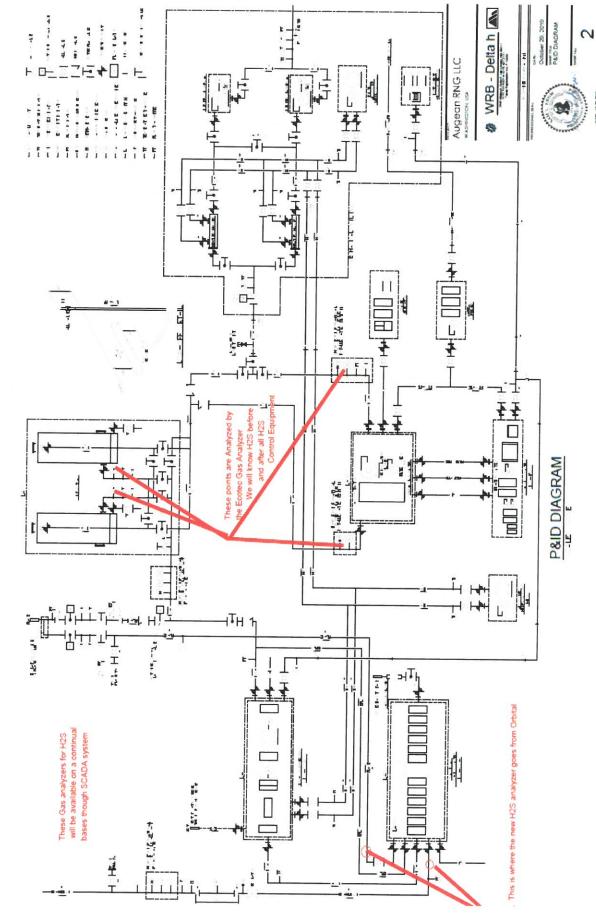


Figure 3. Hydrogen Sulfide analyzers locations.

Augean RNG LLC NSRP-26-ARNGLLC-19 Page 24 of 25

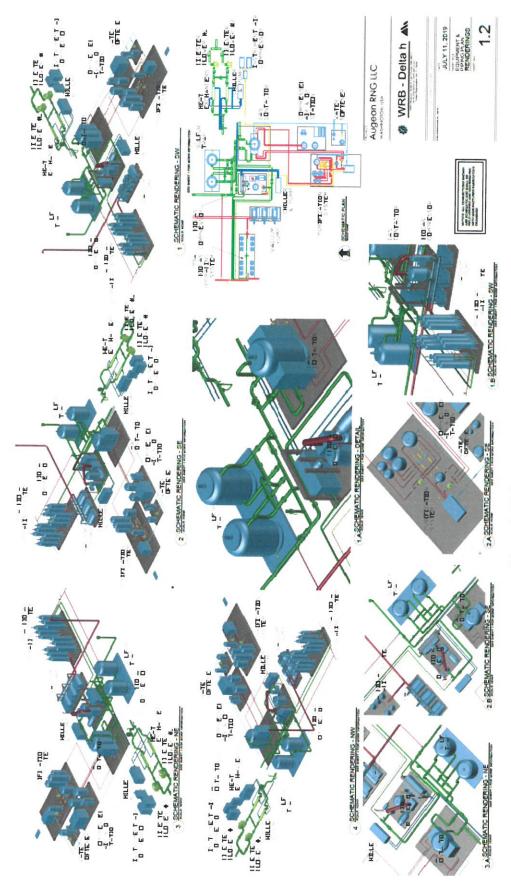


Figure 4. Piping schematic details 3-D

Augean RNG LLC NSRP-26-ARNGLLC-19 Page 25 of 25

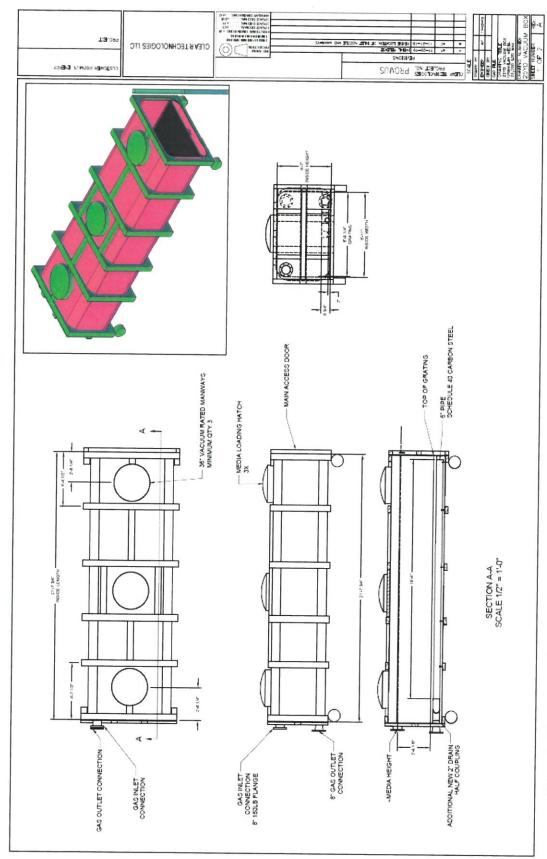


Figure 5. Temporary primary H₂S unit (Will be removed and replaced by the permanent one on or before March 19, 2020)

YAKIMA REGIONAL CLEAN AIR AGENCY

Order of Approval Permit No NSRP-03-GDRP-19

<u>New Source Review Order of Approval for GDR Power for an Anaerobic Digester, Flare</u> <u>system, Small 34.5 Horsepower (Hp) Portable Generator, 150 Hp Temporary Boiler and</u> <u>190 HP Permanent Boiler (Stage 1)</u>

IN THE MATTER OF approving a project which establishes a new air contaminant source at GDR Power, in Outlook, WA. THIS ORDER OF APPROVAL IS HEREBY ISSUED TO:

Applicant/Permittee:	GDR Power Dairy Manure Anaerobic Digester Operation
Located at:	5121 Dekker Rd.
Locateu at.	Outlook, WA. 98938
Responsible Official:	Dan DeRuyter
	GDR Power
	5121 Dekker Rd.
	Outlook, WA. 98938
Contact at the site:	Regenis
	Attn: Phil Losier or Dan DeRuyter

IN COMPLIANCE WITH THE PROVISIONS OF THE STATE OF WASHINGTON CLEAN AIR ACT (Revised Code of Washington (RCW)) CHAPTER 70.94.152, WASHINGTON ADMINISTRATIVE CODE (WAC) 173-400-110, 173-460-040:

ISSUE DATE: March 19, 2019

THIS ORDER OF APPROVAL PERMIT IS SUBJECT TO THE FOLLOWING CONDITIONS:

Modification/Installation of the equipment must be conducted in compliance with all data and specifications submitted with the New Source Review (NSR) application under which this Order of Approval is issued unless otherwise specified herein. The conditions and limitations of this NSR Order of Approval are attached as follows: GRD Power NSRP-03-GDRP-19 Page 2 of 25

1.0 DESCRIPTION OF THE SOURCE

- 1.1 GDR Power; hereafter referred to as the Permittee, the Facility, GDR or the Source is the owner and operator of a dairy operation and a dairy manure anaerobic digester at the above site. The Permittee applied and was issued a New Source Review (NSR) Permit in 2006 (NSRP-02-GDSD-06) for anaerobic digester (3,125,000 gallons), 2 generator sets and a biogas flare to combust any excess (unused) methane produced by the digester. The Permittee submitted a NSR application on January 10, 2019 proposing to remove the generators sets and to combust biogas in the flare (temporarily), heat the digester with a temporary boiler (less than 365 days from the issuance of this Order) and later a permanent Natural gas-fired boiler (stage 1). Eventually (within a year at most) all the biogas will be sent to adjacent Augean Renewable Natural Gas (RNG) LLC facility (stage 2). The Augean RNG LLC will operate under a separate NSR permit which will inject the upgraded generated methane gas after scrubbing it into a nearby Natural Gas (NG) pipeline.
- 1.2 This NSR application is for stage 1 of the project. The proposed project (stage 1) is to make minor modification to the existing plug flow anaerobic digester and the existing flare, install one temporary 150 Hp boiler (Parker), one 34.5 Hp generator, one NG permanent boiler 190 Hp (Parker). The NG permanent boiler will be installed after the Augean RNG LLC project is complete (Stage 2). The current existing flare is a candlestick type manufactured by Andgar Corporation (open flare). The two electrical generator-set will be removed from the site. Stage 2, to be proposed soon, through another NSR application, is to install and operate the Augean RNG LLC facility to receive all produced biogas from the GDR power, scrub the Hydrogen Sulfide (H₂S), and remove the Carbon Dioxide (CO₂) and other gases from the biogas prior to injection into a nearby NG pipeline.
- 1.3 Air emissions from this operation hereafter known as stage 1 are in the form of small Particulate Matter (PM₁₀, PM_{2.5}), Oxides of Nitrogen and Sulfur (NOx, SOx), Methane, H₂S, Volatile Organic Compounds (VOCs) some of which are known as Hazardous Air Pollutants (HAPs) and Toxic Air Pollutants (TAPs) in accordance with the Federal Clean Air Act (FCAA) or Washington Administrative Code (WAC), respectively.
- 1.4 Air emissions are emitted from the flare, the temporary boiler (less than 365 days) and permanent NG boiler and the small generator combustion operations. The City of Yakima, issued a DNS for this installation for the State Environmental Policy Act (SEPA) requirement on March 3, 2016.
- 1.5 The layout and specifications of stage 1 were submitted with the NSR application and are enclosed in the NSR review as provided by the Permittee and are shown in the Figures below.
- 1.6 New emissions units and modifications of operations at the anaerobic digester are considered installation and a modification of air contaminants requiring a NSR and an

Order of Approval (Order/Permit) pursuant to the Revised Code of Washington (RCW) 70.94.152 and the Washington Administrative Code (WAC) 173-400-110 and 173-460-040

2.0 DETERMINATIONS.

In relation to the above installation and modification, YRCAA determines that the Source shall comply with the federal, state and local regulations and laws including but not limited to the following determination:

- 2.1 The Facility is located in an area that is in attainment with all state and federal air quality standards for all criteria pollutants;
- 2.2 The Facility is not a major stationary source as of the date of issuance of this Order nor this modification is subject to the Prevention of Significant Deterioration (PSD) permitting requirements of WAC 173-400-700 through 173-400-750;
- 2.3 The temporary and the permanent boilers have a heat capacity of less than 10 MMBtu/hr and therefore neither boiler is subject to 40 CFR Part 60 New Source Performance Standards (NSPS) for Area Sources: Subpart Dc, Standards of Performance for Small Industrial-Commercial-Institutional Steam Generating Units pursuant to 40 CFR 60.40c(a);
- 2.4 The permanent proposed 190 Hp natural gas-fired boiler meets the definition of gas-fired boiler in Subpart 6J is, therefore, not subject to Subpart 6J according to 63.11195(e). No other NESHAPs apply to the permanent boiler.
- 2.5 The temporary boiler will be permanently disconnected from any fuel supply and water source within 30 days of the date that the permanent boiler first supplies useful heat to the anaerobic digester. Operation of the temporary boiler shall not exceed 364 days from the start of the operation.
- 2.6 The modification and installation for this stage 1 project, is subject to the requirements of WAC 173-400-110 "General Regulation for air pollution Sources- New source review (NSR) for sources and portable sources" and WAC 173-460-040 "Controls for new sources of toxic air pollutants- New Source Review", thus, this NSR being processed;
- 2.7 The Facility is subject to the annual Registration Program as outlined in WAC 173-400-099 –and YRCAA Regulation 1, 4.01. Thus, the Facility shall submit their annual report including the annual air emissions with the required fees to YRCAA on the sent out specified forms by YRCAA on or before the specified date from the previous year.

GRD Power NSRP-03-GDRP-19 Page 4 of 25

THEREFORE, it is hereby ordered that the project (stage 1) as described above, in the NSR application, and in detailed plans, specifications and other information submitted in reference thereto, is **APPROVED** for operation, **PROVIDED** the specification submitted with the application and the following conditions are met:

3.0 OPERATIONAL APROVAL CONDITIONS.

- 3.1 This Order is for stage 1 operation, which shall not continue beyond one year from the date of issuance of this Order of this project as specified in 1.1 above. After one year, and thereafter, only the anaerobic digester, NG boiler and the emergency backup generator will continue to operate, provided all biogas are delivered to Augean RNG LLC (stage2). The Facility is located at 5121 Dekker Rd., Outlook, Washington, in accordance with the plan and specifications submitted with the NSR application to YRCAA. The specification for the digester and equipment are shown in Table 1 of this Order.
- 3.2 Best Available Control Technology (BACT) and Toxic BACT (t-BACT) pursuant to RCW 70.94.152, WAC 173-400-113 and WAC 173-460-060 shall be satisfied for any proposed new facility or modified air emission source to control air emissions. YRCAA finds BACT to be satisfied as follows:
 - 3.2.1 Hydrogen sulfide concentration shall not exceed 350 parts per million (ppm) after air injection on a 30 day rolling average inside the digester as measured immediately prior to any combustion unit i.e., flare. In no case or event, shall the raw biogas be released directly to the ambient atmosphere.
 - 3.2.2 The permanent boiler (Parker) rated at 6.3 MMBTU/hr) will be equipped with the burner as stipulated in the manufacturer's technical specifications submitted to YRCAA and run on natural gas only;
 - 3.2.3 The temporary boiler (Parker boiler Model #GO-5000)- rated at 5 MMBTU/hr is dual fuel diesel #2 and NG/LPG with capacity of 36 gallon /hr diesel. Only Ultra Low Sulfur Diesel (ULSD) shall be used and only during the initial startup of the digester. Once there is enough biogas available to fuel the boiler, only biogas or NG/LPG i.e., propane shall be used. The temporary boiler will be permanently disconnected from any fuel supply and water source within 30 days of the date that the permanent boiler first supplies useful heat to the anaerobic digester. Operation of the temporary boiler shall not exceed 364 days from the start of the operation. GDR power shall submit a notification within 7 days from the date of permanently disconnecting the temporary boiler from service;
 - 3.2.4 The maximum air emission limits for NOx, CO, PM and other air emissions shall be limited, as per the submitted specifications with this NSR application and specified in the emission limit Section 5.0 below;
 - 3.2.5 An Operation and Maintenance (O&M) plan for the flare, boilers shall be

developed in accordance with the manufacturers recommended standards;

- 3.2.6 The flare, boilers must be operated as per manufacturer specifications, tune-ups, maintenance and any required certification;
- 3.2.7 TAP air emissions shall always be below the Acceptable Source Impact Levels (ASIL);
- 3.2.8 The permanent 190Hp boiler will use only NG as the sole source of fuel for the boiler;
- 3.2.9 The flare and air emissions from the boiler and backup generator shall meet the ASIL of WAC 173-460 and the National Ambient Air Standards (NAAQs) of 40 CFR Part 50 and as specified in this Order; and
- 3.2.10 The flare shall not operate more than one year for stage 1 of the project. Stage 2 (Augean RNG LLC) project, shall be completed within one year from the issuance date of this Order and all the biogas shall be diverted to it. The flare at that point in time shall not be used except, in emergency conditions and with a prior approval by YRCAA. Prior approval should be obtained from YRCAA in writing. Emergency shall have the mean an "Act of God" or as defined in the U.S. Federal Clean Air Act.
- 3.3 All air emissions from this Facility shall be in compliance with air emission standards at all times. It is the responsibility of the owner to make sure that air emissions are within all known rules and regulatory standards, including but not limited to 40 CFR Part 50, WAC 173-400-040 and 173-460.
- 3.4 This Order authorizes the operation of the following equipment:

Units	Unit Type	Manufacturer	Model/ Serial number and/or Size	Motor Hp (Capacity)
1	Anaerobic Digester (plug flow)	Built by Andgar Corporation	Capacity 3.125MM gallons-plug flow reactor	
1	Open elevated flare- Candlestick Built by Andgar Corp.	At the end of the digester		10 inches diameter- (650 SCFM)
1	Industrial Boiler	Parker Industrial boiler	GO-5000, Dual Fuel diesel and biogas	150 Hp Temporary for <365 days.
1	Industrial Boiler	Parker Industrial boiler	T6800L- Natural Gas only	190 Hp
1	Backup generator			34.5 Hp

Table 1 List of authorized Equipment to be installed/modified (Stage 1).

- 3.5 Concentration of the Hydrogen sulfide (H₂S) in the biogas (inside the digester) downstream of the air injection and prior to the flare shall not exceed a maximum of 350 ppm on a thirty day rolling average based on the daily measurement or weekly measurement if approved.
- 3.6 Concentration of the hydrogen sulfide in condition 3.5 of this Order shall be determined and continue the testing during and after the startup period. Startup period is defined by the time that mature biogas is built up and the flare is going (this period may vary, but shall not to exceed 6 to 8 weeks), by monitoring and testing methods as follows:
 - 3.6.1 The Permittee shall measure the concentration of H_2S in ppm in the biogas immediately prior going to flare and after the air injections using gas detection tubes with a concentration range designed to accurately measure the concentration of H_2S in the biogas at the time of the measurement as submitted with the NSR application or by using a handheld Sewerin Multitec 540 H_2S gas analyzer.
 - 3.6.2 The H₂S measurement of the biogas must be made prior to venting of biogas to the flare and upstream of the air injections. Thereafter, the total H₂S in the biogas shall be accurately measured prior to the combustion by the flare once per calendar day unless less frequent monitoring has been approved according to the terms of this Order.
 - 3.6.3 During and after the initial start-up period not to exceed 6 to 8 weeks as defined above, the Permittee shall submit a report to the YRCAA once per week. Reports are due within 3 days from the end of the seven days. Each report shall at minimum; include the daily H₂S measurements in ppm, the means by which the measurements were made, and the biogas production in standard cubic feet per day.
 - 3.6.4 The Permittee shall report all H₂S measurements in excess of the limits established in conditions 3.5 to our agency within 12 hours of measurement, the probable cause of such deviations, and any corrective actions or preventative measures taken.
 - 3.6.5 All measured biogas shall not be released to the ambient air and shall be routed to the flare during stage 1 of the project or to Augean RNG LLC (stage 2) facility once completed, which shall occur within one year from the issuance of this Order.
 - 3.6.6 After 90 consecutive days from the startup, as defined above, during which every H₂S measurement indicates compliance with condition 3.5 the Permittee may submit a written request that the H₂S monitoring frequency

GRD Power NSRP-03-GDRP-19 Page 7 of 25

reduced from daily to once a week (7 days). The request must include an analysis of the H_2S monitoring data collected during the previous 90 days and an explanation as to why these data support the request. Only upon written approval by YRCAA of the request, the Permittee may test at the reduced frequency of once a week until such time as the results indicate noncompliance with condition 3.5. If this occurs, the Permittee shall revert to the daily testing frequency for at least another 90 consecutive days, at which time the Permittee may request to reduce testing frequency again using the same process as above.

- 3.7 The flame from the flare shall always be burning at all times during stage 1 (this project). In no event, the biogas shall be vented directly to the ambient air. The flare shall be operational at all times and shall be equipped with thermocouple at the flare tip to monitor that the flame is working.
- 3.8 The flame from the flare shall not be used after the establishment of stage 2 of the Augean RNG LLC. In another words, all biogas will be delivered to Augean RNG LLC stage 2 within a period not to exceed one year from the issuance date of this Order. The flare may be used in case of emergency condition as defined above with a prior approval by YRCAA. Prior approval should be obtained from YRCAA in writing.
- 3.9 The flare height shall be at least 28 feet high from the ground level.
- 3.10 The Permittee shall assure that the digester gas is combusted either in the flare or in the digester gas boiler or in an approved method by YRCAA, in writing, prior to implementation. In addition, to the maximum extent possible provided plant safety and safety to the surrounding community is assured, The Permittee shall maximize combustion of digester gas in the flare for stage 1.
- 3.11 The Permittee must develop and implement a site-specific O&M plan based on the manufacturers, designer experience as part of the BACT above. The O&M Plan shall contain at least four sections: general information, operation plan (i.e., key operating parameters), maintenance plan and any other additional information. The Permittee must develop the O&M plan within 60 days after the issuance of this Order and shall include, but not be limited to the following:
 - 3.11.1 The Permittee shall provide appropriate training in operating the digester and the flare to all operators; and
 - 3.11.2 Check the digester, flare for signs of damage as per designer's recommended intervals. If no recommended intervals, it shall be done at least monthly. The Log of any repairs or replacements to any installed equipment shall be reported to YRCAA within 10 days.

GRD Power NSRP-03-GDRP-19 Page 8 of 25

- 3.12 Within 60 days from the date of issuance of this Order, the Permittee shall submit notification to YRCAA indicating that the O&M plan is completed and in place. If the Permittee needs to make any future modification to the digester, flare, boiler, emergency generator or the method of operating the units beyond those approved in this Order, an approval in writing from YRCAA must be obtained before such modification takes place.
- 3.13 No emissions shall be released from this operation beyond the property boundary in a quantity that interferes unreasonably with the use and enjoyment of the property owner upon which the material is deposited or is detrimental to the health, safety or welfare of any person or causes damage to any property or business.
- 3.14 An initial opacity as measured by 40 CFR Part 60, Appendix A, Method 9, July 1, 2004 from the flare, the temporary boiler and the permanent boiler must be conducted within 30 days of startup of each emission unit and shall not exceed five, five (when using diesel otherwise 0% for biogas) zero percent (5%, (5%, 0%) and 0%), respectively, average for six consecutive minutes in any given one hour period. The Permittee shall maintain the 5% or less for the flare and 0% opacity from the boilers using biogas, NG/LPG or 5% when using ULSD at all times, except during periods of startup, shutdown or malfunction as provided in WAC 173-400-081.
- 3.15 In addition to the initial opacity reading above, once a month, the Permittee shall conduct and record visual opacity from the flare (5%) and the boiler stack (0%). Zero percent (0%) opacity means no visible smoke may be seen. Heat waves are acceptable, only heat wave may be seen. If the observer sees any kind of smoke, the Permittee shall immediately take corrective action as directed in the O&M plan until visible emissions are 5% and 0% opacity, respectively. Corrective actions may include the following:
 - 3.16.1 Certify that the flare and boilers is performing according to its design functions within the acceptable design parameters and are being operated according to O&M procedures. The flare and boiler must be checked against all operational conditions that have resulted in compliance in the past. If the boiler is not performing according to its design and O&M procedures, the Permittee must take corrective action within 48 hours to correct the problem; or
 - 3.16.2 Conduct an opacity evaluation by a certified opacity reader in accordance with 40 CFR 60, Appendix A, Method 9 within 48 hours of the malfunction correction to verify compliance with the 5% and 0% opacity limit. If opacity is greater than 5% and 0%, appropriate and timely corrective action must be taken no later than 48 hours to identify and correct the problem causing the opacity. If the Permittee has no certified reader on site, the Permittee should call YRCAA and will be advised accordingly.
- 3.16 In accordance with WAC 173-400-105(4) and YRCAA Regulation 1, Article V, Section 5.11(c), the Permittee shall conduct a source test when deemed necessary by YRCAA to demonstrate compliance for any air pollutant, specific to this Order. YRCAA will inform

the Permittee of the source test requirement and method at that time, if deemed necessary.

3.17 The YRCAA Air Pollution Control Officer (APCO) or his designated staff shall be allowed to enter the Facility at reasonable times to inspect for compliance with applicable laws, regulations and the conditions on this Order.

4.0 GENERAL APPROVAL CONDITIONS.

- 4.1 The flare and the boilers shall comply with all other requirements specified in all current federal, state and local air pollution laws and regulations, including, but not limited to, RCW 70.94 (Washington Clean Air Act), WAC 173-400 (General Regulations for Air Pollution Sources), WAC 173-460 (Controls for New Sources of Toxic Air Pollutants), 40 CFR Part 60 and the YRCAA Regulation 1.
- 4.2 All plans, specifications or other information submitted to YRCAA and any further authorizations, approvals, or denials in relation to this project, shall be incorporated herein and made a part of the YRCAA file and this Order.
- 4.3 Nothing in this approval shall be construed as obviating compliance with any requirement(s) of law including those imposed pursuant to the Washington Clean Air Act, and rules and regulations thereunder. Any violation(s) of such rules and regulations are penalized in accordance with RCW 70.94.430 and YRCAA Regulation 1, Article 5, Compliance and Enforcement.
- 4.4 Authorization may be modified, suspended or revoked in whole or part for cause including, but not limited to, the following:
 - 4.4.1 Violation of any terms or conditions of this authorization; or,
 - 4.4.2 Obtaining this authorization by misrepresentation or failure to disclose fully all relevant facts.
- 4.5 The provisions of this authorization are severable and, if any provision of this authorization, or application of any provisions of this authorization to any circumstance, is held invalid, the application of such provision to their circumstances, and the remainder of this authorization, shall not be affected thereby.
- 4.6 This Order and its requirements apply to the Facility owner and/or operator(s) and any contractor or subcontractor performing any activity authorized under this Order. Any persons, including contractors and/or subcontractors, not in compliance with the applicable requirements in this Order are in violation of State and local laws and subject to appropriate civil and criminal penalties. The Facility owner and/or operator, and all contractors or subcontractors are liable for the actions and violations of their employees. Any violation committed by a contractor or subcontractor shall be considered a violation by the Facility owner and/or operator, and is also a violation by the contractor and/or any

subcontractors.

- 4.7 Laws, rules and regulations may be superseded or revised without notice. It is the Permittee's responsibility to stay current with laws, rules and regulations governing their business and therefore is expected to comply with all new laws, rules and regulations immediately upon their effective date. New laws, rules and regulation updates will be incorporated into existing Orders or upon renewal of said Orders.
- 4.8 All air emissions from the operations of this Facility shall be in compliance with all air emission standards at all times. It is the responsibility of the owner to make sure that air emissions are within all known and promulgated laws, rules and regulations standards.
- 4.9 If, or whenever the Permittee wants to change the quantity of air emissions set forth in this Order or any modification to the digester, boiler, another NSR must be filed with YRCAA before any change takes place and BACT requirements must be satisfied.
- 4.10 This Order is invalid without paying the required fees to YRCAA, pursuant to RCW 70.94.152 within the specified time on the invoice.

5.0 EMISSION LIMITS

- 5.1 Hydrogen sulfide shall not exceed 350 ppm (inside the digester prior to flare combustion) as stated and specified in the above conditions.
- 5.2 Pursuant to WAC 173-400-113(2), the flare and the boilers shall use the specified burner as stated in the NSR application and the specified emission limit.
- 5.3 Air emissions from this operation stage 1, are estimated to generate small PM₁₀, PM_{2.5}, CO, VOC's, NOx, SOx and others as shown in Appendix A. These maximum emissions shall not be exceeded as specified in the Appendix.
- 5.4 Only ULSD will be used with a sulfur content of less than 0.0015% (15ppm) by weight;
- 5.5 Emissions of NOx from the boiler shall not exceed 30 parts per million by volume, dry and corrected to three percent oxygen (30 ppmvd @ 3% O₂) using NG fuel.
- 5.6 Emissions of CO from the boiler shall not exceed fifty parts per million by volume, dry and corrected to three percent oxygen (50 ppmvd @ 3% O₂) using NG fuel.
- 5.7 TAPs air emissions shall always be below the Acceptable Source Impact Levels (ASIL);

6.0 MONITORING AND RECORDKEEPING REPORTING REQUIREMENTS.

- 6.1 The Permittee shall record the daily amount of biogas generated and used, NG used, the number of hours the digester was running, and dates of use for each boiler and report to YRCAA as stated in the above condition.
- 6.2 The Facility shall submit their annual registration forms (report) including the annual air emissions with the required fees to YRCAA on the sent-out specified forms by YRCAA on or before the specified date from the previous year.
- 6.3 This Order and its conditions shall remain in effect in the event of any change in control of ownership or operation of the Facility. In the event of any such change in control of ownership or operation, the Permittee shall notify the succeeding owner of this Order and conditions and shall notify the YRCAA of the change by filing an "Ownership or Name Change" form within fifteen (15) days of that change. The form can be obtained or requested from YRCAA's office or the website.
- 6.4 If any other source test is ever required for this operation, except as specified in the approval conditions above, the results of the source test shall be submitted to the YRCAA within 30 days following the completion date of the source test.
- 6.5 The final source test results must be reported to YRCAA in units of ppmvd, pounds per hour and potential tons per year for each pollutant.
- 6.6 The Permittee shall keep all records including this Order on site. Records shall include, at minimum, the monthly number of hours of operation of all units, the daily biogas production, the NG usage, and the O&M items performed. Forms for recordkeeping must be designed by the Permittee and shall include the date and time of maintenance performed and the operator's name.
- 6.7 The required records, logs and O&M plan for this Facility shall be kept on site and shall always be available to the APCO of the YRCAA or his designated staff during inspections or upon request. The O&M plan shall be updated to reflect any changes in operating procedures and such changes shall be routinely implemented.
- 6.8 Records shall be maintained and kept at the site for the most recent three year period, and be made available during inspections or when requested by YRCAA.
- 6.9 Any application form, report, compliance certification, monthly record and the annual consumption report submitted to YRCAA pursuant to this Order must be signed by the responsible official.
- 6.10 Total air emissions for each air pollutant including HAPs/TAPs, and the number of hours of operation must be calculated and reported to YRCAA on an annual basis as specified in the annual registration documents provided by YRCAA to the Facility, as long as the Facility is not a Title V source.

You may appeal this Order to the Pollution Control Hearings Board (PCHB) within 30 days of the date of receipt of this Order. The appeal process and applicable requirements is governed by Chapter 43.21B RCW. "Date of receipt" is defined in RCW 43.21B.001(2).

To appeal you must do all of the following within 30 days of the date of receipt of this Order:

- File your appeal and a copy of this Order with the PCHB, P.O. Box 40903, Olympia, WA, 98504-0903. Filing means actual receipt by the PCHB during regular business hours.
- Serve a copy of your appeal and this Order on YRCAA in paper form by mail or in person. E-mail is not accepted.

DATED at the City of Yakima, Washington this 19th day of March 2019.

PREPARED and REVIEWED BY:

Hasan M. Tahat, Ph.D.

Compliance, Engineering and Planning Division Supervisor Yakima Regional Clean Air Agency

REVIEWED BY:

Norman Hepner, P.E., Nth Degree Engineering Solutions

ISSUED BY:

Keith M. Hurley Air Pollution Control Officer Yakima Regional Clean Air Agency

GDR Power

NSRP-03-GDRP-19

Page 13 of 25

Potential to Emit Emission Inventory (tons per year)

Stage 1 Potential to Emit (PTE)

Sources	PM	PM10	PM2.5	SO2	NOx	VOC	со	Pb	HAPS	CO2e
	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	MT/yr
Biogas Flare	0.698	0.698	0.698	13.84	6.37	13.11	34.64	4.77E-05	0.17	16.637
Temporary Dual-fuel Boiler, 5 MMBtu/hr										
Fuel Oil	0.520	0.520	0.520	0.03	3.15	0.04	0.79	2.38E-04		3,206
Biogas	0.163	0.163	0.163	3.24	2.15	0.12	1.80	1.07E-05	0.04	2,356
34.5 Hp Backup Emergency Generator	3.80E-03	3.80E-03	3.80E-03	3.54E-03	1.55E-03	4.34E-03	1.15E-02	5.92E-09	7.79E-05	_,
	OTAL 1.222	1.222	1.222	17.079	9.521	13.230	36.455	2.86E-04	0.218	19,844

Stage 2 Potential to Emit (PTE)

Sources	PM (ton/yr)		VOC	со	Pb	Pb HAPS	CO2e			
			(ton/yr)	MT/yr						
Biogas Flare (only used in upset situation)										
Natural Gas-Fired Boiler, 6.3 MMBtu/hr	0.206	0.206	0.206	0.02	2.71	0.15	2.27	2.23E-03	0.01	2,969
34.5 Hp Backup Emergency Generator	3.80E-03	3.80E-03	3.80E-03	3.54E-03	1.55E-03	4.34E-03	1.15E-02	5.92E-09	7.79E-05	
TOTAL	0.209	0.209	0.209	0.020	2.707	0.153	2.284	2.23E-03	0.008	2,969

General Notes:

-- Fugitive emissions are negligible and are not included

Appen	ıdix A						
GDR Power							
NSRP-03-GI	DRP-19						
Page 14 of 2	5						
			1				
The emissions	source is the di	gester. H2S emi	ssions are rec	duced in Stage	1 using		
aeration in the	digester.						
Peak digester g				scfm			
Peak Hourly ga			37,500				
	rs of production	1	8,760				
	E gas produced			mmscf/yr			
Biogas Heat Co				Btu/scf			
	eak Hourly Heat in Biogas			MMBtu/hr			
the second se	E Heat in Biogas			MMBtu/yr			
Peak H2S cont	ent of digestor	gas	500	ppm, controlle	d by aeration		
Digestan Cas C		1 1					
Digester Gas C	omposition, un	burned					
Component	0/ have and		Peak	PTE			
CH4	57.0%	M.W (lb/lbmol) 16	lb/hr 888	tpy		Gas, for modeling	
	37.0%	44	1,649	3,888		lbmol/ hr, combustion pr	oducts plus N2
		44	1,049	7,221	37.5	lbmol/ hr, pass through	
CO2		20	14	10	0.5	lbmol/hr, pass through	
CO2 O2	0.5%	32	16	68			
CO2 O2 N2	0.5%	28	40.9	179.0	1.5	lbmol/hr, pass through	1 (1 1)2
CO2 O2 N2 H2S, Raw	0.5% 1.5% 0.050%	28 34	40.9 1.7	179.0 7.2	1.5 0.5	lbmol/hr, pass through lbmol/hr, combustion pro	oducts plus N2
CO2 O2 N2	0.5% 1.5% 0.050% 2.4%	28	40.9	179.0	1.5 0.5 2.3	lbmol/hr, pass through lbmol/hr, combustion pro lbmol/hr, pass through	oducts plus N2
CO2 O2 N2 H2S, Raw	0.5% 1.5% 0.050%	28 34	40.9 1.7	179.0 7.2	1.5 0.5 2.3 570.3	lbmol/hr, pass through lbmol/hr, combustion pro lbmol/hr, pass through lbmol/hr, Total	oducts plus N2
CO2 O2 N2 H2S, Raw	0.5% 1.5% 0.050% 2.4%	28 34	40.9 1.7	179.0 7.2	1.5 0.5 2.3 570.3 3,663	lbmol/hr, pass through lbmol/hr, combustion pro lbmol/hr, pass through lbmol/hr, Total scfm, std. conditions	
CO2 O2 N2 H2S, Raw H2O	0.5% 1.5% 0.050% 2.4% 100.0%	28 34 18	40.9 1.7 42.0	179.0 7.2	1.5 0.5 2.3 570.3 3,663	lbmol/hr, pass through lbmol/hr, combustion pro lbmol/hr, pass through lbmol/hr, Total	
CO2 O2 N2 H2S, Raw H2O Standard Condi	0.5% 1.5% 0.050% 2.4% 100.0% titions per WAC	28 34 18 : 173-400-030(8	40.9 1.7 42.0 42.0 42.0 42.0 42.0	179.0 7.2	1.5 0.5 2.3 570.3 3,663	lbmol/hr, pass through lbmol/hr, combustion pro lbmol/hr, pass through lbmol/hr, Total scfm, std. conditions	
CO2 O2 N2 H2S, Raw H2O Standard Condi	0.5% 1.5% 0.050% 2.4% 100.0% itions per WAC 58 F =	28 34 18 18 173-400-030(8 527.67	40.9 1.7 42.0 	179.0 7.2	1.5 0.5 2.3 570.3 3,663	lbmol/hr, pass through lbmol/hr, combustion pro lbmol/hr, pass through lbmol/hr, Total scfm, std. conditions	
CO2 O2 N2 H2S, Raw H2O Standard Condi	$ \begin{array}{c c} 0.5\% \\ 1.5\% \\ 0.050\% \\ 2.4\% \\ 100.0\% \\ \hline 100.0\% \\ \hline 100.0\% \\ \hline 58 F = \\ 50 mmHg = \\ \end{array} $	28 34 18 2173-400-030(8 527.67 1	40.9 1.7 42.0 84) R atm	179.0 7.2	1.5 0.5 2.3 570.3 3,663	lbmol/hr, pass through lbmol/hr, combustion pro lbmol/hr, pass through lbmol/hr, Total scfm, std. conditions	
CO2 O2 N2 H2S, Raw H2O Standard Condi	0.5% 1.5% 0.050% 2.4% 100.0% itions per WAC 58 F = 50 mmHg = volume:	28 34 18 2173-400-030(8 527.67 1	40.9 1.7 42.0 	179.0 7.2	1.5 0.5 2.3 570.3 3,663	lbmol/hr, pass through lbmol/hr, combustion pro lbmol/hr, pass through lbmol/hr, Total scfm, std. conditions	

L

GDR Power NSRP-03-GDRP-19 Page 15 of 25

Peak Hourly gas production Maximum hours of production Peak Hourly Heat in Biogas Maximum PTE Heat in Biogas Stage 1 digester gas H2S Stage 2 digester gas H2S

37,500 scf/hr 8,760 hr/yr 21.38 MMBtu/hr 187,245 MMBtu/yr 500 ppmv (parts per million by volume)

not flared under normal operations

Pollutant	PTE En	nissions		Er	nission Factor
	lb/hr	tpy	value	units	reference
PM/PM10/PM2.5			7.6	lb/mmscf	AP-42, Table 1.4-2
	0.159	0.698	7.45E-03	lb/mmBtu	Divide by 1020 Btu/scf as per AP-42.
S1 - Sulfur Dioxide (500 ppmv H ₂ S)			0.05	mol% H2S	AP-42, Table 5.3-1. Updated 1/95
	3.16	13.8	84.25	lb/mmscf	SO2 (lb/mmscf) = 1685 (mol% H2S)
Nitrogen Oxides (NOx)	1.45	6.37	0.068	lb/mmBtu	AP-42 Table 13.5-1
Volatile Organic Compounds (VOC)	2.99	13.1	0.14	lb/mmBtu	AP-42 Table 13.5-1
Carbon Monoxide (CO)	7.91	34.6	0.370	lb/mmBtu	AP-42 Table 13.5-1
Lead (Pb)			5.2E-04	lb/mmscf	AP-42 Table 1.4-2
and the second	1.09E-05	4.77E-05	5.10E-07	lb/mmBtu	Divide by 1020 Btu/scf as per AP-42.
H ₂ S, Flare removes 98%	0.0331	0.145	2% of the aera	ted digester H ₂	S output
Carbon Dioxide (CO ₂)			120,000	lb/mmscf	AP-42, Table 1.4-2
	2,515	11,014	118	lb/mmBtu	Divide by 1020 Btu/scf as per AP-42.
Nitrous Oxide (N ₂ O)	· · · · · · · · · · · · · · · · · · ·		2.2	lb/mmscf	AP-42, Table 1.4-2
	0.046	0.202	2.16E-03	lb/mmBtu	Divide by 1020 Btu/scf as per AP-42.
Methane (CH ₄)			2.3	lb/mmscf	AP-42, Table 1.4-2
	0.048	0.211	2.25E-03	lb/mmBtu	Divide by 1020 Btu/scf as per AP-42.

BIOGAS FLARE - HAPs & TAPs HAP and TAP Emission factor source: AP-42 Tables 1.4-3 & -4 (07/98). Flare Potential Toxic Air Pollutant Emissions with Annual Averaging Periods

CAS Nbr.	Pollutant	Emission Factor (lb/mmscf)	Emission Factor (Ib/mmBtu)*	Emission Rates (Ib/hr)	PTE Emission (lb/yr)	HAPs (tpy)
7440382	Arsenic	2.00E-04	1.96E-07	4.19E-06	3.67E-02	1.84E-05
71432	Benzene	2.10E-03	2.06E-06	4.40E-05	3.86E-01	1.93E-04
7440417	Beryllium	1.20E-05	1.18E-08	2.51E-07	2.20E-03	1.10E-06
7440439	Cadmium	1.10E-03	1.08E-06	2.31E-05	2.02E-01	1.01E-04
7440473	Chromium	1.40E-03	1.37E-06	2.93E-05	2.57E-01	1.29E-04
106467	1,4-Dichlorobenzene (para-)	1.20E-03	1.18E-06	2.51E-05	2.20E-01	1.10E-04
50000	Formaldehyde	7.50E-02	7.35E-05	1.57E-03	1.38E+01	6.88E-03
91203	Naphthalene	6.10E-04	5.98E-07	1.28E-05	1.12E-01	5.60E-05
7440020	Nickel	2.10E-03	2.06E-06	4.40E-05	3.86E-01	1.93E-04
56495	3-Methylcholanthrene	1.80E-06	1.76E-09	3.77E-08	3.30E-04	1.65E-07
57977	7,12-Dimethylbenz(a)anthrace	1.60E-05	1.57E-08	3.35E-07	2.94E-03	1.47E-06
56553	Benz(a)anthracene	1.80E-06	1.76E-09	3.77E-08	3.30E-04	1.65E-07
205992	Benzo(b,k)fluoranthene	1.80E-06	1.76E-09	3.77E-08	3.30E-04	1.65E-07
53703	Dibenz(a,h)anthracene	1.20E-06	1.18E-09	2.51E-08	2.20E-04	1.10E-07
218019	Chrysene	1.80E-06	1.76E-09	3.77E-08	3.30E-04	1.65E-07
193395	Indeno(1,2,3-cd)pyrene	1.80E-06	1.76E-09	3.77E-08	3.30E-04	1.65E-07
50328	Benzo(a)pyrene	1.20E-06	1,18E-09	2.51E-08	2.20E-04	1.10E-07

* Divide lb/mmscf factor by 1020 Btu/scf as per AP-42 Tables 1.4-3 & 4.

Flare Potential Toxic Air Pollutant Emissions with 24-hour Averaging Periods

CAS Nbr.	Pollutant	Emission Factor (Ib/mmscf)	Emission Factor (Ib/mmBtu)*	Emission Rates (Ib/hr)	PTE Emission (lb/yr)	HAPs (tpy)
7440484	Cobalt	8.40E-05	8.24E-08	1.76E-06	1.54E-02	7.71E-06
7783064	Hydrogen Sulfide (H2S)			3.31E-02	290	
7439965	Manganese	3.80E-04	3.73E-07	7.96E-06	6.98E-02	3.49E-05
7439976	Mercury	2.60E-04	2.55E-07	5.45E-06	4.77E-02	2.39E-05
110543	n-Hexane	1.80E+00	1.76E-03	3.77E-02	3.30E+02	1.65E-01
7782492	Selenium	2.40E-05	2.35E-08	5.03E-07	4.41E-03	2.20E-06
108883	Toluene	3.40E-03	3.33E-06	7.13E-05	6.24E-01	3.12E-04
Divide Ib/mmscf factor by 1020 Btu/scf a	s per AP-42 Tables 1.4-3 & 4.				HAPS (tpy)	1.73E-01

Flare Potential Toxic Air Pollutant Emissions with 1-hour Averaging Periods

CAS Nbr.	Pollutant	Emission Factor (lb/mmscf)	Emission Factor (Ib/mmBtu)*	Emission Rates (Ib/hr)	PTE Emission (lb/yr)	HAPs (tpy)
7440484	Carbon Monoxide			7.91	69,281	
10102440	Nitrogen Dioxide			1.45	12,733	
74460905	Sulfur Dioxide			3.16	27,676	

* Divide Ib/mmscf factor by 1020 Btu/scf as per AP-42 Tables 1.4-3 & 4.

GREENHOUSE GAS POLLUTANTS

Based on CH4 combustion and un-combusted biogas PTE Global CO20* Compound Emission Emission Warming Potenial (MT/yr) (tpy) (MT/yr) Carbon Dioxide (CO₂) 7,221 Biogas Pass-thru 6,565 6,565 1 11.014 10.013 Combustion Product 1 Methane (CH₄) 2.11E-01 1.92E-01 25 5 Nitrous Oxide (N₂O) 2.02E-01 1.84E-01 298 55 TOTAL 16,637

GDR Power NSRP-03-GDRP-19 Page 16 of 25

TEMP BOILER - CRITERIA POLLUTANTS

Fuel Oil

utant		PTE Em	nissions
Peak Fu	el Oil Feed Rate	36	gal/hr
Potential Ho	urs of Operation	8,760	hr/yr
	Peak Heat Input	5	MMBtu/hr

Peak Fuel Oil Feed Rate	36	gal/hr	1				
Pollutant	PTE En	nissions	Emission Factor				
	lb/hr	tpy	value	units	reference		
PM/PM ₁₀ /PM _{2.5}	0.12	0.520	3.3	lb/1000 gal	AP-42, Table 1.3-1, boiler<100 mmBtu, distillate oil		
Sulfur Dioxide (low-sulfur) ⁽¹⁾	7.56E-03	0.033	0.21	lb/1000 gal	AP-42, Table 1.3-1, boiler<100 mmBtu, distillate oil		
Nitrogen Oxides (NOx)	0.72	3.15	20	lb/1000 gal	AP-42, Table 1.3-1, boiler<100 mmBtu, distillate oil		
Volatile Organic Compounds (VOC)	9.07E-03	0.040	0.252	lb/1000 gal	AP-42, Table 1.3-1, boiler<100 mmBtu, distillate oil		
Carbon Monoxide (CO)	0.18	0.79	5	lb/1000 gal	AP-42 Table 13.5-1		
Lead (Pb)	5.44E-05	2.38E-04	1.5E-03	lb/1000 gal	AP-42 Table 1.3-11		
Carbon Dioxide (CO ₂)	802.80	3516.26	22,300	lb/1000 gal	AP-42 Table 1.3-12		
Nitrous Oxide (N ₂ O)	0.01	0.04	0.23	lb/1000 gal	AP-42 Table 1.3-8		
Methane (CH ₄)				1	ANNY NATIONAL AND TO		

(1) 142*wt%S, S=0.0015%

GREENHOUSE GAS POLLUTANTS

Compound	PTE Emission (tpy)	PTE Emission (MT/yr)	Global Warming Potenial	CO₂e* (MT/yr)
Carbon Dioxide (CO ₂)	3.52E+03	3,197	1	3,197
Methane (CH ₄)			25	
Nitrous Oxide (N ₂ O)	3.63E-02	3.30E-02	298	10
TOTAL			page 1978	3,206

Biogas

8,760 8,772	hr/yr scfh	٦		Emission Factor
lb/hr	tpy	value	units	reference
0.04	0.163	7.45E-03	lb/mmBtu	AP-42, Table 1.4-2
0.74	3.237	84.25	lb/mmscf	AP-42, Table 5.3-1. Updated 1/95
0.49	2.147	9.80E-02	lb/mmBtu	AP-42, Table 1.4-1
0.03	0.118	5.39E-03	lb/mmBtu	AP-42, Table 1.4-2
0.41	1.804	8.24E-02	lb/mmBtu	AP-42, Table 1.4-1
2.45E-06	0.000	4.90E-07	lb/mmBtu	AP-42 Table 1.4-2
588	2,576	118	lb/mmBtu	AP-42, Table 1.4-2
0.01	0.047	2.16E-03	lb/mmBtu	AP-42, Table 1.4-2
0.01	0.049	2.25E-03	lb/mmBtu	AP-42, Table 1.4-2
	8,760 8,772 PTE Em 0.04 0.74 0.49 0.03 0.41 2.45E-06 588 0.01	8,760 hr/yr 8,772 scfh PTE Emissions Ib/hr tpy 0.04 0.163 0.74 3.237 0.49 2.147 0.03 0.118 0.41 1.804 2.45E-06 0.000 588 2,576 0.01 0.047	8,760 hr/yr 8,772 scfh PTE Emissions Ib/hr tpy value 0.04 0.163 7.45E-03 0.74 3.237 84.25 0.49 2.147 9.80E-02 0.03 0.118 5.39E-03 0.41 1.804 8.24E-02 2.45E-06 0.000 4.90E-07 588 2,576 118 0.01 0.047 2.16E-03	8,760 hr/yr 8,772 scfh PTE Emissions lb/hr tpy value units 0.04 0.163 7.45E-03 lb/mmBtu 0.74 3.237 84.25 lb/mmBtu 0.49 2.147 9.80E-02 lb/mmBtu 0.03 0.118 5.39E-03 lb/mmBtu 0.41 1.804 8.24E-02 lb/mmBtu 2.45E-06 0.000 4.90E-07 lb/mmBtu 588 2,576 118 lb/mmBtu 0.01 0.047 2.16E-03 lb/mmBtu

(1) 142*wt%S, S=0.0015%

GREENHOUSE GAS POLLUTANTS

Compound	PTE Emission (tpy)	PTE Emission (MT/yr)	Global Warming Potenial	CO ₂ e* (MT/yr)
Carbon Dioxide (CO ₂)	2.58E+03	2,342	1	2,342
Methane (CH ₄)	4.94E-02	4.49E-02	25	1
Nitrous Oxide (N ₂ O)	4.72E-02	4.29E-02	298	13
TOTAL				2,356

Appendix A GDR Power NSRP-03-GDRP-19 Page 17 of 25

Temporary Boiler Burning Fuel Oil or Biogas

Fuel Oil factors from AP-42 Section 1.3 Biogas factors from AP-42 Section 1.4 Only included HAP/TAPs that are also emitted from flare because it is the dominent source.

Design Parameters

Peak Heat Input	5	MMBtu/hr
Peak Fuel Oil Feed Rate	36	gal/hr
Potential Hours of Operation	8,760	hr/yr

Boiler Potential Toxic Air Pollutant Emissions with Annual Averaging Periods

		Fuel Oil		Biogas				
CAS Nbr.	Pollutant	E. F. (Ib/1000 gal or Ib/mmBtu for metals)	Emission Rate (Ib/hr)	Emission Factor (Ib/mmscf)	Emission Factor (Ib/mmBtu)*	Emission Rate (Ib/hr)	Max Emission Rate (lb/hr)	Permitted Emission (tpy)
7440382	Arsenic	4.E-06	2.00E-05	2.00E-04	1.96E-07	9.80E-07	2.00E-05	8.76E-05
71432	Benzene	2.14E-04	7.70E-06	2.10E-03	2.06E-06	1.03E-05	1.03E-05	4.51E-05
7440417	Beryllium	3.E-06	1.50E-05	1.20E-05	1.18E-08	5.88E-08	1.50E-05	6.57E-05
7440439	Cadmium	3.E-06	1.50E-05	1.10E-03	1.08E-06	5.39E-06	1.50E-05	6.57E-05
7440473	Chromium	3.E-06	1.50E-05	1.40E-03	1.37E-06	6.86E-06	1.50E-05	6.57E-05
106467	1,4-Dichlorobenzene (para-)			1.20E-03	1.18E-06	5.88E-06	5.88E-06	2.58E-05
50000	Formaldehyde	3.30E-02	1.19E-03	7.50E-02	7.35E-05	3.68E-04	1.19E-03	5.20E-03
91203	Naphthalene	1.13E-03	4.07E-05	6.10E-04	5.98E-07	2.99E-06	4.07E-05	1.78E-04
7440020	Nickel	3.E-06	1.50E-05	2.10E-03	2.06E-06	1.03E-05	1.50E-05	6.57E-05
56495	3-Methylcholanthrene			1.80E-06	1.76E-09	8.82E-09	8.82E-09	3.86E-08
57977	7,12-Dimethylbenz(a)anthracene			1.60E-05	1.57E-08	7.84E-08	7.84E-08	3.44E-07
56553	Benz(a)anthracene	4.01E-06	1.44E-07	1.80E-06	1.76E-09	8.82E-09	1.44E-07	6.32E-07
205992	Benzo(b,k)fluoranthene	1.48E-06	5.33E-08	1.80E-06	1.76E-09	8.82E-09	5.33E-08	2.33E-07
53703	Dibenz(a,h)anthracene	1.67E-06	6.01E-08	1.20E-06	1.18E-09	5.88E-09	6.01E-08	2.63E-07
218019	Chrysene	2.38E-06	8.57E-08	1.80E-06	1.76E-09	8.82E-09	8.57E-08	3.75E-07
193395	Indenol(1,2,3-cd)pyrene	2.14E-06	7.70E-08	1.80E-06	1.76E-09	8.82E-09	7.70E-08	3.37E-07
50328	Benzo(a)pyrene			1.20E-06	1.18E-09	5.88E-09	5.88E-09	2.58E-08

* Divide lb/mmscf factor by 1020 Btu/scf as per AP-42 Tables 1.4-3 & 4.

Boiler Potential Toxic Air Pollutant Emissions with 24-hour Averaging Periods

		Fue	Fuel Oil		Biogas			
CAS Nbr.	Pollutant	E. F. (lb/1000 gal or lb/mmBtu for metals)	Emission Rates (Ib/hr)	Emission Factor (Ib/mmscf)	Emission Factor (Ib/mmBtu)*	Emission Rates (Ib/hr)	Max. Emission Rate (Ib/hr)	Permitted Emission (tpy)
7440484	Cobalt			8.40E-05	8.24E-08	4.12E-07	4.12E-07	1.80E-06
7783064	Hydrogen Sulfide (H2S)							1.002.00
7439965	Manganese	6.E-06	3.00E-05	3.80E-04	3.73E-07	1.86E-06	3.00E-05	1.31E-04
7439976	Mercury	3.E-06	1.50E-05	2.60E-04	2.55E-07	1.27E-06	1.50E-05	6.57E-05
110543	n-Hexane			1.80E+00	1.76E-03	8.82E-03	8.82E-03	3.86E-02
	1,1,1-Trichloroethane	2.36E-04	8.50E-06				8.50E-06	3.72E-05
7782492	Selenium			2.40E-05	2.35E-08	1.18E-07	1.18E-07	5.15E-07
108883	Toluene			3.40E-03	3.33E-06	1.67E-05	1.67E-05	7.30E-05
Divide Ib/mms	cf factor by 1020 Btu/scf as per AP-42	Tables 1.4-3 & 4.					HAPS (tpy)	4.48E-02

Boiler Potential Toxic Air Pollutant Emissions with 1-hour Averaging Periods

CAS Nbr.	Pollutant	E. F. (lb/1000 gal or lb/mmBtu for metals)	Emission Rates (Ib/hr)		Emission Rates (Ib/hr)	Max. Emission Rate (Ib/hr)
7440484	Carbon Monoxide		1.80E-01	1	1.80E+00	1.80E+00
10102440	Nitrogen Dioxide		7.20E-01		2.15E+00	1.002.00
74460905	Sulfur Dioxide		7.56E-03		3.24E+00	3.24E+00
7440508	7440508 Copper 6.E-06	6.E-06	3.00E-05		0.242.00	3.00E-05

GDR Power NSRP-03-GDRP-19

Page 18 of 25

PERMANENT BOILER

Burns pipeline natural gas, heat content = 1020 Btu/scf 6.3 MMBtu/hr Peak Heat Input

nput	6.3	WWB(n)
1 mm	0 700	hal -

Potential Hours of Operation Peak natural gas feed rate

8,760 hr/yr 6,176 scfh

Pollutant	PTE Emissions		Emission Factor			
	lb/hr	tpy	value	units	reference	
PM/PM ₁₀ /PM _{2.5}	0.05	0.206	7.45E-03	lb/mmBtu	AP-42, Table 1.4-2	
Sulfur Dioxide	0.0037	0.016	0.60	lb/mmscf	AP-42, Table 1.4-2	
Nitrogen Oxides (NOx)	0.62	2.705	9.80E-02	lb/mmBtu	AP-42, Table 1.4-1	
Volatile Organic Compounds (VOC)	0.03	0.149	5.39E-03	lb/mmBtu	AP-42, Table 1.4-2	
Carbon Monoxide (CO)	0.52	2.272	8.24E-02	lb/mmBtu	AP-42, Table 1.4-1	
Lead (Pb)	0.0005	0.002	8.07E-05	lb/mmBtu	AP-42 Table 1.4-2	
Carbon Dioxide (CO ₂)	741	3,246	118	lb/mmBtu	AP-42, Table 1.4-2	
Nitrous Oxide (N ₂ O)	0.01	0.060	2.16E-03	lb/mmBtu	AP-42, Table 1.4-2	
Methane (CH ₄)	0.01	0.062	2.25E-03	lb/mmBtu	AP-42, Table 1.4-2	

GREENHOUSE GAS POLLUTANTS

Compound	PTE Emission (tpy)	PTE Emission (MT/yr)	Global Warming Potenial	CO₂e* (MT/yr)
Carbon Dioxide (CO ₂)	3,246	2,951	1	2,951
Methane (CH ₄)	6.22E-02	5.66E-02	25	1
Nitrous Oxide (N ₂ O)	5.95E-02	5.41E-02	298	16
TOTAL				2,969

NATURAL GAS BOILER - HAPs & TAPs

HAP and TAP Emission factor source: AP-42 Tables 1.4-3 & -4 (07/98).

Potential Toxic Air Pollutant Emissions with Annual Averaging Periods

CAS Nbr.	Pollutant	Emission Factor (Ib/mmscf)	Emission Factor (Ib/mmBtu)*	Emission Rates (Ib/hr)	PTE Emission (lb/yr)	HAPs (tpy)
7440382	Arsenic	2.00E-04	1.96E-07	1.24E-06	1.72E-03	8.59E-07
71432	Benzene	2.10E-03	2.06E-06	1.30E-05	1.80E-02	9.02E-06
7440417	Beryllium	1.20E-05	1.18E-08	7.41E-08	1.03E-04	5.15E-08
7440439	Cadmium	1.10E-03	1.08E-06	6.79E-06	9.45E-03	4.72E-06
7440473	Chromium	1.40E-03	1.37E-06	8.65E-06	1.20E-02	6.01E-06
106467	1,4-Dichlorobenzene (para-)	1.20E-03	1.18E-06	7.41E-06	1.03E-02	5.15E-06
50000	Formaldehyde	7.50E-02	7.35E-05	4.63E-04	6.44E-01	3.22E-04
91203	Naphthalene	6.10E-04	5.98E-07	3.77E-06	5.24E-03	2.62E-06
7440020	Nickel	2.10E-03	2.06E-06	1.30E-05	1.80E-02	9.02E-06
56495	3-Methylcholanthrene	1.80E-06	1.76E-09	1.11E-08	1.55E-05	
57977	7,12-Dimethylbenz(a)anthracer	1.60E-05	1.57E-08	9.88E-08	1.37E-04	
56553	Benz(a)anthracene	1.80E-06	1.76E-09	1.11E-08	1.55E-05	
205992	Benzo(b,k)fluoranthene	1.80E-06	1.76E-09	1.11E-08	1.55E-05	
53703	Dibenz(a,h)anthracene	1.20E-06	1.18E-09	7.41E-09	1.03E-05	
218019	Chrysene	1.80E-06	1.76E-09	1.11E-08	1.55E-05	
193395	Indenol(1,2,3-cd)pyrene	1.80E-06	1.76E-09	1.11E-08	1.55E-05	
50328	Benzo(a)pyrene	1.20E-06	1.18E-09	7.41E-09	1.03E-05	

* Divide Ib/mmscf factor by 1020 Btu/scf as per AP-42 Tables 1.4-3 & 4.

Potential Toxic Air Pollutant Emissions with 24-hour Averaging Periods

CAS Nbr.	Pollutant	Emission Factor (Ib/mmscf)	Emission Factor (Ib/mmBtu)*	Emission Rates (Ib/hr)	PTE Emission (Ib/yr)	HAPs (tpy)
7440484	Cobalt	8.40E-05	8.24E-08	5.19E-07	7.21E-04	3.61E-07
7783064	Hydrogen Sulfide (H2S)					
7439965	Manganese	3.80E-04	3.73E-07	2.35E-06	3.26E-03	1.63E-06
7439976	Mercury	2.60E-04	2.55E-07	1.61E-06	2.23E-03	1.12E-06
110543	n-Hexane	1.80E+00	1.76E-03	1.11E-02	1.55E+01	7.73E-03
7782492	Selenium	2.40E-05	2.35E-08	1.48E-07	2.06E-04	1.03E-07
108883	Toluene	3.40E-03	3.33E-06	2.10E-05	2.92E-02	1.46E-05
Divide Ib/mmscf factor by 1020 Btu/s	cf as per AP-42 Tables 1.4-3 & 4.				HAPS (tpy)	8.11E-03

* Divide Ib/mmscf factor by 1020 Btu/scf as per AP-42 Tables 1.4-3 & 4.

HAPS (tpy)

Potential Toxic Air Pollutant Emissions with 1-hour Averaging Periods

CAS Nbr.	Pollutant	Emission Factor (Ib/mmscf)	Emission Factor (Ib/mmBtu)*	Emission Rates (Ib/hr)	PTE Emission (lb/yr)	HAPs (tpy)
7440484	Carbon Monoxide			0.52	2.27	
10102440	Nitrogen Dioxide			0.62	2.71	
74460905	Sulfur Dioxide			0.00	0.02	

* Divide Ib/mmscf factor by 1020 Btu/scf as per AP-42 Tables 1.4-3 & 4.

Appendix A GDR Power NSRP-03-GDRP-19 Page 19 of 25 Backup Generator

	34.5 h	orsepower		
Pump upod to pu	warding stor blower is the			
	ower digester blower in the			
event of a power	outage. Tested monthly.	100	Hours of Operation	Testing and during power
			non-emergency	outages
PM/F	PM10/PM2.5			
	Emission Factor:	2.20E-03		AP-42, Section 3.3, Table 3.3-1
	Emissions:	3.80E-03	tons/year	
		0.08	lb/hr	
Sulfur	Dioxide:			
	Emission Factor:	2.05E-03	lb/hp-hr	AP-42, Section 3.3, Table 3.3-1
	Emissions:	3.54E-03	tons/year	
		0.07	lb/hr	
Nitrog	en Oxides (NOx)			
	Emission Factor:	3.10E-02	lb/hp-hr	AP-42, Section 3.3, Table 3.3-1
	Emissions:		tons/year	
			lb/hr	
Volati	le Organic Compounds (VOC) - To	tal Organic Compound	S	
	Emission Factor:	2.51E-03		AP-42, Section 3.3, Table 3.3-1
	Emissions:		tons/year	
Carbo	on Monoxide (CO)			
	Emission Factor:	6.68E-03	lb/hp-hr	AP-42, Section 3.3, Table 3.3-1
	Emissions:		tons/year	74 42, Occupit 0.0, Table 0.0-1
Total	HAPS		lono, year	
	Emission Factor:	6 45E-03	lb/MMBtu	AP-42, Section 3.3, Table 3.3-2
		4.52E-05		
	Emissions:		tons/year	
		1.56E-03		
Lead	(Pb)	1.00E=03		
	Emission Factor:	4.90E-07	lb/MMBtu	AP-42, Section 3.3, Table 3.3-2
		3.43E-09		AF-42, Section 3.3, Table 3.3-2
	Emissions:		tons/year	
		1.18E-07		
		1.18E-07	ib/nr	

Appendix A	
GDR Power	
NSRP-03-GDRP-19	
Page 20 of 25	

Boiler Potential Toxic Air Pollutant Emissions with Annual Averaging Periods Flare | Boiler

		Fiare	Boller					
CAS Nbr.	Pollutant	Permitted Emission Rate (Ib/yr)	Permitted Emission Rate (Ib/yr)	Total Emission (Ib/yr)	De-Minimis (Ib/yr)	SQER (Ib/yr)	> Deminimis (y/n)	>SQER (y/n)
7440382	Arsenic	3.67E-02	1.75E-01	2.12E-01	0.00291	0.0581	У	У
71432	Benzene	3.86E-01	9.02E-02	4.76E-01	0.331	6.62	ý	n
7440417	Beryllium	2.20E-03	1.31E-01	1.34E-01	0.004	0.08	y	У
7440439	Cadmium	2.02E-01	1.31E-01	3.33E-01	0.00228	0.0457	y	У
7440473	Chromium	2.57E-01	1.31E-01	3.88E-01	6.40E-05	1.28E-03	y	Y
106467	1,4-Dichlorobenzene (para-)	2.20E-01	5.15E-02	2.72E-01	0.872	17.4	n	n
50000	Formaldehyde	1.38E+01	1.04E+01	2.42E+01	1.6	32	y	n
91203	Naphthalene	1.12E-01	3.56E-01	4.68E-01	0.282	5.64	y	n
7440020	Nickel	3.86E-01	1.31E-01	5.17E-01	0.0403	0.806	y	n
56495	3-Methylcholanthrene	3.30E-04	7.73E-05	4.08E-04	0.00153	0.0305	n	n
57977	7,12-Dimethylbenz(a)anthracene	2.94E-03	6.87E-04	3.62E-03	0.000135	0.00271	У	У
56553	Benz(a)anthracene	3.30E-04	1.26E-03	1.60E-03	0.0872	1.74	n	n
205992	Benzo(b,k)fluoranthene	3.30E-04	4.67E-04	7.97E-04	0.0872	1.74	n	n
53703	Dibenz(a,h)anthracene	2.20E-04	5.27E-04	7.47E-04	0.00799	0.16	n	n
218019	Chrysene	3.30E-04	7.51E-04	1.08E-03	0.872	17.4	n	n
193395	Indenol(1,2,3-cd)pyrene	3.30E-04	6.75E-04	1.01E-03	0.0872	1.74	n	n
50328	Benzo(a)pyrene	1.10E-07	5.15E-05	5.16E-05	0.00872	0.174	n	n

Boiler Potential Toxic Air Pollutant Emissions with 24-hour Averaging Periods

		Flare	Boiler					
CAS Nbr.	Pollutant	Permitted Emission Rate (Ib/24-hr)	Permitted Emission Rate (Ib/24-hr)	Total Emission (Ib/24-hr)	De-Minimis (Ib/24-hr)	SQER (lb/24-hr)	> Deminimis (y/n)	>SQER (y/n)
7440484	Cobalt	4.22E-05	4.94E-09	4.23E-05	0.000657	0.013	n	n
7783064	Hydrogen Sulfide (H2S)	7.94E-01		7.94E-01	0.0131	0.263	у	у
7439965	Manganese	1.91E-04	3.60E-07	1.91E-04	0.000263	0.00526	n	n
7439976	Mercury	1.31E-04	1.80E-07	1.31E-04	0.000591	0.0118	n	n
110543	n-Hexane	9.05E-01	1.06E-04	9.05E-01	4.6	92	n	n
	1,1,1-Trichloroethane		1.02E-07	1.02E-07	6.57	131	n	n
7782492	Selenium	1.21E-05	1.41E-09	1.21E-05	0.131	2.63	n	n
108883	Toluene	1.71E-03	2.00E-07	1.71E-03	32.9	657	n	n

Boiler Potential Toxic Air Pollutant Emissions with 1-hour Averaging Periods

	Flare	Boiler	PTE Emissions						
Pollutant	Permitted Emission Rate (lb/hr)	Permitted Emission Rate (Ib/hr)	Total Emission (Ib/hr)	De-Minimis (Ib/hr)	SQER (lb/hr)	> Deminimis (y/n)	>SQER (y/n)		
Carbon Monoxide	7.91	0.18	8.09	1.14	50.4	У	n		
Nitrogen Dioxide	1.45	0.72	2.17	0.457	1.03	y	У		
Sulfur Dioxide	3.16	0.0076	3.17	0.457	1.45	y	У		
Copper		3.00E-05	3.00E-05	0.011	0.219	n	n		
	Carbon Monoxide Nitrogen Dioxide Sulfur Dioxide	Pollutant Permitted Emission Rate (lb/hr) Carbon Monoxide 7.91 Nitrogen Dioxide 1.45 Sulfur Dioxide 3.16	Pollutant Permitted Emission Rate (Ib/hr) Permitted Emission Rate (Ib/hr) Carbon Monoxide 7.91 0.18 Nitrogen Dioxide 1.45 0.72 Sulfur Dioxide 3.16 0.0076	PollutantPermitted Emission Rate (lb/hr)Permitted Emission Rate (lb/hr)Total Emission (lb/hr)Carbon Monoxide7.910.188.09Nitrogen Dioxide1.450.722.17Sulfur Dioxide3.160.00763.17	PollutantPermitted Emission Rate (lb/hr)Permitted Emission Rate (lb/hr)Total Emission (lb/hr)De-Minimis (lb/hr)Carbon Monoxide7.910.188.091.14Nitrogen Dioxide1.450.722.170.457Sulfur Dioxide3.160.00763.170.457	PollutantPermitted Emission Rate (lb/hr)Permitted Emission Rate (lb/hr)Total Emission (lb/hr)De-Minimis 	PollutantPermitted Emission Rate (lb/hr)Permitted Emission Rate (lb/hr)Total Emission (lb/hr)De-Minimis (lb/hr)SQER (lb/hr)> Deminimis (y/n)Carbon Monoxide7.910.188.091.1450.4yNitrogen Dioxide1.450.722.170.4571.03ySulfur Dioxide3.160.00763.170.4571.45y		

tBACT and tBACT and tBACT and tBACT and tBACT tBACT tBACT and tBACT

tBACT and

PTE Emissions

tBACT tBACT and tBACT and Appendix A GDR Power NSRP-03-GDRP-19 Page 21 of 25

AERSCREEN Modeling of Flare and Boiler Each source modeled seperately and the results added

Flare Modeled Emission Result	13.06 ug/m3 per lb/hr
Boiler Modeled Emission Result	114.6 ug/m3 per lb/hr

	Flare		Boiler						
Pollutant	Emission Rate (lb/hr)	Modeled Impact (ug/m3)	Emission Rate (lb/hr)	Modeled Impact (ug/m3)	Background (ug/m3)	Total (ug/m3)	Limit (ug/m3)		
PM10/PM2.5 (uncontrolled):					(-5	(agrino)	(ug/mo)		
24-hour NAAQS (PM ₁₀)	0.159	1.25	0.12	8.17	54.0	63.42	150	NAAQS, 2nd highest per year	go
24-hour NAAQS (PM _{2.5})	0.159	1.25	0.12	8.17	25.0	34.42	35	NAAQS, mean of maximum 8th highest	go
Annual (PM _{2.5})	0.159	0.21	0.12	1.36	6.60	8.17	12	NAAQS, not to be exceeded	go
Sulfur Dioxide:				11					- 90
1-hour NAAQS, Wash. Std.	3.159	41.26	0.74	84.69	4.97	130.92	196	NAAQS, mean of maximum 4th highest	go
1-hour Washington TAP	3.159	41.26	0.74	84.69		125.95	660	Washington Toxic, not to be exceeded	go
3-hour NAAQS, Wash. Std.	3.159	41.26	0.74	84.69	3.92	129.87	1300	2nd highest in year	go
24-hour Wash. Std.	3.159	24.76	0.74	50.82	1.83	77.40	365	2nd highest in year	go
Annual	3.159	4.13	0.74	8.47	0.52	13.12	52	Not to be exceeded	go
Nitrogen Oxides (NOx)									-190
1-hour, NAAQS, Wash. Std.	1.45	18.98	0.72	82.51	22.60	124.09	188	NAAQS, mean of maximum 8th highest	- go
Annual, NAAQS, Wash. Std.	1.45	1.90	0.72	8.25	3.77	13.92	100	Not to be exceeded	go
Carbon Monoxide (CO)									-150
1-hour, NAAQS, Wash. Std.	7.91	1.03E+02	0.41	47.19		150.48	40,000	NAAQS, 2nd highest per year	go
8-hour, NAAQS, Wash. Std.	7.91	9.30E+01	0.41	47.19		140.15	10,000	NAAQS, 2nd highest per year	go
Arsenic	4.19E-06	5.47E-06	2.00E-05	2.29E-04		2.35E-04	0.116	Washington Toxic, not to be exceeded	go
Cadmium	2.31E-05	3.01E-05	1.50E-05	1.72E-04		2.02E-04	2.38E-04	Washington Toxic, not to be exceeded	go
Chromium	2.93E-05	3.83E-05	1.50E-05	1.72E-04		2.10E-04	1.28E-05	Washington Toxic, not to be exceeded	lov
Hydrogen Sulfide	0.03	0.26				0.26	2.00	Washington Toxic, not to be exceeded	go
7,12-Dimethylbenz(a)anthracene	3.35E-07	4.38E-07	7.84E-08	8.99E-07		1.34E-06	1.41E-05	Washington Toxic, not to be exceeded	go
AERSCREEN Factors									

Convert 1-hour to 3-hour: Convert 1-hour to 8-hour:

Convert 1-hour to 8-hour:0.90Convert 1-hour to 24-hour:0.60Convert 1-hour to Annual:0.10

1.00

GRD Power NSRP-03-GDRP-19 Page 22 of 25

GDR POWER

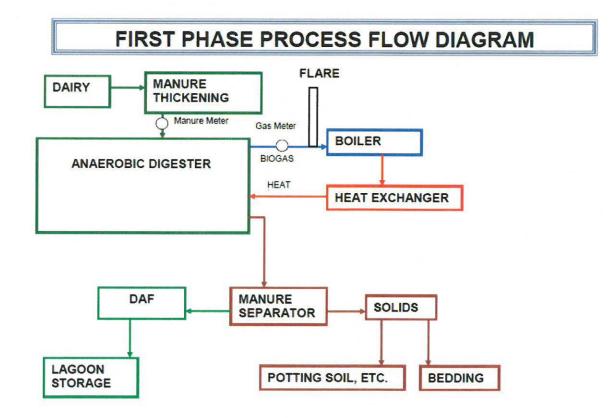


Figure 1. The anaerobic digester process for the GDR Power system (Stage 1)

GRD Power NSRP-03-GDRP-19 Page 23 of 25

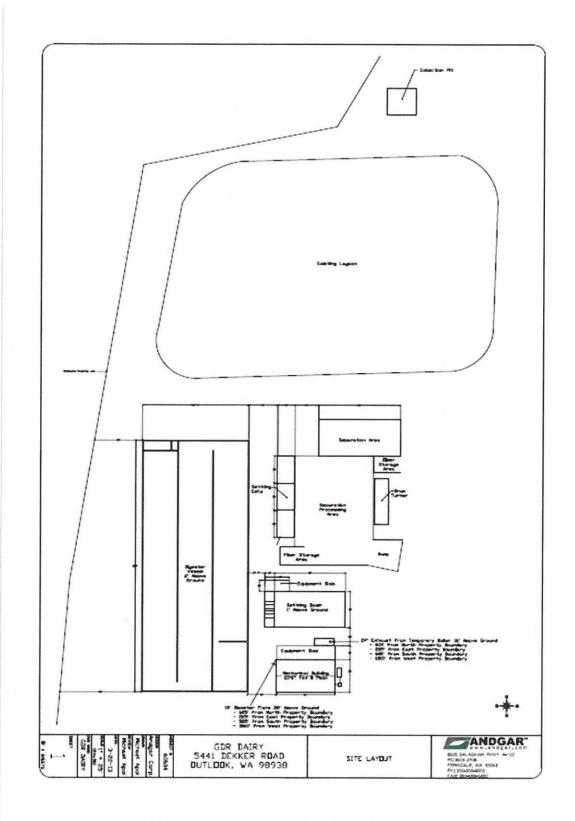


Figure 2. GDR Power site layout (Stage 1)

GRD Power NSRP-03-GDRP-19 Page 24 of 25

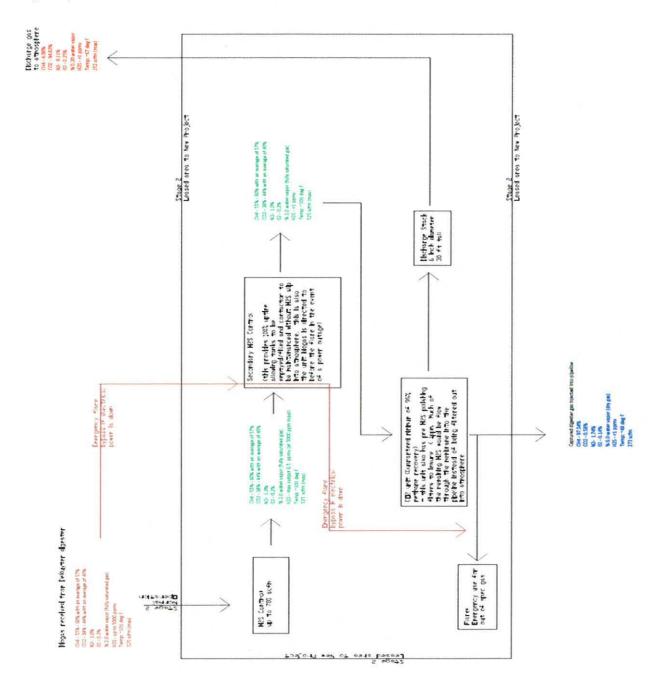


Figure 3. Future process flow diagram for Augean RNG LLC (Stage 2). This figure is used to show the biogas coming from GDR Power (Stage 1)

GRD Power NSRP-03-GDRP-19 Page **25** of **25**



Figure 4. Location and the overall layout of the project for Stage 1 (GDR Power) and eventually Stage 2 (Augean RNG LLC)