Optionality, Flexibility & Innovation: Pathways for Deep Decarbonization in California

Melanie Kenderdine
Principal, Energy Futures Initiative
Sacramento, CA
August 15, 2019

Sectoral Emissions in California, 2016

Identified Emissions Reduction Potential of Sector-Specific Pathways for Meeting the 2030 Targets

Sectoral GHG Emissions Reductions Achieved by 2030 From Top Two Technology Pathways*

Challenges with Integrating Intermittent Renewables

Over the course of a year large-scale dependence on both wind and solar will result in significant periods requiring very large-scale back-up options

Seasonal Variation in Solar & Wind

Industry: Multiple Subsectors, Combustion and Non-Combustion Emissions Require a Range of Pathways

Saline Formations

Expanded 45Q Tax Credit for Carbon Capture, Utilization and Storage (CCUS), AOTA

Biogas/Renewable Gas for Decarbonizing Agriculture Sector

RNG Generation Potential in California (Mcf CH₄/year)

Biogas Capture Pathway and 2030 Target (MMTCO₂e)

Utilizing agricultural residues and manure as biogas feedstocks for RNG could provide up to 46.6 Bcf/year of carbon-neutral gas by 2030...Biogas capture also could provide emissions reductions and economic benefits to the Agriculture sectorDiverting methane into a useable product in the form of RNG can have a significant net impact on CO₂e levels—potentially reducing the Agriculture sector's emissions 13 percent by 2030.

Lithium, Cobalt, Nickel Production/Reserves

Meeting the Clean Energy Ministerial's target of 30 million electric vehicle sales by 2030 would require 314 kt/yr. of cobalt, almost three times the 2017 level for all uses. At those rates, reserves would last 23 years.

Source: USGS, 2019

Carbonbrief.org

Lithium Production/Reserves (metric tons)	Mine production		Reserves ⁶
The Mark Obstance	2017	2010	05.000
United States	W	W	35,000
Argentina	٠,٠٠٠	2,	2 000,000
Australia	40,000	51,000	72,700,000
(Returned)			
Chile	14,200	16,000	8,000,000
China	0.000	0.000	1,000,000
Portugal	800	800	60,000
Namibia	000	500	NA
Zimbabwe	900		
	800	1,600	70,000
World total (rounded)	869,000	885,000	14,000,000
Cobalt Production/Reserves (matrix tons)			57
CODAIL Production/	2017	2018°	Reserves ⁷
	640	500	
Australia	5.030	4 700	1,200,000
Canaga	3 870	3 800	200,000
China	3,100	3,100	00,000
Congo (Kinshasa)	73,000 5,000	90,000 4,900	3,400,000
Madagascar	3,500	3,500	140,000
Morocco	2,200	2,300	17,000
Papua New Guinea	3,310	3,200	56,000
Philippines	4,600	4,600	280,000
Russia	5,900	5,900	250,000
South Africa	2,300	2,200	24,000
Other countries	7,650		640,000
World total (rounded)	120,000	140,000	6,900,000
Nickel (metric tons)	Mine	production	Reserves ⁸
	2017	2018°	110001100
United States	22.100	19.000	110,000
Brazil	78,600	80,000	11,000,000
Garage	214.000	160,000	11,000,000
China	103,000	110,000	2,800,000
Colombia	45,500	43,000	440,000
Cuba Finland	52,800	53,000 46,000	5,500,000 NA
Filliand	53,700	49,000	INA
Indonesia	345,000	560,000	21,000,000
Madagascar	215 000	210 000	1,000,000
New Čaledonia ¹⁰ Philippines	215,000 366,000	210,000 340,000	4,800,000
Russia	214,000	210,000	7,600,000
South Africa	48,400	44,000	3,700,000
Other countries	146,000	180,000	6,500,000
World total (rounded)	2,160,000	2,300,000	89,000,000

Tesla's global supply manager for battery metals, told a closed-door Washington conference of miners, regulators and lawmakers that the automaker sees a shortage of key **EV** minerals coming in the near future...Tesla will continue to focus more on nickel, part of a plan by **Chief Executive Elon Musk to use** less cobalt in battery cathodes.

Electrek, May, 2019

0

Breakthrough Technology Portfolio, Post-2030

Smart Cities

Seasonal Storage

Building Performance Technology

Floating Offshore Wind

Clean Cement

Advanced Photovoltaics

Hydrogen from Electrolysis

Bioenergy

Advanced Nuclear

Li-ion Battery Recycling

Direct Air Capture

Seasonal Storage

Electolyzer + H2 Storage (Power2Gas) + FC/Generator

Seasonal Thermal

High Temp Thermal (CSP)

Building or Load shifting

Pumped Hydro

CAES

Flow Battery

Lead Acid Battery

Li-lon Battery

Seasonal Energy

Storage Options

Flywheels

Direct Air Capture, Large Scale Carbon Management

CAPTURE

Dilute Sources

Concentrated Sources

UTILIZATION

Products or Fuels

Enhanced Recovery

Biological

Geologic

11

milliseconds seconds

Regulation

Supercapacitors

SMES

minutes

Load Following

es

hours

days

Energy Shifting

months

Source: EFI Analysis, NREL