Net zero emissions energy systems

Nathan S. Lewis

Division of Chemistry and Chemical Engineering California Institute of Technology Pasadena, CA 91125 nslewis@Caltech.edu

August 15, 2019

Some modern energy services will be especially challenging to decarbonize

Aviation and long-distance transport

Industrial materials

Highly-reliable electricity

How much "difficult" CO_2 are we talking about?

Alternative Transportation Fuels

Bio-fuels value proposition unfavorable...

- Land use concerns of biofuels
 - Primary: "food for fuel"
 - Secondary: re-purpose more land for more food
 - Tilling releases trapped soil carbon, requires 50 500 years to "pay back"
- Advanced (cellulosic) biofuel technology largely stalled
 - "Recalcitrance" of cellulose
 - Goal: synthetic biology to selectively produce bio-butanol or actual diesel fuel in either plants or algae
 - Algae expensive: "farming in the desert"

A "biorefinery": renewable fuels and chemicals

Carbon-free options for liquid fuels with high energy density

Costs of carbon-free hydrogen are high relative to fossil fuels

Structural Materials for Developed Civilization

- Per capita demand for cement, steel relatively constant (or increasing)
- Cement: $CaCO_3 \rightarrow CaO + CO_2$
- Steel: CO in blast furnace; grey cast iron: 4% C; up to 2% C for strength

Roughly 8% of global CO_2 emissions is related to the manufacture of cement (~2.6 Gt CO_2 in 2014).

Roughly 6% of global CO_2 emissions is related to the manufacture of iron and steel (~2 Gt CO_2 in 2014).

Alternative processes

And/or Carbon capture and storage (CCS)

Highly-reliable electricity (assuming substantial but variable and uncertain renewable energy)

Davis et al. Science, 2018

...will require some combination of flexible generation, demand management, and energy storage

Davis et al. Science, 2018

Temporal variability of wind and solar resources and power demand (CONUS)

14

Unmet demand as a function of resource mix, overcapacity and energy storage

Shaner et al., E&ES (2018)

Unmet demand as a function of resource mix, overcapacity and energy storage

Shaner et al., E&ES (2018)

Given these gaps are infrequent, utilization rate of back-up resources will be low—so we either need non-emitting electricity sources <u>with low fixed costs</u> or <u>flexibility to</u> <u>meet other demands</u> when electricity is not needed

Given low capacity factors involved, integrating technologies may be critical

Davis et al. Science, 2018

Opportunities and Challenges in Energy R&D

Focus on Materials (science, engineering, chemistry, physics...)

- Materials for the built environment
- Materials in extreme environments
- New wind turbines
- Rethinking Solar PV
- Low-cost grid-scale energy storage
- Structural Materials: cement, steel
- Carbon-neutral transportation fuels
- Negative emissions
- Legal/liability
- Geoengineering
- Ocean Chemistry

Take-aways

- Physical and techno-economic characteristics make a net-zero emissions system challenging:
 - Aviation and long-distance transport
 - Industrial materials
 - Highly reliable electricity
- Energy-dense liquid fuel could be:
 - Biofuels
 - Synthesized hydrocarbons (e.g., combining renewable hydrogen and CO₂ captured from the atm)
 - Ammonia
 - Direct solar fuels

- To achieve high reliability in a power sector with a large share of variable, uncertain renewables, need storage or flexible generators that have low fixed costs and/or alternate products.
 - Hydrogen, carbon capture, and/or synthesized hydrocarbons for the transportation sector seem most promising, but currently too expensive

Thank you.

Acknowledgements

Many of these ideas reflect conversations at a meeting hosted by the Aspen Global Change Institute in July of 2016, led by **Steve Davis**, **Ken Caldeira**, and **Nate Lewis**, with participation and contributions from:

Sonia Aggarwal Thomas Bradley Armond Cohen Chris Field Eric Ingersoll Katharine J. Mach Dan Sanchez Jessika Trancik

Other key collaborators on this work: Fengming Xi Zhu Liu Long Cao

Doug Arent

Jack Brouwer

Stephen Doig

Matt Shaner

Chi-Jen Yang

Bryan Hannegan

Paulina Jaramillo

Michael Mastrandrea

Inês L. Azevedo Yet-Ming Chiang Jae Edmonds Bri Mathias Hodge Klaus Lackner Joan Ogden Daniel Sperling Sally M. Benson Christopher Clack Paul Fennell Marty Hoffert Lee Lynd Per Peterson Joseph Stagner