Dairy Emissions Matrix Assumptions

Terminology:

- <u>Biomethane</u>: methane derived from the digestion of organic material that has been upgraded to a level suitable for pipeline injection and applications that can include equipment or vehicular use
- <u>Biogas</u>: digester gas for onsite use that has not been upgraded for pipeline injection
- <u>On-site</u>: emissions or fuel use occurring on the dairy farm¹
- <u>Off-site</u>: emissions or fuel use occurring off the dairy farm
- <u>Local</u>: emissions or fuel use occurring on-site plus emissions or fuel use occurring before gas is injected into a pipeline or electricity is placed on the grid
- <u>Remote</u>: emissions or fuel use occurring after gas is injected into a pipeline or electricity is placed on the grid, including grid electricity use impacts for on-site equipment power

General Methods and Assumptions (Applies to All Scenarios):

- Emissions model: CA GREET 2.0
- Source of values for entry into model: air quality district emission values, manufacturer specifications, Cap-and-Trade Program Livestock Offset Protocol
- Methane 20-year global warming potential: 72^{2,3}
- Assumed dairy size: 5,000 cows⁴
- Dairy type: freestall with flush manure management
- Open lagoon methane emissions (baseline): TBD⁵

Biogas Producing Covered Digester Scenario/Assumptions:

- Emissions calculated on local and remote basis
- Solid-liquid manure separation implemented
- Digester type: double-lined⁶ covered lagoon (no heating or mixing)
- Digester cover leak rate: 5%⁷
- Effluent pond, digester maintenance, and unplanned venting emissions: TBD⁵
- Projects must meet applicable air district's best available control technology (BACT) emission standards
- Peripheral operations use grid electricity⁸

⁷ CARB Livestock Offset Protocol and U.S. EPA determined leak rate for covered lagoons

¹ Includes dairies participating in cluster projects

² Intergovernmental Panel on Climate Change Fourth Assessment Report: Climate Change 2007

³ Same 20-year methane global warming potential as used in the Short-Living Climate Pollutant Reduction Strategy, <u>https://www.arb.ca.gov/cc/shortlived/meetings/03142017/final_slcp_report.pdf</u>

⁴ For comparison, average size of Kern County dairy farm in 2017 was 3,253 head.

https://www.cdfa.ca.gov/dairy/pdf/Annual/2017/2017_Statistics_Annual.pdf

⁵ CARB will determine value based off information from the Livestock Offset Protocol, localized research, industryprovided data, or other publicly available sources.

⁶ Adopted order of California Regional Water Quality Control Board,

https://www.waterboards.ca.gov/rwqcb5/board_decisions/adopted_orders/general_orders/r5-2013-0122.pdf

⁸ CA grid electricity emission factor is 105.15 g/MJ (as utilized in CA GREET model)

On-Site Use Scenario/Assumptions:

- Reciprocating engines
 - Biogas is upgraded to air district and manufacturer's requirements (not pipeline-quality)
 - Efficiency 32.8%⁹

Off-Site Use Scenario/Assumptions

- All off-site use of fuel will be from pipeline-quality biomethane processed from an on-site upgrading unit¹⁰
- Renewable natural gas for fueling
 - Distance from initial pipeline injection to fueling station: 100 miles
- Power plant generation producing electricity fed to grid
 - Facility is a large combined cycle power plant¹¹
- *Renewable hydrogen*¹² for fueling
 - Produced from pipeline biomethane using steam methane reformation
 - Distance from biomethane injection point to reforming facility: TBD¹³
 - Distance hydrogen trucked/pipelined from reforming facility to fueling station: TBD¹³
- *Microturbine* producing electricity fed to the grid
 - o Efficiency 29%^{14,15}
- Fuel cells (solid oxide)¹⁶ producing electricity fed to the grid
 - \circ Efficiency 57%¹⁷
- Transportation emissions comparison baseline (for all pathway options intended for transportation fuel use): heavy-duty diesel trucks¹⁸

content/uploads/2016/07/71000066_Flex_Turbine_GT250S_Spec_Sheet.pdf

⁹ CA GREET 2.0 value

¹⁰ Total upgrading efficiency is a user input value for CA GREET 2.0 and 80% is a common calculated value

¹¹ Large combined cycle power plant is identified as 400MW capacity in CA GREET 2.0

¹² No current pathways available for renewable hydrogen from biomethane

¹³ Centralized upgrading facility location will be mapped to determine distances

¹⁴ Capstone Turbine Corporation, <u>https://www.capstoneturbine.com/products/c65</u>

¹⁵ FlexEnergy (EnerCom, Inc.), <u>https://flexenergy.com/wp-</u>

¹⁶ Expanding the Use of Biogas with Fuel Cell Technologies, June 11, 2012,

https://www.energy.gov/sites/prod/files/2014/03/f11/june2012_biogas_workshop_satyapal.pdf

¹⁷ Higher Heating Value efficiency number from DG scenario, National Energy Technology Laboratory (Department of Energy), <u>https://www.netl.doe.gov/File%20Library/research/coal/energy%20systems/fuel%20cells/Natural-Gas-DG-FC-paper-update-090330a.pdf</u>

¹⁸ Engine size TBD with consultation of subgroup members and CARB transportation/fuel staff