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S-1: Method Performance Analysis 

I. Perimeters 

The accuracy of fire perimeters predicted by Fire Events Data Suite (FEDS, Chen et al. 2022) 
affects the precision of emission estimates. FEDS perimeters are evaluated by comparing 
the final fire sizes to those from CAL FIRE perimeters (https://www.fire.ca.gov/what-we-
do/fire-resource-assessment-program/fire-perimeters) using linear regression. To assess the 
spatial alignment between FEDS and CAL FIRE perimeters, a suite of metrics measure both 
accuracy and overlap: F1 score, Intersection over Union (IoU), user's accuracy, and 
producer's accuracy (Fig. 3). These metrics offer insights into the precision of predictions, 
the extent of agreement between datasets, and the balance between false positives and 
false negatives. 

To assess the factors influencing FEDS performance, IoU values are modeled using a 
Bayesian beta regression model. IoU is prioritized over the F1 score because IoU is more 
sensitive to extreme cases, especially when the true positive area is small. This heightened 
sensitivity to poor spatial matching better identifies predictions with significant errors, 
making IoU a more conservative metric for evaluating overall model performance. Models 
incorporating predictive variables, such as vegetation composition, fire duration, and fire 
size, were compared using leave-one-out cross-validation. Continuous variables were 
centered and standardized by dividing by 2 standard deviations (Gelman, 2008). The model 
with the best predictive performance, as indicated by difference in expected log predictive 
density (ELPD) was selected (Vehtari et al. 2017).  

Since FEDS data is inherently temporal, the accuracy of perimeters was assessed over time 
by comparing them to aerial infrared (IR) perimeters. Aerial data were obtained from the 
National Interagency Fire Center File Transfer Protocol website 
(https://ftp.wildfire.gov/public/incident_specific_data/ ) and manually cleaned and 
standardized. The spatial alignment between FEDS and aerial IR perimeters were evaluated 
using the same suite of metrics—F1 score, IoU, user’s accuracy, and producer’s accuracy. For 
the fires with aerial IR data, relative cumulative growth rates were compared across four 
sources: FEDS perimeters, aerial IR perimeters, growth rates reported in the US EPA 
National Emissions Inventory (NEI, https://www.epa.gov/air-emissions-inventories/get-air-
emissions-data-0), and estimates based on fractional daily counts from Visible Infrared 
Imaging Radiometer Suite (VIIRS). This last approach mirrors recent methods used by CARB 
for the 2024 San Joaquin Valley PM 2.5 SIP (San Joaquin Valley Air Pollution Control District 
2024), which temporally partitioned total bulk emissions from fires across multiple days 
using VIIRS active fire product (AFP). To evaluate the agreement between predicted and 
observed daily fire growth, root mean square error (RMSE) was calculated between aerial IR 
growth rates (treated as reference) and those derived from FEDS, the NEI, and VIIRS-based 
counts. RMSE values were computed separately for each fire and then compared across 

https://www.fire.ca.gov/what-we-do/fire-resource-assessment-program/fire-perimeters
https://www.fire.ca.gov/what-we-do/fire-resource-assessment-program/fire-perimeters
https://ftp.wildfire.gov/public/incident_specific_data/
https://www.epa.gov/air-emissions-inventories/get-air-emissions-data-0
https://www.epa.gov/air-emissions-inventories/get-air-emissions-data-0
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sources using ANOVA on log-transformed RMSE values (transformed to approximate a 
gaussian distribution), along with Tukey’s post-hoc test to determine significant pairwise 
differences.  

II. Emissions 

The primary goal of this inventory is to accurately track wildfire emissions. Unlike fire 
perimeters, which can be directly validated by comparing predictions to ground-truthed 
sources (e.g. CAL FIRE and aerial IR perimeters), emissions are typically measured at 
monitoring stations, which present unique challenges in tracing wildfire smoke back to its 
source. Once smoke rises into the atmosphere, it disperses stochastically, influenced by 
factors such as topography, atmospheric pressure, and wind patterns (Goodrick et al. 2013). 
Additionally, the pollutants measured by monitoring stations can originate from a myriad of 
sources, such as multiple fires and other natural and anthropogenic sources, making it 
difficult to isolate emissions from a single fire. Because of this complexity, it is out of scope 
of this report to validate wildfire emissions against air monitoring station data. Nonetheless, 
CARB compares results to other inventories and examines how they differ. 

The impact of the most significant change to the inventory methodology—inclusion of daily 
FEDS perimeters—is evaluated by comparing PM2.5 emissions (representing the sum of the 
flaming and smoldering phases) derived from FEDS perimeters to those from CAL FIRE 
perimeters. The CAL FIRE-based emissions act as a proxy for the previous CARB inventory 
approach, as they yield total bulk emissions rather than daily emissions and use the same 
perimeters as before. To enable a direct comparison, daily FEDS-based emissions were 
summed by fire to produce total bulk estimates, and a linear regression was conducted to 
compare these totals against those derived from CAL FIRE perimeters.  

To benchmark the updated inventory against other relevant inventories, estimates were 
compared against CARB’s past wildfire emissions inventory and the NEI. The past CARB 
inventory removed emissions and acres burned from agricultural and non-vegetated land to 
capture effects from burned wildland vegetation, whereas the current inventory does not 
omit any land types. To directly contrast inventories, agricultural and non-vegetated land 
were removed from the current inventory just for this comparison. PM2.5 data were available 
across all three inventories, while CO2 and acres burned were available for just the CARB 
inventories.  Both PM2.5 and CO2 represent the sum of emissions from the flaming and 
residual smoldering phases. These comparisons offer insight into consistency, divergence, 
and potential areas for further refinement. 

III. Data processing and analysis 

The modified FEDS data pipeline was developed in `Python` ver. 3.11 (Python Software 
Foundation 2022) and builds upon the `fireatlas` package maintained by the NASA and 
University of California, Irvine team (https://github.com/Earth-Information-System/fireatlas). 
The pipeline that estimates emissions and consumption in FOFEM was also implemented in 

https://github.com/Earth-Information-System/fireatlas
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Python and compiled into a package called `pyfofem`, which is available upon request from 
CARB. Packages `geopandas`, `xarray`, and `shapely` were used for spatial analyses (Gillies & 
others 2023; Hoyer et al. 2017; Jordahl et al. 2020) and local parallel computing clusters 
were built with `dask` to increase computational efficiency (Rocklin 2015). Beta regression 
models were fitted using `brms` (Bürkner 2017), a package that interfaces with the Bayesian 
programming language `Stan` (Stan Development Team 2023), and analyzed in the `R` ver. 
4.5 environment (R Core Team 2025). Models were run with weakly informative priors and 4 
chains with 2000 iterations each. Model fits were visually evaluated by comparing observed 
values against posterior predictive draws. Convergence was assessed by ensuring Rhat <= 
1.01 and bulk ESS > 400 (Vehtari et al. 2021). The packages `tidyverse` and `cowplot` were 
used to wrangle and visualize data (Wickham et al. 2019; Wilke 2019). 
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S-2: Results & Discussion 

I. Overview 

Between 2015 and 2024, 14.2% of fires (549 out of 4039 fires) in the emissions inventory 
relied on daily perimeters mapped by FEDS. Most emissions estimates that instead rely on 
CAL FIRE perimeters (due to the fire lasting only one day or not having sufficient VIIRS AFP 
for implementing FEDS) were from fires that were both short-lived and small (Fig. 1). 
According to alarm and containment dates in CAL FIRE records, 53% of fires using CAL FIRE 
perimeters burned for just one day and 95% lasted 14 days or less. In contrast, the 50th and 
95th percentile of fire duration for FEDS fires was 29 and 134 days, respectively.  The median 
fire size for those using the CAL FIRE dataset was 23.2 acres, compared to 2063 acres for 
fires mapped by FEDS. While most fires in this inventory were mapped using CAL FIRE 
perimeters, FEDS perimeters had the greatest impact on it, accounting for 94.3% of the 
acres burned, 95.8% of the fuel consumed, and 96.3% of the PM2.5 emissions. As a result, 
CARB’s emissions inventory has shifted dramatically, with the bulk of estimates now resolved 
at the daily scale, capturing emissions with unprecedented detail. 

 
Figure 1. Fire size and duration for incidents mapped using CAL FIRE and FEDS perimeters (2015–2024). 

II. Performance of FEDS Perimeters  

A. Absolute differences with CAL FIRE perimeters  

The accuracy of all FEDS perimeters (n = 549) was assessed by comparing the final 
perimeters to CAL FIRE perimeters. In general, there was strong agreement between FEDS 
and CAL FIRE perimeter size (R² = 0.93, slope = 1.12, Fig. 2). FEDS tended to overestimate 
the size of fires under 1,000 acres, with accuracy improving as fire size increased. This 
pattern likely reflects the 375-meter spatial resolution of VIIRS, which introduces a minimum 
level of coarseness that disproportionally enlarges small fires more than big fires. For larger 
fires, constraining VIIRS pixels to CAL FIRE polygons can have the opposite effect, 
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sometimes biasing FEDS toward underestimating perimeter size and leading to non-
gaussian residuals. The spatial alignment between FEDS and CAL FIRE perimeters was 
generally good (Fig. 3), with a median F1 score of 0.77 (10th–90th percentile: 0.42–0.92) and 
a median IoU of 0.63 (0.26–0.85). To illustrate how IoU values translate into visual overlap, 
see Fig. S1. User’s accuracy had a median of 0.74 (0.33–0.91), while producer’s accuracy was 
higher at 0.97 (0.58–1.00), indicating that the model effectively captured observed burn 
area but also generally produced false positives. Given that the modifications to FEDS 
involved constraining VIIRS pixels to CAL FIRE perimeters, it is unsurprising that FEDS 
aligned well with CAL FIRE perimeters. 

To understand the factors influencing IoU, a series of beta regression models were fitted 
that included different combinations of predictors relating to fire size, duration, and 
vegetation composition. Leave-one-out cross-validation indicated that several models 
including fire size and vegetation composition had equivalent predictive performance 
(ΔELPD within the standard error). The selected model included fire size and proportion of 
forest and woodland vegetation as covariates, capturing the key predictors while remaining 
simple and interpretable. Replacing fire size with fire duration substantially worsened 
predictive performance (ΔELPD = -166.2, SEΔ = 62.9), and modeling the precision 
parameter of the beta distribution as a function of covariates offered no improvement. The 
mean of the beta distribution was positively associated with log-transformed fire area 
(median = 1.52, 5th–95th credible interval = 1.40–1.65) and forest and woodland composition 
(median = 0.53, 5th–95th credible interval = 0.35–0.70). These results suggest that FEDS 
performs better for larger fires and, to a lesser extent, for those dominated by forest and 
woodland vegetation (Fig. 4). This means that FEDS is most accurate where it matters: the 
highest emitting fires tend to be large and occur in forests and woodlands where fuel 
loading is greatest.  

 

Figure 2. Comparison of final fire sizes from FEDS versus CAL FIRE perimeters (n = 549). The regressed line 
(red) is overlaid on top of the line of unity (black dashed).  

For 32 fires, daily perimeters were compared with those mapped by aerial IR (Table S1). 
Since aerial IR data is not available for every wildfire, nor is it organized in a consistent 
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format, the sample size was more limited than the comparison with CAL FIRE perimeters. 
Additionally, fires that had IR data tended to be larger and occurred in forest- and 
woodland-dominated ecosystems, biasing FEDS perimeters towards greater spatial 
agreement with ground-truthed perimeters. With that said, results similarly show good F1 
scores, IoU, user's accuracy, and producer's accuracy, with values increasing to high levels 
(e.g. >0.75 IoU) for fires persisting over 5–10 days (Fig. S2).  

B. Relative differences with aerial infrared perimeters  

Thus far, absolute differences in perimeter sizes have been evaluated, but since all FEDS-
derived values of burned area, emissions, and consumption are proportionally scaled to 
match those from CAL FIRE perimeters (eq. 4-5), arguably, relative cumulative growth rates 
provide a more meaningful metric for assessing performance. Relative cumulative growth 
rates of FEDS perimeters were compared to those from aerial IR data, the NEI, and an 
estimate based on fractional daily counts of VIIRS AFP (Fig. 5). The results show that FEDS 
perimeters closely aligned with aerial IR data, with an average RMSE of 0.04 (SD = 0.03). 
This was significantly better than both the VIIRS-based estimate (log-Δ = 0.55, p = 0.038) 
and the NEI (log-Δ = 1.00, p < 0.001) (Fig. S2). The VIIRS-based estimate also aligned well 
with aerial IR data, though slightly less so than FEDS (RMSE mean = 0.07, SD = 0.04). The 
NEI aligned the least well with aerial IR data (RMSE mean = 0.12, SD = 0.09). However, the 
difference between the VIIRS-based estimate and the NEI was only marginally statistically 
significant (log-Δ = 0.45, p = 0.10).  
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Figure 3. Distribution of spatial accuracy metrics (F1 score, IoU, user’s accuracy, and producer’s accuracy) for 
FEDS perimeters compared to CAL FIRE perimeters. Top image illustrates how true positives, false positives, 
and false negatives were defined based on spatial overlap of FEDS and CAL FIRE perimeters. 
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Figure 4. Intersection over Union (IoU) predicted by a combination of fire size and forest and woodland 
composition using a beta regression. Lines represent the mean model for fires with the 10th (red), 50th (yellow), 
and 90th (blue) percentile of forest and woodland proportion. Grey shaded region around the lines denotes 
the posterior’s 90th credible interval.  

 

 
Figure 5.  Cumulative relative fire growth for 16 randomly selected fires, comparing FEDS perimeters (yellow) 
to aerial IR data (red), VIIRS AFP-based estimates (teal), and the NEI (blue). 
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These findings indicate that FEDS reliably captures relative fire growth over time. The NEI 
shows the largest deviations from aerial data, which is understandable given that its 
inventory spans all 50 states. Emissions allocated based on fractional VIIRS AFP—which CARB 
used to support a recent State Implementation Plan report (San Joaquin Valley Air Pollution 
Control District 2024)—provide a reasonable approximation of fire size when perimeter-
based data are unavailable. However, because this approach does not align fuelbed and 
fuel moisture data in space and time, the resulting emissions estimates carry additional 
uncertainty compared with FEDS. 

III. Emissions comparison 

Aggregated daily emissions of PM2.5 calculated from FEDS perimeters (n = 183) closely 
matched the total bulk emissions calculated from the corresponding CAL FIRE perimeters 
(R2 = 0.999, slope = 0.98). Summing the daily FEDS-based estimates yields total emissions 
that are consistent with CAL FIRE-based calculations, suggesting that the updated 
inventory—incorporating daily fire perimeters—is well-calibrated and aligned with the 
methodology used in previous CARB inventories.  

 
Figure 6. Comparison of wildfire emissions estimates across CARB’s past and current inventories and the US 
EPA NEI. Panels show annual totals for wildland acres burned, CO2, and PM2.5 emissions.  

Comparisons of wildfire emissions inventories reveal both congruencies and divergences 
(Fig. 6). Overall, past and current CARB inventories report similar wildland acres burned, 
though slight year-to-year deviations exist. These differences primarily stem from the Fuel 
Characteristic Classification System (FCCS) fuelbed sources used in each inventory (see Fig. 
S4 for additional inference). The past CARB inventory relied on FCCS fuelbeds produced by 
a contractor, who interpolated in-between years using multinomial models to address the 
fact that LANDFIRE (www.landfire.gov/data) releases FCCS vintages in non-consecutive 
years (University of California, Berkeley 2019). In contrast, the current inventory uses FCCS 
fuelbeds directly from LANDFIRE to align with the broader scientific community. When one 

http://www.landfire.gov/data
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FCCS source assigns a cell as agricultural or developed land, while the other assigns it as 
naturally vegetated, the total acres of burned wildland will differ. These differences in 
fuelbed sources explain much of the variation observed between the past and current CARB 
inventories.   

CO2 emissions from the past CARB inventory are consistently higher than those from the 
current inventory (Fig. 6). Like the wildland acres burned, this variation is driven primarily by 
the change in FCCS fuelbed source. When EFs are held constant, LANDFIRE FCCS 
produces lower CO2 estimates than the contractor-derived FCCS used previously (Fig. S4). 
Expanded EFs adopted in the current inventory have only a minor effect on CO2 (e.g. 
expanded EFs for dominant western forest ecosystems produce 0.90x flaming and 1.13x 
smoldering compared to default EFs; Table S1). Thus, the decrease in CO2 relative to the 
past CARB inventory reflects changes in fuelbed inputs. 

PM2.5 emissions in the current CARB inventory are generally higher than the past CARB 
inventory (Fig. 6), reflecting the combined effects of switching to LANDFIRE FCCS fuelbeds 
and adopting expanded EFs (Fig. S4, Table S1). Unlike CO2, PM2.5 is strongly affected by the 
EF choice: for western forests—the dominant land type in California wildfires—expanded EFs 
increase flaming emissions by 8.9x and smoldering by 1.5x, leading to systematically higher 
statewide totals. A notable observation is the increase in PM2.5 from 2020 to 2021, despite 
2020 burning ~50% more acres. This counterintuitive result likely reflects two factors: first, 
LANDFIRE recorded about 125k more acres of forested land burned in 2021, and forests 
carry higher fuel loads and thus produce more particulate emissions than shrublands or 
grasslands. Second, the inventories draw on different LANDFIRE FCCS vintages across those 
years—2020 uses LF2016 while 2021 uses LF2020—introducing a step change in the fuelbed 
data that likely amplifies the discontinuity between years. 

When compared to the EPA’s NEI, CARB inventories—both past and current—show 
substantial divergence, which stems from methodological differences. The NEI is based on 
another model that estimates emissions, Consume (Ottmar et al. 1993), rather than FOFEM, 
and Consume has been shown to generally estimate less fuel consumption and emissions 
than FOFEM (Kennedy et al. 2020). Additionally, the NEI uses EFs from Smoke Emissions 
Reference Application (Prichard et al. 2020) and Urbanski (2014), which align closely with 
CARB’s EFs but only for 2021-2023; for earlier years, their methodology differs substantially. 
Thus, the discrepancies between CARB and NEI are not surprising and are consistent with 
the long-standing differences observed between the NEI and the past CARB inventory. 
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S-3: Supplementary Figures and Tables 

Figure S1. Visual examples of spatial overlap between FEDS (multicolored) and CAL FIRE (red) perimeters for 
fires exhibiting a range of Intersection over Union (IoU) values. The color ramp in the FED perimeters 
corresponds to duration of fire. Fire names concatenate the year, fire name, and incident number from the 
CAL FIRE perimeter dataset.  
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Figure S2. Spatial agreement between FEDS and aerial IR perimeters for 32 fires (2020–2023), shown by days 
since FEDS' first detection. Lines represent the evolution of the spatial metric for a given fire. Point ranges 
show the mean value of each spatial metric within 5-day bins, with vertical bars indicating the 10th and 90th 
percentiles. 

 
Figure S3. Log-RMSE of cumulative relative fire growth compared to aerial IR data for FEDS, VIIRS-based 
estimates, and the NEI. FEDS showed significantly lower RMSE than both alternatives (letters denote 
statistically significant groupings; p < 0.05). 
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Figure S4. The past CARB inventory (blue) was compared to multiple inventory versions generated using the 
current CARB pipeline (hereafter “CARB Current [FCCS source, EF option]”). The past CARB inventory used 
FCCS fuelbeds from a contractor and the default EFs in FOFEM. When compared to CARB Current (FCCS 
contract, default EFs; yellow), statewide estimates aligned most closely. By contrast, CARB Current (LANDFIRE 
FCCS, default EFs; orange) produced fewer burned acres and lower CO2 and PM2.5 emissions across most 
years. These sequential comparisons indicate that, with emission factors held constant, the primary driver of 
change is the FCCS source. The final version of the CARB inventory (teal) incorporates LANDFIRE FCCS and 
expanded EFs. Relative to CARB Current (LANDFIRE FCCS, default EFs), there were substantial increases in 
PM2.5 estimates—reflecting higher expanded EFs, especially for dominant western forests—while CO2 shows 
only minor changes (see Table S1). Relative to the past CARB inventory, the current version therefore reflects 
both a shift in fuelbed source and the adoption of expanded EFs, yielding lower CO2 but higher, vegetation-
specific PM2.5 estimates. 

 
Table S1. Default emission factors reproduced from FOFEM (Lutes 2020) and ratios of expanded to default EFs 
for western forest wildfires. Default emission factors are derived from earlier research and are the same 
regardless of vegetation type (Finney 2001; Hardy et al. 1996; Ward et al. 1993). The ratios of expanded EFs to 
default EFs for western forest wildfires are presented for both flaming and smoldering phases. For example, 
PM2.5 emissions in western forests are expected to increase by 8.91x in the flaming phase and 1.51x in the 
smoldering phase compared to default values. Because California fires burn through multiple vegetation 
types, these ratios do not represent the expected statewide change when using expanded EFs instead of 
default EFs, and the actual ratios will vary by pollutant and vegetation type. 

Phase CO2 

g/kg 
CO 

g/kg 
CH4 

g/kg 
NOx 

g/kg 
SO2 

g/kg 
PM2.5 

g/kg 
PM10 

g/kg 
Flaming 1778.01 6.520 0.796 3.2 1.0 2.604 3.073 

Smoldering 1228.11 301.72 13.756 0 1.0 22.644 26.720 
Ratio Fexpanded:Fdefault  0.900 20.7 9.20 0.625 1.06 8.91 8.92 
Ratio Sexpanded:Sdefault  1.13 0.806 0.796 Inf 0.880 1.51 1.51 
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Table S2. Summary of selected wildfires used to evaluate FEDS perimeters against perimeters estimated from 
aerial IR. Incident Number corresponds to the column name “INC_NUM” in the CAL FIRE perimeter dataset. 
Start and end dates are determined based on detected fire activity from VIIRS AFP and aerial IR. Acres and 
proportion of forest and woodland vegetation type are calculated from the CAL FIRE final perimeters.  

Year Fire Name Incident 
Number 

Start Date End Date Acres Proportion Forest 
& Woodland 

2020 Blue Ridge 20121612 10/26/2020 10/30/2020 13,699 0.01 

2020 Bobcat 00003687 9/6/2020 10/6/2020 116,150 0.28 

2020 Castle 00002541 8/20/2020 11/9/2020 171,009 0.84 

2020 Creek 00001391 9/4/2020 12/10/2020 382,836 0.73 

2020 Dolan 00002428 8/18/2020 10/1/2020 124,506 0.46 

2020 Hennesey 00013337 8/17/2020 9/5/2020 305,121 0.42 

2020 North Complex 00001308 8/17/2020 11/4/2020 318,938 0.93 

2020 Point 00032344 10/26/2020 10/28/2020 93 1.00 

2020 River 00004024 8/16/2020 8/30/2020 50,200 0.43 

2020 Sheep 00001299 8/17/2020 9/5/2020 29,507 0.81 

2020 Stump 00004290 8/1/2020 8/4/2020 325 0.97 

2020 Woodward 00012009 8/18/2020 10/17/2020 4,899 0.91 

2020 Zogg 00009978 9/27/2020 10/7/2020 56,272 0.29 

2021 Antelope 00006454 8/1/2021 10/17/2021 145,419 0.76 

2021 Caldor 00024030 8/14/2021 10/15/2021 229,038 0.92 

2021 French 00002796 8/18/2021 9/10/2021 28,087 0.80 

2021 Inyo Creek 00001299 6/20/2021 6/27/2021 601 0.32 

2021 KNP Complex 00000122 9/10/2021 12/7/2021 91,473 0.86 

2021 McFarland 00001175 7/29/2021 10/4/2021 122,308 0.59 

2021 Monument 00001187 7/30/2021 10/11/2021 227,294 0.91 

2021 Willow 00001493 6/17/2021 7/3/2021 2,877 0.72 

2021 Windy 00003058 9/9/2021 10/29/2021 97,661 0.92 

2022 Barnes 00000896 9/7/2022 9/14/2022 5,832 0.78 

2022 McKinney 00006177 7/29/2022 8/26/2022 60,026 0.79 

2022 Mosquito 00001371 9/6/2022 11/4/2022 76,706 0.94 
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Year Fire Name Incident 
Number 

Start Date End Date Acres Proportion Forest 
& Woodland 

2022 Radford 00012958 9/5/2022 9/26/2022 1,080 0.80 

2022 Rodgers 00000058 8/11/2022 10/17/2022 2,841 0.84 

2022 Sheep 00001704 6/11/2022 6/15/2022 865 0.32 

2022 Washburn 00000038 7/7/2022 9/15/2022 4,884 0.98 

2023 Deep 00000973 8/15/2023 9/20/2023 4,206 0.97 

2023 Pika 00000050 7/6/2023 8/7/2023 840 0.94 

2023 York 00010701 7/28/2023 8/4/2023 93,077 0.01 
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