

#### Chrome Plating ATCM Amendments Technical Working Group #3 3/11/2021

# **Meeting Agenda**

- Introductions
- Working Group #2 summary
- Actions since Working Group #2
- Trivalent Plating Technology
- Trivalent Cost Conversion Estimates
- Draft Amendment Concepts
- Questions



# Working Group #2 Summary

- Facility and emissions inventory
  - 57 dec platers, 41 hard platers, 34 chromic acid anodizing facilities
  - ~4 lb hex chrome actual emissions (10.7 lb of potential emissions)
- Chrome containing non-electroplating tanks
  - Facilities operating chrome containing tanks not subject to ATCM
  - Majority of tanks operating in South Coast and subject to Rule 1469
- Additional compliance measures
  - Summary of some measure taken beyond ATCM requirements



### **Recent Actions**

- Meetings with
  - Metal Finishers Association of California
  - National Association of Surface Finishers
  - Department of Defense experts
  - Other industry representatives
  - Plating chemistry manufacturers
  - California Communities Against Toxics
- Cost estimates for trivalent plating
- Initiated health risk evaluation, CEQA analysis, regulatory concepts





### **Trivalent Plating Technology**

### **Decorative Trivalent**

- Chloride or sulfate-based systems commercially available
- Works for a wide range of applications (automotive, door hardware, leisure equipment, plumbing fixtures, etc.)
- Range of color options with colors approaching those of hexavalent chrome
- Provides comparable or better (in some case) corrosion resistance and durability
  - Showed better performance in some high chloride environments
    CARB

### **Advantages**

- Less toxic than hexavalent chrome
- Reduced waste treatment costs
- No PFAS compounds
- Lower energy requirements
- Can withstand electrical current interruptions
- Fewer part defects and rejects
- Similar plating process



### Disadvantages

- Color doesn't match exact with hexavalent chrome plated parts
- Some customer acceptance issues
- Not yet fully accepted by automotive OEMs
- Equipment requirements vary facility by facility
- Different processes for different applications



## **Functional Trivalent**

- Applicable for hydraulic cylinders, ball bearing parts, pump shafts, printing cylinders, brake discs, and other thin dense chrome applications
- Limited functional trivalent plating options on the market
- Technology not currently ready for aerospace and DOD applications



### **Advantages**

- Less toxic
- No PFAS compounds
- No lead anodes
- Some applications can operate at lower temperatures
- Lower chromium concentration in bath



### **Disadvantages**

- High capital expense up front
- Increased operating costs
- More difficult to control
- More complex process
- Doesn't support complex geometries yet
- Different deposit characteristics



# **Chromic Acid Anodizing**

- No trivalent technology exists to replace chromic acid anodizing
- Looking for input on how to best transition away from hexavalent chromium
- CARB will re-evaluate technology in the future





### **Initial Cost Estimates**

# **Cost of Decorative Trivalent**

- Price varies by facility size and throughput
- Equipment and installation cost:
  - Small facility (<20,000 amp-hrs/year): ~\$60,000 \$100,000</li>
  - Large facility (>20,000,000 amp-hrs/year): ~\$250,000 -\$310,000
- Operating expenses estimated to be similar to hexavalent chromium
- Requesting any additional cost data for dec trivalent plating operations from industry



#### Small Facility Estimate (300 gallon tank, <20,000 amp hrs)

| Item                                                                                                    | Cost        |
|---------------------------------------------------------------------------------------------------------|-------------|
| Equipment:<br>Plating Tank, Rinse Tank, Filter Pump, Ion Exchange System, Anodes, Flight Bar and Saddle | \$32,067.00 |
| Chemistry:<br>Chrome 3 Salts, Conductivity Salts, Catalyst, HCD Adjuster, Wetting Agent                 | \$6,329.91  |
| Exhaust Fan                                                                                             | \$8,100.00  |
| Ducting                                                                                                 | \$6,000.00  |
| Freight cost (estimated)                                                                                | \$1,000.00  |
| Hex Chrome Removal (estimated)                                                                          | \$3,000.00  |
| Total                                                                                                   | \$56,496.91 |

Cost of rectifier (\$15,000) and closed-loop water system (\$32,000) not included



#### Large Facility Estimate (2,200 gallon tank, 24,000,000 amp-hrs)

| ltem                                                                                                                       | Cost      |
|----------------------------------------------------------------------------------------------------------------------------|-----------|
| Equipment:<br>Tank, rectifier, amp-hr meter, cooling, heating, tank busing, mixing, exhaust, feed pump, anodes,<br>hangers | \$150,000 |
| Installation Cost (may vary based on complexity of old tank removal or specific equipment changes)                         | \$100,000 |
| Total                                                                                                                      | \$250,000 |
| Optional reclaim equipment                                                                                                 | \$60,000  |
| Total with reclaim equipment                                                                                               | \$310,000 |



# **Operating Costs Comparison**

| Component       | Trivalent<br>(\$/Kamp/hr) | Trivalent with reclaim<br>(\$/Kamphr) | Hexavalent<br>(\$/Kamphr) |
|-----------------|---------------------------|---------------------------------------|---------------------------|
| Chemistry       | 14.3                      | 9.2                                   | 5.4                       |
| Anodes          | 0.03                      | 0.03                                  | 1.6                       |
| Waste Treatment | 0.3                       | 0.03                                  | 4.6                       |
| Ion Exchange    | 0.2                       | 0.2                                   | -                         |
| Total           | 14.73                     | 9.50                                  | 11.6                      |

- Based on yearly costs at high throughput facility
- Excluding savings on reject parts



## **Cost of Functional Trivalent**

- Looking for additional data
  - Equipment and installation cost
  - Operating cost





### **Proposed Amendment Concepts**

### **New Facilities**

- No new facility may use hexavalent chromium for the purposes of decorative chromium plating, hard chromium plating, or chromic acid anodizing
- A new facility is defined as any facility not operating a decorative chromium plating, hard chromium plating, or chromic acid anodizing line under District permit prior to the effective date of this rule



# **Existing Facilities**

- Existing facilities to transition to non-hexavalent chromium alternatives
- Trivalent chromium is currently feasible for a wide range of applications
- Fugitive controls to address uncontrolled non-plating tanks and facility operations



## **Decorative Chrome Transition**

- Decorative plating facilities to begin transition of hexavalent chromium within 2 years after the date of the amended ATCM or in 2024
- Transition to:
  - Trivalent chromium plating or
  - Other less toxic/lower emitting technology



## **Functional Chrome Transition**

- Functional plating facilities to begin transition of hexavalent chromium within 4 years of the effective date of the amended ATCM or in 2026
- Transition to:
  - Trivalent chromium plating
  - Other less toxic/lower emitting technology



# Housekeeping

- Use an approved cleaning method for all cleaning
  - wet mop, damp cloth, wet wash, low pressure spray nozzle, HEPA vacuum, or other method as approved by the Executive Officer
  - Clean spills within one hour after spill
  - Clean any area that may accumulate hex chrome weekly
- Remove any materials from walkways that can trap hex chrome – such as fabric carpets and rugs
- Clean buffing, grinding, polishing areas on days when buffing, grinding, polishing take place.





### **Next Steps**

## **Next Steps**

- Draft Regulatory Language Late March 2021
- Initial Draft Staff Report April 2021
- Working Group Meeting #4 April 2021
- Health Risk Assessment May 2021
- Economic Impact Assessment May 2021



## **CARB** Contacts

- Eugene Rubin (Staff Lead)
  - Eugene.Rubin@arb.ca.gov
  - (916)-323-0006
- Maria Vacaru (Staff)
  - <u>Maria.Vacaru@arb.ca.gov</u>
  - 916-322-7433
- Greg Harris (Manager)
  - <u>Greg.Harris@arb.ca.gov</u>
  - 916-327-5980
- Robert Krieger (Branch Chief)
  - <u>Robert.Krieger@arb.ca.gov</u>
  - 916-323-1202
- Subscribe to the Chrome Plating ATCM Mailing List

