Public Exposure to Chloropicrin in California

Sheryl Beauvais
Worker Health and Safety Branch

Terrell Barry
Environmental Monitoring Branch

California Department of Pesticide Regulation

Chloropicrin: Introduction

- Trichloronitromethane
 - Colorless, volatile liquid
- Strongly and rapidly irritating to eyes and respiratory system
- Used as fumigant active ingredient (AI), alone or mixed with other fumigants (e.g., methyl bromide & 1,3-dichloropropene)
 - Primarily controls soil fungi and other pathogens, as well as nematodes
 - Controls some weeds
 - Also used as a warning agent

(Photo from Rossopf et al, 2005)

Warning Agent

- Has good warning properties, such as odor or irritation
- Ideally, can detect the warning agent at concentrations below which it and co-applied chemicals are toxic
- Soil fumigations
 - Methyl bromide contains chloropicrin at <u><</u> 2% (at higher concentrations, up to 55%, chloropicrin is considered an AI)
- Structural fumigations
 - 2 methyl bromide products with 0.5 1% chloropicrin
 - Sulfuryl fluoride labels require use of chloropicrin, which is added separately to a pan in front of a fan (see photos)

Chloropicrin in Reevaluation at DPR

- DPR placed all products containing chloropicrin into reevaluation, based on data submitted under California's Birth Defect Prevention Act
 - DPR required submission of new studies from registrants;
 all required studies have been submitted
- Chloropicrin is also a candidate to be listed as a Toxic Air Contaminant (full exposure assessment to follow)
 - Focused on public airborne exposures to chloropicrin
 - Screening estimates for bystanders to soil, structural, and enclosed space fumigations (if screening estimates are okay, others are, too)

U.S. EPA Status

- Soil Fumigant Risk Assessments
 - Chloropicrin is one of 5 AIs with risk mitigation measures proposed by EPA in 2008 – amended documents with revised measures released in May 2009
 - Proposed mitigation measures include buffer zones of 25 ft ½ mile, depending on the application method and conditions
- EPA's risk assessment only considered uses supported by the Chloropicrin Manufacturers Task Force (CMTF)
 - Other registrants must submit data to support reregistration of any uses not supported by CMTF
 - (DPR's risk assessment examines current uses)

Key Differences in Chloropicrin Exposure Assessments by DPR and U.S. EPA

Application rates:

 Maximum rates of 500 vs. 350 lbs AI/acre, based on current labels (DPR) vs. proposed maximum rates (U.S.EPA)

Exposure durations

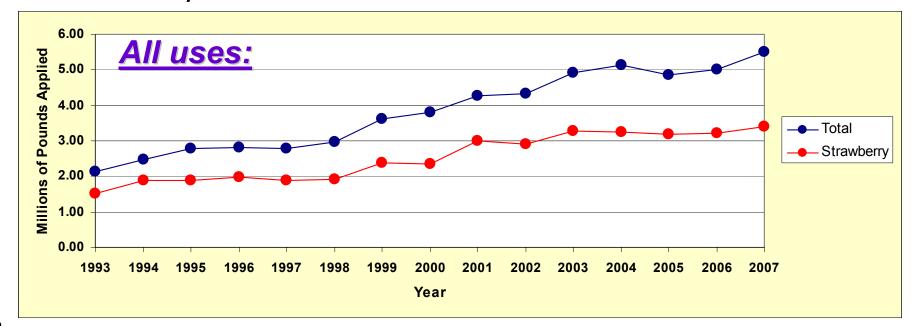
- U.S. EPA: short-term exposures only (no annual or lifetime)
- Shortest: 4-hour (U.S. EPA) vs. 1-hour (DPR)
- Statistics used to estimate exposure
 - Upper-bound and arithmetic mean vs. geometric mean
- Model used to estimate off-site concentrations: ISCST3 (screening, deterministic) vs. PERFUM (probabilistic)
 - U.S. EPA reported ISCST3 results in an appendix, but used PERFUM in its risk assessment

Chloropicrin Products

Active Ingredient	Number of Products Registered	Chloropicrin Concentration Range (%)	Fumigation Type
Methyl Bromide	25	0.25 - 55	
Chloropicrin – WA	(7)	0.25 - 2.0	Soil/Space/WA in Structural
Chloropicrin – 10.5%	(1)	10.5	Soil
Chloropicrin – AI	(17)	19.8 – 55	Soil/Space
Methyl Iodide*	0	2 – 75	Soil
1,3-Dichloropropene	13	15 - 60	Soil
Chloropicrin as sole AI	9	94 - 100	Soil/Space/WA in Structural
Total	47		

47 products registered in California

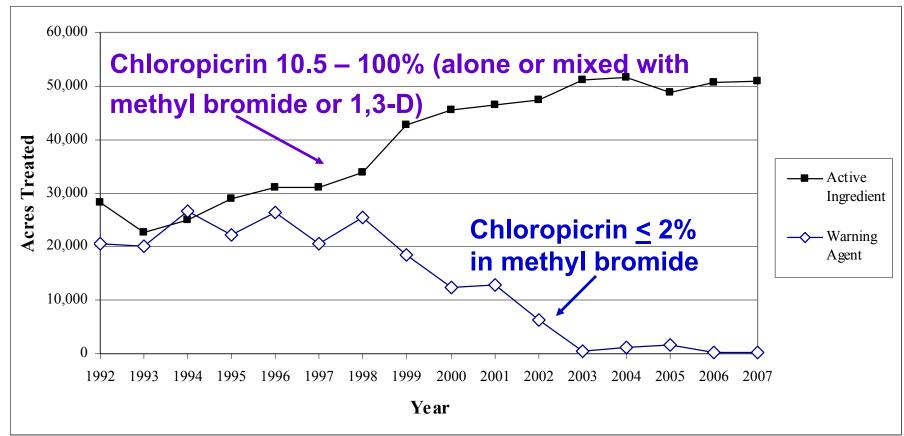
(Warning agent for sulfuryl fluoride)


- Registered uses:
 - Soil/space fumigation (also warning agent for structural fumigation)

^{*} Methyl iodide is not currently registered in California

Chloropicrin Use

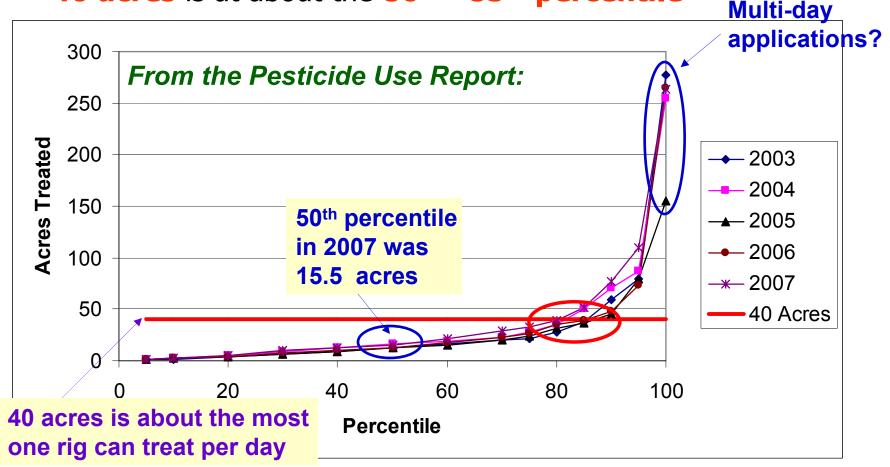
- Over the past 15 years, an average of at least 68% of use (lbs applied) was pre-plant for strawberries
 - Other top crops: nursery, tomatoes, berries, melons
 - Use approximately doubled between 1993 and 2003, hovered around 5 million lbs in 2003 – 2006, then increased to nearly 5.5 million in 2007



Warning Agent vs. Al in Soil Fumigations

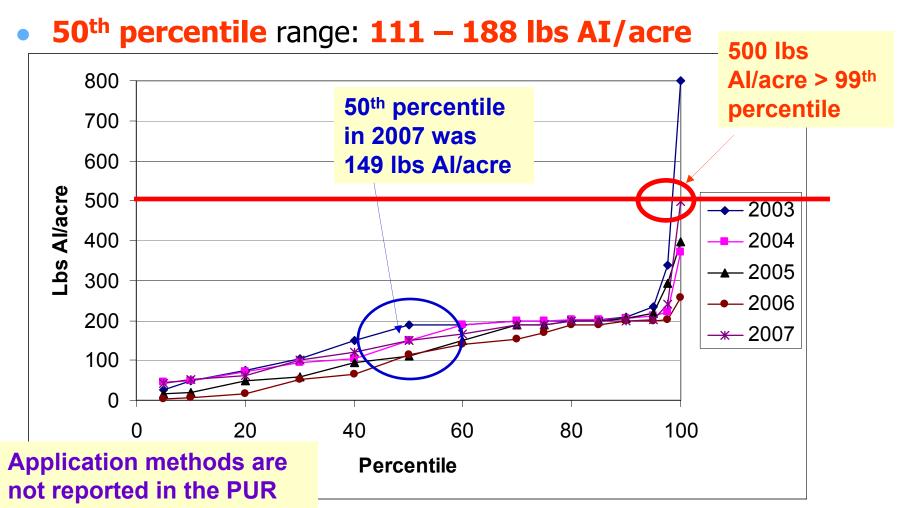
Warning agent use decreased with methyl bromide phase-out

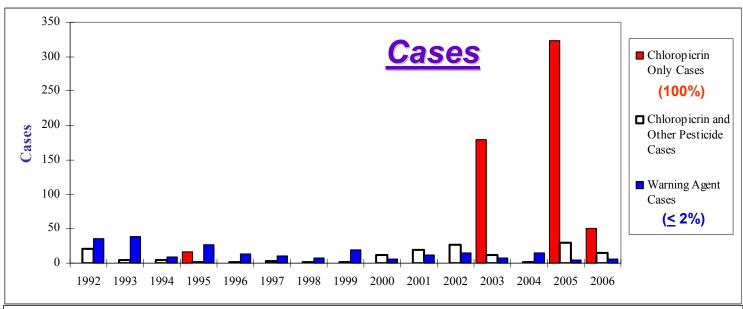
Agricultural applications reported in acres treated:



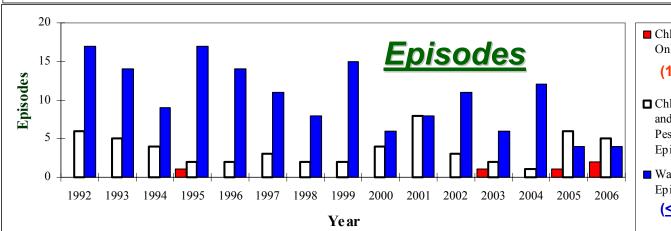
Acres Treated/Day (Reported in PUR)

• Applications reported as acres treated, chloropicrin \geq 94%


40 acres is at about the 80th - 85th percentile


Application Rates (Reported in PUR)

• Applications reported as acres treated, chloropicrin \geq 94%

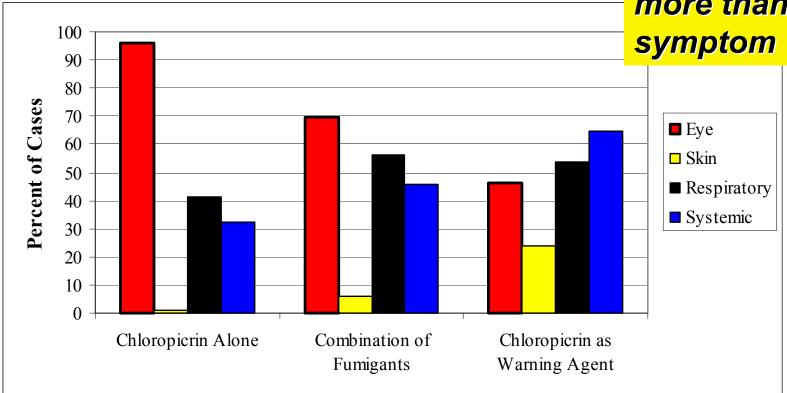


Illnesses Associated with Chloropicrin

More than one case can be associated with each episode

Chloropicrin Only Episodes (100%)

- □ Chloropicrin and Other Pesticide Episodes
- Warning Agent **Episodes**


(< 2%)

Most cases in one episode: 324 (in 2005)

Percent of Illnesses (Cases)

560 of 1,015 cases reported more than one symptom

- Eye irritation most commonly associated with 100% chloropicrin use
- Skin and systemic symptoms most common with warning agent use

Environmental Fate

- After application, chloropicrin rapidly diffuses through the soil or structure in all directions
- Volatilization is the major pathway through which chloropicrin dissipates from soil
 - Over 2-week intervals, on average 61 69% of chloropicrin applied by shank fumigation volatilized;
 15% of chloropicrin applied by tarped drip methods
 - Also degraded through biotic and abiotic reactions, with $T_{1/2} \sim 1$ to 8 days in field studies
- Volatilized chloropicrin undergoes rapid photolysis by absorbing UV light
 - Predicted T_{1/2} < 1 day in bright sunlight</p>

Persistence in Soil

- Laboratory soil metabolism studies: T_{1/2} ≤ 10 d
 - Longer in sterile soils (3 14 days vs. < 1 4 days)
 - Longer in anaerobic and high-moisture soils
- Field dissipation studies reported degradation half-lives between 1 and 8 days
- Soil beneath a former manufacturing plant in Maine contained residues as high as 500 mg/kg 7 years after the plant was shut down
 - Suggests that in some cases residues may persist

Groundwater Contamination?

- Chloropicrin is on DPR's list of pesticides that could potentially contaminate ground water:
 - High water solubility: 2,000 mg/L at 25 °C
 - Low soil adsorption: $K_{oc} = 25 \text{ cm}^3/\text{g}$
 - Hydrolysis $T_{1/2}$: probably > 191 days
- Between 1986 and 2003, a total of 1,719 well water samples were collected in 34 California counties: No detects for chloropicrin

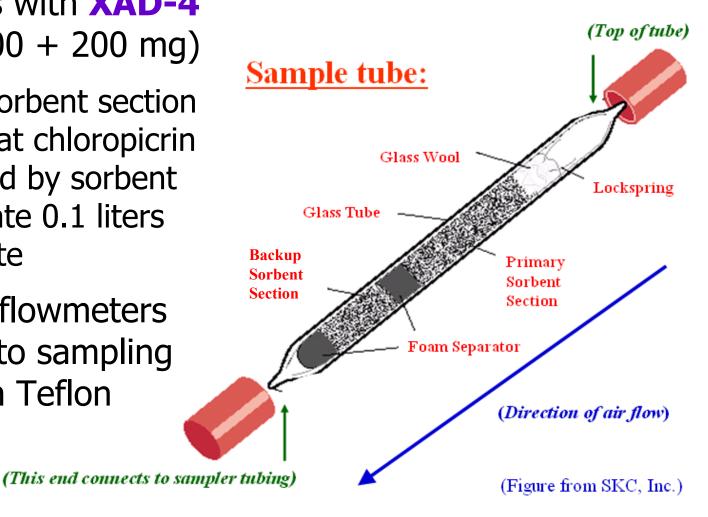
Exposure Durations

Short-term

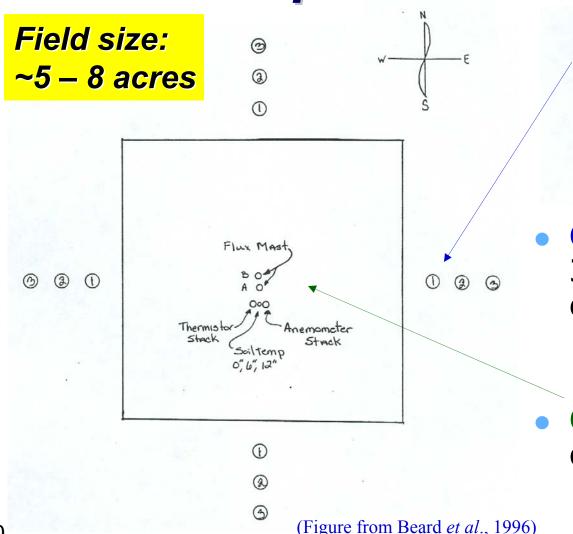
- Upper-bound estimate: want realistic worst case
- 1 Hour: Chloropicrin-associated irritation occurs rapidly
- 8 Hours: Occupational bystanders
- 24 Hours: Residential bystanders

Seasonal, Annual and Lifetime

- In some agricultural areas, repeated exposure may occur from multiple fumigations
- Want typical exposures over longer intervals, individuals would not consistently have high-end exposures


Soil Fumigation Air Monitoring

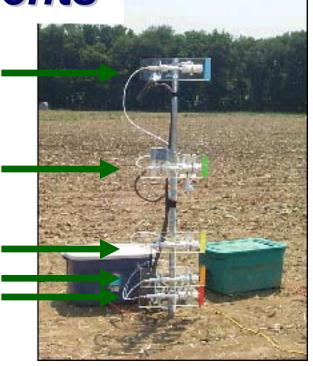
- California Air Resources Board (ARB)
 - Ambient air and application off-site monitoring (summarized but not used to estimate exposure)
- Chloropicrin Manufacturers Task Force (CMTF, registrants)
 - Application site monitoring, on-site & off-site measurements (only on-site used to estimate exposure)
 - Two sets of studies (data from both were used):
 - Arizona, Florida and Washington in 1995-1996
 - California in 2003-2004


Air Samplers

- Glass tubes with XAD-4 sorbent (400 + 200 mg)
 - Backup sorbent section shows that chloropicrin is retained by sorbent at flow rate 0.1 liters per minute
- Tubes and flowmeters connected to sampling pumps with Teflon tubing

CMTF: Sampler Locations

- 0 60' off site station
- @ 120' of site station
- 3 180' of site station


Not Drawn to scale

- Off-site samplers at 3 distances from field edge (none at edge)
 - Greenhouse (and ARB) had a single distance
- **On-site** samplers in center of field
 - ARB did not do on-site

CMTF: On-Site Measurements

- Series of air samplers on a sampling mast at the field center
- Changes in air concentration, temperature, and wind speed with height used to calculate flux (Barry, 2008a)
- Flux is the amount of chemical emitted per unit area and time
 - Field volatility or emission rate

(USDA Photo from McConnell et al.)

- Flux can be used to calculate off-site concentrations
 - Results in more health-protective exposure estimates than obtained from off-site monitoring

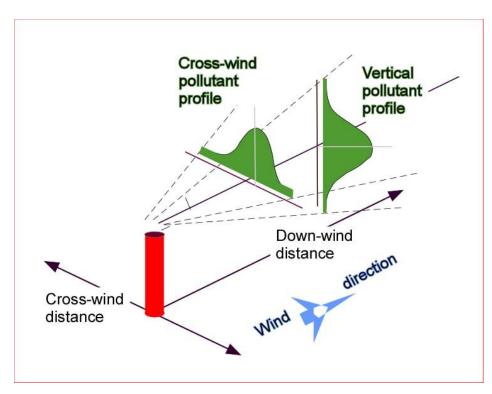
Air Dispersion Modeling

- Air dispersion models use emission information from one or more sources to estimate chemical air concentrations
- Gaussian Plume Model
- Gaussian Plume Model inputs:
 - Field volatility (emission rate or flux)
 - Dimensions and orientation of treated field, distance from field, urban or rural dispersion pattern
 - Temperature, wind speed, atmospheric stability
- Gaussian Plume Model Screening mode:
 - Model predicts the reasonable worst case downwind ground level concentrations that may occur off-site by examining a full range of meteorological conditions across all stability classes and wind speeds.

Off-Site Movement: Plume

Plume movement away from the field is affected by wind speed and direction, etc.

Off-Site Movement: Plume



The fumigant volatilizes, mixes with air and moves downwind.

DPR Uses the ISCST3 Model

<u>Industrial Source Complex—Short Term, Version 3</u>

(Figure from Univ of Colorado)

Features of ISCST3 model

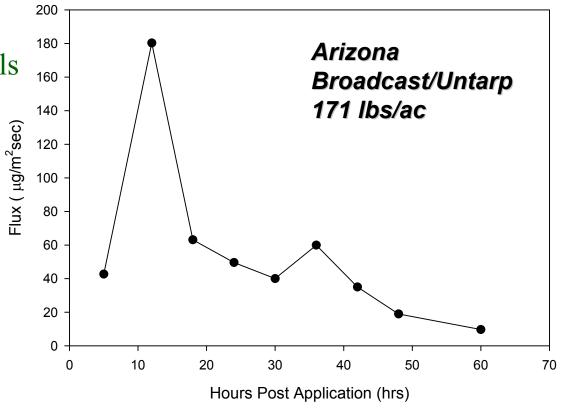
- •Steady-state: conditions do not change within a unit of time (e.g., 1 hour)
- •Gaussian plume: chemical concentrations peak at center of plume, taper toward edges
 - Calculate concentrations along plume centerline

Computer Modeling

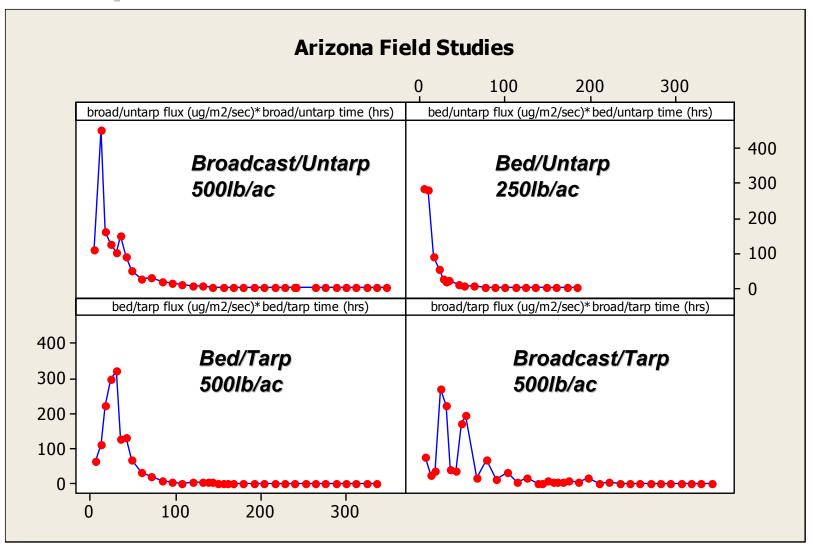
- Industrial Source Complex Short Term (ISCST3)
- Primary model used by DPR since 1992
- Gaussian plume model developed by U.S. EPA

```
C = F \times M
C = concentration (ug/m^3)
F = flux (ug/m^2s)
M = Function of x,y,z,meteorology (s/m)
```


Computer Modeling


- Screening methods produce reasonable worst case air concentration estimates
- The averaging time of the air concentration is directly related to the averaging time that produced the flux estimate
- The meteorological data is considered the predominant condition for that averaging time
 - Screening meteorological conditions can and do occur in the environment
 - The wind direction is interpreted as the predominant (average) direction for the averaging time

Example Flux Profile


First 9 Sampling Intervals

Each Interval = 6 hrs

Example Flux Profiles

Estimating 1-Hour Concentrations

- Shortest monitoring interval for flux in any chloropicrin study was 6 hours (used for 8-hour exposure estimate)
- A mean concentration is the result of many short-term peak conditions and a definable relationship exists between the peaks and the mean (Singer 1961).
- Hino (1968) found that the definable relationship for air concentrations with sampling times between 10 minutes and 6 hours was the ratio of sampling times raised to the -0.5 power

Estimating 1-Hour Concentrations

1-hour concentrations were estimated from the 6-hour concentrations by employing the peak-to-mean ratio (Barry, 2000):

$$C_p = C_m (t_p/t_m)^{-1/2}$$

C_p = peak concentration over period of interest

C_m = mean concentration over measurement period

t_p = duration of peak period of interest (1-hour)

t_m = duration of mean measurement period (6 hours)

Thus:

$$C_{1hr} = C_{6hr}(1/6)^{-1/2} = 2.24* C_{6hr}$$

Bystanders to Soil Fumigation

- Short-term screening exposure estimates: highest modeled concentration for each interval
- Assumptions: 40 acres & maximum allowed application rate on current product labels (500 lbs AI/acre)

Duration	Concentration (μg/m³)	Concentration (ppb)
1 Hour	110,000	16,000
8 Hours	44,000	6,500
24 Hours	7,400	1,100

For chloropicrin, ppb = $(0.1487) \times (\mu g/m^3)$

For Context: 50th Percentile Exposures

- Highest modeled concentration per interval for bystanders 50 feet (15 m) downwind from field edge
- Assumptions: 2007 50th percentile application rate (150 lbs AI/acre) & acres treated (15 acres)

Duration	Concentration (μg/m³)	Concentration (ppb)
1 Hour	30,000	4,500
8 Hours	12,000	1,800
24 Hours	2,500	370

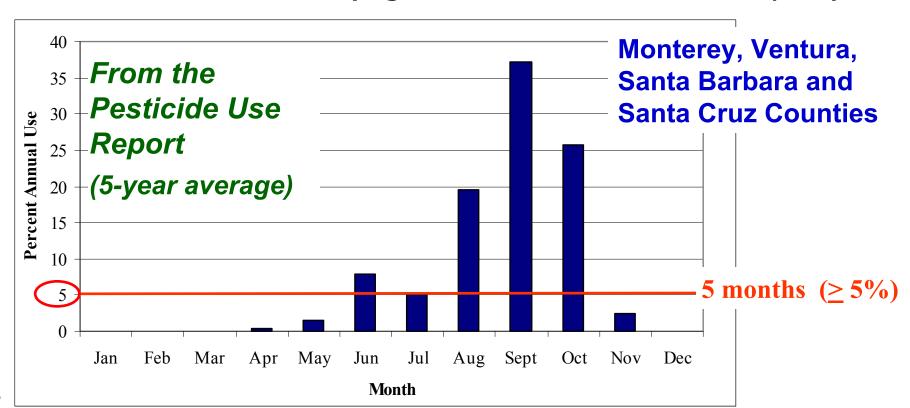
For Context: 50th %ile, ½-Mile Away

- Highest modeled concentration per interval for bystanders ½ mi (760 m) downwind from field edge
- Assumptions: 2007 50th percentile application rate (150 lbs AI/acre) & acres treated (15 acres)

Duration	Concentration (μg/m³)	Concentration (ppb)
1 Hour	7,400	1,100
8 Hours	3,000	450
24 Hours	250	37

Assumptions

- 40 acres treated/day is a practical maximum
 - If more than one rig is used, can treat more acres
 - PUR data suggest that 40 acres/day is about the 80th to 85th percentile of all applications (some of the applications reported in the PUR probably spanned multiple days)
- Adjustments for application rate assume that flux and concentrations are proportional to rate
 - Adjusted concentrations are outside measured range


Seasonal, Annual, Lifetime Exposures

- Monitoring in several of the CMTF studies spanned 2 weeks
 - Average 24-hour flux calculated over 2 weeks (Barry, 2008c)
 - Because wind direction is not constant over longer intervals, concentrations were adjusted with a time-scaling factor derived using peak-to-mean theory (Barry, 2008c)
 - Concentrations not adjusted for maximum rate
- Length of season approximated using PUR data from top 4 counties

Chloropicrin Use Pattern for Seasonal & Annual Bystander Exposures

 Assumption: Exposures are less likely during months when little use occurs (e.g., < 5% of total use each year)

Bystanders to Soil Fumigation

- Intermediate- and long-term exposure estimates:
 Seasonal exposure includes intervals of 1 week 1 year
- Assumptions: 40 acres treated & that applications occur about every 2 weeks over 5 months each year
- Annual concentration = Seasonal concentration x (5/12 months)

Duration Supported by registrants		Assumed Application Rate	Conc. (μg/m³)	Conc. (ppb)
	Seasonal	*350 lbs AI/acre	490	73
	Annual	350 lbs AI/acre	200	30
	Lifetime	150 lbs AI/acre	88	13

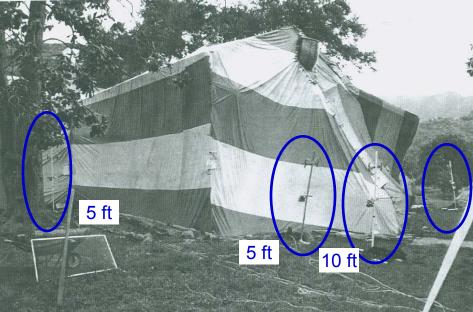
Assumptions

- With the exception of application rate, assumptions of modeling are the same as for short-term estimates
 - 40 acres/day, distance from field, etc.
 - Not adjusted for maximum application rate, assuming that upper-bound exposures are less likely over a longer interval
- Multiple applications are possible, at least in 1-mi² sections
 - Frequent applications occur in some sections in Monterey County, as much as 38 days/year over a 5-month interval
 - PUR data only reported at section level; no data with better resolution are available

Structural Fumigation

- Exposure estimates based on measured rather than modeled concentrations
 - 3 studies by ARB and one registrant study (highest chloropicrin concentrations were in this study)

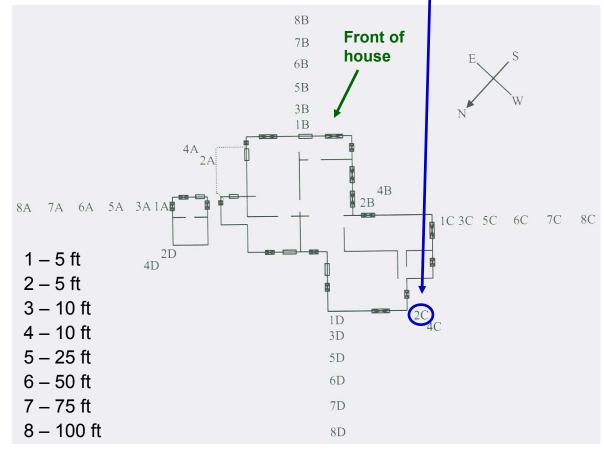
- Amount of chloropicrin used is much lower for structural than soil fumigations
 - Chloropicrin is used only as a warning agent for structural fumigations
 - Smaller areas treated



(Registrant study)

Barnekow and Byrne (2006)

- Monitored 8 fumigations, 2 in each of 4 houses
- A total of 32 outdoor samplers were set up around each house: 2 – 6 samplers on 4 corners and 4 sides
 - Also indoor samplers (discussed later)



Outdoor Samplers: Replicate 2

- Samples collected during 24-hour fumigation followed by 12-hour aeration
- Highest outdoor chloropicrin concentrations were measured following the 2nd fumigation of the first house, in Ventura County ~ 32,000-ft³ (900-m³)
- Highest concentration occurred during aeration at the sampler 5 ft west of house

244 μg/m³ (1-hour sample, 4th hour of aeration) at sampler located 5 feet from edge of house

Bystanders to Structural Fumigation

- Results were adjusted for field spike recoveries (chloropicrin was used at maximum rate in the study)
- Seasonal, annual, or lifetime exposures are not anticipated

Duration	Concentration (μg/m³)	Concentration (ppb)
1 Hour	244	36.2
8 Hours	67.7	10.1
24 Hours	49.7	7.39

Bystanders to Space Fumigation

- Chloropicrin can be used as an active ingredient to fumigate enclosed spaces
 - One product gives directions for use in fumigating empty potato storages and empty grain bins
 - U.S. EPA has received requests to cancel the enclosed space fumigation uses
- Maximum application rate: 0.7 lbs/1,000 ft³ (0.3 kg/28 m³)
- Assume twice per year: storage fumigated between crops, two crops per year
 - Annual = 24-hour concentration x (2 days/365 days)

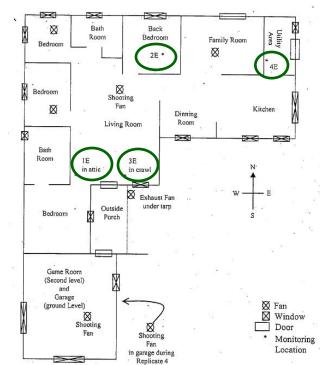
Bystanders to Space Fumigation

- Annual and lifetime exposures assumed fumigation of potato warehouse twice each year, between crops
- No seasonal exposures (i.e., no durations 1 week 1 year)

Duration	Concentration (μg/m³)	Concentration (ppb)
1 Hour	160,000	24,000
8 Hours	46,000	6,800
24 Hours	34,000	5,000
Annual	190	28
Lifetime	190	28

Bystander Exposures Associated with Structural/Space Fumigation

- Concentrations were based on measured off-site data, not modeling; measured concentrations are expected to be health-protective
 - Samplers were about as close to application as nearest likely bystander would be – as close as 5 feet (1.5 m)
- Corrected for field spike recovery
 - No adjustment for application size, but in all structural fumigation studies house size did not appear to correlate with off-site concentrations.



Indoor Air Concentrations

 Barnekow and Byrne (2006) collected indoor air samples at 4 locations for up to 36 hours post-aeration (no indoor samples during fumigation or aeration)

 These post-clearance samples represent residents reentering a treated structure

Indoor Air Concentrations

- Highest concentrations were in Replicate 4 (1 hour) and Replicate 5 (8 hours and 24 hours)
- Results were adjusted for field spike recoveries
- Seasonal, annual, and lifetime exposures are not anticipated

Duration	Concentration (μg/m³)	Concentration (ppb)	
1 Hour	3,060	456	
8 Hours	1,230	183	
24 Hours	1,160	172	

©pr Questions?

(WHS/DPR Photo)