Air Pollution Mitigation Measures for Airports and Associated Activity
# List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1</td>
<td>Mitigation Measures for Airport Sources</td>
<td>2</td>
</tr>
<tr>
<td>2-1</td>
<td>Airport Reference Emissions - 1990</td>
<td>3</td>
</tr>
<tr>
<td>3-1</td>
<td>Commercial Aircraft Reference Emissions By Mode - 1990</td>
<td>11</td>
</tr>
<tr>
<td>4-1</td>
<td>Centralized Air Conditioning System</td>
<td>59</td>
</tr>
</tbody>
</table>
Air Pollution Mitigation Measures for Airports and Associated Activity

Final Report

Contract No. A132-168

Prepared for:

California Air Resources Board
Research Division
2020 L Street
Sacramento, California 95814

Prepared by:

Energy and Environmental Analysis, Inc.
1655 North Fort Myer Drive
Suite 600
Arlington, Virginia 22209

and

K.T. Analytics, Inc.
103 Baughman's Lane
Suite 176
Frederick, Maryland 21701

May 1994
ABSTRACT

The growth of air travel in California is becoming a concern for air quality planners. Air travel throughout the U. S. has grown more than 5% per year for the past decade and that growth is expected to continue. California has become one of the fastest growing air transportation links to the Pacific Rim, pushing its average growth even higher. This has resulted in airport-related activity becoming an increasing component of the state's emission inventory.

This report is a reference guide to emission mitigation techniques that can be applied to aircraft and their operations, the ground support equipment that service aircraft at airports, and other airport on-road and off-road emission sources such as maintenance, passenger, and employee vehicles. Each measure is described along with guidelines for its use and constraints that may limit its effectiveness. The information in the report can be used to quantify emission reductions that result from operational, procedural, or technological changes to these sources. Projects and plans to reduce air pollution at U. S. and European airports are described. A detailed description of procedures used to calculate aircraft emissions is provided in an appendix.

AIR POLLUTION MITIGATION MEASURES
FOR AIRPORTS AND ASSOCIATED ACTIVITY
maintenance operations, air freight/cargo companies, parking facilities, federal, state, and local aviation agencies, and construction projects, which support the airport. The last category also includes stationary emission sources like boilers for power and heat. Since stationary sources generally are covered by existing environmental regulations, which require permits and controls for some sources, this report focuses on mobile sources at airports. Because of the different operations and emissions sources associated with aircraft, GSE, and landside vehicle activity it is useful to analyze them independently.

The report discusses the three categories of airport activity and possible emission mitigation methods for each. In general, this report is organized as a reference document for evaluating mitigation methods that can be applied to the various emissions sources. Section 2 of the report discusses approaches for mitigating air emissions in general and describes some sources of information on these measures. Section 3 focuses on aircraft emissions, Section 4 on ground support equipment, and Section 5 on the airport landside operations. Section 6 describes actions some airports already have taken. Figure 1-1 summarizes the mitigation measures covered by Sections 3, 4, and 5 of the report.

<table>
<thead>
<tr>
<th>Mitigation Measure</th>
<th>Benefit Desired</th>
<th>Primary Pollutants Affected</th>
<th>Responsible Party</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single/reduced engine taxing</td>
<td>Reduce engine idle time</td>
<td>HC, CO</td>
<td>Airlines</td>
</tr>
<tr>
<td>Reduce reverse thrust use</td>
<td>Reduce high power engine operation</td>
<td>NOx</td>
<td>Airlines</td>
</tr>
<tr>
<td>Tow aircraft to runway</td>
<td>Reduce engine idle time</td>
<td>HC, CO</td>
<td>Airports/ Airlines</td>
</tr>
<tr>
<td>Take passengers to aircraft parked near runway</td>
<td>Reduce engine idle time</td>
<td>HC, CO</td>
<td>Airports</td>
</tr>
<tr>
<td>Reduce airport airside congestion</td>
<td>Reduce engine idle time</td>
<td>HC, CC</td>
<td>Airports/ FAA</td>
</tr>
<tr>
<td>Modernize fleet</td>
<td>Decrease fleet engine emissions</td>
<td>HC, CO</td>
<td>Airlines</td>
</tr>
<tr>
<td>Establish new engine emission standards</td>
<td>Reduce aircraft engine emissions</td>
<td>NOx</td>
<td>EPA/FAA</td>
</tr>
<tr>
<td>Cerate takeoff power</td>
<td>Decrease engine emissions at high power</td>
<td>NOx</td>
<td>Airlines</td>
</tr>
<tr>
<td>Use larger aircraft</td>
<td>Reduce LTOs</td>
<td>HC, CO, NOx</td>
<td>Airlines</td>
</tr>
<tr>
<td>Increase load factor</td>
<td>Reduce LTOs</td>
<td>HC, CO, NOx</td>
<td>Airlines</td>
</tr>
<tr>
<td>Limit number of operations</td>
<td>Reduce LTOs</td>
<td>HC, CO, NOx</td>
<td>FAA/EPA</td>
</tr>
<tr>
<td>Manage fleet</td>
<td>Increase seats per LTO</td>
<td>HC, CO, NOx</td>
<td>Airlines</td>
</tr>
<tr>
<td>Provide central ground power and air services</td>
<td>Reduce aircraft engine idle time</td>
<td>HC, CO</td>
<td>Airports/ Airlines</td>
</tr>
<tr>
<td>Alternative fuels for GSE</td>
<td>Reduce GSE emissions</td>
<td>HC, CO, NOx</td>
<td>Airports/ Airlines</td>
</tr>
<tr>
<td>Employee VMT reduction TCM</td>
<td>Reduce VMT</td>
<td>HC, CO, NOx</td>
<td>Airports</td>
</tr>
<tr>
<td>Passenger VMT reduction TCM</td>
<td>Reduce VMT</td>
<td>HC, CO, NOx</td>
<td>Airports</td>
</tr>
<tr>
<td>Idle and circulation management TCM</td>
<td>Reduce vehicle emissions</td>
<td>HC, CO, NOx</td>
<td>Airports</td>
</tr>
<tr>
<td>Alternative fuels for rental cars</td>
<td>Reduce vehicle emissions</td>
<td>HC, CO, NOx</td>
<td>EPA/ARB</td>
</tr>
<tr>
<td>Alternative fuels for heavy duty commercial vehicles</td>
<td>Reduce vehicle emissions</td>
<td>HC, CO, NOx</td>
<td>EPA/ARB</td>
</tr>
</tbody>
</table>

AIR POLLUTION MITIGATION MEASURES FOR AIRPORTS AND ASSOCIATED ACTIVITY
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-1</td>
<td>Potential Measures for Use with Aircraft</td>
<td>10</td>
</tr>
<tr>
<td>3-2</td>
<td>Basic Calculation Procedures for Aircraft Emissions</td>
<td>10</td>
</tr>
<tr>
<td>3-3</td>
<td>Forecast of Aircraft Fleet Changes at LAX</td>
<td>34</td>
</tr>
<tr>
<td>3-4</td>
<td>Aircraft Emission Mitigation Measures</td>
<td>49</td>
</tr>
<tr>
<td>4-1</td>
<td>California GSE Population Estimates</td>
<td>52</td>
</tr>
<tr>
<td>4-2</td>
<td>Breakdown of GSEs By Equipment Type</td>
<td>53</td>
</tr>
<tr>
<td>4-3</td>
<td>Ground Support Equipment Use Characteristics</td>
<td>53</td>
</tr>
<tr>
<td>4-4</td>
<td>Emission Factors for GSE Engines</td>
<td>55</td>
</tr>
<tr>
<td>4-5</td>
<td>Pros and Cons of Centralized Power Systems</td>
<td>58</td>
</tr>
<tr>
<td>4-6</td>
<td>Costs of Central Power Systems</td>
<td>62</td>
</tr>
<tr>
<td>5-1</td>
<td>California Airports: MAPs and Trips per Day</td>
<td>73</td>
</tr>
<tr>
<td>5-2</td>
<td>California Airports: MAP Vehicle Trip Rate and Total Vehicle Trips Per Day</td>
<td>73</td>
</tr>
<tr>
<td>5-3</td>
<td>VMT and Speed for Selected Airports</td>
<td>74</td>
</tr>
<tr>
<td>5-4</td>
<td>Oakland Airport Ground Access Vehicle Emissions</td>
<td>74</td>
</tr>
<tr>
<td>5-5</td>
<td>Parking Rate Versus Percent Non-Drive</td>
<td>83</td>
</tr>
<tr>
<td>5-6</td>
<td>Passenger Drop Off Versus Parking Supply at Six Airports</td>
<td>84</td>
</tr>
<tr>
<td>5-7</td>
<td>Passenger Drop Off Versus Long Term Parking Price at Five California Airports</td>
<td>84</td>
</tr>
<tr>
<td>5-8</td>
<td>Airport Transportation Control Measures</td>
<td>96</td>
</tr>
</tbody>
</table>
When evaluating mitigation methods, there are various approaches for reducing emissions. They could include capturing or controlling emissions directly, reducing the emissions rate, reducing activity of the source, or improving the system efficiency. Each of these approaches are considered and included in the measures discussed in this report.

This section discusses aircraft, GSE, and vehicles as emission sources generally. Specific measures that apply to each source type are discussed in more detail in subsequent sections. The last part of this section discusses some other sources of information on mitigation methods.

2.1 Aircraft Emission Sources And Pollutants

To decide the types of mitigation measures to consider, it is important to understand the source or cause of emissions of different pollutants. This section briefly describes the various emission sources associated with aircraft and related activity.

Air emission inventories for aircraft use a landing and takeoff (LTO) cycle as their basis. An LTO includes the aircraft operation from the time the aircraft starts its engines, taxis to the runway, takes off, and climbs out toward cruise altitude as well as the approach, landing, and taxi in to the gate where the engines are shut down. HC and CO emission indexes are very high during the taxi/idle operations when aircraft engines are at low power and operate at less than optimum efficiency. These emissions fall, on a per pound of fuel basis, as the aircraft moves into the higher power operating modes of the LTO cycle.

Thus, operation in the taxi/idle mode, when aircraft are on the ground at low power, is a significant factor for HC and CO emissions. When considering mitigation methods for HC and CO, the objective is to minimize the aircraft operation at idle and low power taxi.

When calculating hydrocarbon emissions it is preferable to quantify individual compounds rather than total organics, however, little data on organic speciation is available for aircraft engines. Two potential sources for speciation profiles are EPA's Air Emissions Species Manual, Volume 1, Volatile Organic Compound Species Profiles and ARB's Identification of Volatile Organic Compound Species Profiles, 2nd Edition, August 1991. The speciation profiles for aircraft engine exhaust in current versions of these reports, however, are not well developed. Additional research and testing under realistic conditions will be required to refine these profiles.

NOx emissions are low when engine power and combustion temperature are low but increase as the power level is increased and combustion temperature rises. Therefore, the takeoff and climbout modes have the highest NOx emission rates.

Particulates form as a result of incomplete combustion. Particulate emission rates are somewhat higher at low power rates than at high power rates since combustion efficiency improves at higher engine power. Particulate emissions are highest during takeoff and climbout, however, because the fuel flow rate also is high. Very little is known quantitatively about particulate emissions from aircraft engines. As a result, particulate emissions from aircraft engines are not covered by this report.

In addition to knowing how pollutants are emitted from aircraft, it is important to antici-
Introduction

Growth in air travel in the U.S. has averaged more than 5% per year for the past decade. The growth in California has even been higher since it is the U.S. gateway for travel to Asia, the fastest growing segment of international air travel. And the growth rate is not expected to diminish much during the 1990s. To accommodate this growth several California airports have plans to expand their runways, their facilities, or both. San Francisco, Oakland, San Jose, LAX, Ontario, and Palmdale all have major construction projects either underway or in design. Robust growth of this sort can lead to congestion on both the airport airside and landside. Aircraft may wait in line to take off and, upon arrival, wait for an empty gate. During peak periods, passenger traffic to the airport can overload access roads and parking facilities as well. Construction, congestion, and increased activity all result from growth and the net effect of this growth on air quality is that emissions of hydrocarbons (HC), carbon monoxide (CO), nitrogen oxides (NOx), and particulates from activities on and adjacent to California airports are a growing part of the state's emission inventory.

While airport activities and emissions are increasing, California is limited in its ability to mitigate the emissions. Particularly on the airside of the airport, the state has limited jurisdiction to require technology standards or to set limits on emission rates. As current programs to control emissions from stationary and mobile sources advance, airports may be left as one of the few targets for further emissions reductions. This report identifies air pollution mitigation measures that apply to airports and describes their use and the possible benefits derived from them.

Report Organization

There are three areas of activity at an airport that are important from an emissions standpoint: the aircraft operations, the ground support equipment (GSE) that service the aircraft while it is at the gate, and other activities that relate directly or indirectly to the operation of an airport. The first two categories of sources are considered part of the airport airside operations. The last category is the airport landside operations including airport-related activities. Included in this last category are the activities of the airport tenants such as food service providers and caterers, rental car agencies, airline...
have tailpipe, evaporative, and crankcase hydrocarbon emissions. \( \text{NO}_x \) and particulates also are emitted from the tailpipe although the particulate emissions are minimal.

Aircraft ground support equipment include the following types of vehicles:

- Baggage tractors
- Aircraft tractors
- Ground power units
- Air-conditioning units
- Air start units
- Baggage conveyors
- Other secondary ASE

Of these, the engine air start units utilize the largest engines (350 to 460 HP), while all others generally use engines ranging from 50 to 250 HP. A significant percentage of the smaller engines are gasoline powered; only the larger engines tend to be diesel, and even these engines are sometimes run on Jet A (kerosene jet fuel). At some California airports, notably LAX, the airlines have begun to phase out the gasoline powered equipment for LPG-fueled units.

The set of equipment that are certified to on-highway standards are buses, cars, pickup trucks, and vans. These vehicles may see operation both inside and outside airports. Firefighting equipment usually is kept ready for service and generally use on-highway certified engines.

Another set of equipment are not related to aircraft operations but to airport operations. Most airports maintain some construction equipment for emergency repairs or normal runway maintenance. In addition, runway and apron sweepers and airfield inspection carts often are used. Cargo operations in major airports use cranes and forklifts to manage and store cargo in airport warehouses. In a few airports in California, special snow clearance equipment (blowers, front-end loaders) may be used.

Among the mitigation measures appropriate for ground support equipment, ARB is already acting on imposing emission standards on off-highway engines. Other mitigation measures include:

- Installation of centralized air and electrical ground power at each gate area
- Electrification of ramp service (food, cargo, water/sewage) vehicles
- Use of alternative fuel engines on airport service vehicles such as sweeper, baggage, and tractors.

### 2.3 Emissions From Airport Related Activity

Emissions from vehicular traffic through the airport and nearby areas are a very large contribu
tor to airport HC and \( \text{NO}_x \) emissions. Vehicle activity includes:

- Private vehicles dropping off and picking up passengers
- Public transit vehicles (buses and vans) offering connections to downtown and suburban locations
- Shuttle buses for car rental, off-airport parking and hotel pickup
- Cargo vehicles for delivery of luggage, express mail and bulk air cargo
- Construction vehicles for supporting off-airport building, commercial and industrial development

Except for the last category, all of the vehicles involved are certified to on-highway standards. A large number of mitigation actions can be taken to address vehicular activity in each category. The reduction of vehicle trips falls under the cat-
SECTION 2:
Approach To Mitigating Air Emissions

When considering approaches to mitigate emissions at airports it is important to understand the relative sizes of the sources. Figure 2-1 summarizes the 1990 emissions of commercial and general aviation aircraft, GSE, and light duty vehicles for a large, medium, and small commercial airport in California: Los Angeles International (LAX), Sacramento Metro (SMF), and Long Beach (LGB) respectively. These emission summaries were computed as reference values to evaluate the potential benefits of various mitigation measures. They portray a range of airport sizes and are used illustratively. They are not intended to be considered baseline emissions for these airports.

**Figure 2-1**
Airport Reference Emissions – 1990
— Emissions In Tons Per Year —

---

**Legend**
- Vehicle
- GSE
- G/A A/C
- Comm A/C

---

*Includes Air Taxi Aircraft Emissions
**Includes Foreign Air Carrier Emissions

---

*Air Pollution Mitigation Measures*
*For Airports and Associated Activity*
Individual Airports

Airports themselves are a valuable source of information. Airport managers and airport master plans can provide information about expansion plans, scope of construction projects, and anticipated changes within the airport and airport vicinity. They typically are more familiar with emission mitigation measures that affect the airport as a whole, such as ground transportation measures.

Open Literature

Open literature is a limited source of information. General discussions of airside measures can be found in several magazines, such as Aviation Week & Space Technology and AIRPORT Magazine. Literature also is available that addresses transportation control measures like carpooling and vanpooling, transit, parking, and user fees.

2.5

Report Scope

This report includes a review of the mitigation measures that may apply to airport airside and landside emission sources. It is organized as a reference manual for mitigation measures. Section 3 describes measures that apply to aircraft, Section 4 describes measures that apply to ground support equipment, and Section 5 describes measures that apply to the airport landside and related activities. Information provided for each measure includes a definition, guidelines on how it should be applied, data that is required to evaluate its use, and when it can be most effective. Sample calculations showing its use are provided where helpful, and references for further information are listed.

This is an overview report. As described in the individual sections, data used for sample calculations come from various sources, which are believed to be reasonable but may not be representative of actual operations at all California airports. Also some calculations use EPA-defined default values, which are not ARB-approved default values. The reader is cautioned to use actual data, specific to local conditions and individual airports, when evaluating mitigation measures for a specific location. Each section discusses sources of information to guide the reader in locating the appropriate data. Appendix F also references several data sources.
pate changes to the overall fleet since newer aircraft generally have lower HC and CO emissions and higher NOx emissions. There are two primary factors driving the changes to the fleet: noise regulations and growth. National noise regulations call for the phase out of older aircraft, which typically have old, loud engines, by the end of this decade. These are known as Stage II aircraft. The newer, Stage III aircraft have newer, high-bypass engines, which are not only quieter, but emit less HC and CO. As Stage III aircraft replace Stage II, the average emissions of these pollutants for the fleet declines. The one exception to this is when airlines buy “hushkits” which muffle the noise from the low-bypass engines but do nothing to affect emissions directly. These kits enable the older, dirtier engines to remain in service longer. While the growth curve for air travel has flattened during the present recession most analysts expect continued robust growth throughout the 1990s. This will stimulate continued modernization of the U.S. fleet, which must be considered when evaluating alternative emission mitigation methods.

Mitigation measures that are targeted to HC and CO emissions usually focus on relieving congestion on the airside of the airports since congestion causes aircraft to sit on taxi-ways with engines running. Congestion relief measures discussed in the next section of the report include:

- improvements to the layout of taxi-ways on the airport
- upgraded instrumentation and air traffic control procedures to minimize spacing between incoming aircraft and to better coordinate landings and takeoffs
- controlling aircraft departures through gatehold procedures
- transporting passengers to aircraft parked close to runways.

HC and CO mitigation measures that do not relate to airport airside congestion include:

- single-engine or reduced engine taxing
- provision of ground-based electricity and pre-conditioned air so APU (Auxiliary Power Unit) operation is unnecessary.

Mitigation measures that address NOx are much more limited because takeoff and climbout times are relatively short and must take place at very narrow engine power ranges. Probably the best mitigation methods relate to engine design changes, however, states do not have the authority to dictate such changes. Other alternatives include:

- delayed takeoff
- limiting the number of operations allowed
- encouraging the use of larger aircraft, which move more people into and out of the airport with each LTO.

These and other mitigation measures are discussed in Section 3.

2.2 Aircraft Service Equipment
Emission Sources And Pollutants

A wide variety of equipment are used in ground support to aircraft operations and they are needed to move, service, load, fuel and power the aircraft. Three distinct categories of equipment for emissions purposes include: mobile equipment with engines certified to on-road emissions standards, mobile equipment that currently are unregulated, and transportable equipment that currently are unregulated. These equipment
3.1.1

Sources of Information on Emission Mitigation Measures

Various information sources are available on aircraft mitigation measures. General information on mitigation measures in use or proposed for use at U.S. airports is available from government documents (EAs, EISs, and EIRs), airport management, airlines, and open literature. Airports and airline staff are responsible for implementing most aircraft mitigation measures. Airport activity and operational data is available from airport management, airlines, and government documents, and publications. Airport management generally can provide airport specific information including the total number of LTOs, aircraft landing weights and fees, and apron and airfield procedures. Airline specific data such as number of LTOs, time-in-modes, load factors, GSE population and use, aircraft/engine combinations, and airline policies are tracked by individual airlines. FAA publications, including Airport Activity Statistics of Certificated Route Air Carriers, FAA Air Traffic Activity, and FAA Statistical Handbook of Aviation, contain data on aircraft models and number of LTOs for airports with FAA control towers, which includes most U.S. airports with commercial air traffic. Valuable sources of current and planned airport projects include EAs, EISs, EIRs, airport management, airlines, and magazines. Specific information sources for evaluating some mitigation measures are discussed later.

<table>
<thead>
<tr>
<th>Objective</th>
<th>Measure</th>
<th>Pollutants Affected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decrease Engine Operation</td>
<td>• Single/reduced engine taxing</td>
<td>• HC, CO</td>
</tr>
<tr>
<td></td>
<td>• Reduce use of reverse thrust</td>
<td>• NOx</td>
</tr>
<tr>
<td>Decrease Times in Mode</td>
<td>• Tow aircraft to runway</td>
<td>• HC, CO</td>
</tr>
<tr>
<td></td>
<td>• Take passengers to aircraft parked near runway</td>
<td>• HC, CO</td>
</tr>
<tr>
<td></td>
<td>• Reduce airport congestion</td>
<td>• HC, CO</td>
</tr>
<tr>
<td>Decrease Fleet Average Engine Emission Factors</td>
<td>• Modernize fleet</td>
<td>• HC, CO</td>
</tr>
<tr>
<td></td>
<td>• Establish new engine emission standards</td>
<td>• HC, CO, NOx</td>
</tr>
<tr>
<td></td>
<td>• Derate takeoff power</td>
<td>• NOx</td>
</tr>
<tr>
<td>Decrease LTOs</td>
<td>• Use larger aircraft</td>
<td>• HC, CO, NOx</td>
</tr>
<tr>
<td></td>
<td>• Increase load factor</td>
<td>• HC, CO, NOx</td>
</tr>
<tr>
<td></td>
<td>• Limit number of operations directly</td>
<td>• HC, CO, NOx</td>
</tr>
<tr>
<td>Increase Number of Seats</td>
<td>• Manage fleet</td>
<td>• HC, CO, NOx</td>
</tr>
</tbody>
</table>

### Table 3-2

**Basic Calculation Procedures For Aircraft Emissions**

\[
E_i = \sum (TIM_{ik} \times \left( \frac{FF_{ik}}{1000} \right) \times (EL_{ik}) \times (NE_i)) \\
ET_i = \sum (E_i) \times (LTO_i)
\]

Where:

- \(E_i\) = total emissions of pollutant i, in pounds, produced by aircraft type \(j\) for one LTO cycle
- \(TIM_{ik}\) = time in mode for mode \(k\), in minutes, for aircraft type \(j\)
- \(FF_{ik}\) = fuel flow for mode \(k\), in pounds per minute, for each engine used on aircraft type \(j\)
- \(EL_{ik}\) = emission index for pollutant i, in pounds of pollutant per one thousand pounds of fuel, in mode \(k\) for aircraft type \(j\)
- \(NE_i\) = number of engines used on aircraft type \(j\)

### Table 3-2

**Basic Calculation Procedures For Aircraft Emissions**

\[
E_i = \sum (TIM_{ik} \times \left( \frac{FF_{ik}}{1000} \right) \times (EL_{ik}) \times (NE_i)) \\
ET_i = \sum (E_i) \times (LTO_i)
\]

Where:

- \(E_i\) = total emissions of pollutant i, in pounds, produced by aircraft type \(j\) for one LTO cycle
- \(TIM_{ik}\) = time in mode for mode \(k\), in minutes, for aircraft type \(j\)
- \(FF_{ik}\) = fuel flow for mode \(k\), in pounds per minute, for each engine used on aircraft type \(j\)
- \(EL_{ik}\) = emission index for pollutant i, in pounds of pollutant per one thousand pounds of fuel, in mode \(k\) for aircraft type \(j\)
- \(NE_i\) = number of engines used on aircraft type \(j\)

(For more information on this procedure, see Appendix A)
egory of Transportation Control Measures (TCM). Reduction of vehicle emissions can involve switching to alternative fuels or entirely replacing vehicles with electrified light rail. TCM's reduce vehicle trip activity and the net reduction in number of vehicles results in decreased congestion, and this in turn reduces emissions of the vehicles operating in the airport. Private (non-commercial) automobile traffic is a primary target for TCM's, since other strategies such as conversion to alternative fuel use is far more difficult to implement. Candidate strategies for vehicles include:

- ridesharing (car and vanpooling)
- transit encouragements
- remote and close in park and ride
- telecommuting
- variable work hours
- parking management and pricing.

Sources Of Information
On Mitigation Measures

This section summarizes some of the sources of information that are available on the use of emissions mitigation measures and the data needed to assess their benefits. Sources of information include: government agencies and documents, individual airports, and open literature. Additional information on some of these sources is discussed under the specific measures in later sections of the report. Appendix F lists references used in developing this report. A table cross-referencing the sources and applicable mitigation measures appears on page F-1.

Government Agencies
and Documents

The Federal Aviation Administration (FAA) publishes numerous documents on airport and aircraft activity. One document that is required by the FAA for construction of new airports as well as major airport expansions is an Environmental Assessment (EA). An EA is prepared by the organization advocating the construction project and considers the potential environmental impacts. The completed document is reviewed by local, state, and federal government agencies. An Environmental Impact Statement (EIS) is developed from an EA by adding sections that cover specific steps in the planning process. Many EAs and EISs address air quality and emissions, listing background data, air pollution mitigation measures, and the effect of measures on air quality. Generally, an EA and EIS will contain both airborne and landside air pollution mitigation measures. EISs recently have been prepared for new airports in Dallas (Alliance Airport, dedicated to cargo industrial activity) and Denver, and airport expansions at the Dallas/Ft. Worth, O'Hare, and Pittsburgh International Airports.

The U.S. Environmental Protection Agency (EPA) publishes guidance and data compilation documents such as Procedures for Emission Inventory Preparation and Compilation of Air Pollutant Emission Factors. These documents are an excellent source of emission factors and calculation methodology.

Many state and local government agencies publish documents and require reports similar to an EIS. Environmental Impact Reports (EIR) are prepared in accordance with California Environmental Quality Act Statutes and Guidelines. Several EIRs have been prepared for California airports with expansion plans or active projects such as those for Los Angeles, Ontario, Burbank, Palmdale, San Jose, San Francisco, and Oakland Airports.
3.2

Measures

This section discusses air emission mitigation measures that potentially can apply to aircraft. A description of each measure is followed by a discussion of constraints, applications, key inputs, and sample calculations. Where feasible and appropriate a calculation procedure for determining emission reduction benefits and direct and indirect implementation costs is described. The emissions reduction benefit is supplied where possible. Costs are highly site-specific and are not calculated here so as not to mislead the reader. Finally, references for further information and variations of the measure are provided. Under the discussion of implementation feasibility, a responsible party is identified. Generally, airlines are responsible for aircraft operational issues, airports are responsible for airport facilities, FAA is responsible for aircraft procedural issues, and EPA is responsible for environmental regulations, although responsibility is shared for some measures. This evaluation does not constitute a legal opinion on the authority of these parties to implement these measures. Reference and variation information is not comprehensive. Also, the measures discussed in the report include those that are believed to have a significant impact on air quality. Emission benefits may be obtained by other methods or procedures as well. For example, where aircraft can roll onto a runway from the taxiway and takeoff without stopping, emissions will be lower than they would be if the aircraft came to a stop before initiating its takeoff roll. This and other measures generally will have smaller air quality benefits than those discussed in the report and consequently have not been analyzed in detail.

3.2.1

Single/Reduced Engine Taxiing

This measure reduces engine operating time at idle.

Large commercial aircraft have two, three, or four engines. Since low thrust is needed to taxi an aircraft, one or more engines can be shut down during taxi. Not only does shutting down an engine reduce the emissions from the engine(s) shutdown, the remaining engine(s) operates at higher RPM. This results in more efficient operation and lowers the HC and CO emissions per pound of fuel consumed. It also results in higher engine exhaust velocity. Single/reduced engine taxiing, which also is referred to as engine-out taxiing, only affects the taxi mode emissions. In addition to emission reduction benefits, this measure also may conserve fuel.

Constraints

Some constraints such as the number and placement of engines on an aircraft type, narrow or contaminated ramps and taxiways, and bad weather limit the use of single/reduced engine taxiing. Also, immediately prior to takeoff, all engines must run for at least two minutes to achieve thermal stability. Two minutes operation at idle also is necessary for engine cool down.

Large commercial aircraft have two, three, or four engines that can be mounted in various combinations on the wing of an aircraft or rear-fuselage. The engine(s) that remains running during single/reduced engine taxiing must enable the pilot to operate the aircraft safely and with adequate control. For some aircraft, reduced engine taxiing results in power being supplied from only one side of the aircraft. When the power is unbalanced, the pilot uses the brakes to control and
SECTION 3:
Measures For Mitigating Emissions
From Aircraft Operations

3.1
Introduction

Aircraft operating at commercial airports include large commercial jets, smaller commuter aircraft powered by turboprop engines, piston-engined general aviation aircraft, and other miscellaneous aircraft. A variety of military aircraft also operate at some commercial airports in addition to their operations at military airbases. This section primarily focuses on measures that may apply to commercial jets since their emissions represent the largest portion of the total aircraft emissions inventory. Obtaining data to assess the effect of these measures on smaller aircraft, particularly general aviation aircraft, is more difficult. Where measures are appropriate for mitigating emissions of other classes of aircraft, their relevance is discussed.

Large aircraft have two sources of air emissions: the engines and the auxiliary power unit (APU). The engines are a much larger emissions source than the APU. The traditional way to consider aircraft emissions is pounds of pollutant emitted per LTO (landing and takeoff cycle). An emissions inventory (pounds emitted) then is a function of:

- number of engines in operation during each mode of the LTO (taxi out, take-off, climbout, approach, taxi in),
- time the aircraft operates in each mode,
- emission factors for the aircraft engines during each mode,
- number of LTO cycles,
- emission factors for the APU, and
- APU operating time during each LTO cycle.

Since a commercial airline’s purpose is to transport passengers (and freight, to a lesser extent), however, another way to evaluate the emissions generated at an airport is to consider pounds of pollutant emitted per passenger. In addition to the factors listed above, emissions per passenger is a function of:

- number of seats on individual aircraft and
- number of actual passengers per aircraft (passenger load factor).

On this basis, there are several possible approaches to mitigating emissions from aircraft. Table 3-1 summarizes mitigation measures that address these specific factors. Table 3-2 shows the equations used to calculate aircraft emissions. Additional details on quantifying emissions can be found in a document called Procedures for Emission Inventory Preparation, Chapter 5 - Aircraft, which is published by EPA and is included in Appendix A: Data Required to Evaluate Aircraft Measures. Calculations of aircraft emissions referenced in this section were based on the procedure outlined in the EPA document.
Calculation Procedure

\[ E_i = \sum \left( \frac{\text{TIM}_{pj}}{1000} \right) \times \left( \frac{\text{FF}_{pj}}{1000} \right) \times \left( \frac{\text{EI}_{pj}}{1000} \right) \times \left( \frac{\text{NE}_j}{1000} \right) \]

Emission Reduction Benefit

Assume for TIM:

All engines operate for 5 minutes prior to takeoff or shutdown (2 minutes minimum for thermal stability/cool down)
No change to average taxi time

Assume for NE:

<table>
<thead>
<tr>
<th>Engine Type</th>
<th>Engines/Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>A300 - 1</td>
<td>B747 - 3 engines</td>
</tr>
<tr>
<td>A310 - 1</td>
<td>B757 - 1 engine</td>
</tr>
<tr>
<td>A320 - 1</td>
<td>B767 - 1 engine</td>
</tr>
<tr>
<td>B727 - 1</td>
<td>L1011 - 2 engines</td>
</tr>
<tr>
<td>B737 - 1</td>
<td>DC9 - 2 engines</td>
</tr>
</tbody>
</table>

Frequency of Use:
70% of all taxi periods x 5 minutes

Emission Benefit:
Difference between emissions calculated using baseline assumptions and those calculated after applying above assumptions

Implementation Costs

\[ \text{Fuel cost/savings} = \left( \text{engine-out taxi time} \times \left( \frac{\text{FF}_{pj}}{1000} \right) \right) \times (\text{jet fuel cost}) \]

Indirect and Noneconomic:

Pilot training costs

Assumptions

The following assumptions were made in estimating emissions for aircraft with single/reduced engine taxiing for the sample calculations. These assumptions allow for possible constraints limiting the use of the measure. They are:

- this measure can be used 70% of the time,
- all engines must run for at least two minutes before takeoff,
- all engines are run for five minutes during taxi-in and taxi-out,
- only one (or two) engine(s) is run for the remaining taxi time, and
- at least one engine, but not more than two, are shut down during taxi for aircraft not listed under the calculation procedure above.

Running all engines for five minutes (instead of two minutes) of the taxi time and using the measure only 70% of the time allows for limits due to narrow taxiways, bad weather, and other limiting conditions. Airport specific data should be used if available.

Sample Calculations

This sample calculation illustrates the procedure for determining the benefit of single engine taxiing on HC emissions for B737-300 aircraft. A similar procedure is followed to determine CO and NOX emissions. Fleet emissions without single engine taxiing are compared to those while using the procedure for commercial aircraft at LAX in 1990.

To calculate an emissions estimate, average taxi-in and taxi-out times for the airport were determined from FAA data. Climbout and approach times in mode were adjusted to reflect the average summer morning mixing height for LAX (1800 feet). As discussed more fully in Appendix A, airport-specific mixing height should be used to adjust climbout and approach times for calculating emissions at any airport.

References

There is no universal policy on single/reduced engine taxiing. Some domestic airlines have a policy of practicing single/reduced engine taxiing, yet leave it to the discretion of the pilot. Contact airlines for individual practices. Some airports, such as Heathrow in the U.K., encourage aircraft to taxi with reduced engines for fuel economy reasons. Generally, however, reduced engine taxiing is left up to the pilot's discretion.

Measure Variations

No other variations to this measure were considered.
3.1.2

Reference Emissions

To evaluate the mitigation measures discussed in this report, reference emissions estimates were calculated for commercial aircraft operations. These estimates were based on aircraft activity during 1990 as reported in city of Los Angeles Department of Airports’ (LADDA) LAX revenue landing statistics report for periods 1/90 through 12/90 and FAA’s Airport Activity Statistics of Certified Route Air Carriers. The estimates are used as a basis for comparison with emission estimates of select aircraft mitigation measures to provide the measures' emissions reduction benefits. A quantitative comparison is made for those measures for which data is available to calculate resulting emissions. The commercial aircraft emissions references are based on operations at three California airports: Los Angeles International Airport (LAX), Sacramento Metro Airport (SMF), or Long Beach Airport (LGB). The 1990 reference estimates are:

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>LAX</th>
<th>SMF</th>
<th>LGB</th>
</tr>
</thead>
<tbody>
<tr>
<td>HC</td>
<td>4,697,755</td>
<td>111,671</td>
<td>28,313</td>
</tr>
<tr>
<td>CO</td>
<td>11,672,618</td>
<td>434,426</td>
<td>172,216</td>
</tr>
<tr>
<td>NOx</td>
<td>6,939,500</td>
<td>546,952</td>
<td>248,515</td>
</tr>
</tbody>
</table>

The resulting emissions also are displayed in Figure 3-1 by pollutant and operational mode. The following discussion identifies the key inputs for calculating the emissions reduction benefit for each measure.

**Figure 3-1**
Commercial Aircraft Reference Emissions By Mode – 1990

---

**Air Pollution Mitigation Measures**
For Airports and Associated Activity

11
3.2.2

Reduce Use Of Reverse Thrust

This measure reduces engine operating time at full throttle.

Airport runways vary in length. If the runway is relatively short and engine power is needed to reduce the aircraft's speed quickly, thrust reversers are used. A longer runway allows room for an arriving aircraft to slow down after landing using wheel brakes and without the need for reverse thrust from the aircraft engines. While all runways should be long enough for approved aircraft to land using brakes only, heavy braking significantly reduces the life of the brakes and tires.

For reverse thrust, mechanical devices in the engines deflect the engine exhaust forward. For maximum braking of the aircraft, the engines are run at near full power with the thrust reversers engaged. On a typical landing, the thrust is reversed for approximately 15 seconds although this varies depending on the aircraft and runway length. The pilot in control of the aircraft makes the decision on whether to use reverse thrust. Because the engines are run at full throttle, thrust reversal is a source of NOx emissions.

Aircraft size and weight also is a factor in whether reverse thrust is needed. Larger, heavier aircraft need more room to slow down than do small aircraft. For a given runway length, some aircraft typically may use reverse thrust while others do not.

Constraints

Space availability and construction capital requirements are constraints to lengthening a runway. To lengthen an existing runway, land for the runway extension and space for changes to the approach and departure patterns must be available. This measure is not feasible for a space constrained airport. Runway improvements also are relatively high cost construction. Because an airport is a place of almost continuous activity there may be serious limits on when construction can take place.

Safety may be a factor in using reverse thrust. Certain weather conditions may dictate that the pilot rely on reverse thrust rather than wheel brakes. Airport design also is a factor. High-speed runways enable an aircraft to exit the runway without coming to a near stop. Ninety-degree, unbanked turns between the runway and taxiway require the aircraft to slow much more. Also, if one turnout is missed due to slower braking speed, taxi-in time may increase. As mentioned, heavy braking increases maintenance costs on brakes and tires.

Another constraint that is difficult to assess objectively is the pilot's desire to land the aircraft smoothly. Since the landing is the last phase of the flight, it is often the most memorable for passengers. As a consequence, many pilots will use as much of the runway as possible to insure a smooth landing rather than forcing the aircraft down early. The further down the runway the wheels touchdown, the more likely reverse thrust will be required.

Applications

Runway length is an important consideration in the design of new airports. Prospects for extending a runway or building a new runway at an existing airport may be more limited. Since reducing the use of reverse thrust is one of the
Sample Calculation For...

**Single Engine Taxiing**

Emissions = Σ(TIM) × (FF/1000) × (EI) × (NE)

— HC Emissions —

### TAXING NOT IN USE

<table>
<thead>
<tr>
<th>Mode</th>
<th>Time in Mode</th>
<th>Fuel Flow</th>
<th>Emission Factor</th>
<th>No. Eng.</th>
<th>Emissions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taxi-out</td>
<td>16.00</td>
<td>17.20</td>
<td>1.25</td>
<td>2</td>
<td>0.6450</td>
</tr>
<tr>
<td>Takeoff</td>
<td>0.95</td>
<td>150.79</td>
<td>0.04</td>
<td>2</td>
<td>0.0115</td>
</tr>
<tr>
<td>Climbout</td>
<td>1.14</td>
<td>123.02</td>
<td>0.25</td>
<td>2</td>
<td>0.0140</td>
</tr>
<tr>
<td>Approach</td>
<td>2.40</td>
<td>47.82</td>
<td>0.08</td>
<td>2</td>
<td>0.0163</td>
</tr>
<tr>
<td>Taxi-in</td>
<td>5.00</td>
<td>17.20</td>
<td>1.25</td>
<td>2</td>
<td>0.3784</td>
</tr>
</tbody>
</table>

HC Emissions are calculated for all aircraft in the fleet and summed to get total annual HC emissions.

### TAXING IN USE

<table>
<thead>
<tr>
<th>Mode</th>
<th>Time in Mode</th>
<th>Fuel Flow</th>
<th>Emission Factor</th>
<th>No. Eng.</th>
<th>Emissions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taxi-out</td>
<td>5.00</td>
<td>17.20</td>
<td>1.25</td>
<td>2</td>
<td>0.2150</td>
</tr>
<tr>
<td>Takeoff</td>
<td>0.95</td>
<td>150.79</td>
<td>0.04</td>
<td>2</td>
<td>0.0115</td>
</tr>
<tr>
<td>Climbout</td>
<td>1.14</td>
<td>123.02</td>
<td>0.25</td>
<td>2</td>
<td>0.0140</td>
</tr>
<tr>
<td>Approach</td>
<td>2.40</td>
<td>47.82</td>
<td>0.08</td>
<td>2</td>
<td>0.0163</td>
</tr>
<tr>
<td>Taxi-in</td>
<td>5.00</td>
<td>17.20</td>
<td>1.25</td>
<td>2</td>
<td>0.3784</td>
</tr>
</tbody>
</table>

Note: Taxi in single engine only for part of taxi time.

### Emissions Benefits

Data is available for taxi time from the FAA for some airports, although it may be difficult to obtain for all airports of interest. Emission factor data is not available for the higher RPM idle needed for single/reduced engine taxiing, but available idle emission factors can be used to provide a conservative result.

**Implementation Feasibility**

- This measure apparently can be implemented under few constraints since it already is policy at some airports and for some airlines.
- Airlines are responsible for implementing this measure. Airlines should work with airports to determine any site-specific limitations for this practice. FAA Advisory Circular No. 91-41 (Appendix B) addresses this measure and recommends that the practice not be made mandatory at any time.
Sample Calculation For...

**Reducing Reversed Thrust**

Emissions = \( \sum (T I M) \times (F F / 1000) \times (E I) \times (N E) \)

--- HC Emissions ---

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Taxi-out</td>
<td>0.90</td>
<td>17.20</td>
<td>1.25</td>
<td>2</td>
<td>0.4257</td>
</tr>
<tr>
<td>Taxi-out</td>
<td>0.90</td>
<td>17.20</td>
<td>1.25</td>
<td>2</td>
<td>0.4257</td>
</tr>
<tr>
<td>Takeoff</td>
<td>0.95</td>
<td>150.79</td>
<td>0.04</td>
<td>2</td>
<td>0.0118</td>
</tr>
<tr>
<td>Climbout</td>
<td>1.14</td>
<td>123.02</td>
<td>0.05</td>
<td>2</td>
<td>0.0173</td>
</tr>
<tr>
<td>Approach</td>
<td>2.80</td>
<td>47.62</td>
<td>0.08</td>
<td>2</td>
<td>0.0213</td>
</tr>
<tr>
<td>Taxi-in</td>
<td>4.60</td>
<td>17.20</td>
<td>1.25</td>
<td>2</td>
<td>0.1978</td>
</tr>
</tbody>
</table>

**737-300 Emissions per LTO (lbs/LTO)** 0.6736
Annual 737-300 LTOs 6,459
Total Annual HC Emissions (lbs) 4,351

--- HC Emissions ---

- Emissions Benefit 6,459
- Difference between emissions generated when the means are in use compared to when the means are in use.
- HC Emissions with measure 29,313 lbs
- with measure 28,150 lbs 1.5%
- HC Benefit 163 lbs
- Percent Reduction 1%
- CO Emissions with measure 172,216 lbs
- with measure 171,397 lbs 171.267
- with measure 171,397 lbs 11.73
- CO Benefit 820 lbs
- Percent Reduction 0%
- NOx Emissions with measure 248,615 lbs
- with measure 225,676 lbs 225.676
- with measure 225,676 lbs 15.47
- NOx Benefit 23,039 lbs
- Percent Reduction 9%

**Sample Calculations**

An emission estimate for lengthening runways was made for Long Beach Airport based on 1990 data. The change in emissions resulting from eliminating reverse thrust use on landing was estimated.

To estimate the emissions, average taxi-in and taxi-out times for Long Beach Airport were taken from FAA data. Climbout and approach times were adjusted to reflect the 2100 foot mixing height at Long Beach. The assumptions reflected in the sample calculations represent a best case for NOx emissions reductions.

**References**

There is no universal policy on the use of reverse thrusters for landing. The decision to use reverse thrust is made by the pilots on each landing. Munich 2 Airport in Germany has two 4000m (13,080 feet) runways, which are among the longest found at commercial airports. The airport management indicates that these runways allow any aircraft to land safely without using reverse thrust. San Francisco Bay Area Airports: Task Force Capacity Study of SFO, SJC, and OAK International Airports discusses reductions in aircraft delay from several measures such as extend-
few measures for reducing NOx emissions, it may be an important consideration for some airports.

**KEY INPUTS**

Reverse thrust is not included in EPA's standard LTO emission calculations, as described in Appendix A. For this report, the reverse thrust component of the LTO cycle has been added to the calculations. Engine operating conditions are similar to takeoff so additional time (15 seconds) has been added to the takeoff mode as a surrogate to evaluate the implications of reverse thrust. Because of the constraints discussed above, it is difficult to generalize about the need for using reverse thrust. Data should represent the site specific factors that are important at a given airport.

The key data needed to assess lengthening a runway is frequency and duration of the use of reverse thrust. To evaluate this measure, emissions should be calculated for aircraft using the standard LTO cycle to represent the use of no reverse thrust. To evaluate the use of reverse thrust, 15 seconds should be added to the takeoff time-in-mode (to represent time in reverse thrust).

If reverse thrust is not used, the engine power is reduced to idle while the aircraft slows down. EEA is unaware of any sources of information on the frequency of reverse thrust use by aircraft at specific airports. Site specific data collection probably is necessary to refine this calculation. However, using standard data on time-in-mode and 15 seconds of reverse thrust time, a conservative emissions estimate can be calculated.

**Calculation Procedure**

\[ E_q = \sum (TIM_p) \times (FF_p/1000) \times (EL_p) \times (NE_p) \]

**Emission Reduction Benefit**

*Assume for TLM:

- Use of reverse thrust is eliminated reducing high power operation (15 seconds equivalent of takeoff thrust) by 15 seconds.
- No effect on delay or airport capacity.

*Frequency of Use:

- 90% of all landings; all airports

*Emission Benefit:

- Difference between emissions calculated assuming 15 seconds reverse thrust use on every landing and those calculated assuming 15 seconds reverse thrust use on 10% of landings.

**Implementation Costs**

*Direct:

- Fuel costs/savings = (0.90) \times (15/60) \times (FF_{eq}/1000) \times (jet fuel cost)
- Capital cost = site specific factors may be important and need to be considered

*Indirect and Noneconomic:

- Reduced maintenance cost on engines
- Added maintenance cost on wheel brakes

**Assumptions**

The following assumptions were made in the sample calculations for a lengthened runway that eliminates the need for reverse thrust during landing. The assumptions are for an extreme situation to evaluate the maximum benefit. They are:

- every aircraft needs to use reverse thrusters during all landings,
- the thrust is reversed during landing for 15 seconds, and
- 90% of the use of reverse thrust use will be eliminated by a lengthened runway.
parts replacement on the nosegear. Some new
rugs actually lift the nosegear to tow the aircraft
and completely avoid towbars. These tugs may
not reduce the nosegear life appreciably.

The emissions from the tug and APU offset
some of the savings from towing an aircraft.
Section 4 describes, in some detail, the proce-
dure for calculating the tug’s emissions.

Safety also is an important consideration for
extensive aircraft towing. Crosswinds, standing
water, and ice can be hazards to towing and may
limit the amount of time this can be practiced.

Conventional towing is quite slow and more
tugs would be required to implement this measure
than are currently used. There would be increased
ground traffic with tugs shuttling between the
gate and runway, which most likely would increase
on-ground congestion. The slower ground move-
ment of aircraft could be a problem particularly
when weather conditions require deicing. At
some airports even towing aircraft to main-
tenance using conventional tugs may cause a net
increase in emissions because of the time required
to cross active runways and the possibility of de-
laying arriving aircraft. New high-speed tugs are
available that can tow significantly faster than
conventional tugs or aircraft taxi speed. However,
these high-speed tugs are quite expensive (aprox-
mately $1 million per unit). The initial invest-
ment of a high-speed tug is offset in part by sav-
ings in ground support labor and fuel costs and
aircraft engine hours. Some airlines have found
high-speed tugs to be economical, with a three
year payback in specific applications such as towing
to maintenance areas. An offsetting cost con-
sideration is cabin and cockpit labor costs. These
employees typically are paid for all time the air-
craft is away from the gate. If towing takes longer
than taxiing, labor costs will increase.

Applications

The longer the taxi time, the greater the po-
tential emission and time benefits from towing
aircraft. Taxi-out time tends to be longer than
taxi-in time due to queuing for takeoff and on-
ground congestion. Therefore, a high-speed tug
would be most effective if used for towing depart-
ing aircraft to the runway.

Key Inputs

The key input to towing aircraft to the run-
way is the tug’s engine emission factor and the
APU’s emission factor. To evaluate the measure,
emissions from the tug and APU must be calcu-
lated. These emissions then would be compared
to the aircraft’s emissions to estimate possible
emission reductions. Engine data needed includes
exhaust emission factors of HC, CO, and NOX, for
the tug and APU, and crankcase HC, evaporative
HC, HP rating, and in-use load factor for the tug.
Engine data may be available only for certain air-
craft tugs. See discussion of ground support
equipment in Section 4.

Calculation Procedure

\[ E_j = \Sigma (TLM) \times (FP/1000) \times (EL) \times (N_E) \]

Emission Reduction Benefit

Assume for TIM:

- All engines operate in taxi/idle mode for 2 minutes
  prior to takeoff or shutdown for thermal stability/cool
down.

Other Assumptions:

- APU operates while aircraft is being towed.

Using conventional tow vehicles: tow speed is 5 mph
average and will cover X miles (site specific - distance
from terminal to departure runway or from taxiway
near exit of end of arrival runway); tug engine is con-
ventional diesel.

Air Pollution Mitigation Measures
For Airports and Associated Activity
ed runways. Information on runway lengths for individual airports is available from Airport Master Plans, FAA Form 5010, and the airports themselves.

**MEASURE VARIATIONS**

A variation to lengthening a runway is to build a new longer runway. *San Francisco Bay Area Airports: Task Force Capacity Study of SFO, SJC, and OAK International Airports* estimates aircraft delay reductions from construction of an independent parallel runway. For SFO, a new parallel runway would reduce delay by 26%, or almost 37,000 hours per year out of 142,000 hours of delay experienced. A variation on constructing a new runway would be to convert a taxiway to a runway.

**Implementation Feasibility**

- Data on default takeoff times and FAA airport average taxi times are available. Actual reverse thrust time and use frequency are not available, but they can be estimated and used to provide a conservative result.

- Airports are responsible for lengthening runways.

- Runways can be lengthened at airports if additional land is available.

- Reductions of NOX may be possible if a runway is lengthened.

---

**3.2.3**

**Tow Aircraft to Runway**

*This measure reduces engine operating time at idle.*

Instead of taxiing, a departing aircraft can be towed from the terminal gate to the runway. This is known as dispatch towing. Towing aircraft could substantially decrease the time the engines idle. Aircraft taxi at inefficient power settings and have relatively high HC and CO emissions. The tradeoff is between aircraft engine exhaust emissions and emissions from the tow tug and the aircraft’s auxiliary power unit (APU). The APU must be run while the aircraft is being towed to provide electricity and interior ventilation, as well as compressed air to start the main engines away from the gate.

Tow tugs with varying maximum towing speeds are available. High-speed tugs tow aircraft quickly through runway and taxiway intersections, alleviating the need for intermittent stopping and cutting down the time to reach the runway. As a result, HC and CO emissions are reduced further. In addition to emission reduction benefits, the measure also conserves fuel.

**CONSTRAINTS**

Possible constraints to aircraft towing include hook-up, emissions, safety, and speed. Traditional tugs hook-up to and tow an aircraft by means of a connecting bar or towbar. The towbar places a horizontal stress on the nosegear as opposed to the vertical stress the nosegear experiences during landing. The nosegear is designed for infrequent towing for pushback from the gate or towing to a maintenance hangar rather than frequent, long-distance towing for each LTO. The additional towing means more frequent maintenance and

---

**AIR POLLUTION MITIGATION MEASURES**

FOR AIRPORTS AND ASSOCIATED ACTIVITY
3.2.4

Take Passengers to Aircraft

This measure reduces aircraft taxi time (or reduces engine operating time at idle).

Typically, passengers board an aircraft while it is parked at a terminal gate. The aircraft then taxis with the passengers for some distance to the runway for takeoff. Instead of boarding the aircraft at the gate, passengers could be transported to the aircraft parked close to the runway. Modifying procedures for aircraft servicing and/or baggage handling may or may not be necessary. This measure would decrease an aircraft’s taxi time. Much like towing aircraft to the runway, limiting the taxi time decreases the aircraft’s HC and CO emissions particularly. In addition to emission reduction benefits, the measure also may conserve fuel in most applications.

Constraints

Original airport design, airfield space, hubbing, and cost are significant factors to consider for transporting passengers to aircraft. For an airport to accommodate this measure, sufficient space must be available to park aircraft near the runway without increasing congestion. This measure generally is not feasible as a retrofit measure due to the space required near the runways. For airports that serve as hubs, it is particularly difficult to accommodate all the aircraft and required passenger transport vehicles. The emissions from the passenger transport vehicle partially offset the reductions achieved from the reduced taxi time. The initial investment in passenger transport vehicles must be considered in addition to the cost of the additional land use. The initial invest-
Using towbarless tug: low speed is 15 mph average and will cover same distance; tug engine is either electric or high efficiency diesel

Frequency of Use:
10% of all LTOs

Emission Benefit:
Difference between taxi/idle emissions calculated using baseline assumptions and tug; plus APU; plus engine warmup/cool down emissions (2 minutes out + 2 minutes in at idle)

Implementation Costs

Direct:

Fuel cost savings = [(baseline taxi time - 4 minutes) * (FF_{baseline} - FF_{tug})] / (FF_{tug} * jet fuel cost) - [(low time) * (FF_{tug}) / (jet fuel cost)]
Labor cost = [(low time - baseline taxi time) * [(additional labor cost of towing crew made up of 3 crew per additional tug]]
Equipment costs = annualized cost of 2.5 times the number of tugs currently in use (1.7 tugs per gate needed vs. 0.7 tugs per gate needed under current operations, in the experience of one airline) + annual vehicle maintenance cost + replacement parts for key nose gear components (assume 25% reduction in component life)

Indirect and Noneconomic:

APU operating costs (excluding fuel costs)
Increased complexity of on-ground operations and communications
Value of passenger time due to increased on-ground operations

ASSUMPTIONS

If emissions data for the new high-speed tugs and estimates of increased ground congestion were available, the following assumptions could be made in calculating an emissions estimate for towing aircraft to the runway:

- Assume the use of a high-speed towbarless tug
- The tug will tow at the maximum towing speed
- All aircraft engines are off during towing and the APU is in operation at full power
- All aircraft engines must run for at least two minutes before takeoff to reach thermal stability
- Engine operation under taxi conditions is reduced by the taxi-out time less two minutes.

SAMPLE CALCULATIONS

Insufficient data is available currently on the potential high-speed tug emissions and increase in ground congestion to calculate the benefit meaningfully.

REFERENCES

Two sizes of high-speed towbarless tugs are commercially available from Mercury GSE - Krauss Maffei in El Segundo, CA. The tugs have the capability of towing at speeds up to 20 mph. The tugs have been tested at various airports around the world including those in Munich, Frankfurt, Zurich, Copenhagen, Stockholm, New York, Chicago, San Francisco, and Toronto. A Mercury GSE tug currently is operated by United Airlines at San Francisco International Airport. Amsterdam’s Schiphol Airport evaluated towing aircraft to mitigate emissions. Since they have relatively short taxi times they decided not to tow aircraft because it would be too expensive for the resulting benefit. At Switzerland’s Zurich Airport, aircraft are towed by a high-speed towbarless tractor between the terminal and maintenance facility. They decided this alternative was not feasible for towing aircraft from the gate to the runway due to short taxiways and infrequent ground delays that result in average taxi times of 8.5-10 minutes. United Kingdom’s Heathrow Airport investigated and rejected aircraft towing due to the numerous taxiways and taxiways to cross.

AIR POLLUTION MITIGATION MEASURES

FOR AIRPORTS AND ASSOCIATED ACTIVITY

21
costs) + (additional labor cost of van operating crew made up of 2 crew per van])

Equipment costs = annualized cost of additional vans equivalent to 5 times the number of tugs currently in use (2-1.7 tugs per gate needed vs. 0.7 tugs per gate needed under current operations per one airline's experience) = annual vehicle maintenance cost

Indirect and Noneconomic:
Increased complexity of on-ground operations and communications
Increased passenger time spent enplaning and deplaning

ASSUMPTIONS
The following assumptions were made in calculating an emissions estimate for taking passengers to aircraft:

- passenger transport vehicle’s primary engine is left to idle between transport operations
- the vehicle has 200 BHP primary and auxiliary engines and an average load factor of 51%
- it takes eight minutes to go between the main terminal and a plane
- the average time the vehicle waits to load or unload passengers is 10 minutes
- two vehicles must each make one trip for each LTO
- the average daily operation cycle is 5am to 11pm (eighteen hours) with twenty-eight trips per day
- APU operates for 30 minutes to accommodate passenger loading and main engine start.

SAMPLE CALCULATIONS
To calculate emissions from the APU assume 30 minutes operating time:

- HC = 30 minutes × 6.88 lbs fuel/minute × 0.16 lbs HC/1000 lbs fuel ÷ 1000 = 0.03 lbs
- CO = 30 minutes × 6.88 lbs fuel/minute × 5.89 lbs CO/1000 lbs fuel ÷ 1000 = 1.22 lbs

\[ \text{NO}_x = 30 \text{ minutes} \times 6.88 \text{ lbs fuel/minute} \times 5.95 \text{ lbs NO}_x/1000 \text{ lbs fuel} ÷ 1000 = 1.23 \text{ lbs} \]

To calculate emissions from the passenger transport vehicle the following emission factors are used:

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Emission Factor (g/hr+e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HC</td>
<td>1.57</td>
</tr>
<tr>
<td>CO</td>
<td>6.06</td>
</tr>
<tr>
<td>NO(_x)</td>
<td>14.00</td>
</tr>
</tbody>
</table>

The main engine emissions for each trip are:

\[ \text{Emissions} = \frac{G}{\text{BHP-Hr}} \times 5 \times \frac{\text{load factor}}{\text{hours}} \]

- HC = 1.57 × 200 × 0.51 × (8/60) = 21.35g
- CO = 6.06 × 200 × 0.51 × (8/60) = 82.42g
- NO\(_x\) = 14.00 × 200 × 0.51 × (8/60) = 190.40g

The auxiliary engine emissions for each trip are:

- HC = 1.57 × 200 × 0.51 × (18/60) = 48.04g
- CO = 6.06 × 200 × 0.51 × (18/60) = 185.44g
- NO\(_x\) = 14.00 × 200 × 0.51 × (18/60) = 428.40g

Therefore the total exhaust emissions for two vehicles making a sight trip are:

- HC = (21.35 + 48.04)/454 g/lb = 0.31 lbs
- CO = (82.42 + 185.44)/454 g/lb = 1.18 lbs
- NO\(_x\) = (190.40 + 428.40)/454 g/lb = 2.73 lbs

This compares to average taxi-out emissions for commercial aircraft per LTO at LAX based on the FAA average taxi-out time of 15 minutes:

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>LBT/LTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>HC</td>
<td>11.91</td>
</tr>
<tr>
<td>CO</td>
<td>28.80</td>
</tr>
<tr>
<td>NO(_x)</td>
<td>2.49</td>
</tr>
</tbody>
</table>

AIR POLLUTION MITIGATION MEASURES
FOR AIRPORTS AND ASSOCIATED ACTIVITY
ment is partially offset by savings in fuel costs and aircraft engine operating hours. Unless permanent parking facilities are established, power and air would have to be provided to the aircraft by ground power units and portable air compressors or the APU, which would offset the benefits somewhat.

APPLICATIONS
The longer the aircraft taxi time, the greater the potential emissions benefit from taking passengers to aircraft. Dulles Airport near Washington, DC was originally designed to operate this way. This potentially could be a retrofit measure for an airport if taxi times are long and a sufficient amount of space is available near the runways for an aircraft staging area. The likely application for taking passengers to aircraft may be in the design of a new large airport. Space could be provided near the runways for parked aircraft and passenger boarding.

KEY INPUTS
The key data needed to assess the benefit from this measure is engine emission data for APUs and the vehicles that transport passengers to aircraft. To evaluate the measure, emissions from the APU and passenger transport vehicle must be calculated. The emissions from all the vehicle's trips and the APU would then be compared to the aircraft's emissions to estimate potential emission reductions. Vehicle engine data needed includes emission factors for exhaust (HC, CO, and NOx), crankcase HC, evaporative HC, HP rating, and in-use load factor. APU data needed includes emission factors for exhaust (HC, CO, and NOx).

CALCULATION PROCEDURE

Aircraft and APU

\[ E_T = \sum (TLM_{\text{T}}) \times (FF_{\text{D}})/1000 \times (E_{\text{L}}) \times (NE_{\text{T}}) \]

Passenger Transport Vehicle

\[ E_T = \sum (EF_{\text{T}}) \times (BHP_{\text{T}}) \times (LF_{\text{T}}) \times (\text{Use Hours}) \]

Emission Reduction Benefit

Assume for TLM:
All engines operate for 5 minutes prior to takeoff or shutdown (minimal taxi time plus 2 minutes minimum for thermal stability/cool down)

Other Assumptions:
Special vans (similar to those used at Dulles Airport) are used to transport passengers from terminal gates directly to the aircraft. Passenger transport vans will be fueled by natural gas or electric engines. Vans can accommodate 35 passengers.

On average, will need twice as many vans per LTO as tugs needed to low aircraft to runway (2 vans/tug = 1.7 tugs per gate)

A concrete holding pad must be constructed adjacent to each runway to accommodate parked aircraft. Centrally supplied air and power, as well as other services, will be made available to the aircraft on the holding pad.

Frequency of Use:
100% of all LTOs

Emission Benefit:
Difference between taxi/tide emissions calculated using baseline assumptions and emissions from the transport vans and APU plus engine warmup/cool down emissions (10 minutes at idle total)

Implementation Costs

Direct:
Fuel costs/savings = [(baseline taxi in plus taxi out time - 10 minutes) \times (FF_{\text{D}})/1000 \times (\text{jet fuel cost})] - [(passenger transport time) \times (FF_{\text{D}}) \times (\text{natural gas/electricity cost})]

Labor costs = [passenger transport time \times (baseline taxi time - 10 minutes taxi time)] \times (\text{aircraft crew labor cost})

Air Pollution Mitigation Measures for Airports and Associated Activity

NOx... 6.9... 4.5... 1.3... 0.83... -92% have "open" gates, which are located some die-
ing taxi times considerably compared to the former design where the terminal was located some distance from the runways. This design includes a central terminal with ticketing and baggage claim adjacent to public parking. This terminal can be accessed by ground traffic. An underground people-mover rail system then transports up to 13,200 passengers per hour to the midfield terminal located between the runways. Aircraft park at gates at this terminal.

Some airports can use this design in modifying an existing facility. Dulles Airport added its midfield terminal about ten years after the airport was built to accommodate airline hub operation. Operating as a hub typically increases the total number of flights, which arrive and depart on a coordinated schedule. The increased activity at Dulles would have caused severe congestion due to the number of lounges required to service the aircraft. The approach taken was to construct the new midfield terminal. Mobile lounges now transport passengers from the main terminal to the midfield terminal for approximately seventy-five to eighty percent of the flights.

Other airports have constructed terminals close to the runways for similar reasons. The United Kingdom’s Heathrow Airport near London has four terminals, three of which are located in the area between the runways. An underground tunnel connects to the central terminal area. A third terminal is planned at Charles de Gaulle Airport, outside of Paris, France along with a shuttle between terminals.

**Implementation Feasibility**

- Space requirements for parking aircraft and operating passenger transport vehicles or constructing a terminal adjacent to existing runways limit the likelihood of this measure being adopted as a retrofit. New airports can easily include this approach into their original design. The most practical variation appears to be building a midfield terminal near the runway connected underground to another terminal that provides access to the surface transportation network.

- Airport owners have the responsibility for implementing this measure.
3.2.5

Congestion —
On-Ground and In-Air

This measure reduces aircraft taxi time.

Delays at airports are a major cause of excessive aircraft idling. Some of the causes of delay include weather, airports design limitations, aircraft operating procedures, gatehold procedures, and air traffic control procedures. The majority of delays are related to runway constraints. This section discusses various ways to reduce aiseide delays.

On-ground congestion extends taxi time and can be a significant cause of aircraft sitting with engines running. Taxiing and idling primarily are sources of HC and CO emissions. Examples of on-ground congestion include arriving aircraft waiting for a gate to become available or departing aircraft waiting to get to the runway for takeoff. Various techniques are available for relieving on-ground congestion such as:

- Gatehold Procedures
- Taxiway Improvements
- High-Speed Taxi Turnouts
- Intersection Departure

Gatehold Procedures

Different airports manage air traffic control (ATC) delays differently. In some cases, aircraft begin taxiing to the runway as soon as they are ready. If ATC delays prevent them from being cleared for takeoff, they idle on the taxiway until they receive clearance. Other airports hold the aircraft at the gate until they are ready to depart and have received clearance to takeoff. This minimizes the delay while taxiing to the runway.

Taxiway Improvements

Various approaches can make taxiways more efficient for moving aircraft quickly between the gate and runway. Depending on site-specific factors and original airport design, improvements may include widening, extending, or building new taxiways. A double-width taxiway allows aircraft to pass side-by-side, reducing intermittent stops and allowing aircraft cleared for takeoff to pass aircraft that may be experiencing ATC delays. Extending taxiways may allow access to other taxiways and runways. New taxiways may be necessary to allow aircraft to taxi more directly to runways or to decrease intermittent stopping to cross runways and taxiways or to pass other aircraft.

High-Speed Taxi Turnouts

Some turnouts from runways to taxiways are constructed at a 90° angle and aircraft must nearly stop to make the turn. A high-speed turnout is curved or angled and banked to allow an arriving aircraft to enter the taxiway from the runway much faster. This clears the runway much more quickly to allow for other landings or takeoffs, thereby reducing delays.

Intersection Departure

Under most conditions aircraft do not need the full length of the runway to takeoff. Some airports allow aircraft, particularly smaller aircraft, to access the runway at the intersection of a taxiway and the runway rather than taxiing all the way to the end of the runway. At some airports this can cut taxi time substantially. While intersection departures are possible most often by commuter and general aviation aircraft, they also are feasible for smaller narrow-body aircraft such as B-737s and MD-80s at some airports.
Aircraft holding areas and additional noise barriers also may contribute to reducing aircraft taxi delays.

In-air congestion also can cause delays on the ground because arriving aircraft have priority over departing aircraft. Reducing in-air congestion can reduce on-ground delays by allowing aircraft to be cleared for takeoff more quickly. Techniques to reduce in-air congestion include:

- Reduce Aircraft Spacing
- Separate Runways
- Peak-Period Pricing

Reduce Aircraft Spacing
Reducing the longitudinal separation between inbound or outbound aircraft while in the air can increase the capacity of some airports by getting more aircraft to or away from the airport. For many airports this can be accomplished by upgrading ATC instrumentation or revising approach or departure procedures.

Separate Runways
Many airports use the same runway for commercial and commuter/general aviation aircraft. Commercial aircraft operate at higher speeds on approach or climbout than the smaller aircraft. By using separate runways, air traffic can be managed more efficiently with reduced spacing and fewer delays required to prevent one aircraft from overrun another.

Peak-Period Pricing
Peak-period pricing for landing fees may induce airlines to schedule more flights during off-peak periods. Cutting the number of flights scheduled for peak periods would reduce delays due to congestion.

These measures have the potential to reduce in-air and runway congestion resulting in reduced taxi delays.

Constraints
Various constraints must be considered when implementing and evaluating on-ground and in-air congestion reducing measures. Some of the constraints on the measures discussed include:

- Gatehold Procedures
- Taxiway Improvements
- Intersection Departure
- Separate Runways
- Peak-Period Pricing

Gatehold Procedures
Gatehold procedures can cause departing aircraft to be held at gates that arriving aircraft need causing congestion on the taxiways.

Taxiway Improvements
Taxiway improvements require additional space and considerable construction time. The airport design may not accommodate the additional space needed on the airfield to widen or build a taxiway. Also the level of activity at many airports limits the hours available for construction to take place without interfering with airfield operations.

Intersection Departure
An intersection departure may present a safety concern. LAX allowed intersection departure until a landing air carrier aircraft collided with a commuter aircraft that was moving into position to takeoff from an intersection on the same runway. ATC procedures no longer allow intersection departure at LAX.
Separate Runways

Airport layout and terminal design may make it infeasible for commercial and commuter/general aviation aircraft to operate from separate runways.

Peak-Period Pricing

Peak-period pricing for landing fees is intended to deter activity during peak-periods. Due to business factors, such as scheduling and marketing considerations, airlines may continue peak-period operations in spite of the higher landing fees. Landing fees are a small component of an airline’s total airport costs, which typically are about 5% of the airline’s total variable cost. Substantial increases in peak-period landing fees may be required to influence flight schedules.

Applications

Where airports experience long taxi times due to delay, there is a potential emissions benefit from reducing on-ground or in-air congestion. Most of the actions that can be taken to reduce delay are influenced largely by site-specific factors and should be considered individually.

Key Inputs

The key information needed to evaluate potential benefits due to delay reduction is average taxi time during periods of congestion as well as periods free of congestion. To evaluate this measure, emissions are calculated using an average taxi time-in-mode that includes periods of congestion and comparing the total emissions to those calculated using an average taxi time-in-mode without congestion.

Calculation Procedure

\[ E_j = \sum (TIM_{ij}) \times (FF_{j} / 1000) \times (EL_{ij}) \times (NE_{j}) \]

Emission Reduction Benefit

Assume for TIM:

Minimum taxi time is the average of the lowest 10 percentile of all taxi times. Taxi times that exceed the minimum are a result of congestion, local and remote weather, and mechanical/unscheduled maintenance delay. Delay resulting from congestion assumed to be 75% of all delay.

Target of Measure:

Assume all congestion-induced delay is eliminated through a combination of measures, which will be site specific.

Emission Benefit:

Maximum benefit is the difference between emissions calculated using baseline assumptions and those assuming no congestion-induced delay.

Implementation Costs

Direct:

Fuel cost/savings = (average taxi time - average of lowest 10th percentile taxi times) \times (FF_{j} / 1000) \times (jet fuel cost) \n
Capital cost = cost of congestion relief measures and equipment needed to implement, which will be site specific

Labor cost = (average taxi time - average of lowest 10th percentile taxi times) \times (aircraft crew labor costs) \n
Probably minimal or no access labor cost for most congestion relief measures. Overall probably a labor cost savings due to aircraft crew savings.

Indirect and Noneconomic:

Possibly lower staff training costs

Assumptions

Congestion reduction opportunities are highly site specific. The potential emission reductions are based on the potential to reduce the average taxi time. A reasonable assumption for the minimum taxi time is the average of the low-
est 10 percentile of all taxi times for the airport or for an individual carrier, depending on the level of disaggregation of the taxi time-in-mode data.

**SAMPLE CALCULATIONS**

To evaluate the potential benefit of reducing congestion, the average of the lowest 10 percentile of all taxi-out times for three airlines was assumed to be the average taxi-out time. This resulted in an overall reduction in taxi time of 25.36%. This percentage reduction in taxi time was applied to FAA's data on airport average taxi time. This was applied to all LTOs to represent the maximum benefit.

Data for actual taxi times for three airlines was used to determine the reduced taxi-out times that may be feasible as a result of reduced congestion.

**REFERENCES**

Many airports have tested or implemented congestion reduction measures. There is no universal set of measures appropriate for all airports. The United Kingdom's Manchester Airport is planning to revise gatehold procedures to reduce congestion. Switzerland's Zurich Airport is planning to construct double taxiways and holding bays that will enable aircraft to pass in case of changed departure sequences. At Sacramento

---

**Sample Calculation For...**

**Concentration Relief**

\[ \text{Emissions} = \sum (\text{TIM}) \cdot (\text{FF}) \cdot (\text{EI}) \cdot (\text{PE}) \]

---

**HC Emissions**

---

**a737-300 Aircraft**

cruise6-36 Engine

---

<table>
<thead>
<tr>
<th>CONGESTED CONDITIONS</th>
<th>CONGESTION REDUCED</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Mode</strong></td>
<td><strong>Time In Mode</strong></td>
</tr>
<tr>
<td>Taxi-out</td>
<td>15.00</td>
</tr>
<tr>
<td>Takeoff</td>
<td>0.96</td>
</tr>
<tr>
<td>Climbout</td>
<td>11.42</td>
</tr>
<tr>
<td>Approach</td>
<td>2.40</td>
</tr>
<tr>
<td>Taxi-in</td>
<td>8.80</td>
</tr>
</tbody>
</table>

---

**a737-300 Emissions per LTO (lbs/LTO):** 1.0672

**Annual a737-300 LTOs:** 39,184

<table>
<thead>
<tr>
<th>HC emissions are calculated for all aircraft in the fleet and summed to get total annual HC emissions:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reel Total Annual HC Emissions (lbs): 4,697.765</td>
</tr>
<tr>
<td>Reel Avg Emissions per LTO (lbs/LTO): 0.085</td>
</tr>
</tbody>
</table>

**HC emissions are calculated for all aircraft in the fleet and summed to get total annual HC emissions: |

<table>
<thead>
<tr>
<th>HC Emissions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emissions Benefit = 36,184</td>
</tr>
<tr>
<td>Difference between emissions generated when the measure is not in use compared to when the measure is in use</td>
</tr>
<tr>
<td>Reel Total Annual HC Emissions (lbs): 4,697.765 lbs</td>
</tr>
<tr>
<td>Reel Avg Emissions per LTO (lbs/LTO): 0.085 lbs</td>
</tr>
</tbody>
</table>

---

**CO emissions are determined using similar calculations with appropriate emission factors: |

<table>
<thead>
<tr>
<th>CO Emissions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emissions Benefit = 36,256</td>
</tr>
<tr>
<td>Difference between emissions generated when the measure is not in use compared to when the measure is in use</td>
</tr>
<tr>
<td>Reel Total Annual CO Emissions (lbs): 11,672.618 lbs</td>
</tr>
<tr>
<td>Reel Avg Emissions per LTO (lbs/LTO): 0.88 lbs</td>
</tr>
</tbody>
</table>

---

**NOx emissions are determined using similar calculations with appropriate emission factors: |

<table>
<thead>
<tr>
<th>NOx Emissions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emissions Benefit = 6,698.006 lbs</td>
</tr>
<tr>
<td>Difference between emissions generated when the measure is not in use compared to when the measure is in use</td>
</tr>
<tr>
<td>Reel Total Annual NOx Emissions (lbs): 6,939.498 lbs</td>
</tr>
<tr>
<td>Reel Avg Emissions per LTO (lbs/LTO): 0.88 lbs</td>
</tr>
</tbody>
</table>

---

**AIR POLLUTION MITIGATION MEASURES FOR AIRPORTS AND ASSOCIATED ACTIVITY**

30
Metropolitan Airport, high-speed runways and parallel runways have resulted in reduced taxi times. During peak periods, Sacramento tries to limit general aviation activity to the secondary runway. This separation of general aviation aircraft from jet aircraft helps to reduce peak congestion delays. LAX is planning to add to their existing high-speed taxiway exits.

The San Francisco Bay Area Airports: Task Force Capacity Study of SFO, SJC, and OAK International Airports proposes several measures for reducing delays at the area’s three major airports. The report evaluates potential aircraft delay reductions from several measures such as high-speed taxi turnouts, extended taxiways, and new taxiways.

**Measure Variations**

There are several possible variations of the congestion reducing measures mentioned above. For example, Greater Pittsburgh International Airport installed a Norden Systems’ Airport Surface Detection Radar. The radar aids controllers in directing traffic on taxiways, runways, and aprons during low-visibility weather and on obstructed areas of the airfield. Frankfurt Airport in Germany operates Siemens’ Departure Coordination System (Depcos), which replaces paper flight strips with a computerized system. Controllers enter requests and clearances (e.g. start-up, push-back, and taxi) for departing aircraft into the system. The system reduces the time needed to coordinate aircraft for departures. Three systems are in place at Germany’s Munich 2 Airport. Siemens’ Computer-Controlled Runway System improves aircraft flow and safety for movements on the taxiway. The Apron Control System is directed by a special team of controllers in the tower who are responsible for aircraft as they enter the apron area from the taxiways.

When a taxiing aircraft approaches a gate, a controller identifies the aircraft type and model for the Aircraft Docking Guidance System. At Switzerland’s Zurich Airport, slot coordinated engine startup is planned in which the clearance to start an aircraft’s engines will not be given before the assigned slot for the aircraft is actually approved.

Two measures have been implemented at Germany’s Munich 2 airport to cope with cold weather. The water table was lowered at the airport to ensure frost-free runways, taxiways, and aprons, which delay taxiing aircraft. The airport also has purchased a deicing system that is about 4 times faster than standard deicers. Both measures reduce congestion during inclement weather.

Gatehold procedures keep departing aircraft at their gates until a takeoff space is available. If all gates are occupied with departing aircraft waiting for clearance, an arriving aircraft may have to wait in a taxiway or in the terminal area. Using holding areas as a variation of a gatehold helps alleviate this problem, however, it may increase engine idle time. A holding area would be built near the runway for aircraft that had departed the gate and were waiting for a takeoff space. By freeing up gates, the congestion created by arriving aircraft stopped in taxiways and the terminal area would be relieved. Arriving aircraft also could stop in the holding area if no terminal gates were available. Another gatehold variation is to have a staging pad near the departure end of a runway to allow aircraft to pass each other in case any problems arise.

To minimize on-ground congestion at the Denver International Airport, scheduled to open in March 1994, service tunnels will connect the terminals to transfer baggage. These tunnels will reduce ground support equipment traffic on the runways and taxiways, a common source of congestion at airports.

---

**Air Pollution Mitigation Measures**

*For Airports and Associated Activity*

31
Separate runways for commercial and commuter/general aviation aircraft improves the flow of aircraft into and out of an airport. A variation on using separate runways is to divert smaller aircraft to other airports or ban them completely during peak periods of activity. All runways then could be used for larger and faster commercial aircraft. Other approaches would be to distribute traffic more evenly at one airport to minimize peaks or among area airports to reduce operations at congested airports.

One way to encourage fewer operations during peak periods is to charge commuter/general aviation aircraft higher landing fees (either during peak periods or all of the time) to deter activity. Higher fees are more likely to deter the activity of commuters and smaller aircraft used for personal trips.

### Implementation Feasibility

- Data is available for taxi time from the FAA or from the airlines. Data on aircraft delays for select measures (calculated as total hours of delay at particular airports is provided in the *San Francisco Bay Area Airports: Task Force Capacity Study of SFO, SJC, and OAK International Airports*. Many techniques are very difficult to evaluate, especially in-air techniques. Existing data can be used to estimate emissions reductions for a few measures.

- Congestion reducing measures that do not involve construction apparently can be implemented at existing and new airports under few constraints. Those measures that require construction may be limited because of a lack of space; at new airports they can be incorporated in the original design.

> Emissions reduction is achievable but highly site specific for most congestion reducing measures.

> Airports and the FAA would be responsible for implementing these measures.
Fleet Modernization

This measure reduces the fleet average HC and CO emission factors (fleet average NOx emission factors increase as the fleet modernizes).

Large commercial airlines’ fleets tend to change every year as new aircraft are purchased or leased and older aircraft are leased out, sold, or retired. The aircraft to be added to the fleets of major domestic commercial airlines within the next several years already are on order. Newer aircraft typically have cleaner engines than the aircraft they replace. Therefore, the acquisitions will lower the airline’s average emissions of HC and CO per passenger.

Constraints

Fleet modernization occurs continually although the rate of modernization varies according to numerous factors such as airline financial health, forecasts of demand for air travel, changes in marketing strategy, and cost of capital. Because of the high annual growth rate and forecasts of future growth experienced in the 1980s, many airlines aggressively modernized their fleets. While this aggressive modernization has diminished somewhat due to the recent financial problems experienced by the airlines, noise reduction legislation is acting to sustain or increase the rate. The noise legislation requires the phase out or conversion of older Stage II aircraft. When the Stage II aircraft are retired in favor of Stage III aircraft, the newer aircraft typically have engines with lower HC and CO emission factors. Converting Stage II aircraft to Stage III can be done by re-engining or by adding hushkits to muffle the noise. Re-engining usually replaces older engines with newer ones with lower HC and CO emission factors. Hushkitting has no direct effect on engine emissions. It does increase the total aircraft weight, however, which then causes a slight increase in engine emissions.

Applications

Enforced aircraft fleet modernization is an extreme measure to take for mitigating air emissions. It is discussed in this report to illustrate the change to emissions that come about as a result of the turnover in the aircraft fleet.

Key Inputs

To determine the effect of fleet modernization on the total fleet emissions, it is necessary to know the current fleet make-up and have information on future aircraft purchases, retirements, sales, and leases. If detailed future aircraft information is not available, a forecast of the future fleet based on this information is sufficient. Given an airline’s current fleet mix, the future mix is estimated by adding aircraft purchases and subtracting aircraft retirements, sales, and leases. To evaluate the benefit, emissions then must be calculated for both the current and future fleet mix. A specific airline’s current fleet and some plans for future fleet changes are presented in its annual report. Generally, the report lists aircraft firm orders by aircraft model and year of delivery. Aircraft firm order data by airline, aircraft model, and delivery year also is available from aircraft manufacturers. Specific information is not readily available on an airline’s aircraft retirements, sales, and leases. Some informed judgement will have to be applied in estimating these factors.

A similar approach can be taken for estimating historic emissions. For example, this approach could be used to adjust a baseline estimate. U.S. airline jet airplane inventories for past years is avail-
able from aircraft manufacturers, such as Boeing and McDonnell Douglas. Aircraft model and populations are contained in the *Boeing Jet Airplane Inventory*, a yearly publication. Fleet and LTO data by airport and airline for past years are contained in that year’s publication of FAA’s *Airport Activity Statistics of Certificated Route Air Carriers.*

**ASSUMPTIONS**

The following assumptions were made in calculating an emissions estimate for future fleet modernization as it would affect LAX.

They are:
- all current aircraft orders and options will be exercised by 2010
- aircraft are retired when they reach 30 years old
- Stage II aircraft still in service will have been “hush-kitted” rather than re-engined.

**SAMPLE CALCULATIONS**

Based on the procedure and assumptions described above, the change in fleet makeup for LAX was forecast. Table 3-3 summarizes the LTOs by aircraft type for 1990 and 2010 (including the

<table>
<thead>
<tr>
<th></th>
<th>1990</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Airbus</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-300-600</td>
<td>484</td>
<td>8,313</td>
</tr>
<tr>
<td>A-300-8</td>
<td>4,815</td>
<td>1,960</td>
</tr>
<tr>
<td>A-310-200</td>
<td>410</td>
<td>133</td>
</tr>
<tr>
<td>A-310-300</td>
<td>265</td>
<td>645</td>
</tr>
<tr>
<td>A-320-100</td>
<td>59</td>
<td>6,421</td>
</tr>
<tr>
<td>A-320-200</td>
<td>0</td>
<td>5,053</td>
</tr>
<tr>
<td>A-321</td>
<td>0</td>
<td>2,150</td>
</tr>
<tr>
<td>A-330</td>
<td>0</td>
<td>9,712</td>
</tr>
<tr>
<td>A-340</td>
<td>0</td>
<td>5,041</td>
</tr>
<tr>
<td><strong>Boeing</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7-707-300</td>
<td>208</td>
<td>0</td>
</tr>
<tr>
<td>7-727-100</td>
<td>4,620</td>
<td>0</td>
</tr>
<tr>
<td>7-727-200</td>
<td>32,070</td>
<td>6,414</td>
</tr>
<tr>
<td>7-737-100</td>
<td>28,940</td>
<td>0</td>
</tr>
<tr>
<td>7-737-200</td>
<td>1,085</td>
<td>2,963</td>
</tr>
<tr>
<td>7-737-300</td>
<td>39,323</td>
<td>82,295</td>
</tr>
<tr>
<td>7-737-400</td>
<td>2,504</td>
<td>5,333</td>
</tr>
<tr>
<td>7-737-500</td>
<td>480</td>
<td>10,062</td>
</tr>
<tr>
<td>7-747-100</td>
<td>2,707</td>
<td>123</td>
</tr>
<tr>
<td>7-747-200</td>
<td>10,454</td>
<td>1,490</td>
</tr>
<tr>
<td>7-747-300</td>
<td>1,550</td>
<td>500</td>
</tr>
<tr>
<td>7-747-400</td>
<td>1,763</td>
<td>21,431</td>
</tr>
<tr>
<td><strong>McDonnell Douglas</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC10-10</td>
<td>14,041</td>
<td>866</td>
</tr>
<tr>
<td>DC10-30</td>
<td>3,301</td>
<td>6,685</td>
</tr>
<tr>
<td>DC10-0</td>
<td>2,159</td>
<td>2,459</td>
</tr>
<tr>
<td>DC10-0F</td>
<td>485</td>
<td>0</td>
</tr>
<tr>
<td>DC10-60</td>
<td>0</td>
<td>143</td>
</tr>
<tr>
<td>DC10-62</td>
<td>542</td>
<td>0</td>
</tr>
<tr>
<td>DC8-80F</td>
<td>762</td>
<td>0</td>
</tr>
<tr>
<td>DC8-70</td>
<td>3,870</td>
<td>0</td>
</tr>
<tr>
<td>DC8-71</td>
<td>2,058</td>
<td>0</td>
</tr>
<tr>
<td>DC8-73</td>
<td>520</td>
<td>0</td>
</tr>
<tr>
<td>DC9-15F</td>
<td>1,113</td>
<td>0</td>
</tr>
<tr>
<td>DC9-30</td>
<td>1,208</td>
<td>17,655</td>
</tr>
<tr>
<td>DC9-90</td>
<td>36</td>
<td>432</td>
</tr>
<tr>
<td>DC10-90</td>
<td>721</td>
<td>0</td>
</tr>
<tr>
<td>MD11-11</td>
<td>16,731</td>
<td>48,321</td>
</tr>
<tr>
<td><strong>Other</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATR-42</td>
<td>0</td>
<td>2,118</td>
</tr>
<tr>
<td>BAC 111-400</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>BAE 146-200</td>
<td>15,035</td>
<td>577</td>
</tr>
<tr>
<td>Beech 181</td>
<td>169</td>
<td>0</td>
</tr>
<tr>
<td>C-208</td>
<td>0</td>
<td>13,430</td>
</tr>
<tr>
<td>DASH 7</td>
<td>0</td>
<td>381</td>
</tr>
<tr>
<td>DHC-600</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>DHC-8</td>
<td>0</td>
<td>593</td>
</tr>
<tr>
<td>EMB-110</td>
<td>5,312</td>
<td>0</td>
</tr>
<tr>
<td>EMB-120</td>
<td>5,312</td>
<td>0</td>
</tr>
<tr>
<td>EMB-145</td>
<td>0</td>
<td>2,542</td>
</tr>
<tr>
<td>F-27 SERIES</td>
<td>0</td>
<td>1,313</td>
</tr>
<tr>
<td>F-28</td>
<td>0</td>
<td>793</td>
</tr>
<tr>
<td>F100-100</td>
<td>0</td>
<td>18,575</td>
</tr>
<tr>
<td>Jetstream 31</td>
<td>10,275</td>
<td>1,440</td>
</tr>
<tr>
<td>L-100</td>
<td>0</td>
<td>2,967</td>
</tr>
<tr>
<td>L-1011-100</td>
<td>9,075</td>
<td>2,005</td>
</tr>
<tr>
<td>L-1011-50</td>
<td>0</td>
<td>4,057</td>
</tr>
<tr>
<td>L-1011-500</td>
<td>184</td>
<td>1,981</td>
</tr>
<tr>
<td>SA2-210</td>
<td>0</td>
<td>456</td>
</tr>
<tr>
<td>SF 340A</td>
<td>0</td>
<td>5,338</td>
</tr>
<tr>
<td>SHT 360</td>
<td>0</td>
<td>42</td>
</tr>
<tr>
<td>Super Jetstream 31</td>
<td>0</td>
<td>890</td>
</tr>
</tbody>
</table>

**TOTAL** 240,589 434,246
expected growth in air travel). The resulting change in emissions per LTO are:

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>1990 Fleet</th>
<th>2010 Fleet</th>
<th>Emission Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>HC</td>
<td>19.53</td>
<td>7.40</td>
<td>62%</td>
</tr>
<tr>
<td>CO</td>
<td>48.52</td>
<td>30.30</td>
<td>38%</td>
</tr>
<tr>
<td>NOx</td>
<td>28.85</td>
<td>31.25</td>
<td>-8%</td>
</tr>
</tbody>
</table>

REFERENCES

Airlines change their fleets annually as they make decisions on purchases, leases, sales, and retirements. Contact airlines and aircraft manufacturers for information on individual fleet plans.

MEASURE VARIATIONS

Some airports use a fee-based mechanism, such as charging higher landing fees for aircraft with higher emissions, as a way to encourage airlines to operate a more modern fleet mix at that specific airport. As discussed under the congestion reduction measure, landing fees are a small component of an airline’s total airport costs, which typically are about 5% of the airline’s total variable cost. Substantial fee increases may be required to influence airline behavior. At Munich 2 Airport, the basic fee is paid by ICAO licensed aircraft in accordance with Annex 16, Chapter 3 (known as Stage III in the U.S.). The modern Chapter 3 aircraft tend to be lower emitting aircraft. Higher fees must be paid by older, polluting aircraft. At Stockholm’s Arlanda Airport in Sweden, higher landing fees may be charged for aircraft with higher emitting engines. At United Kingdom’s Manchester Airport, increased emission taxes and certificates (permits) for high emitting aircraft are measures under consideration.

Implementation Feasibility

- Current fleet data and aircraft firm order data by delivery year is available from airlines and aircraft manufacturers. Aircraft lease, sale, and retirement data for future years is not available and must be estimated. Simply adding the firm order data to the existing fleet mix will give a conservative result when calculating average fleet emissions for specific airlines. (Historic inventory data is available for U.S. airline jet airplanes. Past years inventory data and LTOs are available for airports and the individual airlines that operated there from FAA reports.)

- Fleet turnover occurs as airlines make their yearly purchases, leases, sales, and retirements. Future fleet modifications depend on many factors including travel demand forecasts and the financial situation of individual airlines.

- The emission reduction benefit of fleet turnover is expected to be significant over time.

AIR POLLUTION MITIGATION MEASURES
FOR AIRPORTS AND ASSOCIATED ACTIVITY
3.2.7

New Engine Standards

This measure reduces the aircraft engine emission factors.

The U.S. EPA has the authority to establish emission standards for aircraft and aircraft engines in consultation with the FAA. HC emission standards for new aircraft gas turbine engines (greater than 6,000 lbs-thrust) were set in 1984. No CO and NOx emission standards for new jet engines have been set. It may be feasible to establish tighter HC standards and new standards for CO and NOx, although NOx likely would be the target of new standards since the 1984 standards had the effect of significantly lowering HC and CO emissions. If new standards are set, future engines will be lower emitting than they would be otherwise. As new aircraft are added to the fleet, the average fleet emissions per passenger will decrease. New standards could reduce future emissions substantially.

Constraints

Manufacturing a lower emitting engine must be demonstrated as technically feasible before new standards can be established. While EPA has the authority to establish new standards they apparently do not have any immediate plans for doing so. The time required to establish the technical feasibility and set standards can be quite lengthy. As a result, new standards can not be applied as a short term measure. Also, since new standards would only apply to new jet engines, significant fleet turnover is required before the effect of the new standards is appreciable.

Applications

New engine emission standards likely would apply to all new engines above a certain size, which would depend on the technology required to achieve the lower emission levels. The HC standard applied to all engines greater than 6,000 lbs-thrust, which covers most jet engines used by commercial airlines. Compliance with the new standards would have to be demonstrated by the engine manufacturers to receive certification by the FAA.

Key Inputs

To evaluate the effect of new standards, emissions would be calculated for an aircraft fleet with its existing engines and compared to the same fleet using new standards. That would give the maximum benefit, which would be achieved over time as the fleet turns over and the new engines achieve full market penetration.

Assumptions

No quantitative information was available on the emissions levels technically achievable by jet engines. As such, no credible assumptions for calculating an emissions estimate were made.

Sample Calculations

The calculation procedure to evaluate the effect of new standards is straightforward, as described above. However, since there was no basis to assume a specific value for new standards, no sample calculations are provided.

References

The HC emission standards for jet engines set by EPA in 1984 are codified at 40 CFR Part 87 - Control of Air Pollution from Aircraft and Aircraft Engines. A copy is provided in Appendix C. They also cover the limitations on fuel venting and smoke standards. The International Civil
Aviation Organization (ICAO) is reviewing aircraft engine NOx emissions and considering establishing a standard. While ICAO standards do not have force of law in the U.S., they would have the same effect since the major engine manufacturers need a single standard for all major markets and likely would comply with all engines manufactured. However, one source said the level being considered by ICAO is the level now achieved by the major manufacturers, which is below the current certified level, so no future benefit would be realized (nor would the emission levels get worse).

MEASURE VARIATIONS
Since no assumptions were made about specific standards, a discussion of variations is not applicable.

IMPLEMENTATION FEASIBILITY

► No data is available on likely new standards, therefore, potential emission reduction benefits are uncertain.

► EPA has the authority, established by the Clean Air Act, to set new standards.

► Significant emissions reduction may be possible in the future if new standards bring new lower-emitting engines into a significant share of the market.

3.2.8

DERATED TAKEOFF
This measure reduces engine power at takeoff.

Aircraft are designed to takeoff fully loaded on a hot day with enough of a safety factor to ensure safe operation. Full engine thrust is needed only under extreme conditions. The maximum thrust is not needed under more typical operations when the aircraft is not fully loaded and weight conditions are normal. With a derated takeoff, the engine thrust can be reduced from maximum thrust to the minimum safe level necessary given the aircraft weight and atmospheric conditions. As an aircraft’s thrust is reduced, the NOx emissions are reduced. Therefore, derated takeoff can reduce the total NOx emissions during takeoff. As an added benefit, derated takeoff can reduce fuel consumption. For this reason, many airlines routinely practice derated takeoff.

CONSTRAINTS

Some aircraft models have been supplied with two or more engine models. For example B737-200s are certified for the JT8D-7, JT8D-9/9A, JT8D-15/15A, and JT8D-17/17A/17R. The thrust of these engines range from a low of 13,900 lbs-thrust for the -7 to a high of 17,400 lbs-thrust for the -17R. The excess thrust therefore can vary greatly over all of the B737s in the U.S. fleet. This measure is much more practical for the higher thrust engines than for the lower thrust engines.

The higher an aircraft’s thrust, the faster it clears the runway and local air space. During a period of high activity use of derated takeoff may be undesirable because it would increase congestion around the airport. Also, noise reduction requirements may not permit low power takeoff because the flight path may take the aircraft over residences at a lower altitude.
APPLICATIONS

The lower the thrust can be reduced, the greater the emission benefit from derated takeoff. There is a minimum safe level to which the thrust can be reduced. However, to a greater or lesser degree, derated takeoff can be practiced on most operations and even a slight reduction in takeoff thrust can reduce NO\(_X\) emissions.

KEY Inputs

The key data needed to evaluate the emissions reduction benefit of derated takeoff are emission factors for normal takeoff and derated thrust power. To evaluate this measure, emissions first should be calculated for normal takeoff. The derated thrust emission factors then should be used to calculate the alternative emissions. The difference between the total emissions for normal takeoff and the alternative is equivalent to the benefit. However, emission factors are available for only one high power thrust level. If the takeoff thrust is reduced only slightly, the emission benefit can not be quantified.

In some circumstances, takeoff thrust reductions may be as low as the normal climbout thrust, for which emission factors are available. In such a case, the normal takeoff and climbout emission factors, available from sources including EPA's Compilation of Air Pollutant Emission Factors (AP-42), can be used to evaluate derated takeoff.

Calculation Procedure

\[
E_j = \sum (TIM_{jk}) \times (FF_{pk}/1000) \times (EL_{jk}) \times (NE_j)
\]

Emission Reduction Benefit

Assume for TIM:

- Takeoff time-in-mode is reduced to 0 and climbout time-in-mode is increased by 10% as a way to calcu-

late the effect of derated takeoff.

- No effect on delay or airport capacity.

Frequency of Use:

- 25% of all flights can apply derated takeoff 90% of the time.

Emission Benefit:

Difference between emissions calculated using baseline assumptions and those calculated after applying above assumptions

Implementation Costs

Direct:

\[
\text{Fuel cost/savings} = (\text{frequency of use}) \times ((\text{TIM}_{0}) - (\text{TIM}_{d})) \times (\text{ATIM}_{0}) \times (FF_{d}/1000) \times (\text{jet fuel cost})
\]

Indirect and Noneconomic:

- Possibly pilot training costs

ASSUMPTIONS

The following assumptions were made in calculating an emissions estimate for derated takeoff. The assumptions are for a situation in which derated takeoff thrust is as low as normal climbout thrust.

They are:

- derated takeoff will not affect airport congestion
- a pilot will apply derated takeoff only 60% of the time due to aircraft weight limits
- 25% of the airport's flights are able to takeoff using normal climbout thrust
- the time-in-mode for takeoff reduced to 0 and the climbout time-in-mode is increased by 20% as a calculational short cut.

SAMPLE Calculations

An emissions estimate for derated takeoff was calculated for commercial aircraft at LAX in 1990. The estimate is valid only if takeoff thrust reductions are as low as the normal climbout thrust.

AIR POLLUTION MITIGATION MEASURES FOR AIRPORTS AND ASSOCIATED ACTIVITY
Sample Calculation For...

**Derated Takeoff**

\[ \text{Emissions} = \sum \text{(TIM)} \times \left( \frac{\text{FF}}{1000} \right) \times \left( \frac{\text{EI}}{100} \right) \times \left( \frac{\text{NE}}{1000} \right) \]

--- **HC Emissions** ---

<table>
<thead>
<tr>
<th>Mode</th>
<th>Time in Mode</th>
<th>Fuel Flow</th>
<th>Emission Factor</th>
<th>Eng.</th>
<th>Emissions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taxi-out</td>
<td>15.00</td>
<td>17.20</td>
<td>1.25</td>
<td>1.0</td>
<td>0.6450</td>
</tr>
<tr>
<td>Takeoff</td>
<td>0.95</td>
<td>150.79</td>
<td>0.04</td>
<td>2</td>
<td>0.0140</td>
</tr>
<tr>
<td>Climb-out</td>
<td>1.14</td>
<td>123.52</td>
<td>0.05</td>
<td>2</td>
<td>0.0140</td>
</tr>
<tr>
<td>Approach</td>
<td>2.40</td>
<td>47.62</td>
<td>0.08</td>
<td>2</td>
<td>0.0163</td>
</tr>
<tr>
<td>Taxi-in</td>
<td>8.60</td>
<td>17.20</td>
<td>1.25</td>
<td>2</td>
<td>0.3784</td>
</tr>
</tbody>
</table>

--- **Derated Takeoff** ---

<table>
<thead>
<tr>
<th>Mode</th>
<th>Time in Mode</th>
<th>Fuel Flow</th>
<th>Emission Factor</th>
<th>Eng.</th>
<th>Emissions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taxi-out</td>
<td>15.00</td>
<td>17.20</td>
<td>1.25</td>
<td>1.0</td>
<td>0.6450</td>
</tr>
<tr>
<td>Takeoff</td>
<td>0.25</td>
<td>150.79</td>
<td>0.04</td>
<td>2</td>
<td>0.0030</td>
</tr>
<tr>
<td>Climb-out</td>
<td>1.84</td>
<td>123.52</td>
<td>0.05</td>
<td>2</td>
<td>0.0228</td>
</tr>
<tr>
<td>Approach</td>
<td>2.40</td>
<td>47.62</td>
<td>0.08</td>
<td>2</td>
<td>0.0163</td>
</tr>
<tr>
<td>Taxi-in</td>
<td>8.60</td>
<td>17.20</td>
<td>1.25</td>
<td>2</td>
<td>0.3784</td>
</tr>
</tbody>
</table>

**$737-300$ Emissions per LTO (lbs/lTO):** 1,067

**Annual $737-300$ LTOIs:** 3,903

**Total Annual HC Emissions (lbs):** 41,816

**HC emissions are calculated for all aircraft in the fleet and summed to get total annual HC emissions.**

**ReeT Annual HC Emissions (lbs):** 4,697.755

**ReeT Avg Emissions per LTO (lbs/lTO):** 19.53

**CO emissions are determined using similar calculations with appropriate emission factors.**

**ReeT Annual CO Emissions (lbs):** 11,672.618

**ReeT Avg Emissions per LTO (lbs/lTO):** 48.52

**NOx emissions are determined using similar calculations with appropriate emission factors.**

**ReeT Annual NOx Emissions (lbs):** 6,090.600

**ReeT Avg Emissions per LTO (lbs/lTO):** 29.84

---

**REFERENCES**

Some airlines encourage derated takeoff as a policy to save fuel, but leave it to the pilots' discretion to implement. Contact airlines for individual practices.

**Measure Variations**

A variation of this measure is to takeoff at full thrust but to cut back power at a lower altitude than otherwise. After takeoff, the pilot reduces from takeoff thrust to climbout thrust. As thrust decreases, the NOx emissions are reduced. If thrust is reduced at a lower altitude, less time is spent operating at takeoff thrust. The less time the engines operate at full power, the lower the NOx emissions. Some noise reduction takeoff profiles call for low altitude thrust reduction, particularly when residential areas are quite close to the end of the runway.

**Implementation Feasibility**

- Emission factor data is not available at two high-power thrust levels. Data only is available for normal takeoff and climbout thrusts. Available data can be used to calculate an emis-

---

**AIR POLLUTION MITIGATION MEASURES FOR AIRPORTS AND ASSOCIATED ACTIVITY**

39
sions estimate if derated takeoff thrust is as low as normal climbout thrust.

► Implementing this measure is the responsibility of the airlines, working with the airports and FAA to insure the resulting flight path is safe and consistent with noise reduction plans.

► The measure apparently can be implemented under few constraints.

► The NOX emission reductions are expected to be small, however, they are realized at no cost or even a cost savings.

3.2.9 Use Larger Aircraft

This measure increases the number of passengers per LTO, thus reducing total LTOs for a given number of passengers.

The U.S. aircraft fleet includes aircraft of various sizes. The same number of passengers can be serviced with fewer LTOs if larger aircraft are substituted where smaller aircraft currently are in use. For example, a Boeing 737-200 has approximately 110 seats and a Boeing 767-300 has approximately 220 seats. One 767 LTO can replace two 737 LTOs. Depending on the engines used, the pollutants emitted per seat may be lower for one 767 LTO than for two 737 LTOs. The measure has the potential of lowering both the number of LTOs and total emissions.

CONSTRAINTS

Fleet mix and flight schedules are the primary constraints in using larger aircraft as replacements for smaller aircraft. Matching available aircraft to the service the airlines want to provide can be very complex. Projected demand for a particular route, availability of specific aircraft, opportunities for alternative uses for an aircraft, and potential load factor all must be considered. To make a larger aircraft available to replace the service being provided by smaller aircraft, the service provided by the larger aircraft must be replaced. This change in turn may affect connecting flight schedules and aircraft requirements. Business factors, such as scheduling and marketing considerations, also may be serious impediments for airlines trying to substitute aircraft on an existing route. These considerations drive airlines' decisions on where specific aircraft should operate and what type of aircraft to operate on a given route. For example, an airline that operates
a B737-200 between two cities each hour may
loose market share if it changes to a B767-300
operating every other hour because potential pas-
sengers may feel a loss in schedule convenience.
This schedule also may be an inefficient way to
deploy the B767-300 because its daily utilization
(block hours per day) may decrease.

In some cases, emissions from one large air-
craft may be higher than from two small aircraft.
Therefore, substituting the larger aircraft may
have reduced the number of operations, but not
the total emissions.

Finally, while it may be a modest factor, it
may cost an airline more to land one large aircraft
than two small aircraft. Aircraft landing fees are
established and administered by individual air-
ports. Various factors, such as airport main-
tenance and operating expenses, are considered in
calculating a fee. Landing fees are administered
based on the aircraft’s Maximum Gross Approved
Landing Weight, a universally applied weight for
an airline’s aircraft model. For example, LAX’s
landing fee for a signatory airline’s aircraft weigh-
ing more than 25,000 pounds is $0.51/1000lbs.
The fee charged at LAX for landing two Boeing
737-200 Advanced, each with a landing weight
of approximately 107,000 pounds would be $109.
Conversely, the fee for landing one Boeing 767-
300ER with a landing weight of approximately
320,000 pounds would be $163. Therefore, it
would be slightly less expensive for the airline to
land two 737s than one 767. This difference is
more pronounced where landing fees are higher.

APPLICATIONS

The most likely application for using larger
aircraft is substituting two small aircraft with one
large aircraft that has lower emissions. Individual
airlines would be responsible for implementing
this measure where feasible considering fleet,
scheduling, and marketing issues.

An airport could possibly implement this mea-
sure by using a fee-based mechanism such as charg-
ing higher landing fees according to the number of
aircraft seats or amount of emissions. Fees per
landing could increase as the number of aircraft
seats decreased or as aircraft emissions increased.
Both approaches would encourage airlines to use
larger aircraft and reduce LTOs, but the seat-relat-
ed fee would not necessarily reduce emissions.
Landing fees also would have to be substantially
higher than they are at present to induce a change
that may have significant costs in other areas.

KEY INPUTS

The key data needed for comparing emissions
of large aircraft versus small aircraft is the number
of seats by aircraft type. The number of seats on
an aircraft varies by aircraft model, as well as with
in a particular model. Airlines choose the desired
model configuration, which affects the number of
seats. Seat data is available in the North Amer-
ular airport. The results of these changes are very difficult to anticipate. Emissions reductions can be calculated, but will not take into consideration possible changes to the makeup of the fleet servicing the airport.

APPLICATIONS

The higher an aircraft's load factor, the lower the pollutants emitted per person. Load factors may vary among airports depending on the type of airport, such as hub versus primarily origination/destination. An incentive to raise load factor may be feasible at both types, however, the particular incentive may be different.

KEY INPUTS

The key inputs for evaluating increased load factor are current load factor and future fleet mix for a specific airport. To evaluate the measure, emissions must be calculated for an airport's expected fleet mix and load factor. Given an airport's current fleet mix and load factor, the emissions benefit is calculated as the difference between the baseline or current level and the future level. Sources for airport total and peak-period load factor data were not identified. Air Transport World magazine publishes national load factor data by airline for all major airlines based on Department of Transportation statistics. Current annual fleet mix data by airline and airport is available from FAA's Airport Activity Statistics of Certificated Route Air Carriers. The changes in the fleet servicing a particular airport due to the load factor limit must be forecast.

ASSUMPTIONS

The following assumptions would have to be made in calculating a very rough emissions estimate for increasing load factor. The assumptions allow for the unknown load factor and fleet mix data.

They are:

- there will be no change in makeup of the fleet using the airport
- the average of all airlines' biannual system traffic load factor on a national level that operate at the airport is an adequate estimate of the load factor at a particular airport.

(Calculating an emissions estimate using these assumptions is not recommended as the results may be misleading. It should only be considered as a rough guide to the potential effect of changes in load factor.)

SAMPLE CALCULATIONS

A meaningful emission estimate cannot be calculated due to the lack of information for a single airport. Generally, however, emissions will be reduced to the same extent average load factor improves, all else being equal.

REFERENCES

Currently, no airport has applied a load factor limit as a way to control emissions. Contact airlines for individual load factor data. Some airports may collect this same data. Amsterdam's Schiphol Airport currently is involved in a large environmental impact study looking at air pollution measures related to airport activity. One phase of the study focuses on increasing load factors.

MEASURE VARIATIONS

No variations to simply increasing the load factor were determined.
Limit Aircraft Operations

This measure limits the total number of LTOs, which limits the total emissions.

Currently, four U.S. airports have federal limits on the number of aircraft operations allowed (O'Hare, Washington National, Kennedy, and La Guardia). For these airports, the number of landing slots is established by FAA to limit airspace congestion. The slot limit is determined by the airport’s capacity. Limits on the number of operations per hour are set for three operator types: air carrier, commuter, and other (general aviation). In general, an airport’s aircraft emissions increase with every additional LTO. Therefore, setting a limit on the number of aircraft operations allowed at a particular airport can limit the total aircraft emissions.

Constraints

Constraints in applying an operations limit include methods for establishing a limit and estimating emissions reductions and fleet changes. The FAA procedure for setting slot limits is a long process. Limits have only been established for four airports, with no other airports being considered at this time. As of now, the FAA is the only federal agency authorized to impose operation limits and only for reasons of aviation safety. If a limit on operations is set, it is difficult to estimate the emission reduction because the emissions change as the fleet changes and the fleet will change to make the most economic use of available slots. An airline’s fleet and emissions also change as aircraft are bought, sold, leased or retired. Modifications in the fleet may include substituting larger aircraft for smaller aircraft in order to move more
passengers with less operations. Depending on the aircraft that fill the slots, emissions per LTO could increase.

APPLICATIONS

A likely target for this measure would be limiting the number of aircraft operations at an airport where the number of LTOs is increasing past the airport's design capacity, since FAA's authority only covers situations of aviation safety. This measure may be most appropriate for reducing emissions at general aviation airports.

KEY INPUTS

The key inputs are LTOs and fleet mix for calculating emissions reductions from the limitation of aircraft operations. To evaluate the measure, emissions must be calculated for a future fleet mix and a given LTO limit. Future fleet mix must be forecast. The emissions estimate is compared to emissions from current LTO and fleet mix data, which is available. This data can be used to estimate emission reductions, but would assume no change in makeup of the fleet using the airport.

ASSUMPTIONS

Several assumptions were made in calculating an emissions estimate for limiting aircraft operations at an airport. The first assumption addresses the primary constraint of future fleet changes. They are:

- there will be no change in makeup of the fleet using the airport
- the limit on aircraft operations reduces the total number of LTOs by 5%
- total pollutant emissions will reduce the same percent as the LTO reduction.

SAMPLE CALCULATIONS

An emissions estimate for limiting aircraft operations was calculated for commercial aircraft at LAX in 1990. The emissions estimate does not consider future fleet changes, which affect emissions. The calculated emission reduction benefit is:

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Reference LTOs Emissions</th>
<th>Limited LTOs Emission Reductions</th>
</tr>
</thead>
<tbody>
<tr>
<td>HC</td>
<td>4,697,755 (lb/yr)</td>
<td>4,462,867 (lb/yr) 234,888 (5%)</td>
</tr>
<tr>
<td>CO</td>
<td>11,872,618 (lb/yr)</td>
<td>11,088,986 583,631 (5%)</td>
</tr>
<tr>
<td>NOX</td>
<td>6,939,500 (lb/yr)</td>
<td>6,592,526 346,975 (5%)</td>
</tr>
</tbody>
</table>

1. The annual LTOs are reduced 5%.

REFERENCES

The four airports with FAA established slot limits are Kennedy, La Guardia, National, and O'Hare (see Appendix D - 14CFR 93.121 High Density Traffic Airports). At this time, no other airports are being considered for slot limits.

MEASURE VARIATIONS

One measure variation is to limit another variable that is a surrogate for operations, such as total emissions, total passengers, or the type of aircraft allowed to use a specific airport.

IMPLEMENTATION FEASIBILITY

- While emission reductions can be calculated assuming no change in makeup of the fleet using the airport, fleet changes are likely and the nature of those changes must be carefully forecast.
- Limiting operations is the responsibility of the FAA.
It may be difficult to implement this measure in the near future or at all. FAA currently is not considering any additional airports for slot limits. Even if slot limits were established, an accurate emission reductions estimate would be difficult to calculate due to the lack of future fleet mix data based on the operations limitations.

3.2.12
Manage Fleet
To Minimize Emissions

This measure is intended to increase the number of trips per LTO and minimize the emissions per seat.

Most airlines' fleets are comprised of a variety of aircraft and engines. Some aircraft have much lower emissions than others due to the engine model and vintage. Airlines also have different designs for the aircraft interiors that accommodate more or fewer seats. Airlines manage their fleets according to related business factors, such as scheduling and marketing considerations. It may be possible for an airline to manage its fleet so only the cleanest aircraft operate into particular airports or, more likely, geographic regions. If the fleet is managed so that only the cleanest aircraft operate with the highest feasible load factor at a given airport (or all airports in a given region), the airport’s emissions would be reduced.

Constraints

Constraints to implementing this measure include current fleet mix, competitive business factors, and the possible illegality of imposing fleet mix requirements. An airline’s existing fleet may not accommodate the efficient substitution of aircraft due to varying sizes and populations of aircraft models. Fleet management also depends on many business factors, such as scheduling and marketing considerations. These factors drive airlines' decisions on where specific aircraft should operate and what type of aircraft to operate on a given route. Finally, it may be illegal to impose this type of constraint on airlines.
APPLICATIONS

The older, larger, and more diverse an airline's fleet, the greater the potential emissions reduction benefit from airline fleet management. It may be illegal to impose this measure on airlines.

KEY INPUTS

The key data needed to evaluate management of the fleet are current fleet mix and engine model by aircraft type. The measure is evaluated by calculating emissions for a potential airport fleet that is made up of the cleanest aircraft in the total fleet. Given an airport's current and possible fleet, emissions would be calculated for the cleanest potential fleet. An airport's current fleet by airline is available in FAA's Airport Activity Statistics of Certified Route Air Carriers. An airline's current total domestic aircraft fleet is available from its annual report. Information on the engines operating on the aircraft is not readily available.

ASSUMPTIONS

This measure was not assessed because the feasibility of an airline placing its cleanest aircraft into a single market is unknown. No data is available to formulate the necessary assumptions for calculating an emissions estimate.

SAMPLE CALCULATIONS

No data is available to provide sample calculations for managing fleet to minimize emissions.

REFERENCES

No attempt by airlines to manage their fleet to place their cleanest (or newest) aircraft into a single market has been identified. Contact airlines for individual policies and capability.

MEASURE VARIATIONS

No variations to this measure were considered.

Implementation Feasibility

- An airport's current fleet by airline and an airline's current total fleet are available. Data on the engines operating on the aircraft are not readily available.

- Implementing this measure would be the responsibility of the airlines.

- It may be illegal to impose this measure on airlines.
Conclusions

Several operational, procedural, and technological measures that can reduce emissions from aircraft operations are possible. Table 3-4 summarizes those measures and shows the relative emission reduction potential. Many of these can be implemented at little or no cost and may even result in cost savings while for many others the costs are indeterminate without much more information than is available generally. Particularly for those measures that rely on changes to the make up of an airlines’ fleet or the mix of aircraft that operate at a given airport, it is extremely difficult to quantify the costs. In all likelihood, the costs would vary widely between individual airlines and airports. For practically all of the listed measures, additional data would be very helpful, if not essential, for quantifying emission reductions and implementation costs precisely.

![Table 3-4: Aircraft Emission Mitigation Measures](image-url)
Ground Support Equipment

4.1 Introduction

Emissions from ground support equipment (GSE) range from 2-6% of total emissions at commercial airports. This section describes measures to reduce these emissions in ways that would have little impact on the services they provide.

A variety of equipment is used at airports to service aircraft. Several types of equipment are common at most commercial airports.

- **Baggage Tractors** haul baggage trailers between the terminal and the aircraft.
- **Aircraft Tractors** tow aircraft from the taxiway to the terminal and push back the aircraft from the terminal to the taxiway. They also are used to tow aircraft to hangers for maintenance.
- **Ground Power Units** (GPU) are ground based mobile generator sets. They supply electricity to aircraft while they are parked at the airport.
- **Air-conditioning Units** provide conditioned air to ventilate, cool, and heat parked aircraft.
- **Air Start Units** provide large volumes of compressed air that is used by the aircraft to start the main engines (jet turbine).
- **Baggage Conveyors** are mobile conveyors belts used to lift baggage from the tarmac to the aircraft's hold.

- **Other Secondary GSE** includes items such as forklifts, deicing trucks, lavatory trucks, fuel trucks, miscellaneous load handling equipment, cars, lifts, maintenance trucks, and other miscellaneous equipment.

- **Auxiliary Power Units** (APUs) are small turbine engines on-board the aircraft designed to supply the electrical, ventilation, and air starting needs of the aircraft without using GSE. Although this equipment is on the plane, APU use will be analyzed with the GSE because they are used in the absence of GSE.

The majority of GSE have engines that burn gasoline, diesel, or LPG, while APUs burn jet fuel (Jet A), although there are electric versions of most types of GSE on the market.

In order to analyze the benefits of eliminating or altering any specific type of GSE, it is first necessary to estimate the emissions generated by the current fleet of GSE; i.e., determine the "reference" emissions generated in ground support. The emissions reductions from a given measure is determined by comparing the new emissions generated to the "reference" emissions. The emissions generated by GSE and APU operations can be determined by first estimating the population of each type of equipment. Combined with the engine and usage characteristics (BHP and load factor), usage time, and the emission factors, an estimate of operational emissions can be calculated. Total emissions from GSE are calculated with the following formula:
Population Estimation

The population of GSE at an airport can be determined by obtaining detailed counts or by estimation. Detailed population data was difficult or impossible to obtain for all airports in California. Thus populations were estimated by calculating the relationship between the known population of GSE at a subset of California airports to the commercial aircraft activity at the airports. GSE inventories were provided in confidence by several air carriers for their GSE operations in California. The operational activity of air carriers is documented in the annual FAA publication, Airport Activity Statistics of Certified Route Air Carriers. The relationship between GSE inventories and several measures of aircraft activity was analyzed. Aircraft activity is represented by the total number of departures, the number of departures by body type (narrow v. wide), and by the number of seats. Given the limited available data, the best statistical correlation was found between the total GSE populations and the total departures. The regression was applied to each California airport’s total departures yielding estimates of the total population of GSE in California (see Table 4-1). The total GSE populations were broken down to equipment type using the average percent of equipment by type to total population. The averages were calculated from data provided by some air carriers for California airports. The equipment ratios are contained in Table 4-2.

The other inputs to the emissions calculation are engine usage characteristics, brake horsepower (BHP), equipment usage time, operation load factors, and emissions factors. This information was provided by two air carriers and was supplemented with information from a variety of equipment manufacturers and from Jane’s Airport & ATC Equipment, 1992-93. This data is shown in Table 4-3. The final input to the emissions equation, emissions factors, are drawn from two CARB...
### Table 4-2
Breakdown Of GSEs
— By Equipment Type —

<table>
<thead>
<tr>
<th>Equipment Type</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baggage Tug</td>
<td>23.57%</td>
</tr>
<tr>
<td>Buses, Cars, Pickups, and Vans</td>
<td>11.20%</td>
</tr>
<tr>
<td>Belt Loader</td>
<td>10.09%</td>
</tr>
<tr>
<td>Forklift</td>
<td>9.24%</td>
</tr>
<tr>
<td>Maintenance Truck</td>
<td>5.99%</td>
</tr>
<tr>
<td>Aircraft Tug</td>
<td>5.60%</td>
</tr>
<tr>
<td>Other</td>
<td>4.69%</td>
</tr>
<tr>
<td>GPU</td>
<td>4.43%</td>
</tr>
<tr>
<td>Cargo Loader</td>
<td>4.23%</td>
</tr>
<tr>
<td>Cart</td>
<td>3.84%</td>
</tr>
<tr>
<td>Service Truck</td>
<td>3.45%</td>
</tr>
<tr>
<td>Lift</td>
<td>2.99%</td>
</tr>
<tr>
<td>Fuel Truck</td>
<td>2.54%</td>
</tr>
<tr>
<td>Bobtail</td>
<td>2.21%</td>
</tr>
<tr>
<td>Air Start Unit</td>
<td>1.92%</td>
</tr>
<tr>
<td>Lav Truck</td>
<td>1.63%</td>
</tr>
<tr>
<td>Air-conditioning Unit</td>
<td>0.96%</td>
</tr>
<tr>
<td>Deicer</td>
<td>0.72%</td>
</tr>
<tr>
<td>Lav Cart</td>
<td>0.52%</td>
</tr>
<tr>
<td>Water Truck</td>
<td>0.26%</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>100.00%</strong></td>
</tr>
</tbody>
</table>

### Table 4-3
Ground Support Equipment Use Characteristics

<table>
<thead>
<tr>
<th>Equipment Type</th>
<th>Engine Type</th>
<th>Coolant Type</th>
<th>BHP</th>
<th>Load Factor</th>
<th>Use Per Day</th>
<th>Equipment Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aircraft Tug (Narrow Body Aircraft)</td>
<td>Diesel</td>
<td>Water</td>
<td>175</td>
<td>80%</td>
<td>1.51</td>
<td>0.02865</td>
</tr>
<tr>
<td></td>
<td>Electric</td>
<td>Water</td>
<td>0</td>
<td>0%</td>
<td>1.51</td>
<td>0.00260</td>
</tr>
<tr>
<td></td>
<td>Gasoline (4 Stroke)</td>
<td>Water</td>
<td>130</td>
<td>80%</td>
<td>1.51</td>
<td>0.01022</td>
</tr>
<tr>
<td></td>
<td>LPG</td>
<td>Water</td>
<td>130</td>
<td>80%</td>
<td>1.51</td>
<td>0.00260</td>
</tr>
<tr>
<td>Aircraft Tug (Wide Body Aircraft)</td>
<td>Diesel</td>
<td>Water</td>
<td>500</td>
<td>80%</td>
<td>1.41</td>
<td>0.01042</td>
</tr>
<tr>
<td></td>
<td>Gasoline (4 Stroke)</td>
<td>Water</td>
<td>500</td>
<td>80%</td>
<td>1.41</td>
<td>0.00130</td>
</tr>
<tr>
<td>Air-conditioning Unit</td>
<td>Diesel</td>
<td>Water</td>
<td>300</td>
<td>75%</td>
<td>0.56</td>
<td>0.00521</td>
</tr>
<tr>
<td></td>
<td>Gasoline (4 Stroke)</td>
<td>Water</td>
<td>130</td>
<td>75%</td>
<td>0.56</td>
<td>0.00556</td>
</tr>
<tr>
<td>Air Start Unit</td>
<td>Diesel</td>
<td>Water</td>
<td>600</td>
<td>90%</td>
<td>0.37</td>
<td>0.03132</td>
</tr>
<tr>
<td></td>
<td>Electric</td>
<td>Air</td>
<td>0</td>
<td>90%</td>
<td>0.37</td>
<td>0.00065</td>
</tr>
<tr>
<td></td>
<td>Gasoline (4 Stroke)</td>
<td>Water</td>
<td>130</td>
<td>90%</td>
<td>0.37</td>
<td>0.00195</td>
</tr>
<tr>
<td></td>
<td>Jet Turbine</td>
<td>Air</td>
<td>140</td>
<td>90%</td>
<td>0.37</td>
<td>0.00130</td>
</tr>
<tr>
<td>Baggage Tug</td>
<td>Diesel</td>
<td>Water</td>
<td>78</td>
<td>55%</td>
<td>2.40</td>
<td>0.00747</td>
</tr>
<tr>
<td></td>
<td>Electric</td>
<td>Air</td>
<td>0</td>
<td>55%</td>
<td>2.40</td>
<td>0.01127</td>
</tr>
<tr>
<td></td>
<td>Gasoline (4 Stroke)</td>
<td>Water</td>
<td>100</td>
<td>55%</td>
<td>2.40</td>
<td>0.11393</td>
</tr>
<tr>
<td></td>
<td>LPG</td>
<td>Water</td>
<td>100</td>
<td>55%</td>
<td>2.40</td>
<td>0.02344</td>
</tr>
<tr>
<td>Belt Loader</td>
<td>Diesel</td>
<td>Water</td>
<td>45</td>
<td>50%</td>
<td>2.22</td>
<td>0.03971</td>
</tr>
<tr>
<td></td>
<td>Gasoline (4 Stroke)</td>
<td>Water</td>
<td>60</td>
<td>50%</td>
<td>2.22</td>
<td>0.05404</td>
</tr>
<tr>
<td></td>
<td>LPG</td>
<td>Water</td>
<td>60</td>
<td>50%</td>
<td>2.22</td>
<td>0.00716</td>
</tr>
<tr>
<td>Bootfill</td>
<td>Gasoline (4 Stroke)</td>
<td>Water</td>
<td>100</td>
<td>55%</td>
<td>2.40</td>
<td>0.00221</td>
</tr>
<tr>
<td></td>
<td>Diesel</td>
<td>Water</td>
<td>76</td>
<td>50%</td>
<td>1.97</td>
<td>0.03320</td>
</tr>
<tr>
<td></td>
<td>Gasoline (4 Stroke)</td>
<td>Water</td>
<td>70</td>
<td>50%</td>
<td>1.97</td>
<td>0.00456</td>
</tr>
<tr>
<td></td>
<td>LPG</td>
<td>Water</td>
<td>70</td>
<td>50%</td>
<td>1.97</td>
<td>0.00456</td>
</tr>
</tbody>
</table>

**AIR POLLUTION MITIGATION MEASURES FOR AIRPORTS AND ASSOCIATED ACTIVITY**

53
<table>
<thead>
<tr>
<th>Equipment Type</th>
<th>Engine Type</th>
<th>Load Factor</th>
<th>Use Per Day</th>
<th>Equipment Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cart</td>
<td>Electric</td>
<td>0</td>
<td>0.41</td>
<td>0.02930</td>
</tr>
<tr>
<td></td>
<td>Gasoline (4 Stroke)</td>
<td>12</td>
<td>0.41</td>
<td>0.00846</td>
</tr>
<tr>
<td></td>
<td>LPG</td>
<td>12</td>
<td>0.41</td>
<td>0.00065</td>
</tr>
<tr>
<td>Deicer</td>
<td>Diesel</td>
<td>93</td>
<td>0.06</td>
<td>0.00050</td>
</tr>
<tr>
<td></td>
<td>Gasoline (4 Stroke)</td>
<td>93</td>
<td>0.06</td>
<td>0.00065</td>
</tr>
<tr>
<td>Forklift</td>
<td>Diesel</td>
<td>52</td>
<td>1.99</td>
<td>0.00521</td>
</tr>
<tr>
<td></td>
<td>Electric</td>
<td>0</td>
<td>1.99</td>
<td>0.001497</td>
</tr>
<tr>
<td></td>
<td>Gasoline (4 Stroke)</td>
<td>50</td>
<td>1.99</td>
<td>0.003320</td>
</tr>
<tr>
<td></td>
<td>LPG</td>
<td>52</td>
<td>1.99</td>
<td>0.003206</td>
</tr>
<tr>
<td>Fuel Truck</td>
<td>Diesel</td>
<td>180</td>
<td>0.06</td>
<td>0.00130</td>
</tr>
<tr>
<td></td>
<td>Gasoline (4 Stroke)</td>
<td>130</td>
<td>2.96</td>
<td>0.002344</td>
</tr>
<tr>
<td></td>
<td>LPG</td>
<td>130</td>
<td>2.96</td>
<td>0.00065</td>
</tr>
<tr>
<td>GPU</td>
<td>Diesel</td>
<td>145</td>
<td>2.18</td>
<td>0.03930</td>
</tr>
<tr>
<td></td>
<td>Electric</td>
<td>0</td>
<td>2.18</td>
<td>0.00065</td>
</tr>
<tr>
<td></td>
<td>Gasoline (4 Stroke)</td>
<td>150</td>
<td>2.18</td>
<td>0.00456</td>
</tr>
<tr>
<td>Lav Cart</td>
<td>Gasoline (4 Stroke)</td>
<td>12</td>
<td>0.50</td>
<td>0.00521</td>
</tr>
<tr>
<td>Lav Truck</td>
<td>Gasoline (4 Stroke)</td>
<td>130</td>
<td>3.32</td>
<td>0.01628</td>
</tr>
<tr>
<td>Lift</td>
<td>Electric</td>
<td>0</td>
<td>1.03</td>
<td>0.00588</td>
</tr>
<tr>
<td></td>
<td>Gasoline (4 Stroke)</td>
<td>100</td>
<td>1.03</td>
<td>0.01497</td>
</tr>
<tr>
<td></td>
<td>LPG</td>
<td>100</td>
<td>1.03</td>
<td>0.00911</td>
</tr>
<tr>
<td>Maintenance Truck</td>
<td>Gasoline (4 Stroke)</td>
<td>130</td>
<td>1.23</td>
<td>0.00260</td>
</tr>
<tr>
<td></td>
<td>LPG</td>
<td>130</td>
<td>1.23</td>
<td>0.00599</td>
</tr>
<tr>
<td></td>
<td>Water</td>
<td>50</td>
<td>0.50</td>
<td>0.00260</td>
</tr>
<tr>
<td>Other</td>
<td>Gasoline (4 Stroke)</td>
<td>50</td>
<td>0.50</td>
<td>0.004232</td>
</tr>
<tr>
<td></td>
<td>LPG</td>
<td>50</td>
<td>0.50</td>
<td>0.00195</td>
</tr>
<tr>
<td>Service Truck</td>
<td>Gasoline (4 Stroke)</td>
<td>180</td>
<td>3.55</td>
<td>0.01107</td>
</tr>
<tr>
<td></td>
<td>LPG</td>
<td>180</td>
<td>3.55</td>
<td>0.02148</td>
</tr>
<tr>
<td></td>
<td>Water</td>
<td>100</td>
<td>0.95</td>
<td>0.00911</td>
</tr>
<tr>
<td>Water Truck</td>
<td>Gasoline (4 Stroke)</td>
<td>150</td>
<td>3.55</td>
<td>0.00260</td>
</tr>
<tr>
<td>Bus</td>
<td>Diesel Truck</td>
<td>180</td>
<td>5.33</td>
<td>0.00651</td>
</tr>
<tr>
<td></td>
<td>Gasoline Truck</td>
<td>180</td>
<td>5.33</td>
<td>0.00260</td>
</tr>
<tr>
<td>Car</td>
<td>Gasoline Car</td>
<td>130</td>
<td>0.51</td>
<td>0.01172</td>
</tr>
<tr>
<td></td>
<td>LPG Car</td>
<td>130</td>
<td>0.51</td>
<td>0.00065</td>
</tr>
<tr>
<td>Pickup</td>
<td>Gasoline Truck</td>
<td>130</td>
<td>1.45</td>
<td>0.05404</td>
</tr>
<tr>
<td></td>
<td>LPG Truck</td>
<td>130</td>
<td>1.45</td>
<td>0.00326</td>
</tr>
<tr>
<td>Van</td>
<td>Gasoline Truck</td>
<td>130</td>
<td>0.65</td>
<td>0.03320</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>1.00000</td>
</tr>
</tbody>
</table>

AIR POLLUTION MITIGATION MEASURES FOR AIRPORTS AND ASSOCIATED ACTIVITY
reports: "Regulatory Strategies For Off-Highway Equipment" (draft) and "Feasibility of Controlling Emissions From Off-Road, Heavy-Duty Construction Equipment," and are shown in Table 4-4.2

Road licensed vehicles such as cars, buses, pick up trucks, and vans were included in the GSE population provided by the airlines and are listed in Table 4-3. Because they are licensed for on-highway operations they are subject to current state and federal emissions and operational regulations (for example, the California LEV program and the federal clean-fuel vehicle requirements for centrally fueled fleets). Little additional benefit beyond that achieved from these programs can be realized by implementing the measures discussed in this section. Also, including emissions from these vehicles could lead to double counting emissions reductions or overlap with other programs. For these reasons, these vehicles have not been included in the emissions mitigation calculations in this report.

4.3

Measures

When parked at a terminal gate, large commercial aircraft require an electrical power source and, in warmer climates such as California’s, air-conditioning. The electricity operates the avionics, on-board lighting, and other electrical equipment (i.e., cooling fans, coffee pots, cleaning equipment, etc.). Air-conditioning maintains the passenger compartment at a comfortable temperature and sensitive electrical equipment within its design operating temperature range. There are essentially three ways to provide for

---


---

<table>
<thead>
<tr>
<th>Engine Type</th>
<th>Emission Factors for GSE Engines</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coolant Type</td>
</tr>
<tr>
<td>Gasoline (4 Stroke)</td>
<td>Air Coolant</td>
</tr>
<tr>
<td></td>
<td>Air Coolant</td>
</tr>
<tr>
<td>Gasoline (4 Stroke)</td>
<td>Water Coolant</td>
</tr>
<tr>
<td></td>
<td>Water Coolant</td>
</tr>
<tr>
<td>Diesel</td>
<td>Water Coolant</td>
</tr>
<tr>
<td></td>
<td>Water Coolant</td>
</tr>
<tr>
<td>OEM Optimized CNG</td>
<td>Water Coolant</td>
</tr>
<tr>
<td></td>
<td>Water Coolant</td>
</tr>
<tr>
<td></td>
<td>Water Coolant</td>
</tr>
<tr>
<td>Existing CNG or LPG</td>
<td>Air Coolant</td>
</tr>
<tr>
<td></td>
<td>Air Coolant</td>
</tr>
<tr>
<td></td>
<td>Water Coolant</td>
</tr>
<tr>
<td></td>
<td>Water Coolant</td>
</tr>
<tr>
<td></td>
<td>Water Coolant</td>
</tr>
</tbody>
</table>

---

AIR POLLUTION MITIGATION MEASURES
FOR AIRPORTS AND ASSOCIATED ACTIVITY

55
these electric and cooling needs. First, in the absence of other support, the on-board Auxiliary Power Unit (APU) provides the electricity and air-conditioning by mechanically powering a generator and pneumatically powering the on-board air-conditioning system (it uses the compressed air from the turbine "bleed off"). Second, ground support equipment can provide electricity from a mobile ground power unit (GPU) and air-conditioning from a mobile air-conditioning cart. Both types of GSE burn either gasoline or diesel fuel. Finally, fixed power systems can draw electricity from the main power grid and convert it to the electrical current used by the aircraft. Fixed air-conditioning systems can supply air-conditioning to parked aircraft utilizing electric air-conditioning units or by providing compressed air to the on-board air-conditioning system (pneumatic system). Both fixed electrical and air-conditioning systems are electric powered and power is supplied by the local utility power grid.

One mitigation measure considered in this analysis is to replace the use of APUs and GSEs with fixed electrical power and air-conditioning systems. Fixed systems provide all of the services needed by an aircraft parked at a terminal gate with none of the on-site emissions that come from the GSE and APUs.

4.3.1

Fixed Electrical Systems

*This measure reduces the need for GSE and APU use.*

Fixed electrical systems supply electricity from the local electric power grid to aircraft, eliminating the need for GPUs and APUs to meet the aircraft's power needs. However, the utility power must first be converted from the type the utility supplies (480 volt, 60 hertz) to the type large commercial aircraft use (120/208 volt, 400 hertz power). There are two different types of power conversion equipment, motor generators and solid state static inverters. Motor generators use the 60 hertz AC to power a motor that mechanically drives a generator that produces electricity at 400 hertz AC. Solid state static inverters electronically convert the 60 hertz AC to DC and then convert the DC to 400 hertz AC. There are three different systems used to distribute the 400 hertz power to the aircraft: centralized fixed power systems, mini-centralized fixed power systems, and point-of-use power systems. The three systems differ in the way power is distributed to the terminal gates and the location of the power converters.

Centralized fixed power systems convert the utility power from 60 hertz to 400 hertz at one central location with several converters working together to convert the power used by the entire system. A wiring network then distributes power from the central source to the gates. The network distributes 400 hertz power at 575 volts and transformers at each gate drop the voltage down to 120/208. The higher voltage is used in the distribution network to minimize the power losses in transmission. Centralized power systems normally require a redundant power converter to ensure system reliability.

Mini-central fixed power systems allocate the airport's gates into several sections. A power converter supplies 400 hertz power to each section independently. Otherwise, this type of system operates like a version of a centralized system. This system services the same number of aircraft as a centralized system only with more, albeit
smaller, power conversion units. Redundancy is built into the system by using oversized or extra power converters.

Point-of-Use systems distribute the conventional utility power (60 hertz) to each gate where it is converted to the required 400 hertz power. This type of system generally converts the power with static inverters because of their compact size. They are also light enough to be mounted on the end of the passenger bridge. One drawback with point-of-use systems is in the requirement to have a separate power converter for each gate, which leaves each gate vulnerable to interruption. However, anecdotal operational experience suggests that static inverters are reliable under all normal operational conditions.

**CONSTRAINTS**

In evaluating the functional differences between the three systems, the main issues are the ease of installation and the ability of each system to handle varied electrical loads. Fully centralized power systems are difficult to install because all of the gates must be wired to one central location. Often the terminal's architecture does not facilitate this type of installation retrofit. In these cases the terminal must be modified to ensure that the wiring takes the most direct path to reduce transmission losses. Mini-centralized systems are easier to install because the electric converter units are smaller and the wiring requirements are less intrusive. Point-of-use fixed power systems are easiest to install because the power converters are small enough to be mounted at the end of the passenger bridge servicing each gate independently. Also, utility level power lines are easier to install (often they are already installed) at the terminal gates.

On the other hand, centralized power sys-

tems are most capable of handling varying loads at airport terminals because of their built-in extra capacity and redundant power converters. Mini-centralized systems compromise on their ability to handle widely varying loads because of the reduced capacity power transformers. It is unclear whether point-of-use systems are capable of handling the largest power loads. For instance, the new B747-400 requires 211 kva to operate all of the on-board equipment necessary to complete a pre-flight take off and operate all of the kitchen equipment (coffee pots and ovens). Until this new and largest class of aircraft entered service, all three systems were capable of handling loads of 60 and 90 kva. Now, the 90 kva point-of-use units can service this aircraft only if they can sustain up to 115% capacity for several minutes while the pre-flight check is conducted and no kitchen equipment is on. The 90 kva point of use power converters will have to be replaced with 225 kva units to service B747-400s. With the centralized and minicentralized systems the excessive power requirements of a limited number of B747-400 could be absorbed by the additional capacity built into these systems. However, the B747-400 currently is serviced only at San Francisco and Los Angeles International Airports.

As part of a proposal to the Metropolitan Washington Airports Authority, a centralized power equipment contractor analyzed the costs and benefits of servicing 44 terminal gates. They summarized the pros and cons of each system and the information is shown in Table 4-5. The alternatives presented in Table 4-5 are compared to APU usage.

---


4. The 747-400 requires 99 kva with a power factor of 0.8 to complete the pre-flight checklist with out turning on any of the kitchen equipment. The 16 on-board ovens alone require an additional 112 kva at a power factor of 1.0.
4.3.2

Fixed Air-conditioning Systems

This measure reduces the need for GSE and APU use.

In warmer climates (i.e., California) aircraft parked at terminal gates require air-conditioning to keep the cabin cool for the passengers and crew. All large commercial aircraft have on-board air-conditioning units that are powered by compressed air from the APU. The onboard air-conditioning unit uses an expansion turbine that converts the pressurized air to a lower pressure, cooling the air that is circulated throughout the aircraft cabin. As an alternative to APU powered cooling there are three different types of fixed air-conditioning systems that supply aircraft with cooled air: a centralized preconditioning system, a point-of-use preconditioning system, and a pneumatic system.

Centralized preconditioning systems utilize a central chiller plant and remote air handling units (AHU). The central chiller plant cools a liquid coolant (normally an ethylene glycol-water mixture) to 20°F. The coolant circulates to each gate in a piped loop or series of piped loops. At each terminal gate the AHU blows air across a radiator filled with the coolant, through a flexible hose (16” wide and 65’ to 80’ long), and into the aircraft via ventilation inlets in bottom of the aircraft. See Figure 4-1. An additional heating unit added to the AHU enables this system to

<table>
<thead>
<tr>
<th>TABLE 4-5</th>
<th>Pros And Cons Of Centralized Power Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>APUs</td>
</tr>
<tr>
<td>Initial Investment</td>
<td>None</td>
</tr>
<tr>
<td>Fuel Consumption</td>
<td>Very High</td>
</tr>
<tr>
<td>Air Pollution</td>
<td>Very High</td>
</tr>
<tr>
<td>Noise Pollution</td>
<td>Very High</td>
</tr>
<tr>
<td>Congestion</td>
<td>None</td>
</tr>
<tr>
<td>Flexibility</td>
<td>None</td>
</tr>
<tr>
<td>Electric Use</td>
<td>NA</td>
</tr>
<tr>
<td>Electric Cost</td>
<td>NA</td>
</tr>
<tr>
<td>Distribution</td>
<td>None</td>
</tr>
<tr>
<td>Electric Room</td>
<td>None</td>
</tr>
<tr>
<td>Substation Room</td>
<td>NA</td>
</tr>
<tr>
<td>Ceiling Space</td>
<td>NA</td>
</tr>
<tr>
<td>Maintenance</td>
<td>High</td>
</tr>
<tr>
<td>Operating Efficiency</td>
<td>Very Low</td>
</tr>
<tr>
<td>Payback (Yrs)</td>
<td>Base</td>
</tr>
</tbody>
</table>
provide heat to the aircraft in the winter as well. The heat can be supplied by a centralized heating plant, by electric heating units, or both in colder climates.

Centralized preconditioning systems are available in a variety sizes, with the number of gates serviced dependent upon the size of the chiller plant. All centralized preconditioning systems utilize standard industrial chillers. The larger systems use traditional condensing methods for cooling, involving cooling towers or evaporative condensers. These systems utilize their economies of scale to efficiently service the varied levels of demand for cooling. Small chiller plants generally utilize two or more air cooled chillers (eliminating the need for cooling towers or evaporative condensers). Small chiller plants are more suitable to airports where the 480 volt, 60 hertz power is limited.

Point-of-use preconditioned air systems supply cool air to a single aircraft. These systems are small enough to be mounted under the gate bridge and they utilize an individual air conditioning and heating unit. They are powered with standard 480 volt, 60 hertz electricity and are available in sizes capable of supplying preconditioned air to both narrow and wide body aircraft. Because point-of-use systems are discrete systems, the airport's entire system is not vulnerable to failure. Conversely the entire network is vulnerable to interruption due to equipment failure in centralized systems. Point-of-

---

**FIGURE 4-1**

Centralized Air Conditioning System

---

AIR POLLUTION MITIGATION MEASURES FOR AIRPORTS AND ASSOCIATED ACTIVITY

59
use systems also require little disruption to the terminal during installation. This system is installed by attaching the air conditioning/heat-
ing unit to the bottom of the gate structure, wiring the unit into the terminal's electrical sys-

Pneumatic power distributed to each gate is another way to cool an aircraft with a fixed cen-
tralized system. This type of system uses a cen-
tral electric screw type compressor and air stor-
age tank(s) to compress and store air. High pres-
sure hoses carry pressurized air from the com-
pressor station to the gate through a dedicated line. At the gate, a reinforced flexible hose con-
ects the compressed air outlet to the plane. The compressed air powers the aircraft's on-board air-conditioning unit.

Installing this type of system requires essen-
tially the same type of additions as the centralized preconditioning systems. A central compressor must be connected to the gates with a series of reinforced pipes capable of handling the com-
presired air.

Disruptions due to installation and the nec-
essary terminal modifications make central chiller plant and central compressor systems more difficult and costly to install than the point-of-use systems. However, centralized sys-
tems benefit over the long term from the economies of scale offered in servicing a num-
ber of gates with a single or several plants. Determining which system best suits a particu-
lar airport depends on a number of factors that must be analyzed airport by airport. The exist-
ing structure of the airport, cooling (and heat-
ing) needs, electric capacity, and budgetary con-
siderations all play a role in determining which system works best at a given airport.

Installing and utilizing fixed electrical and

air conditioning systems will not immediately

eliminate the need for APU and/or GSE usage.

Current fixed systems are not able to provide all

the support needs of the aircraft parked at the
gate. Also, installation of fixed support systems

is difficult and costly, especially in existing ter-
minals. These issues can inhibit the usage of
central and air-conditioning support systems.

Fixed electrical and air-conditioning systems

are not always utilized, even when they are avail-
able. To start the main engines, the APU must be

started to provide the volume of pressurized air

needed to start the main engines. The engines

in typical narrow body aircraft require 90 pounds

per minute (ppm) of air pressurized to 42 psi and

wide body aircraft require approximately 120 ppm

at 42 psi. APUs require about 10 minutes to warm

up and start one or more jet engines. Sometimes

when an aircraft is scheduled to be parked at the
gate for a short stay (less than 30 minutes) pilots

consider it advantageous to leave the APU run-
ing. At airports with only fixed electrical supply,
the APU is operated to provide air-conditioning
to the cabin as well as to start the main engines.

Thus, without both fixed electric and air-condi-
tioning the APU will be operated. Without ground

support to start the main engines, the APU must
be operated for a minimum of 10 minutes before
each departure. At least one major air carrier cur-
cently has a policy instructing the captain to hook
up to fixed power and air-conditioning systems

whenever they are available to minimize APU
usage. However, the final control of the aircraft's
engines and APU remains with the captain and
the flight crew and depend on local conditions
and operational considerations.

A ground air start unit can be used to start the
main engines. Typically this type of unit uses a large diesel engine and a screw compressor to provide the volume of compressed air needed. They often are used when the aircraft’s APU is not working rather than being the preferred alternative to APU use.

Finally, there are additional zoning and building regulations at airports which make major modifications to the airport difficult. These regulations vary from airport to airport; they generally do not prevent the installation of fixed power and air-conditioning systems, but slow it down. This delay and administrative burden adds to the installation costs. Also, there are legal concerns about ownership and maintenance related to leased gates at terminals. These issues must be resolved before any fixed aircraft support equipment can be installed.

While these constraints to using fixed power and air-conditioning systems are serious, none of them is enough to prevent their installation and usage if the decision is made to install them and to significantly reduce the emissions from GPUs and APUs.

**APPLICATIONS**

There are few operational differences between fixed electrical and air systems and mobile GSE. Both systems are connected to the aircraft with standard plugs once the aircraft parks at the terminal gate. Both systems provide the electric power and air-conditioning in the levels needed by the aircraft at the gate. However, fixed systems offer some advantages over mobile GSE usage. In fixed systems operations, the power or air comes from outlets at the gate. This makes fixed systems less obtrusive than GSE at the gate. Also, mobile GSE use engines for power, which necessitates refueling and regular maintenance, whereas electric powered fixed systems require no refueling and less maintenance.

Airports can fall under the jurisdiction of the city, county, state and federal governments, or the Federal Aviation Agency (FAA), all of whom have their own set of construction codes. The airport authorities have a regulatory review process which coordinates the implementation of the regulations imposed by all concerned governments and agencies.

Thus, the specific building codes and operation regulations that apply to each airport changes from airport to airport. This process has become even more complicated in relation to air pollution regulations that cut across traditional political boundaries.

---

**SAMPLE CALCULATIONS**

To calculate the emissions savings offered by utilizing fixed electrical and air-conditioning systems at an entire terminal, or even a portion of the terminal, the level of emissions generated with the current operations are calculated and then the emissions generated by APUs, GPUs, and mobile air-conditioning units being replaced with the fixed ground support systems are subtracted from the baseline. This calculation is represented by the following formulas:

\[
\text{APU Emissions} = \text{Population of A/C Using APUs} \times \text{Fuel Flow Rate} \times \text{Emissions lb. fuel}
\]

\[
\text{GSE Emissions} = \text{Pop. of GSE by Type} \times \text{HP} \times \text{LF} \times \text{Emissions} \times \text{BHP-hr.}
\]

\[
\text{Total Emissions Level} = \text{APU Emissions} + \text{GSE Emissions}
\]

\[
\text{Displaced Emissions (On-Site)} = \left( \frac{\text{Number of Aircraft Using Central System}}{\text{Total Aircraft Serviced}} \right) \times \left( \text{APU Emissions Level} \right) + \left( \frac{\text{Number of Aircraft Using GSE Emissions Level}}{\text{Total Aircraft Serviced}} \right)
\]

---

**AIR POLLUTION MITIGATION MEASURES**

FOR AIRPORTS AND ASSOCIATED ACTIVITY

61
As seen in Table 4-6, this analysis suggests that the economics of supporting aircraft parked at airport gates favor fixed power and air conditioning systems over a period of time. By eliminating the usage of APU, fuel and maintenance costs are saved. The exact cost trade off depends on the construction and usage level associated with a specific airport. Table 4-6 itemizes the construction and energy costs of installing fixed electrical systems. Noticeably, this comparison suggests that using mobile GSE (GPU) is the most cost effective alternative to APU usage, although, the difference is a payback of 1.49 compared to 1.52 for point-of-use (bridge mounted). Fixed air conditioning systems also offer cost advantages over APU usage. The higher capital and energy costs push up the payback period to approximately 3 years. As before, the cost analysis depends on the system selected, the cooling requirements, and the climate. Thus, both fixed electrical and air conditioning support systems have high construction costs, but can pay for themselves in energy savings alone, without considering the emission benefits.

Airports service a wide variety of aircraft with an equally wide variety of operating practices and times. To date, very little reliable information is available regarding airport and airline specific aircraft servicing times and equipment operation times. The calculation of existing emissions should include the average time aircraft spend at the terminal gate by aircraft type. Additionally, the emissions calculations depend on the number of gates that are already equipped with centralized electric and/or air-conditioning service. Also, emission factors for the different types of APU would increase the accuracy of the emissions estimates. The APU emissions factors used in this report are based on a limited number of APU models currently in use. The emissions estimates in this report are based on default times. Actual operating times should be used when calculating an emissions inventory for a specific airport.

| Table 4-6 |
| Costs Of Central Power Systems |
| System | Costs Per GATE | Energy Costs (Annual) | Payback (Years) |
| Central | | | |
| Vertical M-Gs | 3,963,039 | 232,081.20 | 2.70 |
| Horizontal M-Gs | 4,008,683 | 232,081.20 | 2.73 |
| Inverters | 4,020,768 | 180,960.36 | 2.64 |
| Mini Central | | | |
| Vertical M-Gs | 2,445,815 | 190,322.78 | 1.62 |
| Horizontal M-Gs | 2,547,245 | 190,322.76 | 1.69 |
| Inverters | 2,329,895 | 180,960.36 | 1.53 |
| Localized | | | |
| Bridge Mounted | 2,306,772 | 180,960.36 | 1.52 |
| Mobile | | | |
| Electric (27) | 2,447,402 | 180,960.36 | 1.63 |
| Diesel (27) | 2,057,823 | 325,807.20 | 1.49 |
| Base | | | |
| APU | — | 1,701,097.20 | 0.0 |

The payback period is estimated using the APU operating costs as a base cost.

\[
\text{Simple Payback Period} = \frac{\text{System Construction Cost}}{\text{APU (cost)} - \text{System (O&M)}}
\]
source of information on fixed electrical and air conditioning systems, but they are guarded about generalizing across the industry. Jane's Information Group's Airport & ATC Equipment, 1992-93 provides a worldwide catalog of airport support equipment. Finally, the environmental impact statements for California airports sometimes contain estimates of emissions that could be eliminated with the installation of fixed electrical and air-conditioning systems, although many of these estimates lack documentation. Thus it is difficult to evaluate the accuracy of their estimates.

In general, the GSE industry does not deal with issues across applications, but with specific orders placed by airport authorities and/or specific airlines. This is reflected in the information available on fixed electrical and air conditioning systems.

### Implementation Feasibility

- All of the systems discussed here are mature technologies, although improvements are always being introduced. This limits the concerns about the practical feasibility of fixed ground support to issues related to the intrusion and cost of installing fixed ground support systems at existing airport terminals. The limitations of each terminal and fixed support equipment must be addressed on a case by case basis because each airport has a different layout and services different aircraft.

- Replacing mobile air-conditioning units, GPU, and APU usage with fixed electrical and air-conditioning usage reduces the on-site emissions generated from servicing aircraft parked at terminal gates.

### 4.3.3

**Conversion Of GSE To Alternative Fuels**

This measure reduces the engine emission factors of large GSE.

Airlines use a wide variety of equipment to service their aircraft at airports. The average GSE fleet includes aircraft tugs, baggage tractors, baggage and cargo handling equipment, and conveyor belts. Most types of GSE are powered by internal combustion engines.

Emissions from this equipment can be reduced or eliminated by providing the service through alternative means (such as fixed electrical and air-conditioning systems) or by converting the existing equipment to an alternative power source. The alternative fuels most often used in GSE are CNG/LPG and electricity.

In general, all non-road certified equipment (including GSE) are powered with "off-highway" engines built for agricultural, utility and industrial equipment manufacturers. As a result, GSE are powered predominately by industrial engines exceeding 50 HP.

GSE manufacturing is a custom order business. Standard equipment designs are modified to the specifications of the airline. Equipment and the engine powering the equipment are sized according to the application and capacity specified by the airline. There are three main types of industrial engines/motors on the market: conventional fueled engines, CNG/LPG fueled engines, and electric motors. All three types can be used in GSE applications.

### Constraints

There are several obstacles to converting GSE to operate on alternative fuels. Engines using
alternative fuels generally are more expensive, need to be refueled more often, and require different refueling stations.

**CNG/LPG Fueled GSE**

Until recently, the demand for industrial CNG/LPG fueled engines has been minimal. CNG/LPG equipment has not been practical for a wide variety of applications since the added costs involved prevented widespread acceptance of such equipment. Without sufficient market demand, engine manufacturers have not developed these engines at mass production levels, which keeps the incremental costs high. Only a few manufacturers currently produce engines that use alternative fuels. In the absence of OEM CNG/LPG engines, conversion kit companies have grown and remained the primary source of CNG/LPG engines. Emission factors shown in Table 4-4 for CNG are for converted engines. The emission factors for "future technology" are those expected for CNG engines from original equipment manufacturers (OEM). Conversions are available for most sizes of industrial engines, but are most often performed on medium (50 - 250 HP) and large (250 - 450 HP) gasoline engines. When these engines are available, either by conversion or from OEM suppliers they are generally more expensive than conventional engines.

Conventional engines are converted by replacing the existing carburetor or fuel injection systems with a new system capable of handling CNG/LPG. Existing fuel tanks are replaced with high pressure tanks for CNG, or low pressure tanks for LPG. Modifications are also made to the engine controls (the fuel to air mixture is typically leaner and the ignition timing advanced in gasoline engine conversions). However, the compression ratio cannot be modified in existing gasoline engines, because this is a function of the engine design and construction. Because of this, converted gasoline engines are less efficient than dedicated natural gas engines and many aftermarket CNG/LPG systems are sometimes calibrated rich. These factors lead to increased fuel costs and emissions (over dedicated CNG/LPG engines). Diesel engines are not converted to CNG/LPG given the extensive modifications that must be made. The greater reliability and increased efficiency of factory produced, dedicated CNG/LPG engines favor the use of dedicated CNG/LPG engines. OEM built, dedicated CNG engines can be utilized in applications that normally use diesel and gasoline engines. Some diesel manufacturers (Cummins, Detroit Diesel, and Hercules) have begun offering CNG engines.

There are only a few design obstacles to manufacturing GSE with engines that use CNG/LPG. Dedicated and dual fuel engines currently available from engine manufacturers and aftermarket converters (for gasoline engines) can be incorporated into GSE construction with relative ease. They have similar mounting, size, and weight specifications as conventionally fueled engines. Incorporating the new fuel tanks adds weight to the equipment, although weight is not a critical factor for aircraft and baggage tractors. Because of the reduced energy content by volume of CNG/LPG, alternative fueled equipment has traditionally experienced problems with limited operating times, which increases the non-operational refueling time associated with CNG/LPG equipment.

Another obstacle to using CNG powered equipment is the need for new refueling stations. CNG refueling stations compress natural gas to 3000 psi in the GSES on-board fuel tanks. This can be achieved in one of two ways: slow
fill and fast fill. The slow fill method is the easiest and least expensive way to refuel natural gas tanks. A small compressor slowly fills the on-board tanks with natural gas until the tanks reach 3000 psi (over a period of hours). This method works best with equipment that is not used for a long period of time each day (i.e., overnight). The fast fill method stores compressed natural gas in storage tanks and then fills the on-board tanks from these storage tanks, switching from tank to tank as they equalize pressure with the on-board tanks. This tank switching (or cascading) continues until the on-board tank is full. The fast fill system is more expensive than the slow fill system because of the storage tanks and switching system increase the costs. Both systems can be sized to refill natural gas at any rate necessary to accommodate the refueling needs presented by the equipment population. A typical fast fill system capable of handling 12,000 SCF (Standard Cubic Feet) of CNG (the equivalent of 100 gallons of gasoline) per minute costs approximately $38,000 to $45,000 and the equivalent slow fill system costs approximately $30,000 to $40,000. The slow fill takes 10 times longer to fill the same amount of fuel. These systems generally receive natural gas from the natural gas supply network that is available in every major city. LPG refueling systems are less complicated than CNG systems. LPG is delivered to refueling stations in a liquid form and is kept in pressurized, insulated storage tanks. To refuel, the equipment’s tank is connected to the storage tank, a valve is opened and the equipment’s tank is filled.

CNG and LPG engines generally are less costly to maintain and tend to last longer than their conventionally fueled counterparts. Gasoline and diesel fuel contain contaminants that build up in the cylinders and exhaust system. Thus, alternatively fueled engines require some special maintenance, but on the whole they can require less maintenance and fewer overhauls.

None of the constraints to switching to CNG/LPG powered GSE prevents the usage of this equipment, they just add to the costs. Several manufacturers of GSE who were contacted about their experiences with CNG powered GSE stated that there should be no problems in delivering this type of equipment at an additional cost of 10% to 25%. The additional cost of the equipment would decline as production quantities increased over time and development costs are recovered. The cost of converting existing equipment varies with the size and complexity of the equipment to be converted; however, the average cost is between $2,000 and $3,000. Some airlines have begun using converted GSE at Denver’s Stapleton Airport. Additionally, programs are in place to test the ease of using GSE powered by CNG at Los Angeles International Airport and Boston’s Logan Airport.

**Electric Powered GSE**

Electric GSE applications are limited by the battery's energy storage capacity. Electric GSE substitute conventional engines with an electric motor (or motors) and replace the fuel tanks with lead-acid batteries. This may add size and weight to the equipment, but because most GSE are not constrained by size and weight, these changes can be incorporated easily. Electric powered applications work well in tasks that experience short periods of activity throughout the day because electric motors use no energy while at

---

**AIR POLLUTION MITIGATION MEASURES FOR AIRPORTS AND ASSOCIATED ACTIVITY**

---

65

---

rest. In fact, many different types of GSE, ranging from aircraft tugs to portable water carts and baggage conveyer belts, are currently available in electric versions. The main limitation to electric GSE is the lead acid batteries. They do not hold enough charge to work well in applications that have lengthy or sustained, heavy load operation (such as those experienced by GPUs and air conditioning units).

The time required to recharge the batteries is another limitation to using electric powered GSE. For example, Stewart and Stevenson manufactures an electric aircraft tractor, the EGT-50, which operates with much the same capabilities as their diesel powered GT-50. However, the EGT-50 must be recharged after 8 hours of constant operation and recharging takes approximately 10 hours. The GT-50 must be refueled after roughly 12 hours of operation and refueling takes approximately 15-30 minutes. The recharge requirement is generally handled with "opportunity charging" (i.e., plugging into battery chargers while the equipment is at rest).

The maintenance needs of electric equipment are very different than the conventional equivalent equipment. Electrical equipment requires very little routine service other than servicing the battery's water and acid levels. However, at every 3,000 to 6,000 hours of operation, the batteries must be replaced (the exact replacement schedule depends on battery quality, the equipment's duty cycle and load levels).

In general, electric versions of GSEs also cost more than their conventional counterparts. The cost difference varies from manufacturer to manufacturer and between equipment types, but averages 10% to 30% higher than similar conventionally powered equipment. Replacement cost of batteries also is quite high.

There are few operational differences between conventional GSE and GSE that use alternative fuels. GSE powered with CNG/LPG or electricity must be refueled more often. The additional refueling or recharging times also reduce the operational efficiency of the alternative powered equipment. Electric systems and slow fill natural gas systems take several hours to recharge or refill the systems. Fast fill natural gas refilling systems reduce the refueling time down to less than an hour. Other than these differences in refueling, there are no major operational difference between conventional GSE and GSE powered with CNG and electricity.

The emissions factors measured to date for GSE and LPG powered engines apply to general usage as represented in test cycles. The estimates of emissions savings realized by switching to CNG/LPG could be verified with additional emissions factors obtained in new tests of CNG/LPG engines.

Switching from conventionally powered equipment to natural gas and electric powered equipment will reduce the emissions from GSE. The reductions realized from this conversion can be measured by changing the emissions factors to represent the change in fuel, calculating the emissions generated and comparing this emissions level to the emissions baseline. The emissions benefit realized by switching from using conventional GSE to electric GSE can be measured by eliminating the emissions of all equipment that is switched to electric power. This calculation is represented by the following formulas:
EMISSION REDUCTION =
Σ (P_j * BHP_j * LF_j * Use Hours_j * (EF_{ic} - EF_{ij}))

Where

P_j = population of ground support equipment
      of type j
BHP_j = the rated horse power of equipment
        type j
LF_j = the load factor of equipment type j
Use Hours_j = the operating time of equipment type j in
              hours per day.
EF_{ic} = the emission rate of pollutant i in
        gm/hp-hr from ground support
        equipment of type c or j
EF_{ij} = conventionally fueled ground support
        equipment.
j = ground support equipment converted to
   alternative fuel use

Note, however, that the difference in emission
factors may not hold true in the post - 1995 time
frame when ARB’s proposed standards for engines
used in GSEs may lower the emissions from this
equipment and result in gasoline and diesel pow-
ered engine emission factors being essentially
equivalent to the emission factors for CNG or LPG
vehicles. Of course, emission factors for electric
GSEs are zero, so that the emission benefit is a
given for this conversion.

Several of the major airlines and several air-
ports have experimental alternative fueled equip-
ment in operation. United Airlines and Alaska
Airlines have alternative fueled GSE fleets in opera-
tion and they may be able to provide more spe-
cific details of performance and cost comparisons
when their tests have been completed.

A more detailed discussion of regulatory issues
surrounding light duty industrial engines in gen-
eral is available in the reports prepared for the
California Air Resources Board by EEA: “Regu-
larly Strategies for Off-Highway Equipment”,
January 1992 and the report “Feasibility of Con-
trolling Emissions From Off-Road, Heavy-Duty
Airport & ATC Equipment: 1992-93, contains
information about the equipment offered by the
worlds GSE equipment manufacturers, including
electric and CNG/LPG equipment availability.

**Implementation Feasibility**

- Properly tuned light duty spark ignition engines
  operating on CNG/LPG potentially reduce their
  HC and CO emissions by about 30 to 50 percent,
  although NOx emissions increase by about 10
  to 20 percent. However, HC + NOx emissions
  are still expected to decline in most cases. By
  switching to electric GSE, the on-site emissions
  from the equipment are eliminated entirely.

4.4

**Conclusions**

Mitigation measures for GSE can significant-
ly reduce total emissions from this source. While
these options have a higher first cost than current
technology, the fuel savings often result in a pay-
back of less than three years. This is evident from
the plans of many California commercial airports
and airlines. Most airports expect to have fixed
electrical systems installed at all gates by the end
of the decade. Many airlines are experimenting
with electric GSE and there also are demonstration
tests being conducted with CNG GSE.
SECTION 5 —
TCMs and Vehicle Emissions

5.1 Introduction

Airports are destinations for thousands of vehicles daily, and these vehicles contribute to the local and regional air quality problems near airports. Consequently, reducing airport ground vehicle traffic through the implementation of transportation control measures (TCMs) has the potential for reducing the emissions associated with ground vehicle traffic. TCMs can reduce emissions from all modes of operation of passenger and employee vehicles, shuttle buses and vans, and commercial delivery and service vehicles.

There are several components of motor vehicle emissions, each of which corresponds to a particular mode of vehicle operation. These emissions components or operating (driving) modes comprise the "reference trip emissions", which are the sum of exhaust and evaporative emissions for a complete trip to and from the airport for a vehicle on an average trip. Exhaust emissions occur during cold and hot starts, stabilized (or hot) cruises, and idle, while evaporative emissions include hot soak, diurnal, resting and running losses. Some TCMs are designed to eliminate entire vehicle trips, and thereby eliminate all emissions that would have been associated with a trip to and from an airport. Other TCMs target one or more aspects of vehicle travel to airports, and consequently reduce emissions from one or more specific driving modes.

This section examines several TCMs and discusses the effect those measures are expected to have on the ground vehicle reference trip emissions. First, several aspects of the reference trip are described, and then the individual TCMs are discussed. For each TCM, an example is given that can be used by planners to estimate the expected local and regional emissions reductions. The actual emissions reduction that will be realized by the use of the TCM will vary from airport to airport depending on a number of local factors. Those local factors are also discussed in this section. The last part of this section describes the use of alternative fuels to lower the emissions of some airport ground access vehicles.

5.2 Data Requirements For Calculating Emissions Reductions

The purpose of this analysis is to illustrate the emissions reductions that can be achieved through the use of various airport ground vehicle transportation control measures. The calculations of emissions reductions are made relative to the reference trip emissions, or the emis-
sions from all ground vehicles before any control measures are implemented. Each transportation control measure affects one or more components of the reference trip, and as a result, the calculation of emissions reductions for a given transportation control measure may require data that are not needed for the other control measures. This section, therefore, describes the reference trip and its components, and identifies all the data items that are required to calculate the emissions reductions.

5.2.1

The Reference Trip Emissions

The airport ground vehicle reference trip emissions are the amount of hydrocarbons (HC), carbon monoxide (CO), oxides of nitrogen (NOX), and particulate matter (PM) that are produced by all vehicle trips to and from an airport. The reference trip emissions are composed of HC, CO, NOX, and PM exhaust emissions, which occur only when the engine is running, and HC evaporative emissions, which occur when the vehicle is operating and when it is parked. More specifically, exhaust emissions occur during cold and hot starts, stabilized or hot cruises, and idle, and evaporative emissions include hot soak, diurnal, resting, and running losses.

The reference trip emissions are calculated as the product of the emission factors, which are expressed in grams per mile of vehicle operation, and the vehicle miles traveled, or VMT. Each component of the reference trip has a separate emission factor, and those emission factors are dependent on the vehicle type (e.g., light duty cars and trucks versus heavy duty trucks), the vehicle or engine model year, and the odometer reading. Emission factors are adjusted by local conditions such as temperature, average driving speed, and fuel characteristics. Composite emission factors, which are calculated in an emissions factor model such as EMFAC or MOBILE, are used to describe the combined exhaust and evaporative emissions from the local fleet, based on the fleet's composition and local driving conditions. Separate emission factors exist for HC, CO, NOX, and PM, but as the calculations for each pollutant are the same, only one generic calculation is shown in each sample calculation.

Since the reference trip emissions are expressed in grams per mile, it is apparent that reducing the VMT from airport related vehicle trips will have an effect on the total emissions. Eliminating complete vehicle trips eliminates all components of the reference trip emissions for that trip, but may result in increased emissions from other types of vehicles. Obviously, the intention is for the emissions reduction to outweigh the emissions increase. This is the case, for example, when implementing bus service to an airport reduces emissions from private automobiles, but increases emissions from transit buses. Eliminating portions of trips or driving modes also eliminates some emissions, or can swap emissions between modes (e.g., restricting vehicle idle times reduces idle emissions but adds to hot start emissions). Several types of ground access trips are associated with airports. Passengers and employees make trips to and from central terminals and outlying parking facilities by personal and rental car. Some of these people also travel in vans, limousines, shuttles, taxis, and buses. Cargo is transported by trucks to central terminals and more often to buildings away from the central terminal. Some employees also travel to these cargo areas outside the terminals. In this
report the reference trip emissions typically include only passenger and employee trips to and from the central terminals and parking areas. Cargo-related traffic usually is not included in the reference trip emissions. These sources are noted when a TCM could be applied beneficially.

5.2.2

Data and Nomenclature for Example Calculations

The collection of reasonable and representative data that describes the reference trip emissions for each airport under consideration is the most important and most time consuming task incumbent upon local jurisdictions. To calculate emissions or the effects of mitigation measures it is essential that airport-specific information for vehicle mix, trip length, and other variables are used. The following bullets identify the data items that must be collected, and present them in a form that is used in the example calculations throughout Section 5.3. Upper case letters represent the data item, and lower case letters denote "drivers" as employees (e), passengers (p), taxis and shuttles (t), and commercial/cargo (c) vehicles, and other factors which affect the data item.

- The reference trip emissions (E),
  and its components:
  - cold start (Es), hot start (EH),
  - hot cruise (Er), and idle (Ei)
  - exhaust emissions; diurnal (Ed),
  - hot soak (Es), running loss (Er),
  - and refueling (Ei) evaporative emissions.
  Each component is applicable to the three driver types e, p, and c.

- Total airport vehicle miles travelled (VMT)
  and % of VMT by driver type:
    VMTe, VMTp, VMTc, and VMTt.

- Total airport vehicle trips (N); and percent of trips by driver type:
  Ne, Np, Nc, Nt

- Employee and passenger access mode (A) percentages:
  solo drivers (Aes, Aps);
  carpoolers (Aec, Apc);
  public transit riders (Aat, Apt)

- Emission factors (EF) by vehicle type:
  EFv, EFp, EFt, and EFc.

- Average trip length (L);
  Le, Lp, Lt, and Lc.

- Parking characteristics (Pj) for passengers:
  - percent that drops off and parks in short term lot (Ps)
  - percent that parks long term (duration of trip) (Pj)
  - percent of long term parkers on business trip (Pbj)

- Average idle time (I) by driver type:
  le, lp, lt, and lc

- Circuit VMT (O) by vehicle type:
  - taxis (Ct), courtesy shuttle buses (Cb), and
  - door-to-door vans (Cv).

- Rental car fleet (R):
  - Number of vehicles that use alternative fuels
    (Na), average rental car daily VMT (VMTn),
    alternative fuel vehicle emission factor (EFa).

5.2.3

Calculating Vehicle Trips and Miles Traveled

The volume of ground access vehicle trips associated with California airports can be estimated. The best source of information comes from traffic and environmental studies conducted at individual airports. The California Aviation
System Plan, Ground Access Study prepared by the California Department of Transportation [Prepared for the Division of Aeronautics, Wilbur Smith Associates, August 31, 1991] summarizes trip information from these studies across several but not all California airports. Data in the report, as well as findings from national surveys, suggest there is a non-linear relationship between the volume of all ground access vehicle trips at airports and measures of airport use, whether use is defined by “enplanements” or million annual passengers (“MAPs”). Once the relationship is quantified, it can be used to estimate the volume of trips at all California airports where FAA records for enplanements or MAPs are used.

Generally, the rate of ground access vehicle trips decreases with increasing airport usage. One study of 20 airports across the nation found vehicle trips (passenger and employees) per enplanement (passengers only) decreased with increase in airport usage measured as enplanements per day\(^1\). For airports under 5,000 enplanements per day, the vehicle trips per enplane- ment (trip rate) ranged from about 2.0 to 4.0 trips per enplanement. For airports with over 15,000 enplanements per day, vehicle trips ranged from 1.0 to 2.0. The study found the best fit exponential curve relating vehicle trips to enplanements to be:

\[
\text{Trip Rate} = \frac{4.5}{1+0.0117\times\text{Enp}^{0.5521}}
\]

An analysis of the data specific to California airports in the California Aviation System Plan shows a similar exponential relationship between the rate of ground access vehicle trips and passenger usage. Table 5-1 shows the airports and usage data. The vehicle trips in the table primarily include passenger and employee trips to central terminal areas, not cargo trips or employee trips to cargo areas. The best fit curve for the data is the exponential form:

\[
Y = 2.72 X^{-0.21}
\]

Where:

\[
Y = \text{Vehicle Trips Per Day (passengers and employees) Per Passenger (passengers only) - also defined as "Trip Generation"}
\]

And

\[
X = \text{Million Annual Passenger (MAP of the form xxx million)}
\]

With information about the relationship between airport usage and vehicle trips, (cargo trips excluded) it is possible to estimate vehicle trips associated with all California airports, and the grand total vehicle trips. Table 5-2 displays this information. Column one shows a listing of California airports where the FAA collects information about passenger volumes. Column two shows MAP data for each airport. Where the airport is listed in the Caltrans System Plan, MAP data are taken from the plan. Where the Plan does not list the airport, MAP data are derived from 1990 FAA enplaned passengers multiplied by two. Column three is the trip generation rate (vehicle trips per passenger) listed in the Caltrans System Plan (as in Table 5-1) or derived from the above equation relating MAP and trip generation where no trip generation data was available. For very small airports (Arcata and smaller) outside the range of data supporting the equation, the trip generation rate is presumed to be 4.0 (based on the study for the Orlando International Airport referenced above). This rate is

---

1. Orlando International Airport, Application for Development Approval, Development of Regional Impact, Traffic Analysis, Fourth Runway Development, Appendix III.
slightly larger than the rates at Bakersfield and Monterey, the smallest airports where data are available or where the equation can reasonably apply. Finally, column four is the volume of daily trips by airport obtained by multiplying the trip rate by MAP divided by 365 days.

Overall, California airports generate about one half million vehicle trips per day, exclusive of trips associated with cargo facilities outside central terminals. Furthermore, about half of all the daily vehicle trips are generated by two airports, LAX and San Francisco. When cargo-related trips are included for these two airports, daily vehicle volumes are even greater. According to the California Aviation System Plan, goods movement and employee trips to cargo areas add another 40 percent to central terminal trips for both LAX and SFO, again based on traffic studies within EIRs. Of course, these two airports are major cargo handling hubs. Cargo related trips

<table>
<thead>
<tr>
<th>Airport</th>
<th>Annual Passengers</th>
<th>Trips Per Passenger</th>
<th>Total Trip Rate Per Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAX</td>
<td>45,810,000</td>
<td>1.36</td>
<td>62.88%</td>
</tr>
<tr>
<td>SFO</td>
<td>30,390,000</td>
<td>1.10</td>
<td>34.96%</td>
</tr>
<tr>
<td>San Diego</td>
<td>11,100,000</td>
<td>2.11</td>
<td>23.65%</td>
</tr>
<tr>
<td>San Jose</td>
<td>7,130,000</td>
<td>1.82</td>
<td>13.15%</td>
</tr>
<tr>
<td>Oakland</td>
<td>5,510,000</td>
<td>1.81</td>
<td>10.32%</td>
</tr>
<tr>
<td>Ontario</td>
<td>5,420,000</td>
<td>1.70</td>
<td>9.24%</td>
</tr>
<tr>
<td>Orange County</td>
<td>5,480,000</td>
<td>1.21</td>
<td>6.64%</td>
</tr>
<tr>
<td>John Wayne</td>
<td>5,420,000</td>
<td>1.70</td>
<td>9.24%</td>
</tr>
<tr>
<td>Sacramento</td>
<td>3,630,000</td>
<td>1.66</td>
<td>6.13%</td>
</tr>
<tr>
<td>Hollywood-Burbank</td>
<td>3,490,000</td>
<td>2.10</td>
<td>7.37%</td>
</tr>
<tr>
<td>Long Beach</td>
<td>1,420,000</td>
<td>2.33</td>
<td>3.32%</td>
</tr>
<tr>
<td>Fresno</td>
<td>980,000</td>
<td>2.70</td>
<td>2.68%</td>
</tr>
<tr>
<td>Palm Springs</td>
<td>706,588</td>
<td>2.93</td>
<td>2.08%</td>
</tr>
<tr>
<td>Santa Barbara</td>
<td>620,000</td>
<td>3.20</td>
<td>1.97%</td>
</tr>
<tr>
<td>Monterey</td>
<td>336,352</td>
<td>3.42</td>
<td>1.18%</td>
</tr>
<tr>
<td>Bakersfield</td>
<td>270,000</td>
<td>3.73</td>
<td>1.02%</td>
</tr>
<tr>
<td>Arcata</td>
<td>107,030</td>
<td>4.0</td>
<td>0.43%</td>
</tr>
<tr>
<td>Buchanan Field (SF)</td>
<td>99,045</td>
<td>4.0</td>
<td>0.85%</td>
</tr>
<tr>
<td>Sonoma County</td>
<td>90,840</td>
<td>4.0</td>
<td>0.93%</td>
</tr>
<tr>
<td>Stockton</td>
<td>88,252</td>
<td>4.0</td>
<td>0.97%</td>
</tr>
<tr>
<td>Lake Tahoe</td>
<td>85,186</td>
<td>4.0</td>
<td>0.94%</td>
</tr>
<tr>
<td>Redding</td>
<td>77,902</td>
<td>4.0</td>
<td>0.94%</td>
</tr>
<tr>
<td>Ventura</td>
<td>47,678</td>
<td>4.0</td>
<td>0.52%</td>
</tr>
<tr>
<td>Palmdale</td>
<td>38,450</td>
<td>4.0</td>
<td>0.42%</td>
</tr>
<tr>
<td>Modesto</td>
<td>27,694</td>
<td>4.0</td>
<td>0.33%</td>
</tr>
<tr>
<td>Chico</td>
<td>22,098</td>
<td>4.0</td>
<td>0.44%</td>
</tr>
<tr>
<td>San Louis Obispo</td>
<td>17,796</td>
<td>4.0</td>
<td>0.19%</td>
</tr>
<tr>
<td>Santa Maria</td>
<td>12,428</td>
<td>4.0</td>
<td>0.13%</td>
</tr>
<tr>
<td>Merced</td>
<td>11,980</td>
<td>4.0</td>
<td>0.12%</td>
</tr>
<tr>
<td>McNamara (Crescent City)</td>
<td>4,994</td>
<td>4.0</td>
<td>0.05%</td>
</tr>
<tr>
<td>Big Bear</td>
<td>4,030</td>
<td>4.0</td>
<td>0.14%</td>
</tr>
<tr>
<td>Norton</td>
<td>796</td>
<td>4.0</td>
<td>0.09%</td>
</tr>
<tr>
<td><strong>TOTAL</strong></td>
<td><strong>122,048,930</strong></td>
<td></td>
<td><strong>516,774</strong></td>
</tr>
</tbody>
</table>

2. Source: California Aviation System Plan, Caltrans, 1971 non-validated; \( Y = 2.72 \times 0.21 \) for all others (Arcata and smaller) presumed to be 4.00 trip generation rate
3. The product of... \( \frac{column 2}{365} \)
at other California airports probably add no more than a few percent to central terminal trips given in Table 5–2. Finally, Table 5–2 shows the same trend found in vehicle trip generation rates at other U.S. airports: the largest airports generate the fewest total vehicle trips per passenger, while the smallest generate the most total vehicle trips per passenger.

Once vehicle trips are established for an airport, emissions can be estimated, provided there is data on vehicle miles of travel and speeds. The California Aviation System Plan, Table IV provides average trip lengths for trips at selected airports. The trip lengths are given for each group of trips originating from surrounding counties. VMT can be calculated by multiplying the trips per day from the various counties by average distance from the center of the county to the airport, then summing the VMTs. Average travel times also are provided for trips by county, allowing calculation of an average speed for all trips. Table 5–3 displays daily VMT, VMT per trip and speeds for selected airports from the System Plan.

With this information on VMT and speeds, it is possible to make several important emissions calculations:

<table>
<thead>
<tr>
<th>Airport</th>
<th>Daily VMT</th>
<th>VMT Per Trip</th>
<th>Speed (mph)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAX</td>
<td>5,966,828</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>SFO</td>
<td>2,834,610</td>
<td>23</td>
<td>34</td>
</tr>
<tr>
<td>Oakland</td>
<td>602,011</td>
<td>22</td>
<td>39</td>
</tr>
<tr>
<td>Burbank</td>
<td>446,200</td>
<td>22</td>
<td>47</td>
</tr>
<tr>
<td>John Wayne</td>
<td>253,176</td>
<td>11</td>
<td>39</td>
</tr>
</tbody>
</table>

### Table 5–4

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>VMT Per Day</th>
<th>Emission Factor (gm/mi @ 40mph)</th>
<th>Total Emissions (lbs/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon Monoxide</td>
<td>602,011</td>
<td>9.57</td>
<td>12,703.5</td>
</tr>
<tr>
<td>Hydrocarbons</td>
<td>602,011</td>
<td>1.74</td>
<td>2,309.7</td>
</tr>
<tr>
<td>Nitrogen Oxides</td>
<td>602,011</td>
<td>2.68</td>
<td>3,557.5</td>
</tr>
<tr>
<td>Sulfur Oxides</td>
<td>602,011</td>
<td>0.21</td>
<td>278.78</td>
</tr>
<tr>
<td>Particulates</td>
<td>602,011</td>
<td>0.31</td>
<td>411.5</td>
</tr>
<tr>
<td>Total</td>
<td>602,011</td>
<td>14.51</td>
<td>19,281</td>
</tr>
</tbody>
</table>

1. Source: was used: CA specific version
3. Column 2 × 3 × .002205 lbs. per gram.

### Air Pollution Mitigation Measures

*FOR AIRPORTS AND ASSOCIATED ACTIVITY*

74
5.3

Airport Transportation Control Measures

The airport transportation control measures that are discussed below can be classified as either focusing on reducing airport-related trips (hence, vehicle miles traveled, or VMT), or on reducing vehicle emissions without affecting the number of trips or VMT. Therefore, the TCMs are presented in sections pertaining to the target of that TCM. Each TCM is described in detail, including the goal or purpose of the measure, the components of the emissions reference trip that are affected by the measure, and the ranges of the TCM’s expected impact on the reference trip components. The discussion also extends to information planners will need to evaluate the effectiveness of each TCM, references for information on the TCM, and finally, sample calculations.

5.3.1

Trip (VMT) Reduction TCMs

The goal of the transportation control measures discussed below is to eliminate all portions of some vehicle trips to the airports. Reducing the number of vehicle trips reduces VMT, and since vehicle emissions are ultimately expressed as functions of vehicle miles traveled, emissions are reduced. Further, since these TCMs reduce all components of the emissions baseline, these are potentially the most effective TCMs at reducing emissions.

Trip reduction TCMs are typically designed for controlling a specific type of vehicle trip, such as those associated with airport employees commuting to work, or trips by passengers to and from the
proved slightly better at reducing solo driving. In the first, the City of Seattle reduced parking charges for carpools at two downtown Seattle parking facilities, from $25 to $5 per month at one facility and to no cost at another. The largest effect was to attract bus riders to carpooling: 45 percent of the participants in the discount program switched from transit, 29 percent previously carpooled, and 25 percent previously drove solo. A Portland, Oregon program which allowed carpool parking at street meters showed similar results: About half of the users were previous carpoolers, and half of the new carpoolers were former bus riders. The net effect of both programs, therefore, was to reduce VMT by 25 percent among those participating in the programs.

APPLICATIONS

No evaluations of preferential parking for carpools at airports were found in the literature, although the Sacramento airport offers such an incentive program. At the Sacramento airport, 39 available carpool stalls have drawn between 10 percent and 13 percent employee participation. The prior mode of transportation for these airport carpoolers is not known, nor is the carpool rate before the designated carpool stalls were available. Given the results of other similar programs, however, the most optimistic assumption is that carpool incentive programs for airport employees reduce solo driving a few percent, and VMT a lesser amount since carpools still generate vehicle trips. At the low end, VMT reduction may be 0 percent if many new carpoolers are former public transit riders, while the high end may be 5 percent if solo drivers are attracted to carpools in significant numbers.

In order to evaluate the effectiveness of this measure, it is necessary to know the rate of employee commuting by mode - solo drivers, carpoolers, and public transit riders - both before and after carpool incentives are put in place. These data can be used to calculate the reduction in employee trips, which when combined with the average trip length, produces the total VMT reduction. More precise estimates of VMT reduction can be made if the actual lengths of the trips that are eliminated through carpooling are known.

Emissions are also functions of the vehicle emission factors, and light duty trucks tend to have greater exhaust emission factors than light duty cars. If carpooling results in significant numbers of employees switching from passenger cars to vans, the fleet emission factors can increase. Therefore, knowledge of the vehicle mix for all employees who carpool, both before and after the carpool incentives are put in place, would improve the accuracy of the estimates of emissions reductions.

SAMPLE CALCULATIONS

Emissions reductions are calculated as the product of the number of employees' vehicles that are replaced by carpool vehicles (Nec), the average employee trip length (Le), and the employee fleet emission factor (EFe). The product is the daily emissions reduction in grams.

<table>
<thead>
<tr>
<th>TCM</th>
<th>CALCULATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rideshare/Carpool</td>
<td>Nec x Le x EFe</td>
</tr>
</tbody>
</table>

REFERENCES

Early case studies of preferential parking by location are documented in *Traveler Response to Transportation System Changes - A Handbook for Transportation Planners*, R.H. Pratt Associates, for

Reports which examine the effects of carpool preference programs have on public transit ridership include Parking Discounts and Carpool Formation in Seattle, Marla Olsson and Gerald Miller, the Urban Institute, 1979, and Study of Parking Management Tactics, Volume 1: Overview, Peat, Marwick and Mitchell, December 1979. The only reference to carpooling for airport employees is Sacramento Metropolitan Transit Access Study, J.D. Franz Research for Sacramento County Department of Airports, July 1992.

Parking Pricing and Subsidies

Airport employees often receive free or subsidized parking, which has the effect of promoting solo driving. It has been found that increasing parking prices or imposing them where they did not exist previously has had the greatest effect of any studied TCM at reducing employee VMT, as some employees find alternatives to driving solo, such as carpooling or using public transit. Where parking is subsidized by the employer, ending the subsidy or offering a travel allowance in place of the subsidized parking, can have a similar effect on solo driving rates.

This strategy is applicable only where airport employee parking is free or where employers subsidize paid parking. The effectiveness of this strategy may also be lessened if free or low-cost parking exists elsewhere around the airport, thus attracting airport employees who previously parked at the airport, and doing little to decrease overall employee VMT.

Constraints on implementing this measure at airports also extend to the fact that employees may not have as many public transit alternatives as workers in central business districts. Further, shift work schedules can make car and vanpooling less feasible than in other industries, which reduces the number of solo drivers that can make the switch to carpools.

This control measure can be applied wherever employee parking is free or priced significantly below prevailing commercial rates. Many cases of significant declines in solo driving and trip making resulting from employers imposing paid parking or removing employee parking subsidies have been found in the literature. The most recent cases, some of which implemented paid parking alone, and some in combination with alternative mode programs, are summarized below:

- The Nuclear Regulatory Commission began charging market rates for parking in combination with guaranteed garage spaces for carpoolers, after which solo driving decreased 12 percentage points.
- After the City of Bellevue, WA began charging for employee parking, in combination with its long standing rideshare program, solo driving dropped 17 percentage points.
- A Seattle company, CH2M Hill, now gives all employees a $40 per month travel allowance, and charges $49 for parking for solo drivers, where pre-
A previously nc allowance was given and all parking was free (carpoolers still park free). Solo driving has decreased by 25 percentage points since the parking policies were implemented.

- Solo driving also decreased 25 percentage points at Twenty First Century Corporation after the company started charging $30 per month for parking, in addition to continuing its transit and vanpool subsidies, and its practice of providing preferential parking for carpoolers.

How these reductions in solo driving translate into vehicle trip reduction depends on how commuters shift to carpools, transit, walking, and other modes. The above cases and other data suggest that reductions in vehicle trips per 100 employees (i.e., employee VMT) will range up to 35 percent, especially when combined with incentives for carpooling and public transit.

Airport employees are probably unable to shift to carpools or public transit as easily as in other industries, for the reasons noted above. However, where non-employee parking rates are significant and where employees park for free or much reduced rates, a conservative estimate is a 10 percent reduction in employee trips and VMT where priced parking is adopted.

The required inputs for calculating the effectiveness of this measure are similar to those required for the carpool incentive program: The rate of employee commuting by mode, actual lengths (i.e., total VMT) of eliminated trips, and the vehicle mix for all employees who carpool. The most important of these data is the rate of employee commuting by mode before and after the adjustments to pricing are made.

**SAMPLE CALCULATIONS**

The daily emissions reduction, in grams, is calculated as the product of the number of employees’ vehicles replaced as a result of increased parking price or subsidies (Nep), the average employee trip length (Le), and the employee fleet emission factor (EFe).

<table>
<thead>
<tr>
<th>TCM</th>
<th>CALCULATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parking Price/Subsidy</td>
<td>Nep * Le * EFe</td>
</tr>
</tbody>
</table>

**REFERENCES**


**Public Transit and Alternative Mode Incentives for Employees**

Incentives for airport employees to use public transit or any mode other than driving solo have the potential to attract solo drivers in situations where alternative modes are convenient.
and cost significantly less than driving solo. However, past evaluations of transit subsidies and other incentives have shown to be only modestly effective at attracting solo drivers, and may in fact attract carpoolers, previous transit users, and other non-solo drivers.

**Constraints**

The usefulness of this measure for airport employees is limited by the fact that public transit is not always a viable option for airport workers because of factors such as variable work schedules. Other alternative commuting modes (principally biking and walking) are less attractive than in other industries because of the tendency for airports to be well removed from residential areas in which airport employees live.

Public transit and alternative mode incentive programs can be costly to employers who offer them, while incentive programs can be costly to transit agencies that honor them. The increased costs to employers in terms of new employee benefits is obvious, but costs can go beyond the costs of helping their employees commute to work. For instance, some programs distribute transit passes to employees, but no restrictions accompany those passes, and family and friends of employees almost certainly make use of the passes. As for costs to transit agencies, decreased fares may lead to decreased revenues, while increased ridership may lead to increased operating and capital costs if more frequent service is required for commuters.

**Applications**

There is considerable experience with public transit subsidies among U.S. business in general, but very little experience with airport employees has been documented. There is also little well documented experience with alternative mode incentives in general, but what is known is promising. As shown below, the data suggest that transit incentives for employees decreases employee VMT by three percent at the most, while alternative mode incentives may offer as much as a five to seven percent VMT reduction.

Public transit subsidy programs have been successful in terms of getting employees to participate in them, but participation does not translate directly to VMT or trip reduction. This was shown in an Urban Mass Transportation Administration evaluation of several transit pass programs. Ridership increased in several cases evaluated by UMTA, but more from increased trip making among transit patrons than diversion from solo driving.

Transit incentive programs in California have been generally popular with employees, but the lack of information on employee commuting mode has made it difficult to differentiate the employees who have switched from driving solo to using public transit from those who have always used public transit. One company in the Bay Area offers free transit tickets to employees, and about ten percent of employees participates in the program each month. Usual transit shares in the area average about five percent, which suggests a doubling of transit use because of the program. Similar rates were found in another Bay Area company, which has offered a 25 percent transit subsidy since 1984. Transit pass sales at that company have doubled from three percent of all employees to six percent.

The documentation on alternative mode incentive programs is sparse but suggests promising results. Ventura County, for instance, offers an annual payment of $200 to $300 based on the
number of days per week County employees consistently use any alternative commuting mode. The solo driving rate fell from 87 to 69 percent after introduction of the subsidy. ARCO in downtown Los Angeles subsidizes solo driver parking, but offers greater subsidies to users of alternative modes. Under the program, the company has maintained an alternative mode use rate between 55 and 65 percent of employees since 1983, which is five to 25 percentage points higher than for the downtown as a whole. The downside is that some carpooling has increased at the expense of public transit use.

As with the other employee programs, in order to evaluate the effectiveness of this measure, it is necessary to know the rate of employee commuting by mode — solo drivers, carpoolers, public transit riders, alternative mode commuters — both before and after incentives are put in place. These data can be used to calculate the reduction in employee trips, which when combined with the average trip length, produces the total VMT reduction. More precise estimates of VMT reduction can be made if the actual lengths of the trips that are eliminated through use of public transit and alternative modes are known.

Daily emissions reductions are calculated as the sum of emissions reductions due to increased use of public transit vehicles (if any). Emissions from employee vehicles are reduced by the product of the number of employee vehicles replaced by the use of public transit incentives (Nei), the average employee trip length (Le), and the employee fleet emission factor (EFe). Emissions from transit vehicles are increased by the product of the number of new transit vehicles trips (Nt), the average transit vehicle trip length (Lt), and the transit fleet emission factor (EFt).

<table>
<thead>
<tr>
<th>TCM</th>
<th>CALCULATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Transit Incentives</td>
<td>Nei * Le * EFe + Nt * Lt * EFt</td>
</tr>
</tbody>
</table>

The results of the Urban Mass Transit Administration’s evaluations of transit pass programs can be found in *Transit Fare Prepayment Demonstration*, Charles River Associates for the UMTA, September 1982. An evaluation of employer transit pass promotional programs in Seattle is found in *The 1987 Evaluation of Transportation Management Programs, Final Report*, Seattle Commute Services, and Bay Area programs are evaluated in *Commute Alternatives: A Manual for Transportation Coordinators*, MTC, 1983. Ventura County’s experiences with alternative mode incentives is found in *Congestion Management Measures*, Comsis Corp. for FhWA, October 1992, and ARCO’s experience in Los Angeles is documented in *Evaluation of Travel Demand Management Measures to Relieve Congestion*, Comsis Corp. for FhWA, February 1990. Finally, the lone evaluation of alternative mode incentive programs that deals with airports is found in *California Off-Airport Terminals (Draft Report)*, Robert Frazier et al., Institute of Transportation Studies, July 1992.

---

**AIR POLLUTION MITIGATION MEASURES**

FOR AIRPORTS AND ASSOCIATED ACTIVITY

82
Passenger VMT Reduction TCMs

Passengers generate the greatest volume of trips and VMT at airports. As discussed in the section on employee trips, employee proportion of airport VMT might range from a low of 5 to 10 percent up to a high of 20 percent, depending on the balance of cargo trips. Quantitative estimates of VMT can be made by applying this percentage range to airports where total VMT is estimated, as per Table 5-3.

Parking Pricing

There is considerable uncertainty and complexity in parking pricing aimed at air passengers for purposes of cutting solo driving and increasing use of high occupancy modes. On the one hand, data from California airports suggests higher prices are associated with greater HOV mode use. Table 5-5 shows quite a strong correlation between the price of long term parking (P) and the percent of non-drive modes (ND), including taxi, limousine, private transit, public transit, hotel shuttle and other. The results suggest every one dollar increase in long term parking is associated with an additional two percent use of non-auto modes. On the other hand, such correlation does not necessarily indicate increased long term parking prices cause increased use of transit, taxi, or shuttles. Airports with higher parking prices also tend to have better non-drive services, which also could explain higher use. There also is the possibility that higher long term parking rates increase drop off and pick up. Drop off drives up VMT as the passenger generates four trips (to/from drop and to/from pick up) instead of two (to/from airport). If so, the net effect of increased long term rates might be negative, even if pricing encourages some use of non-drive and HOV modes.

Unfortunately, the relationship between parking policy and drop off rates is not well understood. One dated survey of airport drop off suggests high proportions of autos carrying passengers drop off, but that drop off is unrelated to one key parking variable, parking supply. Data from a 1972 survey of six airports shows between 49 and 68 percent do not park or park only briefly, presumably for drop off and pick up purposes [Airport User Traffic Characteristics for Ground Transportation Planning, Table 18 Op. Cit.]. While parking prices are not reported for the six airports, parking space provided per 1,000 annual air passengers are reported. Presuming less parking supply per passenger might be associated with higher prices; or, like pricing, less parking might encourage passengers to drop off rather

<table>
<thead>
<tr>
<th>Airport</th>
<th>Parking</th>
<th>Percent Non-Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bakersfield</td>
<td>3.50</td>
<td>6.3</td>
</tr>
<tr>
<td>Burbank</td>
<td>10.00</td>
<td>20.2</td>
</tr>
<tr>
<td>LAX</td>
<td>16.00</td>
<td>29.27</td>
</tr>
<tr>
<td>Oakland</td>
<td>5.00</td>
<td>14.7</td>
</tr>
<tr>
<td>Ontario</td>
<td>8.00</td>
<td>18.73</td>
</tr>
<tr>
<td>San Diego</td>
<td>12.00</td>
<td>29.5</td>
</tr>
<tr>
<td>Santa Barbara</td>
<td>3.00</td>
<td>3.2</td>
</tr>
<tr>
<td>San Francisco</td>
<td>9.00</td>
<td>33.4</td>
</tr>
<tr>
<td>San Jose</td>
<td>6.00</td>
<td>5.5</td>
</tr>
<tr>
<td>Sacramento</td>
<td>4.00</td>
<td>10.7</td>
</tr>
<tr>
<td>John Wayne</td>
<td>7.00</td>
<td>12.4</td>
</tr>
</tbody>
</table>

than seek parking, one would expect the highest drop off rates at airports with the least supply of parking per passenger. Table 5-6, which displays results from a 1972 survey, explores the issue. Drop offs include autos that dropped off passengers and immediately left the airport, and autos that dropped off passengers and then parked in short-term lots before leaving the airport.

The table suggests less parking is not associated with higher drop off rates. In fact, if any relationship is apparent, it seems the three lowest drop off rates are associated with the least parking supply, and the higher rates with the most supply. In short, drop off appears unrelated or even negatively related to parking supply, just the opposite of what would be expected if parking policy influenced drop off.

Data collected between 1987 and 1982 from a few California airports confirms that drop off and parking policy - in this case pricing policy - are not clearly related. Table 5-7 shows drop off rates for private autos only and long term parking rates at several airports. Long term rates are explored since short term rates all tend to be about the same, between $0.50 and $1.00 per hour. Thus, if drop off does vary with any parking price variation, it is with long term rates. The table shows no clear cut relationship between long term price and drop off/pick up rate. The highest rate is at the San Francisco airport, but this is not the airport with the highest long term parking charge. Los Angeles has the highest parking rate, yet its drop off rate is in the middle of the pack. Finally, San Jose and Oakland have low parking rates, but drop off still tends to be high.

Only Sacramento supports the case that lower parking prices are associated with lower drop off. It has both the lowest drop off rate and lowest parking price.

If drop off/pick up is not strongly related to

---

**Table 5-6**

Passenger Drop Off Versus Parking Supply At Six Airports

<table>
<thead>
<tr>
<th>Airport</th>
<th>Parking Spaces Per 1000 Annual Passengers</th>
<th>Percent Of Passenger Carrying Auto Dropping And Picking Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Drop Off Rate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boston-Logan</td>
<td>0.67</td>
<td>63</td>
</tr>
<tr>
<td>New York - JFK</td>
<td>0.64</td>
<td>65</td>
</tr>
<tr>
<td>San Francisco</td>
<td>0.56</td>
<td>63</td>
</tr>
<tr>
<td>Low Drop Off Rate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atlanta</td>
<td>0.23</td>
<td>49</td>
</tr>
<tr>
<td>New York-LaGuardia</td>
<td>0.46</td>
<td>55</td>
</tr>
<tr>
<td>New York-Newark</td>
<td>0.79</td>
<td>49</td>
</tr>
</tbody>
</table>

*Percentages refer to private autos only, and not to passengers who arrive at the airport by other modes.

---

**Table 5-7**

Passenger Drop Off Versus Long Term Parking Price At Five California Airports

<table>
<thead>
<tr>
<th>Airport</th>
<th>Long Term Parking Price Per Day</th>
<th>Percent Of Passenger Carrying Auto Dropping And Picking Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Los Angeles</td>
<td>16</td>
<td>77</td>
</tr>
<tr>
<td>Oakland</td>
<td>5</td>
<td>76</td>
</tr>
<tr>
<td>Sacramento</td>
<td>4</td>
<td>65</td>
</tr>
<tr>
<td>San Francisco</td>
<td>9</td>
<td>81</td>
</tr>
<tr>
<td>San Jose</td>
<td>6</td>
<td>79</td>
</tr>
</tbody>
</table>

2. Bay Area Air Passenger Survey, 1990. MTC, Table 4.2.

*Percentages refer to private autos only, and not to passengers who arrive at the airport by other modes.
parking policy, what is it related to? Evidence from Logan Airport in Boston suggests traveler perceptions unrelated to parking may be the key. Researchers there have found drop off is highest for non-business travelers, especially residents versus non-residents of the area served by the airport [Logan International Airport Ground Access Non-Pricing Study, Massachusetts Port Authority, to the Conservation Law Foundation, July 1, 1991]. Seventy one percent of drop off is made up of passengers traveling for non-business purposes, and 50 percent by resident non-business travelers. Sixty percent of the resident non-business travelers are female and 70 percent check baggage. As for non-resident, non-business, here again 59 percent are female; 70 percent check baggage, and most originate from Boston or Cambridge hotels. It appears drop off, at least at this airport, may be related more to perceptions of convenience and travel logistics than to parking supply or price.

The same Logan Airport study supports the finding from California airports that increased long term parking prices are not associated with increased drop off. When long term rates at Logan increased from $8.00 in 1984 to $10 in 1986, pick up and drop off actually declined from 34 percent to 26 percent. Probably a key reason the price change didn't increase drop off has to do with the type of passenger facing the parking charges. The primary users of long term parking (67 percent) are resident business travelers who have the lowest drop off rates, 12 percent. In contrast to the profile of the high drop off population, 75 percent are male and 60 percent do not check luggage. Thus, it is unlikely price increases for this group would increase the drop off rate. As to why drop off declined, there are a couple of possible reasons. One, new and convenient transit service (Logan Express) was initiated during the same period, 1986. Two, short term parking rates also climbed during the same period, from $1.00 to $2.00, possibly discouraging at least some drop off using short term facilities. But the most important finding is increased long term parking rates do not necessarily boost drop off, especially if accompanied by good transit options and, possibly, increased short term rates.

Logan experience also suggests parking pricing combined with transportation service improvements may be most effective in boosting use of door-to-door, scheduled HOV and transit, but service improvements alone also are quite effective. As mentioned, between 1984 and 1987 the airport increased parking rates from $8.00 to $10.00 per day, and started Logan Express service. A water shuttle also started during the same period.

During this period, the proportion of passengers using all high occupancy modes increased from 15 percent to 22, a 7 percent boost. From 1987 to 1990, when parking rates held steady and service improvements on the Logan Express continued (mostly relocating routes and adding park and ride lots), the proportion of high occupancy mode use still climbed, but less dramatically from 22 percent to 26 percent, a four percent increase. It is worth noting the increase in Logan Express ridership since 1987 was 20 percent in spite of two increases in fares [Logan International Airport Ground Access Pricing Study, Massachusetts Port Authority, to the Conservation Law Foundation, February 1, 1991]. In short, all else being equal, parking pricing alone may have boosted use of high occupancy modes a few percent, but service improvements (in spite of fare increases) were
perhaps equally effective. Most effective is the combination of pricing and service.

Why might parking pricing alone not be more effective in increasing passenger use of high occupancy modes? Again, the profile of the passenger facing the parking pricing is key. At Logan, where the primary users of long term parking are business travelers, 80 percent are subsidized by their companies for travel. Also, 42 percent travel on the same day or only overnight. Clearly, this is the kind of traveler for whom parking cost may be less important in choosing mode of travel than convenience and service.

Other research suggests hiking long term parking rates alone, at least by usual amounts, may bring only small increases in high occupancy mode use. A study of “travel elasticities” for passengers at the San Francisco airport also concluded changes in parking pricing would have to be quite substantial to effect travel choice. The study concludes, “Parking prices could be used to increase the cost of auto travel, although the surcharges required to bring about a significant diversion are quite large” [“Study of Airport Access Mode Choice,” By Greig Harvey, Journal of Transportation Engineering, Vol. 112, No. 5, September, 1986].

There are several conclusions regarding parking pricing for passengers:

• Increases in parking pricing most likely will increase use of high occupancy modes, but considerable price increases may be needed to bring results. Business travelers especially may not be very sensitive to increased parking prices, at least not unless price changes are substantial and accompanied by improved high occupancy services.

• The evidence does not suggest the drop off rate or underlying reasons for drop off are related to parking supply or prices; however, the evidence is by no means conclusive. There is sufficient uncertainty that airports ought to monitor drop off and multi-occupancy mode use when making adjustments in parking rates.

• Three, the effects of pricing will be very dependent on the proportion of business and non-business passengers utilizing any particular airport, as well as complementary actions such as short term parking rates and quality of high or multi-occupancy mode services.

Because there still is so little evidence on the effects of parking pricing on drop off, it is not possible to provide definitive guidance on VMT reductions due to pricing. However, one study hints at important quantitative guidance. A mode of passenger travel behavior at the San Francisco airport using profiles of traveler incomes, travel mode and other data concludes, “Taking into account the high average income of the business sample, this shows that cost sensitivity for business access travelers is about the same magnitude as cost sensitivity for weekday work travelers at comparable income levels”. If so, we may take parking elasticity studies for employees and work trips as a rough guide. These studies show parking price effects on employee vehicle trips and or VMT (not parking demand) range widely from an elasticity of -0.01 (especially where transit alternatives are poor) to -0.3 at the high end (i.e., a 100% price increase leads to a 1% decrease at the low end to a 30% decrease at the high end.) [Improving Air Quality Through Transportation Systems Management: What Can Be Expected, John Suhrbier, Terry Atherton, Elizabeth Deakin, a paper before the Annual Transportation Research Board Meeting, January 1979; also, “A Review of the Impact of parking Policy Measures on Travel Demand,” Bernard Feeney, Transportation Planning and Technology, Vol. 13, 1989]. At most, then, we might expect a 10 percent increase in parking price to reduce vehicle use and VMT among those
facing the parking charge (i.e. excluding drop off and multi-mode users) by 3 percent. For example, looking at Table 5-4, suppose Oakland Airport increased its long term parking price from $5.00 to $7.00 per day, a 40 percent increase. At best this would bring a 12 percent reduction in VMT and emissions among those affected by the price. At this airport, only about 17 percent of passengers drive and park [69 percent use private cars, but only 24 percent of these park for the duration of the trip according to MTC Passenger Survey, Op. Cit.]. Thus, assuming VMT proportions follow mode shares closely, only 17 percent of total airport VMT would be reduced by 12 percent, for a reduction in total VMT and emissions of only 2 percent. This translates into about 400 pounds of pollution per day.

Of course, effectiveness will vary depending on the proportion of passengers driving to the airport and parking for the duration of the trip. For example, at San Francisco, only 46 percent of passengers access the airport by private car, and only 18 percent of these park for the duration of the trip (equivalent to 8 percent of total passengers) according to a 1990 passenger survey. Thus, pricing might be less effective than at Oakland [MTC Passenger Survey, Op. Cit.]. According to a 1992 passenger survey at Sacramento, 84 percent arrive by car and 35 percent park [Franz Research, Op. Cit.]. Overall, the range of effectiveness might be from 1 to 4 percent reduction in total airport VMT and associated emissions.

Therefore, parking price increases will be most effective only at airports where non-business travelers make up the majority of all travelers. Also, alternative transportation options must be in place, they must be convenient, and they must be competitively priced if raising parking prices is not to result in increased drop off rates.

**APPLICATIONS**

Effectiveness will vary between airports depending on the proportion of passengers driving to the airport and parking for the duration of the trip. For example, at San Francisco, only eight percent of all passengers park for the duration of the trip (as mentioned above), and the maximum three percent reduction per ten percent increase in parking price would be applied only to that very small passenger segment. Thus, a forty percent increase in parking prices would bring about a one percent decrease in passenger related VMT and emissions. At Sacramento, on the other hand, 29 percent of passengers park for the duration of their trips. This implies that almost four times as much VMT reduction could be achieved by raising parking prices at Sacramento than would be expected if prices were raised by the same percentage at San Francisco. A range of effectiveness for raising parking prices might be from one to four percent in total passenger VMT and associated emissions.

**CONCLUSIONS**

As explained, the effectiveness of parking pricing at reducing VMT will decrease as the percentage of business travelers (P) increases. The most important input for calculating the emissions reduction effect of this measure is the percentage of passengers driving to the airport and parking for the duration of the trip, since this is the group from which any and all VMT and emissions reductions will
come. The business percentage of long term parkers (Plb) will be an indication of the chance for success of this control measure, since business parkers are least likely to be concerned with parking prices.

### SAMPLE CALCULATION

Daily emissions reductions, in grams, due to increased long term passenger parking prices are calculated as the product of the number of passenger cars removed (Npp), the average passenger trip length (Lp), and the passenger vehicle fleet emission factor (EFp). These emissions reductions would be offset by any increase in the number of public transit vehicles serving the airport due to increased demand from passengers who previously parked for the duration of their trips.

<table>
<thead>
<tr>
<th>TCM</th>
<th>CALCULATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increased Parking Price</td>
<td>Npp * Lp * EFp * Ntp * Lt * EFt</td>
</tr>
</tbody>
</table>

### 5.3.2.1

**Idle Restrictions**

A significant percentage of the total time a vehicle spends at an airport is at idle. This is especially true for passengers' light duty cars and trucks, taxis, shuttle buses, and vans, all of which tend to idle while dropping off or picking up passengers. Commercial vehicles also idle while loading and unloading cargo, often for considerable lengths of time. By eliminating or significantly curtailing the time spent at idle, the total emissions from these vehicles will be reduced, as idle emissions are generally greater than emissions that result from starting a warmed up vehicle (i.e., a “hot start”).

This control measure is applicable to all vehicles except employees' vehicles, but is effective only if the emissions from an idling vehicle are greater than the emissions from hot starts. This test can be made only after determining, at the individual airports, the average idle time by vehicle type. This must be done through an observational monitoring program or perhaps a survey of airport users. If the product of the average idle time and the average idle emissions for that segment of the vehicle fleet is greater than the average hot start emissions for the vehicle fleet then idle limitations can be effective. (Emission factors for idle, hot start, and other modes are available from the EMFAC model or a California-specific version of EPA's MOBILE model.)

Hot start NOx emissions from gasoline engines are typically very low, and this control measure is not expected to affect them significantly. Similarly, HC, CO, and NOx idle emissions from diesel engines are also small. Therefore, this control measure is not suited to controlling those...
pollutants. However, particulate emissions from diesel engines can be significant and candidates for control, but there is no known documented study which compares diesel engine particulate emissions at idle and hot start.

This measure will impose costs on the airports in the form of salaries for employees who will monitor the parking areas and enforce the idle time limits. It is expected that the monitors can cover more than one area each, especially where idle stands or holding pens are near passenger drop off areas. It may be difficult to enforce idle time restrictions in remote areas of airports, such as cargo loading areas, or to enforce idle restrictions when drivers run their engines to keep their vehicles air conditioned or heated.

Applications

There are no known documented cases of enforcing idle time limits on airport passenger vehicles or cargo vehicles, although many municipalities have legal limits on the length of time a vehicle can idle. Many airports do regulate parking time limits at passenger drop off areas, and many airports also limit parking time and/or idling time for commercial vehicles such as courtesy shuttle buses, taxis, limousines, public and private buses, and on-call door-to-door vans and shuttle buses.

Hot start emissions from light duty vehicles are dependent on the control technology and model year group. Average hot start emissions for light duty cars and trucks were calculated by EEA for the U.S. EPA in 1991, as were average idle emissions. The measurements were made by model year and control technology groupings, so local planning agencies can use EEA's data to calculate average idle and hot start emission rates that are specific to the local light duty fleet.

Average hot start and idle emission rates for heavy duty gasoline vehicles will have to be obtained from the EPA or ARB.

Key Inputs

The most important data item needed to measure the effectiveness of idle restrictions is the average idle time by vehicle type. As mentioned above, this idle time will vary between airports, and will have to be measured at each airport where the measure is considered for use. The average idle emission rate and hot start emissions can be obtained with the help of the local agency which is responsible for determining vehicle emission inventories.

Sample Calculation

The change in emissions due to idle restrictions is the sum of the reduced idle emissions and the increased hot start emissions. Separate calculations are made for passenger vehicles, commercial/cargo vehicles, and taxis. Idle emissions are reduced by the product of the number of vehicles (Np, Nc, Nt), the idle emission rate (EFpi, EFci, EFti), and idle time (Ip, Ic, It). Hot start emissions are calculated as the product of the number of vehicles and the average hot start emission factor (EFph, EFch, EFth).

<table>
<thead>
<tr>
<th>TCM</th>
<th>Calculation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Idle Time Restrictions</td>
<td></td>
</tr>
<tr>
<td>(passenger vehicles)</td>
<td>No * (EFpi * Ip - EFph)</td>
</tr>
<tr>
<td>(commercial/cargo vehicles)</td>
<td>No * (EFci * Ic - EFch)</td>
</tr>
<tr>
<td>(taxi cabs/vans)</td>
<td>Nt * (EFti * It - EFth)</td>
</tr>
</tbody>
</table>

References

There are few documented cases of the effects of idle restrictions on emissions, especially for

5.3.2.2

Circulation Management

Most airports regulate curb access for purposes of reducing curb congestion and promoting safety, targeting vehicles such as personal and rental company autos, courtesy vehicles and shuttle buses, taxis, limousines, buses, and on-call door-to-door vans. Typical regulations limit parking time and/or curb access, and are in general use to control congestion for both private and commercial vehicles. Pricing of curb use has the potential to reduce emissions, particularly from commercial vehicles which are the most likely initial targets, but is not easily accomplished and is much less in evidence than other curb access regulations.

The most serious constraint is that few vehicles using curbs enter airport parking where conventional pricing mechanisms are implemented, so new means of collecting fees are likely to be required. One study of the San Francisco Airport found four-fifths of vehicles accessing the curb never entered an airport parking facility, and pricing through meters at curb areas is probably not practical.

The most effective and efficient pricing approach would be pricing all vehicles as they enter the airport, whether they only go to curbs or parking, or pass through. Only Dallas-Fort Worth imposes such a fee, but the fee is only 50 cents and for revenue raising purposes, not to control emissions or VMT. Airport entry fees would likely have to be similar to parking fees in order to effect any decrease in airport trips.

From the standpoint of reducing VMT of curb access vehicles, one promising focus is on rental car, hotel, and parking lot courtesy vehicles or shuttle buses. Most airports limit the number of waiting cabs and limousines through entry permits, holding areas, exclusive contracts, and trip fees for the privilege of picking up at airports, but the same regulations and fees don't tend to apply to courtesy vehicles. The number of rental car shuttles in circulation can be reduced by centralizing rental car offices and consolidating shuttle service to the center. Sacramento and San Francisco airports are planning this approach under future expansions.

Flat fees and "percent of gross" fees are imposed on parking lot shuttles and rental car shuttles at several California airports, but such fees do not provide any direct incentive to limit circulation or to increase shuttle bus occupancy. One exception to flat or gross fees is provided by LAX, which imposes a percent of gross and "circuit fee" on off-airport rental and parking lot shuttles. Circuits around the airport terminal are monitored by an Automatic Vehicle Identification (AVI) system, and operators are charged for excessive circuits. This fee system provides some incentive to get as many riders as possible per trip and limit circulation around the terminal. Such a fee and monitoring system may be extend-
ed to include on-airport rental car and parking lot shuttles and hotel courtesy vans at LAX, and implemented in full at other California airports.

On-call van service is now the third most popular mode of travel at Los Angeles, Sacramento, and San Francisco airports, and even with holding pens and starters for these vehicles, drivers tend to circulate for customers before leaving the airport. One method of controlling excess circuits by on-call vans and shuttles is being tried at LAX: LAX requires vans to enter a holding lot and obtain a trip ticket for passenger pick-ups, to control illegal entry to the airport. Each vehicle also must be equipped with an electronic transponder (AVI) to allow vehicle circuits to be monitored. A $1.00 per circuit fee is imposed through the transponder for the first two circuits of the central terminal, and additional “excess” circuits cost $9.00. The combination of regulations and fees appears to have reduced circuits about 37 percent. Monthly circuits went from about 110,000 in summer 1990 (before the circuit fee went into effect), to about 70,000 in summer 1991 (after the circuit regulations had been fully implemented).

Estimating the VMT reductions possible through trip fees, consolidated rental car shuttles, and circuit fees for private shared ride vans is difficult. However, it is likely that the direct VMT reductions will be small as a percentage of the total airport VMT, but the indirect VMT reductions can be significant. As an example of such a situation, the 37 percent reduction in circulation VMT achieved at LAX does not account for a very large proportion of total airport VMT: A circuit at LAX is about 1.5 miles, so a reduction of 1400 circuits per day translates to 2100 miles per day, which is a very small percentage of total airport daily VMT (5.9 million miles). However, reduced circuit VMT probably translates into a larger reduction in emissions, as much circulation is stop and go. Further, circuit and trip fees provide incentives for companies to reduce the number of vehicles serving airports when vehicle occupancies are low, and to seek ways to boost the number of passengers carried per vehicle. Therefore, the reduction in overall VMT through the reduction of circuits may be significant, possibly the order of one to two percent.

**KEY INPUTS**

To calculate the effectiveness of circuit management techniques, it is necessary to first determine the daily circuit VMT and vehicle population before the circuit management program is implemented. After the circuit management program has reached steady state, the daily circuit VMT and vehicle population can be compared to the baseline. The actual correlation between the reduction in the door-to-door van and shuttle (or other targeted vehicle) circuit VMT and overall VMT will vary by airport, and can be determined by tracking trips through the AVI system.

**SAMPLE CALCULATION**

Daily emissions reductions, in grams, due to circulation management are calculated as the product of the circuit VMT eliminated for taxis (Ct), door-to-door vans (Cv), and courtesy shuttle buses (Cb) and the respective emission factors.

<table>
<thead>
<tr>
<th>TCM</th>
<th>CALCULATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circulation Management</td>
<td>Ct × EFt + Cv × EFv + Cb × EFb</td>
</tr>
</tbody>
</table>

**AIR POLLUTION MITIGATION MEASURES FOR AIRPORTS AND ASSOCIATED ACTIVITY**
5.3.3

Alternative Fuels

Motor vehicles which are designed to use alternative fuels such as methanol, natural gas, and liquid petroleum gas (LPG) tend to have lower grams per mile emissions of HC, CO, NOx, and particulate than conventional gasoline and diesel vehicles. In addition, their hydrocarbon emissions are not as photochemically reactive as the HC emissions from their conventional counterparts, which should result in the reduction of secondary ozone and photochemical smog. Therefore, a potential emissions control measure for airport vehicles is to use as many alternative fuel vehicles as possible.

The reality of the situation is, while some alternative fuel vehicles are available, the alternative fuels needed to operate them are not yet widely available to the general public. Alternative fuels will become more available in the future, but the best current candidates for alternative fuel use are fleet vehicles which are centrally fueled, such as shuttle buses, transit buses, and some commercial trucks. Since the majority of all rental cars are rented at and returned to airports where central fueling with alternative fuels is practical, alternative fuel vehicles also may be appropriate for use in rental fleets.

5.3.3.1

Alternative Fuels for Rental Cars

The proportion of rental cars used by passengers has increased significantly in recent years. In fact, at airports in the Bay Area, for example, rental car use is the second most popular passenger ground access mode, second only to private cars. This suggests that rental cars are responsible for a significant portion of the airport VMT and emissions: seventeen percent of passengers at San Francisco used rental cars, and rental cars accounted for 13 percent of all passenger and employee trips generated by the airport at large. If rental car trip length is about average for passenger vehicle trips, then rental cars account for 13 percent of VMT at SFO. San Francisco has a similar proportion of rental car use as at South Coast airports for which information is available, and it is possible that rental cars are responsible for 10 to 15 percent of total VMT at South Coast airports, too. Thus, if alternative fuel vehicles were introduced into airport rental car fleets, some reductions in emissions may be achieved.

Near term alternative fuel cars and light trucks will be almost exclusively flexible fuel vehicles (FFV) which can use any mixture of gasoline and methanol, from pure gasoline up to 85 percent methanol (M85). Three major constraints to using alternative fuel vehicles in rental fleets are FFVs' higher prices, reduced choice and availability of FFVs compared to conventional gasoline vehicles, and the relative scarcity of alternative fuel filling stations. These constraints are discussed below.

Current flexible fuel vehicles are priced up to $2000 more than their conventional gasoline counterparts. Flexible fuel vehicle cost issues are likely to be overcome through incentives and falling FFV costs and prices. The California Energy Commission (CEC) offers a $400 credit against the purchase of Chrysler, Ford and GM FFVs ordered in 1993, as an incentive to commercial buyers. Chrysler's FFVs
are actually priced the same as its conventional vehicles, while the price of Ford and GM FFVs are $2000 more than their similar conventional vehicles. Both manufacturers expect the price differential to decrease as economies of scale lower per unit costs.

FFVs will not be available in all size classes, and will not be available from all manufacturers. Thus, rental agencies cannot go to an all FFV fleet, as they would have considerably fewer models and classes of vehicles to offer to renters. Midsize sedans (e.g., Dodge Spirit, Ford Taurus, Chevy Lumina) and minivans (e.g., Chrysler minivans) are popular rental vehicles and the best candidates for FFV, but there are few if any FFVs planned for the subcompact and large/luxury classes, which are also popular with renters.

The third constraint is the scarcity of M85 filling stations. FFV emissions are minimized when M85 is used exclusively, but public M85 filling stations are scarce at this time (there were 39 methanol filling stations in California as of late 1992), although the number of M85 filling stations is expected to increase significantly through the 1990s. For practical purposes, rental agencies must have M85 fueling on-site, but the current lack of public filling stations means that renters are unlikely to refill with M85 away from the airport, and much of the emissions benefit that could come from FFV rentals will be lost in the near term. Even incentives such as offering free refueling for rental FFVs may not be sufficient to keep M85 in FFVs at all times, as shown by the experience of Avis at the Sacramento airport. The company does not charge returning customers a refueling fee on its 20 flexible fuel Chevrolet Luminas, but a company representative estimates 60 percent methanol content as an average across the twenty vehicles at any one time.

As discussed above, Avis already has FFVs in its rental fleet at the Sacramento airport, but as far as could be determined, no emissions data have been collected from those vehicles. Emissions testing of other production FFVs has shown that flexible fuel vehicles enjoy a significant emissions benefit when operated on M85, relative to operation on gasoline.

According to the U.S. EPA's MOBILE5 model, the 50,000 mile emission factors for passenger car LEVs are 0.092 g/mi HC, 3.00 g/mi CO, and 0.196 g/mi NOx. At 50,000 miles, passenger car TLEV are expected to emit 0.147 g/mi HC, 3.93 g/mi CO, and 0.390 g/mi NOx. The in-use emission factors will actually be between the TLEV and LEV factors, since in-use fuel tank methanol content will vary between zero and 85 percent. Compared to 1994 model year conventional gasoline passenger car 50,000 mile emission factors of 0.617 g/mi HC, 9.387 g/mi CO, and 0.78 g/mi NOx, the potential emissions reductions are substantial, even if the rental FFVs run on conventional gasoline.

The inputs needed for the sample calculation are the size of the rental fleets, the percentage of the fleets that can be replaced by FFVs, the average rental FFV VMT, and the average fuel methanol content (to obtain FFV emission factors).

SAMPLE CALCULATION

Daily emissions reductions (in grams) due to the use of alternative fuel rental cars are calculated as the difference between in-use emissions for alternative fueled cars and emissions for conventional cars. In-use emissions are the product of vehicle specific emission factors and average daily VMT. Here it is assumed that conventional rental cars have the
same emission factors as the passenger vehicle fleet, but since rental cars are newer, low mileage vehicles, this may overstate the potential reduction.

<table>
<thead>
<tr>
<th>TCM</th>
<th>CALCULATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternative Fuel Rental Vehicles:</td>
<td>Ct • EFt + Cv • EFv + Cb • EFb</td>
</tr>
</tbody>
</table>

5.3.3.2

Alternative Fuels for Commercial (Heavy Duty) Vehicles

Commercial fleets operating at airports include light duty and heavy duty vehicles. Light duty and medium duty vehicles up to 14,000 pounds gross vehicle weight are covered by California’s LEV program, which means that low emissions versions of these vehicles will enter commercial fleets in the next few years. Heavy duty vehicles are not yet covered by an equivalent to the LEV program, although a Low Emissions Truck/Bus program, which will likely result in HD alternative fuel vehicles, has been proposed by the ARB. Another force that may get alternative fuels into commercial heavy duty fleet vehicles is local regulations requiring the use of alternative or clean fuels in fleet vehicles.

Once alternative fuel vehicles are introduced into heavy-duty fleets, these vehicles are more likely than rental cars to use alternative fuels. This is true for dual fuel or flexible fuel fleet vehicles because the vehicles are fueled only at the terminal or home base where refueling with alternative fuel is more likely. It is also true because the majority of heavy duty alternative fuel vehicles will be dedicated to one (alternative) fuel type.

The biggest constraints to alternative fuel trucks and buses are that, compared to conventional fuel trucks and buses, they are more expensive to buy than conventional fuel trucks and buses and, for methanol fueled trucks and buses, they are more expensive than gasoline and diesel vehicles to operate.

Many state and local authorities, including some in California, have implemented plans to require alternative fuel vehicles in certain fleets, including some types of fleets that operate extensively at airports. Two local alternative fuel regulations could be models for heavy duty alternative fuel vehicle plans. A Washington, D.C. law requires that all commercial vehicles operating in the “central employment area” must use alternative fuels as of January 1, 1998. Such a law could be applied easily to airports. The only known alternative fuel vehicle regulations that are specific to airports are in Denver, where alternative fuel buses are required at Stapleton Airport and will be required at the New Denver Airport when it opens.

Based on emissions test results from production and near-production alternative fuel heavy duty engines, methanol and natural gas heavy duty engines will meet ARB’s proposed Low Emissions Truck and Bus standards. In-use emission factors for alternative fuel heavy duty engines are not available, but those values can be estimated as the product of the heavy duty gasoline vehicle emission factors from MOBILE5 and the ratio of certification standards for heavy duty vehicles and low emissions trucks and buses. This methodology results in LEB 50,000 mile emission factors of 1.27 g/mi HC, 13.33 g/mi CO, and 1.79 g/mi NOx, compared to model year 1994...
heavy duty gasoline emission factors of 1.27 g/mi HC, 14.35 g/mi CO, and 4.47 g/mi NOX.

**KEY INPUTS**

The emissions reductions that can be achieved by the use of alternative fuels in commercial (heavy duty) vehicles can be estimated once the average VMT of commercial vehicles and the commercial vehicle alternative fuel penetration rate are determined.

**SAMPLE CALCULATION**

Daily emissions reductions due to the use of alternative fuels in commercial (heavy-duty) vehicles are calculated as the difference between in-use emissions for alternative fueled commercial vehicles and emissions for conventional commercial vehicles. In-use emissions are the product of vehicle specific emission factors and average daily commercial vehicle VMT.

<table>
<thead>
<tr>
<th>TCM</th>
<th>CALCULATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternative Fuel Commercial Vehicles</td>
<td>$No = (EFc - EFac) \times \text{VMTc}$</td>
</tr>
</tbody>
</table>

---

5.3.4

**Other Control Measures**

Other airport specific transportation control measures include extending rail service to terminals or parking lots, offering transit discounts or subsidies to passengers, and creating satellite park-and-ride lots and systems for employees. Estimates of the effectiveness of these control measures cannot be made at this time, as no data are available.

---

**Conclusions**

This section has discussed many control measures that can be used to reduce emissions associated with vehicle trips to and from California's airports. Those TCMs are summarized in Table 5-8, which shows the TCMs for employees can reduce employee related vehicle emissions from less than one percent to ten percent or more, according to data from studies at various U.S. airports.

Quantitative results for passenger TCMs are not so easily obtained, but restricting long term parking through increased prices may decrease passenger VMT and emissions by as much as four percent. Other TCMs for passengers include restricting passenger vehicle idle times, and increasing the use of satellite parking facilities with shuttle bus service. This last TCM has the effect of eliminating all on-airport VMT for passengers' vehicles.

The most promising commercial vehicle TCM is circulation management, which may decrease on-call van and shuttle bus on-airport VMT by as much as 40 percent, and which may also lead to greater overall VMT reductions if marginally used services decide to curtail airport operations. Other commercial vehicle TCMs include the use of alternative fuels such as methanol and natural gas. Electric shuttle buses, of course, emit no pollutants from the vehicle.
<table>
<thead>
<tr>
<th>Transportation Control Measure – TCM</th>
<th>Mode/Component Affected</th>
<th>Effect on Mode or Emissions</th>
<th>Additional Data Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable shifts for employees, including work at home</td>
<td>Employee VMT</td>
<td>Decrease 2 to 5%</td>
<td>Employee share of total VMT (internal &amp; external)</td>
</tr>
<tr>
<td>Rideshare/Carpool incentives for employees</td>
<td>Employee VMT</td>
<td>Decrease 0 to 5%</td>
<td>Same as above; effect on transit ridership</td>
</tr>
<tr>
<td>Transit incentives for employees</td>
<td>Employee VMT</td>
<td>Decrease 0 to 3%</td>
<td>Same as above</td>
</tr>
<tr>
<td>Alternative mode incentives for employees</td>
<td>Employee VMT</td>
<td>Decrease 0 to 7%</td>
<td>Same as above; more research on effectiveness</td>
</tr>
<tr>
<td>End employee parking subsidy or offer cashout</td>
<td>Employee VMT</td>
<td>Decrease 10% or more</td>
<td>Same as above</td>
</tr>
<tr>
<td>Increase long term parking rates</td>
<td>Passenger, VMT &amp; Idle</td>
<td>Can decrease VMT 1 to 4%, but can increase VMT &amp; idle times by increasing dropoffs</td>
<td>Passenger share of total VMT; business share of parking</td>
</tr>
<tr>
<td>Passenger vehicle idle time limits</td>
<td>Idle &amp; hot starts</td>
<td>Decrease idle by unknown %; increase hot starts</td>
<td>Current idle practices</td>
</tr>
<tr>
<td>Passenger &amp; employee satellite parking (long term &amp; short term) shuttles</td>
<td>Passenger &amp; employee internal VMT, shuttle bus VMT</td>
<td>Decrease passenger &amp; employee internal VMT; 100% similar for idle; increase shuttle bus internal VMT</td>
<td>Passenger &amp; employee share of internal VMT; effect on bus VMT</td>
</tr>
<tr>
<td>Taxi &amp; bus idle time restrictions</td>
<td>Taxi, limo, van &amp; bus idle &amp; hot stands</td>
<td>Decrease idle by unknown %; increase hot stands</td>
<td>Current taxi &amp; bus idle practices</td>
</tr>
<tr>
<td>Idle restrictions for delivery, service &amp; commercial vehicles</td>
<td>Delivery/service/commercial vehicle idle &amp; hot starts</td>
<td>Decrease idle by unknown %; increase hot starts</td>
<td>Current idle practices</td>
</tr>
<tr>
<td>Circulation management for on-call vans &amp; shuttles</td>
<td>On-call van &amp; shuttle bus &amp; internal VMT</td>
<td>Decrease on-call van &amp; shuttle bus internal VMT 30 to 40%</td>
<td>On-call share of internal &amp; total VMT</td>
</tr>
<tr>
<td>Restrict airport shuttle bus use; pool buses</td>
<td>Rental car/hotel shuttle bus &amp; VMT</td>
<td>Decrease internal VMT by unknown %</td>
<td>Shuttle bus &amp; fuel emission &amp; VMT</td>
</tr>
<tr>
<td>Alternative fuels for airport shuttle buses</td>
<td>Exhaust &amp; evaporative emissions</td>
<td>Emissions benefits depend on fuel type</td>
<td>Same as above</td>
</tr>
<tr>
<td>Electric shuttles</td>
<td>All</td>
<td>Eliminate emissions</td>
<td>Same as above</td>
</tr>
<tr>
<td>Alternative fuels for delivery/service/commercial vehicles</td>
<td>Exhaust &amp; evaporative emissions</td>
<td>Reduce emissions relative to conventional fuel vehicles</td>
<td>Commercial veh, share of internal &amp; total VMT</td>
</tr>
<tr>
<td>Alternative fuels for taxis &amp; rental cars</td>
<td>Exhaust &amp; evaporative emissions</td>
<td>Reduce emissions relative to conventional fuel vehicles, maybe not relative to LEVs</td>
<td>Taxi &amp; rental car shares of internal &amp; total VMT</td>
</tr>
<tr>
<td>Extend rail service to airport or shuttle bus service from rail to airport</td>
<td>Passenger &amp; employee VMT; congestion</td>
<td>Decrease VMT by unknown amount; increase avg. speed</td>
<td>% reduction of trips; effect on avg. speed</td>
</tr>
<tr>
<td>Congestion relief via road construction projects</td>
<td>Avg. speed of all vehicles</td>
<td>Increase by unknown amount; may lead to more trips &amp; higher VMT</td>
<td>Effect on avg. speed</td>
</tr>
</tbody>
</table>
Mitigation Measures In Use
At Existing Airports

Several airports in the U.S. and Europe have innovative projects and plans that reduce air pollution. Even though some of the measures were implemented for other reasons, all of the measures discussed decrease air emissions somewhat. In some cases, measures that were considered but not implemented are described. This is not a comprehensive list of airports and/or measures. Key phrases identifying mitigation measures and variations discussed are listed after the airport name. This discussion does not quantify the effect of the measures on air emissions.

6.1
U.S. Airports

California

Los Angeles International
GSE fuel use, vehicle fuel use, central power systems, transportation access system

An innovative project that would reduce airside emissions is being negotiated at Los Angeles International Airport (LAX). Emissions from mobile and stationary sources must be reduced under the Air Quality Management Plan. The use of alternate fuels for both vehicles and equipment using internal combustion engines are being considered actively. The development and demonstration of CNG-fueled airport service vehicles and equipment at the airport is being negotiated. The demonstration would be conducted at LAX on United Airlines equipment and supported by several private sponsors. The feasibility and emission benefits of CNG-fueled equipment will be demonstrated.

Landside, several measures are being implemented. A remote terminal option has been investigated over the past few years. The proposed site is twenty miles from LAX and could run in conjunction with the green line metro system. There is a computerized ground transportation access system that provides information to arriving passengers. CRT terminals located throughout the airport terminal display a map from which the passenger can identify his intended destination. Then, a list of alternative vehicle transportation options is provided. LAX has a campaign to encourage mass transit, especially
through use of its fly-away terminal. The terminal is twenty miles from LAX at Van Nuys airport and provides parking and bus transportation to LAX. This option is open to both employees and passengers. A people-mover system is in the process of being built. The purpose of the system is to interface with commercial vehicles, such as hotel vans, outside of the terminal area. This would eliminate commercial vehicles from the congested terminal area. Airside, most gates at LAX have central power systems.

Sacramento Metropolitan
Congestion reduction, flextime, rideshare, rail, idle reduction, vehicle fuel, transportation scheduling

Sacramento Metropolitan Airport is planning to build a second terminal, which would have central power systems with air. Airside, there are three bridge-mounted power sources available, which do not provide pneumatics (air or aircraft start). High-speed turnouts and parallel runways have resulted in low taxi times. During peak periods, Sacramento tries to limit general aviation activity to the secondary runway. This separation of general aviation aircraft from jet aircraft helps to reduce congestion.

Landside, Sacramento has several measures being implemented. There is a transportation starter system booth located curbside to schedule transportation for arriving passengers. Two vans and two taxis are allowed to wait at the curb, with one taxi at the end of the terminal. The remaining vans and taxis are in a holding area. Taxi and van engines must be turned off whenever possible. The line-up of vehicles is handled by a person near the transportation booth. Airport policy is for vans to wait fifteen minutes after the first passenger boards in order to increase the passenger load.

In order for a taxi to service the airport, it must belong to the independent airport taxi association. The association requires taxis to meet certain restrictions on operations. Sacramento is trying to create a similar association for vans, which could establish operating rules or standards that would require limits on idling, circuits, and similar practices that could reduce air emissions. With the new terminal expansion, airport and car rental shuttle services will be consolidated into one system. The airport is looking into acquiring alternative fueled (e.g. electric, methanol, and CNG) buses for the consolidated system. There is a five minute idling limit for cars, which is enforced by the sheriff’s office.

Flextime is available for both airport and airline employees. Airport employees can work nine days in a two-week period (9-80s), as long as they are present for the core hours of 10:00am to 2:00pm. They also have the option of telecommuting (working at home) one day per week. Very few airport employees telecommute. Airline employees have the option of working four ten-hour days per week (4-10s).

There are two carpooling programs at the Sacramento Metropolitan Airport. There is a county project that is limited to airport employees. Only a few airport employees choose this option. The second carpooling program is by CalTrans. This option is open to employees of all companies located at the airport. This program coordinates carpooling for approximately 9-12% of the employees. There are also carpooling incentives such as preferential parking and free-bees (e.g. pens and frisbees).

Sacramento is physically setup for light rail, however, the rail line has not been extended to the
airport. It also was decided not to provide a shuttle connecting the airport to existing light rail, which is near town. The decision was based on the level of car vandalism at rail parking lots and airline preference not to track baggage that would be remotely checked. The airport is continuing to investigate both options.

San Francisco International

*Central power systems, aircraft towing, congestion relief, rideshare*

Airside, many gates at San Francisco International Airport (SFO) provide central power systems, some with air. United Airlines operates a high-speed aircraft tow, the Krauss-Maffei PTS. United uses the tow for transporting selected aircraft to and from their maintenance area. The diesel-engine tow has a maximum towing speed of 20 mph; aircraft usually taxi at around 3 or 4 mph. Since it can operate at a higher speed, the tow does not need to stop at intersections for crossing clearance. This results in a direct tow, reduced congestion, and fuel cost savings.

Landside, United Airlines encourages employee carpooling because of the lack of parking stalls. As an incentive, United carpoolers receive better parking spaces. The airport was physically designed for bart (rail) hook-up. Although rail tunnels currently exist, there is not rail service yet.

Sonoma County

*Central power systems, mass transit*

Airside, Sonoma County Airport is not able to provide central power systems due to airport power limitations on the incoming power cable. Bus service to the airport is provided by Sonoma County Transit, but only a small percentage of travelers use it.

Stapleton

*GSE fuel*

Airside, Denver's Stapleton Airport is pursuing a project with several benefits including the reduction of air emissions. A fleet of approximately 100 natural gas ground support vehicles operate at Stapleton. The major airlines at the airport have Natural Gas Vehicle (NGV) programs, as do many of the hotels and rental car companies that operate airport shuttles. Reasons for the use of NGVs at Stapleton are the cleanliness (which saves money on maintenance costs) and low cost of natural gas, a city mandate that a certain number of vehicles run on alternate fuels, a plentiful projected future for natural gas, and the structure of Stapleton's replacement airport, Denver International.

Denver International

*Congestion relief, GSE fuel*

Denver International Airport is scheduled to open March 1994. Airside emissions will be reduced through special design features of the airport including automated baggage handling, which eliminates the need for many of the baggage carts presently used, and a central terminal close to the many runways, which reduces taxi time. The new airport will have service tunnels connecting the terminals allowing limited use by GSE. The tunnels are intended to reduce runway traf-
fic, a common problem at airports that increases airside congestion. NGVs can be operated in the tunnels due to their lower emission rates.

**Pennsylvania**

**Greater Pittsburgh International**

*Passenger handling, congestion reduction, air traffic control*

Greater Pittsburgh International Airport's new mid-field terminal opened October 1, 1992. The new X-shaped terminal lies between two main runways, reducing taxi times. The AEG-Westinghouse underground people-mover rail system can transport 13,200 passengers per hour to the mid-field terminal. The airport was the first to receive a Norden Systems' Airport Surface Detection Radar. The radar aids controllers in directing traffic on taxiways, runways, and aprons during low-visibility weather and when the controller's view is obstructed. Landside, there are two roadways accessing the landside terminal, one for use by private vehicle and the other by public vehicle. The measure is intended to increase safety but decreases congestion and curbside idling as well.

**Washington, D.C.**

**Dulles International**

*Passenger handling*

Dulles International Airport's original design envisioned taking passengers to aircraft with as few steps as possible. Bus-type vehicles, called mobile lounges, were used to transport passengers from the main terminal gates to aircraft parked close to the runway. Originally, all aircraft were served directly by lounges.

Around ten years after the airport was built, two significant changes were made at the airport: new lounges and a mid-field terminal. The original lounges were designed for smaller jets. Due to new jumbo jet aircraft, the lounges had to be updated. The new lounges could rise and lower in order to serve the jumbo jets. However, airlines also had begun using the airport for hubbing operations. There were not enough lounges and space during peak operations to park all the aircraft and lounges. Dulles Airport built a mid-field terminal near the runways to accommodate airline hubbing. Now passengers also could be transported from the main terminal to the mid-field terminal. The passengers then board aircraft parked at mid-field terminal gates.

Today, Dulles still transports passengers directly to select aircraft from the main terminal. Two factors determine which aircraft are served directly by lounges. The first is if an airline elects not to have jet ramps. Jet ramps connect the aircraft to the mid-field terminal's gate, allowing passengers to board and depart. Second, for international flights that need customs clearance, passengers are taken by lounges directly to customs. Approximately twenty to twenty-five percent of flights today are served directly by lounges. The remaining seventy-five to eighty percent of flights are served through the mid-field terminal.

**National**

*Operation limits, rail access*

Airside, National Airport is one of four U.S. airports with slot limits. For these airports, the number of landing slots is established by FAA to limit airside congestion. The slot limit is determined by the airport's capacity. Limits on the number of operations per hour are set for three operator types:
air carrier, commuter, and other (general aviation).

Landside, National is accessible by Metrorail, the area’s subway system. The rail system connects the airport with Washington, DC and nearby suburbs.

6.2 European Airports

European airports have considered or implemented a variety of measures that reduce air pollution, some of which have not been tried in the United States. Airports and governing agencies were contacted in several European countries to discuss air pollution mitigation measures and their affect on airport operations and air pollution. Although the measures affect air emissions, some of them have been implemented for reasons other than the reduction of air pollution. This is not a comprehensive list of airports and/or measures.

France

Orly and Charles de Gaulle

Rail access, roadway improvements, vehicle fuel

Orly and Charles de Gaulle Airports are operated by the Aeroports de Paris (ADP). The ADP feels that the airports are valuable to the region, but a source of environmental problems. Airside, the ADP considers aircraft a small source of overall airport air emissions. As aircraft engines have become increasingly less polluting over the past ten years, the aircraft emissions have reduced accordingly. Based on their view that aircraft engines are a small air emissions source and becoming increasingly cleaner, the ADP has not found it necessary to implement air emission mitigation measures for aircraft.

At Charles de Gaulle Airport, there is a fixed deicing station. Within three years, there will be a number of fixed stations at both airports for deicing as well as aircraft washing. Fixed stations are preferred to reduce the amount of pollutants released into stormwater run-off.

Landside, the ADP is trying to improve ground access to the airports. Currently, 80% of passengers access the airports by private vehicle. At Orly, a commuter train connects the airport to the Paris rail and bus connections are being investigated. At Charles de Gaulle, the connecting highway is being doubled in size. In addition, a third terminal is planned for the airport along with new public transportation options. Options include a new bus station, a shuttle between terminals, and a rail link.

The ADP is phasing out leaded gasoline for airport vehicles. Currently, 20% of the airports’ support vehicles are electric. The ADP’s goal is to have 30% of airport vehicles operating on electricity by 1996.

Germany

Germany’s Air Traffic Act set up a committee to look at airport noise pollution. As of July 1992, the committee also began investigating airport air pollution. There are two reports by the international law firm of Wilmer, Cutler & Pickering that were commissioned by the German Airspace Users Association. Germany’s Airport Capacity Crisis (1991) discusses capacity problems and recommended solutions, economic and social impacts, and political and legal issues of Germany’s airports. The Crisis of European Air Traffic Control: Costs and Solutions (1989) discusses air traffic control (ATC) problems, calculates ATC delay and disruption costs, and recommends interim and long-term solutions and implementation methods.
Dusseldorf

Currently, no air pollution reduction measures have been implemented. Air quality measuring equipment are placed at the airport's boundaries collecting HC, CO, and NOx data. Nothing has been done with respect to the data collected.

Frankfurt

Rail connections, congestion relief; aircraft towing

Frankfurt Airport is the second busiest European airport next to London's Heathrow Airport. The new East terminal is planned to open in 1994. A rail station is located directly beneath the airport terminal and receives 130 trains per day. Frankfurt has in operation Sieman's Departure Coordination System (Depcos), which replaces paper flight strips with CRT display. Controllers enter requests and clearances (e.g. start-up, push-back, and taxi) for departing aircraft into the system. The system reduces the time needed to coordinate aircraft for departures. There has been operational test towing of Lufthansa's international flights with their 8747-200.

Munich 2

Fleet modernization, congestion reduction, central power systems, passenger handling

Munich 2 opened on May 17, 1992 with many airside systems and features in place that result in the reduction of air pollution. At Munich 2 Airport, the basic fee is paid for ICAO licensed aircraft in accordance with Annex 16, Chapter 3. The modern Chapter 3 (the same as Stage III in the U.S.) aircraft tend to be the cleaner aircraft. Extra fees must be paid for older, polluting aircraft. Each of the parallel runways are 4000m (13,100 feet) long, eliminating the need for arriving aircraft to use reverse thrust. The runways are situated to give them the greatest possible distance. Sieman's Computer Controlled Runway System improves aircraft flow and safety for movements on the taxiway. The Apron Control System is directed by a special team of controllers in the tower who are responsible for aircraft as they enter the apron area from the taxiways. The controllers illuminate colored lights to direct taxiing aircraft to assigned gates. When a taxing aircraft approaches a gate, a controller identifies the aircraft type and model for the Aircraft Docking Guidance System. Inductive sensor loops laid into the apron detect the aircraft's nose wheel. Colored lights then direct the aircraft to the stopping block at the gate. The post for the docking system also houses the ground servicing connections for communications, electric power, cooling air, and fuel for the aircraft. Sieman's Departure Coordination System (Depcos) replaces paper flight strips with a CRT display. Controllers enter requests and clearances (e.g. start-up, push-back, and taxi) for departing aircraft into the system. The system reduces the time needed to coordinate aircraft for departures. For remote gates, passengers deplane and ride buses to the terminal. To cope with cold weather, the water table was lowered at Munich to ensure frost-free runways, taxiways, and aprons. The airport also has purchased a deicing system that is about 4 times faster than standard deicers.

Landside, a metropolitan railway line connects the airport to the City of Munich. An
additional railway connection is planned. There also is bus service available. Company vehicles are partly equipped with double drive (diesel, electric), others with 3-way catalyst. There are agreements with public authorities to reduce car traffic on the airport site if certain air quality standards are exceeded.

**Netherlands**

**Amsterdam’s Schiphol**

*Rail connections, rideshare, congestion reduction, aircraft towing, load factor improvement*

Schiphol Airport is experiencing a 1-2% increase in air pollution each year. The airport currently is involved in a large environmental impact study looking at air pollution measures related to airport activity. The study is divided into three phases: ground vehicles, aircraft handling, and air.

**Phase 1: Ground Vehicles**

Several measures are being implemented to increase public transportation. There is a rail station already in place for which the capacity is being doubled. Check-in is available at the train station and parking fares have been increased to encourage public transportation. The airport is trying to negotiate a contract with tenants to give employees a 40-50% discount off train fares. In addition, the airport is encouraging carpooling and investigating a high-speed train.

**Phase 2: Aircraft Handling**

Measures to decrease taxi times and the movements of GSE are being investigated. Taxi times are only 10-12 minutes and taxiways are relatively congestion free. Schiphol decided not to tow aircraft because it would be too expensive for the resulting impact.

**Phase 3: Air**

The aim of Phase 3 is to increase load factors.

**Sweden**

In Sweden, airports are not the main source of air pollution, but they are the government’s main target for air pollution reduction.

**Stockholm’s Arlanda**

*Central power systems, congestion relief, GSE fuel, rail connection, fleet management*

Arlanda Airport has several measures in place, especially at its new domestic terminal. GSE have been virtually eliminated at the domestic terminal, which is unique to Arlanda. This measure was implemented to reduce air pollution on the apron and provide a better working environment for ground support employees. The elimination of GSE significantly reduces air pollution on the apron, but does not have a large impact on the airport’s total emissions. Each gate at the domestic terminal is equipped with a service tunnel from which elevators rise approximately 3 feet to supply the aircraft with fuel, electric power, compressed air, water, and lavatory service. Catering supplies and cleaning equipment are stored in the passenger bridges. Passenger baggage is checked at the gate during check-in, and transferred by conveyor belt directly to the aircraft hold. An electrically powered system, PullBack, is installed for moving aircraft to and from the
gate. The system has a hydraulically powered chain link that moves a trolley along a track in the ramp surface to an arriving aircraft. The trolley then locks onto the nose wheel and pulls the aircraft to its park position. The process is reversed for departing aircraft.

At other terminal gates, measures also have been implemented. A ground power source provides heat and fuel to aircraft. For diesel GSE, a regulation requires the purest diesel fuel to be used.

Arlanda Airport currently is investigating emission reduction measures in response to emission limits placed on the airport by authorities. Total emissions of NOX and CO in 2000 are limited to 1990 emission levels. Landside, a rail link is being considered because the only public transportation currently available is bus service. Increased parking prices also is being investigated as a landside measure. Airside, higher landing fees may be charged for aircraft with higher emitting engines.

Switzerland

Zurich

Rail connections, rideshare, idle restrictions, central power systems, passenger handling, congestion reduction, aircraft towing

Within 5 years, the management of Zurich Airport would like to claim that it is the most environmentally advanced airport in the world. Switzerland has a clean air act similar to the United States’. As required, the Canton of Zurich set up a program to limit emissions of air pollutants. In the program, the airport is asked to contribute its share to reducing emissions. Zurich Airport’s emissions are regulated and not allowed to increase. A Master Plan Project is underway that looks at air, water, and land emissions. The project will be used as a guideline for airport expansion to cope with increasing traffic. For air emissions, the primary pollutant of concern is NOX. The airport plans to set up a program to reduce airport air emissions (especially NOX) from air and land traffic.

Landside, the airport is encouraging people to use public transportation in various ways. There is an underground railway system located beneath the airport, which connects to both the Swiss national and international networks. Railway facilities are going to be increased to accommodate rail passengers. Facility plans include a baggage check-in station at the railway exit and better connections that coincide with employee schedules. Swiss Air attempted a carpooling program for employees that failed. The airport would rather encourage public transportation than carpooling. Short term parking fees are high to encourage the use of public transportation. There also is a shopping mall at the airport that is open 7 days a week and includes a grocery store. Airport parking fees also affect mall shoppers’ parking. Efforts have resulted in 35% of passengers and 25% of employees using public transportation on weekdays. For those people who come by private car to the airport, federal and state laws prohibit any car idling at the terminal.

Emission certificates and regulatory taxes are being considered. HC emissions at Zurich Airport are low and expected to decrease due to the large percentage of Chapter 3 (same as Stage III in the U.S.) aircraft. The airport has 28 primary gates, 18 gates in Terminal A and 10 gates in Terminal B. A ground power supply system for docked aircraft provides electricity and pre-conditioned air for all primary gates. As of January 1, 1993, all APUs must be turned off as soon as aircraft are
docked. The ground power supply results in power savings as well as pollutant reduction. The airport also has a number of "open" gates that are located 200-300 yards from the terminal to handle overflow aircraft. GSE provide service to the open gates, and passengers are bused to the terminal. Slot coordinated engine startup is planned in which the delivery clearance to start an aircraft's engines will not be given before the assigned slot for the aircraft is actually approved. Aircraft are towed by a high-speed towbarless tractor between the terminal and maintenance facility. This alternative will not be implemented for towing aircraft due to short taxiways and infrequent ground delays that result in average taxi times of 8.5-10 minutes. To optimize taxi traffic, some double taxiways as well as holding bays may be built that would enable passing maneuvers in case of changed departure sequences. An aislside shuttle for employees is planned to avoid and reduce the individual use of cars.

**United Kingdom**

**Garwick**

*Idle restrictions, rail connections, central power systems*

Garwick has 50 main terminal gates and a few remote gates. The airport handles 20 million passenger per year, most of which are international. Landside, there is a heavy volume of traffic, but good traffic flow. There are no idling restrictions at the airport terminal. There is a reserve area for taxis and only a small demand for service. There are approximately 12 hotels with shuttles that usually run on demand. There is a rail link directly to London, which services other UK areas. Approximately 20-25% of airport passengers travel by rail to the airport. Employees tend to drive by car to work. Aislside, taxi times are fairly quick, and fixed ground power at the main terminal gates provides electricity to aircraft.

**Heathrow**

*Congestion reduction, vehicle fuel, rail connections, aircraft towing, reduced engine taxiing, GSE fuel*

Heathrow has 4 terminals, 3 of which are located in the central terminal area between the runways. An underground tunnel connects to the central terminal area. The airport is not implementing many measures because it meets local air quality standards. The airport is going to begin monitoring for air quality concentrations in the airfield.

Landside, there are a couple of measures planned. A campaign is to be implemented on 'how to drive a car'. The campaign will explain that how a car is driven affects the car's emissions. It will be directed towards airport and tenant employees, focusing on diesel fueled vehicles. Heathrow wants to encourage public transportation for employees and passengers. There are plans for a direct rail link between London and the airport to be available in 1997. The trip will be an estimated 18 minutes, a significant reduction from the 1 hour trip by subway.

Aislside, numerous measures have been considered and implemented for aircraft and GSE. Aircraft towing was investigated and rejected due to the numerous runways and taxiways to cross. Airlines at Heathrow taxi with reduced engines for fuel economy reasons. Generally, reduced engine taxiing is left up to the pilot's discretion. Heathrow is very interested in encouraging electric GSE. Two restrictions are being considered for
GSE. First, an airside pass from the airport may be required for all GSE. This pass price would be discounted if the vehicle was electric. Second, certain apron areas that are prone to high air pollution may be restricted to electric GSE.

---

Manchester

Rail connections, idle restrictions, congestion reduction, fleet management, GSE fuel, aircraft towing, reduced engine taxiing

Manchester Airport only has a couple of measures being implemented, but several are being considered. Landside, the airport will probably have control measures on point sources (e.g. power plants) in the future. A new rail link connecting Manchester to the main line will come online in April 1993. There is free parking and no carpooling program for airport employees. Airport employees will probably be charged for parking in the future. Passengers and tenant’s employees are charged for parking. Taxis are held in a pool, with a limited number allowed at the stands. Passenger vehicles are not allowed to be left unattended at the curb due to security reasons. If there is a driver waiting for a passenger, he is asked to park the car in a lot.

Airside, Manchester is most concerned with HC emissions. Better gate hold procedures, increased emission taxes and certificates for high emitting aircraft, and electric GSE are possible measures. The airport is not considering towing aircraft or reduced engine taxiing.