Attachment A

Proposed 15-Day Modifications to the Amendments to Vapor Recovery Test Procedure TP-201.1C: Leak Rate of Drop Tube/Drain Valve Assembly
This Page Intentionally Left Blank
Vapor Recovery Test Procedure

TP-201.1C

Leak Rate of
Drop Tube/Drain Valve Assembly

 Adopted: July 3, 2002
 Amended: October 8, 2003
 Amended: [Insert Amendment Date]

[Note: The originally proposed text additions are underlined and originally proposed text deletions are indicated by strikethrough. The proposed 15-day modifications to the proposed regulations are shown in double underline to indicate additions and double strikethrough to indicate deletions. [Bracketed text] is not part of the proposed amendments.]
California Environmental Protection Agency
California Air Resources Board

Vapor Recovery Test Procedure

TP-201.1C

Leak Rate of Drop Tube/Drain Valve Assembly

Definitions common to all certification and test procedures are in:

D-200 Definitions for Vapor Recovery Procedures

For the purpose of this procedure, the term "CARB" refers to the California Air Resources Board, and the term "Executive Officer" refers to the CARB Executive Officer, or his or her authorized representative or designate.

1. PURPOSE AND APPLICABILITY

The purpose of this procedure is to quantify the leak rate of drop tube/drain valve assembly when the spill container drain valve is configured to pass liquid into the drop tube as shown in Figure 1. It is used to certify and to determine the compliance of components with the performance specification for the maximum allowable leak rate as defined in CP-201 Vapor Recovery Certification Procedure for Vapor Recovery Systems at Gasoline Dispensing Facilities Using Underground Storage Tanks.

2. PRINCIPLE AND SUMMARY OF TEST PROCEDURE

A compatible dust cap for a Phase I product adaptor is modified to allow the introduction of nitrogen into the Phase I drop tube. A pressure gauge is connected to the modified cap and nitrogen is flowed into the drop tube. If the resulting nitrogen flow rate necessary to maintain a steady-state pressure is less than or equal to the specifications described in CP-201, the drop tube/drain valve assembly is verified to be in compliance. An inflatable bladder is installed in the Phase I drop tube below the spill container drain valve path to eliminate potential biases resulting from the level of fuel in the storage tank.

For gasoline dispensing facilities equipped with remote fill Phase I configurations, an inflatable bladder is installed below the drain valve path at the remote fill spill container rather than below the drop tube.

3. BIASES AND INTERFERENCES

3.1 Missing or defective gaskets on the Phase I product adaptor or a loose adaptor may bias the results towards noncompliance. Prior to a final determination of noncompliance of the component(s), use leak detection solution on all visible components to verify the absence of leaks.
3.2 Leaks in the test equipment will bias the results toward noncompliance. Prior to conducting the test, this bias is eliminated by conducting a leak check of the test equipment. Leak detection solution may also be used during the test to verify the absence of leaks in the test equipment.

3.3 For remote fill Phase I configurations, the internal diameter of the product line is assumed to be four inches in diameter. Product lines with diameter smaller than four inches will bias towards compliance if the pressure up times in Table 1 are used.

3.4 For remote fill Phase I configurations, an accurate measurement (plus or minus ten feet) of the remote fill run length is needed. Such measurements can be obtained by “as built” drawings of the facility. In the absence of “as built” drawings, the distance between the UST fill riser and remote fill would be a good estimate provided the actual distance is linear.

4. SENSITIVITY, RANGE, AND PRECISION

4.1 Flow Meter. The measurable leak rate is dependent upon the sensitivity, range and precision of the flow meter used for testing. The flow meter minimum sensitivity shall be 12.5 ml/min (.026 CFH) with minimum accuracy of ± 5 percent full-scale. The device scale shall be 150mm (5.91 inches) tall to provide a sufficient number of graduations for readability. For electronic flow metering devices, the minimum sensitivity shall be 1.0 ml/min (0.0021 CFH) with a minimum full-scale accuracy of ±1.0 percent.

4.2 Pressure Gauge. The measurable pressure is dependent upon the sensitivity, range and precision of the pressure gauge used for testing. For mechanical pressure gauges, the maximum pressure range shall be 0-4 inches H2O. The minimum full-scale accuracy shall be ± 3.0 percent and the gauge shall be readable to the nearest 0.10 inches H2O. For electronic pressure gauges, the maximum pressure range of the device shall be –10 to 10 inches H2O. The minimum full accuracy shall be ± 1.5 percent of full-scale range and the pressure gauge shall be readable to the nearest 0.01 inches H2O.

5. EQUIPMENT

5.1 Pressure Gauge. Use a pressure gauge with minimum specifications listed in Section 4 to monitor the pressure in the drop tube.

5.2 Flow Meter. Use a flow meter with minimum specifications listed in Section 4 to set the required nitrogen flow rate(s).

5.3 Nitrogen. Use commercial grade gaseous nitrogen in a high-pressure cylinder, equipped with a pressure regulator and a one psig pressure relief valve.

5.4 Stopwatch. Use a stopwatch accurate to within 0.10 seconds to time the pressurization of the drop tube and pressure stabilization period.
5.5 Leak Detection Solution. Any non-flammable commercial liquid solution designed to detect vapor leaks may be used.

5.6 Inflatable Bladder. Use an inflatable bladder and extension hose, as shown in Figure 1, to isolate the drain valve. Unless otherwise specified in the certification Executive Order for the system, a “3-4 model” inflatable plumber’s bladder may be used.

5.7 Product Adaptor Test Cap. Use a modified product dust cap compatible with the Phase I product adaptor. The cap shall be equipped with connections for a pressure gauge and flow meter. An optional metering valve may be installed to relieve excess pressure. An example of a Product Adaptor Test Cap is shown in Figure 3.

5.8 For GDF equipped with remote fill configurations, a second test cap will be needed to occupy both the direct product riser and remote product riser. See Figure 4 for a typical remote fill Phase I configuration.

5.9 Tape Measure. For GDF equipped with a remote fill configuration, a measurement tape shall be used to determine the length of the remote product line pathway. Measurement should be taken from center to center of the remote four-inch product pathway to the direct product pathway. It is important to note that the remote fill pipe length from the UST product riser may not take a direct route to the remote fill product riser.

6. PRE-TEST PROCEDURES

6.1 The flow meter and pressure gauge shall be calibrated within six (6) months prior to conducting the testing. The flow meter(s) shall be calibrated for use with nitrogen. Calibrations shall be conducted in accordance with EPA or CARB protocols. CARB calibration methodology for flow meters and pressure gauges is contained in Appendix D of Air Monitoring Quality Assurance, Volume VI, Standard Operating Procedures for Stationary Source Emission Monitoring and Testing, January 1979.

6.2 Remove the lids from the spill containers and inspect the drain valve configuration. Verify that the drain valve passes liquid directly into the drop tube, as shown in Figure 1, rather than into the storage tank ullage space.

6.2.1 For gasoline dispensing facilities equipped with remote fill Phase I configurations, inspect the drain valve configuration within the remote fill spill container. Verify that the drain valve passes liquid directly into the product pipe. With remote fill configurations, the spill container is offset (distance will vary from site to site) from the vertical product riser that houses the drop tube, installed directly above the underground storage tank as shown in Figure 4.

6.3 Inspect the Phase I product adaptor to ensure that the gasket is installed and that the adaptor is securely attached to the Phase I product riser.

6.4 If the GDF is equipped with a remote fill configuration (i.e., not a conventional direct fill), measure and record the length of the product remote fill pipe on the field data.
sheet. It is important to note that the remote fill pipe length from the UST product riser may not take a direct route to the remote fill product riser.

7. TEST PROCEDURE (DIRECT FILL CONFIGURATION)

For gasoline dispensing facilities GDF equipped with a remote fill configuration, proceed directly to Section 8.

7.1 Carefully install the inflatable bladder into the drop tube as shown in Figure 1 and inflate.

7.2 Connect the Product Adaptor Test Cap to the Phase I product adaptor and connect the flow meter and pressure gauge to the test cap as shown in Figure 2.

7.3 Open the nitrogen supply, and adjust the nitrogen flow to a rate no greater than the maximum allowable leak rate specified for the drain valve in CP-201, and start the stopwatch for a maximum of 5 minutes.

7.4 Wait until the pressure gauge indicates a pressure equal to the performance specification pressure for the drain valve as defined in CP-201.

7.4.1 If the pressure gauge does not indicate the specified pressure within 5 minutes, the drain valve does not comply with the maximum allowable leak rate specification.

7.4.2 If the pressure gauge indicates the specified pressure within 5 minutes, immediately reduce the nitrogen flow in order to stabilize at the specified pressure (±0.05 inches H₂O) for 30 seconds.

7.5 Record the flow rate required to stabilize at the pressure specified in CP-201.

8. TEST PROCEDURE (REMOTE FILL CONFIGURATION)

8.1 Carefully install the inflatable bladder into the remote fill spill container drop tube as shown in Figure 4 and inflate.

8.2 Connect the Product Adaptor Test Cap to both the Phase I product adaptor and remote fill product adaptor within the remote fill spill container. Connect the flow meter and pressure gauge to the test cap as shown in Figure 2.

8.3 Open the nitrogen supply, adjust the nitrogen flow rate to no greater than the maximum allowable leak rate specified for the drain valve in CP-201, and start the stopwatch for a maximum of 5 minutes, 200 ml/min (0.42 CFH), and start the stopwatch for the maximum amount of time as specified in Table 1, based on the length of the remote fill pipe.
8.4 Wait until the pressure gauge indicates a pressure equal to the performance specification pressure for the drain valve as defined in CP-201.

8.4.1 If the pressure gauge does not indicate the specified pressure within 5 minutes, the maximum pressure up time specified in Table 1, the drain valve does not comply with the maximum allowable leak rate specification.

8.4.2 If the pressure gauge indicates the specified pressure within 5 minutes, the maximum pressure up time specified in Table 1, immediately reduce the nitrogen flow in order to stabilize at the specified pressure (±0.05 inches H₂O) for 30 seconds.

8.5 Record the flow rate required to stabilize at the pressure specified in CP-201.

8.5.1 If the final flow rate is below the detectable limit of the flow meter, record the lowest measurable flow rate and final pressure on the data sheet.

8.5.2 If the final flow rate is greater than the capacity of the flow meter, record the highest measurable flow rate and final pressure. No further testing shall be conducted until the leak rate of the drain valve can be determined.

8.6 Remove the Product Adaptor Test Cap. Deflate the inflatable bladder and carefully remove it from the drop tube.

### Table 1
Time to Pressurize GDF Equipped with Remote Fill Pipe Configuration by Length

<table>
<thead>
<tr>
<th>Horizontal Length of Remote Fill Pipe (feet)</th>
<th>Time to Pressurize (minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤50</td>
<td>5</td>
</tr>
<tr>
<td>&gt;50, ≤100</td>
<td>10</td>
</tr>
<tr>
<td>&gt;100, ≤150</td>
<td>15</td>
</tr>
<tr>
<td>&gt;150, ≤200</td>
<td>20</td>
</tr>
<tr>
<td>&lt;200, ≤250</td>
<td>25</td>
</tr>
</tbody>
</table>

9. POST-TEST PROCEDURES

9.1 Carefully remove the Product Adaptor Test Assembly and the inflatable bladder from the Phase I drop tube.

9.1.1 If the gasoline dispensing facility is equipped with a remote fill Phase I configuration, carefully remove the Product Adaptor Test Assembly and the inflatable bladder from the remote fill spill container.

9.2 Replace the caps on the appropriate Phase I adaptors, and the appropriate lids on the spill containers.
10. **CALCULATING RESULTS**

10.1 If the flow rate of nitrogen was at the upper limit of the flow meter and the measured pressure never reached the specified pressure, but was greater than 0.0 inches H$_2$O, the actual leak rate at a specified pressure shall be calculated as follows:

$$Q_{SP} = (SP)^{1/2} \left( \frac{Q_{actual}}{P_{actual}} \right)^{1/2}$$

Equation 10 – 1

Where:

- $Q_{SP}$ = The leak rate of the component at the specified pressure, cubic feet per hour
- $Q_{actual}$ = The actual flow rate of nitrogen, cubic feet per hour
- $P_{actual}$ = The actual measured steady-state pressure at $Q_{actual}$, inches H$_2$O
- $SP$ = Specified Pressure, defined in CP-201, inches H$_2$O

Commonly used flow rate conversions:

1 CFH = 471.95 ml/min

Example: Convert 0.17 CFH to ml/min: $0.17 \text{ CFH} \times 471.95 = 80 \text{ ml/min}$

1 ml/min = 0.00212 CFH

Example: Convert 100 ml/min to CFH: $100 \text{ ml/min} \times 0.00212 = 0.21 \text{ CFH}$

<table>
<thead>
<tr>
<th>Commonly Used Flow Rate Conversions</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05 CFH = 24 ml/min</td>
</tr>
<tr>
<td>0.17 CFH = 80 ml/min</td>
</tr>
<tr>
<td>0.21 CFH = 100 ml/min</td>
</tr>
<tr>
<td>0.34 CFH = 160 ml/min</td>
</tr>
</tbody>
</table>

11. **REPORTING RESULTS**

Report the results of the quantification of the leak rate through the drop tube/drain valve assembly as indicated on Form 1. Districts may require the use of alternate forms, provided they include the same minimum parameters as identified on Form 1.

12. **ALTERNATE PROCEDURES**

This procedure shall be conducted as specified. Modifications to this test procedure shall not be used to determine compliance unless prior written approval has been obtained from the Executive Officer, pursuant to Section 14 of CP-201 (Certification Procedure for Vapor Recovery Systems at Gasoline Dispensing Facilities Using Underground Storage Tanks).
Figure 1
Typical Inflatable Bladder Installation for Direct Fill Configuration

Drain Valve Seal
Liquid drains into Drop Tube.
(isolated from UST headspace)

Inflatable Bladder
(below drain path)
Figure 2
Leak Rate Test Assembly

Figure 3
Product Adaptor Test Cap
Figure 4
Remote Fill Phase I Configuration

Monitoring Cap and Adaptor with Trap Door installed (or 4” pipe cap)
Manhole Cover

Standard 4” Flange
Remote Jack Screw Kit
Remote Product Line
Remote Vapor Line
Face Seal Adaptor
Overfill Prevention Valve or Straight Drop Tube
Figure 4
Typical Inflatable Bladder Installation for Remote Fill Configuration

See detail drawing below depicting placement of inflatable bladder within remote fill spill container.
### Test Results

<table>
<thead>
<tr>
<th>Device Type &amp; Product Grade</th>
<th>Time to Pressurize</th>
<th>30-Second Flow rate (CFH)</th>
<th>30-Second Pressure (in. H₂O)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Comments:**

---

For GDF equipped with Remote Fill Configuration, length of remote fill product run (feet)

TP-201.1C Form 1
Drop Tube/Drain Valve Assembly Data Sheet