
1

APPENDIX B

CALIFORNIA OPEN CHARGE POINT INTERFACE
TEST PROCEDURES FOR NETWORKED ELECTRIC
VEHICLE SERVICE EQUIPMENT FOR LEVEL 2 AND

DIRECT CURRENT FAST CHARGE CLASSES

Adopted: [INSERT DATE OF ADOPTION]

2

This Page Intentionally Left Blank

3

NOTE: The entire text of “California Open Charge Point Interface Test Procedures for
Networked Electric Vehicle Service Equipment for Level 2 and Direct Current Fast
Charge Classes,” set forth below is new language in “normal type” proposed to be
added to section 2360.3, title 13, California Code of Regulations.

A. Terminology and Definitions

1. Abbreviations
OCPI Open Charge Point Interface
CDR Charge Detail Record
CPO Charging Point Operator
eMSP e-Mobility Service Provider

2. Provider and Operator Abbreviation
It is advised to use eMI3 compliant names for Contract IDs and EVSE IDs.

3. Charging Topology
The charging topology, as relevant to the eMSP, consists of three entities:
Connector is a specific socket or cable for an EV to use.
EVSE is the part that controls the power supply to a single EV in a single session. An
EVSE may provide multiple connectors but only one of these can be active at the same
time.
Location is a group of one or more EVSEs that belong together geographically or
spatially.

4. Variable names
In order to prevent issues with capitals in variable names, the naming in JSON is not
CamelCase but snake_case. All variables are lowercase and include an underscore for
a space.

5. Cardinality
When defining the cardinality of a field, the following symbols are used in the protocol:

Symbol Description Type

? An optional object. If not set, it might be null, or
the field might be omitted. When the field is
omitted and it has a default value, the value is
the default value

Object

1 Required object Object value,
* A list of zero or more objects. If empty, it might

be null, [] or the field might be omitted.
[Object]

+ A list of at least one object. [Object]

B. Transport and Format

1. JSON/HTTP Implementation Guide
The communications protocol is based on HTTP and uses the JSON format. It follows a
RESTful architecture for web services where possible.

1.1 Security and authentication
The interfaces are protected on HTTP transport level, with SSL and token based

4

authentication. Please note that this mechanism does not require client side certificates
for authentication, only server side certificates in order to setup a secure SSL
connection

1.2 Request format
Each HTTP request must add an ‘Authorization’ header. The header looks as following:

Authorization: Token IpbJOXxkxOAuKR92z0nEcmVF3Qw09VG7I7d/WCg0koM=

The literal ‘Token’ indicates that the token based authentication mechanism is used. Its
parameter is a string consisting of printable, non-whitespace ASCII characters. The
token must uniquely identify the requesting party. The server can then use this to link
data and commands to this party’s account.
The request method can be any of GET, PUT, PATCH or DELETE. The protocol uses
them in a similar way as REST APIs do.

Method Description
GET Fetches objects or information
POST Creates new objects or information
PUT Updates existing objects or information
PATCH Partially updates existing objects or information
DELETE Removes existing objects or information

The mimetype of the request body is application/json and may contain the
data as documented for each endpoint.

1.2.1 GET
All GET methods that return a list of objects have pagination.
To enable pagination of the returned list of objects extra URL parameters are allowed
for the GET request and extra headers need to be added to the response.

1.2.1.1 Paginated Request
The following table is a list of all the parameters that have to be supported, but might be
omitted by a client request.

Parameter Description
offset The offset of the first object returned. Default is 0.
limit Maximum number of objects to GET. Note: the server

might decide to return less objects, because there are no
more objects or the server limits the maximum amount of
objects to return. This is to prevent, for example,
overloading the system.

5

1.2.1.2 Paginated Response
For pagination to work correctly it is important that multiple calls to the same URL
(including query parameters) result in the same objects being returned to the server. It
is important that the sequence of objects does not change. It is a best practice to
return the oldest (by creation date) first.
While a client crawls over the pages (multiple GET requests every time to the ‘next’
page Link), a new object might be created on the server. The client detects this: the X-
Total-Count will be higher on the next call. The client does not need to correct for this
as only the last page will be different or will be an additional page. HTTP headers that
have to be added to any paginated GET response.

HTTP Parameter Description
link Link to the ‘next’ page should be provided, if this is NOT

the last page. See example below.
X-Total-Count (Custom HTTP Header)Total number of objects available

in the server system
X-Limit (Custom HTTP Header) Number of objects that are

returned. Note that this is an upper limit, if there are not
enough remaining objects to return, fewer objects than
this upper limit will be returned

Example of a required OCPI pagination link header:
Link:
<https://www.server.com/ocpi/cpo/2.0/cdrs/?offset=5&limit=50>;
rel="next"

After the client has called the given “next” page URL above the Link parameter will
most likely look like:
Link: https://www.server.com/ocpi/cpo/2.0/cdrs?offset=200&limit=50;
rel=”next”

 1.2.2 PUT
A PUT request must specify all required fields of an object (similar to a POST request).
Optional fields that are not included will revert to their default value which is either
specified in the protocol or NULL.

 1.2.3 PATCH
A PATCH request must only specify the object’s identifier (if needed to identify this
object) and the fields to be updated. Any fields (required or optional) that are left out
remain unchanged.
The mimetype of the request body is application/json and may contain the data as
documented for each endpoint.
In case a PATCH request fails, the client is expected to call the GET method to check
the state of the object in the other parties system. If the object doesn’t exist, the client
should do a PUT.

1.3 Client owned object push
Normal client/server RESTful services work in a way that the Server is the owner of the
objects that are created. The client requests a POST method with an object to the end-
point URL. The response send by the server will contain the URL to the new object.
The client will only request one server to create a new object, not multiple servers.

Many OCPI modules work differently: the client is the owner of the object and only

http://www.server.com/ocpi/cpo/2.0/cdrs/?offset=5&limit=50

6

pushes the information to one or more servers for information sharing purposes.
For example: the CPO owns the Tariff objects and pushes them to a couple of eMSPs,
so each eMSP gains knowledge of the tariffs that the CPO will charge them for their
customers’ sessions. eMSP might receive Tariff objects from multiple CPOs. They need
to be able to make a distinction between the different tariffs from different CPOs.
The distinction between objects from different CPOs/eMSPs is made based on a
{country-code} and {party-id}.
The country-code and party-id of the other party are received during the credentials
handshake, so that a server might know the values a client will use in an URL.

Client owned object URL definition:
{base-ocpi-url}/{end-point}/{country-code}/{party-id}/{object-id}

Example of a URL to a client owned object:
https://www.server.com/ocpi/cpo/2.0/tariffs/NL/TNM/14

POST is not supported for these kind of modules.
PUT is used to send new objects to the servers.
If a client tries to access an object with a URL that has a different country-code and/or
party-id then given during the credentials handshake, it is allowed the respond with a
HTTP 404 status code, this way blocking client access to object that do not belong to
them.

1.3.1 Errors
When a client pushes a client owned object, but the {object-id} in the URL is different
from the id in the object being pushed. A Server implementation is advised to return
an OCPI status code: 2001.

1.4 Response Format
When a request cannot be accepted, an HTTP error response code is expected
including a JSON object that contains more details.

The content that is sent with all the response messages is an ‘application/json’ type and
contains a JSON object with the following properties:

Property Type Cardinality Description
data Array or Object * or ? Contains the actual response data

object or list of objects from each
request, depending on the
cardinality of the response data, this
is an array (card. * or +) or a single
object (card. 1 or ?)

status_code int 1 Response code, as listed in Status
Codes, indicates how the request
was handled. To avoid confusion
with HTTP codes, at least four digits
are used.

Status_message string ? An optional status message which
may help when debugging.

timestamp DateTime 1 The time this message was
generated.

Additional examples in the specification will only contain the value of the “data” field.

http://www.server.com/ocpi/cpo/2.0/tariffs/NL/TNM/14

7

1.4.1 Example: Version information response (list of objects)

{
 "data": [{
 "version": "1.9",
 "url": "https://example.com/ocpi/cpo/1.9/"
 }, {
 "version": "2.0",
 "url": "https://example.com/ocpi/cpo/2.0/"
 }],
 "status_code": 1000,
 "status_message": "Success",
 "timestamp": "2015-06-30T21:59:59Z"
}

1.4.2 Example: Version information response (one object)

{
 "data": {
 "version": "2.0",
 "endpoints": [{
 "identifier": "credentials",
 "url":"https://example.com/ocpi/cpo/2.0/credentials/"
 }, {
 "identifier": "locations",
 "url": "https://example.com/ocpi/cpo/2.0/locations/"
 }]
 },
 "status_code": 1000,
 "status_message": "Success",
 "timestamp": "2015-06-30T21:59:59Z"
}

 1.4.3 Example: Tokens GET Response with one Token object. (CPO
end-point) (one object)

{
 "data": {
 "uid": "012345678",
 "type": "RFID",
 "auth_id": "FA54320",
 "visual_number": "DF000-2001-8999",
 "issuer": "TheNewMotion",
 "valid": true,
 "allow_whitelist": true
 },
 "status_code": 1000,
 "status_message": "Success",
 "timestamp": "2015-06-30T21:59:59Z"
}

8

1.4.4 Example: Tokens GET Response with list of Token objects. (eMSP
end-point) (list of objects)

{
 "data": [{
 "uid": "100012",
 "type": "RFID",
 "auth_id": "FA54320",
 "visual_number": "DF000-2001-8999",
 "issuer": "TheNewMotion",
 "valid": true,
 "allow_whitelist": true
 }, {
 "uid": "100013",
 "type": "RFID",
 "auth_id": "FA543A5",
 "visual_number": "DF000-2001-9000",
 "issuer": "TheNewMotion",
 "valid": true,
 "allow_whitelist": true
 }, {
 "uid": "100014",
 "type": "RFID",
 "auth_id": "FA543BB",
 "visual_number": "DF000-2001-9010",
 "issuer": "TheNewMotion",
 "valid": false,
 "allow_whitelist": true
 }],
 "status_code": 1000,
 "status_message": "Success",
 "timestamp": "2015-06-30T21:59:59Z"
}

1.3.5 Example: Response with an error (contains no data field)

{
 "status_code": 2001,
 "status_message": "Missing required field: type",
 "timestamp": "2015-06-30T21:59:59Z"
}

 2. Interface endpoints
As OCPI contains multiple interfaces, different endpoints are available for messaging.
The protocol is designed such that the exact URLs of the endpoints can be defined by
each party. It also supports an interface per version.
The locations of all the version specific endpoints can be retrieved by fetching the API
information from the versions endpoint. Each version specific endpoint will then list the
available endpoints for that version. It is strongly recommended to insert the protocol
version into the URL.

For example: /ocpi/cpo/2.0/locations and /ocpi/emsp/2.0/locations.

9

The URLs of the endpoints in this document are descriptive only. The exact URL can be
found by fetching the endpoint information from the API info endpoint and looking up the
identifier of the endpoint.

Operator interface Identifier Example URL
Credentials credentials https://example.com/ocpi/cpo/2.0/credentials
Charging location details locations https://example.com/ocpi/cpo/2.0/locations

eMSP interface Identifier Example URL
Credentials credentials https://example.com/ocpi/emsp/2.0/credentials
Charging location updates locations https://example.com/ocpi/emsp/2.0/locations

 3. Offline behavior
During communication over OCPI, it might happen that one of the communication parties
is unreachable for an amount of time.
OCPI works event based. New messages and status are pushed from one party to
another. When communication is lost, updates cannot be delivered.
OCPI messages should not be queued.
When the connection is re-established, it is up the client of a connection to GET the
current status from to server to get back in-sync.
For example:

• CDRs of the period of communication loss can be retrieved with a GET
command on the CDRs module, with filters to retrieve only CDRs of the period
since the last CDR was received.

• Status of EVSEs (or Locations) can be retrieved by calling a GET on the
Locations module.

C. Status Codes

There are two types of status codes:

• Transport related (HTTP)
• Content related (OCPI)

The transport layer ends after a message is correctly parsed into a (semantically
unvalidated) JSON structure. When a message does not contain a valid JSON string,
the HTTP error 400 - Bad request is returned.
If a request is syntactically valid JSON and addresses an existing resource, no HTTP
error should be returned. Those requests are supposed to have reached the OCPI
layer. As is customary for RESTFUL APIs, if the resources does not exist, the server
should return a HTTP 404 – Not Found.
When the server receives a valid OCPI object it should respond with:

• HTTP 200 – OK when the object already existed and is successfully updated
• HTTP 201 – Created when the object is newly created in the server system

Requests that reach the OCPI layer should return an OCPI response message with a
status_code field as defined below.

Range Description
1xxx Success
2xxx Client errors – The data sent by the client cannot be processed

by the server
3xxx Server errors – The server encountered an internal error

https://example.com/ocpi/cpo/2.0/credentials
https://example.com/ocpi/cpo/2.0/locations
https://example.com/ocpi/emsp/2.0/credentials
https://example.com/ocpi/emsp/2.0/locations

10

When the status code is in the success range (1xxx), the data field in the response
message should contain the information as specified in the protocol. Otherwise the data
field is unspecified and may be omitted, null or something else that could help to debug
the problem from a programmer’s perspective. For example, it could specify which fields
contain an error or are missing.

 1. 1xxx: Success

Code Description
1000 Generic success code

 2. 2xxx: Client errors
Errors a server detected in the message sent by a client

Code Description
2000 Generic client error
2001 Invalid or missing parameters
2002 Not enough information; for example: Authorization request with

too little information
2003 Unknown location; for example: Command: START_SESSION

with unknown location

 3. 3xxx: Server errors
Error during processing of the OCPI payload in the server. The message was
syntactically right but could not be processed by the server.

Code Description
3000 Generic server error
3001 Unable to use the client’s API. For example, during the

credentials registration: When the initializing party requests data
from the other party during the open POST call to its credentials
endpoint. If one of the GETs cannot be processed, the party
should return this error in the POST response

3002 Unsupported version
3003 No matching endpoints or expected endpoints missing between

parties. Used during the registration process if the two parties do
not have any mutual modules or endpoints available, or the
minimum expected by the other party implementation

D. Version Information Endpoint

This endpoint lists all the available OCPI versions and the corresponding URLs to
where version specific details such as the supported endpoints can be found.
Example endpoint structure: /ocpi/cpo/versions and /ocpi/emsp/versions
The exact URL to the implemented version endpoint should be given (offline) to parties
that interface with your OCPI implementation, this endpoint is the starting point for
discovering locations of the different modules and version of OCPI that have been
implemented.
Both the CPO and the eMSP must have this endpoint.

11

Method Description
GET Fetch information about the supported versions

 1. Data

Property Type Card Description
versions Version + A list of supported OCPI versions

 1.1 Version class

Property Type Card Description
Version VersionNumber 1 The version number
url URL 1 URL to the endpoint containing

version specific information

 2. GET
Fetch all supported OCPI versions of this CPO or eMSP.

Example
[
 {
 "version": "1.9",
 "url": "https://example.com/ocpi/cpo/1.9/"
 },
 {
 "version": "2.0",
 "url": "https://example.com/ocpi/cpo/2.0/"
 }
]

E. Version Details Endpoint

Example: /ocpi/cpo/2.0/ and /ocpi/emsp/2.0/

This endpoint lists the supported endpoints and their URLs for a specific OCPI version.
To notify the other party that the list of endpoints of your current version has changed,
you can send a PUT request to the corresponding credentials endpoint (see the
credentials chapter).
Both the CPO and the eMSP must have this endpoint.

Method Description
GET Fetch information about the supported endpoints for this version

 1. Data

Property Type Cardinality Description
Version VersionNumber 1 The version number
Endpoints Endpoint + A list of supported endpoints for this

version

12

 1.1 Endpoint class

Property Type Cardinality Description
Identifier ModuleID 1 Endpoint identifier
url URL 1 URL to the endpoint

 1.2 ModuleID enum
The Module identifiers for each endpoint are in the beginning of each Module chapter. The
following table contains the list of modules in this version of OCPI. Most modules (except
Credentials & registration) are optional, but there might be dependencies between
modules, if so that will be mentioned in the module description.

Module ModuleID Remark
CDRs cdrs
Commands commands
Credentials & registration credentials Required for all implementations
Locations locations
Sessions sessions
Tariffs tariffs
Tokens tokens

 1.3 VersionNumber enum
List of known versions

Value Description
2.0 OCPI version 2.0
2.1 OCPI version 2.1 (DEPRECATED, use 2.1.1)
2.1.1 OCPI version 2.1.1

 1.3.1 Custom Modules
Parties are allowed to create custom modules or customized version of the existing
modules.
For this the ModuleID enum can be extended with additional custom moduleIDs.
These custom moduleIDs may only be send to parties with which there is an agreement
to use a custom module.
It is advised to use a prefix (country_code + party_id) for any custom moduleID, this
ensures that the moduleID will not be used for any future module of OCPI.

For example: nltnm-tokens

13

 2. GET
Fetch information about the supported endpoints and their URLs for this version.

Example
{
 "version": "2.0",
 "endpoints": [
 {
 "identifier": "credentials",
 "url": "https://example.com/ocpi/cpo/2.0/credentials/"
 },
 {
 "identifier": "locations",
 "url": "https://example.com/ocpi/cpo/2.0/locations/"
 }
]
}

F. Credentials Endpoint

Module Identifier: credentials

 1. Interfaces and endpoints

Example: /ocpi/cpo/2.0/credentials, /ocpi/emsp/2.0/credentials

Method Description
GET Retrieves the credentials object to access the server’s platform
POST Provides the werver with a credentials object to access the client’s

system (i.e. register)
PUT Provides the server with an updated credentials object to access

the client’s system
PATCH n/a
DELETE Informs the server that its credentials to the client’s system are now

invalid (i.e. unregister)

 1.1 GET Method
Retrieves the credentials object to access the server’s platform. The request body is
empty, the response contains the credentials object to access the server’s platform. This
credentials object also contains extra information about the server such as its business
details.

 1.2 POST Method
Provides the server with credentials to access the client’s system. This credentials
object also contains extra information about the client such as its business details.
A POST initiates the registration process for this endpoint’s version. The server must also
fetch the client’s endpoints for this version.
If successful, the server must generate a new token and respond with the client’s new
credentials to access the server’s system. The credentials object in the response also
contains extra information about the server such as its business details.
This must return a HTTP status code 405: method not allowed if the client was
already registered.

14

 1.3 PUT Method
Provides the server with updated credentials to access the client’s system. This
credentials object also contains extra information about the client such as its business
details.
A PUT will switch to the version that contains this credentials endpoint if it’s different
from the current version. The server must fetch the client’s endpoints again, even if the
version has not changed.
If successful, the server must generate a new token for the client and respond with the
client’s updated credentials to access the server’s system. The credentials object in the
response also contains extra information about the server such as its business details.
This must return a HTTP status code 405: method not allowed if the client was not
registered.

 1.4 DELETE Method
Informs the server that its credentials to access the client’s system are now invalid and
can no longer be used. Both parties must end any automated communication. This is
the unregistration process.
This must return a HTTP status code 405: method not allowed if the client was not
registered.

 2. Object description

 2.1 Credentials object

Property Type Card. Description
token string (64) 1 The token for the other party to

authenticate in your system
url URL 1 The URL to your API versions

endpoint
business_details BusinessDetails 1 Details of this party
party_id string(3) 1 CPO or eMSP ID of this party

(following the 15118 ISO
standard)

country_code string(2) 1 Country code of the country
this party is operating in

The party_id and country_code are provided here to inform a server about the party_id
and country_code a client will use when pushing client owned objects. This helps a
server determine the URLs a client will use when pushing a client owned object.
The country_code is added to make certain the URL used when pushing a client owned
object is unique. There might be multiple parties in the world with the same party_id, but
the combination should always be unique.
A party operating in multiple countries can always use the home country of the company for
all connections. For example, an OCPI implementation might push EVSE IDs from a
company for different countries, preventing an OCPI connection per country in which a
company is operating.
The party_id and country_code given here have no direct link with the eMI3 EVSE IDs
and Contract IDs that might be used in the different OCPI modules. For example, an
implementation OCPI might push EVSE IDs with a different eMI3 spot operator, then
the OCPI party_id and/or different country_code.

15

Example
{
 "url": "https://example.com/ocpi/cpo/",
 "token": "ebf3b399-779f-4497-9b9d-ac6ad3cc44d2",
 "party_id": "EXA",
 "country_code": "NL",
 "business_details": {
 "name": "Example Operator",
 "logo": {
 "url": "https://example.com/img/logo.jpg",
 "thumbnail": "https://example.com/img/logo_thumb.jpg",
 "category": "OPERATOR",
 "type": "jpeg",
 "width": 512,
 "height": 512
 },
 "website": "http://example.com"
 }
}

 3. Use cases

 3.1 Registration

To register a CPO in an eMSP platform (or vice versa), the CPO must create a unique
token that can be used for authenticating the eMSP. This token along with the versions
endpoint should be sent to the eMSP in a secure way that is outside the scope of this
protocol.
TOKEN_A is given offline. After registration, store the TOKEN_C which will be used in
future exchanges.
(In the sequence diagrams below relative paths are used as short resource identifiers to
illustrate a point; please note that they should be absolute URLs in any working
implementation of OCPI)

http://example.com/

16

Due to its symmetric nature, the CPO and eMSP can be swapped in the registration
sequence.

17

 3.2 Updating procedure
The update process is provided in the sequence diagram below.

 3.3 Changing endpoints for the current version
This can be done by following the update procedure for the same version. By sending a
PUT request to the credentials endpoint of this version, the other party will fetch and
store the corresponding set of endpoints.

 3.4 Updating the credentials and resetting the token
The credentials (or parts thereof, such as the token) can be updated by sending the new
credentials via a PUT request to the credentials endpoint of the current version, similar to
the update procedure described above.

 3.5 Errors during registration
When the Server connects back to the client during the credentials registration, it might
encounter problems. When this happens, the Server should add the status code: 3001

18

in the response to the POST from the client.

 3.6 Required endpoints not available
When two parties connect, it might happen that one of the parties expects a certain
endpoint to be available at the other party.
For example, a CPO could only want to connect when the CDRs endpoint is available in
an eMSP system.
In the case in which the client is starting the credentials exchange process and cannot
find the endpoints it expects, it is expected NOT to send the POST request with
credentials to the server. Log a message/notify the administrator to contact the
administrator of the server system.
In the case in which the server, receiving the request from a client, cannot find the
endpoints it expects, it is expected to respond to the request with a status code: 3003.

G. Locations Module

Module Identifier: locations

The Location objects live in the CPO back-end system. They describe the charging
locations of that operator.
Module dependency: the eMSP endpoint is dependent on the Tariffs module.

 1. Flow and lifecycle
The Locations module has Locations as base object. Locations have EVSEs; EVSEs
have Connectors. With the methods in the eMSP interface, Location
information/statuses can be shared with the eMSP. Updates can be done to the
Location, but also to only an EVSE or a Connector.
When a CPO creates Location objects they push them to the eMSPs by calling PUT on
the eMSPs Locations endpoint. Providers who do not support push mode need to call
GET on the CPOs Locations endpoint to receive the new object.
If the CPO wants to replace a Location related object, they push it to the eMSP
systems by calling PUT on their Locations endpoint.
Any changes to a Location related object can also be pushed to the eMSP by calling
the PATCH on the eMSPs Locations endpoint. Providers who do not support push
mode need to call GET on the CPOs Locations endpoint to receive the updates.
When the CPO wants to delete an EVSE they must update by setting the status field to
REMOVED and call the PUT or PATCH on the eMSP system. A Location without valid
EVSE objects can be considered as expired and should no longer be displayed. There
is no direct way to delete a location.
When the CPO is not sure about the state or existence of a Location, EVSE or
Connector object in the eMSPs system, the CPO can call the GET to validate the object
in the eMSP system.

 2. Interfaces and endpoints
There is both a CPO and an eMSP interface for Locations. It is advised is to use the
push direction from CPO to eMSP during normal operation.
The CPO interface is meant to be used when the connection between two parties is
established, to retrieve the current list of Location objects with the current status, and
when the eMSP is not certain the Locations cache is completely correct.
The eMSP can use the CPO GET Object interface to retrieve a specific Location, EVSE
or Connector. This might be used by a eMSP that wants information about a specific
Location, but has not implemented the eMSP Locations interface (cannot receive push).

19

 2.1 CPO Interface
Example endpoint structure: /ocpi/cpo/2.0/locations

Method Description
GET Fetch a list of locations, last updated between the

{date_from} and {date_to}(paginated), or get a specific
location, EVSE or Connector

POST n/a
PUT n/a
PATCH n/a
DELETE n/a

 2.1.1 GET Method
Depending on the URL Segments provided, the GET request can either be used to
retrieve information about a list of available locations and EVSEs at this CPO: GET List,
or it can be used to get information about a specific Location, EVSE or Connector: GET
Object

 2.1.1.1 GET List Request Parameters
Example endpoint structures for retrieving a list of Locations:
/ocpi/cpo/2.0/locations/?date_from=xxx&date_to=yyy
/ocpi/cpo/2.0/locations/?offset=50
/ocpi/cpo/2.0/locations/?limit=100
/ocpi/cpo/2.0/locations/?offset=50&limit=100

If additional parameters: {date_from} and/or {date_to} are provided, only Locations
with (last_updated) between the given date_from and date_to will be returned.
If an EVSE is updated, also the ‘parent’ Location’s last_updated fields is updated.
If a Connector is updated, the EVSE’s last_updated and the Location’s last_updated
field are updated.
This request is paginated, it supports the pagination related URL parameters.

Parameter Datatype Required Description
date_from DateTime no Only return Locations that have

last_updated after this Date/TIme
date_to DateTime no Only return Locations that have

last_updated before this Date/TIme
offset int no The offset of the first object

returned. Default is 0
limit int no Maximum number of objects to GET

20

 2.1.1.2 GET List Response Data
The endpoint returns a list of Location objects. The header will contain the pagination
related headers.
Any older information that is not specified in the response is considered as no longer
valid.
Each object must contain all required fields. Fields that are not specified may be
considered as null values.

Type Card. Description
Location * List of all locations with valid EVSE

 2.1.1.3 GET Object Request Parameters
Example endpoint structures for a specific Location, EVSE or Connector:
/ocpi/cpo/2.0/locations/{location_id}
/ocpi/cpo/2.0/locations/{location_id}/{evse_uid}
/ocpi/cpo/2.0/locations/{location_id}/{evse_uid}/{connector_id}

The following parameters can be provided as URL segments.

Parameter Datatype Required Description
location_id string(39) yes Location.id of the Location object to

retrieve
evse_id string(39) no EVSE.uid, required when requesting

an EVSE or Connector object
connector_id string(36) no Connector.id, required when

requesting a Connector object

 2.1.1.4 GET Object Response Data
The response contains the requested object.

Type (choice of one) Card. Description
Location 1 If a Location object was requested: the

Location object
EVSE 1 If an EVSE object was requested: the EVSE

object
Connector 1 If a Connector object was requested: the

Connector object

 2.2 eMSP Interface
Locations is a client owned object, so the end-points need to contain the required extra
fields: {party_id} and {country_code}.
Example endpoint structures:
/ocpi/emsp/2.0/locations/{country_code}/{party_id}/{location_id}
/ocpi/emsp/2.0/locations/{country_code}/{party_id}/{location_id}/{e
vse_uid}
/ocpi/emsp/2.0/locations/{country_code}/{party_id}/{location_id}/{e
vse_uid}/{connector_id}

21

Method Description
GET Retrieve a Location as it is stored in the eMSP system.
POST n/a (use PUT)
PUT Push new/updated Location, EVSE, and/or Connectors to

the eMSP
PATCH Notify the eMSP of partial updates to a Location, EVSE, or

Connector (such as status)
DELETE n/a (use PATCH)

 2.2.1 GET Method
If the CPO wants to check the status of a Location, EVSE or Connector object in the
eMSP system, it might GET the object from the eMSP system for validation purposes.
The CPO is the owner of the objects, so it would be illogical if the eMSP system had a
different status of was missing an object. If a discrepancy is found, the CPO might push
an update to the eMSP via a PUT or PATCH call.

 2.2.1.1 Request Parameters
The following parameters can be provided as URL segments.

Parameter Datatype Required Description
country_code string(2) yes Country code of the CPO requesting

this PUT to the eMSP system
party_id string(3) yes Party ID (Provider ID) of the CPO

requesting this PUT to the eMSP
system

location_id string(15) yes Location.id of the Location object to
retrieve

evse_uid string(15) no EVSE.uid, required when
requesting an EVSE or Connector
object

connector_id string(15) no Connector.id, required when a
Connector object is send/replaced

 2.2.1.2 Response Data
The response contains the requested object.

Type (choice of one) Cardinality Description
Location 1 If a Location object was requested: the

Location object
EVSE 1 If an EVSE object was requested: the

EVSE object
Connector 1 If a Connector object was requested: the

Connector object

22

 2.2.2 PUT Method
The CPO pushes available Location/EVSE or Connector objects to the eMSP. PUT is
used to send new Location objects to the eMSP, or to replace existing Locations.

 2.2.2.1 Request Parameters
This is an information push message; the objects pushed will not be owned by the
eMSP. To make distinctions between objects being pushed to an eMSP from different
CPOs, the {party_id} and {country_code} must be included in the URL as URL
segments.

Parameter Datatype Required Description
country_code string(2) yes Country code of the CPO requesting

this PUT to the eMSP system
party_id string(3) yes Party ID (Provider ID) of the CPO

requesting this PUT to the eMSP
system

location_id string(39) yes Location.id of the new Location object,
or the Location of which an EVSE or
Location object is send

evse_uid string(39) no EVSE.uid, required when an EVSE or
Connector object is send/replaced

connector_id string(36) no Connector.id, required when a
Connector object is send/replaced

 2.2.2.2 Request Body
The request contains the new/updated object

Type (choice of one) Cardinality Description
Location 1 New Location object, or Location object to

replace
EVSE 1 New EVSE object, or EVSE object to

replace
Connector 1 New Connector object, or Connector

object to replace

 2.2.3 PATCH Method
Same as the PUT method, but only the fields/objects that have to be updated have to
be present, other fields/objects that are not specified are considered unchanged.

 2.2.3.1 Example: a simple status update
This is the most common type of update message to notify eMSPs that an EVSE
(EVSE with uid 3255 of Charge Point 1012) is now occupied.

PATCH To URL: https://www.server.com/ocpi/emsp/2.0/locations/NL/TNM/1012/3255
{
 "status": "CHARGING",
}

http://www.server.com/ocpi/emsp/2.0/locations/NL/TNM/1012/3255

23

 2.2.3.2 Example: change the location name
In this example the name of location 1012 is updated.

PATCH To URL: https://www.server.com/ocpi/emsp/2.0/locations/NL/TNM/1012
{
 "name": "Interparking Gent Zuid",
}

 2.2.3.3 Example: set tariff update
In this example connector 2 of EVSE 1 of Charge Point 1012, receives a new pricing
scheme.

PATCH To URL:
https://www.server.com/ocpi/emsp/2.0/locations/NL/TNM/1012/3255/2
{
 "tariff_id": "15”
}

 2.2.3.4 Example: add an EVSE
To add an EVSE, simply put the full object in an update message, including all its
required fields. Since the id is new, the receiving party will know that it is a new object.
When not all required fields are specified, the object may be discarded.

PUT To URL: https://www.server.com/ocpi/emsp/2.0/locations/NL/TNM/1012/3256
{
 "uid": "3256",
 "evse_id": "BE-BEC-E041503003",
 "status": "AVAILABLE",
 "capabilities": ["RESERVABLE"],
 "connectors": [
 {
 "id": "1",
 "standard": "IEC_62196_T2",
 "format": "SOCKET",
 "tariff_id": "14"
 }
],
 "physical_reference": 3,
 "floor": -1,
}

 2.2.3.5 Example: delete an EVSE
An EVSE can be deleted by updating its status property.

PATCH To URL: https://www.server.com/ocpi/emsp/2.0/locations/NL/TNM/1012/3256
{
 "status": "REMOVED",
}

Note: To inform that an EVSE is scheduled for removal, the status_schedule field can be
used.

http://www.server.com/ocpi/emsp/2.0/locations/NL/TNM/1012
http://www.server.com/ocpi/emsp/2.0/locations/NL/TNM/1012/3255/2
http://www.server.com/ocpi/emsp/2.0/locations/NL/TNM/1012/3256
http://www.server.com/ocpi/emsp/2.0/locations/NL/TNM/1012/3256

24

 3. Object description
Location, EVSE, and Connector have the following relationship:

 3.1 Location Object
The Location object describes the location and its properties where a group of EVSE
belonging together are installed. Typically the Location object is the exact location of the
group of EVSE, but it can also be the entrance of a parking garage which contains the
EVSE. The exact way to reach each EVSE can be further specified by its own
properties.

25

Property Type Cardinality Description
id string(39) 1 Uniquely identifies the location within the

CPO’s platform (and suboperator platforms).
This field can never be changed, modified, or
renamed.

type LocationType 1 The general type of the charge point location
name string(255) ? Display name of the location
address string(45 1 Street/block name and house number if

available
city string(45) 1 City or town
postal_code string(10) 1 Postal code of the location
country string(3) 1 ISO 3166-1-alpha-3 code for the country of

this location
coordinates GeoLocation 1 Coordinates of the location
related_
locations

AdditionalGeo
Locations

* Geographical location of related points
relevant to the user

evses EVSE * List of EVSE that belong to this Location
directions DisplayText * Human-readable directions on how to reach

the location
operator BusinessDetails * Information of the operator. When not

specified, the information retrieved from the
api_info endpoint should be used instead

suboperator BusinessDetails ? Information of the suboperator if available
owner BusinessDetails ? Owner information if available
facilities Facility * Optional list of facilities to which this charge

location belongs
time_zone string(45) ? One of IANA tzdata’s TZ-values representing

the time zone of the location
(http://www.iana.org/time-zones)

opening_times Hours ? Times when EVSE at the location may be
accessed for charging

charging_when_
closed

boolean ? Indicates if the EVSE operate outside the
open hours of the location (e.g. charging
during garage closure); default: true

images Image * Links to images related to the location such as
photos or logos

energy_mix EnergyMix ? Details on the energy supplied at this location
last_updates DateTime 1 Timestamp when this Location or one of its

EVSE or Connectors was last updated or
created

26

 3.1.1 Example
{
 "id": "LOC1",
 "type": "ON_STREET",
 "name": "Gent Zuid",
 "address": "F.Rooseveltlaan 3A",
 "city": "Gent",
 "postal_code": "9000",
 "country": "BEL",
 "coordinates": {
 "latitude": "51.04759",
 "longitude": "3.72994"
 },
 "evses": [{
 "uid": "3256",
 "id": "BE-BEC-E041503001",
 "status": "AVAILABLE",
 "status_schedule": [],
 "capabilities": [
 "RESERVABLE"
],
 "connectors": [{
 "id": "1",
 "status": "AVAILABLE",
 "standard": "IEC_62196_T2",
 "format": "CABLE",
 "power_type": "AC_3_PHASE",
 "voltage": 220,
 "amperage": 16,
 "tariff_id": "11"
 "last updated": "2015-03-16T10:10:02Z"
 }, {
 "id": "2",
 "status": "AVAILABLE",
 "standard": "IEC_62196_T2",
 "format": "SOCKET",
 "power_type": "AC_3_PHASE",
 "voltage": 220,
 "amperage": 16,
 "tariff_id": "11"
 "last updated": "2015-03-18T08:12:01Z"
 }],
 "physical_reference": "1"
 "floor_level": "-1"
 "last updated": "2015-06-28T08:12:01Z"
 }, {
 "uid": "3257",
 "id": "BE-BEC-E041503002",
 "status": "IEC62196_T2",
 "capabilities": [
 "RESERVABLE"
]
 "connectors": [{
 "id": "1",
 "status": "RESERVED",
 "standard": "IEC_62196_T2",
 "format": "SOCKET",
 "power_type": "AC_3_PHASE",
 "voltage": 220,
 "amperage": 16,
 "tariff_id": "12"
 }],
 "physical_reference": "2"

27

 "floor_level": "-2"
 "last updated": "2015-06-29T20:39:09Z"
 }],
 "operator": {
 "name": "BeCharged"
 }’

 "last updated": "2015-06-29T20:39:09Z"
}

 3.2 EVSE Object
The EVSE object describes the part that controls the power supply to a single EV in a
single session. It always belongs to a Location object. It will only contain directions to
get from the location to the EVSE (i.e. floor, physical_reference or directions). When
these properties are insufficient to reach the EVSE from the Location point, then it
typically indicates that this EVSE should be put in a different Location object
(sometimes with the same address but with different coordinates/directions).
An EVSE object has a list of connectors which cannot be used simultaneously: only
one connector per EVSE can be used at a time.

Property Type Cardinality Description
uid string(39) 1 Uniquely identifies the EVSE within the

CPO’s platform (and suboperator platforms).
This field can never be changed, modified, or
renamed.

evse_id String(48) ? Compliant with the following specification for
EVSE ID from “eMI3 standard version V1.0”
(http://emi3group.com/documents-links/)
“Part 2: business objects.”

status Status 1 Indicates the current status of the EVSE
status_schedule StatusSchedule * Indicates a planned status in the future of the

EVSE
capabilities Capability * List of functionalities of which the EVSE is

capable
connectors Connector + List of available connectors on the EVSE
floor_level String(4) ? Level on which the charging station is

located (in garages) in the locally displayed
numbering scheme

coordinates GeoLocations ? Coordinates of the EVSE
physical_reference String(16) ? A number/string printed on the outside of the

EVSE for visual identification
directions DisplayText * Human-readable directions on how to reach

the location
parking_restrictions ParkingRestriction * The restrictions that apply to the parking spot
images Image * Links to images related to the EVSE such as

photos or logos
last_updates DateTime 1 Timestamp when this EVSE or one of its

Connectors was last updated or created

28

 3.3 Connector Object
A connector is the socket or cable available for the EV to use. A single EVSE may
provide multiple connectors but only one of them can be in use at the same time. A
connector always belongs to an EVSE object.

Property Type Cardinality Description
Id string(36) 1 Identifier of the connector within the

EVSE. Two connectors may have the
same id as long as they do not belong to
the same EVSE object

standard ConnectorType 1 The standard of the installed connector
format ConnectionFormat 1 The format (socket/cable) of the installed

connector
power_type PowerType 1
voltage int 1 Voltage of the connector (line to neutral

for AC_3_PHASE), in volt(V)
amperage int 1 Maximum amperage of the connector, in

ampere (A)
tariff_id string(36) ? Identifier of the current charging tariff

structure. For a “Free of Charge” tariff
this field should be set, and point to a
defined “Free of Charge” tariff.

terms_and_conditions URL ? URL to the operator’s terms and
conditions

last_updates DateTime 1 Timestamp when theConnector was last
updated or created

 4. Data types

 4.1 AdditionalGeoLocation class
This class defines a geo location. The geodetic system to be used is WGS 84.

Property Type Cardinality Description
latitude string(10) 1 Latitude of the point in decimal

degree. Example: 50.770774.
Decimal separator: “.” Regex: -
?[0-9{1,2}\.[0-9]{6}

longitude string(11) 1 Longitude of the point in decimal
degree. Example: -126.104065.
Decimal separator: “.” Regex: -
?[0-9{1,3}\.[0-9]{6}

name DisplayText ? Name of the point in local
language or as written at the
location (e.g. street name,
parking lot entrance)

 4.2 BusinessDetails class

Property Type Cardinality Description
name string(100) 1 Name of the operator
website URL ? Link to the operator’s website
logo Image ? Image link to the operator’s logo

29

 4.3 Capability enum
The capabilities of an EVSE.

Value Description
CHARGING_PROFILE_CAPABLE The EVSE supports charging profiles

(sending charging profiles is not yet
supported by OCPI)

CREDIT_CARD_PAYABLE Charging at this EVSE may be paid with
a credit card

REMOTE_START_STOP_CAPABLE The EVSE can remotely be
started/stopped

RESERVABLE The EVSE can be reserved
RFID_READER Charging at this EVSEcan be authorized

with a RFID token
UNLOCK_CAPABLE Connectors have a mechanical lock nay

can be unlocked by a request

 4.4 ConnectorFormat enum
The format of the connector, whether it is a socket or a plug.

VALUE DESCRIPTION
SOCKET The connector is a socket; the user must provide a fitting

plug
CABLE The connector is a cable; the user’s car must have a

fitting inlet

30

 4.5 ConnectorType enum
The socket or plug standard of the charging point

Value Description
CHADEMO The connector type is CHAdeMO, DC
DOMESTIC_A Standard/Domestic household, type “A”, NEMA 1-15, 2 pins
DOMESTIC_B Standard/Domestic household, type “B”, NEMA 5-15, 3 pins
DOMESTIC_C Standard/Domestic household, type “C”, CEE 7/17, 2 pins
DOMESTIC_D Standard/Domestic household, type “D”, 3 pin
DOMESTIC_E Standard/Domestic household, type “E”, CEE 7/5 3 pins
DOMESTIC_F Standard/Domestic household, type “F”, CEE 7/4, Schuko, 3 pins
DOMESTIC_G Standard/Domestic household, type “G”, BS 1363, Commonwealth,

3 pins
DOMESTIC_H Standard/Domestic household, type “H”, SI-32, 3 pins
DOMESTIC_I Standard/Domestic household, type “I”, AS 3112, 3 pins
DOMESTIC_J Standard/Domestic household, type “J”, SEV 1011, 3 pins
DOMESTIC_K Standard/Domestic household, type “K”, DS 60884-2-D1, 3 pins
DOMESTIC_L Standard/Domestic household, type “L”, CEI 23-16-VII, 3 pins
IEC_60309_2_single_16 6IEC 60309-2 Industrial Connector single phase 16 Amperes

(usually blue)
IEC_60309_2_three_16 IEC 60309-2 Industrial Connector three phase 16 Amperes

(usually red)
IEC_60309_2_three_32 IEC 60309-2 Industrial Connector three phase 32 Amperes

(usually red)
IEC_60309_2_three_64 IEC 60309-2 Industrial Connector three phase 64 Amperes

(usually red)
IEC_62196_T1 IEC 62196 Type 1 “SAE J1772”
IEC_62196_T1_COMBO Combo Type 1 based, DC
IEC_62196_T2 IEC 62196 Type 2 “Mennekes”
IEC_62196_T2_COMBO Combo Type 2 based, DC
IEC_62196_T3A IEC 62196 Type 3A
IEC_62196_T3C IEC 62196 Type 3C “Scame”

31

 4.6 EnergyMix class
This type is used to specify the energy mix and environmental impact of the supplied
energy at a location or in a tariff.

Property Type Cardinality Description
is_green_energy boolean 1 True if 100% from

regenerative sources
energy_sources EnergySource * Key-value pairs (enum

+ percentage) of
energy sources of this
location’s tariff

environ_impact EnvironmentalImpact * Key-value pairs (enum
+ percentage) of
nuclear waste and CO2
exhaust of this
location’s tariff

supplier_name string(64) ? Name of the energy
supplier, delivering the
energy for this location
or tariff*

energy_product_name string(64) ? Name of the energy
suppliers product/tariff
plan used at this
location*

* These fields can be used to look up energy qualification

 4.6.1 Examples

 4.6.1.1 Simple

"energy_mix": {
 "is_green_energy": true
 }

 4.6.1.2 Tariff name based

"energy_mix": {
 "is_green_energy": true,
 "supplier_name": "Greenpeace Energy eG",
 "energy_product_name": "eco-power"
 }

32

 4.6.1.3 Complete

"energy_mix": {
 "is_green_energy": false,
 "energy_sources": [
 { "source": "GENERAL_GREEN", "percentage": 35.9 },
 { "source": "GAS", "percentage": 6.3 },
 { "source": "COAL", "percentage": 33.2 },
 { "source": "GENERAL_FOSSIL", "percentage": 2.9, },
 { "source": "NUCLEAR", "percentage": 21.7 }
],
 "environ_impact": [
 { "source": "NUCLEAR_WASTE", "amount": 0.00006, },
 { "source": "CARBON_DIOXIDE", "amount": 372, }
],
 "supplier_name": "E.ON Energy Deutschland",
 "energy_product_name": "E.ON DirektStrom eco"
 }

 4.7 EnergySource class
Key-value pairs (enum + percentage) of energy sources. All given values should add up
to 100 percent per category.

Property Type Cardinality Description
source EnergySourceCategory 1 The type of energy source
percentage number 1 Percentage of this source (0-

100) in the mix

 4.8 EnergySourceCategory enum
Categories of energy sources

Value Description
SOLAR Regenerative power from photovotaic
WIND Regenerative power from wind turbines
WATER Regenerative power from water turbines
GENERAL_GREEN All kinds of regenerative power sources
GAS Fossil power from gas
NUCLEAR Nuclear power sources
GENERAL_FOSSIL All kinds of fossil power sources
COAL Fossil power from coal

 4.9 EnvironmentalImpact class
Key-value pairs (enum + amount) of waste and carbon dioxide emission per kWh

Property Type Cardinality Description
source EnvironmentalImpactCategory 1 The category of this value
amount number 1 Amount of this portion in

g/kWh

33

 4.10 EnvironmentalImpactCategory enum
Categories of environmental impact values

Value Description
NUCLEAR_WASTE Produced nuclear waste in g/kWh
CARBON_DIOXIDE Exhausted carbon dioxide in g/kWh

 4.11 EnvironmentalPeriod class
Specifies one exceptional period for opening or access hours

Property Type Cardinality Description
period_name DateTime 1 Beginning of the exception
period_end DateTime 1 End of the exception

 4.12 Facility enum

Value Description
HOTEL A hotel
RESTAURANT A restaurant
CAFE A café
MALL A mall or shopping center
SUPERMARKET A supermarket
SPORT Sports facilities
RECREATION AREA A recreation area
NATURE Located in, or close to, a park or nature reserve
MUSEUM A museum
BUS_STOP A bus stop
TAXI_STAND A taxi stand
TRAIN_STATION A train station
AIRPORT An airport
CARPOOL_PARKING Carpool parking
FUEL_STATION A fuel station
WIFI Wifi or other type of internet available

 4.13 GeoLocation class

Property Type Cardinality Description
latitude string(10) 1 Latitude of the point in decimal

degree. Example: 50.770774.
Decimal separator: “.” Regex: -
?[0-9{1,2}\.[0-9]{6}

longitude string(11) 1 Longitude of the point in decimal
degree. Example: -126.104065.
Decimal separator: “.” Regex: -
?[0-9{1,3}\.[0-9]{6}

34

 4.14 Hours class
Opening and access hours of the location.

Field Name
(one of two)

Field Type Cardinality Description

>regular_hours RegularHours * Regular hours, weekday
based. Should not be set
for representing 24/7 as
this is the most common
case.

>twentyfourseven boolean 1 True to represent 24 hours
a day and 7 days a week,
except for the given
exceptions.

exceptional_openings ExceptionalPeriod * Exceptions for specific
calendar dates, time-range
based. Periods the station
is operating/accessible.
Additional to regular hours.
May overlap regular rules.

Exceptional_closings ExceptionalPeriod * Exceptions for specific
calendar dates, time-range
based. Periods the station
is not operating/accessible.
Overwriting regularHours
and exceptionalOpenings.
Should not overlap
exceptionalOpenings.

 4.15 Image class
This class references images related to a EVSE in terms of a file name or url.
According to the roaming connection between one EVSE Operator and one or more
Navigation Service Providers the hosting or file exchange of image payload data has to
be defined. The exchange of this content data is out of scope of OCHP. However, the
recommended setup is a public available web server hosted and updated by the EVSE
Operator. Per charge point an unlimited number of images of each type is allowed.
Recommended are at least two images where one is a network or provider logo and the
second is a station photo. If two images of the same type are defined they should be
displayed additionally, not optionally.

Photo Dimensions:
The recommended dimensions for all photos is a minimum of 800 pixels wide and 600
pixels height. Thumbnail representations for photos should always have the same
orientation as the original with a size of 200 to 200 pixels.

35

Logo Dimensions:
The recommended dimensions for logos are exactly 512 pixels wide and 512 pixels
height. Thumbnail representations for logos should be exactly 128 pixels in width and
height. If not squared, thumbnails should have the same orientation as the original.

Field Name Field Type Cardinality Description
url URL 1 URL from where the image can

be fetched through a web
browser

thumbnail URL ? URL from where a thumbnail of
the image can be fetched through
a web browser

category ImageCategory 1 Describes for what the image is
used

type string(4) 1 Image type like gif, jpeg, png
width int(5) ? Width of the full scale image
height int(5) ? Height of the full scale image

 4.16 ImageCategory enum
The category of an image to obtain the correct usage in a user presentation. The
category has to be set accordingly to the image content in order to guarantee the right
usage.

Value Description
CHARGER Photo of the physical device that contains one or more

EVSEs
ENTRANCE Location entrance photo. Should show the car entrance to the

location from street side
LOCATION Location overview photo
NETWORK Logo of an associated roaming network to be displayed with

the EVSE for example in lists, maps and detailed information
view

OPERATOR Logo of the charge points operator, for example a
municipality, to be displayed with the EVSEs detailed
information view or in lists and maps, if no networkLogo is
present

OTHER Other
OWNER Logo of the charge points owner, for example a local store, to

be displayed with the EVSEs detailed information view

36

 4.17 LocationType enum
Reflects the general type of the charge point’s location. May be used for user
information.

Value Description
ON_STREET Parking in public space
PARKING_GARAGE Multistory car park
UNDERGROUND_GARAGE Multistory cark park, mainly underground
PARKING_LOT A cleared area intended for parking vehicles, i.e. at

stores and restaurants
OTHER None of the given possibilities
UNKNOWN Parking location type is not known by the operator

(default)

 4.18 ParkingRestriction enum
This value, if provided, represents the restriction to the parking spot for different
purposes.

Value Description
EV_ONLY Reserved parking spot for electric vehicles
PLUGGED Parking is only allowed while plugged in (charging)
DISABLED Reserved parking spot for disabled people with valid ID
CUSTOMERS Parking spot for customers/guests only, for example in case of a

hotel or shop
MOTORCYCLES Parking spot only suitable for (electric) motorcycles or scooters

 4.19 PowerType enum
The format of the connector, whether it is a socket or a plug.

Value Description
AC_1_PHASE AC mono phase
AC_3_PHASE AC 3 phase
DC Direct Current

 4.20 RegularHours class
Regular recurring operation or access hours

Field Name Field Type Cardinality Description
weekday int(1) 1 Number of day in the week, from

Monday (1) till Sunday (7)
period_begin string(5) 1 Begin of the regular period given in

hours and minutes. Must be in 24h
format with leading zeros. Example:
“18:15”. Hour/Minute separator: “:”
Regex: [0-2][0-9]:[0-5][0-9]

period_end string(5) 1 End of the regular period, syntax as
fpr period_begin. Must be later than
period_begin.

37

 4.20.1 Example
Operating on weekdays from 8am till 8pm with one exceptional opening on 22/6/2014
and one exceptional closing the Monday after:

"opening_times": {
 "regular_hours": [
 {
 "weekday": 1,
 "period_begin": "08:00",
 "period_end": "20:00"
 },
 {
 "weekday": 2,
 "period_begin": "08:00",
 "period_end": "20:00"
 },
 {
 "weekday": 3,
 "period_begin": "08:00",
 "period_end": "20:00"
 },
 {
 "weekday": 4,
 "period_begin": "08:00",
 "period_end": "20:00"
 },
 {
 "weekday": 5,
 "period_begin": "08:00",
 "period_end": "20:00"
 }
],
 "twentyfourseven": false,
 "exceptional_openings": [
 {
 "period_begin": "2014-06-21T09:00:00+02:00",
 "period_end": "2014-06-21T12:00:00+02:00"
 }
],
 "exceptional_closings": [
 {
 "period_begin": "2014-06-24T00:00:00+02:00",
 "period_end": "2014-06-25T00:00:00+02:00"
 }
]
}

This represents the following schedule, where striked days are without operation hours,
bold days are where exceptions apply, and regular displayed days are where the
regular schedule applies.

Weekday Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su
Date 16 17 18 19 20 21 22 23 24 25 26 27 28 29
Open
from

08 08 08 08 08 09 - 08 - 08 08 08 - -

Open
until

20 20 20 20 20 12 - 20 - 20 20 20 - -

38

 4.21 Status enum
The statue of an EVSE

Value Description
AVAILABLE The EVSE/Connector is able to start a new charging session
BLOCKED The EVSE/Connector is not accessible because of a physical

barrier, i.e. a car
CHARGING The EVSE/Connector is in use
INOPERATIVE The EVSE/Connector is not yet active or it is no longer

available (deleted)
OUTOFORDER The EVSE/Connector is currently out of order
PLANNED The EVSE/Connector is planned, will be operating soon
REMOVED The EVSE/Connector/charge point is discontinued/removed
RESERVED The EVSE/Connector is reserved for a particular EV driver and

is unavailable for other drivers
UNKNOWN No status information available. (Also used when offline)

 4.22 StatusSchedule class
This type is used to schedule status periods in the future. The eMSP can provide this
information to the EV user for trip planning purpose. A period MAY have no end.
Example: “This station will be running as of tomorrow. Today it is still planned and
under construction.”

Property Type Cardinality Description
period_begin DateTime 1 Begin of the scheduled period
period_end DateTime ? End of the scheduled period, if known
status Status 1 Status value during the scheduled period

Note that the scheduled status is purely informational. When the status actually
changes, the CPO must push an update to the EVSE’s status field itself.

H. Sessions module

Module Identifier: sessions

The Session object describes one charging session.
The Session object is owned by the CPO back-end system, and can be GET from the
CPO system, or pushed by the CPO to another system.

 1. Flow and Lifecycle

 1.1 Push model
When the CPO creates a Session object they push it to the eMSPs by calling PUT on
the eMSP’s Sessions endpoint with the newly created Session object.
Any changes to a Session in the CPO system are sent to the eMSP system by calling
PATCH on the eMSP’s Sessions endpoint with the updated Session object.
Sessions cannot be deleted, final status of a session is: COMPLETED.
When the CPO is not sure about the state or existence of a Session object in the
eMSP’s system, the CPO can call the GET to validate the Session object in the eMSP
system.

39

 1.2 Pull model
eMSPs who do not support the push model need to call GET on the CPO’s Sessions
endpoint to receive a list of Sessions.
This GET can also be used, combined with the Push model to retrieve Sessions after
the system (re)connects to a CPO, to get a list Sessions ‘missed’ during a time offline.

 2. Interfaces and endpoints

 2.1 CPO Interface
Example endpoint structure: /ocpi/cpo/2.0/sessions/?date_from=xxx&date_to=yyy

Method Description
GET Fetch Session objects of charging sessions last updated

between the {date_from} and {date_to} (paginated)
POST n/a
PUT n/a
PATCH n/a
DELETE n/a

 2.1.1 GET Method
Fetch Sessions from the CPO systems

 2.1.1.1 Request Parameters
Only Sessions with last_update between the given {date_from} and {date_to} will be
returned.
This request is paginated, so it also supports the pagination related URL parameters.

Parameter Datatype Required Description
date_from DateTime yes Only return Sessions that have

last_updated after this Date/Time
date_to DateTime no Only return Sessions that have

last_updated before this Date/Time
offset int no The offset of the first object returned.

Default is 0
limit int no Maximum number of objects to GET

 2.1.1.2 Response Data
The response contains a list of Session objects that match the given parameters in the
request, the header will contain the pagination related headers.
Any older information that is not specified in the response is considered as no longer
valid.
Each object must contain all required fields. Fields that are not specified may be
considered as null values.

Datatype Cardinality Description
Session * List of Session objects that match the request parameters

40

 2.2 eMSP Interface
Sessions is a client owned object, so the end-points need to contain the required extra
fields: {party_id} and {country_code}.
Example endpoint structure:
/ocpi/emsp/2.0/sessions/{country_code}/{party_id}/{session_id}

Method Description
GET Get the Session object from the eMSP system by its id

{session_id}
POST n/a
PUT Send a new/updated Session object
PATCH Send the Session object of id {session_id}
DELETE n/a

 2.2.1 GET Method
The CPO system might request the current version of a Session object from the eMSP
system for validation purposes, or the CPO system might have received an error on a
PATCH.

 2.2.1.1 Request Parameters
The following parameters can be provided as URL segments.

Parameter Datatype Required Description
country_code string(2) yes Country code of the CPO requesting

this GET to the eMSP system
party_id string(3) yes Party ID (Provider ID) of the CPO

requesting this GET to the eMSP
system

session_id string(36) yes id of the Session object to get from the
eMSP system

 2.2.1.2 Response Data
The response contains the request Session object, if available.

Datatype Cardinality Description
Session 1 Session object requested

 2.2.2 PUT Method
Inform the system about a new/updated session in the eMSP backoffice by PUTing a
Session object.

 2.2.2.1 Request Body
The request contains the new or updated Session object.

Datatype Cardinality Description
Session 1 New Session object

41

 2.2.2.2 Request Parameters
The following parameters can be provided as URL segments.

Parameter Datatype Required Description
country_code string(2) yes Country code of the CPO requesting

this PUT to the eMSP system
party_id string(3) yes Party ID (Provider ID) of the CPO

requesting this PUT to the eMSP
system

session_id string(36) yes id of the new or updated Session object

 2.2.3 PATCH Method
Same as the PUT method, but only the fields/objects that have to be updated have to
be present, other fields/objects that are not specified are considered unchanged.

 2.2.3.1 Example: update the total cost

PATCH To URL: https://www.server.com/ocpi/cpo/2.0/sessions/NL/TNM/101
{
 "total_cost": "0.60"
}

 3. Object description

 3.1 Session Object

Property Type Cardinality Description
id string(36) 1 The unique id that identifies the session in the

CPO platform
start_datetine DateTime 1 The time when the session became active
end_datetime DateTime ? The time when the session is completed
kwh number 1 How many kWh are charged
auth_id string(36) 1 Reference to a token, identified by the auth_id

field of the Token
auth_method AuthMethod 1 Method used for authentication
location Location 1 The location where this session took place,

including only the relevant EVSE and connector
meter_id string(255) ? Optional identification of the kWh meter
currency string(3) 1 ISO 4217 code of the currency used for this

session
charging_periods ChargingPeriod * An optional list of charging periods that can be

used to calculate and verify the total cost
total_cost Number ? The total cost (excluding VAT) of the session in

the specified currency. This is the price that the
eMSP will have to pay to the CPO. A total_cost
of 0.00 means free of charge. When omitted, no
price information is geven in the Session object,
but it may not mean the session is free of charge

status SessionStatus 1 The status of the session
last_updated DateTime 1 Timestamp when this Session was last updated

or created

http://www.server.com/ocpi/cpo/2.0/sessions/NL/TNM/101

42

 3.3.3 Examples

 3.1.2 Simple Session
Example of a starting session

{
 "id": "101",
 "start_datetime": "2015-06-29T22:39:09+02:00",
 "kwh": "0.00",
 "auth_id": "FA54320",
 "location": {
 "id": "LOC1",
 "type": "on_street",
 "name": "Gent Zuid",
 "address": "F.Rooseveltlaan 3A",
 "city": "Gent",
 "postal_code": "9000",
 "country": "BE",
 "coordinates": {
 "latitude": "3.72994",
 "longitude": "51.04759"
 },
 "evse": {
 "uid": "3256",
 "evse_id": "BE-BEC-E041503003",
 "STATUS": "AVAILABLE",
 "connectors": [{
 "id": "1",
 "standard": "IEC_62196_T2",
 "format": "SOCKET",
 "power_type": "AC_1_PHASE",
 "voltage": "230",
 "amperage": "64",
 "tariff_id": "11"
 "last_updated": "2015-06-29T22:39:09Z"
 }]
 "last_updated": "2015-06-29T22:39:09Z"
 }]
 "last_updated": "2015-06-29T22:39:09Z"
 },
 "currency": "EUR",
 "total_cost": "2.50",
 "status": "PENDING"
 "last_updated": "2015-06-29T22:39:09Z"
}

43

 3.1.2.1 Simple Session example of a short finished session
{
 "id": "101",
 "start_datetime": "2015-06-29T22:39:09+02:00",
 "end_datetime": "2015-06-29T23:50:16+02:00",
 "kwh": "0.00",
 "auth_id": "FA54320",
 "location": {
 "id": "LOC1",
 "type": "on_street",
 "name": "Gent Zuid",
 "address": "F.Rooseveltlaan 3A",
 "city": "Gent",
 "postal_code": "9000",
 "country": "BE",
 "coordinates": {
 "latitude": "3.72994",
 "longitude": "51.04759"
 },
 "evse": [{
 "uid": "3256",
 "evse_id": "BE-BEC-E041503003",
 "STATUS": "AVAILABLE",
 "connectors": [{
 "id": "1",
 "standard": "IEC_62196_T2",
 "format": "SOCKET",
 "power_type": "AC_1_PHASE",
 "voltage": "230",
 "amperage": "64",
 "tariff_id": "11"
 "last_updated": "2015-06-29T23:09:10Z"
 }]
 "last_updated": "2015-06-29T23:09:10Z"
 }]
 "last_updated": "2015-06-29T23:09:10Z"
 },
 "currency": "EUR",
 "charging_periods": [{
 "start_date_time": "2015-06-29T22:39:09+02:00",
 "dimensions": [{
 "type": "ENERGY",
 "volume": 120
 }, {
 "type": "MAX_CURRENT",
 "volume": 30
 }]
 }, {
 "start_date_time": "2015-06-29T22:40:54+02:00",
 "dimensions": [{
 "type": "energy",
 "volume": 41000
 }, {
 "type": "MIN_CURRENT",
 "volume": 34
 }]
 }, {
 "start_date_time": "2015-06-29T23:07:09Z",
 "dimensions": [{
 "type": "PARKING_TIME",
 "volume": 0.718

44

 }]
 }],
 "total_cost": 8.50,
 "status": "COMPLETED",
 "last_updated": "2015-06-29T23:09:10Z"
}

 4. Data types
Describe all datatypes used in this object

 4.1 SessionStatus enum

Property Description
ACTIVE The session is accepted and active. AI pre-condition are met:

Communication between EV and EVSE; EV or Driver is
authorized. EV is being charged, or can be charged. Energy is, or
is not, being transferred.

COMPLETED The session is finished successfully. Nomore modifications will be
made to this session.

INVALID The session is declared invalid and will not be billed.
PENDING The session is pending and has not yet started. This is the initial

state.

I. CDRs module
Module Identifier: cdrs

A Charge Detail Record is the description of a concluded charging session. The CDR is
the only billing-relevant object.
CDRs are sent from the CPO to the eMSP after the charging session has ended.
There is no requirement to send CDRs semi-realtime, however it is seen as good
practice to send them as soon as possible. If there is an agreement between parties to
send them for example once a month, that is also allowed by OCPI.

 1. Flow and Lifecycle
CDRs are created by the CPO. They probably only will be sent to the eMSP that will be
paying the bill of a charging session. Because a CDR is for billing purposes, it cannot
be changed/replaced, once sent to the eMSP, changes are not allowed in a CDR.

 1.1 Push model
When the CPO creates CDR(s), they push them to the relevant eMSP by calling POST
on the eMSP’s CDRs endpoint with the newly created CDR(s).
CDRs should contain enough information (dimensions) to allow the eMSP to validate
the total costs. It is advised to send enough information to the eMSP so it can calculate
its own costs for billing their customer. An eMSP might have a very different
contract/pricing model with the EV driver than the tariff structure from the CPO.
NOTE: CDRs cannot be updated or removed.
If the CPO, for any reason wants to view a CDR it has posted to a eMSP system, the
CPO can retrieve the CDR by calling the GET on the eMSP’s CDRs endpoint at the
URL returned in the response to the POST.

 1.2 Pull model
eMSPs who do not support the push model need to call GET on the CPO’s CDRs
endpoint to receive a list of CDRs.

45

This GET can also be used, combined with the Push model to retrieve CDRs, after the
system (re)connects to a CPO, to get a list of CDRs missed during a time offline.

 2. Interfaces and endpoints
There is both a CPO and an eMSP interface for CDRs. Depending on business
requirements parties can decide to use the CPO Interface/Get model, the eMSP
Interface/Push model, or both.
Push is the preferred model to use; the eMSP will receive CDRs when created by the
CPO.

 2.1 CPO Interface
The CDRs endpoint can be used to create or retrieve CDRs.
Example endpoint structure: /ocpi/cpo/2.0/cdrs/?date_from=xxx&date_to=yyy

Method Description
GET Fetch CDRs, last updated between the {date_from} and

{date_to} (paginated)
POST n/a
PUT n/a
PATCH n/a
DELETE n/a

 2.2.1 GET Method
Fetch CDRs from the CPO systems.

 2.1.1.1 Request Parameters
If additional parameters: {date_from} and/or {date_to} are provided, only CDRs with
last_updated between the given date_from and date_to will be returned.
This request is paginated, it supports the pagination related URL parameters.

Parameter Datatype Required Description
date_from DateTime no Only return CDRs that have last_updated

after this Date/Time
date_to DateTime no Only return CDRs that have last_updated

before this Date/Time
offset int no The offset of the first object is returned.

Default is 0
limit int no Maximum number of objects to GET

46

 2.1.1.2 Response Data
The endpoint returns a list of CDRs matching the given parameters in the GET request;
the header will contain the pagination related headers.
Any older information that is not specified in the response is considered as no longer
valid.
Each object must contain all required fields. Fields that are not specified may be
considered as null values.

Datatype Cardinality Description
CDR * List of CDRs

 2.2 eMSP Interface
The CDRs endpoint can be used to create, or get CDRs.
Example endpoint structure: /ocpi/emsp/2.0/cdrs

Method Description
GET Retrieve an existing CDR
POST Send a new CDR
PUT n/a (CDRs cannot be replaced)
PATCH n/a (CDRs cannot be updated)
DELETE n/a (CDRs cannot be removed)

 2.2.1 GET Method
Fetch CDRs from the eMSP system.

 2.2.1.1 Response URL
To retrieve an existing URL from the eMSP system, the URL, returned in the response
to a POST of a new CDR, must be used.

 2.2.1.2 Response Data
The endpoint returns the requested CDR, if it exists

Datatype Cardinality Description
CDR 1 Requested CDR object

 2.2.2 POST Method
Creates a new CDR.
The post method should contain the full, final CDR object.

 2.2.2.1 Request Body
In the post request the new CDR object is sent.

Datatype Cardinality Description
CDR 1 New CDR object

47

 2.2.2.2 Response Headers
The response should contain the URL to the just created CDR object in the eMSP
system.

Parameter Datatype Required Description
Location URL yes URL to the newly created CDR in

the eMSP system, can be used by
the CPO system to dpo a GET on
the same CDR

 3. Object description

 3.1 CDR Object
The CDR object describes the Charging Session and its costs.

Property Type Cardinality Description
id string(36) 1 Uniquely identifies the CDR within the

CPO’s platform (and suboperator
platforms)

start_date_time DateTime 1 Start timestamp of the charging
session

stop_date_time DateTime 1 Stop timestamp of the charging
session

auth_id string(36) 1 Reference to a token, identified by the
auth_id field of the token

auth_method AuthMethod 1 Method used for authentication
location Location 1 Location where the charging session

took place, including only the relevant
EVSE and Connector

meter_id string(255) ? Identification of the meter inside the
charge point

currency string(3) 1 Currency of the CDR in ISO 44217
Code

tariffs Tariff * List of relevant tariff elements. When
relevant, a “free of charge” tariff
should also be in this list

charging_periods ChargingPeriod + Lisst of charging periods that make
up this charging session. A session
consists of one or more periods,
where each period has a different
tariff

total_cost number 1 Total cost (excluding VAT) of this
transaction

total_energy number 1 Total energy charged, in kWh
total_time number 1 Total duration of this session

(including the duration of charging
and not charging), in hours

total_parking_time number ? Total duration during this session that
the EV is not being charged (no
energy being transferred between
EVSE and EV), in hours

remark string(255) ? Optional remark, can be used to
provide additional human readable
information to the CDR; for example,
why a transaction was stopped

last_updated DateTime 1 Timestamp when this CDR was last
updated or created

48

 3.1.1 Example of a CDR

{
 "id": "12345",
 "start_date_time": "2015-06-29T21:39:09+02:00",
 "stop_date_time": "2015-06-29T23:37:32+02:00",
 "auth_id": "FA54320",
 "auth_method": "WHITELIST",
 "location": {
 "id": "LOC1",
 "type": "on_street",
 "name": "Gent Zuid",
 "address": "F.Rooseveltlaan 3A",
 "city": "Gent",
 "postal_code": "9000",
 "country": "BE",
 "coordinates": {
 "latitude": "3.72994",
 "longitude": "51.04759"
 },
 "evse": {
 "uid": "3256",
 "evse_id": "BE-BEC-E041503003",
 "STATUS": "AVAILABLE",
 "connectors": [{
 "id": "1",
 "standard": "IEC-62196-T2",
 "format": "SOCKET",
 "power_type": "AC_1_PHASE",
 "voltage": 230,
 "amperage": 64,
 tariff_id": "11"
 "last_updated": "2015-06-29T21:39:01Z"
 }]
 "last_updated": "2015-06-29T21:39:01Z"
 }]
 "last_updated": "2015-06-29T21:39:01Z"
 },
 "currency": "EUR",
 "tariffs": [{
 "id": "12",
 "currency": "EUR",
 "elements": [{
 "price_components": [{
 "type": "TIME",
 "price": "2.00",
 "step_size": 300
 }]
 "last_updated": "2015-02-02T14:15:01Z"
 }]
 }],
 "charging_periods": [{
 "start_date_time": "2015-06-29T21:39:09+02:00",
 "dimensions": [{
 "type": "TIME",
 "volume": "1.973"
 }]
 }],
 "total_cost": "4,00",
 "total_energy": 15.342
 "total_time": 1.973,
 "last_updated": "2015-06-29T22:01:13Z"
}

49

 4. Data types

 4.1 AuthMethod enum

Value Description
AUTH_REQUEST Authentication request from the eMSP
WHITELIST Whitelist used to authenticate, no request done to the eMSP

 4.2 CdrDimension class

Property Type Cardinality Description
type CdrDimensionType 1 Type of cdr dimension
volume number 1 Volume of the dimension

consumed, measured according
to the dimension type

 4.3 CdrDimensionType enum

Value Description
ENERGY defined in kWh, default step_size is 1 Wh
FLAT flat fee, no unit
MAX_CURRENT defined in A (Ampere), Maximum current reached during

charging session
MIN_CURRENT defined in A (Ampere), Minimum current used during

charging session
PARKING_TIME time not charging: defined in hours, default step_size is 1

second
TIME time charging: defined in hours, default step_size is 1

second

 4.4 ChargingPeriod class
A charging period consists of a start timestamp and a list of possible values that
influence this period such as amount of energy charged this period, and maximum
current during this period.

Property Type Cardinality Description
start_date_time DateTime 1 Start timestamp of the charging

period. This period ends when a
next period starts, thoe last period
ends when the session ends

dimensions CdrDimension + List of relevant values for this
charging period

J. Tariffs module

Module Identifier: tariffs
The Tariffs module gives eMSPs information about the tariffs used by the CPO.

50

 1. Flow and Lifecycle

 1.1 Push model
When the CPO creates a new Tariff they push them to the eMSPs by calling the PUT
on the eMSP’s Tariffs endpoint with the newly created Tariff object.
Any changes to the Tariff(s) in the CPO system can be send to the eMSP system by
calling either PUT or PATCH on the eMSP’s Tariffs endpoint with the updated Tariff
object.
When the CPO deletes a Tariff, they will update the eMSPs systems by calling
DELETE on the eMSP’s Tariffs endpoint, with the ID of the Tariff that is deleted.
When the CPO is not sure about the state or existence of a Tariff object in the eMSP’s
system, the CPO can call the GET to validate the Tariff object in the eMSP system.

 1.2 Pull model
eMSPs who do not support the push model need to call GET on the CPOs Tariff
endpoint to receive all Tariffs, replacing the current list of known Tariffs with the newly
received list.

 2. Interfaces and endpoints
There is both a CPO and an eMSP interface for Tariffs. It is advised is to use the push
direction from CPO to eMSP during normal operation.
The CPO interface is meant to be used when the connection between two parties is
established to retrieve the current list of Tariffs objects, and when the eMSP is not
certain the Tariff cache is still correct.

 2.1 CPO Interface
The CPO Tariffs interface gives the eMSP the ability to request tariffs.
Example endpoint structure: /ocpi/cpo/2.0/tariffs/?date_from=xxx&date_to=yyy

Method Description
GET Returns Tariff Objects from the CPO, last updated between

the {date_from} and {date_to} (paginated)
POST n/a
PUT n/a
PATCH n/a
DELETE n/a

 2.1.1 GET Method
Fetch information about all Tariffs.

51

 2.1.1.1 Request Parameters
If additional parameters: {date_from} and/or {date_to} are provided, only Tariffs with
(last_updated) between the given date_from and date_to will be returned.
This request is paginated; it supports the pagination related URL parameters.

Parameter Datatype Required Description
date_from DateTime no Only return Tariffs that have last_updated

after this Date/Time
date_to DateTime no Only return Tariffs that have last_updated

before this Date/Time
offset int no The offset of the first object is returned.

Default is 0
limit int no Maximum number of objects to GET

 2.1.1.2 Response Data
The endpoint returns an object with a list of valid Tariffs, the header will contain the
pagination related headers.
Any older information that is not specified in the response is considered as no longer
valid.
Each object must contain all required fields. Fields that are not specified may be
considered as null values.

Type Cardinality Description
Tariff * List of all tariffs

 2.2 eMSP Interface
Tariffs is a client owned object, so the end-points need to contain the required extra
fields {party_id} and {country_code}.
Example endpoint structure:
/ocpi/emsp/2.0/tariffs/{country_code}/{party_id}/{tariff_id}

Method Description
GET Retrieve a Tariff as it is stored in the eMSP system
POST n/a
PUT Push new/updated Tariff object to the eMSP
PATCH Notify the eMSP of partial updates to a Tariff
DELETE Remove Tariff object which is no longer valid

 2.2.1 GET Method
If the CPO wants to check the status of a Tariff in the eMSP system it might GET the
object from the eMSP system for validation purposes. The CPO is the owner of the
objects, so it would be illogical if the eMSP system had a different status or was
missing an object.

52

 2.2.1.1 Request Parameters
The following parameters can be provided as URL segments.

Parameter Datatype Required Description
country_code string(2) yes Country code of the CPO requesting

this PUT to the eMSP system
party_id string(3) yes Party ID (Provider ID) of the CPO

requesting this PUT to the eMSP
system

tariff_id string(36) yes Tariff.id of the Tariff object to retrieve

 2.2.1.2 Response data
The response contains the requested object.

Type Cardinality Description
Tariff 1 The requested Tariff object

 2.2.2 PUT Method
New or updated Tariff objects are pushed from the CPO to the eMSP.

 2.2.2.1 Request Body
In the put request the new or updated Tariff object is sent.

Type Cardinality Description
Tariff 1 New or updated Tariff object

 2.2.2.2 Request Parameters
The following parameters can be provided as URL segments

Parameter Datatype Required Description
country_code string(2) yes Country code of the CPO requesting

this PUT to the eMSP system
party_id string(3) yes Party ID (Provider ID) of the CPO

requesting this PUT to the eMSP
system

tariff_id string(36) yes Tariff.id of the Tariff object to retrieve

 2.2.2.3 Example: New Tariff 2 euro per hour
PUT To URL: https://www.server.com/ocpi/emsp/2.0/tariffs/NL/TNM/12

{
 "id": "12",
 "currency": "EUR",
 "elements": [{
 "price_components": [{
 "type": "TIME",
 "price": "2.00",
 "step_size": 300
 }]
 }]
}

http://www.server.com/ocpi/emsp/2.0/tariffs/NL/TNM/12

53

 2.2.3 PATCH Method
The PATCH method works the same as the PUT method, except that the fields/objects
that have to be updated have to be present, other fields/objects that are not specified
are considered unchanged.

 2.2.3.1 Example: Change Tariff to 2.50
PUT To URL: https://www.server.com/ocpi/emsp/2.0/tariffs/NL/TNM/12
{
 "elements": [{
 "price_components": [{
 "type": "TIME",
 "price": "2.50",
 "step_size": 300
 }]
 }]
}

 2.2.4 DELETE Method
Delete a no longer valid Tariff object.

 2.2.4.1 Request Parameters
The following parameters can be provided as URL segments.

Parameter Datatype Required Description
country_code string(2) yes Country code of the CPO requesting

this PUT to the eMSP system
party_id string(3) yes Party ID (Provider ID) of the CPO

requesting this PUT to the eMSP
system

tariff_id string(36) yes Tariff.id of the Tariff object to retrieve

 3. Object description

http://www.server.com/ocpi/emsp/2.0/tariffs/NL/TNM/12

54

 3.1 Tariff Object
A Tariff Object consists of a list of one or more TariffElements. These elements can be
used to create complex Tariff structures.
When the list of elements contains more than 1 element, the first tariff in the list with
matching restrictions will be used.
It is advised to always set a “default” tariff, the last tariff in the list of elements with no
restriction. This acts as a fallback when none of the TariffElements before this matches
the current charging period.

Property Type Cardinality Description
id String(36) 1 Uniquely identifies the tariff within

the CPO’s platform (and
suboperator platforms)

currency String(3) 1 Currency of this tariff, ISO 4217
Code

tariff_alt_text DisplayText * List of Multilanguage alternative
tariff info text

tariff_alt_ur; URL ? Alternative URL to tariff info
elements TariffElement + List of tariff elements
energy_mix EnergyuMix ? Details on the energy supplied

with this tariff
last_updated DateTime 1 Timestamp whrn this Tariff was

last updated or created

 3.1.1 Examples

Simple Tariff example 2 euro per hour

{
 "id": "12",
 "currency": "EUR",
 "elements": [{
 "price_components": [{
 "type": "TIME",
 "price": "2.00",
 "step_size": 300
 }]
 }]
 "last_updated": "2015-06-29T20:39:09Z"
}

Simple Tariff example with alternative URL

{
 "id": "12",
 "currency": "EUR",
 "tariff_alt_url": "https://company.com/tariffs/12", "elements": [{
 "price_components": [{
 "type": "TIME",
 "price": "2.00",
 "step_size": 300
 }]
 }]
 "last_updated": "2015-06-29T20:39:09Z"
}

55

 4. Data types

 4.1 DayOfWeek enum

Value Description
MONDAY Monday
TUESDAY Tuesday
WEDNESDAY Wednesday
THURSDAY Thursday
FRIDAY Friday
SATURDAY Saturday
SUNDAY Sunday

 4.2 PriceComponent class

Property Type Cardinality Description
type TariffDimensionType 1 Type of tariff dimension
price number 1 Price per unit (excluding VAT)

for this tariff dimension
step_size int 1 Minimumamount to be billed.

This unit will be billed in this
step_size blocks. For example,
if type is time and step_size is
300, then time will be billed in
blocks of 5 minutes. If 6 minutes
is used, 10 minutes (2 blocks of
step_size) will be billed.

 4.3 TariffElement class

Property Type Cardinality Description
price_components PriceComponent + List of price components

that make up the pricing of
this tariff

restrictions TariffRestrictions ? List of tariff restrictions

 4.4 TariffDimensionType enum

Value Description
ENERGY Defined in kWh, default step_size is 1 Wh
FLAT Flat fee, no unit
PARKING_TIME Time not charging; defined in hours, default step_size

is 1 second
TIME Time charging; defined in hours, default step_size is 1

second

56

 4.5 TariffRestrictions class

Property Type Cardinality Description
start_time string(5) ? Start time of day, for example

13:30, valid from this time of
the day. Must be in 24Hr
format with leading zeros.
Hour/Minute separator:
“:”REGEX:[0-2[0-9:[0-5][0-9]

end_time string(5) ? End time of day, for example
19:45, valid until this time of
day. Same syntax as
start_time

start_date string(10) ? Start date, for example 2015-
12-24, valid from this day

end_date string(10) ? End date, for example 2015-
12-27, valid until this day
(excluding this day)

min_kWh number ? Minimum used energy in kWh,
for example 20, valid from this
amount of energy is used

max_kWh number ? Maximum used energy in
kWh, for example 50, valid
until this amount of energy is
used

min_power number ? Minimum power in kW, for
example 0, valid from this
charging speed

max_power number ? Maximum power in kW, for
example 20, valid up to this
charging speed

min_duration int ? Minimum duration in seconds,
valid for a duration from x
seconds

max_duration int ? Maximum duration in seconds,
valid for a duration up to x
seconds

day_of_week DayOfWeek * Which days of the week this
tariff is valid

K. Tokens module

Module Identifier: tokens

The tokens module gives CPOs knowledge of the token information of an eMSP.
eMSPs can push Token information to CPOs; CPOs can build a cache of known
Tokens.
When a request to authorize comes from a Charge Point, the CPO can check against
this cache. With this cached information they know to which eMSP they can later send
a CDR.

57

 1. Flow and Lifecycle

 1.1 Push model
When the MSP creates a new Token object they push it to the CPO by calling PUT on
the CPO’s Tokens endpoint with the newly created Token object.
Any changes to Token in the eMSP system are send to the CPO system by calling,
either the PUT or the PATCH on the CPOs Tokens endpoint with the updated Token(s).
When the eMSP invalidates a Token (deleting is not possible), the eMSP will send the
updated Token (with the field: valid set to False), by calling, either the PUT or the
PATCH on the CPOs Tokens endpoint with the updated Token.
When the eMSP is not certain about the state or existence of a Token object in the
CPO system, the eMSP can call the GET to validate the Token object in the CPO
system.

 1.2 Pull model
When a CPO is not certain about the state of the list of known Tokens, or wants to
request the full list as a start-up of their system, the CPO can call the GET on the
eMSP’s Token endpoint to receive all Tokens, updating already known Tokens and
adding new received Tokens to its own list of Tokens. This method is not for
operational flow.

 1.3 Real-time authorization
An eMSP might want their Tokens to be authorization ‘real-time’, not white-listed. For
this the eMSP has to implement the POST Authorize request and set the
Token.allow_whitelist field to FALSE for Tokens they want to have authorized ‘real-
time’.
If an eMSP does not want real-time authorization, the POST Authorize request does
not have to be implemented as long as all their Tokens have Token.whitelist set to
ALWAYS.

 2. Interfaces and endpoints
There is both a CPO and an eMSP interface for Tokens. It is advised to use the push
direction from eMSP to CPO during normal operation.
The eMSP interface is meant to be used when the CPO is not certain the Token cache
is still correct.

 2.1 CPO Interface
With this interface the eMSP can push the Token information to the CPO.
Tokens is a client owned object, so the end-points need to contain the required extra
fields: {party_id} and {country_code}.
Example endpoint structure:
/ocpi/cpo/2.0/tokens/{country_code}/{party_id}/{token_uid}

Method Description
GET Retrieve a Token as it is stored in the CPO system
POST n/a
PUT Push new/updated Token object to the CPO
PATCH Notify the CPO of partial updates to a Token
DELETE n/a (use PUT, Tokens cannot be removed)

 2.1.1 GET Method
If the eMSP wants to check the status of a Token in the CPO system it might GET the

58

object from the CPO system for validation purposes. The eMSP is the owner of the
objects, so it would be illogical if the CPO system had a different status or was missing
an object.

 2.1.1.1 Request Parameters
The following parameters can be provided as URL segments.

Parameter Datatype Required Description
country_code string(2) yes Country code of the eMSP sending this

PUT request to the CPO system
party_id string(3) yes Party ID (Provider ID) of the eMSP

sending this PUT request to the CPO
system

token_uid string(36) yes Token.uid of the (new) Token object (to
replace)

 2.1.1.2 Response Data
The response contains the requested object.

Type Cardinality Description
Token 1 The requested Token object

 2.1.2 PUT Method
New or updated Token objects are pushed from the eMSP to the CPO.

 2.1.2.1 Request Body
In the put request the new or updated Token object is sent.

Type Cardinality Description
Token 1 New or updated Token object

 2.1.2.2 Request Parameters
The following parameters can be provided as URL segments.

Parameter Datatype Required Description
country_code string(2) yes Country code of the eMSP sending this

PUT to the CPO system
party_id string(3) yes Party ID (Provider ID) of the eMSP

sending this PUT request to the CPO
system

tariff_id string(36) yes Token.uid of the (new)Token object (to
replace)

59

 2.1.2.3 Example: put a new Token
PUT To URL: https://www.server.com/ocpi/cpo/2.0/tokens/NL/TNM/012345678

{
 "uid": "012345678",
 "type": "RFID",
 "auth_id": "FA54320",
 "visual_number": "DF000-2001-8999",
 "issuer": "TheNewMotion",
 "valid": true,
 "whitelist": true
 "last_updated": "2015-06-29T22:39:09Z"
}

 2.1.3 PATCH Method
Same as the PUT method, but only the fields/objects that have to be updated have to
be present, other fields/objects that are not specified are considered unchanged.

 2.1.3.1 Example: invalidate a Token

PATCH To URL: https://www.server.com/ocpi/cpo/2.0/tokens/NL/TNM/012345678

{
 "valid": false
}

 2,2 eMSP Interface
This interface enables the CPO to request the current list of Tokens, when needed. Via
the POST method it is possible to authorize a single token.
Example endpoint structure: /ocpi/emsp/2.0/tokens/?date_from=xxx&date_to=yyy

Method Description
GET Get the list of known Token last updated between the

{date_from} and {date_to} (paginated)
POST Real-time authorization request
PUT n/a
PATCH n/a
DELETE n/a

 2.2.1 GET Method
Fetch information about Tokens known in the eMSP systems.

http://www.server.com/ocpi/cpo/2.0/tokens/NL/TNM/012345678
http://www.server.com/ocpi/cpo/2.0/tokens/NL/TNM/012345678

60

 2.2.1.1 Request Parameters
If additional parameters: {date_from} and/or {date_to} are provided, only Tokens with
(last_updated) between the given date_from and date_to will be returned.
This request is paginated, it supports the pagination related URL parameters.

Parameter Datatype Required Description
date_from DateTime no Only return Tokens that have last_updated

after this Date/Time
date_to DateTime no Only return Tokens that have last_updated

before this Date/Time
offset int no The offset of the first object is returned.

Default is 0
limit int no Maximum number of objects to GET

 2.2.1.2 Response Data
The endpoint response with list of valid Token objects, the header will contain the
pagination related headers.
Any older information that is not specified in the response is considered as no longer
valid.
Each object must contain all required fields. Fields that are not specified may be
considered as null values.

Type Cardinality Description
Token * List of all tokens

 2.2.2 POST Method
Do a ‘real-time’ authorization request to the eMSP system, validating if a Token might
be used (at the optionally given Location).
Example endpoint structure: /ocpi/emsp/2.0/tokens/{token_uid}/authorize
The /authorize is required for the real-time authorize request.

When the eMSP receives a ‘real-time’ authorization request from a CPO that contains
too little information (no LocationReferences provided) to determine if the Token might
be used, the eMSP should respond with the OCPI status: 2002

 2.2.2.1 Request Parameters
The following parameter has to be provided as URL segments.

Parameter Datatype Required Description
token_uid string(36) yes Token_uid of the Token for which this

authorization is
token_type TokenType No Token.type of the Token for which

this authorization is. Default if
omitted: RFID

61

 2.2.2.2 Request Body
In the body an optional LocationReferences object can be given. The eMSP SHALL
then validate if the Token is allowed to be used at this Location, and if applicable: which
of the Locations EVSEs/Connectors.
The object with valid Location and EVSEs/Connectors will be returned in the response.

Type Cardinality Description
LocationReferences ? Location and EVSE/Connectors for which

the Token is requested to be authorized

 2.2.2.3 Response Data
The endpoint response contains a AuthorizationInfo object.

Type Cardinality Description
AuthorizationInfo 1 Contains information about the

authorization, if the Token is allowed to
charge and optionally which
EVSE/Connectors are allowed to be used

 3. Object description

 3.1 AuthorizationInfo Object

Property Type Cardinality Description
Allowed Allowed 1 Status of the Token, and if it is

allowed to charge at the optionally
given location

Location LocationReferences ? Optional reference to the location
if it was requested in the request,
and if the EV driver is allowed to
charge at that location. Only the
EVSE/Connectors the EV driver is
allowed to charge at are returned

Info DisplayText ? Optional display text, additional
information to the EV driver

62

 3.2 Token Object

Property Type Cardinality Description
uid string(36) 1 Identification used by CPO system to identify

this token. In most cases this is the RFID
hidden ID as read by the RFID reader

type TokenType 1 Type of the token
auth_id string(36) 1 Uniquely identifies the EV driver contract token

within the eMSP’s platform (and suboperator
platforms). Recommended to follow the
specification for eMA ID from “eMI3 standard
version V1.0” (http://emi3group.com/documents-
links/) “Part 2: business objects.”

visual_number string(64) ? Visual readable number/identification as printed
on the Token(RFID card), might be equal to the
auth_id.

issuer string(64) 1 Issuing company, most of the time the name of
the company printed on the token (RFID card),
not necessarily the eMSP

valid boolean 1 Is this token valid
whitelist WhitelistType 1 Indicates what type of white-listing is allowed
language string(2) ? Language Code ISO 639-1. The optional field

indicates the Token owner’s preferred interface
language. If the language is not provided or not
supported then the CPO is free to choose its
own language

last_updated DateTime 1 Timestamp when this Token was last updated or
created

The combination of uid and type should be unique for every token within an eMSP’s
system.

 3.2.1 Example

{
 "uid": "012345678",
 "type": "RFID",
 "auth_id": "FA54320",
 "visual_number": "DF000-2001-8999",
 "issuer": "TheNewMotion",
 "valid": true,
 "whitelist": "ALLOWED"
 "last_updated": "2015-06-29T22:39:09Z"
}

 4. Data types

 4.1 Allowed enum

Value Description
ALLOWED This Token is allowed to charge at this location
BLOCKED This Token is blocked
EXPIRED This Token has expired
NO_CREDIT This Token belongs to an account that does not have

enough credits to charge at the given location
NOT_ALLOWED Token is valid, but is not allowed to charge at the given

location

63

 4.2 LocationReferences class

Field Name Field Type Cardinality Description
location_id string(39) 1 Unique identifier for the location
evse_uids string(39) * Unique identifier for EVSEs within

the CPO’s platform for the EVSE
within the given location

connector_ids string(36) * Identifies the connectors within the
given EVSE

 4.3 TokenType enum

Value Description
OTHER Other type of token
RFID RFID Token

 4.4 Whitelist Type enum

Defines when authorization of a Token by the CPO is allowed.

Value Description
ALWAYS Token always has to be whitelisted; realtime authorization

is not possible/allowed
ALLOWED It is allowed to whitelist the token; realtime authorization is

also allowed
ALLOWED_OFFLINE Whitelisting is only allowed when CPO cannot reach the

eMSP (communication between CPO and eMSP is offline)
NEVER Whitelisting is never allowed; only realtime authorization

allowed. Token should always be authorized by the eMSP

L. Commands module

Module Identifier: commands
The Commands module enables remote commands to be sent to a Location/EVSE.
The following commands are supported:

• RESERVE_NOW
• START_SESSION
• STOP_SESSION
• UNLOCK_CONNECTOR

See CommandType for a description of the different commands.
Use the UNLOCK_CONNECTOR command with care, please read the note at
CommandType.
Module dependency: Locations module

 1 Flow
With the Commands module, commands can be sent from the eMSP, via the CPO to a
Charge Point. Most Charge Point are hooked up to the internet via a relative slow
wireless connection. To prevent long blocking calls, the commands module is designed
to work asynchronously.

64

The eMSP send a request to a CPO, via the CPO Commands interface. The CPO
checks if it can send the request to a Charge Point and will respond to the request with
a status, indicating if the request can be sent to a Charge Point.
The CPO sends the requested command (via another protocol, for example: OCPP) to
a Charge Point. The Charge Point will respond if it understands the command and will
try to execute the command. This response doesn’t mean that the command was
executed successfully. The CPO will forward this command in a new POST request to
the eMSP Commands interface.
The following examples try to give insight into the message flow and the asynchronous
nature of the OCPI Commands.

Example of a UNLOCK_CONNECTOR that fails because the Location is not known by
the CPO.

Example of a RESERVE_NOW that is rejected by the Charge Point.

Example of a START_SESSION that is accepted, but no new Session is started
because the EV not plugged in before end of time-out.

65

Example of a START_SESSION that is accepted and results in a new Session.

These examples use OCPP 1.6 based commands between CPO and Charge Point,
but that is not a requirement for OCPI.

 2. Interfaces and endpoints

The commands module consists of two interfaces: a CPO interface that enables an
eMSP (and its clients) to send commands to a Charge Point and an eMSP interface
to receive the response from the Charge Point asynchronously.

 2.1 CPO Interface
Example endpoint structure: /ocpi/cpo/2.0/commands/{command}

Method Description
GET n/a
POST Send a command to the CPO, requesting the CPO to

send the command to the Charge Point
PUT n/a
PATCH n/a
DELETE n/a

 2.1.1 POST Method

 2.1.1.1 Request Parameters
The following parameters can be provided as URL segments.

Parameter Datatype Required Description
command CommandType yes Type of command that is

required

66

 2.1.2 Request Body
Depending on the command parameter the body SHALL contain the applicable
object for that command.

Type (one of four) Cardinality Description
> ReserveNow 1 ReserveNow object, for the

RESERVE_NOW command, with
information needed to reserve a (specific)
connector of a Charge Point for a given
Token

>StartSession 1 StartSession object, for the
START_SESSION command, with
information needed to start a session

>StopSession 1 StopSession object, for the
STOP_SESSION command, with
information needed to stop a session

>UnlockConnector 1 UnlockConnector object, for the
UNLOCK_CONNECTOR command, with
information needed to unlock a connector
of a Charge Point

 2.1.2.1 Response Data
The response contains the direct response from the CPO, not the response from
the Charge Point itself, that will be sent via an asynchronous POST on the eMSP
interface if this response is ACCEPTED.

Datatype Cardinality Description
CommandResponseType 1 Result of the command request by

the CPO (not the Charge Point)

 2.2 eMSP Interface
The eMSP interface receives the asynchronous responses.

Example endpoint structure:
/ocpi/emsp/2.0/commands/{command}
/ocpi/emsp/2.0/commands/{command}/{uid}

Method Description
GET n/a
POST Receive the asynchronous response from the Charge

Point
PUT n/a
PATCH n/a
DELETE n/a

67

 2.2.1 POST Method

 2.2.1.1 Request Parameters
There are no URL segment parameters required by OCPI.
It is up to the implementation of the eMSP to determine what parameters are put in
the URL. The eMSP sends a URL in the POST method body to the CPO. The CPO
is required to use this URL for the asynchronous response by the Charge Point. It is
advised to make this URL unique for every request to differentiate simultaneous
commands, for example by adding a unique id as a URL segment.
Example:
/ocpi/emsp/2.0/commands/RESERVE_NOW/1234
/ocpi/emsp/2.0/commands/UNLOCK_CONNECTOR/2

Datatype Cardinality Description
CommandResponseType 1 Result of the command request

from the Charge Point

 2.2.2 Request Body

 3. Object description

 3.1 CommandResponse Object

Property Type Cardinality Description
result CommandResponseType 1 Result of the command

request as sent by the
Charge Point to the CPO

 3.2 ReserveNow Object
The evse_uid is optional. If no EVSE is specified, the Charge Point should keep one
EVSE available for the EV Driver identified by the given Token. (This might not be
supported by all Charge Points).
A reservation can be replaced/updated by sending a RESERVE_NOW request with
the same Location (Charge Point) and the same reservation_id.

68

Property Type Cardinality Description
response_url URL 1 URL to which the

CommandResponse POST should
be able to send. This URL might
contain a unique ID to be able to
distinguish between ReserveNow
requests

token Token 1 Token object for how to reserve this
Charge Point (and specific EVSE)

expiry_date DateTime 1 The Date/Time when this
reservation ends

reservation_id int 1 Reservation ID, unique for this
reservation. If the Charge Point
already has a reservation that
matches this reservation ID the
Charge Point will replace the
reservation

location_id string(39) 1 Location.id of the Location
(belonging to the CPO to which this
request is sent) for which to reserve
an EVSE

evse_uid string(39) ? Optional EVSE.uid of the EVSE of
this Location if a specific EVSE has
to be reserved

 3.3 StartSession Object
The evse_uid is optional. If no EVSE is specified, the Charge Point can itself decide
on which EVSE to start a new session. (this might not be supported by all Charge
Points).

Property Type Cardinality Description
response_url URL 1 URL to which the

CommandResponse POST should
be sent. This URL might contain a
unique ID to be able to distinguish
between StartSession requests

token Token 1 Token object the Charge Point has to
use to start a new session

location_id string(15) 1 Location.id of the Location
(belonging to the CPO to which this
request is sent) on which a session
is to be started

evse_uid string(15) ? Optional EVSE.uid of the EVSE of
this Location to which a session is to
be started.

69

 3.4 StopSession Object

Property Type Cardinality Description
response_url URL 1 URL to which the

CommandResponse POST should be
sent. This URLmight contain a unique
ID to be able to distinguish between
StopSession requests.

session_id string(15) 1 Session.id of the Session that is
requested to be stopped

 3.5 UnlockConnector Object

Property Type Cardinality Description
response_url URL 1 URL to which the

CommandResponse POST should
be sent. This URLmight contain a
unique ID to be able to distinguish
between UnlockConnector requests

Location_id string(39) 1 Location.id of the Location (belonging
to the CPO to which this request is
sent) of which it is requested to
unlock the connector

Evse_uid string(39) 1 EVSE.uid of the EVSE of this
Location of which it is requested to
unlock the connector

Connector_id string(36) 1 Connector.id of the Connector of this
location of which it is requested to
unlock

 4. Data types

 4.1 CommandResponseType enum

The command requested.

Value Description
NOT_SUPPORTED The requested command is not supported by this CPO,

Charge Point, or EVSE
REJECTED Command request rejected by the CPO or Charge

Point
ACCEPTED Command request accepted by the CPO or Charge

Point
TIMEOUT Command request timeout, no response received from

the Charge Point in a reasonable time
UNKNOWN_SESSION The Session in the requested command is not known

by this CPO

70

 4.2 CommandType enum

The command requested.

Value Description
RESERVE_NOW Request the Charge Point to reserve a (specific)

EVSE for a Token for a certain time, starting now
START_SESSION Request the Charge Point to start a transaction on

the given EVSE/Connector.
STOP_SESSION Request the Charge Point to stop an ongoing

session. Request the Charge Point to unlock the
connector (if applicable)

UNLOCK_CONNECTOR This functionality is for help desk operators only

The command UNLOCK_CONNECTOR may only be used by an operator of the
eMSP. This command shall never be allowed to be sent directly by the EV driver.
The UNLOCK_CONNECTOR is intended to be used in the rare situation that the
connector is not unlocked successfully after a transaction is stopped. The
mechanical unlock of the lock mechanism might get stuck.
In such a situation the EV driver can call either the CPO or the eMSP to retry the
unlocking.

M. Types

 1. CiString type
Case Insensitive String. Only printable ASCII allowed.

 2. DateTime type
All timestamps are formatted as string(25) using the combined date and time format
from the ISO 8601 standard. All timestamps shall be in UTC. The absence of the
timezone designator implies a UTC timestamp.

Example:
2015-06-29T22:39:09+02:00
2015-06-29T20:39:09Z
2015-06-29T20:39:09
Note: +00:00 is not the same as UTC.

 3. DisplayText class

Property Type Cardinality Description
language string(2) 1 Language Code ISO 639-1
text string(512) 1 Text to be displayed to an end user.

No markup or html is allowed

71

Example:

{
 "language": "en",
 "text": "Standard Tariff"
}

 4 number type
Numbers in OCPI are formatted as JSON numbers.
Unless mentioned otherwise, numbers use 4 decimals and a sufficiently large
amount of digits.

 5. string type
Case Sensitive String. Only printable ASCII allowed. All strings in messages and
enumerations are case sensitive, unless explicitly stated otherwise.

 6 URL type
An URL a string(255) type following the w3.org spec.

http://www.w3.org/Addressing/URL/uri-spec.html

